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Z23-DNA
5'- CTGCAGAATTCTAATACGACTCACTATAGGAAGAGATGGCGAC

CLASS HUSED FOR RESELECTION)

#5,6,7,9, 21,25 20 43 47
ATCTC TTTIGTCAGCCACTCGAAATAGTGTGTTCGAAGCAGCTCTA GTGAL

CLASS I
#2140, 17,20, 24, 31, 3739

AGCCA -~ TAGTTCTACCAGCCOTTCOAAATAGTEAAGTETTCATCA CTATC
#3 GGCCA ~TAGTTCTACCAGCGGTTCGAMATAGTGAAATGTTCATGA CTATC

#4  GCCAGATTAGTTCTACCAGCGGTITCCAAATAGTGARATGTTCOTCA CTATC

CLASS I
#15, 18,19, 34, 35, 38, 80

ATCTC CAARGATGCCAGCATGCTATTCTCCGAGCCGETCGAAATA GTCGAC
#14  ATCTC CAARGATGCCTGCATGCTATTCTCCGAGCCGETCGAAATA GTGAC

UNCLASSIFIED

#36  ATCTC GTCTCCGAGCCGGTCGAARTAGTCAGGTGITICTATICGE GTGAC
#40  ATCTC CTTCTCCGAGCCGETCCGAAATAGTAGTTTITAGTATATCT GTGAC
#42  ATCTC AGGTGTTGGCTGCTCTCGCGETGCCCAGAGGTACGCTGAT GTGAC

GETAAGCTTGGCAC-3

FIG. 2
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Ca-DNA
5'- CTGCAGAATTCTAATCGACGCACTATAGGAAGAGATGECEAC

CLASS H{USED FOR RESELECTION)
#1815, 34

ATCTC TTGTATTAGCTACACTGTTAGTGGATCGGGTCTAATCTCG GIGAC
#1  GTCTC TTGTATTAGCTACACTGTTAGTGGATCGGGTCTAATCTCG GTGAC
#25 ATCTC CTGTATTACCTACACTGTTAGTGGATCGGGTCTAATCTCG GIGAC
#18  ATCTC TTGTATTAGCTACACTCTTAGTIGGGAACGTTATCAT-TCG GTGAC

CLASS I
# 472326
ATCTC TTGACCCAAGAAGGGATGTCAATCTAATCCGT CAACCATS
48 ATCTC TTGACCCAAGAAGGGGTGTCAATCAAATCCGT CAACCATG
#17  ATCTC TTGACCCAAGAAGCGGTGTCAATCTAATCCGTACAACCATE ACGGTAAG
#27  ATCTC TTGACCCAAGAAGCGGTGTCAATCTAATCCGT CAACCATG  CGGTAAG

CLASS i

#5  ATCTC AGGTGTTGGCTGCTCCCGCGGTGGCGGGAGGTAGGGTGAT GTGAC
#11 ATCTC ACGGTCTTGECATCTCCCGCEOTGECCACACGETAGGATCAT GTGAC
#6  ATCTC AGGTGTTGRCTGCTCTCECGRTGGCRAGAGGTAGGATCAG GTGAC

UNCLASSIFIED

#21  ATCTC GCAGTCGAAGCTTCACTGITAGTGCOGACGGGTAGACTTC GTGAC

#20  ATCTC TTCTGAARTCCTCAATGITAGTGGACCTAGTCGTAGTCIGAT GTGAC

#12  ATCTC GGAGCCAGTTAGCATAATCTTCTGAATCCTCAATGTTAGT GTGAC

#10  ATCTC GGTGTTCGCTGGATAGAGCCGCTAGCGCCCTATCOTAGGGT CTGAC

#1 GTCTC TTTTGTCCGCGACTCGARATAGTCTCTITCAAGCAGCTCTA GTGAC

#28  AGCCR TAGTTCTACCAGCGGTTCCAAATAGTGRAGTGTTCGTCACTATCG GTAA

GGTAAGCTTGGCAC-3

FIG. 3
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FLUORESCENCE BASED BIOSENSOR

CROSS REFERENCE TO RELATED
APPLICATION

This application is a continuation application of applica-
tion Ser. No. 11/082,197 filed Mar. 16, 2005 now U.S. Pat.
No. 7,332,283, which is a continuation application of appli-
cation Ser. No. 10/144,094 filed May 10, 2002 now U.S. Pat.
No. 6,890,719.

FEDERALLY SPONSORED RESEARCH OR
DEVELOPMENT

The U.S. Government may have rights in the present inven-
tion pursuant to the terms of grant number DEFGO02-
01ER63179 awarded by the Department of Energy.

BACKGROUND

Many metals pose a risk as environmental contaminants. A
well-known example is lead. Low level lead exposure can
lead to a number of adverse health effects, with as many as
9-25% of pre-school children presently at risk. Approxi-
mately twenty-two million old houses in the United States
alone have lead paint (Schwartz & Levin, 1991; Rabinowitz et
al., 1985). Although leaded paints and gasoline have been
banned, lead can accumulate in soils or sediments for long
periods of time (Marcus & Elias, 1995; Bogden & Louria,
1975). The level of lead in the blood considered toxic is =10
pg/dL (480 nM). Current methods for lead analysis, such as
atomic absorption spectrometry, inductively coupled plasma
mass spectrometry, and anodic stripping voltammetry, are
complex, expensive and often require sophisticated equip-
ment, sample pre-treatment and skilled operators.

Simple, rapid, inexpensive, selective and sensitive meth-
ods that permit real time detection of Pb** and other metal
ions are very important in the fields of environmental moni-
toring, clinical toxicology, wastewater treatment, and indus-
trial process monitoring and can lead to preventative mea-
sures or at least lower risks associated with metal
contaminants. Furthermore, methods are needed for monitor-
ing free or bioavailable, instead of total, metal ions in indus-
trial and biological systems.

Fluorescence spectroscopy is a technique well suited for
detection of very small concentrations of analytes. Fluores-
cence provides significant signal amplification, since a single
fluorophore can absorb and emit many photons, leading to
strong signals even at very low concentrations. In addition,
the fluorescence time-scale is fast enough to allow real-time
monitoring of concentration fluctuations. Fluorescent prop-
erties only respond to changes related to the fluorophore, and
therefore can be highly selective. Also, fluorometers, for mea-
suring fluorescence signals, are commercially available.
Fluorescent detection is also compatible with fiber-optic
technology and well suited for in vivo imaging applications.
Several fluorescence-related parameters can be assessed for
purposes of sensing, detecting, identifying or quantifying a
target analyte, including fluorescence intensity, emission or
excitation wavelength, fluorescence lifetime and anisotropy.

For example, bioaffinity sensors, labeled with fluoro-
phores, have been used to detect DNA hybridization and
single-nucleotide polymorphisms (Didenko, 2001). Specifi-
cally, molecular beacon, a DNA hairpin structure, is labeled
with both a fluorophore and quencher (Tyagi & Kramer,
1996). In the absence of target DNA, the hairpin structure is
closed and due to the close proximity of the fluorophore and
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quencher, fluorescenceis quenched. However, in the presence
ofacomplementary DNA strand, the hairpin secondary struc-
ture is destroyed and the fluorescence is released without
quenching. Multiple DNA strands may be detected at the
same time by placing a quencher on one end of the molecular
beacon DNA strand and two fluorophores (a donor fluoro-
phore and an acceptor fluorophore) on the other end (Tyagi &
Kramer, 1998; 2000). This design, based on fluorescence
resonance energy transfer (FRET), quenches fluorescence of
the fluorophores in the absence of, complementary DNA due
to the hairpin structure being closed. However, upon hybrid-
ization of the molecular beacon and the complementary
DNA, the secondary structure is destroyed and the donor
fluorophore transfers energy to the acceptor fluorophore,
resulting in fluorescence. Molecular beacon can be designed
to target different DNA sequences by constructing comple-
mentary DNA strand hairpins, each with a different acceptor
fluorophore, while keeping the donor fluorophore the same.

Biosensors, devices capable of detecting target ions using
biological reactions, in contrast to bioaffinity sensors, can be
modified to utilize fluorescence for detecting, identifying or
quantifying target ions, which can act as catalysts of the
biosensor. These modified biosensors, called fluorosensors,
are highly sensitive. For example, many fluorescent
chemosensors, including fluorophore-labeled organic chela-
tors (Rurack, et al., 2000; Hennrich et al., 1999; Winkler etal.,
1998; Ochme & Wolfbeis, 1997) and peptides (Walkup &
Imperiali, 1996; Deo & Godwin, 2000; Pearce et al., 1998),
have been developed for metal ion detection. These ion sen-
sors are usually composed of an ion-binding motif and a
fluorophore. Metal detection using these fluorescent
chemosensors relies on the modulation of the fluorescent
properties of the fluorophore by the metal-binding event.
Detection limits on the level of micromolar and even nano-
molar concentrations have been achieved for heavy metal
ions including Zn**, Cu**, Hg**, Cd** and Ag*.

Recently, the molecular recognition and catalytic function
of nucleic acids have been extensively explored. This explo-
rationhas led to the development of aptamers and nucleic acid
enzymes, which can be used as biosensors. Aptamers are
single-stranded oligonucleotides derived from an in vitro
evolution protocol called systematic evolution of ligands by
exponential enrichment (SELEX). Nucleic acid aptamers can
selectively bind to non-nucleic acid targets, such as small
organic molecules or proteins, with affinities as high as 10~
M (Uphoff et al. 1996; Famulok, 1999). Most aptamers
undergo a conformational change when binding their cognate
ligands. With this property, several DNA and RNA aptamers
have been engineered to sense L-adenosine or thrombin
through an internally labeled fluorescent reporter group
(Jhaveri et al., 2000). Thus, the conformational change in the
aptamer upon binding leads to a change in fluorescence.
Nucleic acid enzymes, molecules capable of catalyzing a
chemical reaction, may be specifically designed through in
vitro selection. (Breaker & Joyce, 1994; Breaker, 1997).
Allosteric ribozymes (or aptazymes), which combine the fea-
tures of both aptamer and catalytic RNA, also hold promise
for sensing small molecules (Potyrailo et al., 1998; Koizumi
etal., 1999; Robertson & Ellington, 1999, 2000). Their reac-
tivity is modulated through the conformational changes
caused by the binding of small organic molecules to an allos-
teric aptamer domain. Therefore, the signal of ligand binding
can be transformed into a signal related to chemical reaction.

SUMMARY

In afirst aspect, the present invention is a method of detect-
ing an ion in the presence of other ions, in a sample. The
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method comprises: forming a mixture of a nucleic acid
enzyme including at least one quencher, a substrate and the
sample, to produce a product; and detecting the presence of
the product. The substrate is a nucleic acid sequence includ-
ing a ribonucleotide, at least one quencher and at least one
fluorophore.

In a second aspect, the present invention is a method of
determining the concentration of an ion in the presence of
other ions, in a sample, comprising: forming a mixture of a
nucleic acid enzyme comprising at least one quencher, a
substrate comprising a ribonucleotide, at least one quencher
and at least one fluorophore, and the sample, to produce a
product; and measuring the amount of product produced.

In a third aspect, the present invention is a biosensor,
capable of detecting the presence of an ion in the presence of
other ions, comprising: a nucleic acid enzyme which includes
at least one quencher, and a substrate which includes a ribo-
nucleotide, at least one quencher and at least one fluorophore.

A “nucleic acid enzyme” is a nucleic acid molecule that
catalyzes a chemical reaction. The nucleic acid enzyme may
be covalently linked with one or more other molecules yet
remain a nucleic acid enzyme. Examples of other molecules
include dyes, quenchers, proteins, and solid supports. The
nucleic acid enzyme may be entirely made up of ribonucle-
otides, deoxyribonucleotides, or a combination of ribo- and
deoxyribonucleotides.

A “sample” may be any solution that may contain an ion
(before or after pre-treatment). The sample may contain an
unknown concentration of an ion. For example, the sample
may be paint that is tested for lead content. The sample may
be diluted yet still remain a sample. The sample may be
obtained from the natural environment, such as a lake, pond,
or ocean, an industrial environment, such as a pool or waste
stream, a research lab, a common household, or a biological
environment, such as blood. Of course, sample is not limited
to the taking of an aliquot of solution but also includes the
solution itself. For example, a biosensor may be placed into a
body of water to measure for contaminants. In such instance,
the sample may comprise the body of water or a particular
area of the body of water. Alternatively, a solution may be
flowed over the biosensor without an aliquot being taken.
Furthermore, the sample may contain a solid or be produced
by dissolving a solid to produce a solution. For example, the
solution may contain soil from weapon sites or chemical
plants.

“Measuring an amount of the product produced” includes
measuring the result of the production of a product by an
enzyme. For example, in an embodiment where the substrate
comprises a quencher and fluorophore and the enzyme com-
prises a second quencher, and cleavage of the substrate by the
enzyme leads to dissociation of the product from the enzyme,
“measuring an amount of the product produced” includes
detecting the increase of fluorescence. Thus, one is measuring
the product by detecting its inability to quench fluorescence.

“Forming a mixture” includes placing the sample, a sub-
strate and an enzyme in proximity such that an ion in the
sample could be used as a cofactor. “Forming a mixture”
includes such acts as pipetting a sample onto a solid support
or into a tube or well containing the nucleic acid enzyme.
Alternatively, the enzyme may be brought to the sample. For
example, the enzyme may be placed into a stream to monitor
for the presence of a contaminant.

BRIEF DESCRIPTION THE DRAWINGS

FIG. 1. Selection scheme for RNA-cleaving deoxyri-
bozymes. FIG. 1A. (SEQ ID NO: 12) Starting pool of ran-
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dom-sequenced DNAs, engineered to contain two substrate-
binding domains. Each member of the pool contains a
S'-terminal biotin (encircled B), a single embedded ribo-
nucleotide (rA) and a 40-nucleotide random sequence
domain (N40). FIG. 1B. Selective amplification scheme for
isolation of DNA that catalyzes the metal cofactor (Co®* or
Zn**) dependent cleavage of an RNA phosphodiester.

FIG. 2. (SEQ ID NOS 13-23, respectively, in order of
appearance) Sequence classes of the cloned Zn-DNA with
clone numbers shown on the left, highly conserved sequences
in bold, covariant nucleotides underlined, and 5'- and the
3'-primer binding sequences shown in italics.

FIG. 3. (SEQ ID NOS 24-42, respectively, in order of
appearance) Sequence classes of the cloned Co-DNA with
clone-numbers listed on the left and 5' and the 3' primer
binding sequences in italics.

FIG. 4. (SEQ ID NOS 43-70, respectively, in order of
appearance) Sequence alignment of the N40 region of the
reselected Zn-DNAs with wild-type sequence listed on top,
followed by reselected Zn-DNA sequences showing only
point mutations. Shown on the left are clone-numbers and
rate constants (k) of several reselected Zn-DNA in 100 pM
Zn** are shown on the right.

FIG.5. (SEQID NOS 1 & 2) Proposed secondary structure
of the Zn(Il)-dependent trans-cleaving deoxyribozyme.

FIG. 6. Sequences and proposed secondary-structures of
several RNA-cleaving deoxyribozymes. FIG. 6A (SEQ ID
NOS 71 & 72) and FIG. 6B (SEQ ID NOS 73 & 74). The
deoxyribozyme selected using Mg or Pb** as cofactor
(Breaker & Joyce, 1994, 1995). FIG. 6C (SEQ IDNOS 75 &
76) and FIG. 6D (SEQ ID NOS 77 & 78). The 10-23 and the
8-17 deoxyribozymes selected in Mg>* to cleave all-RNA
substrate (Santoro & Joyce, 1997). FIG. 6E (SEQ ID NOS 79
& 80). A deoxyribozyme selected using L-histidine as cofac-
tor. FIG. 6F (SEQ IDNOS 81 & 82). The 17E deoxyribozyme
selected in Zn>*. In each structure, the upper strand is the
substrate and the lower strand is the enzyme. Arrows identify
the site of RNA transesterification.

