US010712282B2 ### (12) United States Patent ### Holmes et al. ### (54) SYSTEM AND METHODS FOR ANALYTE DETECTION (71) Applicant: Labrador Diagnostics LLC, Wilmington, DE (US) (72) Inventors: Elizabeth A. Holmes, Palo Alto, CA (US); Ian Gibbons, Newark, CA (US); Timothy M. Kemp, Palo Alto, CA (US); John Howard, Palo Alto, CA (US); Shaunak Roy, Palo Alto, CA (US) (73) Assignee: Labrador Diagnostics LLC, Wilmington, DE (US) (\*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days. This patent is subject to a terminal dis- claimer. (21) Appl. No.: 14/481,264 (22) Filed: Sep. 9, 2014 (65) Prior Publication Data US 2015/0099311 A1 Apr. 9, 2015 ### Related U.S. Application Data (63) Continuation of application No. 11/388,823, filed on Mar. 24, 2006, now Pat. No. 8,841,076. (Continued) (51) Int. Cl. G01N 21/76 B01L 3/00 (2006.01) (2006.01) (Continued) (10) Patent No.: US 10,712,282 B2 (45) **Date of Patent:** \*Jul. 14, 2020 (52) U.S. Cl. (Continued) (58) Field of Classification Search None See application file for complete search history. (56) References Cited U.S. PATENT DOCUMENTS 4,003,379 A 1/1977 Ellinwood, Jr. 4,146,029 A 3/1979 Ellinwood, Jr. (Continued) FOREIGN PATENT DOCUMENTS CN 1341244 A 3/2002 CN 2559986 7/2003 (Continued) ### OTHER PUBLICATIONS Red Herring. Stopping bad reactions. Red Herring. Dec. 26, 2005. (Continued) Primary Examiner — Rebecca M Giere (74) Attorney, Agent, or Firm — Sterne, Kessler, Goldstein & Fox P.L.L.C. ### (57) ABSTRACT This invention is in the field of medical devices. Specifically, the present invention provides portable medical devices that allow real-time detection of analytes from a biological fluid. The methods and devices are particularly useful for providing point-of-care testing for a variety of medical applications. ### 22 Claims, 37 Drawing Sheets ### Related U.S. Application Data 5,670,375 A 9/1997 Seaton et al. 5,674,698 A 10/1997 Zarling et al. 5,693,233 A 12/1997 Schembri (60) Provisional application No. 60/721,097, filed on Sep. 5,716,852 A 2/1998 Yager et al. 28, 2005, provisional application No. 60/717,192, 5,744,366 A 4/1998 Kricka et al filed on Sep. 16, 2005, provisional application No. 5,797,898 A 8/1998 Santini et al. 60/705,489, filed on Aug. 5, 2005, provisional 5,801,057 A 9/1998 Smart et al. application No. 60/678,801, filed on May 9, 2005. 5,807,375 A 9/1998 Gross et al. 5,820,548 A 10/1998 Sieben et al. 5,832,296 A 11/1998 Wang et al. (51) Int. Cl. 5,842,787 A 12/1998 Kopf-Sill et al. G01N 33/53 (2006.01)5,848,991 A 12/1998 Gross et al. A61B 5/151 (2006.01)5,863,502 A 1/1999 Southgate et al. 5,874,046 A A61B 5/157 (2006.01)2/1999 Megerle 5,874,214 A 2/1999 Nova et al. A61B 5/145 (2006.01)5,876,675 A 3/1999 Kennedy A61B 5/00 (2006.01)3/1999 5,885,470 A Parce et al. G16H 40/63 (2018.01)5,902,549 A 5/1999 Mimura et al. A61B 5/15 (2006.01)5,942,443 A 8/1999 Parce et al. 5.961,451 A 10/1999 G01N 33/50 Reber et al (2006.01)10/1999 5,961,923 A Nova et al. A61B 5/155 (2006.01)5,976,896 A 11/1999 Kumar et al. G01N 33/543 (2006.01)5,980,830 A 11/1999 Savage et al. A61B 5/1495 (2006.01)6,046,056 A 4/2000 Parce et al. 6,063,341 A 5/2000 Fassbind et al. (52) U.S. Cl. 6,074,616 A 6/2000 Buechler et al. CPC ....... B01L 3/50273 (2013.01); G01N 33/50 6,123,861 A 9/2000 Santini, Jr. et al. (2013.01); G01N 33/53 (2013.01); G01N 6,156,181 A 12/2000 Parce et al. 33/5302 (2013.01); G01N 33/54386 (2013.01); 6,174,675 B1 1/2001 Chow et al. G16H 40/63 (2018.01); A61B 5/1495 6,176,962 B1 1/2001 Soane et al. 6,200,531 B1 (2013.01); A61B 5/14546 (2013.01); A61B 3/2001 Liljestrand et al. 6,200,814 B1 3/2001 Malmqvist et al. 5/150022 (2013.01); A61B 5/150099 6,204,068 B1 3/2001 Soini et al (2013.01); A61B 5/150251 (2013.01); A61B 6,214,629 B1 4/2001 Freitag et al. 5/150763 (2013.01); A61B 5/150854 6,221,677 B1 4/2001 Wu et al. (2013.01); B01L 2300/021 (2013.01); B01L 6,235,531 B1 5/2001 Kopf-Sill et al. 6,245,057 B1 6/2001 Sieben et al. 2300/023 (2013.01); B01L 2300/044 6,291,249 B1 9/2001 Mahant et al. (2013.01); B01L 2300/0636 (2013.01); B01L 6,299,839 B1 10/2001 Karunaratne et al. 2300/087 (2013.01); B01L 2300/0816 6,319,668 B1 11/2001 Nova et al. (2013.01); B01L 2300/0867 (2013.01); B01L 6,321,929 B1 11/2001 Weshler et al. 2300/0877 (2013.01); B01L 2300/0883 6,340,588 B1 1/2002 Nova et al. 6,352,854 B1 3/2002 Nova et al (2013.01); B01L 2300/0887 (2013.01); G01N 6,368,275 B1 4/2002 Sliwa et al. 2500/00 (2013.01); Y02A 90/26 (2018.01); 6,368,871 B1 4/2002 Christel et al. Y10T 436/10 (2015.01); Y10T 436/11 6.369.893 B1 4/2002 Christel et al. (2015.01); Y10T 436/115831 (2015.01); Y10T 6,372,185 B1 4/2002 Shumate et al. 6,372,428 B1 6,375,469 B1 4/2002 436/12 (2015.01); Y10T 436/143333 (2015.01) Nova et al. 4/2002 Brown 6,403,338 B1 6/2002 Knapp References Cited (56)Parce et al. 6,429,025 B1 8/2002 6,440,725 B1 8/2002 Pourahmadi et al. U.S. PATENT DOCUMENTS 6,464,687 B1 10/2002 Ishikawa et al. 6,471,916 B1\* 10/2002 Noblett ...... C12Q 1/6837 4,347,176 A 8/1982 Mehta 250/252.1 3/1988 4,731,726 A Allen, III 6,482,593 B2 11/2002 Walt et al. 4,793,825 A 12/1988 Benjamin et al. 6,484,104 B2 11/2002 Abraham-Fuchs et al. 4,910,131 A 3/1990 Mellman et al. 6,491,666 B1 12/2002 Santini et al. 4,920,213 A 4/1990 Dale et al 6,503,231 B1 1/2003 Prausnitz et al 4,946,795 A 8/1990 Gibbons et al. 6,527,762 B1 6,542,717 B1 3/2003 Santini, Jr. et al. 5,061,381 A 10/1991 Burd 4/2003 Zimmerman et al. 5,089,229 A 2/1992 Heidt et al. 6,544,732 B1 4/2003 Chee et al. 5,104,813 A 4/1992 Besemer et al. 6,551,838 B2 4/2003 Santini et al 5,122,284 A 6/1992 Braynin et al. 6,565,815 B1 5/2003 Chang et al. 5,162,237 A 11/1992 Messenger et al. 6,591,124 B2 7/2003 Sherman et al. 5,173,193 A 12/1992 Schembri 6,632,216 B2 10/2003 Houzego et al. 5,242,606 A 9/1993 Braynin et al. 6,649,358 B1 11/2003 Parce et al. 5,279,607 A 1/1994 Schentag et al. 6,663,003 B2 12/2003 Johnson et al. 1/1994 5,281,395 A Markart et al. 6,664,104 B2 12/2003 Pourahmadi et al. 5,380,487 A 1/1995 Choperena et al 6,752,961 B2 6/2004 Kopf-Sill et al. 5,403,415 A 4/1995 Schembri 6.789.510 B1 9/2004 Lee 5,443,790 A 8/1995 Coeurveille et al. 6,832,296 B2 12/2004 Hooker 5,472,603 A 12/1995 Schembri 6,849,237 B2 2/2005 Housefield et al. 5,478,750 A 12/1995 Bernstein et al. 6,858,185 B1 2/2005 Kopf-Sill et al. 5,554,539 A 9/1996 Chadnev et al. 6,878,540 B2 5,578,269 A 4/2005 Pourahmadi et al. 11/1996 Yaremko et al. 6,878,755 B2 4/2005 12/1996 Singh et al. 5,590,052 A Kopf-Sill et al. 1/1997 6.881.541 B2 4/2005 Petersen et al. 5,591,643 A Schembri 6.887,202 B2 5/2005 Currie et al. 5,599,411 A 2/1997 Schembri 5,624,850 A 4/1997 Kumar et al. 6,887,693 B2 5/2005 McMillan et al. ### US 10,712,282 B2 Page 3 | (56) | References Cited | | | 2003/0049833 | | | Chen et al. | |------------------------------|------------------|---------|------------------------------------|------------------------------|---------------|-------------------|-------------------------------------| | | II C I | DATENIT | DOCLIMENTS | 2003/0049865<br>2003/0061687 | | | Santini et al.<br>Hansen et al. | | | U.S. I | PALENT | DOCUMENTS | 2003/0069560 | | | Adamis et al. | | 6,893,879 | B2 | 5/2005 | Petersen et al. | 2003/0097092 | | 5/2003 | Flaherty | | 6,923,764 | | | Aceti et al. | 2003/0104590 | | | Santini et al. | | 6,927,851 | B2 | | Mccaffrey et al. | 2003/0117491 | | | Avni et al. | | 6,929,636 | | | Von Alten | 2003/0143551<br>2003/0148362 | | 7/2003<br>8/2003 | | | 6,940,598<br>6,949,377 | | 9/2005 | Christel et al. | 2003/0148302 | | | Chang et al. | | 6,966,880 | | | Boecker et al. | 2003/0153900 | | 8/2003 | Aceti et al. | | 6,979,424 | | | Northrup et al. | 2003/0167000 | | | Mullick et al. | | 7,039,453 | | | Mullick et al. | 2003/0175993 | | | Toranto et al. | | 7,052,831 | | | Fletcher et al. | 2003/0177038<br>2003/0185706 | | 9/2003<br>10/2003 | | | 7,105,183<br>7,112,444 | | | Mcgrath<br>Beebe et al. | 2003/0191430 | | | D Andrea et al. | | 7,135,144 | | | Christel et al. | 2003/0207457 | A1 | | Kopf-Sill et al. | | 7,172,897 | B2 | 2/2007 | Blackburn et al. | 2003/0208113 | | | Mault et al. | | 7,177,767 | | | Ostoich et al. | 2003/0208133<br>2003/0210607 | | 11/2003 | Gilbert et al. | | 7,178,386<br>7,188,001 | | | Gamble et al. Young et al. | 2003/0210007 | | | Maus et al. | | 7,188,001 | | 4/2007 | | 2003/0211618 | | 11/2003 | | | 7,255,833 | | | Chang et al. | 2003/0214057 | | 11/2003 | | | 7,291,497 | | | Holmes et al. | 2004/0005247 | | 1/2004 | Karp<br>Shipwash | | 7,459,305 | | 12/2008 | | 2004/0005582<br>2004/0014202 | | | King et al. | | 7,497,997<br>7,569,346 | | | Glezer et al.<br>Petersen et al. | 2004/0024612 | | | Gerntholtz | | 7,635,594 | | | Holmes et al. | 2004/0033553 | | | Littarru et al. | | 7,636,667 | | 12/2009 | Brown | 2004/0053290 | | | Terbrueggen et al. | | 7,759,067 | | | Andersson et al. | 2004/0074849<br>2004/0078145 | | | Brown et al. Ostoich et al. | | 7,765,069<br>7,771,658 | | 8/2010 | Ostoich et al. | 2004/00/8143 | | | Childers et al. | | 7,807,197 | | | Lee et al. | 2004/0096959 | | 5/2004 | Stiene et al. | | 7,887,750 | | | Blatt et al. | 2004/0109793 | | | Mcneely et al. | | 7,888,125 | | | Gibbons et al. | 2004/0121305 | | | Wiegand et al. | | 7,914,994 | | | Petersen et al. | 2004/0122486<br>2004/0122559 | | | Stahmann et al.<br>Young et al. | | 7,998,411<br>8,029,733 | | | Kopf-Sill et al.<br>Chang et al. | 2004/0157336 | | | Petroff et al. | | 8,055,329 | | | Kimchy et al. | 2004/0161368 | | | Holtlund et al. | | 8,158,430 | | | Roy et al. | 2004/0166027 | | | Wilmer et al. | | 8,247,176 | | | Petersen et al. | 2004/0209374<br>2004/0213825 | | 10/2004 | Kopf-Sill et al. | | 8,394,608<br>8,580,559 | | | Ririe et al. Petersen et al. | 2004/0213823 | | | Witty et al. | | 8,592,157 | | | Petersen et al. | 2004/0241048 | $\mathbf{A}1$ | | Shin et al. | | 9,156,032 | | | Petersen et al. | 2004/0260204 | | | Boecker et al. | | 9,789,481 | | | Petersen et al. | 2005/0009101<br>2005/0019836 | | 1/2005 | Blackburn<br>Vogel et al. | | 2001/0012612<br>2001/0019831 | | | Petersen et al. | 2005/0019830 | | | Miller et al. | | 2001/0019831 | | | Phillips et al.<br>Singh et al. | 2005/0064529 | | 3/2005 | | | 2001/0051766 | | | Gazdzinski | 2005/0090726 | | | Ackerman | | 2001/0053535 | | | Bashir et al. | 2005/0100937<br>2005/0106713 | Al | | Holmes<br>Phan et al. | | 2002/0001854 | | 1/2002 | | 2005/0112544 | | | Xu et al. | | 2002/0019060<br>2002/0025576 | | | Petersen et al.<br>Northrup et al. | 2005/0130292 | | | Ahn et al. | | 2002/0034757 | | | Cubicciotti | 2005/0130321 | | | Nicholson et al. | | 2002/0039723 | | | Fox et al. | 2005/0136548 | | | Mcdevitt et al. | | 2002/0039783 | | | McMillan et al. | 2005/0137481<br>2005/0147559 | | | Sheard et al.<br>Von Alten | | 2002/0042125<br>2002/0045246 | | | Petersen et al.<br>McMillan et al. | 2005/0147339 | | | Kitaguchi et al. | | 2002/0055094 | | | Reece et al. | 2005/0194316 | | | Pourahmadi et al. | | 2002/0055127 | A1 | 5/2002 | Gindilis | 2005/0209565 | | | Yuzhakov et al. | | 2002/0055167 | | | Pourahmadi et al. | 2005/0221281<br>2005/0249633 | | 10/2005 | Ho<br>Blatt et al. | | 2002/0059030<br>2002/0072733 | | | Otworth et al. Flaherty | 2005/0249033 | | | Padmanabhan et al. | | 2002/0072733 | | | Hedberg et al. | 2005/0255600 | | 11/2005 | Padmanabhan et al. | | 2002/0106786 | | | Carvalho et al. | 2005/0283318 | | | Ostoich et al. | | 2002/0109844 | | | Christel et al. | 2006/0019319 | | | Billadeau et al.<br>Brewster et al. | | 2002/0110496 | | | Samsoondar<br>Abraham-Fuchs et al. | 2006/0029924<br>2006/0036619 | | | Fuerst et al. | | 2002/0111741<br>2002/0114739 | | | Weigl et al. | 2006/0062852 | | | Holmes | | 2002/0120183 | | 8/2002 | Abraham-Fuchs et al. | 2006/0078998 | | | Puskas et al. | | 2002/0120187 | A1 | 8/2002 | Eiffert et al. | 2006/0106316 | | 5/2006 | | | 2002/0132226 | | | Nair et al. | 2006/0154327 | | | Bachur, Jr. et al. | | 2002/0143437<br>2002/0175079 | | | Handique et al.<br>Christel et al. | 2006/0160205<br>2006/0177873 | | | Blackburn et al.<br>Dowd et al. | | 2002/01/30/9 | | | O'Connor et al. | 2006/01/78/3 | | | Holmes | | 2002/0193754 | | | Cho A61M 37/0015 | 2006/0182738 | | | Yanagida et al. | | | | | 604/272 | 2006/0211933 | A1 | 9/2006 | Zimmermann et al. | | 2003/0014362 | A1 | 1/2003 | Yim | 2006/0218010 | A1 | 9/2006 | Michon et al. | | | | | | | | | | | (56) | Referen | ices Cited | WO WO 2007/002579 A2 1/2007<br>WO WO 2007/092713 A2 8/2007 | |----------|-----------------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------| | | U.S. PATENT | DOCUMENTS | WO 20071092713 A2 8/2007<br>WO 2007120904 A 10/2007 | | | | Mcdevitt et al.<br>Kemp et al. | OTHER PUBLICATIONS | | | | Holmes et al. | | | | | Holmes et al. | Runyan, et al. Seminconductor integrated circuit processing tech- | | | | Holmes et al. | nology. Addison-Wesley Publishing Co., Reading Mass. 1990. | | | 0292039 A1 12/2006<br>0026426 A1 2/2007 | Fuernkranz et al. | (Cover pages and table of contents only). | | | | Brister et al. | Sambrook, et al. Molecular Cloning: A Laboratory Manual. Cold<br>Spring Harbor Laboratory Press. New York. 2001. (Cover pages and | | 2007/ | 0059204 A1* 3/2007 | Witty G01N 21/05 | table of contents only). | | 2007/ | 0054270 A1 5/2007 | 422/400 Inganas et al. | Sapsford, et al. Demonstration of four immunoassay formats using | | | | Padmanabhan et al. | the array biosensor. Anal Chem. 2002; 74(5):1061-8. | | | | Holmes et al. | Scheurle, et al. HER-2/neu expression in archival non-small cell | | | | Holmes et al. | lung carcinomas using FDA-approved hercep test. Anticancer Res. | | | | Holmes et al. Petersen et al. | 2000; 20:2091-2096. | | | | Gibbons et al. | Spira, et al. The identification of monoclonal class switch variants | | | | Petricoin et al. | by sib selection and an ELISA assay. J Immunol Methods. 1984;74(2):307-15. | | | | Chang et al.<br>Pourahmadi et al. | Steplewski, et al. Isolation and characterization of anti- | | | | Kemp et al. | monosialoganglioside monoclonal antibody 19-9 class-switch vari- | | | | Holmes et al. | ants. Proc Natl Acad Sci U S A. 1985; 82(24):8653-7. | | | | Gibbons et al.<br>Yoder et al. | Stevens, et al. Glycan microarray analysis of the hemagglutinins | | | | Gibbons et al. | from modern and pandemic influenza viruses reveals different | | | | Holmes et al. | receptor specificities. J Mol Biol. Feb. 3, 2006;355(5):1143-55. | | | | Holmes et al. | Tedeschi, et al. Antibody immobilisation on fibre optic TIRF | | | | Miller | sensors. Biosens Bioelectron. 2003; 19(2):85-93.<br>U.S. Appl. No. 13/286,168, filed Oct. 31, 2011. Inventors: Holmes | | | | Petersen et al.<br>Chiang et al. | et al. | | | | Roy et al. | U.S. Appl. No. 13/366,193, filed Feb. 3, 2012. Inventors: Holmes et | | | | Pourahmadi et al. | al. | | | | Holmes et al. | U.S. Appl. No. 13/629,577, filed Sep. 27, 2012. Inventors: Holmes | | | | Petersen et al. Petersen et al. | et al. | | | | Pourahmadi et al. | U.S. Appl. No. 13/896,171, filed May 16, 2013. Inventors: Holmes, et al. | | | | Chatterjee et al. | U.S. Appl. No. 14/050,235, filed Oct. 9, 2013. Inventors: Holmes, | | | EODEIGN DATE | NIT DOCUMENTS | et al. | | | FOREIGN PAIE | NT DOCUMENTS | Yan, et al. Multiplexed flow cytometric immunoassay for influenza virus detection and differentiation. Anal Chem. Dec. 1, | | EP | 1498067 A | 1/2005 | 2005;77(23):7673-8. | | EP | 1722235 A1 | 11/2006 | Bawendi, et al. The quantum-mechanics of larger semiconductor | | FR<br>JP | 2498331 A1<br>H07304799 A | 7/1982<br>11/1995 | clusters. Annu. Rev. Phys. Chem. 1990; 41:477-496. | | JР | 2637695 B2 | 8/1997 | BD Biosciences, Directigen FluA&B Assay Manual. Oct. 11, 2016, | | JР | 2002511965 A | 4/2002 | pp. 1-11.<br>Beier, et al. Versatile derivatisation of solid support media for | | JP<br>JP | 2002538440 A<br>2003504618 A | 11/2002<br>2/2003 | covalent bonding on DNA-microchips. Nucleic Acids Res. 1999; | | JР | 2003166910 A | 6/2003 | 27:1970-1977. | | JР | 2004527825 A | 9/2004 | Bes, et al. Mapping the paratope of anti-CD4 recombinant Fab | | JP<br>JP | 2004317498 A<br>2005010179 A | 11/2004<br>1/2005 | 13B8.2 by combining parallel peptide synthesis and site-directed | | JР | 2005130855 A | 5/2005 | mutagenesis. J Biol Chem. Apr. 18, 2003;278(16):14265-73. Bhatia, et al. Use of thiol-terminal silanes and heterobifuntional | | JР | 2005291954 A | 10/2005 | crosslinkers for immobilization of antibodies on silica surfaces. | | JP<br>WO | 2007187677 A<br>9401165 A | 7/2007<br>1/1994 | Anal Biochem. 1989; 178(2):408-13. | | WO | WO 95/08774 A2 | 3/1995 | Broadcaster Moira Gunn with Elizabeth Holmes, recorded Mar. 5, | | WO | WO 9508774 A2 | 3/1995 | 2005 on Biotech Nation. | | WO | WO 00/78454 A1 | 12/2000 | Bruchez, et al. Semiconductor nanocrystals as fluorescent biological labels. Science. 1998; 281(5385):2013-6. | | WO<br>WO | WO 01/13127 A1<br>0135928 A | 2/2001<br>5/2001 | Celebre, et al. A comparative sudy of efficiencies of fibre optic and | | WO | 0164344 A2 | 9/2001 | prism TIRF sensors. Meas. Sci. Technol. 1992; 3:1166-1173. | | WO | WO 02/064038 A2 | 8/2002<br>8/2002 | Chan. Quantum dot bioconjugates for ultrasensitive nonisotopic | | WO<br>WO | WO 02/064826 A2<br>03066128 A | 8/2002<br>8/2003 | detection. Science. 1998;281(5385):2016-8. Chang et al. Micromachining & Microfabrication. SPIE Optical. | | WO | WO 2004/098402 A1 | 11/2004 | Chang, et al. Micromachining & Microfabrication. SPIE Optical Engineering Press. Bellingham, Wash. 1997. (Cover pages and table | | WO | 2005024437 A1 | 3/2005 | of contents only). | | WO<br>WO | 2005025413 A2<br>2005031355 A | 3/2005<br>4/2005 | Charles, et al. Synthesis of a flurescent analog of polychlorinated | | wo | 2005065157 A | 7/2005 | biphenyls for use in a continuous flow immunosensor assay. Bioconjug | | WO | 2005065538 A2 | 7/2005 | Chem. 1995; 6(6):691-4. Duffir et al. Panid Protetyming of Microfluidic Systems in | | WO<br>WO | 2005121367 A<br>WO 2006/090154 A1 | 12/2005<br>8/2006 | Duffy, et al. Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane). Analytical Chemistry. 1998; 70(23);4974- | | WO | WO 2006/030134 A1<br>WO 2006/116455 A2 | 11/2006 | 4084. | | | | | | ### (56) References Cited ### OTHER PUBLICATIONS European search report and search opinion dated Feb. 7, 2012 for EP Application No. 11180769.9. European search report and search opinion dated Mar. 6, 2012 for EP Application No. 10179887.4. European search report and search opinion dated May 29, 2012 for EP Application No. 11180769.9. European search report dated Jun. 2, 2009 for Application No. 07762092 Gavin, et al. Review of Rapid Diagnostic Tests for Influenza. Clinical and Applied Immunology Reviews. 2004; 4(3):151-172. Geddes, et al. The impedance of stainless-steel electrodes. Med Biol Eng. Sep. 1971;9(5):511-21. Harlow, et al. Antibodies: A Laboratory Manual. Cold Spring Harbor Laboratory. New York. 1988. (Cover pages and table of contents only). Harrison's Principles of Internal Medicine, Part 2 Cardinal Manifestations of Disease, Ch. 60 (12th ed. 1991; pp. 338-343.). Hirsh, et al. The electrical conductivity of blood. I: Relationship to erythrocyte concentration. Blood. Nov. 1950;5(11):1017-35. International search report and written opinion dated Sep. 16, 2008 for PCT/US2007/009878. International search report dated Jan. 22, 2008 for PCT/US06/42563. International search report dated Dec. 8, 2008 for PCT/US06/11090. International search report dated Jul. 4, 2005 for PCT/US04/029462 International search report dated Aug. 11, 2008 for PCT/US07/68665. International search report dated Sep. 9, 2008 for PCT/US07/23904. Jaeger. Introduction to Microelectronic fabrication. Addison-Wesley Publishing Co. Reading Mass. 1988. (Cover pages and table of Contents only). Kessler, et al. Use of the DNA flow-thru chip, a three-dimensional biochip, for typing and subtyping of influenza viruses. J Clin Microbiol. May 2004;42(5):2173-85. Khan, et al. Detection of influenza virus neuraminidase-specific antibodies by an enzyme-linked immunosorbent assay. J Clin Microbiol. Jul. 1982;16(1): 115-22. Kilbourne, et al. Independent and disparate evolution in nature of influenza A virus hemagglutinin and neuraminidase glycoproteins. Proc Natl Acad Sci U S A. Jan. 1990;87(2):786-90. Lee, et al. Microfluidic enzyme-linked immunosorbent assay technology. Adv Clin Chem. 2006;42:255-95. Liu, et al. Validation of a fully integrated microfluidic array device for influenza A subtype identification and sequencing. Anal Chem. Jun. 15, 2006;78(12):4184-93. Lupiani, et al. Improved diagnostic tests for Avian influenza surveillance, 2005. Proceedings of the Institute of Food Technologies' First Annual Forod protection and Defense Research Conference. Mohapatra, et al. Blood resistivity and its implications for the calculation of cardic output by the thoracic electrical impedance technique. Intensive Care Med. Aug. 1977;3(2):63-7. Mukerjee, et al. Microneedle array for transdermal biological fluid extraction and in situ analysis. Sensors and Actuators A. 2004; 114:267-275. Office Action dated Jan. 16, 2014 for U.S. Appl. No. 13/647,325. Office Action dated Jan. 5, 2010 for U.S. Appl. No. 11/388,415. Office Action dated Jan. 8, 2013 for U.S. Appl. No. 11/388,415. Office Action dated Oct. 17, 2008 for U.S. Appl. No. 11/389,410. Office Action dated Oct. 26, 2006 for U.S. Appl. No. 10/937,872. Office Action dated Oct. 31, 2013 for U.S. Appl. No. 12/986,954. Office Action dated Oct. 6, 2008 for U.S. Appl. No. 11/746,535. Office Action dated Nov. 22, 2011 for U.S. Appl. No. 11/202,231. Office Action dated Nov. 5, 2009 for U.S. Appl. No. 11/202,231. Office Action dated Dec. 11, 2012 for U.S. Appl. No. 12/750,518. Office Action dated Dec. 19, 2008 for U.S. Appl. No. 11/202,206. Office Action dated Dec. 22, 2010 for U.S. Appl. No. 11/554,509. Office Action dated Dec. 9, 2013 for U.S. Appl. No. 12/625,430. Office Action dated Feb. 1, 2013 for U.S. Appl. No. 13/187,960. Office Action dated Feb. 17, 2009 for U.S. Appl. No. 11/202,231. Office Action dated Feb. 2, 2011 for U.S. Appl. No. 11/746,535. Office Action dated Feb. 22, 2008 for U.S. Appl. No. 11/202,231. Office Action dated Feb. 22, 2008 for U.S. Appl. No. 11/746,535. Office Action dated Feb. 27, 2009 for U.S. Appl. No. 11/388,723. Office Action dated Mar. 16, 2011 for U.S. Appl. No. 11/202,231. Office Action dated Mar. 17, 2009 for U.S. Appl. No. 11/388,415. Office Action dated Mar. 18, 2008 for U.S. Appl. No. 11/202,206. Office Action dated Mar. 18, 2008 for U.S. Appl. No. 11/202,200. Office Action dated Mar. 21, 2008 for U.S. Appl. No. 11/388,723. Office Action dated Mar. 21, 2011 for U.S. Appl. No. 11/388,415. Office Action dated Mar. 22, 2010 for U.S. Appl. No. 11/202,206. Office Action dated Mar. 3, 2011 for U.S. Appl. No. 11/202,206. Office Action dated Mar. 5, 2010 for U.S. Appl. No. 11/746,535. Office Action dated Mar. 7, 2006 for U.S. Appl. No. 10/937,872. Office Action dated Apr. 1, 2010 for U.S. Appl. No. 11/388,824. Office Action dated Apr. 13, 2012 for U.S. Appl. No. 11/554,509. Office Action dated Apr. 18, 2007 for U.S. Appl. No. 10/937,872. Office Action dated Apr. 18, 2007 for U.S. Appl. No. 10/937,872. Office Action dated Apr. 29, 2009 for U.S. Appl. No. 11/389,409. Office Action dated Apr. 30, 2009 for U.S. Appl. No. 11/388,824. Office Action dated Apr. 30, 2013 for U.S. Appl. No. 13/647,325. Office Action dated Apr. 4, 2013 for U.S. Appl. No. 12/986,954. Office