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ABSTRACT

The present disclosure provides methods of determining the
risk of a subject having or developing a cancer based on the
affinity of the subjects MHC-II alleles for oncogenic muta-
tions, methods for improving cancer diagnosis, and kits
comprising agents that detect the oncogenic mutations in a
subject.
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MHC-II GENOTYPE RESTRICTS THE
ONCOGENIC MUTATIONAL LANDSCAPE

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims the benefit of priority under
35 U.S.C. 119(e) to U.S. Application No. 62/722,607 filed
Aug. 24, 2018.

FEDERALLY SPONSORED RESEARCH OR
DEVELOPMENT

[0002] This invention was made with government support
under CA220009, ODO017937, TI15LM011271, DP5-
0D017937, P41-GM103504, and 2015205295 awarded by
the National Institutes of Health, the National Resource for
Network Biology (NRNB), and the National Science Foun-
dation. The government has certain rights in the invention.

TECHNICAL FIELD

[0003] This disclosure generally relates to immunology.
BACKGROUND
[0004] The Major Histocompatibility Complex (MHC)

exposes protein content on the cell surface to allow detection
of antigens by the immune system. This applies to non-self-
antigens such as viral proteins as well as self-antigens such
as tumor proteins.

[0005] Tumor cells harbor oncogenic alterations that can
be presented to the immune system by the MHC, which
normally causes immune recognition and elimination
(sometimes referred to as “immune surveillance”). How-
ever, in order to grow, invade, and spread, tumors must
evade immune surveillance. Common mechanisms of
immune evasion include a) loss of the MHC molecules or b)
the upregulation of immune checkpoint molecules on cell
surfaces that normally regulate the amplitude and duration
of a T cell response. Antibodies that block immune check-
point molecules, known as immune checkpoint inhibitors
(ICPi), can invigorate inactive and/or exhausted T cells,
producing anti-tumor effects that confer long-term survival
benefits in certain types of cancer. However, ICPi are
effective in only 10-40% of patients for reasons that remain
unclear. Meta-analyses of clinical trials in melanoma
patients treated with ICPi suggest that young and female
patients are characterized by low response rates. The reason
(s) for the poor response of these two populations remains
elusive, and developing a predictive assay would be benefi-
cial.

SUMMARY

[0006] Individual MHC genotype constrains the muta-
tional landscape during tumorigenesis. Immune checkpoint
inhibition reactivates immunity against tumors that escaped
immune surveillance in approximately 30% of cases. Recent
studies, however, demonstrated poorer response rates in
female and younger melanoma patients. Although immune
responses differ with sex and age, the role of MHC-based
immune selection in this context is unknown. As described
herein, female tumors accumulated more poorly presented
driver mutations despite no sex-based differences in MHC
genotype. Younger patients showed stronger effects of
MHC-based driver mutation selection, with younger females

Jun. 17,2021

showing compounded effects and nearly twice as much
MHC-II based selection. This disclosure presents the first
evidence that strength of immune selection during tumor
development varies with sex and age, and may influence
responsiveness to immune checkpoint inhibition therapy.

[0007] Inone aspect, a computer implemented method for
determining whether a subject is at risk of having or devel-
oping a cancer is provided. Such a method typically includes
a) genotyping the subject’s major histocompatibility com-
plex class II (MHC-II); and b) scoring the ability of the
subject’s MHC-II to present a mutant cancer-associated
peptide based upon a library of known cancer-associated
peptide sequences sequences derived from subjects, wherein
the produced score is the MHC-II presentation score. Gen-
erally, 1) if the subject is a poor MHC-II presenter of specific
mutant cancer-associated peptides, the subject has an
increased likelihood of having or developing the cancer for
which the specific mutant cancer-associated peptides are
associated; or ii) if the subject is a good MHC-II presenter
of specific mutant cancer-associated peptides, the subject
has a decreased likelihood of having or developing the
cancer for which the specific mutant cancer-associated pep-
tides are associated.

[0008] Such a method can further include ¢) determining
whether a biopsy sample obtained from the subject com-
prises DNA encoding a mutant cancer-associated peptide
based upon a library of cancer-associated mutations
obtained from subjects.

[0009] In some embodiments, the biopsy sample is a
liquid biopsy sample. In some embodiments, the biopsy
sample is a solid biopsy sample. Representative liquid
biopsy samples include, without limitation, blood, saliva,
urine, or other body fluid.

[0010] In some embodiments, the library of cancer-asso-
ciated mutations is obtained by whole genome sequencing of
subjects.

[0011] In some embodiments, the step of scoring the
ability of the subject’s MHC-II to present a mutant cancer-
associated peptide comprises using a predicted MHC-II
affinity for a given mutation xij, where x is the MHC-II
affinity of subject i for mutation j to fit a mixed-effects
logistic regression model that follows a model equation
obtained from a large dataset of subjects from which MHC-
II genotypes and presence of peptides of interest can be
obtained:

logit(P(y;=1lx;))=n+y log(xy)

wherein: y,, is a binary mutation matrix y,, €{0,1} indicating
whether a subject i has a mutation j; x,; is a binary mutation
matrix indicating predicted MHC-II binding affinity of sub-
ject i having mutation j; vy measures the effect of the
log-affinities on the mutation probability; and Mj~N(0, ¢,,)
are random effects capturing residue-specific effects,
wherein the model tests the null hypothesis that y=0 and
calculates odds ratios for MHC-II affinity of a mutation and
presence of a cancer.

[0012] Insome embodiments, the predicted MHC-II affin-
ity for a given mutation x,; is a Subject Harmonic-mean Best
Rank (PHBR) score. In some embodiments, the PHBR score
is obtained by aggregating MHC-II binding affinities of a set
of mutant cancer-associated peptides by referring to a pre-
determined dataset of peptides binding to MHC-II molecules
encoded by at least 12 different HLA alleles.
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[0013] In some embodiments, the mutant cancer-associ-
ated peptide contains an amino acid substitution, and
wherein the set of peptides consists of at least 15 of all
possible 15-amino acid long peptides incorporating the
substitution at every position along the peptide. In some
embodiments, the mutant cancer-associated peptide contains
an amino acid insertion or deletion, and wherein the set of
peptides consists of at least 15 of all possible 15-amino acid
long peptides incorporating the insertion or deletion at every
position along the peptide. In some embodiments, the set of
mutant cancer-associated peptides comprises any one or
more of the mutations shown in Appendix A, wherein the
presence of any one of these mutations indicates the pres-
ence of or increased risk of developing cancer.

[0014] Representative cancers include, without limitation,
bladder urothelial carcinoma (BLCA), a breast invasive
carcinoma (BRCA), a colon adenocarcinoma (COAD), a
glioblastoma multiforme (GBM), a head and neck squamous
cell carcinoma (HNSC), a brain lower grade glioma (LGG),
a liver hepatocellular carcinoma (LLIHC), a lung adenocar-
cinoma (LUAD), lung squamous cell carcinoma (LUSC), an
ovarian serous cystadenocarcinoma (OV), a pancreatic
adenocarcinoma (PAAD), a prostate adenocarcinoma
(PRAD), a rectum adenocarcinoma (READ), a skin cutane-
ous melanoma (SKCM), a stomach adenocarcinoma
(STAD), a thyroid carcinoma (THCA), a uterine corpus
endometrial carcinoma (UCEC), or a uterine carcinosar-
coma (UCS).

[0015] In another aspect, a computing system for deter-
mining whether a subject is at risk of having or developing
a cancer is provided. Such a system typically includes a) a
communication system for using a library of cancer-associ-
ated peptides derived from subjects; and b) a processor for
scoring the ability of the subject’s major histocompatibility
complex class II (MHC-II) to present a mutant cancer-
associated peptide based upon a library of cancer-associated
peptides derived from subjects, wherein the produced score
is the MHC-II presentation score.

[0016] In some embodiments, the step of scoring the
ability of the subject’s MHC-II to present a mutant cancer-
associated peptide comprises using a predicted MHC-II
affinity for a given mutation xij, where x is the MHC-II
affinity of subject i for mutation j to fit a mixed-effects
logistic regression model that follows a model equation
obtained from a large dataset of subjects from which MHC-
II genotypes and presence of peptides of interest can be
obtained:

logit(P(yij=1 lxif))=nj+y log(xtf)

wherein: yij is a binary mutation matrix yij={,1} indicating
whether a subject i has a mutation j; Xij is a binary mutation
matrix indicating predicted MHC-II binding affinity of sub-
ject i having mutation j; y measures the effect of the
log-affinities on the mutation probability; and 1j~N(0, ¢m)
are random effects capturing residue-specific effects,
wherein the model tests the null hypothesis that y=0 and
calculates odds ratios for MHC-II affinity of a mutation and
presence of a cancer.

[0017] Insome embodiments, the predicted MHC-II affin-
ity for a given mutation xij is a Subject Harmonic-mean Best
Rank (PHBR)-II score. In some embodiments, the PHBR-II
score is obtained by aggregating MHC-II binding affinities
of a set of mutant cancer-associated peptides by referring to
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a pre-determined dataset of peptides binding to MHC-II
molecules encoded by at least 12 different HLA alleles.
[0018] In some embodiments, the mutant cancer-associ-
ated peptide contains an amino acid substitution, and
wherein the set of peptides consists of at least 15 of all
possible 15-amino acid long peptides incorporating the
substitution at every position along the peptide. In some
embodiments, the mutant cancer-associated peptide contains
an amino acid insertion or deletion, and wherein the set of
peptides consists of at least 15 of all possible 15-amino acid
long peptides incorporating the insertion or deletion at every
position along the peptide.

[0019] Unless otherwise defined, all technical and scien-
tific terms used herein have the same meaning as commonly
understood by one of ordinary skill in the art to which the
methods and compositions of matter belong. Although meth-
ods and materials similar or equivalent to those described
herein can be used in the practice or testing of the methods
and compositions of matter, suitable methods and materials
are described below. In addition, the materials, methods, and
examples are illustrative only and not intended to be limit-
ing. All publications, patent applications, patents, and other
references mentioned herein are incorporated by reference in
their entirety.

DESCRIPTION OF DRAWINGS

Part A—FEvolutionary Pressure Against MHC Class H
Binding Cancer Mutations

[0020] FIG. 1A-1E show the development of a residue-
specific, patient-specific MHC-II presentation score. FIG.
1A-1C are schematic representations of the best rank (BR)
presentation score for a residue (1A), MHC-II genetic diver-
sity in the population (B), and the patient harmonic-mean
best rank class II (PHBR-II) presentation score (1C). FIG.
1D shows an experimental schematic of the MS-based
validation of the PHBR-II score. HLA-DR MS data from 7
donors was used to validate the PHBR-II score. FIG. 1E is
a graph of ROC AUC curves showing the accuracy of the
PHBR-II for classifying the extracellular presentation of a
residue by a patient’s HLA-DR genes for 7 donors (colors)
and for all donors combined (black). The aggregated PHBR-
II presentation scores for the 7 donors expressed HLA-DR
alleles was compared to a set of random residues for the
same HLA-DR alleles.

[0021] FIG. 2 is a pan-cancer overview of patient-muta-
tion MHC-II presentation. A clustered heat map of patients
in TCGA with the 1,018 frequent cancer mutations. Only
1,050 ancestry-distributed patients are included for spatial
reasons. The heat map is colored by PHBR-II score. Column
and row coloring highlight groupings of patients and muta-
tions into different categories. TS, tumor suppressor.
[0022] FIG. 3A is a violin plot denoting the distribution of
PHBR-II presentation scores across all patients in TCGA for
6 different classes of residue. TS, tumor suppressor. Muta-
tions observed >10 times in TCGA are displayed. The white
dots represent the median, the thick dark gray lines denote
the interquartile of the data, and the thin dark gray lines
denote the 1.5 IQR range.

[0023] FIG. 3B shows the cumulative distribution func-
tions (CDF) for the 6 different classes of residue.

[0024] FIG. 3C is a violin plot with the distribution of
somatic mutations occurring at different frequencies: pas-
senger mutations in non-cancer implicated genes observed
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<2 in TCGA, and mutations in cancer implicated genes
observed 3-10 times, 11-40 times, and >40 times in TCGA.
The white dots represent the median, the thick dark gray
lines denote the interquartile of the data, and the thin dark
gray lines denote the 1.5 IQR range.

[0025] FIG. 3D is a CDFs for somatic mutations occurring
at different frequencies.

[0026] FIG. 4A is a violin plot denoting the difference in
PHBR-II scores when the 5,942 patients are split by muta-
tion occurrence, considering only mutations observed >2
times across tumors.

[0027] FIG. 4B shows nonparametric estimate of the logit-
mutation probability as a function of PHBR-II scores con-
sidering mutations observed >2 times across tumors.
[0028] FIG. 4C shows the MHC-II ORs (gray circles) and
95% ClIs (bars) associated with a 1-unit increase in log-
PHBR-II score for different cancer types.

[0029] FIG. 5A is a kernel density plot with the density of
PHBR-II and -1 scores across cancer-driving mutations.
[0030] FIG. 5B is a heat map of mutation probability for
all combinations of PHBR-II and -I scores. Dark red repre-
sents low probability and white represents high probability.
[0031] FIG. 5C shows the MHC-I and MHC-II ORs (gray
circles) and 95% ClIs associated with a 1-unit increase in
log-PHBR-II score. Results are shown for mutations with
low allelic fraction (dark gray) and high allelic fraction
(light gray). Bars show 95% Cls.

[0032] FIG. 5D is a kernel density plot showing the
density of mutations according to the fraction of patients
who can present it with MHC-1 and MHC-II. The red bars
denote the four quadrants of the graph.

[0033] FIG. 6A is a violin plot depicting the distributions
of the percentage of the 1,018 driver mutations presented by
MHC-II for patients with varying numbers of homozygous
genes.

[0034] FIG. 6B is a violin plot depicting the distributions
of the percentage of the 1,018 driver mutations presented by
MHC-I for patients with varying numbers of homozygous
genes.

[0035] FIG. 6C is a schematic showing the effect of MHC
coverage on age at diagnosis.

[0036] FIG. 6D is a box plot of the distributions of age at
diagnosis for patients separated by tumor type and percent-
age of the driver space presented for MHC-I. Bars indicate
the 1.5 interquartile range.