FIG. 7. Comparison of G3 deoxyribozyme with class 11
Co-DNA. FIG. 7A. (SEQ ID NO: 83) The predicted second-
ary structure of the G3 deoxyribozyme (Geyer & Sen, 1997)
with X representing variable sequences. The boxed region
was also found in class 11 Co-DNA. FIG. 7B. (SEQ ID NO:
84) The minimal structure motif of the class II Co-DNA
predicted by mfold program with arrows indicating cleavage
sites.

FIG. 8. Steady-state fluorescence spectra of the substrate
(Rh-17DS) alone (I), after annealing to the deoxyribozyme
(17E-Dy) (Il), and 15 min after adding 500 nM Pb(OAc),
().

FIG. 9. Pb** sensitive biosensor. FIG. 9A. Selectivity and
sensitivity of biosensor for Pb** at room temperature. FIG.
9B. Quantification of FIG. 9A. FIG. 9C. Time dependent
curve illustrating fluorescence intensity increase for 500 nM
divalent ions. Pb2+ curve is represented by the upper curve of
dots. Other six metal ions, Co**, Mg>*, Zn**, Cd**, Mn?",
Ni** are in the baseline level.

FIG. 10. Dependence of v, on the concentration of Pb*
or Co®*. FIG. 10A. The initial rate (vg,,) increased with the
concentration of Pb>* (#) and Co>* (M) over a range of three
orders of magnitude. FIG. 10B. At low concentrations, v,
increased linearly with Pb* (#) or Co®* (M) concentration.

FIG. 11.DNA chips forion sensing. FIG. 11A. The array of
deoxyribozymes with different metal specificity and affinity
on the DNA chip for metal ion sensing. FIG. 11B. Quantita-
tive and qualitative detection of metal ions using the metal
ion-sensing deoxyribozyme chip with the z-axis representing
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fluorescence intensity change upon the exposure of the chip to
the sample under examination.

FIG. 12. Design of a biosensor of U.S. application Ser. No.
09/605,558, now U.S. Pat. No. 6,706,474. FIG. 12A The 3'
end of the substrate is labeled with the fluorophore TAMRA
and the 3' end of the enzyme is labeled with the quencher
DABCYL. Pb** acts as a cofactor of this enzyme-substrate
duplex, cleaving the substrate at the position of rA. FIG. 12B
Representation of the biosensor system at room temperature,
where the substrate and enzyme are poorly annealed and free
substrate increases background fluorescence signal, making
detection signal relatively weaker. FIG. 12C Room tempera-
ture fluorescence spectra for 1:1 substrate enzyme ratio in the
absence of Pb** (lower curve) and in the presence of Pb**
(upper curve). The fluorescence increase is only 60%.

FIG. 13. Design of a biosensor with at least 2 quencher
molecules and at least one fluorophore molecule. FIG. 13A
The biosensor has a quencher molecule (DABCYL) located
on the 3'end of both the substrate and enzyme and a fluoro-
phore (FAM) on the 5' end of the enzyme. FIG. 13B Repre-
sentation of the biosensor at room temperature, where regard-
less of hybridization between the enzyme and substrate,
fluorescence is quenched in the absence of cleavage of the
substrate. FIG. 13C Room temperature fluorescence spectra
for 1:1 substrate enzyme ratio in the absence of Pb** (lower
curve) and in the presence of Pb>* (upper curve). The fluo-
rescence is increased 660% over the background fluorescence
signal, which is a more than 10 fold improvement over the
biosensor design of FIG. 12.

FIG. 14. Image comparison for the performance of the
biosensor disclosed herein and the biosensor disclosed in
U.S. application Ser. No. 09/605,558, now U.S. Pat. No.
6,706,474, (Images from a fluorescence image reader (Fuji)).

DETAILED DESCRIPTION

The present invention makes use of the discovery that
including a second quencher can dramatically reduce back-
ground fluorescence signal in a biosensor system at room
temperature, and thereby enhance sensitivity for ion detec-
tion.

U.S. application Ser. No. 09/605,558, now U.S. Pat. No.
6,706,474, describes a combination of a nucleic acid enzyme,
including a quencher, and a nucleic acid substrate, including
a fluorophore. This previous biosensor comprises a fluoro-
phore and quencher arranged in proximity such that prior to
cleavage the fluorophore and quencher are proximal to one
another and fluorescence intensity is decreased by the
quencher. Upon binding of a specifically recognized ion, for
example Pb2+, cleavage occurs and the fluorophore and
quencher are separated, leading to an increase in fluorescence
intensity, which may then be detected. However, at room
temperature (around 23° C.), due to the relatively low hybrid-
ization temperature of the enzyme-substrate duplex (around
35°C.), a fraction of the duplex melts, resulting in free sub-
strate labeled with a fluorophore, which leads to a high level
of background fluorescence signal. To overcome this prob-
lem, application Ser. No. 09/605,558, now U.S. Pat. No.
6,706,474, describes using the enzyme-substrate duplex at
low temperatures, around 4° C., to promote annealing of the
enzyme and substrate. At 4° C., this enzyme-substrate duplex
vields a 400% increase in fluorescence signal intensity, com-
pared to only 60% increase in signal intensity at room tem-
perature (FIGS. 12C, 13C and 14). This significant decrease
in signal intensity greatly detracts from the sensitivity and
interpretability of the results of such a test.
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One method for overcoming increased background signal
due to increased free substrate at higher temperatures would
be to increase the hybridization strength of the recognition
arms, thereby making the substrate-enzyme duplex more
stable. While this method would decrease background fluo-
rescence signal at higher temperatures, it would also greatly
increase the reaction time due to slow release of the cleaved
substrate recognition arms. The present invention avoids both
problems by adding a quencher to the substrate on the end
opposite the fluorophore. This design successfully prevents
significant levels of background fluorescence because when
the substrate is poorly annealed to the enzyme it forms a
random coil so that the end-to-end distance is much shorter
than in the fully stretched, annealed state, resulting in signifi-
cant energy transfer from fluorophore to quencher, thereby
significantly decreasing any detectable background fluores-
cence signals.

The present invention has much less background fluores-
cence. For example, in one embodiment, selectivity for Pb>*
was increased 10 fold at room temperature over the Pb™
sensitive biosensor of U.S. application Ser. No. 09/605,558,
now U.S. Pat. No. 6,706,474, which itself has selectivity for
Pb** more than 80 fold over other divalent metal ions with
high sensitivity (660% signal increase over background fluo-
rescence signal of the new biosensor compared to 60% signal
increase over background of the biosensor of U.S. application
Ser. No. 09/605,558, now U.S. Pat. No. 6,706,474, at room
temperature) (FIG. 14). Such selectivity and sensitivity pro-
vide for qualitative and quantitative detection of ions over a
concentration range of several orders of magnitude. The new
biosensor also provides easily interpretable results, by low-
ering background fluorescence signals to almost zero. The
fluorescence domain of this biosensor may be decoupled
from the ion-recognition/catalysis domain, and therefore the
sensitivity and signal over background ratio of this system
may be manipulated by a careful choice of fluorophores and
by performing in vitro selection of ion-binding domains to
not only keep sequences reactive with the ion of choice, but
also remove sequences that also respond to other ions.

The present invention provides a simple, rapid, inexpen-
sive, selective and sensitive method for detecting the presence
of an ion, with background fluorescence signal near zero and
effective at any temperature, and is an important and useful
tool in preventing or at least lowering health and environmen-
tal risks associated with environmental contaminants.

DNA is stable, inexpensive and easily adaptable to optical
fiber and chip technology for device manufacture. The attach-
ment of DNA enzymes to optical fibers or chips allows regen-
eration of the sensors by washing away the cleavage products
and adding new substrates. Finally, sequences specific for
other ions and with various detection ranges may be isolated
by varying the selection conditions, providing for a highly
sensitive and selective fluorosensor system.

Nucleic Acid Enzymes

A growing number of nucleic acid enzymes have been
discovered or developed showing a great diversity in catalytic
activity (Table 1 and Table 2). Many, if not all, of the enzymes
are dependent on one or more ion cofactors. In vitro selection
may be used to “enhance” selectivity and sensitivity for a
particular ion. Such enzymes find particular utility in the
compositions and methods of the present invention. For
example, nucleic acid enzymes that catalyze molecular asso-
ciation (ligation, phosphorylation, and amide bond forma-
tion) or dissociation (cleavage or transfer) are particularly
useful.

In preferred embodiments, a nucleic acid enzyme that cata-
lyzes the cleavage of a nucleic acid in the presence of an ion



US 8,043,802 B2

7

is used. The nucleic acid enzyme may be RNA (ribozyme),
DNA (deoxyribozyme), a DNA/RNA hybrid enzyme, or a
peptide nucleic acid (PNA) enzyme. PNAs comprise a polya-
mide backbone and the bases found in naturally occurring
nucleosides and are commercially available, e.g., from Bio-
search, Inc. (Bedford, Mass.).

Ribozymes that may be used in the present invention
include, but are not limited to, group I and group Il introns, the
RNA component of the bacterial ribonuclease P, hammer-
head, hairpin, hepatitis delta virus and Neurospora VS
ribozymes. Also included are in vitro selected ribozymes,
such as those isolated by Tang and Breaker (2000).

One limitation of using a ribozyme is that they tend to be
less stable than deoxyribozymes. Thus, in preferred embodi-
ments, the nucleic acid enzyme is a deoxyribozyme. Pre-
ferred deoxyribozymes include those shown in FIG. 6A-6F
and deoxyribozymes with extended chemical functionality
(Santoro et al., 2000).

TABLE 1
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An advantage of ribozymes and deoxyribozymes is that
they may be produced and reproduced using biological
enzymes and appropriate templates. However, the present
invention is not limited to ribozymes and deoxyribozymes.
Nucleic acid enzymes that are produced by chemical oligo-
synthesis methods are also included. Thus, nucleic acids
including nucleotides containing modified bases, phosphate,
or sugars may be used in the compositions and methods of the
present invention. Modified bases are well known in the art
and include inosine, nebularine, 2-aminopurine riboside,
N7-denzaadenosine, and O°-methylguanosine (Earnshaw &
Gait, 1998). Modified sugars and phosphates are also well
known and include 2'-deoxynucleoside, abasic, propyl, phos-
phorothioate, and 2'-O-allyl nucleoside (Earnshaw & Gait,
1998). DNA/RNA hybrids and PNAs may be used in the
compositions and methods of the present invention. The sta-
bility of PNAs and relative resistance to cellular nucleases
make PNA enzymes amenable to in viva applications.

Reactions catalyzed by ribozymes that were isolated
from in vitro selection experiments.

Reaction k., min" K, @M} k. /K2 Reference
Phesphoester centers
Cleavage 0.1 0.03 10> Vaish, 1998
Transfer 0.3 0.02 10**  Tsang, 1996
Ligation 100 9 10°  Ekland, 1995
Phosphorylation 0.3 40 >10°  Lorsch, 1994
Mononucleotide polymerization 0.3 5000 >107  Ekland, 1996
Carbon centers
Aminoacylation 1 9000 10°  Tllangasekare, 1997
Aminoacyl ester hydrolysis 0.02 0.5 10 Piceirilli, 1992
Aminoacyl transfer 0.2 0.05 10°  Lohse, 1996
N-alkylation 0.6 1000 107 Wilson, 1993
S-alkylation 4% 1073 370 10°  Wecker, 1996
Amide bond cleavage 1x107° 10> Dai, 1995
Amide bond formation 0.04 2 10°  Wiegand, 1997
Peptide bond formation 0.05 200 105 Zhang, 1997
Diels-Alder cycloaddition >0.1 >500 10*>  Tarasow, 1997
Others
Biphenyl isomerization 3% 107 500 10> Prudent, 1994
Porphyrin metallation 0.9 10 10*  Conn, 1996

“Reactions catalyzed by ribozymes that were isolated from in vitro selection experiments. keat/kuncat is the rate

enhancement over uncatalyzed reaction,

TABLE 2

Deoxyribozymes isolated through in vitro selection.

Ko kol
Reaction Cofactor (min™)® k... Reference
RNA Pb?* 1 10°  Breaker, 1994
transester- Mg?* 0.01 10°  Breaker, 1995
ification Ca’* 0.08 10°  Faulhammer,
1997
Mg?* 10 >10°  Santoro, 1997
None 0.01 105 Geyer, 1997
L-histidine 0.2 108 Roth, 1998
Zn?* ~40 >10°  Li, 1., 2000
DNA cleavage cu?* 0.2 >10%  Carmi, 1996
DNA ligation Cu®* or Zn’* 0.07 10> Cuenod, 1995
DNA Ca’* 0.01 10°  1i,Y., 1999
phosphorylation
5',5"-pyropho- cu®* s5x 1070 >10'0 Li,Y., 2000
phate formation
Porphyrin None 13 10 Li Y., 1996
methalation

“K g, 18 the maximal rate constant obtained under optimized conditions.
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In certain embodiments, the substrate for the nucleic acid
enzyme and the enzyme itself are contained in the same
nucleic acid strand. Such enzymes are cis-acting enzymes.
Examples include the Zn**-dependent deoxyribozymes (Zn-
DNA) created in Example 1 (FIG. 1A and FIG. 2).

Inpreferred embodiments, the nucleic acid enzyme cleaves
anucleic acid strand that is separate from the strand compris-
ing the enzyme (trans-acting). One advantage of utilizing
trans-activity is that, after cleavage, the product is removed
and additional substrate may be cleaved by the enzymatic
strand. A preferred nucleic acid enzyme is 5-CATCTCT-
TCTCCGAGCCGGTCGAAATAGTGAGT-3' (17E; FIG. 5;
SEQ ID NO:1). The corresponding preferred substrate to 17E
is 5'-ACTCACTATrAGGAAGAGATG-3' (17DS; FIG. 5;
SEQ ID NO:2), where rA denotes a single ribonucleotide.

It may be beneficial to use directed mutation to change one
or more properties of a nucleic acid enzyme or its substrate.
Using 17E and 17DS-FD as an example, one may wish to alter
the avidity of the two arms of the hybridized enzyme and
substrate. The “arms” are those areas displaying Watson-
Crick basepairing in FIG. 5. To alter avidity, one may increase
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or decrease the length of the arms. Increasing the length of the
arms increases the number of Watson-Crick bonds, thus
increasing the avidity. The opposite is true for decreasing the
length of the arms. Decreasing the avidity of the arms facili-
tates the removal of substrate from the enzyme, thus allowing
faster enzymatic turnover.

Another method of decreasing avidity includes creating
mismatches between the enzyme and the substrate. Alterna-
tively, the G-C content of the arms may be altered. Of course,
the effect of any directed change should be monitored to
ensure that the enzyme retains its desired activity, including
ion sensitivity and selectivity. In light of the present disclo-
sure, one of skill in the art would understand how to monitor
for a desired enzymatic activity. For example, to ensure that
the mutated enzyme maintained sensitivity and selectivity for
Pb**, one would test to determine if the mutated enzyme
remained reactive in the presence of lead (sensitivity) and
maintained its lower level of activity in the presence of other
ions (selectivity).

The nucleic acid enzyme is sensitive and selective for a
single ion. The ion may be any anion, for example, arsenate
(AsQ,*"), or cation. The ion may be monovalent, divalent,
trivalent, or polyvalent. Examples of monovalent cations
include K*, Na*, Li*, TI*, NH," and Ag". Examples of diva-
lent cations include Mg**, Ca**, Mn*, Co®*, Ni**, Zn>*,
Cd*, Cu?*, Pb**, Hg?*, Pt**, Ra**, Ba>*, UO,>* and Sr**.
Examples of trivalent cations include Co®*, Cr**, and lan-
thanide ions (Ln**). Polyvalent cations include Ce**, Cr®*,
spermine, and spermidine. The ion detected by the biosensor
also includes ions having a metal in a variety of oxidation
states. Examples include K(I), Na(I), Li(I), TI(T), Ag(T),
Hg(I), Mg(I), Ca(II), Mn(II), Co(1I), Ni(II), Zn(II), Cd(II),
Pb(ID), Hg(Il), Pt(ID), Ra(Il), Ba(1l), Sr(I), Co(11), Cr(III),
La(IID), Ce(IV). Cr(VI) and U(VI).

The biosensors of the present invention may be used to
monitor contaminants in the environment; in such a case
preferred ions are those that are toxic to living organisms, e.g.,
Ag*, Pb** and Hg**.