Action dated Apr. 5, 2010 for U.S. Appl. No. 11/554,509. Office Action dated Apr. 5, 2010 for U.S. Appl. No. 11/554,509. Office Action dated Apr. 8, 2009 for U.S. Appl. No. 11/389,410. Office Action dated May 22, 2009 for U.S. Appl. No. 11/746,535. Office Action dated May 29, 2012 for U.S. Appl. No. 12/986,954. Office Action dated Jun. 1, 2007 for U.S. Appl. No. 11/389,409. Office Action dated Jun. 11, 2012 for U.S. Appl. No. 11/388,415. Office Action dated Jun. 21, 2007 for U.S. Appl. No. 11/202,231. Office Action dated Jun. 24, 2013 for U.S. Appl. No. 13/436,568. Office Action dated Jun. 5, 2013 for U.S. Appl. No. 12/750,518. Office Action dated Jun. 9, 2010 for U.S. Appl. No. 11/746,535. Office Action dated Jul. 18, 2012 for U.S. Appl. No. 12/576,197. Office Action dated Jul. 25, 2008 for U.S. Appl. No. 11/389,409. Office Action dated Jul. 27, 2011 for U.S. Appl. No. 11/554,509. Office Action dated Jul. 28, 2009 for U.S. Appl. No. 11/202,206. Office Action dated Jul. 29, 2011 for U.S. Appl. No. 12/986,954. Office Action dated Aug. 24, 2010 for U.S. Appl. No. 11/388,415. Office Action dated Aug. 31, 2011 for U.S. Appl. No. 12/221,816. Office Action dated Sep. 1, 2005 for U.S. Appl. No. 10/937,872. Office Action dated Sep. 11, 2008 for U.S. Appl. No. 11/389,409. Office Action dated Sep. 22, 2011 for U.S. Appl. No. 12/576,197. Office Action dated Sep. 4, 2013 for U.S. Appl. No. 11/388,823. Office Action dated Sep. 5, 2008 for U.S. Appl. No. 11/388,723. Okamatsu, et al. Epitope mapping of H9N2 influenza virus hemagglutinin and neuraminidase molecule. The Japanese Society of Veterinary Science, Journal of Veterinary Medical Science, Presen- tation Abstracts, 2004, vol. 137, p. 91, DV-05. Pal, et al. An integrated microfluidic device for influenza and other genetic analyses. Lab Chip. Oct. 2005;5(10):1024-32. Epub Aug. 18, 2005. Paiolsky, et al. Electrical detection of single viruses. Proc Natl Acad Sci USA. Sep. 28, 2004;101(39):14017-22. Epub Sep. 13, 2004. Pescovitz, D. Sniffing out airborne disease. Lab Note: Research Pescovitz, D. Sniffing out airborne disease. Lab Note: Research from the College of Engineering, University of California, Berkeley, 2004. Available online at http://www.coe.berkeley.edu/labnotes/0904/pisano.html. Accessed Jan. 28, 2011. Preininger, et al. Polymer-coated optical fibres for application in a direct evanescent wave immunoassay. Analytica Chimica Acta, 2000; 403; 67-76. Rai-Choudhury, ed., Handbook of Microlithography, Micromachining & Microfabrication. SPIE Optical Engineering Press. Bellingham, Wash. 1997. (Cover pages and table of contents only). Ray, et al. Distinct hemagglutinin and neuraminidase epitopes involved in antigenic variation of recent human parainfluenza virus type 2 isolates. Virus Res. Jun. 1992;24(1):107-13. "Products," Cepheid, Inc., Sunnyvale, California, United States, https://web.archive.org/web/20040407201033/http://cepheid.com:80/pages/products.html, archived Apr. 7, 2004. "Cepheid—Products," Cepheid, Inc., Sunnyvale, California, United States, https://web.archive.org/web/2004/0614174818/https://www.cepheid.com:80/Sites/cepheid/content.cfm?id=158, archived Jun. 14, 2004. ### (56)References Cited ### OTHER PUBLICATIONS Belgrader, P., et al., "A microfluidic cartridge to prepare spores for PCR analysis," Biosensors & Bioelectronics, vol. 14: 849-852 (2000). Ulrich, M. P., et al., "Evaluation of the Cepheid GeneXpert® system for detecting Bacillu antracis," Journal of Applied Microbiology, vol. 100: 1011-1016 (2006). McMillan, W. A., "Real-time point-of-care molecular detection of infectious disease agents," American Clinical Laboratory, vol. 21(1): 29-31 (2002). Meehan, P. J., et al., "Responding to Detection of Aerosolized Bacillus anthracis by Autonomous Detection Systems in the Workplace," Morbidity and Mortality Weekly Report: Recommendations and Reports, vol. 53 (7): 1-12 (2004). Petersen, K., et al., "IVD systems in bioterrorism response," IVDT. Beyond Clinical Diagnostics, vol. 8(4): 35-40 (2002). "Cepheid Granted US Patent Covering Key Internal Control Method for Ensuring Accurate DNA Test Results," Cepheid Inc., Sunnyvale, California, United States, Nov. 27, 2001. Piccolo® Operator's Manual, Abaxis, Inc., Union City, California, United States, Mar. 2001. von Schenck, H., et al., "Evaluation of "HemoCue," a New Device for Determining Hemoglobin," Clin. Chem., vol. 32(3): 526-529 Neufeld, L., et al., "Hemoglobin measured by Hemocue and a reference method in venous and capillary blood: A validation study," Salud Publica de Mexico, vol. 44(3): 219-227 (2001). HemoCue Hb 201+ Operating Manual, HomeCue AB, Angelholm, Sweden, www.hemocue.com (2001). Inganäs, M., et al., "Integrated Microfluidic Compact Disc Device with Potential Use in Both Centralized and Point-of-Care Laboratory Settings," Clinical Chemistry, vol. 51(10): 1985-1987 (2005). Cheng, S. B., et al., "Development of a Multichannel Microfluidic Analysis System Employing Affinity Capillary Electrophoresis for Immunoassay," Anal. Chem., vol. 73(7): 1472-1479 (2001). Clayton, J., "Go with the microflow," Nature Methods, vol. 2(8): 621-627 (2005). Hong, J. W., et al., "A nanoliter-scale nucleic acid processor with parallel architecture," Nature Biotechnology, vol. 22(4): 435-439 Gibbons, I., et al., "Patient-Side Immunoassay System with a Single-Use Cartridge for Measuring Analytes in Blood," Clinical Chemistry, vol. 35(9): 1869-1873 (1989). \* cited by examiner Figure 5 Figure 6 Figure 7 Figure 9 # Chemiluminescence Enzyme Figure 11 Figure 12 Two Step ## Plasma Effect Competitive Binding Figure 13 Figure 14C ### Figure 15A Figure 15B Figure 16 ### Sensitivity Enhancement Two Step Assay Figure 17 Figure 18 Figure 20 Typical assay dose-response data for two-step assay for TxB2 Figure 22 Dose responses computed with and without errors in calibration parameters. Computed concentration errors produced by 1% mis-estimation of A and D calibration values Figure 24 Calibration using a "differential" approach Figure 25 Verification of calibration using the "1-point spike" method (log scale) Figure 26 Verification of calibration using the "1-point spike" method (linear scale) Figure 27 Dose-response of assays calibrated against a plasma sample with a very low TxB2 concentration Figure 28 Using spike recovery to eliminate calibration errors of the "C" parameter. Figure 29 Calculating difference in concentration between two samples ### Log Correlation, TXB2 5.0 Summary statistics Log Calc. conc. = 0.9983\*Log Known Conc. + 0.0361 R = 0.9624.5 SEE/Mean = 7.2% Overall average signal CV = 6.4% 4.0 (corresponding to 13% analyte CV in the range 70 - 1000 pg/mL) Useful dynamic range of assay: about 70 - 10,000 pg/mL Sensitivity: about 50 pg/mL Average spike recovery: about 100% Log (Calc., pg/mL) Endogenous levels of TXB2: Subject 4: 335 pg/mL Subject 5: 55 pg/mL 2.5 All data D Subject 4 Subject 5 2.0 +20% -20% 1.5 2.5 3.0 3.5 4.0 4.5 1.0 1.5 2.0 5.0 Figure 30 Log (Known, pg/mL) Assay of plasma samples ### Calibration correction: Assay time course Figure 31 Time course of assay signal generation Figure 32 Impact of change in calibration parameter A on assay calibration | | Pn | |--------------------------------------|---------| | | • | | | • | | ter | IP2 IP3 | | Input parameter | | | Input | OPn IP1 | | | OPn | | | | | _ | | | rameter | OP3 | | output par | OP2 | | Subject Candidate output parameter | OP1 | | Subject | | Figure 33 Computing the Therapeutic Index (TI) Figure 35 Multiple Regression Analysis of the Computed TI COXIB therapy: Patient at risk Illustration of the relationship between measured drug, analyte and biomarker concentration and therapeutic index. Figure 37 Illustration of the application of this invention to minimize ADRs. | User Enter Food | Enter Food and Servings Food Name: Deach | Amount: 1 serving 🛣 Enter a food. | Date: January 3 Time: 0 3 Set to Now: 0 | Submit Reset Form Commit Cancel | Amount Units Food Cal. Fat Sat. Fat Carb Prot. | 1 sv Banana 105 0 0 26 1 | Totals 105 0 0 26 1 | | |-----------------|--------------------------------------------|-----------------------------------|---------------------------------------------------------------------|---------------------------------------|------------------------------------------------|--------------------------|---------------------|--| |-----------------|--------------------------------------------|-----------------------------------|---------------------------------------------------------------------|---------------------------------------|------------------------------------------------|--------------------------|---------------------|--| Figure 38 Patient input values Use of TI to follow treatment progression in an autism patient # SYSTEM AND METHODS FOR ANALYTE DETECTION #### **CROSS-REFERENCE** This application claims the benefit of U.S. Provisional Application No. 60/678,801, filed May 9, 2005 and U.S. Provisional Application No. 60/705,489, filed Aug. 5, 2005 and U.S. Provisional Application No. 60/717,192, filed Sep. 16, 2005, and U.S. Provisional Application No. 60/721,097, 10 filed Sep. 28, 2005, all of which are incorporated herein by reference in their entirety. #### TECHNICAL FIELD This invention is in the field of medical devices. Specifically, the present invention provides portable medical devices that allow real-time detection of analytes from a biological fluid. The methods and devices are particularly useful for providing point-of-care testing for a variety of 20 medical applications. ### BACKGROUND OF THE INVENTION The discovery of a vast number of disease biomarkers and 25 the establishment of miniaturized microfluidic systems have opened up new avenues to devise methods and systems for the prediction, diagnosis and treatment of diseases in a point-of-care setting. Point-of-care testing is particularly desirable because it rapidly delivers results to medical 30 practitioners and enables faster consultation. Early diagnosis allows a practitioner to begin treatment sooner and thus avoiding unattended deterioration of a patient's condition. Examples of point-of-care analyses include tests for glucose, drugs of abuse, serum cholesterol, pregnancy, and ovulation. 35 However, these and other currently available point-of-care methods and systems do not provide an integrated solution for sample acquisition, testing, analysis and communication of results to medical practitioners or health providers when needed. Thus, there remains a considerable need for a 40 portable, multi-parameter measurement instrument that provides convenient and rapid data collection, transmission, analysis, as well as on-line medical consultation or decision New and improved point-of-care testing is also needed for 45 research and development of therapeutic agents as well as for monitoring possible adverse drug reactions (ADRs), after a drug is brought to the market place. The safety and efficacy of a drug is determined by the pharmacokinetic (what the body does to the drug) and 50 pharmacodynamic parameters (what the drug does to the body) of the drug. Currently, the pharmacokinetic (PK) and pharmacodymanic (PD) parameters of a drug are generally determined by first drawing blood samples from a patient followed by laboratory analyses. Such approach has numer- 55 ous shortcomings. First, the patient is generally required to visit a clinic to provide clinical samples such as blood or urine samples at multiple time points. Second, most of the analytical techniques for determining target analyte and biomarker concentrations that reflect either the pharmacoki- 60 netic (PK) and pharmacodymanic (PD) parameters require that the blood samples be pre-processed before the parameters can be determined. This results in delay of data response, variability in physiological drug distribution and metabolism (warranting poor dosing), sparse sampling, and 65 the lack of dosing history. Notably, numerous clinical trials often suffer from insufficient numbers of blood tests because 2 of poor patient compliance; the patients often fail to return to a phlebotomist to provide the blood samples required by the trial. Similarly, the current techniques and systems for moni-5 toring ADRs are also inadequate. ADRs are one of the leading causes of morbidity and mortality in health care. The Institute of Medicine reported in January 2000 that 44,000 to 98,000 deaths occured due to medical errors, of which 7,000 deaths were due to ADRs. Other studies conducted on hospitalized patient populations have indicated an ever higher overall incidence of several ADRs. Several reasons contribute to the prevalence of ADRs. First, there are more combination therapies available to patients. Second, there is an increasing trend towards chronic use of drugs (statins such as Lipitor and Cox-2 inhibitors such as Vioxx). Chronic use of drugs also increases the chance that changes in the patient's lifestyle, health status and use of other medications will occur. In women, the chronic use of drugs can result in unanticipated consequences if the woman becomes pregnant. Such risks are of particular concern to the fetus, which is especially susceptible to ADRs including teratogenicity. A further important factor in managing the risks and benefits of drug therapy is patient compliance. Patients often fail to take scheduled dose of drug, take more than the prescribed dose, or fail to complete a course of drug therapy (especially common in treatment for infectious disease). These behaviors (deliberate or inadvertent) result in improper levels of drugs in the body which can cause serious adverse effects. The patient is typically oblivious to such consequences and the prescribing physician is also unlikely to realize the problem before several consequences occur. Thus, there remains a pressing need for methods and apparatus that allow real-time data transmission between patient and medical practitioners to enable efficient communication and high throughput point-of-care testing in an ambulatory context. A beneficial system will detect ADRs, and efficacy and/or toxicity of a therapeutic agent in real-time in an ambulatory setting. It may also facilitate medical practitioners assessing patients' physiological conditions in response to therapeutic agents during the course of clinical trials or follow-on treatments. The present invention satisfies these needs and provides related advantages as well. #### SUMMARY OF THE INVENTION One aspect of the present invention is the design of a system capable of providing real-time data transmission between a patient and medical practitioners to facilitate high throughput point-of-care testing in an ambulatory setting. The systems and methods provided herein simplify the laborious and expensive procedures of processing and analyzing the samples collected from a subject (e.g., a patient) without the use of laboratory equipment or facility. The systems and methods are particularly useful for detection of an analyte from a small sample of bodily fluid to effect diagnosis, prognosis, treatment, and development of therapeutics. Accordingly, in one embodiment, the present invention provides a system for detecting an analyte in a bodily fluid from a subject. The system comprises a) a fluidic device, said fluidic device comprising a sample collection unit and an assay assembly, wherein said sample collection unit allows a sample of bodily fluid of less than 500 ul to react with reactants contained within said assay assembly to yield a detectable signal indicative of the presence of said analyte collected in said sample of bodily fluid; b) a reader assembly comprising a detection assembly for detecting said detect- able signal; and c) a communication assembly for transmitting said detected signal to an external device. In another embodiment, the present invention provides a system comprising a fluidic device. The fluidic device comprises the following elements: a) a sample collection 5 unit and an assay assembly, wherein said sample collection unit allows a sample of bodily fluid to react with reactants contained within said assay assembly based on a protocol transmitted from an external device to yield a detectable signal indicative of the presence of said analyte; b) a reader 10 assembly comprising a detection assembly for detecting said detectable signal; and c) a communication assembly for transmitting said detected signal to an external device. In one aspect, the system employs a protocol transmitted from an external device, preferably through a wirelessly 15 device such as a cell phone. In another aspect, the fluidic device further comprises an identifier to provide the identity of said fluidic device that is adapted to trigger the transmission of the protocol. Where desired, the protocol may vary depending on the identify of said fluidic device that is 20 recognizable by an identifier detector. The present invention also provides a method of using the systems and other devices provided herein. In one embodiment, the present invention provides a method for detecting an analyte in a bodily fluid of a subject. The method involves 25 the steps of a) providing the subject system, b) allowing a sample of bodily fluid to react with the reactants contained within said assay assembly to yield a detectable signal indicative of the presence of said analyte; and c) detecting said detectable signal. Where desired, the method may further comprise the step of quantifying the amount of said analyte present in said bodily fluid. The method may also comprise the step of comparing the amount of said analyte present in said biologic fluid to a predetermined amount of said analyte. Also optionally included in the method is 35 taking a medical action when the amount of said analyte present in said bodily fluid is statistically different than said predetermined amount. The medical action may involve notifying a pharmacy that a prescription for such subject needs to be altered. The present invention further provides a system for monitoring more than one pharmacological parameter useful for assessing efficacy and/or toxicity of a therapeutic agent. The system typically comprises a) a fluidic device comprising a cartridge, said cartridge comprising at least one sample 45 collection unit and an assembly; wherein said sample collection unit allows a sample of bodily fluid comprising a plurality of analytes indicative or said more than one pharamcological parameter to react with reactants contained within said assay assembly, said reaction yields detectable 50 signals indicative of the values of the more than one pharmacological parameter from said sample of bodily fluid; b) a reader assembly comprising a detection assembly for detecting said detectable signals; and c) a communication assembly for transmitting said detected signals to an external 55 device. The present invention also provides a method of using such system. In general, the method involves the steps of a) subjecting a sample of bodily fluid from a subject administered with the pharmaceutical agent to a fluidic device for 60 profiling said more than one pharmacological parameter, said fluidic medical device comprising a cartridge, said cartridge comprising at least one sample collection unit, and an assay assembly comprising reaction reagents; b) actuating said fluidic device and directing said immunoassay 65 reagents within said fluidic device; c) allowing said sample of bodily fluid to react with immunoassay reagents to yield 4 detectable signals indicative of the values of the more than one pharmacological parameter from said sample; and d) detecting said detectable signal generated from said sample of bodily fluid. Further provided in the present invention is a method of automatically monitoring patient compliance with a medical treatment involving a therapeutic agent. The method involves a) providing a sample of bodily fluid from said patient; b) allowing the sample of bodily fluid to react with assay reagents in a fluidic device to detect an analyte indicative of compliance or non-compliance of the medical treatment; c) detect the presence or absence of the analyte; and d) notifying said patient or a medical practitioner of said compliance or noncompliance Also included is a business method of assisting a clinician in providing an individualized medical treatment. The method involves the steps of a) collecting at least one pharmacological parameter from an individual receiving a medication, said collecting step is effected by subjecting a sample of bodily fluid to reactants contained in a fluidic device, which is provided to said individual to yield a detectable signal indicative of said at least one pharmacological parameter; b) cross referencing with the aid of a computer medical records of said individual with the at least one pharmacological parameter of said individual, thereby assisting said clinician in providing individualized medical treatment. The present invention provides a business method of monitoring a clinical trial of a pharmaceutical agent. The method typically comprises the steps of a) collecting at least one pharmacological parameter from a subject in said clinical trial at a plurality of time intervals, said collecting step is effected at each time interval by subjecting a sample of bodily fluid from said subject to reactants contained in a fluidic device, wherein said fluidic device is provided to said subject to yield detectable signals indicative of the values of said at least one pharmacological parameter at a plurality of time intervals; b) comparing the detected values to a threshold value predetermined for said pharmacological parameter; c) notifying a clinician and/or a sponsor involved in said clinical trial when a statistically significant discrepancy exists between the detected values and the threshold value. In a separate embodiment, the present invention further provides a method of obtaining pharmacological data useful for assessing efficacy and/or toxicity of a therapeutical agent from a test animal. The method typically involves the steps of a) providing a fluidic device comprising at least one sample collection unit, an assay assembly; and a plurality of channels in fluid communication with said sample collection unit and/or said assay assembly; b) allowing a sample of biological fluid of less than about 50 ul to react with reactants contained within said assay assembly to yield a detectable signal generated from an analyte initially collected in said sample that is indicative of a pharmacological parameter; and c) detecting said detectable signal; and d) repeating the reaction and detection steps with a second sample of biological fluid from the same test animal. In yet another embodiment, the method utilizes test animals that are not subjected to anesthesia. The present invention provides a method of improving the accuracy of calibrating a fluidic system, comprising: a) providing a system for detecting an analyte in a bodily fluid from a subject comprising a fluidic device for providing said bodily fluid, said fluidic device having a calibration assembly and a reader assembly for detecting the presence of said analyte; b) measuring one or more parameters of a calibration curve associated with said fluidic device; c) comparing said one or more parameters with predetermined parameters associate with said fluidic