[0037] FIG. 7 is a graph showing the development of a
residue-specific, patient-specific MHC-II presentation score.
ROC AUC curves showing the accuracy of the PHBR-II
including peptides of length 13-25 for classifying the extra-
cellular presentation of a residue by a patient’s HLA-DR
genes for 7 donors (colors) and for all donors combined
(black). The aggregated PHBR-II presentation scores for the
7 donors expression HLADR alleles was compared to a set
of random residues for the same HLA-DR alleles.

[0038] FIG. 8A is a graph showing the agreement of hla
types for patients typed with HLA-HD and xHLA.

[0039] FIG. 8B is a graph showing the frequency of
MHC-II alleles occurring in TCGA-HLA-DPA.

[0040] FIG. 8C is a graph showing the frequency of
MHC-II alleles occurring in TCGA-HLA-DPB.

[0041] FIG. 8D is a graph showing the frequency of
MHC-II alleles occurring in TCGA-HLA-DQA.

[0042] FIG. 8E is a graph showing the frequency of
MHC-II alleles occurring in TCGA-HLA-DQB.
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[0043] FIG. 8F is a graph showing the frequency of
MHC-II alleles occurring in TCGA-HLA-DRB.

[0044] FIG. 9A is a clustered heat map of patients in
TCGA with the native germline sequence 1,018 frequent
cancer mutations. The same 1,050 patients are represented
as in FIG. 2. The heat map is colored by PHBR-II score.
Column and row coloring highlight groupings of patients
and mutations into different categories.

[0045] FIG. 9B is a scatterplot showing the median popu-
lation PHBR-II score for each of the 1,018 mutations and
their native germline sequence.

[0046] FIG. 10A shows the cumulative distribution func-
tions denoting the fraction of true positive and false positive
residues detected for each PHBR-II score in the mass
spectrometry validation.

[0047] FIG. 10B shows a violin plot denoting the distri-
bution of PHBR-II presentation scores across all TCGA
patients for 6 different classes of residue. Cancer mutations
observed >2 times in TCGA are displayed. White dots
represent the median.

[0048] FIG. 10C shows the cumulative distribution of 20
sets of random 1,000 mutations. Shown alongside the cumu-
lative distribution from oncogenes and tumor suppressor
genes.

[0049] FIG. 10D shows a violin plot denoting the distri-
bution of PHBR-II presentation scores across non-cancer
dbGaP patients for 6 different classes of residue. White dots
represent the median.

[0050] FIG. 10E shows two dot plots showing the median
PHBR-II and -I presentation scores for all 5,942 patients of
the 1,018 recurrent cancer mutations grouped by their muta-
tion count in TCGA and displayed as a median. The number
of times the mutation group is observed in TCGA is plotted
in the bottom panel. The light gray line highlights the
mutations observed 10 times.

[0051] FIG. 11A shows the distribution of PHBR-II and
PHBR-I scores.
[0052] FIG. 11B shows the distribution of spearman rho

correlations for PHBR-II and PHBR-I scores across all
driver mutations for every patient in TCGA.

[0053] FIG. 11C is a scatterplot showing the relationship
between tissue specific ORs for MHC-I1 and MHC-I with a
joint model for tumor types with at least 100 patients.
[0054] FIG. 11D is a scatterplot showing mutations
observed at least 20 times in TCGA. Each point is placed
according to the fraction of patients who can present it with
MHC-I and MHC-II.

[0055] FIG. 11E are histograms showing the variation in
the number of mutations with different fractions of presen-
tation by both MHC-I and MHC-II across several presen-
tation thresholds.

[0056] FIG. 12A-12D shows MHC-based mutation selec-
tion for differing levels of immune activity. The MHC-I and
MHC-II ORs (circles) and 95% Cls (bars) associated with a
1-unit increase in log-PHBR-II score. The results are shown
for patients with low and high (S6A) APC infiltration, (S6B)
cytolytic activity, (S6C) CD8+ T cell infiltration and (S6D)
CD4+ T cell infiltration.

[0057] FIG. 13Ais a box plot denoting the distributions of
age at diagnosis for patients separated by tumor type and
percentage of the driver space presented for MHC-II. The
number of patients in each category is visualized above with
a bar plot. Bars indicate the 1.5 interquartile range.
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[0058] FIG. 13B is a box plots showing the age at diag-
nosis for patients with extreme 5% of patients for MHC-I
and MHC-II coverage. Bars indicate the 1.5 interquartile
range.

[0059] FIG. 13C is a histogram representing the spearman
rho correlations for each tumor type between MHC-I cov-
erage and mutation burden.

Part B—Strength of Immune Selection in Tumors Varies
with Sex and Age

[0060] FIG. 14A-14D are graphs showing sex- and age-
specific MHC presentation of observed, expressed driver
mutations. FIGS. 1A-1B are box plots denoting the distri-
bution of PHBR-I (1A) and PHBR-II (1B) scores for
expressed driver mutations in female and male pan-cancer
patients. FIGS. 1C-1D are box plots denoting the distribu-
tion of PHBR-I (1C) and PHBR-II (1D) scores for expressed
driver mutations in younger and older pan-cancer patients.
[0061] FIG. 15A-15B are graphs showing the integrated
sex- and age-specific analysis of PHBR-I (2A) and PHBR-II
(2B) scores for the observed driver mutations in pan-cancer
integrated sex- and age-specific patient cohorts.

[0062] FIG. 16A shows the log 2 male (blue) to female
(pink) ratios of mutational signatures for each tumor type.
[0063] FIG. 16B shows the percentage of mutations in the
set of driver mutations that are part of each mutational
signature.

[0064] FIG. 16C is a box plot comparing allele-specific
MHC-I and MHC-II presentation scores of C>T or T>C
driver mutations (green) versus driver mutations resulting
from other base substitutions (yellow).

[0065] FIGS. 17A and 17B are box plots denoting the
distribution of PHBR-I (4A) and PHBR-II (4B) scores for
driver mutations in female and male pan-cancer patients.
[0066] FIGS. 17C and 17D are box plots denoting the
distribution of PHBR-I (4C) and PHBR-II (4D) scores for
driver mutations in younger and older pan-cancer patients.
[0067] FIGS. 17E and 17F are box plots denoting the
distribution of PHBR-I (4F) and PHBR-II (4F) scores for
driver mutations among integrated sex- and age-specific
pan-cancer patient cohorts.

[0068] FIG. 18 is a schematic of a proposed model of the
relationship between immune selection and immunotherapy
in cancer patients. Young females experience the strongest
immune response, rendering their diagnosed tumors very
invisible to the immune system and difficult to treat with
ICPi. On the other end of the spectrum, old males experience
the weakest immune response, leaving their diagnosed
tumors very visible to the immune system and open to attack
when stimulated with ICPi.

[0069] FIG. 19A is a bar plot denoting the number of male
and female patients in the pan-cancer cohort with sex-
specific cancers (BRCA, CESC, OV, PRAD, TGCT, UCEC,
UCS) removed.

[0070] FIG. 19B is a histogram denoting the distribution
of ages when patients were diagnosed with cancer in the
pan-cancer cohort. Sex-specific cancers mentioned previ-
ously were retained for age analyses.

[0071] FIG. 20A-20B are bar plots denoting the average
number of driver mutations in each sex- and age-specific
cohort for (20A) patients with confident MHC-I calls, and
(20B) patients with confident MHC-II calls.

[0072] FIG. 21 is a sex- and age-specific MHC presenta-
tion of common driver mutations for patients with and
without MHC-I mutations. Box plots denoting the distribu-
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tion of PHBR-I scores for expressed driver mutations in
female, male, younger, and older pan-cancer patients with
and without MHC-I mutations. The average number of
driver mutations pan-cancer per cohort. Bar plots denoting
the average number of driver mutations in each sex- and
age-specific cohort for patients with confident MHC-II calls.

[0073] FIG. 22A-22F are graphs showing sex- and age-
specific MHC presentation of common driver mutations.
(22A-22D) Violin plots denoting the distribution of (22A,
22C) PHBR-I and (22B, 22D) PHBR-II scores across all
common cancer driving mutations. (22E, 22F) The distri-
bution of the fraction of all common cancer driving muta-
tions that each patient can bind along various thresholds
with (22E) MHC-I and (22F) MHC-II.

[0074] FIG. 23A-23] is data that provides an overview of
the validation cohort. (23A) A bar plot denoting the number
of male and female patients in the pan-cancer validation
cohort. (23B) A histogram denoting the distribution of ages
when patients were diagnosed with cancer in the pan-cancer
validation cohort. (23C-23D) Bar plots denoting the average
number of driver mutations in each sex- and age-specific
cohort for (23C) patients with MHC-I calls, and (23D)
patients with MHC-II calls. (23E-23H) Violin plots denoting
the distribution of (23E, 23G) PHBR-I and (23F, 23H)
PHBR-II scores across all common cancer driving muta-
tions. (231, 23J) The distribution of the fraction of all
common cancer driving mutations that each patient can bind
along various thresholds with (231) MHC-I and (23]) MHC-
1I.

[0075] FIG. 24A-24D are graphs showing sex- and age-
specific MHC presentation of observed mutations, without
expression confirmation. (A24-24B) Box plots denoting the
distribution of (24A) PHBR-I and (24B) PHBR-II scores for
driver mutations in female and male pan-cancer patients.
(24C-24D) Box plots denoting the distribution of (24C)
PHBR-I and (24D) PHBR-II scores for driver mutations in
younger and older pan-cancer patients.

[0076] FIG. 25A-25B are graphs comparing driver muta-
tion presentation by MHC between discovery (plain) and
validation (striped) cohorts stratified by age and sex. (25A)
PHBR-I and (25B) PHBR-II score distributions for the
observed driver mutations in each cohort are compared
across sex- and age-matched patient groups, with both
discovery and validation cohorts using 52 and 68 for
younger and older age thresholds, respectively.

DETAILED DESCRIPTION

[0077] MHC-II molecules typically present 12-16 amino
acid peptides to CD4+ T cells. CD4+ T cells play a more
complex role than CD8+ T cells. While possessing cytotoxic
effector properties similar to CD8+ T cells, CD4+ T cells
also exert a wide range of regulatory functions that distin-
guish them from CD8+ T cells. Classically, CD4+ T cells
provide functional help to B cells, CD8+ T cells, and CD4+
T cells in the form of cooperation involving cognate inter-
action with an antigen presenting cell (B cell or dendritic
cell). The role of CD4+ T cells in tumor immunity and
protection has been demonstrated in the mouse, and patients
responding to immunotherapy show a strong proliferative
CD4+ T cell response to tumor-associated antigens. In
addition, adoptive CD4+ T cell therapy has been associated
with durable clinical responses in melanoma and cholang-
iocarcinoma patients.
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[0078] Early detection, diagnosis, and treatment of tumors
is a major determinant of patient morbidity and mortality.
Accurate predictions of when, where, and how tumors are
likely to arise would have enormous implications for cancer
screening and could improve survival rates. While the main
contributor to the development of most adulthood tumors is
sporadic somatic mutation, germline variants have been
implicated as a determinant of tumor characteristics. Here,
we propose that the MHC-II genotype is an additional such
germline influence.

[0079] This disclosure describes the essential role of
MHC-II molecules in antigen presentation and in immune
detection of mature tumors through neoantigen recognition.
MHC-II, like MHC-I, is highly variable among humans,
with 4,802 documented alleles. However, the antigen affinity
of each MHC-II molecule is influenced by two genes,
producing a combinatorial effect that leads to higher varia-
tion than MHC-I. In addition, the average MHC binding
affinity for MHC-II-restricted peptides required to activate
CD4+ T cells is less stringent than that for MHC-I restricted
peptides, the MHC-II peptide binding groove structure
allows more promiscuous binding of peptides, and CD4+ T
cell responses can extend to encompass additional antigens
after initial activation (epitope spreading). As described
herein, however, we surprisingly found that MHC-II geno-
type has an even stronger influence over mutation probabil-
ity than does the MHC-I genotype.

[0080] MHC-II appears to exert a stronger selective pres-
sure than MHC-I, leading to a stronger effect by MHC-II on
somatic mutation probability. This role aligns with the
understanding of CD4+ T cells as a necessary component of
the activation and regulation of CD8+ T cells. While the
diversity of an individual’s MHC-I may play a role in tumor
susceptibility, MHC-I appears to have weaker effects on
mutation selection.

[0081] Notably, as described herein, MHC-II had stronger
effects than MHC-I in shaping the driver mutations of a
tumor. Interestingly, these effects appear to be less patient-
specific than MHC-I, perhaps due to the promiscuous nature
of MHC-II peptide binding. Furthermore, these effects could
be driven by a faster evasion of MHC-I presentation than
MHC-II presentation due to mechanisms like HL.A mutation
or HLLA loss of heterozygosity that would occur within the
tumor but are unlikely to affect the MHC-II on professional
APCs. Another possibility is that MHC-II presentation and
CD4+ T cell recognition may be a necessary prerequisite to
CD8+ T cell cytotoxicity and tumor elimination, in agree-
ment with the regulatory role of CD4+ T cells. We reason
that the stronger effect of MHC-II on the odds of acquiring
a mutation is consistent with a dual regulatory and effector
CD4+ role. If the role of CD4+ T cells was purely regulatory,
MHC-I specificity would be expected to drive mutation
probability. Therefore, the role of the MHC-II genotype and
MHC-II presentation needs to be properly weighted to
understand the role of the interplay between mutational
burden and tumor evolution. This understanding will be
essential in the development of immunotherapies, likely
being a critical component of their future success.

[0082] This disclosure indicates that the response rate to
immune checkpoint inhibitors (ICPi) may be dependent on
the strength of immune selection occurring early in tumori-
genesis. Methods to accurately predict the impact of immu-
noediting on a patient-specific basis may lead to better
predictive algorithms for response to therapy. As a corollary,
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we posit that ICPi treatment is likely to have a reduced effect
in younger female patients since this treatment will attempt
to reactivate T cells for immunologically invisible neoanti-
gens. Rather, adaptive T cell therapy against patient-vali-
dated neoantigens or therapeutic vaccination against con-
served antigens will likely be more beneficial in these
patients. Finally, these findings shed new light on the role of
immune surveillance in cancer progression.

[0083] As described herein, we found that predicted
MHC-II presentation of cancer-related somatic mutations
shape tumor development through variation in antigen pre-
sentation in complementary fashion to MHC-I, highlighting
the need to consider the independent, yet complementary,
roles of CD4+ and CD8+ T cells in the selection and
elimination of tumors.

[0084] In accordance with the present invention, there
may be employed conventional molecular biology, micro-
biology, biochemical, and recombinant DNA techniques
within the skill of the art. Such techniques are explained
fully in the literature. The invention will be further described
in the following examples, which do not limit the scope of
the methods and compositions of matter described in the
claims.