Often the nucleic acid enzymes that have activity with one
ion also have at least some activity with one or more other
ions. Such multi-sensitive enzymes may still be used in the
compositions and methods of the present invention. However,
it should be understood that use of a multi-sensitive enzyme
may lead to uncertainty as to which of the ions is present. In
such cases, measuring the rate of enzymatic activity, using
serial dilutions, or using an array of nucleic acid enzymes
may be helpful in deciphering which ion is present.

In vitro Selection of Nucleic Acid Enzymes

Many nucleic acid enzymes that are dependent on ions,
particularly metal ions, for activity are known in the art
(Breaker & Joyce, 1994; Pan & Uhlenbeck, 1992; Cuenoud &
Szostak, 1995; Carmi et al., 1996; Li et al., 2000; Santoro et
al., 2000). In light of the present disclosure, one of skill in the
art would understand how to utilize a known nucleic acid
enzyme in the methods and biosensors of the present inven-
tion. Furthermore, the present invention may include a
nucleic acid enzyme created by in vitro selection. Methods of
in vitro selection of nucleic acid enzymes are known in the art
and described herein.

In vitro selection is a technique in which RNA or DNA
molecules with certain functions are isolated from a large
number of sequence variants through multiple cycles of selec-
tion and amplification (Joyce, 1994; Chapman et al., 1994).
The concept of in vitro selection of catalytic RNA molecules
was first introduced in the late 1980’s. Since then, it has been
widely applied to obtain ribozymes with maximized activities
or novel catalytic abilities, and to identify oligonucleotides
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(called aptamers) that bind to certain proteins or small mol-
ecules with high affinity. The process for aptamers selection is
sometimes referred as systematic evolution of ligands by
exponential enrichment (SELEX)(Tuerk & Gold, 1990).

The first catalytic DNA (deoxyribozyme) was isolated by
Breaker and Joyce in 1994 through in vitro selection. This
deoxyribozyme is able to catalyze phosphodiester cleavage
reaction in the presence of Pb**. Unlike RNA-based catalysts,
DNA molecules with catalytic functions have not been
encountered in nature, where DNA exists primarily as base-
paired duplex and serves mainly as the carrier of genetic
information. The identification of DNA molecules with cata-
Iytic functions further demonstrated the power of in vitro
selection.

In vitro selection is typically initiated with a large collec-
tion of randomized sequences. A typical DNA or RNA library
for selection contains 10*3-10'° sequence variants. The con-
struction of a completely randomized pool is accomplished
by chemical synthesis of a set of degenerated oligonucle-
otides using standard phosphoramidite chemistry. The
3'-phosphoramidite compounds of four nucleosides (A, C, G,
and T) are premixed before being supplied to an automated
DNA synthesizer to produce oligonucleotides. By controlling
the ratio of four phosphoroamidites, the identity at each
nucleotide position can be either completely random, i.e. with
equal chance for each base, or biased toward a single base.
Other strategies for creating a randomized DNA library
include applying mutagenic polymerase chain reaction
(PCR) and template-directed mutagenesis (Tsang and Joyce,
1996; Cadwell and Joyce, 1992, 1994). For the purpose of in
vitro selection of functional RNA molecules, the randomized
DNA library is converted to an RNA library through in vitro
transcription.

In vitro selection takes advantage of a unique property of
RNA and DNA, i.e., the same molecule can possess both
genotype (coding information) and phenotype (encoded
function). The DNA or RNA molecules in the randomized
library are screened simultaneously. Those sequences that
exhibit a desired function (phenotype) are separated from the
inactive molecules. Usually the separation is performed
through affinity column chromatography, being linked to or
released from a solid support, gel electrophoresis separation,
or selective amplification of a tagged reaction intermediate.
The genotype of the active molecules are then copied and
amplified, normally through polymerase chain reaction
(PCR) for DNA orisothermal amplification reaction for RNA
(Guatelli et al., 1990). Mutations can be performed with
mutagenic PCR to reintroduce diversity to the evolving sys-
tem. These three steps-selection, amplification and mutation,
are repeated, often with increasing selection stringency, until
sequences with the desired activity dominate the pool.

Novel nucleic acid enzymes isolated from random
sequences in vitro have extended the catalytic repertoire of
RNA and DNA far beyond what has been found in nature. The
selected ribozymes are capable of catalyzing a wide range of
reactions at both phosphate and non-phosphate centers (Table
1). The reactions that are catalyzed by deoxyribozymes are
less diverse, compared with the ribozymes (Table 2). How-
ever, the catalytic rate (k_,,) of most deoxyribozymes is com-
parable to that of the ribozymes catalyzing the same reaction.
In certain cases, the catalytic efficiency (k_,/K,,) of nucleic
acid enzymes even exceeds that of the protein enzymes.

In vitro selection can be used to change the ion specificity
or binding affinity of existing ribozymes, or to obtain nucleic
acid enzymes specific for desired ions. For example, in vitro-
selected variants of the group I intron (Lehman & Joyce,
1993) and the RNase P ribozyme (Frank & Pace, 1997) have
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greatly improved activity in Ca®*, which is not an active metal
ion cofactor for native ribozymes. The Mg>* concentration
required for optimal hammerhead ribozyme activity has been
lowered using in vitro selection to improve the enzyme pet-
formance under physiological conditions (Conaty et al.,
1999; Zillman et al., 1997). Breaker and Joyce have isolated
several RNA-cleaving deoxyribozymes using Mg?*, Mn**,
Zn**, or Pb** as the cofactor (Breaker & Joyce, 1994, 1995).
Only the sequence and structure of the Pb**-dependent and
the Mg>*-dependent deoxyribozymes were reported (FIGS.
6A and 6B). Other examples of metal-specific RNA/DNA
enzymes obtained through in vitro selection include a Ph**-
specific RNA-cleaving ribozyme (called leadzyme) (Pan &
Uhlenbeck, 1992), a Cu**-specific DNA cleaving deoxyri-
bozyme (Carmi et al., 1996), and a DNA ligase active in Zn**
and Cu** (Cuonod & Szostak, 1995).

Often nucleic acid enzymes developed for a specific metal
ion by in vitro selection will have activity in the presence of
other metal ions. For example, 17E deoxyribozyme was
developed by in vitro selection for activity in the presence of
Zn**. Surprisingly, the enzyme showed greater activity in the
presence of Pb>* than Zn>*. Thus, although produced in a
process looking for Zn**-related activity, 17E may be used as
a sensitive and selective sensor of Pb>*.

To produce nucleic acid enzymes with greater selectivity, a
negative selection step may be included in the process. For
Example, Pb**-specific deoxyribozymes may be isolated
using a similar selection scheme as for the selection of Co**-
and Zn**-dependent DNA enzymes described in Fxample 1.
In order to obtain deoxyribozymes with high specificity for
Pb**, negative-selections may be carried out in addition to the
positive selections in the presence of Pb>*.

For negative selection, the DNA pool is selected against a
“metal soup”, which contains various divalent metal ions (e.g.
Mg**, Ca®*, Mn?*, Zn**, Cd**, Co**, Cu™, efc.). Those
sequences that undergo self-cleavage in the presence of diva-
lent metal ions other than Pb®* are then washed off the col-
umn. The remaining sequences are further selected with Pb*
as the cofactor. Pb**-dependent deoxyribozymes with differ-
ent affinities for Pb** can be obtained by controlling the
reaction stringency (Ph** concentration).

Fluorophores and Quenchers

Any chemical reaction that leads to a fluorescent or chemi-
luminescent signal may be used in the compositions and
methods of the present invention. In preferred embodiments,
fluorophores are used to measure enzymatic activity and,
thus, detect the presence of a particular ion. Essentially any
fluorophore may be used, including BODIPY, fluoroscein,
fluoroscein substitutes (Alexa Fluor dye, Oregon green dye),
long wavelength dyes, and UV-excited fluorophores. These
and additional fluorophores are listed in Fluorescent and
Luminescent Probes for Biological Activity, A Practical
Guide to Technology for Quantitative Real-Time Analysis,
Second Ed. W. T. Mason, ed. Academic Press (1999) (incor-
porated herein by reference). In preferred embodiments, the
fluorophore is 6-carboxyfluorescein (FAM). FAM has an
excitation range of 460-500 nm.

A quencher is a molecule that absorbs the energy of the
excited fluorophore. Close proximity of a fluorophore and a
quencher allow for the energy to be transferred from the
fluorophore to the quencher. By absorbing this energy, the
quencher prevents the fluorophore from releasing the energy
in the form of a photon, thereby preventing fluorescence.

Quenchers may be categorized as non-fluorescent and
fluorescent quenchers. Non-fluorescent quenchers are
capable of quenching the fluorescence of a wide variety of
fluorophores. Generally, non-fluorescent quenchers absorb
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energy from the fluorophore and release the energy as heat.
Examples of non-fluorescent quenchers include 4-(4'-dim-
ethylaminophenylazo)benzoic acid) (DABCYL), QSY-7,
and QSY-33.

Fluorescent quenchers tend to be specific to fluorophores
that emit at a specific wavelength range. Fluorescent quench-
ers often involve fluorescence resonance energy transfer
(FRET). In many instances the fluorescent quencher mol-
ecule is also a fluorophore. In such cases, close proximity of
the fluorophore and fluorescent quencher is indicated by a
decrease in fluorescence of the “fluorophore” and an increase
in fluorescence of the fluorescent quencher. Commonly used
fluorescent  fluorophore pairs  (fluorophore/fluorescent
quencher) include  fluorescein/tetramethylrhodamine,
TAEDANS/fluorescein, fluorescein/fluorescein, and
BODIPY FL/BODIPY FL.

When choosing a fluorophore, a quencher, or where to
position these molecules, it is important to consider, and
preferably to test, the effect of the fluorophore or quencher on
the enzymatic activity of the nucleic acid enzyme. Also, it is
preferable that the fluorophore display a high quantum yield
and energy transfer efficiency. Long-wavelength (excitation
and emission) fluorophores are preferred because of less
interference from other absorbing species. The fluorophore
should also be less sensitive to pH change or to non-specific
quenching by metal ions or other species.

Methods and devices for detecting fluorescence are well
developed. Essentially any instrument or method for detect-
ing fluorescent emissions may be used. For example, WO
99/27351 (incorporated herein in its entirety) describes a
monolithic bioelectrical device comprising a bioreporter and
an optical application specific integrated circuit (OASIC).
The device allows remote sampling for the presence of sub-
stances in solution.

Furthermore, the fluorescence may be measured by a num-
ber of different modes. Examples include fluorescence inten-
sity, lifetime, and anisotropy in either steady state or kinetic
rate change modes (Lakowicz, 1999).

Sometimes other factors in a solution such as pH, salt
concentration or ionic strength, or viscosity will have an
effect on fluorescence, and may even affect the hybridization
of the substrate and enzyme. Therefore, in preferred methods,
controls are run to determine if the solution itself, regardless
of enzymatic activity, is altering the fluorescence. Such con-
trols include the use of non-cleavable substrates and or sub-
strate without the presence of enzyme.

Biosensors

A biosensor is a device which is capable of detecting target
analytes by utilizing biological reactions. The biosensor of
the present invention is quite different from a bioaffinity
sensor, which relies on specific binding and recognition
events of target DNA sequences, because a biosensor takes
advantage of its own catalytic activities, caused by a target
analyte or ion.

For example, described herein are biosensors which are
nucleic acid enzymes that are dependent on the presence of a
specific ion for activity. Using fluorophores or fluorophore/
quencher labeling, it is possible to measure enzymatic activ-
ity, even in real time. These qualities make the compositions
of the present invention excellent for use in biosensors, which
are useful for detecting the presence of a target ion in the
presence of other ions.

A key to biosensor detection methods is to minimize back-
ground fluorescence signals by maintaining the fluorophore
and quenchers in close proximity in the absence of cleavage.
Therefore the fluorophore could be linked essentially any-
where on the substrate and quenchers could be linked essen-
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tially anywhere on the substrate and enzyme, as long as the
fluorophore is in close proximity to at least one of the quench-
ers prior to cleavage. By close proximity, it is meant that they
are situated such that the quencher is able to function (i.e.,
where efficiency of energy transfer between the quencher and
the fluorophore is 50% or more), and preferably are less than
a distance of 20 nucleic acid bases or 70 angstroms. For
example, a fluorophore may be linked to one end of the
substrate in the substrate-enzyme duplex, while a quencher is
linked to the opposite end of the substrate and a second
quencher is linked to the end of the enzyme which hybridizes
with the fluorophore labeled end of the substrate. (FIG. 13A)
This configuration provides the advantage of continually
keeping the fluorophore, in the absence of cleavage, proximal
to a quencher, regardless of hybridization of the substrate-
enzyme duplex, thereby eliminating nearly all background
fluorescence signals. In the presence of the target ion the
substrate is cleaved and the product disassociates from the
enzyme. Dissociation of the product removes the fluorophore
from the vicinity of the quenchers, leading to an increase in
fluorescence (F1G. 8).

It should be appreciated that the design of the present
invention relies on the polymer end-to-end distance distribu-
tion. Therefore it may not be general for long strand poly-
mers. However, in such long strand polymers, the quencher
may be placed in the middle of the polymer or any other
appropriate position, thereby eliminating the problem of
being too distant.

It should also be appreciated that FRET can be used for
sensing, detecting, identifying or quantifying a target ion in
the present invention by using a fluorescent quencher instead
of a non-fluorescent quencher.

Inlight of the present disclosure, one of ordinary skill in the
art would know how to modify the nucleic acid biosensors to
include nucleic acid enzymes. For example, a biosensor of the
present invention may comprise a nucleic acid enzyme
labeled with a fluorescent quencher, a substrate labeled with
a fluorophore and a second fluorescent quencher, and a device
to detect fluorescence such as a fluorescence microscope or a
fluorometer. In a method using this embodiment, the enzyme
and substrate are contacted with a sample suspected of con-
taining an ion to which the enzyme is sensitive. Fluorescence
is measured and compared to a control wherein the ion is
absent. Change in fluorescence is indicative of the presence of
the ion.

Of course, many variants of even this simple embodiment
are included within the scope of the invention. Such variants
include placing the enzyme, substrate, and sample in the well
of a microtiter plate and measuring fluorescence with a
microtiter plate reader. In another variation, the enzyme is
attached to a solid support. When the enzyme is attached to a
solid support, it is preferable that a linker is used. An exem-
plary linking system is biotin/streptavidin. For example, the
biotin molecule may be linked to the enzyme and a plate may
be coated with streptavidin. When linking an enzyme to a
solid support, it is important to determine the effect of linkage
on the enzymatic activity of the enzyme.

In an alternative embodiment, the solid support may be a
bead and fluorescence measured using a flow cytometer. In
embodiments having the enzyme attached to a solid support,
the biosensor may be reusable. Old substrate and sample is
removed, leaving the enzyme in place. New substrate and
sample may then be added.

In another embodiment, the nucleic acid enzyme may be
used in conjunction with fiber-optics (Lee & Walt 2000). The
nucleic acid enzyme may be immobilized on the surface of
silica microspheres and distributed in microwells on the distal
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tip of an imaging fiber. The imaging fiber may then be coupled
to a epifluorescence microscope system.

In certain embodiments, the biosensor will comprise an
array of nucleic acid enzymes. The arrays of the present
invention provide for the simultaneous screening of a variety
of ions by nucleic acid enzymes. The array may contain as
little as 2 or as many as 10,000 different nucleic acid enzymes.
Of course, any integer in between may be used. Preferably,
each individual nucleic acid enzyme has a measurable differ-
ence in specificity or affinity for at least one ion compared to
at least one other nucleic acid enzyme within the array.

In preferred embodiments, the array is a high-density array
like those used in DNA-chip technologies. Methods of form-
ing high density arrays of nucleic acids with a minimal num-
ber of synthetic steps are known (U.S. Pat. No. 6,040,138).
The nucleic acid array can be synthesized on a solid support
by a variety of methods, including light-directed chemical
coupling, and mechanically directed coupling (U.S. Pat. No.
5,143,854; WO 90/15070; WO 92/10092; WO 93/09668).
Using this approach, one heterogenous array of polymers is
converted, through simultaneous coupling at a number of
reaction sites, into a different heterogenous array.