device; d) adjusting a signal output by the ratio of said one or more parameters and said predetermined parameters. The present invention also provides a method of improving the calibration of a fluidic 5 system. The method involves the steps of a) measuring a first signal in an original sample comprising a known quantity of an analyte; b) measuring a second signal after spiking said original sample with a known quantity of said analyte; c) plotting the difference between said first and second signals 10 against a target value, wherein said target value is a signal expected for said known quantity of said analyte; and d) arriving at a best fit of parameters by minimizing the sum of the square of the differences between said target value and calculated analyte values. Further provided by the present invention is a method of assessing the reliability of an assay for an analyte in a bodily fluid with the use of a fluidic device, comprising: a) providing a system, said system comprising a fluidic device, said fluidic device comprising a sample collection unit and 20 an assay assembly, wherein said sample collection unit allows a sample of bodily fluid to react with reactants contained within said assay assembly, for detecting the presence of an analyte in a bodily fluid from a subject, and a reader assembly for detecting the presence of said analyte; 25 b) sensing with a sensor a change in operation parameters under which the system normally operates The present invention also provides a method of performing a trend analysis on the concentration of an analyte in a subject. The method involves the steps of a) providing a 30 fluidic device comprising at least one sample collection unit, an immunoassay assembly containing immunoassay reagents, a plurality of channels in fluid communication with said sample collection unit and/or said immunoassay assembly; b) actuating said fluidic device and directing said 35 immunoassay reagents within said fluidic device; c) allowing a sample of bodily fluid of less than about 500 ul to react with said immunoassay reagents contained within said assay immunoassay assembly to yield a detectable signal indicative of the presence of said analyte in said sample; d) 40 detecting said detectable signal generated from said analyte collected in said sample of bodily fluid; and e) repeating steps a) through d) for a single patient over a period of time to detect concentrations of said anayte, thereby performing said trend analysis. The present invention provides an apparatus for detecting an analyte in a biological fluid of a subject, wherein a plurality of reaction sites comprises an optical barrier. In one aspect, the bound reactants in at least one reaction site are unevenly distributed, for example being localized around the 50 center of said reaction site. The present invention also provides a method of using such apparatus. Finally, the present invention provides a method of manufacturing a fluidic device for detecting an analyte in a biological fluid of a subject. The method involves the steps 55 ideal samples and maintain desired sensitivity. of a) providing a plurality of layers of a fluidic device; b) ultrasonically welding said layers together such that a fluidic network exists between a sample collection unit, at least one reactant chamber, at least one reaction site, and at least one waste chamber. In practice the subject invention, the reactants contained in the devices may comprise immunoassay reagents. In one aspect, the immunoassay reagents detect a microorganism selected from the group consisting of bacterium, virus, fungus, and protozoa. In another aspect, the immunoassay 65 reagents may detect a polypeptide glycoprotein, polysaccharide, lipid, nucleic acid, and a combination thereof. In another aspect, the immunoassay reagents detect a member selected from the group consisting of drug, drug metabolite, biomarker indicative of a disease, tissue specific marker, and biomarker specific for a cell or cell type. In yet another aspect, the immunoassay generates luminescent signals, preferably chemiluminescent signals. Where desired, the subject fluidic device can be configured to detect a plurality of analytes. The plurality of analytes can be identified by distinct signals detectable over a range of 3 orders of magnitude. The detectable signal can be a luminescent signal, including but not limited to photoluminescence, electroluminescence, chemiluminescence, fluorescence, phosphorescence. #### INCORPORATION BY REFERENCE All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference. #### BRIEF DESCRIPTION OF THE DRAWINGS The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which: FIG. 1 is one embodiment showing multiple components of the present system. FIG. 2 shows different layers of an exemplary fluidic device prior to assembly. FIGS. 3 and 4 illustrate the fluidic network within an exemplary fluidic device. FIG. 5 shows a top, side, and bottom view of exemplary reagent chambers of the present invention. FIG. 6 illustrates an exemplary side view of a reagent chamber in fluidic communication with a fluidic device. FIG. 7 illustrates exemplary reagent chambers being filled with reagents. FIGS. 8 and 9 illustrate a side view of an exemplary fluidic device is combination with actuating elements of the reader assembly. FIG. 10 compares a two-step assay with a competitive binding assay. FIG. 11 shows an exemplary two-step chemiluminescence enzyme immunoassay. FIG. 12 shows the increased sensitivity of the two-step chemiluminescence enzyme immunoassay. FIG. 13 shows the ability of TOSCA to assay less than FIGS. 14A-C illustrate exemplary fluidic channels between reaction sites. FIGS. 15A and 15B illustrate reactions sites to reduce the signal from unbound conjugates remaining in reaction sites. FIG. 16 shows an exemplary bubble trapper or remover to prevent bubbles from entering the reaction sites. FIG. 17 shows the sensitivity enhancement achieved using TOSCA as compared with competitive binding. FIG. 18 shows two analytes, prostacyclin metabolite and thromboxane metabolite, which have been identified and quantified and their concentrations are different by more than 3 orders of magnitude. -7 FIG. 19 shows an exemplary flow chart of a business method of monitoring a clinical trial of a therapeutic agent. FIG. 20 shows simultaneous sharing of the information detected with a fluidic device with various interested parties. FIG. **21** shows a typical assay dose-response data for a 5 two-step assay for TxB2. FIG. 22 shows dose responses computed with and without errors in calibration parameters. FIG. 23 shows computed concentration errors produced by 1% mis-estimation of A and D calibration values. FIG. **24** illustrates calibration using a "differential" approach. FIG. **25** shows the verification of calibration using the "1-point spike" method (log scale). FIG. 26 shows the verification of calibration using the $^{15}$ "1-point spike" method (linear scale). FIG. **27** shows dose-response of assays calibrated against a plasma sample with a very low TxB2 concentration. FIG. 28 shows use of spike recovery to eliminate calibration errors of the "C" parameter. FIG. 29 illustrates calculating differences in concentration between two samples. FIG. 30 illustrates an assay of plasma samples. FIG. 31 shows the time course of assay signal generation. FIG. **32** shows the impact of change in calibration parameter "A" on assay calibration. FIG. 33 shows how a reference therapeutic index would be computed. FIG. 34 illustrates computing the therapeutic index. FIG. **35** shows multiple regression analysis of the computed therapeutic index. FIG. 36 is an illustration of the relationship between measured drug, analyte and biomarker concentration and therapeutic index. FIG. **37** is an illustration of the application of this invention to minimize adverse drug reactions. FIG. 38 shows exemplary patient input values. FIG. 39 shows use of a therapeutic index to follow treatment progression in an autism patient. # DETAILED DESCRIPTION OF THE INVENTION System One aspect of the present invention is a system for 45 detecting an analyte in a sample of bodily fluid. The system is capable of detecting and/or quantifying analytes that are associated with specific biological processes, physiological conditions, disorders or stages of disorders. The subject system comprises a fluidic device having one 50 or more of the following components: a sample collection unit, an assay assembly, a reader assembly, and a communication assembly. The sample collection unit typically allows a sample of bodily fluid collected from a subject to react with reactants contained within the assay assembly for 55 generating a signal indicative of the presence of the analyte of interest. The reader assembly detects the signal, which is then transmitted via the communication assembly to an external device for further processing. Any bodily fluids suspected to contain an analyte of 60 interest can be used in conjunction with the subject system or devices. Commonly employed bodily fluids include but are not limited to blood, serum, saliva, urine, gastric and digestive fluid, tears, stool, semen, vaginal fluid, interstitial fluids derived from tumorous tissue, and cerebrospinal fluid. 65 In a preferred embodiment, the bodily fluids are used directly for detecting the analytes present therein with the 8 subject fluidic device without further processing. Where desired, however, the bodily fluids can be pre-treated before performing the analysis with the subject fluidic devices. The choice of pre-treatments will depend on the type of bodily fluid used and/or the nature of the analyte under investigation. For instance, where the analyte is present at low level in a sample of bodily fluid, the sample can be concentrated via any conventional means to enrich the analyte. Methods of concentrating an analyte include but are not limited to drying, evaporation, centrifugation, sedimentation, precipitation, and amplification. Where the analyte is a nucleic acid, it can be extracted using various lytic enzymes or chemical solutions according to the procedures set forth in Sambrook et al. ("Molecular Cloning: A Laboratory Manual"), or using nucleic acid binding resins following the accompanying instructions provided by manufactures. Where the analyte is a molecule present on or within a cell, extraction can be performed using lysing agents including but not limited to denaturing detergent such as SDS or non-denaturing detergent such as thesit, sodium deoxylate, triton X-100, and tween-20. The volume of bodily fluid to be used with a fluidic device of the present invention is generally less than about 500 microliters, typically between about 1 to 100 microliters. Where desired, a sample of 1 to 50 microliters or 1 to 10 microliters can be used for detecting an analyte using the subject fluidic device. A bodily fluid may be drawn from a patient and brought into the fluidic device in a variety of ways, including but not limited to, lancing, injection, or pipetting. In one embodiment, a lancet punctures the skin and draws the sample into the fluidic device using, for example, gravity, capillary action, aspiration, or vacuum force. The lancet may be part of the fluidic device, or part of a reader assembly, or as a stand alone component. Where needed, the lancet may be activated by a variety of mechanical, electrical, electromechanical, or any other known activation mechanism or any combination of such methods. In another embodiment where no active mechanism is required, a patient can simply 40 provide a bodily fluid to the fluidic device, as for example, could occur with a saliva sample. The collected fluid can be placed in the sample collection unit within the fluidic device. In yet another embodiment, the fluidic device comprises at least one microneedle which punctures the skin. The microneedle can be used with a fluidic device alone, or can puncture the skin after the fluidic device is inserted into a reader assembly. In some embodiments a microneedle is about the size of a human hair and has an integrated microreservoir or cuvette. The microneedle may painlessly penetrate the skin and draw a small blood sample. More preferably, the microneedle collects about 0.01 to about 1 microliter, preferably about 0.05 to about 0.5 microliters and more preferably about 0.1 to about 0.3 microliters of capillary blood. In some embodiments a microneedle may be constructed out of silicon and is about 10 to about 200 microns in diameter, preferably about 50 to about 150 microns in diameter, and most preferably about 100 microns in diameter, making their application to the skin virtually painless. To ensure that a capillary is actually struck by a needle, a plurality of microneedles may be used for sample collection. Such microneedles may be of the type marketed by Pelikan (Palo Alto, Calif.) and/or Kumetrix (Union City, Calif.). U.S. Pat. No. 6,503,231 discloses microneedles which may be used with the present invention. Microfabrication processes that may be used in making the microneedles disclosed herein include without limitation lithography; etching techniques such as wet chemical, dry, and photoresist removal; thermal oxidation of silicon; electroplating and electroless plating; diffusion processes such as boron, phosphorus, arsenic, and antimony diffusion; ion implantation; film deposition such as evaporation (filament, 5 electron beam, flash, and shadowing and step coverage), sputtering, chemical vapor deposition (CVD), epitaxy (vapor phase, liquid phase, and molecular beam), electroplating, screen printing, and lamination. See generally Jaeger, Introduction to Microelectronic Fabrication (Addison-Wesley Publishing Co., Reading Mass. 1988); Runyan, et al., Semiconductor Integrated Circuit Processing Technology (Addison-Wesley Publishing Co., Reading Mass. 1990); Proceedings of the IEEE Micro Electro Mechanical Systems Conference 1987-1998; Rai-Choudhury, ed., Handbook of Microlithography, Micromachining & Microfabrication (SPIE Optical Engineering Press, Bellingham, Wash. 1997). Alternatively, microneedles may be molded in silicon wafers and then plated using conventional wire cutting techniques 20 with nickel, gold, titanium or various other biocompatible metals. In some embodiments microneedles can be fashioned from biopolymers. In some embodiments microneedles may be fabricated and employed for the claimed devices according to the methods of Mukerjee et al., 25 Sensors and Actuators A: Physical, Volume 114, Issues 2-3, 1 Sep. 2004, Pages 267-275. In preferred embodiments a microneedle is only used once and then discarded. In some embodiments a mechanical actuator can insert and withdraw the microneedle from the patient, discard the used needle, and reload a new microneedle. The mechanical technologies developed and manufactured in very high volumes for very small disk drives have a similar set of motion and low cost requirements. In preferred embodiments the actuator is a MEMS (micro machined electromechanical system) device fabricated using semiconductor-like batch processes. Such actuators include without limitation nickel titanium alloy, pneumatic, or piezo electric devices. In some embodiments the 40 microneedles are about 1 micron to about 10 microns in thickness, preferably about 2 microns to about 6 microns in thickness, and most preferably about 4 microns in thickness. In some embodiments the microneedles are about 10 microns to about 100 microns in height, preferably about 30 45 microns to about 60 microns in height, and most preferably about 40 microns in height. FIG. 1 illustrates an exemplary system of the present invention. As illustrated, a fluidic device provides a bodily fluid from a patient and can be inserted into a reader 50 assembly. The fluidic device may take a variety of configurations and in some embodiments the fluidic device may be in the form of a cartridge. An identifier (ID) detector may detect an identifier on the fluidic device. The identifier detector communicates with a communication assembly via 55 a controller which transmits the identifier to an external device. Where desired, the external device sends a protocol stored on the external device to the communication assembly based on the identifier. The protocol to be run on the fluidic device may comprise instructions to the controller of 60 the reader assembly to perform the protocol on the fluidic device, including but not limited to a particular assay to be run and a detection method to be performed. Once the assay is performed on the fluidic device, a signal indicative of an analyte in the bodily fluid sample is generated and detected 65 by a detection assembly. The detected signal may then be communicated to the communications assembly, where it 10 can be transmitted to the external device for processing, including without limitation, calculation of the analyte concentration in the sample. FIG. 2 illustrates exemplary layers of a fluidic device according to the present invention prior to assembly of the fluidic device which is disclosed in more detail below. FIGS. 3 and 4 show a top and bottom view, respectively, of an exemplary fluidic device after the device has been assembled. The different layers are designed and assembled to form a three dimensional fluidic channel network. A sample collection unit 4 provides a sample of bodily fluid from a patient. As will be explained in further detail below a reader assembly comprises actuating elements (not shown) can actuate the fluidic device to start and direct the flow of a bodily fluid sample and assay reagents in the fluidic device. In some embodiments actuating elements first cause the flow of sample in the fluidic device 2 from sample collection unit 4 to reaction sites 6, move the sample upward in the fluidic device from point G' to point G, and then to waste chamber 8. The actuating elements then initiate the flow of reagents from reagent chambers 10 to point B', point C', and point D', then upward to points B, C, and D, respectively, then to point A, down to point A', and then to waste chamber 8 in the same manner as the sample. A sample collection unit 4 in a fluidic device 2 may provide a bodily fluid sample from a patient by any of the methods described above. If necessary, the sample may first be processed by diluting the bodily fluid in a dilution chamber, and or may be filtered by separating the plasma from the red blood cells in a filtration chamber. In some embodiments the sample collection unit, diluting chamber, and filtration chamber may be the same component, and in some embodiments they may be different components, or any two may be the same component and the other may be a separate component. In some embodiments there may be more than one sample collection unit in the fluidic device. In some embodiments it may be desirable to detect the presence of analytes on a cell surface, within a cell membrane, or inside a cell. The difficulty of detecting such analytes is that cells and other formed elements are particulate and components of cells do not readily interact with traditional assay chemistries which are designed to operate on analytes in solution. Cell-surface analytes react slowly and inefficiently with surface bound probes, and analytes inside the cell can not react at all with bound probes. To allow the detection of such analytes, in some embodiments the fluidic device may include a lysing assembly to lyse cells present in the bodily fluid sample. The lysing assembly may be incorporated with the sample collection unit, a dilution chamber, and/or a filtration chamber. In some embodiments the sample collection unit, dilution chamber, and lysing component are within the same element in the fluidic device. In some embodiments the lysing component may be incorporated with an assay reagent described below. Where desired, lysing agents may be impregnated and then dried into porous mats, glass fiber mats, sintered frits or particles such as Porex, paper, or other similar material. Lysing agents may be dried onto flat surfaces. Lysing agents may also be dissolved in liquid diluents or other liquid reagents. In preferred embodiments porous materials are used to store the lysing agents because they can store a lysing agent in dry form likely to be very stable. They also facilitate the mixing of the bodily fluid sample with the lysing agent by providing a tortuous path for the sample as it moves through the porous material. In preferred embodiments such porous materials have a disc shape with a diameter greater than its thickness. In some embodiments lysing agents may be dried onto porous materials using lyophilization, passive evaporation, exposure to warm dry flowing gas, or other known methods. A variety of lysing agents are available in the art and are suitable for use in connection with the subject fluidic device. 