EXAMPLES

Part A—FEvolutionary Pressure Against MHC Class H
Binding Cancer Mutations

Example 1—Data Acquisition

[0085] Data were obtained from publicly available sources
including The Cancer Genome Atlas (TCGA) Research
Network (cancergenome.nih.gov/ on the World Wide Web),
The Allele Frequency Net Database (Gonzalez-Galarza et
al.,, 2018, Methods Mol. Biol., 1802:49-62), Ensembl,
Exome Variant Server, UniProt (UniProt Consortium, 2015),
or cited literature (Ciudad et al., 2017, J. Leukoc. Biol.,
101:15-27). TCGA normal exome sequences and TCGA
clinical data were also downloaded from the GDC. Further-
more, TCGA somatic mutations were accessed from the NCI
Genomic Data Commons (portal.gdc.cancer.gov/ on the
World Wide Web). Population level HLA frequencies were
obtained from the Allele Frequency Net Database. Common
germline variants were downloaded from the Exome Variant
Server NHLBI GO Exome Sequencing Project (ESP),
Seattle, Wash. Finally, viral and bacterial peptides were
obtained from UniProt.

Example 2—Single Allele Presentation Score
Construction

[0086] To create a residue-centric presentation score, we
evaluated allele-based ranks for peptides containing the
residue of interest. Each allele-based rank was predicted
using the NetMHCIIPan-3.1 tool, downloaded from the
Center for Biological Sequence Analysis (Karosiene et al.,
2013, Immunogenetics, 65:711-724). NetMHCIIPan-3.1
takes a peptide and an MHC-II protein (HLA-DRB1, HLA-
DPA1/DPB1 or HLA-DQA1/DQB1) and returns binding
affinity IC50 scores and corresponding allele-based ranks.
Peptides with rank <10 and <2 are considered to be weak
and strong binders, respectively. Allele-based ranks were
used to represent peptide binding affinity. We previously
established the best rank of possible peptides containing the
residue as an effective estimator of extracellular presentation
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(Marty et al., 2017, Cell, 171:1272-83). Here, we evaluated
two approaches to selecting the set of peptides containing
the residue to consider:

[0087] All 15-mers: Every peptide of length 15 con-
taining the residue of interest, totaling 15 peptides.

[0088] 13-mers through 25-mers: Every peptide of
length 13 through length 25 containing the peptide,
totaling in 247 peptides (Wieczorek et al., 2017, Front.
Immunol., 8:292).

[0089] Insertion and deletion mutations were modeled by
the resulting peptides that differed from the native sequence
and tested with the same peptide-set parameters. These two
peptide selection models were compared based on perfor-
mance in a multi-allelic setting and the all 15-mers model
was selected (see below).

Example 3—Multi-Allele Presentation Score
Construction

[0090] We defined a patient presentation score to represent
a particular patient’s ability to present a residue given their
distinct set of 12 HLLA-encoded MHC-II molecules (4 com-
binations of HLA-DPA1/DPB1 and HLA-DQA1/DQBI; 2
alleles of HLLA-DRBI1 considered twice each (since HLA-
DRAL1 is invariant) for consistency between resulting mol-
ecules). The Patient Harmonic-mean Best Rank (PHBR)
score was assigned as the harmonic mean of the best residue
presentation scores for each of the 12 MHC-II molecules. A
lower patient presentation score indicates that the patient’s
MHC-II molecules are more likely to present a residue on
the cell surface.

Example 4—Mass Spectrometry-Based Presentation
Score Validation

[0091] In order to test the performance of the different
peptide sets that could compose the multi-allelic PHBR
score to predict presentation, we used published MS data for
7 cell lines expressing 2-3 HLA-DRBI alleles typed to the
fourth digit (Ciudad et al., 2017, J. Leukoc. Biol., 101:15-
27). Ciudad et al. (2017, J. Leukoc. Biol., 101:15-27)
catalogs peptides observed in complex with MHC-II (HLA-
DR) on the cell surface for 7 different combinations of 2-3
HLA-DRBI alleles, with 70 to 240 mappable peptides each.
These data were combined with a set of random peptides to
construct a benchmark for evaluating the performance of
scoring schemes for identifying residues presented on the
cell surface as follows:

[0092] Converting MS peptide data to residues: the
Ciudad et al. (2017, J. Leukoc. Biol., 101:15-27) MS
data provides peptides observed in complex with the
MHC-II, whereas our presentation score is residue-
centric. For each peptide in the MS data, we selected
the residue at the center (or one residue before the
center, in the case of peptides of even length) as the
residue for calculating the residue-centric presentation
score.

[0093] Selection of background peptides: we selected
3000 residues at random from the Ensembl human
protein database (Release 89) (Aken et al., 2017, Nuc.
Acids Res., 45(D1):D635-42) to ensure balanced rep-
resentation of MS-bound and random residues. The
randomly selected residues represent an approximation
of a true negative set of residues that would likely not
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be presented on the cell surface. If this assumption is
flawed, the resulting AUC will underestimate the true
accuracy.

[0094] Scoring benchmark set residues: we calculated
PHBR presentation scores with each peptide set for all
of the selected residues from the Ciudad et al. (2017, J.
Leukoc. Biol., 101:15-27) data and the 3000 random
residues against each of the 7 cell lines.

[0095] Evaluating scoring scheme performance using
the benchmark: for each scoring scheme, scores were
calculated for each cell line and pooled across the 7 cell
lines. We plotted and compared ROC curves for each
score formulation by calculating the True Positive Rate
(% of observed MS residues predicted to bind at a given
threshold) and the False Positive Rate (% of random
residues predicted to bind at a given threshold) from 0
to 100 with steps of 0.5. Finally, we assessed overall
score performance using the area under the curve
(AUC) statistic. Based on this analysis, the 15-mer
peptide set was used to construct the PHBR presenta-
tion score for all subsequent analyses.

Example 5—HLA-II Typing

[0096] HLA genotyping was performed for genes HLA-
DRBI, HLA-DPAI1, HLA-DPB1, HLA-DQA1 and HLA-
DQB1, which encode three protein determinants of MHC-I
peptide binding specificity, HLA-DR, HLA-DP, and HLA-
DQ. TCGA samples (see Table 51 in doi.org/10.1016/j.cell.
2018.08.048 on the World Wide Web) were typed with
HLA-HD (Kawaguchi et al., 2017, Hum. Mutat. 38:788-97),
using default parameters. HLA-HD requires germline
(whole blood or tissue matched) whole exome sequenced
samples. The tool reports 100% 4-digit validation accuracy
across 90 low-coverage exomes. Samples with very low
coverage on specific genes are left untyped by HLA-HD.
Patients were assigned an HLA-DR type if they were
successfully typed for HLA-DRBI1. Patients were assigned
HLA-DP and -DQ types if they had successful typing for
HLA-DPAI/HLA-DPB1 and HLA-DQAI/HLA-DQBI,
respectively. Samples were validated by xHLA (Xie et al.,
2017, PNAS USA, 114:8059-64), run with default param-
eters, and only patients where all alleles agreed were
included in the analysis (FIG. 8A; see Table 51 in doi.org/
10.1016/j.cell.2018.08.048 on the World Wide Web). Allele
frequencies were visualized with horizontal bar graphs
(FIGS. 8B-8F).

Example 6—Selection of Recurrent Oncogenic
Mutations, Passenger-Like and Non-Driver
Mutations

[0097] Somatic mutations were considered to be recurrent
and oncogenic if they occurred in one of the 100 most highly
ranked oncogenes or tumor suppressors described by Davoli
et al. (2013, Cell, 155:948-62) and were observed in at least
3 TCGA samples. Among these, we retained only mutations
that would result in predictable protein sequence changes
that could generate neoantigens, including missense muta-
tions and inframe indels. A total 1,018 mutations (512
missense mutations from oncogenes, 488 missense muta-
tions from tumor suppressors, 11 indels from oncogenes and
7 indels from tumor suppressors) were obtained (Marty et
al., 2017, Cell, 171:1272-83). All mutations observed in
TCGA patients that did not fall into the 200 most highly
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ranked cancer genes were designated passenger-like muta-
tions. Furthermore, we created an additional set of estab-
lished non-cancer mutations. To do so, we selected a set of
genes that were known non-cancer genes and selected
mutations in these genes regardless of their recurrence in
TCGA (Table 1) (Lawrence et al., 2013, Nature, 499(7457):
214-8).

TABLE 1

Set of known non-cancer genes.

OR2G6 OR10G8 OR2AS
ORA4C6 OR5W2 OR5181
OR4M2 OR2T3 OROA2
ORSL2 OR10AG1 ORS1L1
OR2T4 OR4K1 OR56A4
ORS5D18 OR2M7 ORS52E2
OR4A15 ORA4C12 OR6M1
ORG6F1 OR4D5 OR2T11
OR2T33 OR2T1 OR5M11
OR4S82 OR4P4 ORA4C46
ORI11L1 OR5HI14 OR6K2
OR4M1 ORSF1 OR2B3
ORST1 OR2T8 OR2T6
OR&J3 ORA4C13 ORS56A1
ORS1B2 OR5K1 ORS5B2
OR8&H2 OR4KS5 OR4K15
OR9G9 OR2B11 ORS5AS1
OR4N2 ORSL1 ORBAIL
OR10G9 OR2L8 ORA4C3
ORSI1 ORCS1 OR4D2
ORI14A16 OR2T12 ORB8K3
OR2M2 OR2T34 OR&J1
ORS5B12 ORB8H1 ORA4F6
ORS5M9 ORS5D16 ORB8H3
OR4C11 OR10Q1 OR1J4
ORIC1 OR2M3 ORS52AS
OR4N4 OR6K3 OR8B4
ORSJ2 ORST3 ORS5111
OR2G3 OR14C36 TTN
OR2T2 ORCS3 ORS5H6
OR4A16 ORS5AC2 ORB8I2
ORS2E6 ORS5213 OR5D14
OR6N1 OR4Q3 OR8B2
OR2AK2 OR10A4 OR4D11
OR2L.2 ORA4C16

Example 7—Selection of Other Classes of Residues

[0098] Peptides from pathogens, common germline
human variants and randomly mutated human peptides were
assembled for comparison with recurrent oncogenic muta-
tions (Marty et al., 2017, Cell, 171:1272-83). The proteomes
of 10 virus species and 10 bacterial species were down-
loaded from UniProt (UniProt Consortium, 2015). One
thousand residues were selected at random from both the
viral and the bacterial set. A random set of mutations was
generated by sampling 3,000 possible amino acid substitu-
tions across human proteins from Ensembl (release 90;
GRCh38) (Aken et al, 2017, Nuc. Acids Res., 45(D1):
D635-42). A set of 1,000 common germline variants was
sampled from the Exome Variant Server.

Example 8—Generating Mutant Peptide Sequences

[0099] To allow determination of peptide sequences incor-
porating missense mutations, protein sequences were
obtained from Ensembl (release 90; GRCh38) (Aken et al.,
2017, Nuc. Acids Res., 45(D1):D635-42) and updated with
the new amino acid. For indels, we modified the correspond-
ing mature messenger RNA transcript sequences (CDS) by
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inserting or deleting nucleotides, then translated the modi-
fied mRNA to protein sequence.

Example 9—Patient Presentation Score-Based
Clustering

[0100] A matrix of PHBR scores was constructed with
5,942 TCGA samples as rows, 1,018 recurrent oncogenic
mutations as columns, and PHBR score in each cell. The
matrix was clustered using hierarchical agglomerative clus-
tering on rows and columns. For convenience of visualiza-
tion, a partial matrix is displayed in FIG. 2. In order to use
the dynamic range in heat map color to display variation in
patient presentation scores relevant to MHC-II based pre-
sentation, the PHBR color scheme only varies from 0 to 40.
Color bars provide additional information about patients and
mutations, including ancestry, tumor type and T cell infil-
tration levels (patients) and mutation type and gene category
(mutations). CD4 T cell infiltration was determined using
CIBERSORT (Newman et al., 2015, Nat. Methods, 12(5):
453-7), an mRNA-based immune infiltration prediction
algorithm. Patients were mapped to high, medium-high,
medium-low and low CD4+ T cell infiltration categories if
their CIBERSORT scores fell into upper to lower quartiles
respectively.

Example 10—Comparison of Presentation Scores
for Different Classes of Residue

[0101] PHBR presentation scores were calculated for
5,942 TCGA patients across different classes of residue
including 71 highly-recurrent (>10) oncogenic missense
mutations, 1000 random amino acid substitution, 1000 ger-
mline variants, 1000 viral residues and 1000 bacterial resi-
dues (see Selection of Other Classes of Residues). Across
categories, this resulted in 24,189,882 PHBR scores (onco-
genes: 231,738; tumor suppressor genes: 190,144; random:
5,942,000, common: 5,942,000, viral: 5,942,000, bacterial:
5,942,000). The distributions of PHBR scores in each cat-
egory were compared with Mann-Whitney U tests and
visualized with violin plots (FIG. 3A). Furthermore, we
plotted cumulative distributions to demonstrate the practical
presentation of each class across several thresholds and
calculated the confidence intervals of each curve with boot-
strapping (FIG. 3B; Table 1). Finally, we tested 20 indepen-
dent sets of 1,000 random mutations to evaluate the confi-
dence of the cumulative distributions (FIG. 10C).