The light-directed combinatorial synthesis of nucleic acid
arrays on a glass surface uses automated phosphoramidite
chemistry and chip masking techniques. In one specific
implementation, a glass surface is derivatized with a silane
reagent containing a functional group, e.g., a hydroxyl or
amine group blocked by a photolabile protecting group. Pho-
tolysis through a photolithogaphic mask is used selectively to
expose functional groups which are then ready to react with
incoming 5'-photoprotected nucleoside phosphoramidites.
The phosphoramidites react only with those sites which are
illuminated (and thus exposed by removal of the photolabile
blocking group). Thus, the phosphoramidites only add to
those areas selectively exposed from the preceding step.
These steps are repeated until the desired array of sequences
have been synthesized on the solid surface. Combinatorial
synthesis of different nucleic acid analogues at different loca-
tions on the array is determined by the pattern of illumination
during synthesis and the order of addition of coupling
reagents.

In the event that a PNA is used in the procedure, it is
generally inappropriate to use phosphoramidite chemistry to
perform the synthetic steps, since the monomers do not attach
to one another via a phosphate linkage. Instead, peptide syn-
thetic methods are substituted (U.S. Pat. No. 5,143,854).

In addition to the foregoing, additional methods which can
be used to generate an array of nucleic acids on a single solid
support are known (For example, WO 93/09668). In these
methods, reagents are delivered to the solid support by either
(1) flowing within a channel defined on predefined regions or
(2) “spotting” on predefined regions. However, other
approaches, as well as combinations of spotting and flowing,
may be employed. In each instance, certain activated regions
of the solid support are mechanically separated from other
regions when the monomer solutions are delivered to the
various reaction sites.

A typical “flow channel” method applied to the nucleic
acid enzyme arrays of the present invention can generally be
described as follows. Diverse nucleic acid sequences are syn-
thesized at selected regions of a solid support by forming flow
channels on a surface of the solid support through which
appropriate reagents flow orin which appropriate reagents are
placed. For example, assume amonomer “A” is to be bound to
the solid support in a first group of selected regions. If nec-
essary, all or part of the surface of the solid support in all or a
part of the selected regions is activated for binding by, for
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example, flowing appropriate reagents through all or some of
the channels, or by washing the entire solid support with
appropriate reagents. After placement of a channel block on
the surface of the solid support a reagent having the monomer
A flows through or is placed in all or some of the channel(s).
The channels provide fluid contact to the first selected
regions, thereby binding the monomer A on the solid support
directly or indirectly (via a spacer) in the first selected
regions.

Thereafter, a monomer B is coupled to second selected
regions, some of which may be included among the first
selected regions. The second selected regions will be in fluid
contact with a second flow channel(s) through translation,
rotation, orreplacement of the channel block on the surface of
the solid support; through opening or closing a selected valve;
or through deposition of a layer of chemical or photoresist. If
necessary, a step is performed for activating at least the sec-
ond regions. Thereafter, the monomer B is flowed through or
placed in the second flow channel(s), binding monomer B at
the second selected locations. In this particular example, the
resulting sequences bound to the solid support at this stage of
processing will be, for example, A, B, and AB. The process is
repeated to form a vast array of nucleic acid enzymes of
desired length and sequence at known locations on the solid
support.

After the solid support is activated, monomer A can be
flowed through some of the channels, monomer B can be
flowed through other channels, a monomer C can be flowed
through still other channels, etc. In this manner, many or all of
the reaction regions are reacted with a monomer before the
channel block must be moved or the solid support must be
washed and/or reactivated. By making use of many or all of
the available reaction regions simultaneously, the number of
washing and activation steps can be minimized.

There are alternative methods of forming channels or oth-
erwise protecting a portion of the surface of the solid support.
For example, according to some embodiments, a protective
coating such as a hydrophilic or hydrophobic coating (de-
pending upon the nature of the solvent) is utilized over por-
tions of the solid support to be protected, sometimes in com-
bination with materials that facilitate wetting by the reactant
solution in other regions. In this manner, the flowing solutions
are further prevented from passing outside of their designated
flow paths.

The “spotting” methods of preparing nucleic acid arrays
can be implemented in much the same manner as the flow
channel methods. For example, a monomer A can be deliv-
ered to and coupled with a first group of reaction regions
which have been appropriately activated. Thereafter, a mono-
mer B can be delivered to and reacted with a second group of
activated reaction regions. Unlike the flow channel embodi-
ments described above, reactants are delivered by directly
depositing (rather than flowing) relatively small quantities of
them in selected regions. In some steps, of course, the entire
solid support surface can be sprayed or otherwise coated with
asolution. In preferred embodiments, a dispenser moves from
region to region, depositing only as much monomer as nec-
essary at each stop. Typical dispensers include a micropipette
to deliver the monomer solution to the solid support and a
robotic system to control the position of the micropipette with
respect to the solid support. In other embodiments, the dis-
penser includes a series of tubes, a manifold, an array of
pipettes, or the like so that various reagents can be delivered
to the reaction regions simultaneously.

The biosensors of the array may be selective for a single
type of ion or each biosensor may be selective for a different
type of ion. The substrates for the nucleic acid enzymes of the
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array may be labeled with a single fluorophore or with differ-
ent fluorophores. For example, a biosensor, selective for the
presence of Pb>*, may be designed to emit a certain fluores-
cence, such as FAM, in the presence of Pb®*. An array may be
covered with this biosensor. Another example would include
an array comprising several biosensors, where one s selective
for the presence Zn**, another is selective for the presence of
Pb>*, and a third biosensor is selective for the presence of
Co*. Each of these three biosensors of the array may be
designed to emit a single type of fluorescence, such as FAM,
in the presence of each respective specific ion or each of these
three biosensors may be designed to emit a different type of
fluorescence in the presence of each respective specific ion.
Thus depending on design of the biosensor, the array may: (1)
generally report a single product, indicating the presence or
concentration of a single specific ion type: (2) generally
report a single product, indicating the presence of numerous
different specific ion types; or (3) specifically report different
products, indicating the presence of numerous different spe-
cific ion types.

Methods of detecting fluorescent signals on a DNA chip
are well known to those of skill in the art. In a preferred
embodiment, the nucleic acid enzyme array is excited with a
light source at the excitation wavelength of the particular
fluorescent label and the resulting fluorescence at the emis-
sion wavelength is detected. In a particularly preferred
embodiment, the excitation light source is a laser appropriate
for the excitation of the fluorescent label.

A confocal microscope may be automated with a com-
puter-controlled stage to automatically scan the entire high
density array. Similarly, the microscope may be equipped
with a phototransducer (e.g., a photomultiplier, a solid state
array, a ced camera, etc.) attached to an automated data acqui-
sition system to automatically record the fluorescence signal
produced by each nucleic acid enzyme on the array. Such
automated systems are described at length in U.S. Pat. No.
5,143,854 and PCT application 20 92/10092.

EXAMPLES

The following examples are included to demonstrate
embodiments of the invention. It should be appreciated by
those of skill in the art that the techniques disclosed in the
examples that follow represent techniques discovered by the
inventors to function well in the practice of the invention, and
thus can be considered to constitute preferred modes for its
practice. However, those of skill in the art should, in light of
the present disclosure, appreciate that many changes can be
made in the specific embodiments that are disclosed and still
obtain like or similar results without departing from the spirit
and scope of the invention.

Example 1

In vitro Selection of a Ion-Dependent
Deoxyribozyme

This example demonstrates a method of creating nucleic
acid enzymes that are dependent on the presence of an ion for
activity. More specifically, use of a partially random DNA
library to obtain deoxyribozymes that cleave RNA in the
presence of Zn** or Co** is shown.
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Materials and Methods Used in this Example

Oligonucleotides

DNA oligonucleotides were purchased from Integrated
DNA Technologies Inc. Sequences of the random DNA tem-
plate and the primers (P1, P2 and P3) used in PCR amplifi-
cations are listed below:

P1:

5'-GTGCCAAGCTTACCG-3"' (SEQ ID NO: 3)

(SEQ ID NO: 4)

P2:
5'-CTGCAGAATTCTAATACGACTCACTATAGGAAGAGATGGCGAC- 3 !
P3:
5'-GGGACGAATTCTAATACGACTCACTATrA-3'  (SEQ ID NO: 5)
Template for Random DNA Pool:

(SEQ ID NO: 6)

5'GTGCCAAGCTTACCGTCAC-N40-GAGATCTCGCCATCTCTTCCT
ATAGTGAGTCGTATTAG-3"'

Primer P1b and P3b are the 5'-biotinylated version of prim-
ers P1 and P3. Primer Pla and P3a were prepared by 5-la-
beling P1 and P3 with [[1->*P] ATP (Amersham) and T4
polynucleotide kinase (Gibco). The DNA/RNA chimeric sub-
strate (17DS) for trans-cleavage assays has the sequence
5'-ACTCACTATrAGGAAGAGATG-3' (SEQ ID NO:2),
where rA denotes a single ribonucleotide. The all-RNA sub-
strate (17RS) with the same sequence was purchased from
Dharmacon Research Inc. The trans-cleaving deoxyri-
bozyme 17E has the sequence 5'-CATCTCTTCTCCGAGC-
CGGTCGAAATAGTGAGT-3' (SEQ ID NO:1). The deox-
yribozyme named 17E1 is a variant of 17E with the sequence
S-CATCTCTTTTGTCAGCGACTCGAAATAGTGA GT-3'
(SEQ ID NO:7). All oligonucleotides were purified using
denaturing polyacrylamide gel electrophoresis and desalted
with the SepPak nucleic acid purification cartridges (Waters)
before use.

Preparation of Random DNA Pool

The initial pool for DNA selection was prepared by tem-
plate-directed extension followed by PCR amplification. The
extension was carried out with 200 pmol of DNA template
containing a 40-nucleotide random sequence region, and 400
pmol of primer P3b in 20x100 pul reaction mixtures for four
thermal-cycles (1 min at 92° C., 1 min at 52° C., and 1 min at
72° C.). Reaction buffer also included 0.05 U/ul Taq poly-
merase (Gibco), 1.5 mM MgCl,, 50 mM KCl, 10 mM Tris-
HCI (pH 8.3 at 25° C.), 0.01% gelatin and 0.2 mM of each
dNTP. Subsequently, 1 nmol each of P1 and P3b were added
to the extension product to allow four more cycles of PCR
amplification. The products were precipitated with ethanol
and dissolved in 0.5 ml of buffer A, which contains 50 mM
HEPES (pH 7.0), 500 mM (for Zn-DNA selection) or 1 M (for
Co-DNA selection) NaCl. About 20 uM EDTA was also
added to the buffer to chelate trace amount of divalent metal
ion contaminants.

In Vitro Selection

The random DNA pool was immobilized on a NeutrAvidin
column (Pierce) by incubating with the column materials for
30 minutes. The mixture was gently vortex-mixed a few times
during the incubation. The unbound DNA strands were eluted
with at least 5x100 pl of buffer A. The non-biotinylated
strands of immobilized DNA were washed off the column
with 5x100 ul of freshly prepared 0.2 M NaOH and 20 uM
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EDTA. The column was then neutralized with 5x100 pl of
buffer A. The cleavage reaction was carried out by incubating
the immobilized single-stranded DNA containing the single
ribonucleotide (rA) with 3%20 pl of reaction buffer (buffer A
plus 1 mM ZnCl, or CoCl,) over 1 h. The eluted DNA mol-
ecules were pooled and precipitated with ethanol. A fraction
of the selected DNA was amplified in 100 pl PCR reaction
with 40 pmol each of primers P1 and P2 over 10-20 thermal
cycles. One tenth of the PCR product was further amplified
for six cycles with 50 pmol of primers P1 and P3b. The final
PCR product was ethanol precipitated and used to initiate the
next round of selection. During the selection of Zn(II)-depen-
dent deoxyribozymes (called Zn-DNA hereafter), the con-
centration of ZnCl, was kept constant at 100 uM in the reac-
tion buffer for the following rounds of selection. Reaction
time was gradually decreased from 1 h to 30 s within 12
rounds of selection. For the selection of Co(Il)-dependent
deoxyribozymes (called Co-DNA hereafter), the concentra-
tion of CoCl, was gradually decreased from 1 mM to 100 pM
and the reaction time from 1 h to 1 min within 10 rounds of
selection. The twelfth generation of selectively amplified Zn-
DNA and the tenth generation of Co-DNA were cloned using
TA-TOPO Cloning Kit (Invitrogen) and sequenced with T7
Sequenase 2.0 Quick-denatured Plasmid Sequencing Kit
(Amersham).
Reselection

Based on the sequence of class 1 Zn-DNA or Co-DNA,
partially degenerate DNA template libraries for reselection
were synthesized (Integrated DNA Technology Inc.) with
20% degeneracy at the N40 region. In other words, during the
oligonucleotide synthesis of the N40 region, the wild type
sequence was introduced at a probability of 80% at each
position, while the other three nucleotides each occurred at a
probability of 6.67%. The reselection pool was prepared with
10 pmol of template and 100 pmol of primers P1 and P3b
using the same protocol previously described. With 10 pmol
(number of molecules S—6x10'%) of partially randomized
template, the statistic parameters of the DNA library used for
reselection were calculated based on the following equations.

Plkn, d)=[nV(n-k):k! Jd*(1-dy™* D

NE)=[rY (n-k)k! 3 (03]

CloJy=SP e, dYN(E)

P(k,n,d) is the probability of having k mutations within n
(number of randomized positions, n=40) nucleotide positions
that have been randomized at a degeneracy of d. N(k) is the
number of distinct sequences that have k mutations with
respect to the prototype sequence. C(n,k) is the number of
copies for each sequence that has k mutations. The reselection
pool was expected to contain the wild type sequence, all
possible sequences with 1-8 point mutations, and a sampling
of the sequences with >8 point mutations. More than half of
the population contains =8 point-mutations. The protocol for
reselection was the same as the primary selection, except that
the reaction time was decreased from 20 min to 1 min and the
concentration of ZnCl, or CoCl, was decreased from 20 uM
to 5 uM over six generations. The sixth generation of rese-
lected Zn- or Co-DNA were cloned and sequenced as previ-
ously described.

Kinetic Assays of the Reselected Cis-Cleaving DNA

The 522P-labeled precursor DNA for cis-cleavage assay
was prepared by PCR-amplification of the selected DNA
population orthe cloned DNA plasmid with primer 1b and 3a.
The double-stranded product was immobilized on a NeutrA-
vidin column through the biotin moiety on primer P1b. The
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catalytic strand of DNA was eluted off the column with 3x20
ul freshly prepared 0.2 N NaOH and neutralized with 8 pl of
3 M sodium acetate (pH 5.3) in the presence of 50 pug/ml
bovine serum albumin (Sigma). Following ethanol precipita-
tion, the single-stranded DNA was purified on an 8% dena-
turing polyacrylamide gel and desalted with SepPak nucleic
acid purification cartridge. Bovine serum albumin (50 pg/ml)
was added to the gel-soaking buffer (0.2 M NaCl, 20 uM
EDTA, 10 mM Tris-HCI, pH 7.5) to prevent the DNA from
adhering to the tube. The concentration of the DNA was
determined by scintillation counting the radioactivity.

The precursor DNA was dissolved in buffer A and incu-
bated at room temperature for 10 min before CoCl, or ZnCl,
was added. The reaction was stopped with 50 mM EDTA,
90% formamide and 0.02% bromophenol blue. Reaction
products were separated on an 8% denaturing polyacrylamide
gel and quantified with a Molecular Dynamic phosphorim-
ager.

In Vitro Selection of Zn(ID)- or Co(II)-Dependent Deoxyri-
bozymes

The DNA molecules capable of cleaving an RNA bond in
the presence of Co®* or Zn** were obtained through in vitro
selection. The initial DNA library for selection contains
~10"* out of the possible 10** (=4*°) DNA sequences. These
molecules consist of a random sequence domain of 40 nucle-
otides flanked by two conserved primer-binding regions. The
sequence of the conserved region was designed in such a way
that they could form two potential substrate-binding regions
(FIG. 1A). A ribonucleic adenosine was embedded in the
S'-conserved sequence region and was intended to be the
cleavage site, since an RNA bond is more susceptible than a
DNA bond toward hydrolytic cleavage. The intrinsic half-life
of the phosphodiester linkage in RNA at pH 7 and 25° C. is
estimated to be 1,000 years. The corresponding value for
DNA is 200 million years.