5 Preferred lysing agents are non-denaturing, such as non-denaturing detergents. Non-limiting examples of non-denaturing detergents include thesit, sodium deoxylate, triton X-100, and tween-20. The agents are preferably non-volatile in embodiments where the agents are impregnated into a solid porous materials. In some embodiments lysing agents are mixed together. Other materials may be mixed with the lysing agents to modify the lytic effects. Such exemplary materials may be, without limitation, buffers, salts, and proteins. In preferred embodiments lysing agents will be 15 used in amounts that are in excess of the minimum amount required to lyse cells. In some embodiments lysing agents will be used that can lyse both white and red cells. One of the advantages of the present invention is that any reagents necessary to perform an assay on a fluidic device 20 according to the present invention are preferably on-board, or housed within the fluidic device before, during, and after the assay. In this way the only inlet or outlet from the fluidic device is preferably the bodily fluid sample initially provided by the fluidic device. This design also helps create an 25 easily disposable fluidic device where all fluids or liquids remain in the device. The on-board design also prevents leakage from the fluidic device into the reader assembly which should remain free from contamination from the fluidic device. In a preferred embodiment there is at least one reagent chamber. In some embodiments there may be two, three, four, five, six, or more, or any number of reagent chambers as are necessary to fulfill the purposes of the invention. A reagent chamber is preferably in fluid communication with 35 at least one reaction site, and when the fluidic device is actuated as described herein, reagents contained in said reagent chambers are released into the fluidic channels within the fluidic device. Reagents according to the present invention include without limitation wash buffers, enzyme substrates, dilution buffers, conjugates, enzyme-labeled conjugates, DNA amplifiers, sample diluents, wash solutions, sample pretreatment reagents including additives such as detergents, polymers, chelating agents, albumin-binding reagents, 45 enzyme inhibitors, enzymes, anticoagulants, red-cell agglutinating agents, antibodies, or other materials necessary to run an assay on a fluidic device. An enzyme conjugate can be either a polyclonal antibody or monoclonal antibody labeled with an enzyme that can yield a detectable signal 50 upon reaction with an appropriate substrate. Non-limiting examples of such enzymes are alkaline phosphatase and horseradish peroxidase. In some embodiments the reagents comprise immunoassay reagents. In some embodiments a reagent chamber contains 55 approximately about 50 $\mu$ l to about 1 ml of fluid. In some embodiments the chamber may contain about 100 $\mu$ l of fluid. The volume of liquid in a reagent chamber may vary depending on the type of assay being run or the sample of bodily fluid provided. In some embodiments the reagents are 60 initially stored dry and liquified upon initiation of the assay being run on the fluidic device. FIGS. **5** and **6** illustrate an exemplary embodiment of a sealed reagent chamber. FIG. **5** shows a top, side, and bottom view of a reagent chamber. A top layer **11** contains 65 a plurality of bubbles or pouches **13**. A bottom layer **15** has a bottom surface that is bonded to the fluidic device base **17** 12 as shown in FIG. 6. The bottom layer 15 has a plurality of fluidic channels 19 dispersed through the entire surface, where each channel traverses the bottom layer 15. The fluid in the reagent chamber is contained within the chamber by pressure burstable seal 21 between the fluidic channel 19 and the chamber 13. The burstable seal 21 is designed such that at a pre-determined pressure the seal bursts allowing the fluid in the chamber 13 to flow out into a fluidic channel 19. FIG. 7 shows an exemplary process of filling the reagent chambers 13 with, for example, reagents. Reagent chambers 13 may be filled with fluid using a fill channel and a vacuum draw channel. The process of filling the reagents involves first removing all the air from the chamber. This is done by drawing a vacuum through the vacuum draw channel. Once the vacuum is drawn, a permanent seal is placed between the fill channel and the vacuum draw channel. Next, required reagents are dispensed into the chamber through the fill channel. Then, a permanent seal is placed between the chamber and the fill channel. This ensures that when the chamber is compressed, the fluid can flow in only one direction, towards the burstable seal. If the compression imparts a pressure larger than the burst pressure of seal, the seal bursts and the fluid flows into the fluidic channel. FIGS. 8 and 9 illustrate an embodiment of a fluidic device in operation with actuating elements as described herein. Fluidic device 2 contains a reagent chamber 10 and a layer of burstable foil 12 enclosing the reagent chamber. Above the burstable foil 12 is a portion of the microfluidic circuit 14. A tough, but elastomeric top cover 16 acts as the top layer of the fluidic device 2. The reader assembly includes a valve actuation plate 18. Securely attached to the plate 18 is a non-coring needle 20 such that when the plate is lowered, the sharp edge of the needle contacts the elastomeric cover 16. The top cover could also be made of flexible silicone material that would act as a moisture impermeable seal. This embodiment also provides a solution to liquid evaporation and leakage from a fluidic device by isolating any liquid reagents in the fluidic device from any dry reagents until the assay is initiated. In preferred embodiments the reagent chamber and sample collection unit are fluidly connected to reaction sites where bound probes can detect an analyte of interest in the bodily fluid sample using the assay. A reaction site could then provide a signal indicative of the presence of the analyte of interest, which can then be detected by a detection device described in detail herein below. In some embodiments the reactions sites are flat but they may take on a variety of alternative surface configurations. The reaction site preferably forms a rigid support on which a reactant can be immobilized. The reaction site surface is also chosen to provide appropriate light-absorbing characteristics. For instance, the reaction site may be functionalized glass, Si, Ge, GaAs, GaP, SiO<sub>2</sub>, SiN<sub>4</sub>, modified silicon, or any one of a wide variety of gels or polymers such as (poly)tetrafluoroethylene, (poly)vinylidenedifluoride, polystyrene, polycarbonate, polypropylene, or combinations thereof. Other appropriate materials may be used in accordance with the present invention. A reactant immobilized at a reaction site can be anything useful for detecting an analyte of interest in a sample of bodily fluid. For instance, such reactants include without limitation nucleic acid probes, antibodies, cell membrane receptors, monoclonal antibodies and antisera reactive with a specific analyte. Various commercially available reactants such as a host of polyclonal and monoclonal antibodies specifically developed for specific analytes can be used. One skilled in the art will appreciate that there are many ways of immobilizing various reactants onto a support where reaction can take place. The immobilization may be covalent or noncovalent, via a linker moiety, or tethering them to an immobilized moiety. These methods are well 5 known in the field of solid phase synthesis and micro-arrays (Beier et al., Nucleic Acids Res. 27:1970-1-977 (1999). Non-limiting exemplary binding moieties for attaching either nucleic acids or proteinaceous molecules such as antibodies to a solid support include streptavidin or avidin- 10 lbiotin linkages, carbamate linkages, ester linkages, amide, thiolester, (N)-functionalized thiourea, functionalized maleimide, amino, disulfide, amide, hydrazone linkages, and among others. In addition, a silyl moiety can be attached to a nucleic acid directly to a substrate such as glass using 15 methods known in the art. In some embodiments there are more than one reaction sites which can allow for detection of multiple analytes of interest from the same sample of bodily fluid. In some embodiments there are 2, 3, 4, 5, 6, or more reaction sites, 20 or any other number of reaction sites as may be necessary to carry out the intent of the invention. In embodiments with multiple reaction sites on a fluidic device, each reaction site may be immobilized with a reactant different from a reactant on a different reaction site. 25 In a fluidic device with, for example, three reaction sites, there may be three different probes, each bound to a different reaction site to bind to three different analytes of interest in the sample. In some embodiments there may be different reactants bound to a single reaction site if, for example, a 30 CCD with multiple detection areas were used as the detection device, such that multiple different analytes could be detected in a single reaction site. The capability to use multiple reaction sites in addition to multiple different probes on each reaction site enables the high-throughput 35 characteristics of the present invention. The present invention allows for the detection of multiple analytes on the same fluidic device. If assays with different luminescent intensities are run in adjacent reaction sites, photons (signals that emanate from the reactions) may travel 40 from one reaction site to an adjacent reaction site, as reaction sites may be constructed of materials that allow photons to travel through the fluidic channels that connect the sites. This optical cross talk may compromise the accuracy of the detected photons. FIGS. 14B and 14C illustrate different 45 embodiments of this invention that can eliminate or reduce the amount of optical cross-talk. Non-linear channels 22 will not allow photons (light) to pass through. Hence, embodiments such as those shown in FIGS. 14B and 14C would not allow signals from a reaction site to contaminate a signal 50 produced from an adjacent site from which a detection device may be detecting. Additionally, the edges or walls of a reaction site may be constructed using optically opaque materials so that light will not escape the wells. In some embodiments the reaction sites are white or opaque. In some embodiments, unbound conjugates may need to be washed from a reaction site to prevent unbound conjugates from activating the substrate and producing and inaccurate signal. It may be difficult to remove conjugates sticking to the edges of the reaction sites in such a fluidic 60 device if, for example, there is not an excess of a wash solution. To decrease the signal contributed from unbound conjugates stuck to the edge of a reaction site, it may be advantageous to expand the reaction site edge or wall radius in order to distance stuck conjugate from the desired actual 65 detection area, represented by bound reactant. FIGS. 15A and 15B illustrates this concept. Reaction site 6 contains 14 reaction surface 24 and edge or wall surface 26. In FIG. 15B, an edge surface 26 is shown at a greater distance from the center of the reaction site 6 than is the edge surface of the prior art design. This allows unbound conjugates to adhere to the edge surfaces and be distanced from bound conjugates, which are concentrated closer to the center of the reaction site 6. In preferred embodiments of the invention the fluidic device includes at least one waste chamber to trap or capture all liquids after they have been used in the assay. In preferred embodiments, there is more than one waste chamber, at least one of which is to be used with a calibration assembly described herein below. On-board waste chambers also allow the device to be easily disposable. The waste chamber is preferably in fluidic communication with at least one reaction site. At least one of these channels will typically have small cross sectional dimensions. In some embodiments the dimensions are from about 0.01 mm to about 5 mm, preferably from about 0.03 mm to about 3 mm, and more preferably from about 0.05 mm to about 2 mm. Fluidic channels in the fluidic device may be created by, for example without limitation, precision injection molding, laser etching, or any other technique known in the art to carry out the intent of the invention. One of the common problems encountered in a microfluidic based assay system is the presence of air or gas bubbles. It is extremely difficult to remove a bubble once it is trapped within a fluidic channel. Bubbles present anywhere in the fluidic circuit, particularly in the reaction sites can compromise the assay capabilities. A bubble may end up occupying part of all of the surface area of a reaction site. Consequently the reader may end up reading a muted signal or no signal at all. FIG. 16 illustrates an embodiment where a bubble could be trapped in a filter 28 before it reaches a reaction site 6. A bubble trapper 28 can be positioned between a sample collection unit 4 and reaction site 6. The bubble trapper can have such a geometry that the bubbles tend to migrate towards the edges of this surface and remain stuck at that service, thereby not entering into the reaction sites. To ensure that a given photon count produced at a reaction site correlates with an accurate concentration of an analyte of interest in a sample, it is preferably advantageous to calibrate the fluidic device before detecting the photons. Calibrating a fluidic device at the point of manufacturing for example may be insufficient to ensure an accurate analyte concentration is determined because a fluidic device may be shipped prior to use and may undergo changes in temperature, for example, so that a calibration performed at manufacturing does not take into effect any subsequent changes to the structure of the fluidic device or reagents contained therein. In a preferred embodiment of the present invention, a fluidic device has a calibration assembly that mimics the assay assembly in components and design except that a sample is not introduced into the calibration assembly. Referring to FIGS. 3 and 4, a calibration assembly occupies about half of the fluidic device 2 and includes reagent chambers 32, reactions sites 34, a waste chamber 36, and fluidic channels 38. Similar to the assay assembly, the number of reagent chambers and reaction sites may vary depending on the assay being run on the fluidic device and the number of analytes being detected. Where desired, a sensor for assessing the reliability of an assay for an analyte in a bodily fluid with the use of the subject fluidic device can be provided together with the fluidic device, the reader and/or within the packaging of the subject system. The sensor is capable of detecting a change in operation parameters under which the subject system normally operates. The operation parameters include but are not limited to temperature, humidity, and pressure, which may affect the performance of the present system. A fluidic device and reader assembly may, after manu- 5 facturing, be shipped to the end user, together or individually. As a reader assembly is repeatedly used with multiple fluidic devices, it may be necessary to have sensors on both the fluidic device and reader assembly to detect such changes during shipping, for example. During shipping, pressure or temperature changes can impact the performance of a number of components of the present system, and as such a sensor located on either the fluidic device or reader assembly can relay these changes to, for example, the external device so that adjustments can be made during calibration or during data processing on the external device. For example, if the pressure of a fluidic device dropped to a certain level during shipping, a sensor located on the fluidic device could detect this change and convey this 20 information to the reader assembly when it is inserted into the reader assembly by the user. There may be an additional detection device in the reader assembly to perform this, or such a device may be incorporated into another system component. In some embodiments this information may be 25 wirelessly transmitted to either the reader assembly or the external device. Likewise, a sensor in the reader assembly can detect similar changes. In some embodiments, it may be desirable to have a sensor in the shipping packaging as well, either instead of in the system components or in addition 30 Manufacturing of the fluidic channels may generally be carried out by any number of microfabrication techniques that are well known in the art. For example, lithographic techniques are optionally employed in fabricating, for 35 example, glass, quartz or silicon substrates, using methods well known in the semiconductor manufacturing industries such as photolithographic etching, plasma etching or wet chemical etching. Alternatively, micromachining methods such as laser drilling, micromilling and the like are option- 40 ally employed. Similarly, for polymeric substrates, well known manufacturing techniques may also be used. These techniques include injection molding or stamp molding methods where large numbers of substrates are optionally produced using, for example, rolling stamps to produce large 45 sheets of microscale substrates or polymer microcasting techniques where the substrate is polymerized within a micromachined mold. In some embodiments at least one of the different layers of the fluidic device may be constructed of polymeric 50 substrates. Non limiting examples of polymeric materials include polystyrene, polycarbonate, polypropylene, polydimethysiloxanes (PDMS), polyurethane, polyvinylchloride (PVC), and polysulfone. The fluidic device may be manufactured by stamping, 55 thermal bonding, adhesives or, in the case of certain substrates, for example, glass, or semi-rigid and non-rigid polymeric substrates, a natural adhesion between the two components. In some embodiments the fluidic device is manufactured by ultrasonic or acoustic welding. FIG. 2 shows one embodiment of the invention in which fluidic device 2 is comprised of 7 layers. Features as shown are, for example, cut in the polymeric substrate such that when the layers are properly positioned when assembly will form a fluidic network. In some embodiments more or fewer 65 layers may be used to construct a fluidic device to carry out the purpose of the invention. 16 One objective of the present invention is to prevent fluid inside a fluidic device from contacting the components of a reader assembly which may need to remain dry and or uncontaminated, and also to prevent contamination to a detection device within the reader assembly. A leak in the fluidic device could result in liquids, for example reagents or waste, escaping from the fluidic device and contaminating the reader. In other embodiments a liquid absorbing material, such as polymeric materials found in diapers, could be placed within a portion of the fluidic channel or waste chamber to absorb the waste liquid. A non-limiting example of such a polymer is sodium polyacrylate. Such polymers can absorb fluids hundreds of times their weight. Hence, only minute quantities of such polymeric materials may be required to accomplish the goal of absorbing leaked fluids. In some embodiments a waste chamber is filled with a superabsorbent material. In some embodiments leaked liquid may be converted into a gel or other solid or semi-solid Another objective of the present system is to provide a fluidic device that can run a variety of assays on a fluidic device, regardless of the analyte being detected from a bodily fluid sample. A protocol dependent on the identity of the fluidic device may be transferred from an external device where it can be stored to a reader assembly to enable the reader assembly to carry out the specific protocol on the fluidic device. In preferred embodiments, the fluidic device has an identifier (ID) that is detected or read by an identifier detector described herein. The identifier can then be communicated to a communication assembly, where it can then be transferred or transmitted to an external device. In some embodiments the identifier may be a bar code identifier with a series of black and white lines, which can be read by an identifier detector such as a bar code reader, which are well known. Other identifiers could be a series of alphanumerical values, colors, raised bumps, or any other identifier which can be located on a fluidic device and be detected or read by an identifier detector. In some embodiments the identifier may comprise a storage or memory device and can transmit information to an identification detector. In some embodiments both techniques may be Once a bodily fluid sample is provided to a fluidic device, it is inserted in a reader assembly. In some embodiments the fluidic device is partially inserted manually, and then a mechanical switch in the reader assembly automatically properly positions the fluidic device inside the reader assembly. Any other mechanism known in the art for inserting a disk or cartridge into a device may be used as well. In some embodiments only manual insertion may be required. In some embodiments the reader assembly comprises an identifier detector for detecting or reading an identifier on the fluidic device, a controller for automatically controlling the detection assembly and also mechanical components of the reader assembly, for example, pumps and/or valves for controlling or directing fluid through the fluidic device, a detection device for detecting a signal created by an assay run on the fluidic device, and a communication assembly for communicating with an external device. An identifier detector detects an identifier on the fluidic device which is communicated to a communication assembly. In some embodiments the identifier detector can be a bar code scanner-like device, reading a bar code on a fluidic device. The identifier detector may also be an LED that emits light which can interact with an identifier which reflects light and is measured by the identifier detector to determine the identity of a fluidic device. In preferred embodiments the reader assembly houses a controller which controls a pump and a series of valves to control and direct the flow of liquid within the fluidic device. In some embodiments the reader assembly may comprises multiple pumps. The sample and reagents are preferably 5 pulled through the fluidic channels by a vacuum force created by sequentially opening and closing at least one valve while activating a pump within the reader assembly. Methods of using at least one valve and at least one pump to create a vacuum force are well known. While a negative 10 pulling force may be used, a positive pushing force may also be generated by at least one pump and valve according to the present invention. In other embodiments movement of fluid on the fluidic device may be by electro-osmotic, capillary, piezoelectric, or microactuator action. FIGS. 8 and 9 illustrate an exemplary sequence to initiate the flow of a reagent within the fluidic device. An actuation plate 18 in the reader assembly comprises a non-coring needle or pin 20 which when lowered flexes the top cover 16, as it is preferably made of strong, flexible elastomeric 20 material. However, the easily rupturable foil 12 then ruptures due to the stress induced by the flexing of top cover 16. Valves located downstream to the reagent chamber puncture different areas of foil in the fluidic device and can then work in tandem with a pump within the reader assembly to create 25 a vacuum force to pull the reagent out of the reagent chamber 6 into a fluidic channel and then direct the flow of the reagent to a reaction site. At least one valve is preferably fluidically connected to a pump housed within the reader assembly. The non-coring needle or pin 20 is removed from 30 the fluidic device when the device is removed from the reader assembly. One of the advantages of this embodiment is that no on-chip pump is required, which, at least, decreases the size and cost of the fluidic device, and allows the device to be disposable. A reaction assembly preferably houses a detection assembly for detecting a signal produced by at least one assay on the fluidic device. FIG. 1 illustrates an exemplary position of a detection device of the present invention in relation to the fluidic device which is below the fluidic device. The detection assembly may be above the fluidic device or at a different orientation in relation to the fluidic device based on, for example, the type of assay being performed and the detection mechanism being employed. In preferred embodiments an optical detector is used as 45 the detection device. Non-limiting examples include a photodiode, photomultiplier tube (PMT), photon counting detector, or charge-coupled device (CCD). In some embodiments a pin diode may be used. In some embodiments a pin diode can be coupled to an amplifier to create a detection 50 device with a sensitivity comperable to a PMT. Some assays may generate luminescence as described herein. In some embodiments chemiluminescence is detected. In some embodiments a detection assembly could include a plurality of fiber optic cables connected as a bundle to a CCD detector 55 or to a PMT array. The fiber optic bundle could be constructed of discrete fibers or of many small fibers fused together to form a solid bundle. Such solid bundles are commercially available and easily interfaced to CCD detectors. In some embodiments, the detection system may comprise non-optical detectors or sensors for detecting a particular parameter of a patient. Such sensors may include temperature, conductivity, potentiometric, and amperometric, for compounds that are oxidized or reduced, for 65 example, $\rm O_2$ , $\rm H_2O_2$ , and $\rm I_2$ , or oxidizable/reducible organic compounds. 