Example 11—Generation of Non-Cancer
Population

[0102] As a control population, we used dbGaP samples
(dbGaP: Phs000398, Phs000254, Phs000632, Phs000209,
Phs000290,  Phs000179,  Phs000422,  Phs000291,
Phs000631 and Phs000518) typed at MHC-II using HLA-
HD (Kawaguchi et al., 2017, Hum. Mutat. 38:788-97), with
default parameters and typed at MHC-I using Optitype
(Szolek et al., 2014, Bioinformatics, 30(23):3310-6), with
default parameters. Both tools require germline (whole
blood or tissue matched) whole exome sequenced samples.
We successfully typed the HLLA-I genes for 1,386 patients
and the HLA-II genes for 1,219 patients who had alleles in
the netMHCpan-3.0 and the netMHClIIpan-3.1 database.
This control population was used to look at the MHC-II
population of different classes of peptides by a non-cancer
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specific population (FIG. 10D). We would like to acknowl-
edge the following dbGaP studies and all of their contribu-
tors:

[0103] Phs000398.v1.pl: The Atherosclerosis Risk in
Communities Study is carried out as a collaborative
study supported by National Heart, Lung, and Blood

Institute contracts (HHSN268201100005C,
HHSN268201100006C, HHSN268201100007C,
HHSN268201100008C, HHSN268201100009C,

HHSN268201100010C, HHSN268201100011C, and
HHSN268201100012C). The authors thank the staff
and participants of the ARIC study for their important
contributions. This study is part of the NHLBI Grand
Opportunity Exome Sequencing Project (GO-ESP).
Funding for GO-ESP was provided by NHLBI grants
RC2 HL103010 (HeartGO), RC2 HL102923
(LungGO) and RC2 HL.102924 (WHISP). The exome
sequencing was performed through NHLBI grants RC2
HL102925 (BroadGO) and RC2 HL102926 (Seat-
t1leGO). HeartGO gratefully acknowledges the follow-
ing groups and individuals who provided biological
samples or data for this study. DNA samples and
phenotypic data were obtained from the following
studies supported by the NHLBI: the Atherosclerosis
Risk in Communities (ARIC) study, the Coronary
Artery Risk Development in Young Adults (CARDIA)
study, Cardiovascular Health Study (CHS), the
Framingham Heart Study (FHS), the Jackson Heart
Study (JHS) and the Multi-Ethnic Study of Atheroscle-
rosis (MESA).

[0104] Phs000254.v2.pl: This study is part of the
NHLBI Grand Opportunity Exome Sequencing Project
(GO-ESP). Funding for GO-ESP was provided by
NHLBI grants RC2 HL103010 (HeartGO), RC2
HL102923 (LungGO) and RC2 HL102924 (WHISP).
The exome sequencing was performed through NHLBI
grants RC2 H.102925 (BroadGO) and RC2 HI.102926
(SeattleGO). Collection of the cystic fibrosis data and
specimens was supported by Awards GIBSONO7KO,
KNOWLEO0AO, OBSERV04KO0, and RDP R026 from
the Cystic Fibrosis Foundation; NHLBI grants RO1
HLO68890 and RO1 HL095396; NCRR grant
UL1RR025014 and NHGRI grant RO0 HG004316.

[0105] Phs000632.v1.pl: This study is part of the
NHLBI Grand Opportunity Exome Sequencing Project
(GO-ESP). Funding for GO-ESP was provided by
NHLBI grants RC2 HL103010 (HeartGO), RC2
HL102923 (LungGO) and RC2 HL102924 (WHISP).
The exome sequencing was performed through NHLBI
grants RC2 H.102925 (BroadGO) and RC2 HI.102926
(SeattleGO). The Hematological Cancer specimens and
data were collected in the laboratory of Dr. Benjamin L.
Ebert, Brigham & Womens Hospital/Broad Institute,
Boston, USA.

[0106] Phs000209.v13.p3: MESA and the MESA
SHARe project are conducted and supported by the
National Heart, Lung, and Blood Institute (NHLBI) in
collaboration with MESA investigators. Support for
MESA is provided by contracts NO1-HC95159, NO1-
HC-95160, NO1-HC-95161, NO1-HC-95162, NO1-HC-
95163, NOI1-HC-95164, NO1-HC-95165, NO1-
HC95166, NO1-HC-95167, NO1-HC-95168, NO1-HC-
95169, UL1-RR-025005, and UL1-TR-000040.
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[0107] Phs000290.v1.pl: Exome data provided by

ARRA-NHLBI Lung Cohorts Sequencing Project
1RC2HL102923-01. The authors wish to thank the
supported effort of the faculty and staff members of the
Johns Hopkins University Bayview Genetics Research
Facility and the Johns Hopkins University ‘Genomics
and Genetics of Pulmonary Arterial Hypertension’ pro-
gram (NTH P50 HLO084946, P. M. Hassoun, NIH K23
AR52742-01, L. K. Hummers, and NHLBI F32
HIL083714-01 S. C. Mathai).

[0108] Phs000179.v5.p2: This research used data gen-

erated by the COPDGene study, which was supported
by NIH grants U01HL089856 and UO1HL089897. The
COPDGene project is also supported by the COPD
Foundation through contributions made by an Industry
Advisory Board comprised of Pfizer, AstraZeneca,
Boehringer Ingelheim, Novartis, and Sunovion.

[0109] Phs000422.v1.pl: This study is part of the

NHLBI Grand Opportunity Exome Sequencing Project
(GO-ESP). Funding for GO-ESP was provided by
NHLBI grants RC2 HL103010 (HeartGO), RC2
HL102923 (LungGO) and RC2 HL102924 (WHISP).
The exome sequencing was performed through NHLBI
grants RC2 HLL102925 (BroadGO) and RC2 HL.102926
(SeattleGO). The following NHLBI Severe Asthma
Research Program (SARP) sites have contributed par-
ent study data and DNA samples for exome sequencing
in this project: Wake Forest School of Medicine (RO1
HL069167), University of Wisconsin (ROl
HL069116), University of Virginia, Cleveland Clinic
(RO1 HLO69170), National Jewish Health, University
of Pittsburgh (R0O1 HL0O69174), Washington University
(RO1 HLO069149), Brigham and Women’s Hospital
(RO1 HLO069349) and genotyping was supported by
NHLBI HL87665 and 1RC2 HL.101487).

[0110] Phs000291.v2.pl: This study is part of the

NHLBI Grand Opportunity Exome Sequencing Project
(GOESP). Funding for GO-ESP was provided by
NHLBI grants RC2 HL103010 (HeartGO), RC2
HL102923 (LungGO) and RC2 HL102924 (WHISP).
The exome sequencing was performed through NHLBI
grants RC2 HLL102925 (BroadGO) and RC2 HL.102926
(SeattleGO). The authors wish to thank the supported
effort of the faculty and staff members of the Johns
Hopkins University Bayview Genetics Research Facil-
ity, NHLBI grant HL.O66583 (Garcia/Barnes, PI) and
NHGRI grant HG004738 (Barnes/Hansel, PI). The
Lung Health Study was supported by U.S. Government
Contract No. NO1-HR-46002 from the Division of
Lung Diseases of the National Heart, Lung and Blood
Institute. The principal investigators and senior staff of
the clinical and coordinating centers, the NHLBI, and
members of the Safety and Data Monitoring Board of
the Lung Health Study can be found at biostat.umn.
edu/lhs/ on the World Wide Web and as follows: Case
Western Reserve University, Cleveland, Ohio: M. D.
Altose, M.D. (Principal Investigator), C. D. Deitz,
Ph.D. (Project Coordinator); Henry Ford Hospital,
Detroit, Mich.: M. S. Eichenhorn, M.D. (Principal
Investigator), K. J. Braden, A. A. S. (Project Coordi-
nator), R. L. Jentons, M.A.L.L.P. (Project Coordinator);
Johns Hopkins University School of Medicine, Balti-
more, Md.: R. A. Wise, M.D. (Principal Investigator),
C. S. Rand, Ph.D. (Co-Principal Investigator), K. A.



US 2021/0181188 Al

Schiller (Project Coordinator); Mayo Clinic, Rochester,
Minn.: P. D. Scanlon, M.D. (Principal Investigator), G.
M. Caron (Project Coordinator), K. S. Mieras, L. C.
Walters; Oregon Health Sciences University, Portland:
A. S. Buist, M.D. (Principal Investigator), L. R. John-
son, Ph.D. (LHS Pulmonary Function Coordinator), V.
J. Bortz (Project Coordinator); University of Alabama
at Birmingham: W. C. Bailey, M.D. (Principal Inves-
tigator), L. B. Gerald, Ph.D., M. S.P.H. (Project Coor-
dinator); University of California, Los Angeles: D. P.
Tashkin, M.D. (Principal Investigator), I. P. Zuniga
(Project Coordinator); University of Manitoba, Winni-
peg: N. R. Anthonisen, M.D. (Principal Investigator,
Steering Committee Chair), J. Manfreda, M.D. (Co-
Principal Investigator), R. P. Murray, Ph.D. (Co-Prin-
cipal Investigator), S. C. Rempel-Rossum (Project
Coordinator); University of Minnesota Coordinating
Center, Minneapolis: J. E. Connett, Ph.D. (Principal
Investigator), P. L. Enright, M.D., P.G. Genomics &
Genetics of the Lung Health Study Jun. 10, 2011
version Page 6 of 8 Lindgren, M. S., P. O’Hara, Ph.D.,
(LHS Intervention Coordinator), M. A. Skeans, M. S.,
H. T. Voelker; University of Pittsburgh, Pittsburgh, Pa.:
R. M. Rogers, M.D. (Principal Investigator), M. E.
Pusateri (Project Coordinator); University of Utah, Salt
Lake City: R. E. Kanner, M.D. (Principal Investigator),
G. M. Villegas (Project Coordinator); Safety and Data
Monitoring Board: M. Becklake, M.D., B. Burrows,
M.D. (deceased), P. Cleary, Ph.D., P. Kimbel, M.D.
(Chairperson; deceased), L. Nett, R. N, R. R. T.
(former member), J. K. Ockene, Ph.D., R. M. Senior,
M.D. (Chairperson), G. L. Snider, M.D., W. Spitzer,
M.D. (former member), O.D. Williams, Ph.D.; Mor-
bidity and Mortality Review Board: T. E. Cuddy, M.D.,
R. S. Fontana, M.D., R. E. Hyatt, M.D., C. T. Lambrew,
M.D., B. A. Mason, M.D., D. M. Mintzer, M.D., R. B.
Wray, M.D.; National Heart, Lung, and Blood Institute
staff, Bethesda, Md.: S. S. Hurd, Ph.D. (Former Direc-
tor, Division of Lung Diseases), J. P. Kiley, Ph.D.
(Former Project Officer and Director, Division of Lung
Diseases), G. Weinmann, M.D. (Former Project Officer
and Director, Airway Biology and Disease Program,
DLD), M. C. Wu, Ph.D. (Division of Cardiovascular
Sciences).

[0111] Phs000631.v1.pl: The datasets were obtained as
part of the identification of SNPs Predisposing to
Altered ALI Risk (iSPAAR) study funded by the
NHLBI (RC2 HL101779).

[0112] Phs000518.v1.pl: The authors wish to acknowl-
edge the support of the National Heart, Lung and Blood
Institute (NHLBI) and the contributions of the research
institutions, study investigators, field staff and study
participants in creating this resource for biomedical
research. This work was supported in part by grants
RO1 HLO71798 from the NHLBI and U54 HL096458
from the NHLBI (previously supported by the NCRR),
the components of NIH. This study is part of the
NHLBI Grand Opportunity Exome Sequencing Project
(GO-ESP). Funding for GO-ESP was provided by
NHLBI grants RC2 HL103010 (HeartGO), RC2
HL102923 (LungGO) and RC2 HL102924 (WHISP).
The exome sequencing was performed through NHLBI
grants RC2 H.102925 (BroadGO) and RC2 HI.102926
(SeattleGO).
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Example 12—Analysis of Presentation Versus
Mutation Frequency Among Tumors

[0113] The PHBR scores of 5,942 patients in TCGA were
calculated for 1000 passenger mutations (observed 1 or 2
times in the 5,942 patients; not occurring in 200 cancer-
implicated genes). PHBR scores were calculated for 1,018
recurrent driver mutations (from 200 cancer implicated
genes) in the 7137 patients. The distribution of passenger
PHBR scores was compared to 841 low frequency (=5
times), 149 medium frequency (>5, <20 times) and 28 high
frequency oncogenic mutations (>20 times). The distribu-
tions of PHBR scores in each category were compared with
Mann-Whitney U tests and visualized with violin plots (FIG.
3C). Furthermore, we plotted cumulative distributions to
demonstrate the practical presentation of each frequency
grouping across several thresholds (FIG. 3D).

Example 13—Modeling the Effect of PHBR-II on
Mutation Probability

[0114] To assess the role of MHC-II in regards to mutation
probability, we further restricted the recurrent oncogenic
mutations to those occurring at least two times in the set of
patients, resulting in 787 mutations and 5,942 patients. To
first visualize the difference in PHBR-II distributions for
mutations observed versus absent from tumors, PHBR-II
scores from the 1,018 mutationsx5,942 patient matrix were
grouped according to mutation status and plotted in side-
by-side violin plots. Next, we built a 5,942x787 binary
mutation matrix y,, €{0, 1} indicating whether patient i has
a specific mutation j. We evaluated the relationship between
this binary matrix and the matched 5,942x787 matrix with
PHBR-II scores x,; of patient i and for mutation j. We fitted
a generalized additive model for the PHBR-II score and
mutation probability with the GAM function in the MGCV
R package (Wood, 2001, R. News, 1:20-5). To estimate the
effect of x,; on yij, we considered the following random
effects model:

logit(P(y;=1lx;))y=ni+y log(x;;)

where m~N(0, 8,) are random effects capturing different
mutation propensities among patients.

[0115] In these models, y measures the effect of the
log-PHBR-II. We fitted this model using the glmer function
from the Ime4 R package (Bates et al., 2015, J. Stat. Softw.
67:1-48) and tested the null hypothesis that y=0. To analyze
the PHBR-mutation relationship in different tumor types, we
fit separate models for each tumor type where there were at
least 50 total number of driver mutations in the cohort.
Furthermore, we used this same method to evaluate the
difference in selection between mutations high allelic frac-
tion and low allelic fraction (see ‘Clonality of mutations’
section).

Example 14—Modeling the Interaction Between
MHC-I and MHC-II Effects

[0116] To assess the interaction between MHC-I and
MHC-II in regards to mutation probability, we reduced the
set of patients to those successfully typed for both MHC-I
and MHC-II (Marty et al., 2017, Cell, 171:1272-83). We
further restricted the recurrent oncogenic mutations to those
occurring at least twice in the set of patients, resulting in 787
mutations and 5,942 patients. Then, we checked the corre-
lation between MHC-I and MHC-II presentation using a
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Spearman Rank Test between MHC-I and MHC-II scores for
each patient across all 1,018 mutations. These correlations
were displayed as a histogram (FIG. 10B). After finding low
correlation scores, we built a model of the interaction.