The DNA pool was immobilized on a NeutrAvidin column
through the biotin moiety on the 5' terminus of the DNA.
Biotin and Avidin bind strongly with an association constant
of K =10"° M. The sequences that underwent self-cleavage
in the presence of Co®* or Zn>* were eluted off the column,
amplified and used to seed the next round of selection (FIG.
1B). The selection stringency was increased during the selec-
tion process with shorter reaction time and less available
divalent metal ions. The activity of the selected Zn-DNA
gradually increased until the twelfth generation and declined
thereafter, while the highest activity was achieved with the
tenth generation of Co-DNA. Therefore the twelfth genera-
tion of Zn-DNA and the tenth generation of Co-DNA were
cloned and sequenced. The cloned sequences can be divided
into different classes based on sequence similarity (FIG. 2
and FIG. 3).

Individual sequences of the cloned Zn-DNA and Co-DNA
were randomly chosen and sampled for activity. Under the
selection conditions (100 pM Zn**, 500 mM NaCl, 50 mM
HEPES, pH 7.0, 25° C.), the observed rate constants of Zn-
DNAs from sequence-classes I and 11 were 0.1-0.2 min™*,
while class III sequences were less active, with k . around
0.02 min~'. The cleavage rate of the initial pool was 2x10~’
min~". Therefore, a 10°-10° fold increase in cleavage rate has
been achieve for Zn-DNA selection. The cleavage rates of all
the randomly picked Co-DNA sequences were <0.02 min™"
under the conditions for Co-DNA selections (100 uM Co?*, 1
M NaCl, 50 mM HEPES, pH 7.0, 25° C.). Interestingly, even
in the buffer (1 M NaCl, 50 mM HEPES, pH 7.0) alone, the
class II Co-DNA exhibited similar activity as in the presence
of 100 uM Co®* or Zn**.
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Clone #5 of Zn-DNA (Zn-5) and clone #18 of Co-DNA
(Co-18) showed relatively high activity, as well as high fre-
quency of occurrence, within their lineages. The k_,, were
0.17 min™ for Zn-5 (in 100 uM Zn**) and 0.02 min™" for
Co-18 (in 100 uM Co>*). The sequences of Zn-5 and Co-18
were partially randomized (see Material and Methods for
details) and subjected to reselection in order to further
improve the reactivity and metal-binding affinity, and to
explore the sequence requirement of the conserved catalytic
motif. Based on equations (1)-(3), the reselection pool was
expected to contain the wild type sequence, all possible
sequences with 1-8 point mutations, and a sampling of the
sequences with >8 point mutations. More than half of the
population should contain 28 point mutations. Six rounds of
reselection were carried out with 5-20 uM Zn** or Co**,
however the activity of the reselected DNA was similar to the
activity of the wild type sequences. Sequencing of the Zn-
DNA from both the initial selection and reselection revealed
a highly conserved sequence region. Therefore the lack of
activity improvement after reselection likely reflects a
sequence pool dominated by a few highly reactive sequences.
Sequence Alignment and Structure Analysis of Zn-DNA

The sequences of thirty individual clones of initially
selected Zn-DNA can be divided into three major classes
based on sequence similarity. Differences among members of
each class were limited to a few point mutations (FIG. 2). A
highly conserved sequence region of 20 nt,
STX X, X,AGCY Y, Y, TCGAAATAGT-3'  (SEQ ID
NO:8) (Region-20 nt), was observed in all but one sequence
albeit at different locations. The sequences of 5'-X,X,X;-3'
and 3'-Y,Y,Y,-5' are complimentary and covariant, indicat-
ing that they form base pair with each other:

5-X X3

3Y,Y, Y5

The secondary structures of the sequenced Zn-DNA were
predicted using Zuker's DNA mfold program (see http://
mfold.wustl.edu/-folder/dna/form1.cgi) through minimiza-
tion of folding energy. The most stable structures predicted
for those containing Region-20 nt all contained a similar
structure motif. This common motif consists of a pistol-
shaped three-way helical junction formed by a 3 bp hairpin,
an 8 bp hairpin and a double helix linking to the rest of the
molecule. The 3 bp hairpin and its adjacent single-stranded
regions are part of the Region-20 nt. The ribonucleic adenos-
ine is unpaired and positioned opposite of the 3 bp hairpin.

After reselection, twenty-eight Zn-DNA clones were
sequenced (FIG. 4). When compared with the parental wild
type sequence (class I Zn-DNA), the reselected Zn-DNA
contained point mutations mostly outside of Region-20 nt.
About one third of these sequences have a T—A mutation at
position 73, converting the T-T mismatch in the wild type
sequence to a Watson-Crick base pair. In one fourth of the
reselected DNAs, the 5 nucleotide single-stranded bulge of
the three-way junction has the sequence 5'-ACGAA-3', cor-
responding to 5-TCGAA-3" in the wild type. Clone # 17
(named ZnR17) of the reselected Zn-DNA is most active
under selection conditions (FIG. 4). Structural analysis of
ZnR17 revealed two completed base-paired helices in the
three-way junction. Therefore, it was engineered into a trans-
cleaving deoxyribozyme by deleting the sequences outside of
the three-way junction and the loop of the 8 bp hairpin. Such
truncation resulted in two individual stands, which hybridize
with each other through two 9-10 bp helices. The strand
containing the single ribonucleotide residue (rA) is consid-
ered as the substrate (named 17DS), while the other strand as
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the enzyme (named 17E). The catalytic core, which was
highly conserved during selection, consists of a 3 bp hairpin
and a 5 nt single-stranded bulge (FIG. 5).

Although ZnR17 was selected in Zn**, it does not contain
structure motifs that were discovered in several Zn(IT)-bind-
ing RNA molecules (Ciesiolka et al., 1995; Ciesiolka &
Yarus, 1996). However, the conserved region of ZnR17 is
very similar to that of the 8-17 deoxyribozymes selected by
Santoro and Joyce using Mg?* as cofactor (Santoro & Joyce,
1997). The unpaired bulge region in the 8-17 DNA enzyme
has the sequence 5'-WCGR-3' or 5'-WCGAA-3' (W=Aor T,
R=A or G). The highest activity was observed with the
sequence containing 5'-TCGAA-3'. Among the Zn(1T)-de-
pendent deoxyribozymes obtained after reselection, 85% of
them fell within the 5'-WCGAA-3' regime (W=A or T). How-
ever, the sequence of the two double helices flanking the
catalytic core is different between the 8-17 (FIG. 6D) and the
17E deoxyribozymes (FIG. 6F), reflecting their different
designs of the selection pool. Similar sequence motifwas also
observed in an RNA-cleaving deoxyribozyme (named Mg5)
selected by Faulhammer and Famulok using 50 mM histidine
and 0.5 mM Mg™* as cofactors (Faulhammer & Famulok,
1997). The homologous region in 31 out of the 44 sequenced
clones had the sequence 5'-TX, X, X;AGCY Y, Y;ACGAA-
3'(SEQ ID NO:9), falling within the WCGAA-3' regime. The
authors predicted a secondary structure different from the
8-17 or 17E motif based on chemical modification analysis.
However, a structure containing a three-way junction similar
to that of the 17F and 8-17 deoxyribozymes is consistent with
the chemical mapping results.

Sequence Alignment and Structure Analysis of Co-DNA

The sequences of the cis-cleaving deoxyribozyme selected
in the presence of Co®* are more diverse than the Zn-DNA.
They can be divided into three major classes based on
sequence similarity (FIG. 3). There is no consensus sequence
region among different classes. The secondary structure of
each sequence class of Co-DNA was predicted with DNA
mfold program. The minimal conserved sequence motif of
class Co-DNA includes a bulged duplex. The cleavage site is
within the 13 nt single-stranded bulge. A 4 bp hairpin is also
highly conserved and linked to the bulged duplex through 3
unpaired nucleotides. The folding of the sequences outside of
this minimal motif was highly variable and resulted in struc-
tures with a wide range of stabilization energy.

The class 11 Co-DNA contains a sequence region (5'-AC-
CCAAGAAGGGGTG-3' (SEQ ID NO:10)) that was also
found in an RNA-cleaving deoxyribozyme (termed G3)
selected by Geyer and Sen (1997) (FIGS. 7A and 7B). The
minimal motif predicted for class I Co-DNA shows similar-
ity to that proposed for the G3 deoxyribozyme as well. The
G3 deoxyribozyme was believed to be fully active in the
absence of any divalent metal ions. Copious use of divalent
metal chelating agents, such as EDTA, and accurate trace-
metal analysis of the reaction solutions were used to rule out
the need ofthe G3 deoxyribozyme for contaminating levels of
divalent metals. As mentioned earlier, the activity of class II
Co-DNA was the same in buffer alone or with added Co** or
Zn**, suggesting that this class of Co-DNA most likely con-
tain the divalent metal-independent structure motif.

Effect of Metal Ions on the Activity of the Cis-Cleaving
Deoxyribozymes

7ZnR17 and Co-18 were examined for their activity depen-
dence on monovalent ions and divalent metal ions other than
Zn** and Co**. In the presence of 1 mM EDTA and without
added Zn** ions, no cleavage was observed with ZnR17 even
after two days, strongly suggesting that divalent metal ions
are required for the activity of ZnR17. Although the cis-
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cleaving Zn-DNA was selected in the presence of 500 mM
NaCl, NaCl was actually inhibitory to enzymatic activity.
With 0-2 M NaCl added to the reaction buffer (100 uM Zn**,
50mM HEPES, pH 7.0), k. decreased with increasing NaCl
concentration. The deleterious effect of NaCl was also mani-
fested by lowered final percentage of cleavage products. For
instance, only 50% of ZnR17 could be cleaved in the presence
of 2 M NaCl even after long incubation times, while >95% of
the DNA was cleavable in the absence of extra NaCl. Con-
trary to the Zn-DNA, the activity of Co-18 relies on NaCl and
no cleavage was observed in the absence of NaCl. With 1 M
NaCl, 8% of Co-18 molecules were cleaved within 5 min,
while <0.2% were cleaved in the absence of extra NaCl.

Although the deoxyribozymes were selected using either
zine or cobalt as cofactor, they are also active in other transi-
tion metal ions and in Pb**. The cleavage efficiency of ZnR17
followed the trend of Pb**>Zn**>Mn**~Co**~Ca**>Cd**
>>Ni**>Mg>*. It is noteworthy that the cleavage rate in Ca**
was niuch higher than in Mg*, a similar trend was observed
with the Mg5 deoxyribozyme. The order of Co-18 activity is
as  follow:  Zn*>Pb**~Co**>Ni**>Cd**~Mn**>Mg**
~Ca®*. In general, both ZnR17 and Co-18 are more active in
transition metal ions than in alkaline-earth metals, and higher
activities were achieved with Pb**, Co®* and Zn**. The pref-
erence of the selected deoxyribozymes for Co** and Zn**
reflected their selection criteria. A similar trend (Pb**>Zn**
>Mn**>Mg?*) was also observed with all four RNA-cleaving
deoxyribozymes selected in parallel by Breaker and Joyce
using one of the four metal jons (Pb>*, Zn**, Mn**, Mg**) as
cofactor (1995). The proposed secondary structures of the
deoxyribozymes selected in Pb>* and Mg>" have been
reported (Breaker & Joyce, 1994, 1995). No structure simi-
larity was observed between ZnR17 and those RNA-cleaving
deoxyribozymes.

SUMMARY

Using in vitro selection technique, several groups of RNA-
cleaving deoxyribozymes were isolated using Zn** or Co** as
cofactor. No common sequence or structural features were
observed between the Co(Il)-dependent and the Zn(II)-de-
pendent deoxyribozymes, in spite of the chemical similarities
between these two transition metal ions. The deoxyribozymes
selected in Zn>* share a common motif with the 8-17 and the
Mg5 deoxyribozymes isolated under different conditions,
including the use of different cofactors. Both the Co-DNA
and the Zn-DNA exhibited higher activity in the presence of
transition metal ions than in alkaline earth metal ions, which
are the most commonly adopted metal cofactors by naturally
occurring ribozymes.

Example 2

Deoxyribozyme as a Biosensor for Pb** Detection

This Example describes a fluorescence-based biosensor for
the detection of Pb**. The biosensor utilizes a deoxyribozyme
developed in Example 1 (termed 17E) combined with fluo-
rescence technology. Because catalytic activity, and therefore
fluorescence, is dependent on Pb**, the biosensor provides
real-time, quantitative, and sensitive measurements of Pb?
concentrations.
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Materials and Methods Used in this Example

Oligonucleotides

The oligonucleotides were purchased from Integrated
DNA Technology Inc. The cleavable substrate (Rh-17DS-
FD) is a DNA/RNA chimera with the sequence 5'-ACTCAC-
TATrAGGAAGAGATG-3' (SEQ ID NO:2), in which rA rep-
resents a ribonucleotide adenosine. This RNA base is
replaced with a DNA base for the non-cleavable substrate
(Rh-17DDS-FD) (SEQ ID NO:11) used in the control experi-
ment. Both substrates are covalently linked at the 5' end with
6-carboxyfluorescein (FAM) through NHS-ester conjugation
and at the 3' end with DABCYL via CPG phosphoramidite.
The deoxyribozyme (17E-Dy) is labeled at the 3'-end with
DABCYL via CPG phosphoramidite and has the sequence
5'-CATCTCTTCTCCGAGCCGGTCGAAATAGTGAGT-3'
(SEQ 1D NO:1). All the oligonucleotides were purified by
denaturing 20% polyacrylamide gel electrophoresis to ensure
100% labeling with the fluorescent dyes.
Fluorescence Spectroscopy

The enzyme-substrate complex was prepared with 50 nM
eachof 17E-Dyand Rh-17DS-FD in 50 mM NaCl and 50 mM
Tris acetate (TA) buffer (pH 7.2) with a volume of 600 ul. The
sample was heated at 80° C. for 5 min and cooled to 4° C.
slowly to anneal the enzyme and substrate strands together.
Fluorescence signal was collected by a FLA-3000G Multi-
purpose 3-laser scanner for Fluorescence, Radioactivity and
Macro Arrays (Fuji). The excitation laser wavelength was set
at 473 nm and the filter was set at 520 nm to monitor the
fluorescence of fluorescein. Steady state and slow-kinetic
fluorescence were collected using a SLM 8000S photon
counting fluorometer at ambient temperature. Excitation
wavelength was fixed at 473 nm and emission was scanned
from 500 to 650 nm. Polarization artifacts were avoided by
using “magic angle” conditions. The steady-state emission
spectra were collected from 460 to 500 nm (A_ =473 nm). The
time-dependent DNA enzyme catalyzed substrate cleavage
was monitored at 473 nm at 2 s intervals. To initiate the
reaction, 1-2 pl of concentrated divalent metal ion solution
was injected into the cuvette using a 10 pl syringe while the
DNA sample in the cuvette was constantly stirred.
DNA-Based Sensor of Metal lons

An in vitro selected DNA enzyme from Example 1 (termed
17E) that is capable of cleaving a lone RNA linkage within a
DNA substrate (termed 17DS-FD) (FIG. 13A) was chosen for
use as a DNA-based, fluorescent biosensor of metal ions.
Assays of this enzyme indicate a highly Ph** dependent activ-
ity withk,,;=6.5 min™" atpH 6.0and K ..., ~13.5 uM. The
biosensor was constructed by dual labeling the 5'-end of the
substrate with the fluorophore 6-carboxyfluorescein (FAM)
and the 3'-end of the enzyme strand with DABCYL. This dual
labeled substrate is named 17DS-FD. The 3'-end of the
enzyme (17E) is also labeled with DABCYL. DABCYL
serves as a universal fluorescence quencher. Steady-state
fluorescence spectra were obtained by exciting the sample at
473 nm and scanning its emission from 500 to 650 nm.