18 A communication assembly is preferably housed within the reader assembly and is capable of transmitting and receiving information wirelessly from an external device. Such wireless communication may be bluetooth or RTM technology. Various communication methods can be utilized, such as a dial-up wired connection with a modem, a direct link such as a T1, ISDN, or cable line. In preferred embodiments a wireless connection is established using exemplary wireless networks such as cellular, satellite, or pager networks, GPRS, or a local data transport system such as Ethernet or token ring over a local area network. In some embodiments the information is encrypted before it is transmitted over a wireless network. In some embodiments the communication assembly may contain a wireless infrared communication component for sending and receiving information. In some embodiments the communication assembly can have a memory or storage device, for example localized RAM, in which the information collected can be stored. A storage device may be required if information can not be transmitted at a given time due to, for example, a temporary inability to wirelessly connect to a network. The information can be associated with the fluidic device identifier in the storage device. In some embodiments the communication assembly can retry sending the stored information after a certain amount of time. In some embodiments the memory device can store the information for a period of ten days before it is erased. In preferred embodiments an external device communicates with the communication assembly within the readers assembly. An external device can wirelessly communicate with a reader assembly, but can also communicate with a third party, including without limitation a patient, medical personnel, clinicians, laboratory personnel, or others in the health care industry. In some embodiments the external device can be a computer system, server, or other electronic device capable of storing information or processing information. In some embodiments the external device includes one or more computer systems, servers, or other electronic devices capable of storing information or processing information. In some embodiments an external device may include a database of patient information, for example but not limited to, medical records or patient history, clinical trial records, or preclinical trial records. In preferred embodiments, an external device stores protocols to be run on a fluidic device which can be transmitted to the communication assembly of a reader assembly when it has received an identifier indicating which fluidic device has been inserted in the reader assembly. In some embodiments a protocol can be dependent on a fluidic device identifier. In some embodiments the external device stores more than one protocol for each fluidic device. In other embodiments patient information on the external device includes more than one protocol. In preferred embodiments the external server stores mathematical algorithms to process a photon count sent from a communication assembly and in some embodiments to calculate the analyte concentration in a bodily fluid sample. In some embodiment the external device can include one or more servers as are known in the art and commercially available. Such servers can provide load balancing, task management, and backup capacity in the event of failure of one or more of the servers or other components of the external device, to improve the availability of the server. A server can also be implemented on a distributed network of storage and processor units, as known in the art, wherein the data processing according to the present invention reside on workstations such as computers, thereby eliminating the need for a server. A server can includes a database and system processes. A database can reside within the server, or it can reside on 5 another server system that is accessible to the server. As the information in a database may contains sensitive information, a security system can be implemented that prevents unauthorized users from gaining access to the database. One advantage of the present invention is that information 10 can be transmitted from the external device back to not only the reader assembly, but to other parties or other external devices, for example without limitation, a PDA or cell phone. Such communication can be accomplished via a wireless network as disclosed herein. In some embodiments 15 a calculated analyte concentration or other patient information can be sent to, for example but not limited to, medical personal or the patient. Method of Use The subject apparatus and systems provide an effective 20 means for high throughput and real-time detection of analytes present in a bodily fluid from a subject. The detection methods may be used in a wide variety of circumstances including identification and quantification of analytes that are associated with specific biological processes, physiological conditions, disorders or stages of disorders. As such, the subject apparatus and systems have a broad spectrum of utility in, e.g. drug screening, disease diagnosis, phylogenetic classification, parental and forensic identification. The subject apparatus and systems are also particularly useful for advancing preclinical and clinical stage of development of therapeutics, improving patient compliance, monitoring ADRs associated with a prescribed drug, and developing individualized medicine. Accordingly, in one embodiment, the present invention 35 provides a method of detecting an analyte in a bodily fluid from a subject comprises providing a fluidic device comprising at least one sample collection unit, an immunoassay assembly containing immunoassay reagents, a plurality of channels in fluid communication with said sample collection 40 unit and/or said immunoassay assembly; actuating said fluidic device and directing said immunoassay reagents within said fluidic device; allowing a sample of bodily fluid to react with said immunoassay reagents contained within said assay immunoassay assembly to yield a detectable 45 signal indicative of the presence of said analyte in said bodily fluid; and detecting said detectable signal generated from said analyte initially collected in said sample of bodily fluid. Preferably, a sample of bodily fluid of less than about 1 ml, preferably less than about 500 ul is used for one or 50 more of these applications. As used herein, the term "subject" or "patient" is used interchangeably herein, which refers to a vertebrate, preferably a mammal, more preferably a human. Mammals include, but are not limited to, murines, simians, humans, 55 farm animals, sport animals, and pets. In some embodiments a sample of bodily fluid can first be provided to the fluidic device by any of the methods described herein. The fluidic device can then be inserted into the reader assembly. An identification detector housed 60 within the reader assembly can detect an identifier of the fluidic device and communicate the identifier to a communication assembly, which is preferably housed within the reader assembly. The communication assembly then transmits the identifier to an external device which transmits a 65 protocol to run on the fluidic device based on the identifier to the communication assembly. A controller preferably 20 housed within the reader assembly controls actuating elements including at least one pump and one valve which interact with the fluidic device to control and direct fluid movement within the device. In some embodiments the first step of the assay is a wash cycle where all the surfaces within the fluidic device are wetted using a wash buffer. The fluidic device is then calibrated using a calibration assembly by running the same reagents as will be used in the assay through the calibration reaction sites, and then a luminescence signal from the reactions sites is detected by the detection means, and the signal is used in calibrating the fluidic device. The sample containing the analyte is introduced into the fluidic channel. The sample may be diluted and further separated into plasma or other desired component at a filter. The separated sample now flows through the reaction sites and analytes present therein will bind to reactants bound thereon. The plasma of sample fluid is then flushed out of the reaction wells into a waste chamber. Depending on the assay being run, appropriate reagents are directed through the reaction sites to carry out the assay. All the wash buffers and other reagents used in the various steps, including the calibration step, are collected in wash tanks. The signal produced in the reaction sites is then detected by any of the methods described herein. A variety of assays may be performed on a fluidic device according to the present invention to detect an analyte of interest in a sample. A wide diversity of labels are available in the art that can be employed for conducting the subject assays. In some embodiments labels are detectable by spectroscopic, photochemical, biochemical, immunochemical, or chemical means. For example, useful nucleic acid labels include 32P, 35S, fluorescent dyes, electron-dense reagents, enzymes, biotin, dioxigenin, or haptens and proteins for which antisera or monoclonal antibodies are available. A wide variety of labels suitable for labeling biological components are known and are reported extensively in both the scientific and patent literature, and are generally applicable to the present invention for the labeling of biological components. Suitable labels include radionucleotides, enzymes, substrates, cofactors, inhibitors, fluorescent moieties, chemiluminescent moieties, bioluminescent labels, calorimetric labels, or magnetic particles. Labeling agents optionally include, for example, monoclonal antibodies, polyclonal antibodies, proteins, or other polymers such as affinity matrices, carbohydrates or lipids. Detection proceeds by any of a variety of known methods, including spectrophotometric or optical tracking of radioactive or fluorescent markers, or other methods which track a molecule based upon size, charge or affinity. A detectable moiety can be of any material having a detectable physical or chemical property. Such detectable labels have been well-developed in the field of gel electrophoresis, column chromatograpy, solid substrates, spectroscopic techniques, and the like, and in general, labels useful in such methods can be applied to the present invention. Thus, a label includes without limitation any composition detectable by spectroscopic, photochemical, biochemical, immunochemical, electrical, optical thermal, or chemical means. In some embodiments the label is coupled directly or indirectly to a molecule to be detected such as a product, substrate, or enzyme, according to methods well known in the art. As indicated above, a wide variety of labels are used, with the choice of label depending on the sensitivity required, ease of conjugation of the compound, stability requirements, available instrumentation, and disposal provisions. Non radioactive labels are often attached by indirect means. Generally, a ligand molecule is covalently bound to a polymer. The ligand then binds to an anti-ligand molecule which is either inherently detectable or covalently bound to a signal system, such as a detectable enzyme, a fluorescent compound, or a chemiluminescent compound. A number of ligands and anti-ligands can be used. Where a ligand has a $\,^{5}$ natural anti-ligand, for example, biotin, thyroxine, and cortisol, it can be used in conjunction with labeled, anti-ligands. Alternatively, any haptenic or antigenic compound can be used in combination with an antibody. In some embodiments the label can also be conjugated directly to signal generating compounds, for example, by conjugation with an enzyme or fluorophore. Enzymes of interest as labels will primarily be hydrolases, particularly phosphatases, esterases and glycosidases, or oxidoreductases, particularly peroxidases. Fluorescent compounds include fluorescein and its derivatives, rhodamine and its derivatives, dansyl, and umbelliferone. Chemiluminescent compounds include luciferin, and 2,3-dihydrophthalazinediones, such as luminol. Methods of detecting labels are well known to those of skill in the art. Thus, for example, where the label is a radioactive label, means for detection include a scintillation counter or photographic film as in autoradiography. Where the fluorochrome with the appropriate wavelength of light and detecting the resulting fluorescence by, for example, microscopy, visual inspection, via photographic film, by the use of electronic detectors such as digital cameras, charge coupled devices (CCDs) or photomultipliers and phototubes, 30 or other detection device. Similarly, enzymatic labels are detected by providing appropriate substrates for the enzyme and detecting the resulting reaction product. Finally, simple colorimetric labels are often detected simply by observing the color associated with the label. For example, conjugated 35 gold often appears pink, while various conjugated beads appear the color of the bead. In some embodiments the detectable signal may be provided by luminescence sources. "Luminescence" is the term commonly used to refer to the emission of light from a 40 substance for any reason other than a rise in its temperature. In general, atoms or molecules emit photons of electromagnetic energy (e.g., light) when then move from an "excited state" to a lower energy state (usually the ground state); this process is often referred to as "radioactive decay". There are 45 many causes of excitation. If exciting cause is a photon, the luminescence process is referred to as "photoluminescence". If the exciting cause is an electron, the luminescence process is referred to as "electroluminescence". More specifically, electroluminescence results from the direct injection and 50 removal of electrons to form an electron-hole pair, and subsequent recombination of the electron-hole pair to emit a photon. Luminescence which results from a chemical reaction is usually referred to as "chemiluminescence". Lumito as "bioluminescence". If photoluminescence is the result of a spin-allowed transition (e.g., a single-singlet transition, triplet-triplet transition), the photoluminescence process is usually referred to as "fluorescence". Typically, fluorescence emissions do not persist after the exciting cause is removed 60 as a result of short-lived excited states which may rapidly relax through such spin-allowed transitions. If photoluminescence is the result of a spin-forbidden transition (e.g., a triplet-singlet transition), the photoluminescence process is usually referred to as "phosphorescence". Typically, phos- 65 phorescence emissions persist long after the exciting cause is removed as a result of long-lived excited states which may 22 relax only through such spin-forbidden transitions. A "luminescent label" may have any one of the above-described properties. Suitable chemiluminescent sources include a compound which becomes electronically excited by a chemical reaction and may then emit light which serves as the detectable signal or donates energy to a fluorescent acceptor. A diverse number of families of compounds have been found to provide chemiluminescence under a variety or conditions. One family of compounds is 2,3-dihydro-1,4-phthalazinedione. A frequently used compound is luminol, which is a 5-amino compound. Other members of the family include the 5-amino-6,7,8-trimethoxy- and the dimethylamino[ca] benz analog. These compounds can be made to luminesce with alkaline hydrogen peroxide or calcium hypochlorite and base. Another family of compounds is the 2,4,5-triphenylimidazoles, with lophine as the common name for the parent product. Chemiluminescent analogs include paradimethylamino and -methoxy substituents. Chemilumines-20 cence may also be obtained with oxalates, usually oxalyl active esters, for example, p-nitrophenyl and a peroxide such as hydrogen peroxide, under basic conditions. Other useful chemiluminescent compounds that are also known include -N-alkyl acridinum esters and dioxetanes. Alternatively, the label is a fluorescent label, it may be detected by exciting 25 luciferins may be used in conjunction with luciferase or lucigenins to provide bioluminescence. > In some embodiments immunoassays are run on the fluidic device. While competitive binding assays, which are well known in the art, may be run in some embodiments, in preferred embodiments a two-step method is used which eliminates the need to mix a conjugate and a sample before exposing the mixture to an antibody, which may be desirable when very small volumes of sample and conjugate are used, as in the fluidic device of the present invention. A two-step assay has additional advantages over the competitive binding assays when use with a fluidic device as described herein. It combines the ease of use and high sensitivity of a sandwich (competitive binding) immunoassay with the ability to assay small molecules. > In an exemplary two-step assay shown in FIG. 10, the sample containing analyte ("Ag") first flows over a reaction site containing antibodies ("Ab"). The antibodies bind the analyte present in the sample. After the sample passes over the surface, a solution with analyte conjugated to a marker ("labeled Ag") at a high concentration is passed over the surface. The conjugate saturates any of the antibodies that have not yet bound the analyte. Before equilibrium is reached and any displacement of pre-bound unlabelled analyte occurs, the high-concentration conjugate solution is washed off. The amount of conjugate bound to the surface is then measured by the appropriate technique, and the detected conjugate is inversely proportional to the amount of analyte present in the sample. An exemplary measuring technique for a two-step assay nescence produced by a living organism is usually referred 55 is a chemiluminescence enzyme immunoassay as shown in FIG. 11. As is known in the field, the marker can be a commercially available marker such as dioxitane-phosphate, which is not luminescent but becomes luminescent after hydrolysis by, for example, alkaline phosphatase. An enzyme such as alkaline phosphatase is also passed over the substrate to cause the marker to luminesce. In some embodiments the substrate solution is supplemented with enhancing agents such as, without limitation, fluorescein in mixed micelles, soluble polymers, or PVC which create a much brighter signal than the luminophore alone. Moreover, an alkaline phosphatase conjugate with a higher turnover number than that used in the commercial assay is employed. This allows signal generation to proceed much more rapidly and a higher overall signal is achieved. The increased sensitivity of the two-step chemiluminescent enzyme immunoassay (TOSCA) is illustrated in FIG. 12. FIG. 12 shows that for analytes in the picomolar concentration, TOSCA is able to 5 provide a more robust signal (higher sensitivity) than a competitive binding assay. Use of a two-step binding assay thus contributes to higher sensitivity capabilities of the present invention. Additionally, TOSCA is less sensitive to matrix effects 10 than other methodologies. This allows one to work with samples that have not been extensively pre-processed using standard laboratory techniques such as, for example, solid phase extraction and chromatography. The ability of TOSCA to assay less than ideal samples and maintain 15 desired sensitivity is illustrated in FIG. 13. Compared to competitive binding assay, for all sample preparations (and dilutions), TOSCA has better sensitivity than competitive binding. This is also illustrated in FIG. 17 where the sensitivity enhancement achieved using TOSCA is compared with the two-step assay. The term "analytes" according to the present invention includes without limitation drugs, prodrugs, pharmaceutical agents, drug metabolites, biomarkers such as expressed proteins and cell markers, antibodies, serum proteins, cholesterol, polysaccharides, nulceic acids, biological analytes, biomarker, gene, protein, or hormone, or any combination thereof. At a molecular level, the analytes can be polypeptide glycoprotein, polysaccharide, lipid, nucleic acid, and a combination thereof. Of particular interest are biomarkers are associated with a particular disease or with a specific disease stage. Such analytes include but are not limited to those associated with autoimmune diseases, obesity, hypertension, diabetes, neuronal and/or muscular degenerative diseases, cardiac diseases, endocrine disorders, any combinations thereof. Of also interest are biomarkers that are present in varying abundance in one or more of the body tissues including heart, liver, prostate, lung, kidney, bone marrow, blood, skin, bladder, brain, muscles, nerves, and selected tissues that are 40 affected by various disease, such as different types of cancer (malignant or non-metastatic), autoimmune diseases, inflammatory or degenerative diseases. Also of interest are analytes that are indicative of a microorganism. Exemplary microorganisms include but are 45 not limited to bacterium, virus, fungus and protozoa. Analytes that can be detected by the subject method also include blood-born pathogens selected from a non-limiting group that consists of *Staphylococcus epidermidis, Escherichia coli*, methicillin-resistant *Staphylococcus aureus* (MSRA), 50 *Staphylococcus aureus*, *Staphylococcus hominis*, *Enterococcus faecalis*, *Pseudomonas aeruginosa*, *Staphylococcus capitis*, *Staphylococcus warneri*, *Klebsiella pneumoniae*, *Haemophilus influnzae*, *Staphylococcus simulans*, *Streptococcus pneumoniae* and *Candida albicans*. Analytes that can be detected by the subject method also encompass a variety of sexually transmitted diseases selected from the following: gonorrhea (Neisseria gorrhoeae), syphilis (Treponena pallidum), clamydia (Clamyda tracomitis), nongonococcal urethritis (Ureaplasm urealyticum), yeast infection (Candida albicans), chancroid (Haemophilus ducreyi), trichomoniasis (Trichomonas vaginalis), genital herpes (HSV type I & II), HIV I, HIV II and hepatitis A, B, C, G, as well as hepatitis caused by TTV. Additional analytes that can be detected by the subject 65 methods encompass a diversity of respiratory pathogens including but not limited to *Pseudomonas aeruginosa*, methicillin-resistant Staphlococccus aureus (MSRA), Klebsiella pneumoniae, Haemophilis influenzae, Staphylococcus aureus, Stenotrophomonas maltophilia, Haemophilis parainfluenzae, Escherichia coli, Enterococcus faecalis, Serratia marcescens, Haemophilis parahaemolyticus, Enterococcus cloacae, Candida albicans, Moraxiella catarrhalis, Streptococcus pneumoniae, Citrobacter freundii, Enterococcus faecium, Klebsella oxytoca, Pseudomonas fluorscens, Neiseria meningitidis, Streptococcus pyogenes, Pneumocystis carinii, Klebsella pneumoniae Legionella pneumophila, Mycoplasma pneumoniae, and Mycobacterium tuberculosis. Listed below are additional exemplary markers according to the present invention: Theophylline, CRP, CKMB, PSA, Myoglobin, CA125, Progesterone, TxB2, 6-keto-PGF-1-alpha, and Theophylline, Estradiol, Lutenizing hormone, High sensitivity CRP, Triglycerides, Tryptase, Low density lipoprotein Cholesterol, High density lipoprotein Cholesterol, Cholesterol, IGFR. Exemplary liver markers include without limitation LDH, (LD5), (ALT), Arginase 1 (liver type), Alpha-fetoprotein (AFP), Alkaline phosphatase, Alanine aminotransferase, Lactate dehydrogenase, and Bilirubin. Exemplary kidney markers include without limitation TNFa Receptor, Cystatin C, Lipocalin-type urinary prostaglandin D, synthatase (LPGDS), Hepatocyte growth factor receptor, Polycystin 2, Polycystin 1, Fibrocystin, Uromodulin, Alanine, aminopeptidase, N-acetyl-B-D-glucosaminidase, Albumin, and Retinol-binding protein (RBP). Exemplary heart markes include without limitation Troponin I (TnI), Troponin T (TnT), CK, CKMB, Myoglobin, Fatty acid binding protein (FABP), CRP, D-dimer, S-100 protein, BNP, NT-proBNP, PAPP-A, Myeloperoxidase (MPO), Glycogen phosphorylase isoenzyme BB (GPBB), Thrombin Activatable Fibrinolysis Inhibitor (TAFI), Fibrinogen, Ischemia modified albumin (IMA), Cardiotrophin-1, and MLC-I (Myosin Light Chain-I). Exemplary pancrease markers include without limitation Amylase, Pancreatitis-Associated protein (PAP-1), and Regeneratein proteins (REG). Exemplary muscle tissue markers include without limitation Myostatin. Exemplary blood markers include without limitation Erythopoeitin (EPO). Exemplary bone markers include without limitation, Cross-linked N-telopeptides of bone type I collagen (NTx) Carboxyterminal cross-linking telopeptide of bone collagen, Lysyl-pyridinoline (deoxypyridinoline), Pyridinoline, Tartrate-resistant acid phosphatase, Procollagen type I C propeptide, Procollagen type I N propeptide, Osteocalcin (bone gla-protein), Alkaline phosphatase, Cathepsin K, COMP (Cartillage Oligimeric Matrix Protein), Osteocrin Osteoprotegerin (OPG), RANKL, sRANK, TRAP 5 (TRACP 5), Osteoblast Specific Factor 1 (OSF-1, Pleiotrophin), Soluble cell adhesion molecules, sTfR, sCD4, sCD8, sCD44, and Osteoblast Specific Factor 2 (OSF-2, Periostin). In some embodiments markers according to the present invention are disease specific. Exemplary cancer markers include without limitation PSA (total prostate specific antigen), Creatinine, Prostatic acid phosphatase, PSA complexes, Prostrate-specific gene-1, CA 12-5, Carcinoembryonic Antigen (CEA), Alpha feto protein (AFP), hCG (Human chorionic gonadotropin), Inhibin, CAA Ovarian C1824, CA 27.29, CA 15-3, CAA Breast C1924, Her-2, Pancreatic, CA 19-9, Carcinoembryonic Antigen, CAA pancreatic, Neuron-specific enolase, Angiostatin DcR3 (Soluble decoy receptor 3), Endostatin, Ep-CAM (MK-1), Free Immunoglobulin Light Chain Kappa, Free Immunoglobulin Light Chain Lambda, Herstatin, Chromogranin A, Adrenomedullin, Integrin, Epidermal growth factor receptor, Epidermal growth factor receptor-Tyrosine kinase, Pro-adrenomedullin N-terminal 20 peptide, Vascular endothelial growth factor, Vascular endothelial growth factor receptor, Stem cell factor receptor, c-kit/KDR, KDR, and Midkine. Exemplary infectious disease markers include without limitation Viremia, Bacteremia, Sepsis, PMN Elastase, PMN elastase/ $\alpha$ 1-PI complex, Surfactant Protein D (SP-D), HBVc antigen, HBVs antigen, Anti-HBVc, Anti-HIV, T-supressor cell antigen, T-cell antigen ratio, T-helper cell antigen, Anti-HCV, Pyrogens, p24 antigen, Muramyl-dipeptide. Exemplary diabetes markers include without limitation C-Peptide, Hemoglobin A1c, Glycated albumin, Advanced glycosylation end products (AGEs), 1,5-anhydroglucitol, Gastric Inhibitory Polypeptide, Glucose, Hemoglobin, ANGPTL3 and 4. Exemplary inflammation markers include without limita- 20 tion Rheumatoid factor (RF), Antinuclear Antibody (ANA), C-reactive protein (CRP), Clara Cell Protein (Uteroglobin). Exemplary allergy markers include without limitation Total IgE and Specific IgE. Exemplary autism markers include without limitation <sup>25</sup> Ceruloplasmin, Metalothioneine, Zinc, Copper, B6, B12, Glutathione, Alkaline phosphatase, and Activation of apoalkaline phosphatase. Exemplary coagulation disorders markers include without limitation b-Thromboglobulin, Platelet factor 4, Von Willebrand factor. In some embodiments a marker may be therapy specific. COX inhibitors include without limitation TxB2 (Cox-1), 6-keto-PGF-1-alpha (Cox 2), 11-Dehydro-TxB-1a (Cox-1). 35 Other markers of the present include without limitation Leptin, Leptin receptor, and Procalcitonin, Brain 5100 protein, Substance P, 8-Iso-PGF-2a. Exemplary geriatric markers include without limitation, Neuron-specific enolase, GFAP, and S100B. Exemplary markers of nutritional status include without limitation Prealbumin, Albumin, Retinol-binding protein (RBP), Transferrin, Acylation-Stimulating Protein (ASP), Adiponectin, Agouti-Related Protein (AgRP), Angiopoietin-like Protein 4 (ANGPTL4, FIAF), C-peptide, AFABP (Adipocyte Fatty Acid Binding Protein, FABP4) Acylation-Stimulating Protein (ASP), EFABP (Epidermal Fatty Acid Binding Protein, FABP5), Glicentin, Glucagon, Glucagon-Like Peptide-1, Glucagon-Like Peptide-2, Ghrelin, Insulin, Leptin, Leptin Receptor, PYY, RELMs, Resistin, amd sTfR 50 (soluble Transferrin Receptor). Exemplary markers of Lipid metabolism include without limitation Apo-lipoproteins (several), Apo-A1, Apo-B, Apo-C-CII, Apo-D, Apo-E. Exemplary coagulation status markers include without 55 limitation Factor II: Fibrinogen, Factor II: Prothrombin, Factor III: Tissue factor, Factor IV: Calcium, Factor V: Proaccelerin, Factor VI, Factor VII: Proconvertin, Factor VIII: Anti-hemolytic factor, Factor IX: Christmas factor, Factor X: Stuart-Prower factor, Factor XI: Plasma thromboplastin antecedent, Factor XII: Hageman factor, Factor XIII: Fibrin-stabilizing factor, Prekallikrein, High-molecular-weight kininogen, Protein C, Protein S, D-dimer, Tissue plasminogen activator, Plasminogen, a2-Antiplasmin, Plasminogen activator inhibitor 1 (PAI1). Exemplary monoclonal antibodies include those for EGFR, ErbB2, and IGF1R. 26 Exemplary tyrosine kinase inhibitors include without limitation Abl, Kit, PDGFR, Src, ErbB2, ErbB 4, EGFR, EphB, VEGFR1-4, PDGFRb, FLt3, FGFR, PKC, Met, Tie2, RAF, and TrkA. Exemplary Serine/Threoline Kinas Inhibitors include without limitation AKT, Aurora A/B/B, CDK, CDK (pan), CDK1-2, VEGFR2, PDGFRb, CDK4/6, MEK1-2, mTOR, and PKC-beta. GPCR targets include without limitation Histamine Receptors, Serotonin Receptors, Angiotensin Receptors, Adrenoreceptors, Muscarinic Acetylcholine Receptors, GnRH Receptors, Dopamine Receptors, Prostaglandin Receptors, and ADP Receptors. In a separate embodiment, the present invention provides a method of monitoring more than one pharmacological parameter useful for assessing efficacy and/or toxicity of a therapeutic agent. The method comprises subjecting a sample of bodily fluid from a subject administered with the therapeutic agent to a fluidic device for monitoring said more than one pharmacological parameter, said fluidic device comprising at least one sample collection unit, and an assay assembly comprising reaction reagents; actuating said fluidic device and directing said immunoassay reagents within said fluidic device; allowing said sample of bodily fluid to react with immunoassay reagents to yield detectable signals indicative of the values of the more than one pharmacological parameter from said sample; and detecting said detectable signal generated from said sample of bodily fluid. Where desired, the method further involves repeating the steps at a time interval prompted by a wireless signal communicated to the subject. For the purposes of this invention, a "therapeutic agent" is intended to include any substances that have therapeutic utility and/or potential. Such substances include but are not limited to biological or chemical compounds such as a simple or complex organic or inorganic molecules, peptides, proteins (e.g. antibodies) or a polynucleotides (e.g. antisense). A vast array of compounds can be synthesized, for example polymers, such as polypeptides and polynucleotides, and synthetic organic compounds based on various core structures, and these are also included in the term "therapeutic agent". In addition, various natural sources can provide compounds for screening, such as plant or animal extracts, and the like. It should be understood, although not always explicitly stated that the agent is used alone or in combination with another agent, having the same or different biological activity as the agents identified by the inventive screen. The agents and methods also are intended to be combined with other therapies. Pharmacodynamic (PD) parameters according to the present invention include without limitation physical parameters such as temperature, heart rate/pulse, blood pressure, and respiratory rate, and biomarkers such as proteins, cells, and cell markers. Biomarkers could be indicative of disease or could be a result of the action of a drug. Pharmacokinetic (PK) parameters according to the present invention include without limitation drug and drug metabolite concentration. Identifying and quantifying the PK parameters in real time from a sample volume is extremely desirable for proper safety and efficacy of drugs. If the drug and metabolite concentrations are outside a desired range and/or unexpected metabolites are generated due to an unexpected reaction to the drug, immediate action may be necessary to ensure the safety of the patient. Similarly, if any of the pharmacodynamic (PD) parameters fall outside the desired range during a treatment regime, immediate action may have to be taken In preferred embodiments physical parameter data is stored in or compared to store profiles of physical parameter data in a bioinformatics system which may be on an external device incorporating pharmacogenomic and pharmacokinetic data into its models for the determination of toxicity 5 and dosing. Not only does this generate data for clinical trials years prior to current processes but also enables the elimination of current disparities between apparent efficacy and actual toxicity of drugs through real-time continuous monitoring. During the go/no go decision process in clinical 10 studies, large scale comparative population studies can be conducted with the data stored on the database. This compilation of data and real-time monitoring allows more patients to enter clinical trials in a safe fashion earlier than currently allowed. In another embodiment biomarkers dis- 15 covered in human tissue studies can be targeted by the device for improved accuracy in determining drug pathways and efficacy in cancer studies. In another embodiment, the present invention provides a method of detecting at least two distinct analytes of different 20 concentrations in a bodily fluid from a subject comprises providing a fluidic device comprising a sample collection unit, an assay assembly, and a plurality of channels in fluid communication with said sample collection unit and/or said assay assembly; allowing a sample of bodily fluid to react 25 with a plurality of reactants contained in said assay assembly to yield signals indicative of the concentrations of said at least two analytes; and detecting said signals that are indicative of the presence or absence of the at least two distinct analytes, wherein said signals are detectable over a range of 30 orders of magnitude. Currently, a need exists for the detecting more than one analyte where the analytes are present in widely varying concentration range, for example, one analyte is in the pg/ml concentration and another is in the ng/ml concentration. 35 TOSCA described herein has the ability to simultaneously assay analytes that are present in the same sample in a wide concentration range. FIG. 18 shows one embodiment where two analytes, prostacyclin metabolite and thromboxane metabolite, have been identified and quantified and their 40 concentrations are different by more than 3 orders of magnitude. Another advantage for being able to detect concentrations of different analytes present in a wide concentration range is the ability to relate the ratios of the concentration of these analytes to safety and efficacy of multiple drugs 45 administered to a patient. For example, unexpected drugdrug interactions can be a common cause of adverse drug reactions. A real-time, concurrent measurement technique for measuring different analytes would help avoid the potentially disastrous consequence of adverse drug-drug interac- 50 Being able to monitoring the rate of change of an analyte concentration or PD or PK over a period of time in a single subject, or performing trend analysis on the concentration, PD, or PK, whether they are concentrations of drugs or their 55 metabolites, can help prevent potentially dangerous situations. For example, if glucose were the analyte of interest, the concentration of glucose in a sample at a given time as well as the rate of change of the glucose concentration over a given period of time could be highly useful in predicting and avoiding, for example, hypoglycemic events. Such trend analysis has widespread beneficial implications in drug dosing regimen. When multiple drugs and their metabolites are concerned, the ability to spot a trend and take proactive measures is often desirable. Accordingly, the present invention provides a method of performing a trend analysis on the concentration of an 28 analyte in a subject. The method comprise a) providing a fluidic device comprising at least one sample collection unit, an immunoassay assembly containing immunoassay reagents, a plurality of channels in fluid communication with said sample collection unit and/or said immunoassay assembly; b) actuating said fluidic device and directing said immunoassay reagents within said fluidic device; c) allowing a sample of bodily fluid of less than about 500 ul to react with said immunoassay reagents contained within said assay immunoassay assembly to yield a detectable signal indicative of the presence of said analyte in said sample; d) detecting said detectable signal generated from said analyte collected in said sample of bodily fluid; and e) repeating steps a) through d) for a single patient over a period of time to detect concentrations of said anayte, thereby performing said trend analysis. In some embodiments, a method of detecting an analyte in a bodily fluid from a subject using an assay transmitted from an external device is provided. The method comprises providing a fluidic device comprising at least one sample collection unit and an immunoassay assembly containing immunoassay reagents; detecting said fluidic device and wirelessly transmitting an immunoassay protocol to said device; allowing a sample of bodily fluid to react with immunoassay reagents to yield a detectable signal indicative of the presence of said analyte using said transmitted immunoassay protocol; and detecting said detectable signal. Communication between a reader assembly and an external storage device allows for a reader assembly of the present invention to download a fluidic device-specific protocol to run on the fluidic device based on the identity of the fluidic device. This allows a reader assembly to be used interchangeably with any appropriate fluidic device described herein. In addition, the external device can store a plurality of protocols associated with a given fluidic device, and depending on, for example, a subject's treatment regime or plan, different protocols can be communicated from the external device to the reader assembly to be run on the fluidic device to detect a variety of analytes. The external device can also store a plurality of protocols associated not only with a fluidic device, but also with a particular subject or subjects, such that a protocol can be associated with a subject as well as with a fluidic device. In some embodiments, the present invention provides a business method of assisting a clinician in providing an individualized medical treatment comprises collecting at least one pharmacological parameter from an individual receiving a medication, said collecting step is effected by subjecting a sample of bodily fluid to reactants contained in a fluidic device, which is provided to said individual to yield a detectable signal indicative of said at least one pharmacological parameter; and cross referencing with the aid of a computer medical records of said individual with the at least one pharmacological parameter of said individual, thereby assisting said clinician in providing individualized medical treatment The present invention allows for automatic quantification of a pharmacological parameter of a patient as well as automatic comparison of the parameter with, for example, the patient's medical records which may include a history of the monitored parameter, or medical records of another group of subjects. Coupling real-time analyte monitoring with an external device which can store data as well as perform any type of data processing or algorithm, for example, provides a device that can assist with typical patient care which can include, for example, comparing current patient data with past patient data. The present invention therefore creates a business method which effectively performs at least part of the monitoring of a patient that is currently performed by medical personnel. In some embodiments, the present invention provides a business method of monitoring a clinical trial of a pharmaceutical agent comprises collecting at least one pharmacological parameter from a subject in said clinical trial at a plurality of time intervals, said collecting step is effected at each time interval by subjecting a sample of bodily fluid from said subject to reactants contained in a fluidic device, wherein said fluidic device is provided to said subject to yield detectable signals indicative of the values of said at least one pharmacological parameter at a plurality of time intervals; comparing the detected values to a threshold value predetermined for said pharmacological parameter; notifying a clinician and/or a sponsor involved in said clinical trial when a statistically significant discrepancy exists between the detected values and the threshold value. FIG. 19 shows an exemplary flow chart of a business method of monitoring a clinical trial of a pharmaceutical 20 agent. As disclosed herein, a fluidic device gathers PK and/or PD parameters related to a patient of interest. The data is securely transmitted over, for example, a cellular network or the internet, and interpretations of the data are derived through computations in a series of biostatistical 25 algorithms on the external device which correlate pharamcodynamic, pharmacokinetic, and pharmacogenetic profiles. Additionally, the data can be compared with information stored in databases. The stored information could be the patient's own PK and PD data over a previous treatment 30 regiment, data related to placebo, pharmacogenomic data that are of relevance to the particular patient, or data related to a group of subjects. If the analysis done in Step 2 suggests that there are no significant difference between the patient's data and the stored data, as determined by using appropriate 35 algorithms, then "No Action" is taken. However, if there is a significant difference, then Step 4 determines the size of the difference. If the difference is large, immediate action is taken. An exemplary type of immediate action could be to provide an emergency alert to the patient's healthcare pro- 40 vider. Another kind of immediate action could be to send instructions to the fluidic device to alter the dosing of the pharmaceutical agent. If in Step 4 the difference is small, then the algorithm could determine whether to continue monitoring the parameters and/or alter a dosage of the 45 pharmaceutical agent. This method provides for automatic notification to at least medical personnel or a subject of a possible need to take additional medical action. Where a statistically significant discrepancy exists between the detected values and the threshold value, a 50 further action may be taken by a medical practitioner. Such action may involve a medical action such as adjusting dosage of the therapeutic agent; it may also involve a business decision such as continuing, modifying, or terminating the clinical trial. One of the significant advantages of the envisioned network is illustrated in FIG. 20. As all the information is securely channeled through the internet, this allows the simultaneous sharing of the information with various interested parties, while satisfying the appropriate clinical, regulatory and business needs. For example, the flowchart shows how the patient's clinical needs are met. The ability of the company that is sponsoring a drug study, for example a clinical trial or a post-market Phase IV surveillance, to monitor in real-time the safety and efficacy of the performance of the drug provides extremely valuable regulatory and business information. Similarly, the ability of a payor to 30 monitor the efficacy, and perhaps cost-effectiveness, of a treatment is greatly enhanced by their ability to obtain data in real-time. In some embodiments, the present invention provides a method of transmitting a pharmacological parameter of a patient via a handheld device comprises providing a fluidic device comprising at least one sample collection unit and an assay assembly; allowing a sample of bodily fluid to react with reactants contained within said assay assembly to yield a detectable signal indicative of the presence of said analyte; detecting said detectable signal; transmitting said signal to an external device; processing said signal in said external device; and transmitting said processed signal via a handheld device. One advantage of the current invention is that assay results can be substantially immediately communicated to any third party that may benefit from obtaining the results. For example, once the analyte concentration is determined at the external device, it can be transmitted to a patient or medical personnel who may need to take further action. The communication step to a third party can be performed wirelessly as described herein, and by transmitting the data to a third party's hand held device, the third party can be notified of the assay results virtually anytime and anywhere. Thus, in a time-sensitive scenario, a patient may be contacted immediately anywhere if urgent medical action may be required. In some embodiments a method of automatically selecting a protocol to be run on a fluidic device comprises providing a fluidic device comprising an identifier detector and an identifier; detecting said identifier with said identifier detector; transferring said identifier to an external device; and selecting a protocol to be run on said fluidic device from a plurality of protocols on said external device associated with said identifier. By detecting each fluidic device based on an identifier associated with the fluidic device after it is inserted in the reader assembly, the system of the present invention allows for fluidic device-specific protocols to be downloaded from an external device and run on the fluidic device. In some embodiments the external device can store a plurality of protocols