[0117] We built a 5,942x787 binary mutation matrix y,,
€{0, 1} indicating whether patient i has a specific mutation
j- We evaluated the relationship between this binary matrix
and two matched 5,942x787 matrices with MHC-1 PHBR
scores w,; of patient i and for mutation j and MHC-1I PHBR
scores x,; of patient i and for mutation j. To visualize the
relationship between w,, and x,; with y,, we fit an generalized
additive model for the PHBR scores of both classes using the
GAM function in the mgev R package (Wood, 2001, R.
News, 1:20-5). Finally, to estimate the eflect of x; and w,; on
> We considered the following random effects model:

A within-patient model relating x,; and w,, to y,, for a given
patient

logit(P(y;=1lx;, w;))=0+m+y log(x;)+p log(wy;)

where o is the intercept term and m,~N(0, 6,) are random
effects capturing different mutation propensities among
patients.

[0118] In these models, y measures the effect of the
log-PHBR-I and §§ measures the effect of the log-PHBR-II
on the probability of a mutation being observed. We fitted
this model using the glmer function from the lme4 R
package (Bates et al., 2015, J. Stat. Softw. 67:1-48) and
tested the null hypothesis that y=0 and $=0. To analyze the
PHBR-mutation relationship in different tumor types, we fit
separate models for each tumor type where there were at
least 50 total number of driver mutations in the cohort.
Given the distinct PHBR score ranges for MHC-I and
MHC-II, we constructed an OR analysis to compare the
relative effects in the population. Instead of reporting the OR
for a single unit increase, we reported the odds of observing
a mutation in the 25th PHBR percentile relative to the 75th
PHBR percentile.

Example 15—Fraction of Patients with Presentation

[0119] For each mutation in our set of 1,018 driver muta-
tions, we calculated the fraction of patients that could
present the mutation based on their MHC-I and MHC-II
genotype, respectively. We used the standard weak binding
cutoffs of 2 for MHC-I and 10 for MHC-II. These results
were visualized with a density plot (FIG. 5D) and a scat-
terplot of the high frequency mutations (FIG. 11D). Further-
more, we compared the distributions for fraction of MHC-I
and MHC-II presentation across several thresholds (0.25,
0.5, 1, and 2 for MHC-I and 1, 2, 5, and 10 for MHC-II) to
ensure robustness (FIG. 11E).

Example 16—Clonality of Mutations

[0120] The occurrences of mutations within the set of
1,018 driver mutations were designated as likely clonal or
likely subclonal based on the allelic fraction annotation
provided by TCGA. Mutations that were among the lowest
30th percentile were designated likely subclonal and all the
remaining were considered likely clonal. We modeled the
independent effect of PHBR-II and PHBR-I on mutation
probability separately for subclonal and clonal occurrences
as described above in the section ‘Modeling the effect of
PHBR-II on mutation probability’.
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Example 17—MHC-Based Selection with Different
Immune Infiltration Phenotypes

[0121] Immune infiltration levels were quantified from
expression using CIBERSORT

[0122] (Newman et al., 2015, Nat. Methods, 12(5):453-7)
and patient-specific cytotoxicity scores were derived
(Rooney et al., 2015, Cell, 160:48-61). Tumors were divided
into “high” and “low” groups for each of the following
categories using the tumor-type specific 30th and 70th
percentile: APC infiltration (B cells, dendritic cells and
macrophages), cytolytic activity, CD8+ T cell infiltration
and CD4+ T cell infiltration. We modeled the independent
effect of PHBR-II and PHBR-I on mutation probability in
the high and low groups as described above in the section
‘Modeling the effect of PHBR-II on mutation probability’.

Example 18—MHC Coverage

[0123] MHC-I and MHC-II coverage of driver mutations
was determined by calculating the fraction of the 1,018
driver mutation PHBR scores for each patient that fell below
the binding thresholds, 2 and 10 for MHC-I and MHC-II
respectively. This analysis resulted in each patient being
assigned two MHC coverage values (MHC-1 and MHC-II).
Furthermore, two more values were calculated for each
patient using 1,000 passenger mutations. The number of
homozygous genes was determined for each patient by
adding the number of identical alleles for MHC-I (-A, -B,
-C) and MHC-II (-DRB, -DPA, -DPB, -DQA, -DQB) sepa-
rately. The MHC coverage values were calculated for these
patients as well and compared to the TCGA MHC coverage
values with a Mann Whitney U test.

Example 19—Age at Diagnosis Analysis

[0124] To visualize the association between MHC cover-
age and age at diagnosis, the patients with MHC coverage
values in the lowest quartile and the patients with MHC
coverage values in the highest quartile were compared. To
determine statistical significance, a linear model in R was
applied with age as the independent variable and MHC
coverage, ancestry and tumor type as the dependent vari-
ables. Statistical significance was also determined for
MHC-I and MHC-II coverage of passenger mutations and
MHC homozygosity count as a replacement for MHC cov-
erage. To assess the practical effect size of the extreme cases
of MHC coverage, we compared the ages at diagnosis of the
5% of patients with the lowest MHC-I coverage with the
ages at diagnosis for the 5% of patients with the highest
MHC-I coverage with a two sample t test. We also per-
formed the same analysis for the patients with the highest
and lowest 10% of MHC-I coverage. A Pearson correlation
test was used to determine the correlation between MHC
coverage of driver mutations and MHC coverage of passen-
ger mutations for both MHC-I and MHC-II.

Example 20—Quantification and Statistical
Analysis

[0125] For all individual tests, a p value of less than 0.05
was considered significant. When multiple comparisons
were made, p values were adjusted using the Benjamini-
Hochberg method unless otherwise specified. For all box
plots, whiskers indicate the 1.5 IQR range.
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[0126] The python (2.7) and R code used to perform the
analyses described in this manuscript and generate all main
and supplemental figures is available in Data 51 and at
github.com/Rachelmarty20/MHC_II on the World Wide
Web.

Example 21—Creating an Affinity-Based MHC-II
Genotype Scoring Scheme

[0127] To study the role of MHC-II during tumorigenesis,
we needed a score linking MHC-II genotype to presentation
of specific mutations. We first constructed a score represent-
ing the ability of a single MHC-II molecule to present a
residue. We previously established that using the best rank
among peptides provided the best performance for predict-
ing MHC-I presentation. We therefore adapted this scoring
scheme to reflect the structure and composition of MHC-II.
Three molecules (HLA-DR, HLA-DP, and HLA-DQ) make
up the MHC-II, all of which are heterodimers formed by an
alpha and beta chain. Both the alpha and the beta chain
influence the binding affinity of a peptide. In contrast to
MHC-I, the MHC-II binding groove is open at both ends,
allowing longer peptides to bind. To predict binding affinity
to each alpha- and beta-paired MHC-II molecule, we used
netMHClIIpan-3.1 that returns a single rank for the pair with
each peptide (Karosiene et al, 2013, Immunogenetics,
65:711-24). Unlike netMHCpan-3.0, netMHClIIpan-3.1 has
only been optimized for 15-mers and not for varying lengths.
As with MHC-I, we assigned the single MHC-II molecule
presentation score as the best rank of all k-mers containing
the desired residue (FIG. 1A).

[0128] Next, single molecule residue-centric presentation
scores were combined into an MHC-II genotype score.
Previously, MHC-I single allele best rank scores were com-
bined using the harmonic mean resulting in the patient
best-rank harmonic mean (PHBR-I) score, as this outper-
formed all other tested formulations. To create an analogous
score for MHC-II, we modified the PHBR-I score to account
for the different composition of MHC-II molecules. The
MHC-II genotype comprises two copies each of HLADR
alpha and beta, HLA-DP alpha and beta and HLLA-DR alpha
and beta. HLA-DRA is the only non-variable gene in the
population, resulting in only two possible HLA-DR het-
erodimers. Each individual can form four possible alpha-
beta heterodimers from HLLA-DP and HLA-DQ. This results
in a total of ten possible unique heterodimeric MHC-II
molecules (FIG. 1B). To weight each gene equally in the
final presentation score, each HLA-DRBI allele is consid-
ered twice, bringing the total number of complexes to
twelve. To evaluate the combined effect of these complexes
on the presentation of a residue, the best rank score is
calculated for all twelve complexes and those twelve values
are combined using the harmonic mean to create a PHBR-II
score (FIG. 1C).

[0129] To assess the performance of the PHBR-II score at
predicting extracellular presentation, we compared the
scores for peptides derived from several multi-allelic HLA-
DR expressing cell lines against matched scores for ran-
domly derived peptides (Ciudad et al., 2017, J. Leukoc.
Biol., 101:15-27) (FIG. 1D). The combined AUC across all
cell lines was 0.69 (FIG. 1E). This formulation of the
PHBR-II score outperformed another scoring variation
where peptides of varying lengths were considered (FIG. 7).
Two reasons contribute to the reduced performance relative
to MHC-I (receiver operating characteristic curve [ROC]
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area under the curve [AUC] 0.75) (Marty et al., 2017, Cell,
171:1272-83). First, predicting single allele MHC-II binding
has higher error than predicting single allele MHC-I bind-
ing. Second, computing an AUC value requires a non-
binding negative set of residues. We employ a random set of
residues when evaluating PHBR scores for both MHC
classes; however, MHC-II has a larger effective binding
range than MHC-1. As a result, the negative set should have
an order of magnitude more actual binding residues for
MHC-II than MHC-I. Thus, lack of an appropriate negative
set for MHC-II deflates the calculated AUC value. For this
application, namely using predicted MHC class 1I binding
affinities to identify T cell epitopes for which the exact
restricting MHC class II molecule is not known, perfor-
mance measured by AUC values is typically around 0.7.
Despite these limitations, the PHBR-II score contains sig-
nificant signal that renders it useful for further analysis.
[0130] Finally, we applied the HLA-HD tool (Kawaguchi
et al., 2017, Hum. Mutat. 38:788-97) to predict HLA-II
alleles for patients in TCGA with exome sequencing data
(see Table S1 in doi.org/10.1016/j.cell.2018.08.048 on the
World Wide Web). To the best of our knowledge, HLA-HD
is currently the only tool that can call alpha and beta alleles
for HLA-DR, HLA-DP, and HLA-DQ with high accuracy.
Thus, from a total of 8,333 patients with exome sequencing,
we successfully typed 7,929 patients at all three genes. To
validate these HL A types, we also applied xHLA (Xie et al.,
2017, PNAS USA, 114: 8059-64), which calls the beta
alleles for HLA-DR, HLA-DP, and HLA-DQ. We restricted
our patient set to samples where both HLA-HD and xHLA
completely agreed, leaving 5,942 patients (FIG. 8A; see
Table S1 in doi.org/10.1016/j.cell.2018.08.048 on the World
Wide Web). Within the typed TCGA patients, HLA-DPA1
revealed the least population variation, with only 14 types
represented and the most common allele (HLA-
DPA1*0103) at a frequency of 0.76 in the population.
HLA-DRB1 had the most variation in the population, with
74 types represented, the most common of which (HLA-
DRB1*0701) was observed at only a frequency of 0.20
(FIGS. 8B-8F).

Example 22—Recurrent Cancer Mutations are
Poorly Presented by Human MHC-II

[0131] Mutations that drive the early development of
tumors should be observed more frequently across tumors.
We therefore used recurrence of mutations in established
oncogenes and tumor suppressors as criteria to assemble a
list of 1,018 cancer-driving mutations likely to have
occurred prior to immune evasion and that could therefore
reflect the effects of selection by immunosurveillance. We
calculated PHBR-II scores for every mutation-patient com-
bination, resulting in a matrix of 5,942 patients (FIG. 2,
rows; see Table S2 in doi.org/10.1016/j.cell.2018.08.048 on
the World Wide Web) and 1,018 mutations (FIG. 2, col-
umns). The matrix provides a high level overview of the
MHC-II presentation landscape across cancer patients and
recurrent cancer mutations. Patients and mutations were
clustered according to similarity of presentation score pro-
files. While we observed no obvious clustering of patients by
tumor type or infiltration by CD4+ T cells, we did observe
expected clusters of samples with shared ancestry, resulting
from population-specific differences in MHC-II allele fre-
quencies. Interestingly, we observed bias toward poor pre-
sentation of tumor suppressor mutations by MHC-II across
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the entire population (Fisher’s exact test, PHBR-II R10, OR
[odds ratio]=1.43, p=0.006). Notably, this same enrichment
was not present for MHC-I presentation (Fisher’s exact test,
PHBR-I R2, OR=1.33, p=0.40). Although only a small
fraction of the tested mutations were in-frame indels, there
was no clear difference between the MHC-II presentation of
missense mutations and indels. Interestingly, when a similar
matrix was generated using the wild-type sequences instead
of'the mutations, the presentation of the sequences across the
population were highly concordant (Pearson’s r=0.96, FIGS.
9A and 9B).

[0132] Next, we compared the ability of the 5,942 cancer
patients to present different classes of residues by MHC-II.
We calculated the PHBR-II scores of every patient for 1,000
viral residues, 1,000 bacterial residues, 1,000 common poly-
morphisms, and 1,000 random mutations (Marty et al., 2017,
Cell, 171:1272-83). To compare the behaviors of PHBR-II
scores, we visualized raw distribution and the cumulative
distribution function (CDF) for each class of residues. Viral
and bacterial residues were presented the most effectively
out of these classes by the patients in the population (FIG.
3A). Assuming that the MHC-II system has primarily
evolved to ward off pathogens, it is not surprising that the
CDF curves are shifted to the left in comparison with other
classes, with more than 27% of viral and 29% of bacterial
PHBR-II scores falling below a PHBR-II threshold of 6
(threshold based on 0.2 false-positive rate) (FIGS. 3B and
10A; Table 2 for confidence intervals [CI]). Common ger-
mline polymorphisms and random mutations should, in
contrast, approximate events that are selectively neutral.
MHC-II presentation of germline variants should in prin-
ciple be decoupled by tolerance such that germline variants
should not be biased to occur in particularly well or poorly
presented peptides. Similarly, randomly selected mutations
should represent an unbiased sample of background MHC-11
presentation. Consistent with positive selection, pathogen
residues are presented significantly better than germline
variants or random mutations by MHC-II across the popu-
lation, yet 22% and 23% of PHBR-II scores still fall below
the 6 PHBR-II threshold for common germline polymor-
phisms and random mutations, respectively. In contrast,
distributions of PHBR-II scores for recurrent mutations in
oncogenes and tumor suppressors (observed >10 times in
MHC-II-typed population) show a shift upward toward poor
presentation relative to random mutations (p<2.2ex16), with
only 12% of scores for mutations in oncogenes falling below
the 6 PHBR-II threshold. Strikingly, there was even poorer
presentation of mutations in tumor suppressor genes (p<2.
2ex16; relative to random mutations), with only 7% of
PHBR-II scores below the 6 PHBR-II threshold. The dif-
ferences observed in MHC-II presentation for these classes
of mutation were robust to the inclusion of less recurrent
(observed >2 times in TCGA) cancer mutations (FIG. 10B)
and to using different samples of random mutations (FIG.
10C, empirical p<0.05). Interestingly, these trends were not
unique to cancer patients but were also observed in alternate
human populations, suggesting that MHC-II genotypes do
not significantly differ between the two populations (FIG.
10D).
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TABLE 2

Fraction of residues with MHC-II presentation in different
peptide classes.