When the substrate (17DS-FD) was hybridized to the
enzyme strand (17E-Dy), the fluorescence of FAM was fur-
ther quenched by the nearby additional DABCYL (FIG.
13B). Upon addition of Pb*, this quenching was eliminated
and the fluorescence of FAM increased by ~660% over back-
ground fluorescence signals. Little change in the fluorescence
signal occurred with addition of Pb** to the substrate alone or
to the complex of the enzyme and a non-cleavable DNA
substrate with identical sequence. These findings show that
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the change in fluorescent signal with 17DS-FD/17E-Dy
results from a DNA enzyme-catalyzed substrate cleavage,
followed by product release.

The substrate cleavage reaction was monitored in real time
with fluorescence spectroscopy. Like the ratiometric, anisot-
ropy, or lifetime-based method, kinetic fluorescence mea-
surement is independent of sampling conditions such as illu-
mination intensity and sample thickness (Oehme & Wolfbeis,
1997). In order to determine the selectivity of the catalytic
DNA sensor, a fluorescence image reader (Fuji) was used for
real time monitoring of the cleavage reaction and product
release using 7 different divalent metal ions. The activity of
Co™, Mg’*, Zn**, Mn**, Cd** and Ni** in cleaving the sub-
strate strand was compared with Pb** cleavage activity. These
metal ions were chosen for comparison because in previous
assays they demonstrated relatively high cleavage rates of
17E, while other metal ions were almost unreactive. The
excitation laser wavelength of the fluorescence image reader
was set to 473 nm and an emission filter was used to cut the
wavelength to shorter than 520 nm. A 96-well plate was used
as areaction container. The first well of each row was set as an
internal standard to quantify intensity and compare different
scans. Therefore 5 ul, of water were pipetted into the first well
and 5 pL. of the appropriate divalent metal ion were pipetted
into the remaining wells.

Many different methods, such as comparing the cleavage
rate constant or comparing initial reaction rate, may be used
to assay the cleavage activity of the metal ions. One easy,
practical way to monitor the reaction is by looking at the
fluorescence intensity at a specific time interval, which con-
veniently eliminates the need for complicated data process-
ing. Using this method, it was found that the fluorescence
intensity after a 2 minute interval, showed high selectivity of
the biosensor for Pb**. This selectivity is shown in FIG. 9A.
Four different concentrations of metal ions were monitored
using this method and in each case, Pb** gave the highest
fluorescence increase, indicating the fastest cleavage. To
present data in a quantitative way, the darkness of each well
was quantified and plotted in FIG. 9B. Besides Pb**, only
Zn** and Co™* showed any fluorescence increase at the 5 pM
level.

Cleavage kinetics may be fitted into an exponential
increase to a maximum wherein the initial stage of cleavage is
considered linear. When comparing the relative fluorescence
increases, the time interval does not have to be 2 minutes; any
quantity of time in the linear range is suitable, and so long as
it is kept the same for all the metal ions, the results should be
consistent. Using this method, the present biosensor shows
very high selectivity. For example, at low metal ion concen-
trations (500 nM), Pb** is the only metal ion which causes the
biosensor to produce a fluorescent signal. FIG. 9C shows the
cleavage kinetics for all seven metal ions in a time course of
90 minutes. Pb** was the only ion to produce a fluorescence
signal; all other metal ions produced signals similar to the
background, demonstrating that the signal response to Ph**
was not affected by the presence of equal amounts of other
ions, indicating that this biosensor is well suited for selective
monitoring of Pb** in the presence of other metal ions.

The Pb** detection range is from 100 nM to 5 uM, if the
fluorescence increase after 2 minutes of reaction is counted.
However, when lead concentration is higher than 5 uM, the
signal is saturated. To avoid saturation of the signal, dilution
must be done on more concentrated Pb** samples before an
accurate concentration can be derived. Respectively, Zn**
and Co** showed the second and third highest signal
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response, and are considered interference ions. However,
when the concentration is below 5 pM, the biosensor has
almost no response to them.

Fluorescence of the new Biosensor Versus Fluorescence of
the Biosensor Disclosed in U.S. application Ser. No. 09/605,
558, now U.S. Pat. No. 6,706,474

When the temperature is increased from 4° C. to room
temperature (23° C.), the biosensor of U.S. application Ser.
No. 09/605,558, now U.S. Pat. No. 6,706,474, shows a sig-
nificant decrease in fluorescence signal (from 400% signal to
background ratio to 60% signal to background ratio), due to
the partial “melting” of the substrate-enzyme duplex. There-
fore when utilizing these biosensors, it is important to know
the melting profile of the enzyme-substrate duplex. Two
methods may be used to determine the melting temperature of
the duplex. One method is based on the hyperchromatic prop-
erty of DNA. By monitoring the absorption at 260 nm with
increases of temperature, the melting temperature can be
obtained. Using this method, the melting temperature of
17DS-FD/17E-DY duplex was determined to be 35° C.

A second method for determining melting temperatures
takes advantage of the fluorescent properties of the 17DS-FD/
17E-DY duplex. The substrate strand used is non-cleavable
FI-17DDS (17DDS with a FAM attached to the 5' end), and
the enzyme strand is 17E-DY (17E with DABCYL attached
to the 3' end). When the two strands are annealed, the fluo-
rescence from FAM is quenched by DABCYL. The fluores-
cence is recovered when the duplex melts. By monitoring the
FAM fluorescence at 520 nm, the melting curve of the DNA
can be acquired. The melting temperature determined by this
method is 34° C. The results from the two different methods
are similar, indicating that the coupling of the fluorophore to
the DNA does not change the stability of the duplex.

Example 3

DNA Chip Comprising an Array of Nucleic Acid
Enzymes

This prophetic example describes the production of and
use of a DNA chip for sensing ions, in particular heavy metal
ions.

The first step towards the application of deoxyribozymes in
heavy metal sensing is to obtain various deoxyribozymes
with different metal specificity and affinity. In vitro selection
will be carried out to isolate a variety of deoxyribozymes. A
detailed description of the selection protocol can be found in
Example 1. Each family of deoxyribozyme will be specific
for different divalent metal ions (e.g. Pb**, Hg>*, Zn**, Co™*,
Cd**, Ni**, Mn®, etc). Within each family, different
sequences will have different affinities of the specified metal
ion.

These deoxyribozymes and their substrates will then be
arrayed onto a DNA chip with one dimension for metal ion
specificity and the other for affinity of the corresponding
metal (FIG. 11). The enzyme strands immobilized on the chip
at 3'-ends can be synthesized on the chip using photolitho-
graphic methods (Fodor et al., 1991; Pease etal, 1994) or can
be synthesized off-chip and then attached to the chip using
various methods (Joos et al., 1997, O’Donnell-Maloney et al.,
1997; Guschin et al., 1997). The 3'-ends of the enzyme and
substrate strands will be labeled with a fluorescence
quencher, which can be a fluorescent or non-fluorescent moi-
ety. The 5'end of the substrate will be labeled with a fluoro-
phore. Guanidine base may be used, for example, as an effi-
cient quencher of fluorescein.
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Hybridization of the enzyme and substrate will result in the
quenching of the donor fluorescence. Upon exposure to the
sample containing the active metal ion, the substrate will be
cleaved and products will dissociate, resulting in strong fluo-
rescence of the dye attached to the enzyme strand. The metal
ion species can be qualitatively identified based on the metal
specificity of different families of deoxyribozymes. A hypo-
thetical sample result is shown in FIG. 11B. The pattern of
fluorescence intensity shows that there are three kinds of
metal (M1, M4, and M6) in the sample.

The concentration of the metal ion under inspection can be
quantified with deoxyribozymes with different metal affinity.
Given a certain concentration of the metal ion, different
sequences within the same family will have different cleavage
efficiencies due to their different thresholds in response to the
metal concentration. The metal concentration applied may
exceed the saturation concentration of those having higher
affinity; therefore full cleavage will occur within a certain
time and present strong fluorescence. On the other hand, the
substrates of those with lower affinity will only be partly
cleaved and emit weaker fluorescence. The sample hypotheti-
cal result shown in FIG. 11B shows high (c1), medium (c4),
and low (c6) concentrations of M1, M4, and M6, respectively.

The fluorescence patterns with respect to different deox-
yribozyme sequences will be compared with standard cali-
bration maps. After de-convolution of the fluorescence pat-
tern, direct information can be obtained about the identity and
concentration of metal ions in the samples.

REFERENCES

Bogden, J. D.; Louria, D. B. Bull. Environ. Contam. Toxicol.
1975, 14:289-94.

Breaker, R. R.; Joyce, G. F. Chem. Biol. 1995, 2, 655-660.

Breaker, R. R. & Joyce, G. F. A DNA enzyme that cleaves
RNA. Chem. Biol. 1,223-229 (1994).

Breaker, R. R. DNA enzymes. Nat. Biotechnol. 15, 427-431
(1997).

Cadwell, R. C.; Joyce, G. F. PCR Methods Appl. 1992, 2,
28-33.

Cadwell, R. C.; Joyce, G. F. PCR Methods Appl. 1994, 3,
S136-S140.

Carmi, N., Shultz, L. A. & Breaker, R. R. In vitro selection of
self-cleaving DNAs. Chem. Biol. 3, 1039-1046 (1996).
Chapman, K. B.; Szostak, J. W. Curr. Opin. Struct. Biol. 1994,

4, 618-622.

Ciesiolka, J.; Gorski, J.; Yarus, M. RNA 1995, 1, 538-550.

Ciesiolka, I.; Yarus, M. RNA 1996, 2, 785-793.

Conaty, J.; Hendry, P.; Lockett, T. Nucleic Acids Res. 1999,
27, 2400-2407.

Conn, M. M.; Prudent, J. R.; Schultz, P. G.J. Am. Chem. Soc.
1996, 118, 7012-7013.

Cuenoud, B. & Szostak, J. W. A DNA metalloenzyme with
DNA ligase activity. Nature 375, 611-614 (1995).

Czarnik, A. W. Desperately secking sensors. Chem. Biol. 2,
423-428 (1995).

Dai, X.; De Mesmacker, A.; Joyce, G. F. Science 1995, 267,
237-240.

Deo, S. & Godwin, H. A, A Selective, Ratiometric Fluores-
cent Sensor for Pb>*, 2000, J. Am. Chem. Soc. 122, 174-
175.

Didenko, V. V. BioTechniques 2001, 31:1106-21.

Earnshaw & Gait, “Modified Oligoribonucleotides as site-
specific probes of RNA structure and function,” Biopoly-
mers (John Wiley & Sons, Inc.) 48:39-55, 1998.

Ekland, E. H.; Szostak, J. W.; Bartel, D. P. Science 1995, 269,
364-370.



US 8,043,802 B2

27

Fkland, E. H.; Bartel, D. P. Nature 1996, 382, 373-376.

Famulok, M. Curr. Opin. Struct. Biol. 1999, 9,324-329.

Faulhammer, D.; Famulok, M. Angew. Chem., Int. Ed. Engl.
1997, 35, 2837-2841.

Fodor, S. P. A, Read, J. L., Pirrung, M. C., Stryer, L., Lu, A.
T. & Solas, D. (1991). Light-directed, spatially addressable
parallel chemical synthesis. Science 251: 767-773.

Frank, D. N.; Pace, N. R. Proc. Natl. Acad. Sci. US.A. 1997,
94, 14355-14360.

Geyer, C. R.; Sen, D. Chem. Biol. 1997, 4, 579-593.

Godwin, H. A. & Berg, J. M. A Fluorescent Zinc Probe Based
on Metal-induced Peptide Folding. J. Am. Chem. Soc. 118,
6514-6515 (1996).

Guschin, D., Yershov, G., Zaslavsky, A., Gemmell, A., Shick,
V., Proudnikov, D., Arenkov, P. & Mirzabekov, A. (1997).
Manual manufacturing of oligonucleotide, DNA, and pro-
tein microchips. Anal. Biochem. 250: 203-211.

Hennrich, G.; Sonnenschein, H.; Resch-Genger, U. J. Am.
Chem. Soc. 1999, 121, 5073-5074.

Illangasekare, M.; Yarus, M. .J. Mol. Biol. 1997,268, 631-639.

Imperiali, B., Pearce, D. A., Sohna, J.-E., Walkup, G. &
Torrado, A. Peptide platforms for metal ion sensing. Proc.
SPIE-Int. Soc. Opt. Eng. 3858, 135-143 (1999).

Jhaveri, et al., Designed Signaling Aptamers that Transduce
Molecular Recognition to Changes in Fluorescence Inten-
sity, Journal of the American Chemical Society; 2000;
122(11); 2469-2473.

Joos, B., Kuster, H. & Cone, R. (1997). Covalent attachment
of hybridizable oligonucleotides to glass supports. Anal.
Biochem. 247: 96-101.

Joyce. G. F. Curr. Opin. Struct. Biol. 1994, 4, 331-336.

Koizumi, M.; Soukup, G. A.; Kerr, J. N. Q.; Breaker, R. R.
Nat. Struct. Biol. 1999, 6, 1062-1071.

Lakowicz, J. R. in Principles of Fluorescence Spectroscopy;
2nd ed.; Kluwer Academic/Plenum: New York, 1999.

Lee, M., & Walt D. R. A fiber-optic microarray biosensor
using aptamers as receptors. Anal Biochem 282(1):142-
146, 2000.

Lehman, N.; Joyce, G. F. Nature 1993, 361, 182-185.

Li,J., Zheng, W., Kwon, A. H. & Lu, Y. In vitro selection and
characterization of a highly efficient Zn(II)-dependent
RNA-cleaving deoxyribozyme. Nucleic Acids Res. 28,
431-488 (2000).

Li, Y.; Sen, D. Nat. Struct. Biol. 1996, 3, 743-747.

Li, Y.; Breaker, R. R. Proc. Natl. Acad Sci. U.S.A4. 1999, 96,
2746-2751.

Li, Y.; Liu, Y'; Breaker, R. R. Biochemistry 2000, 39, 3106-
3114.

Lohse, P. A.; Szostak, I. W. Nature 1996, 381, 442-444.

Lorsch, J. R.; Szostak, J. W. Nature 1994,371,31-36.

Marcus, A. H.; Elias, R. W. ASTM Spec. Tech. Publ. 1995,
STP 1226: 12-23.

Miyawaki, A., et al. Fluorescent indicators for Ca** based on
green fluorescent proteins and calmodulin. Nature 388,
882-887 (1997).

O’Donnell-Maloney, M. J., Tang, K., Koester, H., Smith, C.
L. & Cantor, C. R. (1997). High-Density, Covalent Attach-
ment of DNA to Silicon Wafers for Analysis by MALDI-
TOF Mass Spectrometry. Anal. Chem. 69: 2438-2443.

Oechme, 1. & Wolfbeis, O. S. Optical sensors for determina-
tion of heavy metal ions. Mikrochim. Acta 126, 177-192
(1997).

Pan, T. & Uhlenbeck, O. C. A small metalloribozyme with a
two-step mechanism. Nature 358, 560-563 (1992).

Pan, T.; Dichtl, B.; Uhlenbeck, O. C. Biochemistry 1994, 33,
9561-9565.

10

15

20

25

30

35

40

45

50

55

60

65

28

Pearce, D. A.; Walkup, G. K.; Imperiali, B. Bioorg. Med.
Chem. Leti. 1998, 8, 1963-1968.

Pease, A. C., Solas, D., Sullivan, E. J., Cronin, M. T., Holmes,
C.P. & Fodor, S. P. A. (1994). Light-generated oligonucle-
otide arrays for rapid DNA sequence analysis. Proc. Natl.
Acad. Sci U.S.A. 91: 5022-5026.

Piccirilli, J. A.; McConnell, T. S.; Zaug, A. I.; Noller, H. F.;
Cech, T. R. Science 1992, 256, 1420-1424.

Pley, H. W.; Flaherty, K. M.; McKay, D. B. Nature 1994, 372,
68-74.

Potyrailo, R. A.; Conrad, R. C.; Ellington, A. D.; Hiefije, G.
M. Anal Chem. 1998, 70, 3419-3425.

Potyrailo, R. A, Conrad, R. C., Ellington, A. D. & Hieftje, G.
M. (1999). Adapting Selected Nucleic Acid Ligands
(Aptamers) to Biosensors. Anal. Chem. 70: 3419-3425.

Prudent, J. R.; Uno, T.; Schultz, P. G. Science 1994, 264,
1924-1927.