Fraction 95% CI
Oncogenes 0.120 (0.119, 0.121)
Tumor suppressor genes 0.0649 (0.0641, 0.0657)

Random 0.236 (0.236, 0.236)

Germline 0.222 (0.222, 0.222)

Viral 0.272 (0.272, 0.273)

Bacterial 0.286 (0.286, 0.287)

[0133] We next evaluated whether the recurrence of a

mutation was related to its presentation by MHC-II by
comparing the PHBR-II score distributions of passenger
mutations and varying frequencies of cancer-driving muta-
tions (FIG. 3C). Passenger mutations, defined as mutations
occurring only 1-2 times across all tumors in non-cancer
genes, had a PHBR-II score distribution very similar to that
of random mutations with an enrichment for PHBR-II scores
near 0, suggesting that many passengers are likely to be
effectively presented. This enrichment of presented passen-
ger mutations is consistent with recent reports that HLLA loss
of heterozygosity is frequent in some tumor types and is
associated with the accumulation of mutations that would
have been effectively presented by the lost allele. Conse-
quently, 25% of the passenger mutation PHBR-II scores fall
below the PHBR-II cutoff of 6 (FIG. 3D). In comparison, we
observed significantly worse presentation with increasing
mutation frequency for recurrent mutations (observed >2
times across typed tumors) in known cancer genes (p<2.
2ex14). The percentage of PHBR-II scores falling below the
PHBR-II threshold of 6 falls with each jump in frequency;
from 20% for low frequency driver mutations (<5 times; 841
total) to 16% for medium frequency driver mutations (>5,
=20 times; 149 total) to a dramatic 8% for high frequency
driver mutations (>20 times; 28 total) (FIG. 3D). Despite the
striking shift toward larger PHBR-II scores with increasing
recurrence, MHC-II presentation across patients was not
quite significantly correlated with mutation frequency (bur-
den) across tumors overall (Spearman’s rho=0.27, p=0.07,
FIG. 10E). This is in contrast to the relationship observed for
MHC-I (Spearman’s tho=0.66, p=1.02ex6 within the same
patient group). We note that median PHBR-II scores for
mutations observed >10 times tend to be elevated equiva-
lently. This may reflect a threshold beyond which presenta-
tion no longer occurs and thus beyond which numeric
differences in PHBR-II score should no longer be informa-
tive about mutation frequency. Taken together, these results
suggest that MHC-II-based presentation across the human
population constrains the frequency at which mutations arise
across tumors.

Example 23—MHC-II Genotype Constrains the
Landscape of Cancer Mutations in Individual
Tumors

[0134] Given observed bias for cancer mutations to be
poorly presented by human MHC-II (FIG. 3A), we hypoth-
esized that MHC-II genotype could influence patient-spe-
cific mutation probability. To explore this hypothesis, we
intersected occurrence of mutations with potential of an
individual to present those mutations as quantified by their
PHBR-II score. PHBR-II scores were separated into two
groups: those that corresponded to observed mutations and
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those that corresponded to unobserved mutations (FIG. 4A).
Consistent with our hypothesis, we observed a large upward
shift in PHBR-II distribution for the observed mutations as
opposed to the unobserved mutations. As mutations become
less presentable (higher PHBR-II), the probability of muta-
tion increases significantly (FIG. 4B), with the most pro-
nounced increase occurring at lower PHBR-II scores.
[0135] Next, we used a logistic regression with non-linear
effects to model the relationship between MHC-II genotype
and the probability of observing a recurrent somatic muta-
tion in a pan-cancer setting. We found a substantial increase
in odds of acquiring a mutation as PHBR-II scores increased
(OR=1.23, p<9.9e+58, Table 3). Importantly, passenger
mutations, established non-driver mutations (Table 1), and
germline polymorphisms did not exhibit the same increase
(OR=1.00, OR=0.99, and OR=0.99, respectively, Table 3).
In addition, the OR decreased when less stringent HLA type
calls were used (OR=1.20), suggesting the importance of
accurate HLA typing.

TABLE 3

The association between PHBR-II score and mutation occurrence

MHC-IT PHBR
OR 95% Cl p Value
=2 mutation 1.23 (1.19, 1.26) 9.9e-58
Passenger mutations 1.00 (0.94, 1.06) 0.99
Non-driver mutations 0.99 (0.06, 1.04) 0.96
Germline variants 0.99 (0.99, 0.99) 5.8e-07

OR, 95% Cl, and p value are shown for logistic regression model relating PHBR-II scores
to set of mutations observed 22 times in set of tumors. Models relating PHBR-II score to
sets of passenger mutations, non-driver mutations, and germline variants serve as controls.
CI, confidence interval; OR, odds ratio.

[0136] Because the immune environment can vary con-
siderably across tissue sites, we revisited our analysis for
each tumor type separately (FIG. 4C; see Table S5 at
doi.org/10.1016/j.cell.2018.08.048 on the World Wide
Web). Twelve of the eighteen tissues had significant positive
ORs (p<0.05) after multiple testing correction. Similar to
MHC-I, MHC-II genotype had the strongest effect in thyroid
cancer; however, the effects of MHC-II were even greater
than MHC-I (OR=2.63 versus OR=2.21, considering only
thyroid cancer patients with confident MHC-1 and MHC-II
typing) (FIG. 4C).

Example 24—MHC-II Works Together with MHC-I
to Influence Mutation Probability in Individual
Tumors

[0137] We previously established the influence of germ-
line MHC-I genotype on the probability of observing spe-
cific mutations in tumors (Marty et al., 2017, Cell, 171:
1272-83). To assess the combined influence of MHC-I and
MHC-II on mutation probability, we evaluated the correla-
tion between PHBR-I and -II scores across recurrent cancer
mutations. The range and distribution of PHBR-I and -II
scores differs substantially (FIG. 11A), and while lower
PHBR scores are indicative of more effective presentation in
both cases, the range of values where most presentation
takes place is expected to differ as MHC-II binds peptides
with lesser stringency for peptide affinity and more promis-
cuity than MHC-I. These differences suggest the potential
for MHC-I and MHC-II to contribute to presentation and,
thus, constrain mutation probability in complementary
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ways. Indeed, we observed only a weak positive correlation
between PHBR-I and -1I score distributions across recurrent
cancer mutations (Spearman’s rho=0.36; FIGS. 5A and
11B). Consequently, we modeled the relationship between
the probability of observing a mutation and both classes of
PHBR scores across the 1,018 recurrent mutations (FIG.
5B). Mutations with low PHBR scores (effective presenta-
tion) for either class had a much lower probability of being
observed in tumors than mutations that had high PHBR
scores (poor presentation) for both classes.

[0138] To quantify the influence of MHC-I and MHC-II
on probability of mutation, we used an additive logistic
regression model with non-linear effects that incorporated
both PHBR-I and -II scores in the pan-cancer setting.
Because the distributions of PHBR-I and -II are very dif-
ferent, we calculated the ORs between the 25th and 75th
percentile PHBR, such that the OR represents the increase in
odds of observing a mutation among individuals with a high
PHBR score relative to a low PHBR score for each MHC
class. Notably, we found the impact of MHC-II on the
probability of a mutation to be larger than the impact of
MHC-I (single model incorporating both classes: OR=1.74
with CI [1.67, 1.80] and OR=1.60 with CI [1.54, 1.64],
respectively). To better understand the relative effects of
presentation by MHC II versus MHC 1 in a tissue-specific
setting, we also estimated their individual effects on muta-
tion probability in a joint model. Consistent with our pan-
cancer analysis, we found MHC-II to have more extreme
effect sizes in most tissues (FIG. 11C).

[0139] The same driver mutations can occur early or late
during tumor development; however, in a model where
immune selection is impaired later in tumorigenesis by
mechanisms of immune evasion, selection should be stron-
ger on early clonal occurrences. Therefore, we further anno-
tated mutations according to whether they were more likely
clonal or subclonal based on relative allelic fraction of the
mutations (STAR Methods). Consistent with our assump-
tion, likely subclonal mutations had decreased ORs relative
to PHBR 1II and PHBR 1 scores (single class model, refer-
ence Table 3: PHBR-II OR=1.13 as compared to 1.21 for all
mutations, PHBR-I OR=1.16 as compared to 1.20 for all
mutations, FIG. 5C), confirming that subclonal events are
subject to weaker selection. Moreover, when restricting
analysis of selection to likely clonal mutations, ORs for both
PHBR 1II and PBHR 1 scores increased (single class model,
reference Table 1: PHBR-II OR=1.29 as compared to 1.21
for all mutations, PHBR-I OR=1.29 as compared to 1.20 for
all mutations). Although mutation calls may be less confi-
dent for subclonal mutations, these results suggest that true
effect sizes may be higher than previously reported.

Example 25—Ditferences in MHC-II Versus
MHC-I Presentation Specificities

[0140] Next, we explored whether practical differences
exist in the presentation of particular driver mutations by
MHC-II versus MHC-I. We compared the fraction of
patients wherein a mutation was presented by MHC-II with
the same fraction for MHC-I (FIG. 5D; Appendix A) and
further divided mutations into four categories: rarely pre-
sented by either MHC-I or MHC-II, more frequently pre-
sented by MHC-I, more frequently presented by MHC-II,
and frequently presented by both. Interestingly, we observed
that MHC-II-based presentation tended to be bimodal, such
that a mutation was presented by most patients, or by almost
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no patients, with a few notable exceptions including KRAS
G12 (FIG. 11D). In contrast, MHC-I-based presentation
spanned the full range, with many mutations presented in
varying fractions of patients. Although these trends may be
impacted by the higher sensitivity of the PHBR-I score as
compared to the PHBR-II score, they were constant across
several thresholds (FIG. 11E). This suggests that MHC-II-
based presentation may be more shared across patients,
whereas MHC-I-based presentation is more individual-spe-
cific. We further investigated the mutations frequently pre-
sented by both MHC-I and MHC-II, because we would
expect them to arise with low likelihood in cancer. Indeed,
these mutations had lower allelic fractions than mutations
presented well by at least MHC-I or MHC-II (Mann-Whit-
ney, p=0.03), suggesting these mutations are subclonal,
arising after immune evasion, and could be effectively
eliminated by the immune system.

[0141] Based on this analysis, the relative abundance of
class I peptides appears to be higher than that for class II,
suggesting better potential for engineering class I anti-tumor
responses; however, recent reports suggest a bias for
responses to be CD4+-driven in practice. This could indicate
that TCR availability is a major bottleneck for effective
CD8+ immune responses.

Example 26—Evidence for Distinct Effects of
Class II- Versus Class I-Driven Immunosurveillance

[0142] Differences in the dynamics of peptide presentation
and immune response for MHC-I versus MHC-II may have
important implications for tumor-immune interactions.
Whereas MHC-I binds peptides with high specificity, MHC-
II binds a broader array of peptides with a high degree of
promiscuity. CD4+ T cells activated by MHC-II-peptide
complexes can play either a regulatory or an effector role,
whereas CD8+ T cells are strictly (cytotoxic) effectors. The
different properties of class I- and class II-based immunity
are essential for an effective defense against pathogens, but
the implications for anti-tumor responses are less clear. We
therefore sought to further quantify the potential for these
distinct roles to introduce measurable differences between
class I- and class II-mediated immunosurveillance during
tumor development. Because of its established regulatory
role in cancer, we reasoned that MHC II-driven immuno-
surveillance could have a larger effect on the immune
microenvironment than MHCI. Using CIBERSORT (New-
man et al., 2015, Nat. Methods, 12(5):453-7) to evaluate
infiltration by different immune cell types into tumors, we
sought to identify a relationship between immune infiltrates,
cytotoxicity score (Rooney et al., 2015, Cell, 160:48-61),
and strength of immune selection. We divided patients into
groups based on their immune infiltrates and cytotoxicity
scores and tested for differences in immune selection (FIGS.
12A-12D) but did not find any significant relationships. This
apparent lack could be an artifact of the timing of the
MHC-imposed selection relative to when the RNA samples
were taken.

[0143] Population level variation in effectiveness of can-
cer-relevant immunosurveillance could also relate directly to
cancer susceptibility. We reasoned that patients whose MHC
genotype could present a larger fraction of driver mutations
to the immune system would be more resistant to developing
cancer. As homozygous genotype at MHC alleles could
reduce the diversity of presented peptides, we compared
presentation across patients with different levels of homozy-
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gosity. We quantified coverage of cancer causing mutations
as the fraction of the 1,018 driver mutations that could be
presented by the MHC-II genotype of each patient (STAR
Methods) and henceforth refer to this fraction as MHC-II
coverage. As expected, patients with more homozygous
MHC-II alleles were able to present a smaller fraction of the
space due to their decreased MHC diversity (FIG. 6A).
MHC-I (using a PHBR-I cutoff of 2) showed a similar trend
(FIG. 6B).

[0144] Next, we asked whether higher MHC coverage
could delay the development of cancer. We reasoned that if
two patients acquired a cancer-driving mutation at the same
time, the patient with higher MHC coverage would be more
likely to expose their mutation to the immune system and
stop expansion of the cancer. Thus, high MHC coverage
should lead to diagnosis with cancer later in life and vice-
versa (FIG. 6C). First, we tested MHC-II, but found no
relationship between age at diagnosis and coverage (p=0.51,
FIG. 13A). In contrast, patients with higher MHC-I cover-
age of driver mutations were more often diagnosed with
cancer at a later age (p=0.01, controlling for tumor type and
ancestry, FIG. 6D). Across tumor types, the 5% of patients
with the highest MHC-I coverage were diagnosed with
cancer four years later than the 5% of patients with the
lowest coverage (p=0.004, FIG. 13B), versus a two-year
difference when the highest and lowest 10% was used
(p=0.02). Across tumor types, hepatocellular carcinoma
showed the most significant difference after multiple testing
correction and was diagnosed on average seven years earlier
when MHC-I coverage was low. Although coverage of
driver and passenger mutations was strongly correlated
(MHC-I Pearson’s r=0.79, MHC-II Pearson’s r=0.68), the
significant association with age at diagnosis with MHC-I
coverage was not observed for passengers (p=0.11). Within
tumor types, MHC-I coverage did not correlate with overall
mutation burden (FIG. 13C). These findings suggest that the
effect on age is specific to MHC-I coverage of driver
mutations rather than to effects of coverage on mutagenesis
in general. Using the number of homozygous MHC-I genes
in place of coverage showed the same association with age
at diagnosis but was more granular because patients fall into
discrete bins of homozygous genes counts (p=0.024). The
observation that MHC-I, but not MHC-II, coverage is cor-
related with age at diagnosis supports a protective role for
CD8+-driven cytotoxicity. The lack of association with
MHC-II suggests that MHC-II-driven CD4+ effector
responses against key driver mutations are weaker than
CD8+ responses. In addition, either the regulatory role of
CD4+-driven immune responses does not depend on cover-
age of driver mutations or, as indicated in FIG. 2, low
variance in interpatient coverage by MHC-II causes this
effect to be undetectable.

Part B—Strength of Immune Selection in Tumors Varies
with Sex and Age

Example 27—Data Acquisition

[0145] Data were obtained from publicly available sources
including The Cancer Genome Atlas (TCGA) Research
Network (cancergenome.nih.gov on the World Wide
[0146] Web). TCGA normal exome sequences and TCGA
clinical data were downloaded from the GDC. Furthermore,
TCGA somatic mutations were accessed from the NCI
Genomic Data Commons (portal.gdc.cancer.gov/ on the
World Wide Web).
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Example 28—Validation Cohort

[0147] dbGaP studies (accession numbers: phs001493.v1.
pl.c2, phs001041.v1.pl.cl, phs001425.v1.pl.cl,
phs001493.vl.pl.cl, phs000980.vl.pl.cl, phs001469.v1.
pl.cl, phs000452.v2.pl.cl, phs001451.v1l.pl.cl,
phs001519.vl.pl.cl, phs001565.vl.pl.cl) were obtained
from the dbGaP database and WXS/WGS data obtained
from the Sequence Read Archive (SRA) (Leinonen et al.,
2010, Nuc. Acids Res., 39:E19-21). Somatic mutation files
were obtained from the respective papers associated with
each study. Additional non-TCGA patients’ WXS/WGS data
was obtained from the ICGC and somatic mutation data
from the ICGC DCC Data Release (PCAWG and THCA-
SA) (Appendix B). The validation cohort’s MHC-I and -11
genotypes were typed using HLA-HD (Kawaguchi et al.,
2017, Hum. Mutat., 38:788:97), and PHBR scores calcu-
lated using the method described in “Presentation score
assignment”.

Example 29—HLA Typing

[0148] HLA genotyping was performed for class I genes
HLA-A, HLA-B, HLA-C and class II genes HLA-DRBI1,
HLA-DPA1, HLA-DPB1, HLA-DQA1 and HLA-DQBI,
which encode three protein determinants of MHC-I peptide
binding specificity, HLA DR, HLA-DP, and HLA-DQ.
TCGA samples were typed with Polysolver (Shukla et al.,
2015, Nat. Biotechnol., 33:1152-1158), with default param-
eters, for class I and typed with HLA-HD (Kawaguchi et al.,
2017, Hum. Mutat., 38:788-97), using default parameters,
for class II. Both tools requires germline (whole blood or
tissue matched) whole exome sequenced samples. Samples
with very low coverage on specific genes are left untyped by
HLA-HD. Patients were assigned an HLA-DR type if they
were successfully typed for HLA-DRBI1. Patients were
assigned HLA-DP and -DQ types if they had successful
typing for HLA-DPA1/HLA-DPB1 and HLA-DQA1/HLA-
DQB1, respectively. Class I and class I1 types were validated
by xHLA (Xie et al., 2017, PNAS USA, 114:8059-64), run
with default parameters, and only patients where all alleles
agreed in both classes were included in the analysis.

Example 30—Presentation Score Assignment

[0149] Patient presentation scores, as defined in (Marty et
al., 2017, Cell, 171:1272-83), were used to represent a
particular patient’s ability to present a residue given their
distinct set of HLA types. For class I, 6 HLA alleles were
considered (HLA-A, HLA-B and HLA-C). For class II, 12
HLA-encoded MHC-II molecules (4 combinations of HLA-
DPA1/DPB1 and HLA-DQA1/DQBI; 2 alleles of HLA-
DRBI1 considered twice each—since HLA-DRAL1 is invari-
ant—for consistency between resulting molecules). The
Patient Harmonic-mean Best Rank (PHBR) score was
assigned as the harmonic mean of the best residue presen-
tation scores for each group of MHC-I and MHC-II mol-
ecules. A lower patient presentation score indicates that the
patient’s MHC molecules are more likely to present a
residue on the cell surface.

Example 31—Data Acknowledgements

[0150] We would like to thank the TCGA research net-
work for providing data used in the analyses, the ICGC
database, as well as the following studies used in the
validation cohort.
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ratory for their technical assistance, and John Khoury for
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tion for Cancer Research, the scientific partner of SU2C.

Example 32—Set of Driver Mutations

[0159] Somatic mutations were considered to be recurrent
and oncogenic if they occurred in one of the 100 most highly
ranked oncogenes or tumor suppressors described by Davoli
et al. (2013, Cell, 155:948-62) and were observed in at least
3 TCGA samples. Among these, only mutations that would
result in predictable protein sequence changes that could
generate neoantigens, including missense mutations and
inframe indels, were retained. A total of 1,018 mutations
(512 missense mutations from oncogenes, 488 missense
mutations from tumor suppressors, 11 indels from onco-
genes and 7 indels from tumor suppressors) were obtained
(Marty et al., 2017, Cell, 171:1272-83).

Example 33—Modeling the Effects of PHBR Score
on Mutation Probability

[0160] Two matrices, for PHBR-I scores and PHBR-II
scores, were built from the 1,018 mutations and the 1,912
patients with both PHBR-I and -II calls. Next, a binary
mutation matrix y,; 10,1} indicating whether patient i has
a specific mutation j was built. The relationship between this
binary matrix, the matched 1,912x1,018 matrices with log
PHBR-I and -1I scores, x1,; and x2,, respectively, and the
variable of interest (sex or age) for patient i and mutation j
were evaluated. A generalized additive model was fit for the
centered log PHBR-I, centered log PHBR-II scores, centered
sex (coded 0/1 for males/females) or centered age, and
mutation probability with the GAM function in the MGCV
R package (Wood et al., 2001, R. news, 1:20-5). To estimate
the effects of PHBR and sex or age on probability of
mutation, the following random effects models were con-
sidered:

Logit(P(y;=1))=P x1 ;+Bx2,+B3Sex+p 1 x1,,*Sex+
Box2;%Sex4m;

Logit(P(y,=1))=B x1;+Bx2,+BsAge+ x1,* Age+
Box2;* Age+n;
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And a PHBR-II specific model (results in Table 4):

Logit(P(y;=1))=p 2,7+ Age+PoSex+Px2,; *Sex;+
Box2,* Age+n;
where m~N(0, 8,) are random effects capturing different
mutation propensities among patients. In these models, f3,,
measures the effect of the log-PHBR-I, log-PHBR-II, and
sex or age. This analysis was repeated for the validation
cohort.

TABLE 4

Quantitative estimate of the association between PHBR-II score
and mutation occurrence in sex- and age-specific TCGA cohorts

Parametric coeflicients Estimate Pr(>Izl)
PHBR-II 0.31 <2e-16
Sex -0.05 0.24
Age -0.002 0.16
PHBR-II: Sex 0.12 0.005
PHBR-II: Age -0.003 0.01

Example 34—Mutational Signature Analysis

[0161] Mutational signatures analysis was performed
using a previously developed computational framework
SigProfiler (Alexandrov et al., 2013, Cell Rep., 3:246-59). A
detailed description of the workflow of the framework can
be found in (Alexandrov et al., 2013, Cell Rep., 3:246-59;
biorxiv.org/content/early/2018/05/15/322859 on the World
Wide Web), while the code can be downloaded freely from
mathworks.com/matlabcentral/fileexchange/38724-sigpro-
filer on the World Wide Web).

Example 35—Statistical Analysis

[0162] All boxplots were evaluated using the default one-
tailed Mann Whitney U statistical test, via the scipy.stats
Python package. Mutational signature sex-specific distribu-
tions were also compared using the one-tailed Mann Whit-
ney U test, and p-values were adjusted using the Benjamin-
Hochberg Procedure.

Example 36—Code Availability

[0163] Code to reproduce findings and figures can be
freely accessed at github.com/CarterlLab/HL A-immunoedit-
ing on the World Wide Web.

Example 37—Results

[0164] A set of 1,018 driver mutations, defined in (Marty
etal., 2017, Cell, 171:1272-83), were examined, since driver
mutations are more persistent in the clonal architecture of an
individual’s cancer and confer a selective growth advantage.
MHC-I and MHC-II types were assigned based on the
consensus of two exome-based calling methods (Shukla et
al, 2015, Nat. Biotechnol., 33:1152-8; Xie et al., 2017,
PNAS USA, 114:8059-64; and Kawaguchi et al., 2017,
Hum. Mutat., 38:788-97) and only microsatellite-stable
(MSS) TCGA patients that had identically matched typing
were considered. Ultimately, 2,554 patients with confident
MHC-I calls and 2,681 patients with confident MHC-II calls
who were diverse in sex, with more males than females
(FIG. 19A), and a broad distribution of age at diagnosis
(FIG. 19B) were analyzed. Patients were categorized into
subgroups according to sex (male versus female) and age
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(younger versus older based on 30th and 70th percentiles at
age of diagnosis). All MHC-I and MHC-II cohorts had a
similar average number of driver mutations (FIG. 20). It was
previously found that TCGA patients with somatic MHC-I
mutations had altered mutational landscapes, with a higher
fraction of binding neoantigens than patients without MHC-I
mutations (Wong et al., 2011, Bioinformatics, 27:2147-8).
To ensure that somatic MHC-1 mutations would not skew the
driver mutation PHBR-I score distributions, scores for
patients with and without MHC-I mutations grouped by sex
and age were compared and no significant differences were
found (FIG. 21). PHBR scores were used to predict patients’
potential to present the set of 1,018 driver mutations, then
the distribution of PHBR-I and PHBR-II scores and the
fraction of presentable driver mutations between the sex-
and age-specific groups were compared and no significant
difference were found (FIG. 22A-22F). The overall similar-
ity of MHC presentation suggests that patients of both sexes
and various ages at diagnosis present driver mutations with
roughly equivalent efficacy, implying that specificity of
MHC presentation resulting from inherited combinations of
alleles is not the mechanism causing differences in immune
checkpoint inhibitors (ICPi) response rate.

[0165] It was reasoned that the discrepancy might be due
to differences in the strength of immune selection, e.g.,
tumors with stronger immunoediting should retain fewer
driver mutations that are presentable to T cells by the
patient’s own MHC molecules. For sex- and age-specific
groups in each cohort, the PHBR-I and PHBR-II score
distributions for expressed driver mutations observed in
patient tumors were compared. Across pan-cancer cohorts,
females were at a significant disadvantage in presenting their
driver mutations by both their MHC-I and MHC-II mol-
ecules (FIG. 14A-14B, p<2.8e-04 and p<8.7e-05, respec-
tively). Younger patients also tended to have worse presen-
tation of driver mutations by both MHC-I and MHC-II
molecules (FIG. 14C-14D, p<0.02 and p<3.5e-05, respec-
tively). These differences suggest that tumors in female and
younger patients undergo greater immunoediting than those
in male and older patients.

[0166] Next, the immune system’s ability to eliminate
effectively-presented mutations was explored. Sex- and age-
specific generalized additive models with random effects
were used to account for variation in mutation rate across
individuals and examined the coefficients corresponding to
independent and interaction effects for PHBR-I, PHBR-II,
and sex or age to assess their contribution to immune
selection. In both models, it was found that PHBR-I and
PHBR-II scores alone had significant effects on the prob-
ability of a mutation to be a target of immune selection
(Table 5). Positive coefficients for both PHBR scores indi-
cate that the higher the PHBR score (i.e., poorer presenta-
tion), the higher the probability of mutation. Furthermore,
when the influence of both scores on probability of mutation
were quantified using odds ratios between respective 25th
and 75th percentiles, it was found that PHBR-II (OR: 2.11,
CI [2.01, 2.20]) has a much larger impact on probability of
mutation than PHBR-I (OR: 1.25, CI [1.23, 1.27]), echoing
the larger effect sizes seen in FIG. 14. As expected, sex and
age alone did not influence the probability of mutation;
however, of particular interest are the interaction terms that
indicate the influence of PHBR scores within the context of
sex and age. While the PHBR-I:sex and PHBR-I:age inter-
actions did not reach significance, the PHBR-II:sex and
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PHBR-II:age interactions were significant. The negative
PHBR-II:age estimate indicates a stronger effect of PHBR-II
contribution to the probability of mutation in younger
patients. On the other hand, positive PHBR-II:sex estimate
indicates a stronger effect of PHBR-II contributing to prob-
ability of mutation in females according to the model
formulation. Collectively, these results suggest stronger
immunoediting in females and younger patients.

TABLE 5

Quantitative estimate of the association between PHBR score and
mutation occurrence in sex- and age-specific cohorts. Estimates and
p-values are shown for a generalized additive model with random
effects relating PHBR scores to the set of expressed driver mutations
observed =2 times in this cohort

Parametric coefficients Estimate Pr(>Izl)
Sex analysis PHBR-I 0.095 3.68e-07
PHBR-II 0.28 <2e-16
Sex -0.046 0.32
PHBR-I: Sex 0.04 0.29
PHBR-II: Sex 0.12 0.013
Age analysis PHBR-I 0.095 2.86e-07
PHBR-II 0.29 <2e-16
Age -0.0025 0.09
PHBR-I: Age -0.0011 0.35
PHBR-II: Age -0.0043 0.005
[0167] As females and younger patients both demon-

strated stronger immunoediting compared to males and older
patients, the cohorts were further segregated simultaneously
by sex and age, and the distribution of PHBR-I and -1I scores
were investigated for these groups. It was found that sex and
age effects are cumulative, with tumors in younger females
exhibiting significantly higher selective pressure by MHC
than those in the other three groups (FIG. 15). A profound
difference between PHBR score distributions for younger
females and older males was noticed. Because younger
males had worse MHC-II presentation of their driver muta-
tions compared to older females, we sought to ensure that
sex had an effect on immunoediting independent of age. In
a model incorporating sex, age, and PHBR-II scores, both
PHBR-II:sex and PHBR-II:age were independently signifi-
cant (Table 4). These results demonstrate that more aggres-
sive immunoediting in younger females selects for tumors
with driver mutations that are less visible to the immune
system.