Rabinowitz, M.; Leviton, A.; Bellinger, D. Am. Jour. Public
Health Field 1985, April 75: 403-4.

Robertson, M. P.; Ellington, A. D. Nat. Biotechnol. 1999, 17,
62-66.

Robertson, M. P.; Ellington, A. D. Nucleic Acids Res. 2000,
28, 1751-1759.

Roth, A.; Breaker. R. R. Proc. Natl. Acad. Sci. U.S.4. 1998,
95, 6027-6031.

Rurack, K., Kollmannsberger, M., Resch-Genger, U. & Daub,
I. A Selective and Sensitive Fluoroionophore for Hgll, Agl,
and Cull with Virtually Decoupled Fluorophore and
Receptor Units. J. Am. Chem. Soc. 122, 968-969 (2000).

Santoro, S. W.; Joyce, G. F. Proc. Natl. Acad, Sci. U.S.A.
1997, 94, 4262-4266.

Santoro, S. W., Joyce, G. F., Sakthivel, K., Gramatikova, S. &
Barbas, C. F., III RNA Cleavage by a DNA Enzyme with
Extended Chemical Functionality. J. Am. Chem. Soc. 122,
2433-2439 (2000).

Schwartz, J.; Levin, R. Env. Research Field. 1991, February
54:1-7.

Scott, W. G.; Finch, J. T.; Klug, A. Cell 1995, 81, 991-1002.

Tang and Breaker, Proc. Natl. Acad. Sci. US4, 97,5784-5789
(2000).

Tarasow, T. M.; Tarasow, S. L.; Eaton, B. E. Nature 1997, 389,
54-57.

Thompson, R. B., Maliwal, B. P., Feliccia, V. L., Fierke, C. A.
& McCall, K. Determination of Picomolar Concentrations
of Metal Ions Using Fluorescence Anisotropy: Biosensing
with a “Reagentless” Enzyme Transducer. Anal. Chem. 70,
4717-4723 (1998).

Tsang, J.; Joyce, G. F. Methods Enzymol. 1996,267,410-426.

Tsien, R. Y. Fluorescent and photochemical probes of
dynamic biochemical signals inside living cells, in Fluo-
rescenct Chemosensors for lon and Molecule Recogniza-
tion (ed. Czarnik, A. W.) 130-46 (American Chemical
Society, Washington, D.C., 1993).

Tuerk, C.; Gold, L. Science 1990, 249, 505-510.

Tyagi S.; Kramer, F. R. Nat. Biotechnol. 1996 14, 303.

Tyagi, S.; Bratu, D. P.; Kramer, F. R. Nat. Biotechnol. 1998,
16:49-58.

Tyagi, S.; Marras, S. A. E.; Kramer, F. R. Nat. Biotechnol.
2000, 18:1191-6.

Uphoff, K. W.; Bell, S. D.; Ellington, A. D. Curx. Opin. Struct
Biol. 1996, 6, 281-288.

Vaish, N. K.; Heaton, P. A.; Fedorova, O.; Eckstein, F. Proc.
Natl. Acad, Sci. US.A. 1998, 95, 2158-2162.

Walkup, G. K. & Imperiali, B. Design and Evaluation of a
Peptidyl Fluorescent Chemosensor for Divalent Zinc. J.
Am. Chem. Soc. 118, 3053-3054 (1996).

Wecker, M.; Smith, D.; Gold, L. RNA 1996, 2, 982-994,



US 8,043,802 B2

29 30

Wiegand, T. W.; Janssen, R. C.; Eaton, B. E. Chem. Biol. Wittmann, C., Riedel, K. & Schmid, R. D. Microbial and
1997, 4, 675-683. Enzyme sensors for environmental monitoring. Handb.

Wilson, C.; Szostak, . W. Nature 1995, 374, 777-782. Biosens. Electron. Noses, 299-332 (1997).

Winkler, I. D., Bowen, C. M. & Michelet, V. Photodynamic Zhang, B.; Cech, T. R. Nature 1997, 390, 96-100.
Fluorescent Metal Ton Sensors with Parts per Billion Sen- 5 Zillmann, M.; Limauro, S. E.; Goodchild, J. RNA 1997, 3,
sitivity. J. Am. Chem. Soc. 120, 3237-3242 (1998). 734-747.

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 84

<210> SEQ ID NO 1

<211> LENGTH: 33

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence: Trans-
cleaving deoxyribozyme 17E

<400> SEQUENCE: 1

catctcttet ccgagececggt cgaaatagtg agt 33

<210> SEQ ID NO 2

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
chimeric substrate

<220> FEATURE:

<223> OTHER INFORMATION: Description of Combined DNA/RNA Molecule:
Synthetic chimeric substrate

<400> SEQUENCE: 2

actcactata ggaagagatg 20

<210> SEQ ID NO 3

<211> LENGTH: 15

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence: Primer

<400> SEQUENCE: 3

gtgeccaaget tacceg 15

<210> SEQ ID NO 4

<211> LENGTH: 43

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence: Primer

<400> SEQUENCE: 4

ctgcagaatt ctaatacgac tcactatagg aagagatgge gac 43

<210> SEQ ID NO 5

<211> LENGTH: 28

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence: Primer

«220> FEATURE:

<223> OTHER INFORMATION: Description of Combined DNA/RNA Molecule:
Primer

«<400> SEQUENCE: 5

gggacgaatt ctaatacgac tcactata 28
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-continued

32

<210> SEQ ID NO 6

<211> LENGTH: 97

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence: DNA
Template

<220> FEATURE:

<221> NAME/KEY: modified_base

<222> LOCATION: (20)..(59)

<223> OTHER INFORMATION: variable nucleotides

<400> SEQUENCE: 6

gtgccaaget taccgtcacn nnnnnnnnnn nnnnnnnnnn hnhnhnhhhn hnnnnnnnng 60

agatctegee atctettecet atagtgagte gtattag 97

<210> SEQ ID NO 7

«<211> LENGTH: 33

«<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

«<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence: Variant of
deoxyribozyme named 17E1

«<400> SEQUENCE: 7

catctectttt gtcagcgact cgaaatagtg agt 33

«<210> SEQ ID NO 8

«<211> LENGTH: 20

«<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

«<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence: Zn-DNA
«<220> FEATURE:

«<221> NAME/KEY: modified_base

<222> LOCATION: (2)..(4)

<223> OTHER INFORMATION: variable base complementary to positions 8-10
«<220> FEATURE:

«<221> NAME/KEY: modified_base

<222> LOCATION: (8)..(10)

<223> OTHER INFORMATION: variable base complementary to positions 2-4

<400> SEQUENCE: 8

tnnnagcnnn tcgaaatagt 20

<210> SEQ ID NO 9

<211> LENGTH: 15

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence: Zn-DNA
<220> FEATURE:

<221> NAME/KEY: modified_base

<222> LOCATION: (2)..(4)

<223> OTHER INFORMATION: variable base complementary to positions 8-10
<220> FEATURE:

<221> NAME/KEY: modified_base

<222> LOCATION: (8)..(10)

<223> OTHER INFORMATION: variable base complementary to positions 2-4

<400> SEQUENCE: 9

tnnnagcnnn acgaa 15

<210> SEQ ID NO 10

<211> LENGTH: 15

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence: Class II
Co-DNA
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-continued

34

<400> SEQUENCE: 10

acccaagaag gggtyg

<210> SEQ ID NO 11

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence
<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence: Rh-17DDS

<400> SEQUENCE: 11

actcactata ggaagagatyg

«<210> SEQ ID NO 12

«<211> LENGTH: 97

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence
«<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic

chimeric substrate

<220> FEATURE:

<223> OTHER INFORMATION: Description of Combined DNA/RNA Molecule:
Synthetic chimeric substrate

<220> FEATURE:

<221> NAME/KEY: modified_base

«222> LOCATION: (39)..(78)

<223> OTHER INFORMATION: variable nucleotides

«<400> SEQUENCE: 12

ctaatacgac tcactatagg aagagatggce gacatctonn nnnnnnnnnn nnnnnnnnnn

nnnnnnnnnn nnnnnnnngt gacggtaage ttggcac

«<210> SEQ ID NO 13

«<211> LENGTH: 43

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

«<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence: Zn-DNA

«<400> SEQUENCE: 13

ctgcagaatt ctaatacgac tcactatagg aagagatgge gac

<210> SEQ ID NO 14

<211> LENGTH: 50

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence: Zn-DNA

<400> SEQUENCE: 14

atctettttyg tcagcgactc gaaatagtgt gttgaagcag ctctagtgac

<210> SEQ ID NO 15

<211> LENGTH: 49

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence: Zn-DNA

<400> SEQUENCE: 15

agccatagtt ctaccagegg ttcgaaatag tgaagtgtte gtgactate
<210> SEQ ID NO 16

<211> LENGTH: 49

<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence

15

20

60

97

43

50

49
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-continued

36

<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence:

<400> SEQUENCE: 16

ggccatagtt ctaccagegg ttcgaaatag tgaaatgtte gtgactate

<210>
<211>
<212>
<213>
<220>
<223>

«<400>

SEQ ID NO 17

LENGTH: 51

TYPE: DNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Description of Artificial Sequence:

SEQUENCE: 17

gccagattag ttetaccage ggttcgaaat agtgaaatgt tegtgactat ¢

<210>
«211>
«212>
«213>
«220>
«223>

«<400>

SEQ ID NO 18

LENGTH: 50

TYPE: DNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Description of Artificial Sequence:

SEQUENCE: 18

atctccaaag atgccageat gctattctec gagecggteg aaatagtgac

«210>
«211>
«212>
«213>
«220>
«223>

«<400>

SEQ ID NO 19

LENGTH: 50

TYPE: DNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Description of Artificial Sequence:

SEQUENCE: 19

atctccaaag atgectgeat gctattctec gagecggteg aaatagtgac

«210>
<211>
<212>
«213>
<220>
<223>

<400>

SEQ ID NO 20

LENGTH: 50

TYPE: DNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Description of Artificial Sequence:

SEQUENCE: 20

atctegtete cgagecggte gaaatagtca ggtgtttcta ttegggtgac

<210>
<211>
<212>
<213>
<220>
<223>

<400>

SEQ ID NO 21

LENGTH: 50

TYPE: DNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Description of Artificial Sequence:

SEQUENCE: 21

atcaccttet ccgagceggt cgaaatagta gtttttagta tatctgtgac

<210>
<211>
<212>
<213>
<220>
<223>

<400>

SEQ ID NO 22

LENGTH: 50

TYPE: DNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Description of Artificial Sequence:

SEQUENCE: 22

atctcaggtyg ttggetgete tcgeggtgge gagaggtagg gtgatgtgac

Zn-DNA

49
Zn-DNA

51
Zn-DNA

50
Zn-DNA

50
Zn-DNA

50
Zn-DNA

50
Zn-DNA

50
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-continued

38

<210>
<211>
<212>
<213>
<220>
<223>

<400>

SEQ ID NO 23

LENGTH: 14

TYPE: DNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Description of Artificial Sequence:

SEQUENCE: 23

ggtaagettyg geac

<210>
<211>
<212>
«213>
<220>
<223>

«<400>

SEQ ID NO 24

LENGTH: 43

TYPE: DNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Description of Artificial Sequence:

SEQUENCE: 24

ctgcagaatt ctaatacgac gcactatagg aagagatgge gac

«210>
«211>
«212>
«213>
«220>
«223>

«<400>

SEQ ID NO 25

LENGTH: 50

TYPE: DNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Description of Artificial Sequence:

SEQUENCE: 25

atctettgta ttagetacac tgttagtgga tcegggtctaa tcteggtgac

«210>
«211>
«212>
«213>
«220>
«223>

«<400>

SEQ ID NO 26

LENGTH: 50

TYPE: DNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Description of Artificial Sequence:

SEQUENCE: 26

gtctettgta ttagctacac tgttagtgga tcgggtctaa tcteggtgac

<210>
<211>
<212>
<213>
<220>
<223>

<400>

SEQ ID NO 27

LENGTH: 50

TYPE: DNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Description of Artificial Sequence:

SEQUENCE: 27

atctcctgta ttagctacac tgttagtgga tcgggtctaa tctcggtgac

<210>
<211>
<212>
<213>
<220>
<223>

<400>

SEQ ID NO 28

LENGTH: 49

TYPE: DNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Description of Artificial Sequence:

SEQUENCE: 28

atctcttgta ttagctacac tgttagtggg aacgttatca tteggtgac

<210>
<211>
<212>
<213>
<220>
<223>

«<400>

SEQ ID NO 29

LENGTH: 45

TYPE: DNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Description of Artificial Sequence:

SEQUENCE: 29

Zn-DNA

14
Co-DNA

43
Co-DNA

50
Co-DNA

50
Co-DNA

50
Co-DNA

49
Co-DNA
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-continued

40

atctettgac ccaagaaggg gtgtcaatcet aatcegtcaa ccatg

<210> SEQ ID NO 30

<211> LENGTH: 45

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence
<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence:

<400> SEQUENCE: 30

atctettgac ccaagaaggyg gtgtcaatca aatcecgtcaa ceatg

<210> SEQ ID NO 31

<211> LENGTH: 54

«<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence
<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence:

«<400> SEQUENCE: 31

atctettgac ccaagaaggyg gtgtcaatet aatccegtaca accatgacgyg taag

«<210> SEQ ID NO 32

«<211> LENGTH: 52

«<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence
«<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence:

«<400> SEQUENCE: 32

atctettgac ccaagaaggg gtgtcaatcet aatccegtcaa ggatgeggta ag

«<210> SEQ ID NO 33

«<211> LENGTH: 50

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence
«<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence:

«<400> SEQUENCE: 33

atctcaggtyg ttggetgete cecgeggtgge gggaggtagg gtgatgtgac

<210> SEQ ID NO 34

<211> LENGTH: 50

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence
<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence:

<400> SEQUENCE: 34

atctcaggtyg ttggcatcte ccgeggtgge gagaggtagg gtgatgtgac

<210> SEQ ID NO 35

<211> LENGTH: 50

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence
<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence:

<400> SEQUENCE: 35

atctcaggtyg ttggetgete tcgeggtgge gagaggtagg gtcatgtgac

<210> SEQ ID NO 36

<211> LENGTH: 50

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

45
Co-DNA

45
Co-DNA

54
Co-DNA

52
Co-DNA

50
Co-DNA

50
Co-DNA

50
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-continued

42

<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence:

<400> SEQUENCE: 36

atctegcagt cgaagettea ctgttagtge ggacgggtag acttegtgac

<210>
<211>
<212>
<213>
<220>
<223>

«<400>

SEQ ID NO 37

LENGTH: 50

TYPE: DNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Description of Artificial Sequence:

SEQUENCE: 37

atttettetyg aatcetcaat gttagtggac ctagtegtag tegatgtgac

<210>
«211>
«212>
«213>
«220>
«223>

«<400>

SEQ ID NO 38

LENGTH: 50

TYPE: DNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Description of Artificial Sequence:

SEQUENCE: 38

atctecggage cagttageat aatcttetga atcctcaatyg ttagtgtgac

«210>
«211>
«212>
«213>
«220>
«223>

«<400>

SEQ ID NO 39

LENGTH: 50

TYPE: DNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Description of Artificial Sequence:

SEQUENCE: 39

atcteggtgt tggcetggata gagccggtag gecctategt agggtgtgac

«210>
<211>
<212>
«213>
<220>
<223>

<400>

SEQ ID NO 40

LENGTH: 50

TYPE: DNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Description of Artificial Sequence:

SEQUENCE: 40

gtctetttty tcecgegacte gaaatagtgt gttgaagcag ctetagtgac

<210>
<211>
<212>
<213>
<220>
<223>

<400>

SEQ ID NO 41

LENGTH: 54

TYPE: DNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Description of Artificial Sequence:

SEQUENCE: 41

agccatagtt ctaccagegg ttcgaaatag tgaagtgtte gtgactatcg gtaa

<210>
<211>
<212>
<213>
<220>
<223>

<400>

SEQ ID NO 42

LENGTH: 14

TYPE: DNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Description of Artificial Sequence:

SEQUENCE: 42

ggtaagcttyg gcac

Co-DNA

50
Co-DNA

50
Co-DNA

50
Co-DNA

50
Co-DNA

50
Co-DNA

54
Co-DNA

14



US 8,043,802 B2

43

-continued

44

<210>
<211>
<212>
<213>
<220>
<223>

<400>

SEQ ID NO 43

LENGTH: 40

TYPE: DNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Description of Artificial Sequence:

SEQUENCE: 43

ttttgtcage gactegaaat agtgtgttga agcagetcta

<210>
<211>
<212>
«213>
<220>
<223>

«<400>

SEQ ID NO 44

LENGTH: 40

TYPE: DNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Description of Artificial Sequence:

SEQUENCE: 44

ttttgtcage gactcgaaat agtgtgttga agccgcetcta

«210>
«211>
«212>
«213>
«220>
«223>

«<400>

SEQ ID NO 45

LENGTH: 40

TYPE: DNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Description of Artificial Sequence:

SEQUENCE: 45

ttttgtcage gactcgaaat agtgtattgce agtagatcta

«210>
«211>
«212>
«213>
«220>
«223>

«<400>

SEQ ID NO 46

LENGTH: 40

TYPE: DNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Description of Artificial Sequence:

SEQUENCE: 46

ttttgtcage gactcgaaat agtgtgttac agttgcccta

<210>
<211>
<212>
<213>
<220>
<223>

<400>

SEQ ID NO 47

LENGTH: 40

TYPE: DNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Description of Artificial Sequence:

SEQUENCE: 47

ttttgtcage gactcgaaat agagagtcga cacacctcte

<210>
<211>
<212>
<213>
<220>
<223>

<400>

SEQ ID NO 48

LENGTH: 40

TYPE: DNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Description of Artificial Sequence:

SEQUENCE: 48

ttttgtcage gactcgaaat agttagttga accagctcte

<210>
<211>
<212>
<213>
<220>
<223>

«<400>

SEQ ID NO 49

LENGTH: 40

TYPE: DNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Description of Artificial Sequence:

SEQUENCE: 49

Zn-DNA

40
Zn-DNA

40
Zn-DNA

40
Zn-DNA

40
Zn-DNA

40
Zn-DNA

40
Zn-DNA
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-continued

46

ttttgtcage gactegaaat agtgagtaag aggagcetatce

<210> SEQ ID NO 50

<211> LENGTH: 40

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence
<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence:

<400> SEQUENCE: 50

ttttgtcage gactcgaaat agtgagggga aacagetete

<210> SEQ ID NO 51

<211> LENGTH: 39

«<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence
<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence:

«<400> SEQUENCE: 51

ttttgtcage gactcgaaat agttagttga acacctete

<210> SEQ ID NO 52

«<211> LENGTH: 40

«<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence
«<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence:

«<400> SEQUENCE: 52

ttttgtcage gactcgaaat attgagttga agcagatcte

«<210> SEQ ID NO 53

«<211> LENGTH: 40

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence
«<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence:

«<400> SEQUENCE: 53

ttttgtcage gacacgaaat agtgagttga ggcggcgcetyg

<210> SEQ ID NO 54

<211> LENGTH: 40

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence
<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence:

<400> SEQUENCE: 54

tttttgcage gacacgaaat agttagttga agaagctctt

<210> SEQ ID NO 55

<211> LENGTH: 40

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence
<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence:

<400> SEQUENCE: 55

ttttgtcage gactcgaaat agtcagttgt agcagetcett

<210> SEQ ID NO 56

<211> LENGTH: 40

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

40
Zn-DNA

40
Zn-DNA

39
Zn-DNA

40
Zn-DNA

40
Zn-DNA

40
Zn-DNA

40
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-continued

48

<220>
<223>

<400>

FEATURE:

OTHER INFORMATION: Description of Artificial Sequence:

SEQUENCE: 56

ttttgtcage gactegaaat agtgegtaga accagetcte

<210>
<211>
<212>
<213>
<220>
<223>

«<400>

SEQ ID NO 57

LENGTH: 40

TYPE: DNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Description of Artificial Sequence:

SEQUENCE: 57

ttttgtcage gacacgaaat agtgeggtgt atctgeeccte

<210>
«211>
«212>
«213>
«220>
«223>

«<400>

SEQ ID NO 58

LENGTH: 40

TYPE: DNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Description of Artificial Sequence:

SEQUENCE: 58

ttttgtcage gacacgaaat agtgtgatgt agtagctcte

«210>
«211>
«212>
«213>
«220>
«223>

«<400>

SEQ ID NO 59

LENGTH: 38

TYPE: DNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Description of Artificial Sequence:

SEQUENCE: 59

ttttgtcage gacacgaaat agtgtgacga atcatcte

«210>
<211>
<212>
«213>
<220>
<223>

<400>

SEQ ID NO 60

LENGTH: 39

TYPE: DNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Description of Artificial Sequence:

SEQUENCE: 60

ttttgtcage gacacgaaat agtgtgttta agcgctcte

<210>
<211>
<212>
<213>
<220>
<223>

<400>

SEQ ID NO 61

LENGTH: 40

TYPE: DNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Description of Artificial Sequence:

SEQUENCE: 61

ttttgtcage gacacgaaat agtgtgttga agcacgtcte

<210>
<211>
<212>
<213>
<220>
<223>

<400>

SEQ ID NO 62

LENGTH: 40

TYPE: DNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Description of Artificial Sequence:

SEQUENCE: 62

ttttgtcage gactcgaaat agtttgttga agcagctcte

Zn-DNA

40
Zn-DNA

40
Zn-DNA

40
Zn-DNA

38
Zn-DNA

39
Zn-DNA

40
Zn-DNA

40
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-continued

50

<210>
<211>
<212>
<213>
<220>
<223>

<400>

SEQ ID NO 63

LENGTH: 40

TYPE: DNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Description of Artificial Sequence:

SEQUENCE: 63

ttttgtecage gactegaaat agtgtattac agcagetcte

<210>
<211>
<212>
«213>
<220>
<223>

«<400>

SEQ ID NO 64

LENGTH: 40

TYPE: DNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Description of Artificial Sequence:

SEQUENCE: 64

ttttgtcage gactcgaaat agtgtgttga aacagctate

«210>
«211>
«212>
«213>
«220>
«223>

«<400>

SEQ ID NO 65

LENGTH: 40

TYPE: DNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Description of Artificial Sequence:

SEQUENCE: 65

ttgtgcatge tactcgtaat tgtgtctcga agcagctcte

«210>
«211>
«212>
«213>
«220>
«223>

«<400>

SEQ ID NO 66

LENGTH: 40

TYPE: DNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Description of Artificial Sequence:

SEQUENCE: 66

gtcagtcagyg tactcgaaaa atagtgttca agccgetgte

<210>
<211>
<212>
<213>
<220>
<223>

<400>

SEQ ID NO 67

LENGTH: 40

TYPE: DNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Description of Artificial Sequence:

SEQUENCE: 67

tttttgcage gactcgaaag attgtgttga ggcggctate

<210>
<211>
<212>
<213>
<220>
<223>

<400>

SEQ ID NO 68

LENGTH: 40

TYPE: DNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Description of Artificial Sequence:

SEQUENCE: 68

ttctetcage gactaaaaat agtgtgttga agcccctcete

<210>
<211>
<212>
<213>
<220>
<223>

«<400>

SEQ ID NO 69

LENGTH: 40

TYPE: DNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Description of Artificial Sequence:

SEQUENCE: 69

Zn-DNA

40
Zn-DNA

40
Zn-DNA

40
Zn-DNA

40
Zn-DNA

40
Zn-DNA

40
Zn-DNA
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52

tattgtcagt gacccaaaat agtatgttga agecagetctg 40

<210> SEQ ID NO 70

<211> LENGTH: 39

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence: Zn-DNA

<400> SEQUENCE: 70

ttttgtcage tactgaaata gtgttttgaa gaagtcctg 39

<210> SEQ ID NO 71

<211> LENGTH: 15

«<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
chimeric substrate

«<220> FEATURE:

<223> OTHER INFORMATION: Description of Combined DNA/RNA Molecule:
Synthetic chimeric substrate

«<400> SEQUENCE: 71

tcactatagg aagag 15

«<210> SEQ ID NO 72

«<211> LENGTH: 36

«<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

«<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
chimeric substrate

«<220> FEATURE:

«223> OTHER INFORMATION: Description of Combined DNA/RNA Molecule:
Synthetic chimeric substrate

«<400> SEQUENCE: 72

ctettocageg atccggaacyg gcacccatgt tagtga 36

<210> SEQ ID NO 73

<211> LENGTH: 19

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
chimeric substrate

<220> FEATURE:

«<223> OTHER INFORMATION: Description of Combined DNA/RNA Molecule:
Synthetic chimeric substrate

<400> SEQUENCE: 73

tcactataag aagagatgg 19

<210> SEQ ID NO 74

<211> LENGTH: 37

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
chimeric substrate

<220> FEATURE:

«<223> OTHER INFORMATION: Description of Combined DNA/RNA Molecule:
Synthetic chimeric substrate

<400> SEQUENCE: 74

acacatctct gaagtagege cgccgtatag tgacget 37
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<210> SEQ ID NO 75

<211> LENGTH: 17

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
chimeric substrate

<220> FEATURE:

<223> OTHER INFORMATION: Description of Combined DNA/RNA Molecule:
Synthetic chimeric substrate

<400> SEQUENCE: 75

ggagagagau gggugcg 17

<210> SEQ ID NO 76

<211> LENGTH: 31

«<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
chimeric substrate

«<220> FEATURE:

<223> OTHER INFORMATION: Description of Combined DNA/RNA Molecule:
Synthetic chimeric substrate

«<400> SEQUENCE: 76

cgecacccagg ctagetacaa cgactctete ¢ 31

«<210> SEQ ID NO 77

«<211> LENGTH: 17

«<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

«<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
chimeric substrate

«<220> FEATURE:

«223> OTHER INFORMATION: Description of Combined DNA/RNA Molecule:
Synthetic chimeric substrate

«<400> SEQUENCE: 77

aaguaacuag agaugga 17

<210> SEQ ID NO 78

<211> LENGTH: 29

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
chimeric substrate

<220> FEATURE:

«<223> OTHER INFORMATION: Description of Combined DNA/RNA Molecule:
Synthetic chimeric substrate

<400> SEQUENCE: 78

cgcaccctcee gagcecggacg aagttactt 29

<210> SEQ ID NO 79

<211> LENGTH: 19

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
chimeric substrate

<220> FEATURE:

«<223> OTHER INFORMATION: Description of Combined DNA/RNA Molecule:
Synthetic chimeric substrate

<400> SEQUENCE: 79

ctcactatag gaagagatyg 19
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<210>
<211>
<212>
<213>
<220>
<223>

<220>
<223>

<400>

SEQ ID NO 80

LENGTH: 41

TYPE: DNA

ORGANISM: Artificial Sequence

FEATURE:

OTHER INFORMATION: Description of Artificial Sequence: Synthetic
chimeric substrate

FEATURE:

OTHER INFORMATION: Description of Combined DNA/RNA Molecule:
Synthetic chimeric substrate

SEQUENCE: 80

catctecttaa cggggetgty cggetaggaa gtaatagtga g 41

<210>
<211>
«212>
«213>
<220>
«223>

«220>
«223>

«<400>

SEQ ID NO 81

LENGTH: 20

TYPE: DNA

ORGANISM: Artificial Sequence

FEATURE:

OTHER INFORMATION: Description of Artificial Sequence: Synthetic
chimeric substrate

FEATURE:

OTHER INFORMATION: Description of Combined DNA/RNA Molecule:
Synthetic chimeric substrate

SEQUENCE: 81

actcactata ggaagagatg 20

«210>
«211>
«212>
«213>
«220>
«223>

«220>
«223>

«<400>

SEQ ID NO 82

LENGTH: 33

TYPE: DNA

ORGANISM: Artificial Sequence

FEATURE:

OTHER INFORMATION: Description of Artificial Sequence: Synthetic
chimeric substrate

FEATURE:

OTHER INFORMATION: Description of Combined DNA/RNA Molecule:
Synthetic chimeric substrate

SEQUENCE: 82

catctcttct ccgagceggt cgaaatagtg agt 33

<210>
<211>
<212>
<213>
<220>
<223>

<220>
<221>
<222>
<223>
<220>
<221>
<222>
<223>
<220>
<221>
<222>
<223>
<220>
<221>
<222>
<223>

<400>

SEQ ID NO 83

LENGTH: 107

TYPE: DNA

ORGANISM: Artificial Sequence

FEATURE:

OTHER INFORMATION: Description of Artificial Sequence: Predicted
secondary structure of the G3 deoxyribozyme
FEATURE:

NAME/KEY: modified_base

LOCATION: (67)

OTHER INFORMATION: variable nucleotide
FEATURE:

NAME/KEY: modified_base

LOCATION: (69)..(74)

OTHER INFORMATION: variable nucleotide
FEATURE:

NAME/KEY: modified_base

LOCATION: (80)..(82)

OTHER INFORMATION: variable nucleotide
FEATURE:

NAME/KEY: modified_base

LOCATION: (85)..(89)

OTHER INFORMATION: variable nucleotide

SEQUENCE: 83

gggacgaatt ctaatacgac tcactatagg aagagatggc gacaactctt tacccaagaa 60

ggggtgngnn nnnngctacn nnatnnnnnt gacggtaget tggcace 107

«210>

SEQ ID NO 84
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<211> LENGTH: 45
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Co-DNA
<400> SEQUENCE: 84

cactatagga agagatggeg acatctettg acccaagaag gggtyg

45

The invention claimed is:

1. A method of detecting the presence of an ion in the
presence of other ions, in a sample, comprising:

forming a mixture comprising:

(1) a nucleic acid enzyme,

(2) the sample, and

(3) a substrate, the substrate and the nucleic acid enzyme

comprising separate nucleic acid strands,

to produce a cleavage product from the mixture; and

determining the presence of the cleavage product;

wherein the enzyme comprises at least one quencher and is
dependent on the ion to produce the cleavage product
from the substrate,

the substrate comprises a ribonucleotide, at least one fluo-

rophore and at least one quencher,

when the substrate is hybridized to the nucleic acid

enzyme, the first quencher quenches the at least one
fluorophore, and

when the substrate is not hybridized to the nucleic acid

enzyme, the second quencher quenches the at least one
fluorophore.

2. The method of claim 1, wherein a 5' end of the substrate
comprises a first fluorophore and a 3' end of the substrate
comprises a first quencher for the fluorophore and wherein a
3" end of the enzyme comprises a second quencher for the
fluorophore.

15

20

25

30

35

3. The method of claim 2, wherein the fluorophore is 6-car-
boxyfluorescein (FAM) and wherein the first and second
quenchers are 4-(4'-(dimethylaminophenylazo)benzoic acid)
(DABCYL).

4. The method of claim 1, wherein the enzyme is linked to
a support.

5. The method of claim 1, wherein the substrate comprises
a nucleic acid of SEQ ID NO: 2.

6. The method of claim 1, wherein the enzyme comprises a
nucleic acid of SEQ ID NO: 1.

7. The method of claim 1, wherein the ion comprises a
member selected from the group consisting of, Mg(II), Ca(II),
Mn(ID), Co(11), Ni(II), Zn(IT), Cd(1T), Pb(1D).

8. The method of claim 1, wherein the ion is selected from
the group consisting of Mg**, Ca®*, Mn**, Co**, Ni**, Zn**,
Cd*, Pb**.

9. The method of claim 8, wherein the ion is Pb**.

10. The method of claim 1, wherein the ion is a metal ion.

11. The method of claim 1, wherein the sample suspected
of containing the ion comprises a bodily fluid.

12. The method of claim 11, wherein the bodily fluid is
blood.

13. The method of claim 1, wherein an array of nucleic acid
enzymes comprises the nucleic acid enzyme.

14. The method of claim 1, wherein the ion s selected from
the group consisting of Cu*, Cd**, Zn**, Mg**, Pb**, Co’*,
Mn**, Ni** and Ca*+.

I S I
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Column 21, lines 58-59, “contain” should read --contains--
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