[0168] It was next explored whether sex- and age-specific
effects could be driven by differences in environmental
exposure rather than the strength of immunoediting. Muta-
tional signatures assign specific mutations to different muta-
genic processes, allowing the exploration of differences in
environmental exposure across sex and age. The sex-specific
occurrence of mutational signatures were compared in each
tumor type and only a minority of instances were found
where signature strength was weakly but significantly asso-
ciated with sex (FIG. 16A). Importantly, only four of the
signatures where sex-specific differences were observed
contribute to the set of driver mutations used for this analysis
(FIG. 16B), suggesting a very low impact of environmental
exposures on sex-specific effects on immunoediting. Indeed,
when the tumor types with significant signature differences
were excluded, sex- and age-related differences in immu-
noediting were still observed (Table 6). In addition, only two
signatures correlated with age, both of which have known
association with aging (Alexandrov et al., 2015, Nat. Genet.,
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47:1402-7). C>T and T>C mutations were examined, which
are hallmarks of signature 01 and 05, respectively, and it was
found that observed driver mutations in these categories
were broadly distributed across age at diagnosis. To explain
weaker immunoediting in older individuals, age-related
mutations would have to be better presented (have lower
PHBR scores) than other mutations. Instead, it was found
that C>T and T>C mutations were significantly more poorly
presented (had slightly higher PHBR scores) than other
mutations across all possible MHC-1 and MHC-II alleles,
suggesting that these mutations, and by extension, signa-
tures 01 and 05, could not drive the apparent age-associated
difference in immunoediting (FIG. 16C). Thus, it was con-
cluded that the sex- and age-specific effects on immunoedit-
ing are not likely due to exposure differences (Alexadrov et
al., 2013, Nature, 500:415-21; Alexandrov et al., 2015, Nat.
Genet., 47:1402-7).

TABLE 6
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TABLE 7

Quantitative estimate of the association between PHBR score and
mutation occurrence in sex and age-specific TCGA cohorts, without
filtering mutations based on expression. Estimates and p-values are shown
for a generalized additive model with random effects relating PHBR
scores to set of driver mutations observed =2 times in the TCGA cohort

Parametric coefficients Estimate Pr(>Izl)
Sex analysis PHBR-I 0.074 2.05e-05
PHBR-II 0.27 <2e-16
Sex -0.064 0.16
PHBR-I: Sex 0.036 0.31
PHBR-II: Sex 0.13 0.0038
Age analysis PHBR-I 0.076 1.37e-05
PHBR-II 0.27 <2e-16
Age -0.0017 0.24
PHBR-I: Age -0.0011 0.32
PHBR-II: Age -0.0045 0.002

Quantitative estimate of the association between PHBR score and
mutation occurrence in sex- and age-specific TCGA cohorts, without
tumor types significantly associated with sex-specific mutational
signature ratios. Estimates and p-values are shown for a generalized
additive model with random effects relating PHBR scores to set of

driver mutations observed = times in the TCGA cohort

Parametric coefficients Estimate Pr(>Izl)
Sex analysis PHBR-I 0.15 1.80e-10
PHBR-II 0.30 <2e-16

Sex -0.06 0.23

PHBR-I: Sex 0.04 0.23

PHBR-II: Sex 0.10 0.07
Age analysis PHBR-I 0.15 1.21e-10
PHBR-II 0.31 <2e-16

Age -0.002 0.28

PHBR-I: Age -0.0025 0.086
PHBR-II: Age -0.0047 0.01

[0169] We sought validation of these findings in a cohort
of 465 MHC-I typed patients and 426 MHC-II typed
patients, compiled from published dbGaP studies and non-
TCGA samples in the International Cancer Genome Con-
sortium (ICGC) database (Zhang et al., 2011, Database,
bar026) and filtered to exclude tumor types not represented
in TCGA. While fewer tumor types were represented rela-
tive to the discovery cohort, these patients were diverse with
respect to sex and age at diagnosis, with slightly more males
than females, and similar average numbers of driver muta-
tions and PHBR score distributions for all patient groups
(FIG. 23). To maximize the number of samples available,
expression data for the validation cohort was not required.
To account for this limitation, it was verified that previous
TCGA results remain without requiring driver mutations to
be expressed (FIG. 24, Table 7).

[0170] It was found, as in the discovery cohort, that driver
mutations had significantly poorer MHC-II presentation in
younger females compared to older females and older males
(p<2.16e-05, p<0.001), and trended toward significance
relative to younger males (p<0.29) (FIG. 17F). While the
trends did not reach significance for MHC-I (FIG. 17E), the
linear model analysis in the discovery cohort suggested that
the effects of age and sex were mediated predominantly by
MHC-II (Table 5). When evaluating PHBR score distribu-
tions in groups separated by sex and age, only PHBR-II was
significantly different between younger and older patients
(FIG. 17A, 17B, 17C, 17D). It was noted that PHBR score
distributions varied between the discovery and validation
cohort for the four groups (FIG. 25), with stronger effects of
age potentially masking more subtle sex-specific effects
within the sample sizes available. In the validation set,
younger males had significantly poorer MHC-II presentation
of driver mutations than both older males (p<0.02) and older
females (p<0.001). The sex- and age-specific analyses were
repeated using the generalized additive models and it was
found that, for both sex and age, PHBR scores significantly
influence the probability of mutation, with higher PHBR
scores (i.e., worse presentation) leading to higher probability
of mutation (Table 8). In addition, significant PHBR-I:sex
and PHBR-II:age interaction coefficients show that female
sex and younger age, in combination with PHBR score, have
stronger effects on probability of mutation.

TABLE 8

Quantitative estimate of the association between PHBR score and
mutation occurrence in sex and age-specific validation cohorts.
Estimates and p-values are shown for a generalized additive model
with random effects relating PHBR scores to set of driver mutations
observed in the validation cohort

Parametric coefficients Estimate Pr(>Izl)
Sex analysis PHBR-I 0.098 0.008
PHBR-II 0.15 0.0006
Sex 0.22 0.015
PHBR-I: Sex 0.18 0.01
PHBR-II: Sex 0.008 0.92
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TABLE 8-continued

Quantitative estimate of the association between PHBR score and
mutation occurrence in sex and age-specific validation cohorts.
Estimates and p-values are shown for a generalized additive model
with random effects relating PHBR scores to set of driver mutations
observed in the validation cohort

Parametric coefficients Estimate Pr(>Izl)
Age analysis PHBR-I 0.076 0.007
PHBR-II 0.27 0.005
Age -0.0017 0.06
PHBR-I: Age -0.0011 0.34
PHBR-II: Age -0.0045 0.0035
[0171] It is to be understood that, while the methods and

compositions of matter have been described herein in con-
junction with a number of different aspects, the foregoing
description of the various aspects is intended to illustrate and
not limit the scope of the methods and compositions of
matter. Other aspects, advantages, and modifications are
within the scope of the following claims.

[0172] Disclosed are methods and compositions that can
be used for, can be used in conjunction with, can be used in
preparation for, or are products of the disclosed methods and
compositions. These and other materials are disclosed
herein, and it is understood that combinations, subsets,
interactions, groups, etc. of these methods and compositions
are disclosed. That is, while specific reference to each
various individual and collective combinations and permu-
tations of these compositions and methods may not be
explicitly disclosed, each is specifically contemplated and
described herein. For example, if a particular composition of
matter or a particular method is disclosed and discussed and
a number of compositions or methods are discussed, each
and every combination and permutation of the compositions
and the methods are specifically contemplated unless spe-
cifically indicated to the contrary. Likewise, any subset or
combination of these is also specifically contemplated and
disclosed.

1. A computer implemented method for determining
whether a subject is at risk of having or developing a cancer,
the method comprising:

a) genotyping the subject’s major histocompatibility com-

plex class I (MHC-II); and

b) scoring the ability of the subject’s MHC-II to present

a mutant cancer-associated peptide based upon a library

of known cancer-associated peptide sequences derived

from subjects, wherein the produced score is the MHC-

II presentation score; wherein:

1) if the subject is a poor MHC-II presenter of specific
mutant cancer-associated peptides, the subject has an
increased likelihood of having or developing the
cancer for which the specific mutant cancer-associ-
ated peptides are associated; or

i1) if the subject is a good MHC-II presenter of specific
mutant cancer-associated peptides, the subject has a
decreased likelihood of having or developing the
cancer for which the specific mutant cancer-associ-
ated peptides are associated.

2. The method of claim 1, further comprising:

¢) determining whether a biopsy sample obtained from the

subject comprises DNA encoding a mutant cancer-

associated peptide based upon a library of cancer-
associated mutations obtained from subjects.
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3. The method of claim 2, wherein the biopsy sample is
a liquid biopsy sample.

4. The method of claim 3, wherein the liquid biopsy
sample is blood, saliva, urine, or other body fluid.

5. The method of claim 2, wherein the library of cancer-
associated mutations is obtained by whole genome sequenc-
ing of subjects.

6. The method of claim 1, wherein the step of scoring the
ability of the subject’s MHC-II to present a mutant cancer-
associated peptide comprises using a predicted MHC-II
affinity for a given mutation xij, where x is the MHC-II
affinity of subject i for mutation j to fit a mixed-effects
logistic regression model that follows a model equation
obtained from a large dataset of subjects from which MHC-
II genotypes and presence of peptides of interest can be
obtained:

logit(P(y;=1lx;))=n+y log(xy)
wherein:
y; is a binary mutation matrix y,, €{0,1} indicating
whether a subject i1 has a mutation j;
X, is a binary mutation matrix indicating predicted MHC-
II binding affinity of subject i having mutation j;

v measures the effect of the log-affinities on the mutation

probability; and

Mj~N(0, ¢,,) are random effects capturing residue-specific

effects,

wherein the model tests the null hypothesis that y=0 and

calculates odds ratios for MHC-II affinity of a mutation
and presence of a cancer.

7. The method of claim 6, wherein the predicted MHC-II
affinity for a given mutation x,; is a Subject Harmonic-mean
Best Rank (PHBR) score.

8. The method of claim 7, wherein the PHBR score is
obtained by aggregating MHC-II binding affinities of a set of
mutant cancer-associated peptides by referring to a pre-
determined dataset of peptides binding to MHC-II molecules
encoded by at least 12 different HLA alleles.

9. The method of claim 8, wherein the mutant cancer-
associated peptide contains an amino acid substitution, and
wherein the set of peptides consists of at least 15 of all
possible 15-amino acid long peptides incorporating the
substitution at every position along the peptide.

10. The method of claim 8, wherein the mutant cancer-
associated peptide contains an amino acid insertion or
deletion, and wherein the set of peptides consists of at least
15 of all possible 15-amino acid long peptides incorporating
the insertion or deletion at every position along the peptide.

11. The method according to claim 1, wherein the set of
mutant cancer-associated peptides comprises any one or
more of the mutations shown in Appendix A, wherein the
presence of any one of these mutations indicates the pres-
ence of or increased risk of developing cancer.

12. The method according to claim 1, wherein the cancer
is a bladder urothelial carcinoma (BLLCA), a breast invasive
carcinoma (BRCA), a colon adenocarcinoma (COAD), a
glioblastoma multiforme (GBM), a head and neck squamous
cell carcinoma (HNSC), a brain lower grade glioma (LGG),
a liver hepatocellular carcinoma (LLIHC), a lung adenocar-
cinoma (LUAD), lung squamous cell carcinoma (LUSC), an
ovarian serous cystadenocarcinoma (OV), a pancreatic
adenocarcinoma (PAAD), a prostate adenocarcinoma
(PRAD), a rectum adenocarcinoma (READ), a skin cutane-
ous melanoma (SKCM), a stomach adenocarcinoma
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(STAD), a thyroid carcinoma (THCA), a uterine corpus
endometrial carcinoma (UCEC), or a uterine carcinosar-
coma (UCS).

13. A computing system for determining whether a sub-
ject is at risk of having or developing a cancer, the system
comprising:

a) a communication system for using a library of cancer-

associated peptides derived from subjects; and

b) a processor for scoring the ability of the subject’s major

histocompatibility complex class II (MHC-II) to pres-
ent a mutant cancer-associated peptide based upon a
library of cancer-associated peptides derived from sub-
jects,

wherein the produced score is the MHC-II presentation

score.

14. The computing system according to claim 13, wherein
the step of scoring the ability of the subject’s MHC-II to
present a mutant cancer-associated peptide comprises using
a predicted MHC-II affinity for a given mutation xij, where
x is the MHC-II affinity of subject i for mutation j to fit a
mixed-effects logistic regression model that follows a model
equation obtained from a large dataset of subjects from
which MHC-II genotypes and presence of peptides of inter-
est can be obtained:

logit(P(yij=1 lxif))=nj+y log(xtf)

wherein:
yij is a binary mutation matrix yij €{0,1} indicating
whether a subject 1 has a mutation j;
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Xij is a binary mutation matrix indicating predicted MHC-
II binding affinity of subject i having mutation j;

v measures the effect of the log-affinities on the mutation

probability; and

Nj~N(0, ) are random effects capturing residue-specific

effects,

wherein the model tests the null hypothesis that y=0 and

calculates odds ratios for MHC-II affinity of a mutation
and presence of a cancer.

15. The computing system according to claim 14, wherein
the predicted MHC-II affinity for a given mutation xij is a
Subject Harmonic-mean Best Rank (PHBR)-II score.

16. The computing system according to claim 14, wherein
the PHBR-II score is obtained by aggregating MHC-II
binding affinities of a set of mutant cancer-associated pep-
tides by referring to a pre-determined dataset of peptides
binding to MHC-II molecules encoded by at least 12 dif-
ferent HLA alleles.

17. The computing system according to claim 16, wherein
the mutant cancer-associated peptide contains an amino acid
substitution, and wherein the set of peptides consists of at
least 15 of all possible 15-amino acid long peptides incor-
porating the substitution at every position along the peptide.

18. The computing system according to claim 16, wherein
the mutant cancer-associated peptide contains an amino acid
insertion or deletion, and wherein the set of peptides consists
of at least 15 of all possible 15-amino acid long peptides
incorporating the insertion or deletion at every position
along the peptide.