associated with the fluidic device or associated with a particular patient or group of patients. For example, when the identifier is transmitted to the external device, software on the external device can obtain the identifier. Once obtained, software on the external device, such as a database, can use the identifier to identify protocols stored in the database associated with the identifier. If only one protocol is associated with the identifier, for example, the database can select the protocol and software on the external device can then transmit the protocol to the communication assembly on the reader assembly. The ability to use protocols specifically associated with a fluidic device allows for any appropriate fluidic device to be used with a single reader 55 assembly, and thus virtually any analyte of interest can be detected with a single reader assembly. In some embodiments multiple protocols may be associated with a single identifier. For example, if it is beneficial to detect from the same patient an analyte once a week, and another analyte twice a week, protocols on the external device associated with the identifier can also each be associated with a different day of the week, so that when the identifier is detected, the software on the external device can select a specific protocol that is associated with the day of the week. In some embodiments a patient may be provided with a plurality of fluidic devices to use to detect a variety of analytes. A subject may, for example, use different fluidic devices on different days of the week. In some embodiments the software on the external device associating the identifier with a protocol may include a process to compare the current day with the day the fluidic device is to be used based on a 5 clinical trial for example. If for example, the two days of the week are not identical, the external device can wirelessly send notification to the subject using any of the methods described herein or known in the art to notify them that an incorrect fluidic device is in the reader assembly and also of 10 the correct fluidic device to use that day. This example is only illustrative and can easily be extended to, for example, notifying a subject that a fluidic device is not being used at the correct time of day. In some embodiments, the present invention provides a 15 method of manufacturing a fluidic device for detecting an analyte in a biological fluid of a subject comprises providing a plurality of layers of a material. The method comprises providing a plurality of layers of a fluidic device, and ultrasonically welding said layers together such that a fluidic 20 network exists between a sample collection unit, at least one reactant chamber, at least one reaction site, and at least one waste chamber. Where desired, the fluidic device manufactured by this method comprise in at least one of said layers a sample collection unit, at least one of said layers comprises 25 a filtration site, and at least one of said layers comprises a reactant chamber, and at least one of said layers comprises a fluidic channel, and at least one of said layers comprises a reaction site, and at least one of said layers comprises a waste chamber. In preferred embodiments the different layers of the fluidic device are ultrasonically welded together according to methods known in the art. The layers may also be coupled together using other methods, including without limitation stamping, thermal bonding, adhesives or, in the case of 35 certain substrates, e.g., glass, or semi-rigid and non-rigid polymeric substrates, a natural adhesion between the two components. In some embodiments, the present invention provides a method of obtaining pharmacological data useful for assess- 40 ing efficacy and/or toxicity of a pharmaceutical agent from a test animal. The method involves the steps of a) providing a fluidic device comprising at least one sample collection unit, an assay assembly; and a plurality of channels in fluid communication with said sample collection unit and/or said 45 assay assembly; b) allowing a sample of biological fluid of less than about 50 ul to react with reactants contained within said assay assembly to yield a detectable signal generated from an analyte initially collected in said sample that is indicative of a pharmacological parameter; and c) detecting 50 said detectable signal; and d) repeating the reaction and detection steps with a second sample of biological fluid from the same test animal. In a related embodiment, the present invention provides a method comprising a) providing a fluidic device comprising at least one sample collection unit, 55 an assay assembly; and a plurality of channels in fluid communication with said sample collection unit and/or said assay assembly; b) allowing a sample of biological fluid to react with reactants contained within said assay assembly to collected in said sample that is indicative of a pharmacological parameter; and c) detecting said detectable signal; and d) repeating the reaction and detection steps with a second sample of biological fluid from the same test animal, wherein the animal is not subjected to anesthesia. When using laboratory animals in preclinical testing of a pharmaceutical agent, it is often necessary to kill the test 32 subject to extract enough blood to perform an assay to detect an analyte of interest. This has both financial and ethical implications, and as such it may be advantageous to be able to draw an amount of blood from a test animal such that the animal does not need to be killed. In addition, this can also allow the same test animal to be tested with multiple pharmaceutical agents at different times, thus allowing for a more effective preclinical trial. On average, the total blood volume in a mouse, for example, is 6-8 mL of blood per 100 gram of body weight. A benefit of the current invention is that only a very small volume of blood is required to perform preclinical trials on mice or other small laboratory animals. In some embodiment between about 1 microliter and about 50 microliters are drawn. In preferred embodiment between about 1 microliter and 10 microliters are drawn. In preferred embodiments about 5 microliters of blood are drawn. A further advantage of keeping the test animal alive is evident in a preclinical time course study. When multiple mice, for example, are used to monitor the levels of an analyte in a test subject's bodily fluid over time, the added variable of using multiple subjects is introduced into the trial. When, however, a single test animal can be used as its own control over a course of time, a more accurate and beneficial preclinical trial can be performed. In some embodiments a method of automatically monitoring patient compliance with a medical treatment using a fluidic device comprises allowing a sample of bodily fluid to react with assay reagents in a fluidic device to yield a detectable signal indicative of the presence of an analyte in said sample; detecting said signal with said fluidic device; comparing said signal with a known profile associated with said medical treatment to determine if said patient is compliant or noncompliant with said medical treatment; and notifying a patient of said compliance or noncompliance. Noncompliance with a medical treatment, including a clinical trial, can seriously undermine the efficacy of the treatment or trial. As such, in some embodiments the system of the present invention can be used to monitor patient compliance and notify the patient or other medical personnel of such noncompliance. For example, a patient taking a pharmaceutical agent as part of medical treatment plan can take a bodily fluid sample which is assayed as described herein, but a metabolite concentration, for example, detected by the reader assembly may be at an elevated level compared to a known profile that will indicate multiple doses of the pharmaceutical agent have been taken. The patient or medical personnel may be notified of such noncompliance via any or the wireless methods discussed herein, including without limitation notification via a handheld device such a PDA or cellphone. Such a known profile may be located or stored on an external device described herein. In some embodiments noncompliance may include taking an improper dose of a pharmaceutical agent including without limitation multiple doses and no doses, or may include inappropriately mixing pharmaceutical agents. In preferred embodiments a patient is notified substantially immediately after the signal is compared with a known profile. A patient or subject of a clinical trial may forget to take yield a detectable signal generated from an analyte initially 60 a bodily fluid sample as described herein. In some embodiments a method of alerting a patient to test a sample of bodily fluid using a fluidic device as described herein comprises providing a protocol to be run on said fluid device, said protocol located on an external device, associated with said patient, and comprising a time and date to test said sample of bodily fluid; and notifying patient to test said bodily fluid on said date and time if said sample has not been tested. In some embodiments a patient can be notified wirelessly as described herein. A patient may be provided with a fluidic device or devices when procuring a prescription of drugs by any common methods, for example, at a pharmacy. Likewise, a clinical 5 trial subject may be provided with such devices when starting a clinical trial. The patient or subject's contact information, including without limitation cell phone, email address, text messaging address, or other means of wireless communication, may at that time be entered into the external 10 device and associated with the patient or subject as described herein, for example, in a database. Software on the external device may include a script or other program that can detect when a signal generated from a detection device has not yet been sent to the external device, for example at 15 a given time, and the external device can then send an alert notifying the patient to take a bodily fluid sample. In some embodiments the present invention provides a method of assessing the reliability of an assay for an analyte in a bodily fluid with the use of a fluidic device. The method 20 comprises the steps of a) providing a system, said system comprising a fluidic device, said fluidic device comprising a sample collection unit and an assay assembly, wherein said sample collection unit allows a sample of bodily fluid to react with reactants contained within said assay assembly, 25 for detecting the presence of an analyte in a bodily fluid from a subject, and a reader assembly for detecting the presence of said analyte; and b) sensing with a sensor a change in operation parameters under which the system normally operates. In some aspects a sensor may be present either in the fluidic device, the reader assembly, both, or in some cases it may be advantageous to include a sensor in the packaging in which the fluidic device and/or reader assembly are packaged. The sensor can, for example without limitation, detect 35 temperate or pressure changes that may provide for an inaccurate analyte concentration calculation. For example, if the temperature of reagents stored in said fluidic device falls outside an acceptable temperature range, this may indicate that the detection will not be accurate using the then existing 40 calibration and processing algorithms, for example. Likewise, for example, the pressure in the pump in the reader assembly may fall outside an acceptable range. In some embodiments a moisture sensor is provided to detect the presence of moisture in the cartridge before the assay begins. 45 In some embodiments there may be thiocyanate in one layer of the fluidic device and iron salt in another layer, wherein a dye is formed when these are mixed, whereby the dye is a visual indication of the presence of moisture. In some disposable systems, particularly in those where 50 sample acquisition is performed by the patient or end user, measurement errors are not uncommon Significant errors due to, for example, patient handling of the sample, could be due to the sample collection method. A patient may not collect the correct volume of the sample, the collection may 55 not be performed at the appropriate time, or the sample may not be handled in an appropriate manner, thus compromising the sample integrity. It may be advantageous when using a disposable system in which the patient controls the initial sample collection and handling to utilize methods for minimizing the consequences of such errors by, for example, either alerting the patient to repeat the test or use calibration steps to compensate for such errors. There is therefore a significant need for methods that would improve the calibration in hand held or disposable 65 assay units, particularly in those units where the sample and reagent volumes are in the microliter and nanoliter ranges, 34 where maintaining a controlled temperature is impractical, where the sample is not "clean" such that errors are caused by interfering substances, such as hematocrit, for example, or where it is difficult to maintain the desired conditions such as temperature or reagent quality, including the appropriate sample volume and handling by the user. Immunoassays have a characteristic response similar in form to the well-known Scatchard binding isotherm (Bound/ Maximum Bound (B/B0)=Ligand Concentration/(K+Ligand Concentration) where B is the amount of the labeled analyte bound to a solid phase when analyte is present, B0 is the amount bound when no analyte is present and K is the dissociation constant. The mathematical form of such assay responses is hyperbolic. Results of immunoassays of the types described above are typically analyzed using the known (ln-logit) or (log-logit) functions, in which the assay label (for example in a two-step process, alkaline phosphatase-labeled analyte) bound to a solid phase when analyte is present in the assay ("B") is compared with the amount bound when no analyte is present ("B0)" to provide the ratio B/B0. Then, the "logit" function (logit=Log [(B/B0)/(1-B/B0)]) is plotted against Log (Analyte Concentration) resulting in a straight line. (Natural logarithms can also be used instead of logarithms to base 10). The slope and intercept of this plot can be used to derive simple equations that permit the calculation of (a) assay signal as a function of analyte concentration, or (b) analyte concentration as a function of assay signal. An example of such analysis is shown in FIG. 21 using Thromboxane as the analyte of interest. The best fit to the data is given by Equation 1: Signal=(A-D)/(1+(Analyte conc./C) ^B)+D [Equation 1], where A is the signal at zero analyte concentration, D is the signal at infinite analyte concentration, C is the analyte concentration reached at a signal level half way between A and D, and B is a shape parameter. The relationship between analyte concentration and signal is given by: Analyte concentration=C\*((((A-D)/(Signal-D)-1)^(1/B)) [Equation 2], where A, B, C and D are identical to the parameters used in Equation 1. It is possible to compute errors that occur from miscalibration using the equations described herein above. (The Analyte Concentration function from Equation 2 is differentiated with respect to each potential variable A, B, C, D and Signal). Estimates of the difference between the ideal value of the variable and the actual value in the system are used as $\Delta$ values in the calculation ( $\Delta$ (concentration)=(d (Concentration)/d(Param.))\*Δ Param). Errors in calibration are reflected in erroneous values of A, B, C and D. Each of these parameters is influenced by a different factor. For example, temperature effects on calibration of immunoassays will have the strongest impact on the A, C and D parameters of the ln-logit calibration, while likely having a minimal impact on the shape parameter B. The detected signal, which in turn can be used to determine the analyte concentration, is biased by one or more of the following reader assembly and fluidic device characteristics: optics used in the instrument for signal measurement; temperature control; most chemical processes are highly temperature sensitive, including enzyme reactions, and equilibrium between antigens and antibodies; timing of assay steps; calibration relative to an "ideal" instrument; the inability of the patient to manually recalibrate the fluidic device when used; dimensions of the fluidic device; volume of the assay assembly and its shape; fluid movement within the device; timing and uniformity of fluid movement; efficiency in mixing (most assay methods used in disposables and employ microfluidics would involve some mixing). The following reagent variations can also contribute to a biased detected signal: reagent quantity; reagent dissolution (if it is in dry form); changes in activity of reagents following manufacture (instability) (This is particularly important for "distributed systems" where the disposable useful life is typically determined by reagents which can, for example, lose 20% of their activity. If they can be used without significantly compromising assay performance, the shelf-life of many expensive disposables could be extended several fold and severe constraints on disposable storage (refrigeration and the like) can be relaxed). In addition, when calibration is performed at the factory, small errors in the estimation of the calibration parameters can result in error in the calculated analyte concentration. The magnitudes of these calibration errors and consequently errors introduced in estimating analyte concentrations can be quite significant. FIG. 21 shows the doseresponse data for a two-step assay for Thromboxane. The top curve (Logit.test) in FIG. 22 shows a typical (In-logit) assay response. When we adjust the level of the highest signal (A) and the lowest signal (D), shown as "Shift zero signal" and "Shift 100% signal", respectively, the curves shift as seen in FIG. 22. The corresponding computed values of error in the concentration that would be calculated from Equation 2 were large (>20% across the entire range of the assay) as 25 shown in FIG. 23. In FIG. 22, the signal is normalized by subtracting the D value from the signal and dividing the difference by (A-D):(Signal-D)/(A-D). This yields what is usually described as B/B<sub>o</sub> (the ratio of bound label at a given analyte concentration to that at zero analyte level). The In-logit function was modified by adding 10% of (A-D) to D or subtracting 10% of (A-D) from A before recalculating the normalized signals (corresponding to two types of significant calibration error (shifting the value of A or D respectively). At signal levels intermediate between A and D the change made was adjusted by 10%\*(Original signal- 35 D)/(A-D). FIG. 23 shows that when modifications of only 1%\*(A-D) were made, and concentration of the analyte was computed, errors in concentration were still significant at certain parts of the analyte concentration range. In a laboratory setting, errors in measuring biochemical 40 parameters of blood and other bodily fluids due to calibration errors are dealt with using many known compensation mechanisms. One of the simplest techniques is to add a known quantity of a trace amount of a radiolabeled analyte and construct a calibration curve based on those readings. Other methods include adding a known amount of a standard to the analyte solution that needs to be analyzed. However, such techniques are impractical in a disposable, handheld system for analysis, without particular adaptation of those techniques for dealing with small sample volumes, lack of large amounts of other solutions (such as buffers), and bility to exercise precise controls over the volumes of the samples and their dilutions. Conventionally, a calibration exercise is performed in parallel with assaying the sample. This is, however, impractical in a self-contained, disposable assay system intended to 55 be compact and inexpensive. To address any calibration challenges that may occur while assaying analytes using a fluidic device of the present invention, in some embodiments parameters A, or in preferred embodiments A and D, of Equation 1 described herein above, are measured within 60 the fluidic device rather than using manufacturer's values or an external device. The value(s) is compared with the parameter values estimated when the fluidic device was calibrated by the manufacturer. Signal results are then using the following adjusted equation: 65 $\begin{array}{ll} \text{Signal}_{adjusted} = \text{Signal*}(A_{factory} & & \\ A_{measured\ within\ the\ assay}) \text{ and the original calibration equation} \end{array}$ 36 (Equation 1) is then used to calculate the analyte concentration. Alternatively, A and D values measured at the time of assay are substituted for the A and D values obtained during factory calibration. Typically the (A/D) calibration measurement would be made in a buffer sample, preferably for each analyte (in a multiple analyte assay device), or one analyte only, if each assay responds similarly to the various factors that alter the calibration parameters. In some embodiments of this invention, the calibration parameters of Equation 1 are corrected using differential calibration. The following example using Thromboxane B2 as the analyte illustrates this approach. Thromboxane B2 (TxB2) (1.25 mg) was dissolved in a mixture of dimethylsulfoxide (342 µl) and water (342 µl). To this, 5 µl of a solution of 1-(3-(dimethylamino)propyl)-3-ethyl-carbodiimide hydrochloride in water (0.1 g/ml) and 10 μl of a solution of n-hydroxy-succinimide in water (0.1 g/ml) were added. After 1 hour at room temperature the resulting NHS-ester of TxB2 was used in the preparation of TxB2 labeled with alkaline phosphatase (described below) without further purification. Alkaline phosphatase (bovine intestine, Sigma-Aldrich) was dissolved in phosphate-buffered saline at 1 mg/ml. To 1 ml of this solution 120 μl of the NHS-ester of TxB2 was added and the mixture allowed to react for 1 hour at room temperature. The enzyme-TxB2 conjugate was then purified overnight by dialysis against tris-buffered saline containing MgCl<sub>2</sub>. Described is an example of a two-step enzyme immuno-assay where TxB2 is the analyte. Samples and mouse monoclonal anti-TxB2 (15 μl of Cayman Chemical Kit Catalog number 10005065, appropriately diluted into Assay Designs buffer) were added to 384-well plates to which anti-Mouse IgG had been immobilized ((Becton Dickenson 356177)). The sample was 30 μl of plasma diluted 1:4 with assay buffer (Assay Designs Correlate-CLIA<sup>TM</sup> kit 910-002) and supplemented with known concentrations of TxB2. Other types of sample (for example TxB2 dissolved in assay buffer) can be substituted. Plates were covered to prevent evaporation and incubated at room temperature with gentle mixing (100 rpm) on an orbital shaker for 12 hours. The contents of the wells were then removed by aspiration. Thromboxane-labeled with alkaline phosphatase (25 $\mu$ l diluted 1:1500 with assay buffer) was added and incubated at room temperature for 2 minutes. The contents of the wells were removed by aspiration and wells washed thrice with 100 $\mu$ l wash buffer (from the Assay Designs Kit 910-002). Enzyme bound to the wells was then measured by addition of 40 µl Lumiphos<sup>TM</sup> 530 substrate solution which contains (4-methoxy-4-(3-phosphate-phenyl-spiro-[1,2-dioxetane-3,2'-adamantane])). Incubation was allowed to proceed for 1 hour with orbital mixing and the luminescent product measured in a Molecular Devices MD5 Spectrometer (0.5 second integration time). FIG. 21 shows the typical assay dose-response data for a two-step assay for TxB2. Using Equation 1, the parameters A, B, C and D are fitted to the curve shown in FIG. 21. As described herein, even small changes in values of the parameters A and D can have a significant impact on the measured concentration. Thus, any errors in computing A and D are magnified in the estimated analyte (TxB2) concentration. This concept is illustrated in FIGS. 22 and 23, where even a 1% change in (A-D) resulted in significant errors in estimating TxB2 concentrations in the samples. In FIG. 22, the signal is normalized by subtracting the D value and dividing the difference by (A-D) viz: (Signal-D)/(A-D). This calculates what is commonly described as B/B0 (the ratio of bound label at a given analyte concentration to that at zero analyte level). The (In-logit) function was modified by adding 10% of (A–D) to D or subtracting 10% of (A–D) from A before recalculating the normalized signals (corresponding to two types of significant calibration error (shifting the value of A or D respectively). At signal levels intermediate between A and D, the change made was adjusted by 10%\*(Original signal–D)/(A–D). FIG. 23 shows the computed errors in estimating the analyte concentrations for a 1% error in estimating A and D. As can be seen for the low analyte concentrations, the errors are pronounced even for small errors in the calibration parameters A and D. FIGS. 24-27 illustrate an embodiment of this invention where the sample containing an unknown analyte concentration is spiked with a known concentration of the analyte to minimize calibration errors. Spiking can be achieved by a variety of methods, for example, by incorporating analyte in known quantities to the assay well during manufacture of the fluidic device. Separate spike wells could also be accom- 20 modated in the fluidic device described herein. FIG. 24 shows calibration using differences between signal response between unspiked and spiked samples. The amount of the spiked analyte is indicated by x2 and the original (endogenous concentration in the sample) is denoted as original 25 concentration or x1 (pg/ml). The difference in signal between unspiked and spiked sample is plotted against the signal for the original concentration for various amounts of known amount of analyte (spike) introduced into the sample. The (ln-logit) parameters (for the top curve in FIG. 24) are 30 shown in Table 1. TABLE 1 | Original Calibration Param | neters for Data Shown in FIG. 24 | 35 | |----------------------------|----------------------------------|----| | A | 3.37E+04 | | | В | 1.01E+00 | | | С | 2.10E+02 | | | D | 3.56E+03 | | The data shown in the top curve in FIG. **24** were used in a recalibration exercise by calibrating against the difference in signal for each original concentration level and each level spiked with 200 pg/ml analyte. Equation 3 shown below was empirically derived and is useful in calculating the original endogenous concentration of analyte. The best-fit parameter values in Table 2 were computed by minimization of the sum of the square of the differences between target and calculated analyte values. Concentration=C\*((A-D)/((Signal-D)^(1/B))+E [Equation 3]. TABLE 2 | Calculated Parameter Values for 1-point Spike Calibration | | | | | |-----------------------------------------------------------|----------|--|--|--| | A | 1.20E+02 | | | | | В | 1.996189 | | | | | C | 292.7824 | | | | | D | -0.14393 | | | | | E | -287.931 | | | | | | | | | | This calibration was verified as shown in FIG. 25 (log scale) and FIG. 26 (linear scale). Note the regression equation was calculated for data in linear form. The formula resulted in near perfect results. The results of one embodiment of this invention are 65 shown in FIG. 27, where the extent of the recovery of the spike signal is used to correct for the concentration of the 38 value of the unspiked sample. This method has the advantage that changes in the parameter C in the (ln-logit) equation due to, for example, reagent instability, are accounted for. The method involves the following steps: calculate x1 (endogenous conc.), and x2 (spike conc.) using original calibration; calculate recovery of spike as % (x2-x1)/spike [Equation 4]; correct x1 by recovery factor: (x1\*100/Spike recovery) [Equation 5]. This was tested with the calibration curve shown in FIG. 24 and the original calibration parameters of Table 1. As shown in Table 3, it was possible to use spike concentration values from 100-500 pg/ml and C values that varied from 500 to 50 such that the actual signals corresponding to the modified C values were changed very significantly from what had been the case with the original C value and the spike recovery (calculated with the original C value ranged from 42-420% respectively, yet the recovery of the unspiked sample (once corrected for the recovery of the spike) was 100% over the entire calibration range. This effect is graphically illustrated in FIG. 28, where the C parameter is varied between 50 and 500 (a ten fold range), but the corrected values for the analyte concentration (x1) accurately reflects the expected analyte concentration. TABLE 3 Effects of changes in the C parameter on spike and original analyte recovery at two original concentration levels: | ١ . | С | x1<br>Pg/ml | S (x1) | x2<br>pg/ml | S<br>(x1 + x2) | x2 recovery<br>% | x1 recovery<br>% | |-----|-----|-------------|----------|-------------|----------------|------------------|------------------| | , - | 500 | 100 | 2.88E+04 | 500 | 1.73E+06 | 42 | 100 | | | 210 | 100 | 2.40E+04 | 500 | 1.13E+04 | 100 | 100 | | | 50 | 100 | 1.36E+04 | 500 | 5.83E+03 | 420 | 100 | | | 500 | 316 | 2.21E+04 | 500 | 1.50E+04 | 42 | 100 | | | 210 | 316 | 1.56E+04 | 500 | 9.66E+03 | 100 | 100 | | | 50 | 316 | 7.61E+03 | 500 | 5.25E+03 | 420 | 100 | | | 500 | 100 | 2.88E+04 | 200 | 2.25E+04 | 42 | 100 | | | 210 | 100 | 2.40E+04 | 200 | 1.60E+04 | 100 | 100 | | | 50 | 100 | 1.36E+04 | 200 | 7.80E+03 | 420 | 100 | | | 500 | 316 | 2.21E+04 | 200 | 1.84E+04 | 42 | 100 | | | 210 | 316 | 1.56E+04 | 200 | 1.22E+04 | 100 | 100 | | ) | 50 | 316 | 7.61E+03 | 200 | 6.16E+03 | 420 | 100 | In Table 3, x1 is the endogenous concentration and x2 is the spike concentration; S is the signal level corresponding to the designated analyte concentration; x2 recovery is the apparent recovery of x2 and x1 recovery is calculated (using Equation 5) after compensating for x2 recovery (using Equation 4). The spike level must be carefully chosen. The optimal level will be a compromise between the operating range of the assay and the likely range of concentrations of samples. If it is too low, the change in signal caused by the spike will be too small to be reliably measured. If it is too high, the assay response will be too shallow to reliably measure the spike. The ideal spike level would change the measured signal by much more than the standard deviation in the signal. In the above example, the assay range had been adjusted to make measurements for sample with concentrations in the range of about 0 to about 500 pg/ml and spikes of about 200 to about 1000 pg/ml would likely be useful. In some embodiments the following various guidelines for choosing spike levels can be followed: spikes should change the observed signal across the desired range by at least 10%; spikes should be in the same range as the anticipated mid range of sample concentrations; spikes should be less than about three times the original C value. Note that the useful part of the dose-response is from about 0.2\*C to about 5\*C. The following example illustrates the estimation of endogenous TxB2 concentrations using spike recovery. Two citrated human plasma samples were analyzed by the two-step assay. Aliquots of the samples were also supplemented (spiked) with known concentrations of TxB2 prior to assay. 5 Some samples were also supplemented with indomethacin (0.1 mM) and/or EDTA (5 mM). Samples were stored either flash-frozen then thawed or refrigerated unfrozen prior to assay. These procedures generated a set of samples with various original endogenous concentrations (storage and 10 freezing and thawing tends to cause platelet activation and production of TxB2; indomethacin inhibits TxB2 production). The results of the above experiment are shown in FIG. 27. Sample 5A was known to have a very low TxB2 concen- 15 tration (estimated to be <10 pg/ml). When the dose-response of the assay in sample 5 was used to calibrate the assay, the concentration was assumed to be zero. Dose responses for the other samples 4A, 4N, 5N were then plotted and it was observed that their response corresponded to higher concen- 20 trations of TxB2 and could be fitted to the 5N response by moving each to the left (in the direction of lower concentration) by an amount corresponding to removing a certain fixed TxB2 concentration from each the known spike levels. All the samples had responses that were almost identical in 25 ment. shape to that of sample 5N. When the curves fitted as closely as possibly to the A5 curve, the concentration of TxB2 notionally removed corresponds to the estimate of the TxB2 concentration in the sample. The original data of FIG. 27 were represented in FIG. 29 30 by the best fit (ln-logit) approximation. The Solver function in Microsoft Excel was used to compute a value of TxB2 that caused the A5 response to approximate that of the sample N5. As can be seen, this generated a good fit and the computed value (471 pg/ml) is an estimate of the concentration difference between TxB2 levels in the two samples. In another embodiment of our invention a single point can could be used (all the points fit closely to the calibration curve, so any single point could have been used) rather than a multi point spike that was illustrated in the earlier FIGS. 40 24-27. The following experiment illustrates this concept. Two plasma samples were spiked to many levels of TxB2 and assayed by the two-step method. Assays were calibrated using buffer calibrators rather than plasma-based materials. Results are presented in FIG. 30. Plasma was analyzed as 45 described earlier. Data in FIG. 30 are plotted on a log scale. The concentration of unspiked samples was calculated from the calibration and the concentration of spiked samples taken as "endogenous+spike." Results are plotted only for the spiked samples. As can be seen, there was desirable 50 correlation between the calculated and known values over the range of about 50 to about 10,000 pg/ml. When recovery was estimated for spikes in the range about 40 to about 2,500 pg/ml, the correlation was 99.7%. Spike recovery method for correcting the calibration 55 parameters are useful for compensating temperature effects on immunoassays in self-contained disposable analytical systems, also some times referred to as handheld analytical systems or assay systems. As is well known, instabilities in temperature during an assay introduce significant errors in 60 the estimated analyte concentration. Temperature effects on calibration of immunoassays have the strongest impact on the A, C and D parameters of the (In-logit) calibration. It is likely that the B (shape) parameter is minimally affected by temperature changes. As shown above, the spike recovery 65 method can correct for errors introduced in the C parameter and hence could be an excellent approach for correcting 40 temperature induced errors in computing the calibration parameters of the (ln-logit) equation. Similarly, normalizing signal levels to the zero analyte calibrator level, as described earlier, can compensate for errors in the A and D parameters, which are again negatively influenced by temperature changes. Internal calibration and/or spike recovery means of calibration have significant advantages over conventional factory-calibration methods. One obvious advantage is that two quantities of assay-related information are used to compute the assay result rather than one, which improves the reliability of the assay. A second advantage is that this approach compensates, to a large extent, reagent instability. Another advantage is that several instrument, assay environment, and procedural variables are factored into the assay results. Other uncontrolled changes in system response, besides temperate change, can also negatively impact the computed A and D parameters. For example, FIG. 31 shows the time course of the signal generation during an assay. To correct for these errors, one embodiment of the claimed invention is to compare assay signals B in a fluidic device with the B0 signal so to eliminate errors due to variation of the absolute value of assay signals due to uncontrolled changes in system response. This concept was verified by the following experiment. A competitive immunoassay for TxB2 was set up using the protocol described in Assay Designs Product Literature for their corresponding Correlate-CLEIA kit (catalog 910-002). An alkaline phosphatase conjugate was prepared as described earlier and was diluted 1:112,000 and substituted for the kit conjugate. A and D parameters are the calibration parameters used in the (log-logit) fit to the assay response. Best fit values were obtained at each time point. Note that at zero time the A and D parameters are not measured, but all signal values would be (are known to be) zero. The ratio D/A was multiplied by 1e6 so as to be presentable on the same scale. The A and D values when plotted against time vary significantly, particularly the A value (zero analyte). As seen from the straight line with practically zero slope, the scaled D/A remains constant over the time span. The above experimental data were then analyzed by normalizing the assay signal (B) to signal at zero analyte concentration (B0). Using this normalized signal (B/B0), (log-logit) best fits were obtained for each time point and averaged. Concentrations of analyte were computed using these calibration parameters for each time. FIG. 32 shows the derived concentrations that were plotted against the A parameter derived for each individual time point. Each line corresponds to different analyte levels (pg/ml) ranging from about 39 to about 10,000 pg/ml. As can be seen from FIG. 32, although signal values changed by about 2-fold during the course of the experiment, the derived analyte concentration was essentially constant over the analyte concentration spanning a range of about 39 to about 10,000 pg/ml. The variation of calculated concentration was computed and found to average only 2.7% over the calibration range of 39-625 pg/ml (which spans most of the range). A calibration spike can be enabled by adding analyte to the antibody (or other solid phase capture agent) during manufacturing, and then drying, subsequently adding analyte to the appropriate well during manufacturing (then drying), or adding analyte to a portion of assay buffer which is then routed to the appropriate well. Methods 1 and 2 have a risk which is that the spiked analyte could be flushed from the well as sample or buffer enters. This may be handled in one of several ways such as relying on the tightness of the antigen: antibody interaction for the brief time the well is subject to flowing sample or buffer (which exit from the well), or careful management of liquid flow and placing the spike well as that most distal to the incoming liquid (last well to fill has the least flow through). Errors in measuring analyte concentrations could also be 5 due to variability in the pre-analysis phase. The primary cause of this type of errors is due to the patient collecting an incorrect volume of sample or where the sample integrity has been compromised. Errors due to incorrect sampling volume can by corrected by a variety of means. One method 10 is to measure the volume of the sample during a preprocessing step. If the measured volume is significantly different from the expected volume, the patient could be instructed to provide a new sample. This could be accomplished by, for example, the wireless communication with 15 the external device as described herein. Alternatively, the analytical methods or algorithms on the external device could be recalibrated to compensate for the change in the sample volume. The recalibration could be using any of the standard calibration techniques or the modifications to the 20 calibration process, which have been described herein. The following is a description of one embodiment of a method for determining the accuracy of the volume of the sample provided to the sample collection unit of a fluidic device described herein. The sample collection unit can be 25 lined with conductive elements spaced apart at known separations similar to the graduations on a measuring cylinder or jar. The location of each conductor can correspond to a specific sample volume. As fluid comes into contact with the conductor, the measured conductivity of that conductor would be markedly increased. By identifying the highest placed conductor that has undergone the conductivity change, the volume of the sample in the sample collection unit can be computed. Alternatively, if the sample volume has to meet a minimum, a conductive element could be placed at the appropriate level in the well. When the cassette is introduced into the handheld (or the sample holder is introduced in the analytical system), thereby the patient has indicated that she has completed the sampling process, and if the conductivity 40 of the sensor remains at the baseline level, it could be easily concluded that the patient has not provided the required sample volume. The patient could be given the appropriate feedback such as replacing the sample or replenishing it. Alternatively, the back-end server or computer at the network headquarters could be informed of the issue and appropriate corrective measures taken. An alternative to the electrical sensing for the correct volume could be using known optical sensing means. Sample integrity could be affected by many factors, some 50 intrinsic to the patient and some that are extrinsic. Following are some of the sources of errors in sample integrity: (i) mixing of interstitial fluid with blood; (ii) variability in the hematocrit concentration; (iii) hemolysis; and (iv) activation of platelets and sample clotting. Occasionally, interstitial fluid may leak from a fingerpuncture wound and could mix with blood. Alternatively, if the patient had liquid on her hands due to washing prior to 42 obtaining a blood sample, such liquid could also mix with blood plasma. Both fluids mentioned, above, interstitial fluid and wash liquid, contain no red cells and would mix with the blood plasma. When the amount of interstitial fluid is large so that the effective hematocrit is very low, the measured concentration of the external standard (fluorescein) would be low. This signal could be used to conclude that the sample is inappropriate for analysis and that it could lead to incorrect results. When blood is contaminated by water (which has low conductivity), it would be possible to detect this by measuring the conductivity of the fluid part of the sample (blood plasma has a characteristic high conductivity not subject to variation from day-to-day or individual-to-individual). If the measured conductivity of the sample is lower than the plasma conductivity, it is likely that the sample has been contaminated Errors could also be due to incorrect operation of the instrument and means of detecting and compensating those errors are described below. One source of error could be that the disposable is not properly accommodated in the handheld system. Having a sensor detect and report the proper mating of the disposable in the handheld would be one means of avoiding this problem. Another source of errors is from the fluidic system, where there may be an issue with where the sample is applied in the sample well and the volume of the applied sample. This could again be addressed by the use of appropriate sensors which detect the application of a sample and report on the adequacy of the volume that is applied. Other fluidics related problems could be blocked channels, insufficient reagents, bubbles, etc., all of which again could be detected and reported by the use of appropriate sensors. In some embodiments any of the errors described herein can be measured using sensors located on either the fluidic device or the reader assembly. In some embodiments an error messages could be displayed on an LCD screen in the reader assembly using the processing power of the microchip on the handheld. Alternatively, a signal from the sensors could be communicated to the external device which can then relay an error message to either the reader assembly or a third device such as a PDA or cell phone. Such action could be a message communicated to the patient in the form of an audio, video or simple text message that the patient could receive. In some embodiments the external server can transmit corrected calibration parameters to the reader assembly to compensate for any of the errors described herein. In yet another embodiment, after the identifier is detected by an identifier detector as described herein to determine, for example, a protocol, if a signal transmitted by a sensor doesn't match the expected value for the sensor signal, then the external device can transmit a pre-programmed alert based on each cartridge bar code and sensed signal to either, for example, an LCD display on the reader assembly or to a handheld device, to take a designated action. Nonlimiting examples of error alerts, the problems they indicate, and required action to be taken are, for example: | Error<br>Code | Symbol | Problem | Action | |---------------|-------------|--------------------------|------------------------------------------------------------------------------------------------| | Er1 | Thermometer | Temperature out of range | Wait until Temp >10 or <35 C. | | Er2 | Blood drop | Blood sample too small | If detected w/in 15 minutes of first<br>sample add more blood, other wise<br>use new cartridge | #### -continued | Error<br>Code | Symbol | Problem | Action | |---------------|--------------------------------|------------------------|------------------------------------------| | Er3 | Battery | Power disruption | Do not start test until power resumes | | Er4 | Bar code symbol | Cartridge expired | Run test on a non expired cartridge | | Er5 | Line through fluidic device | Cartridge already used | Run test on a new cartridge | | Er6 | Phone receiver | No Cell Phone coverage | Do not start test until in coverage area | | Er7 | Line through a box | Reader malfunction | Call Theranos | | Er8 | Bottle with a "C" in the label | Calibration overdue | Run Calibration standard, then run test | After the identifier detector detects the identifier to determine a protocol and any sensed signals are detected and either patient notification is complete or calibration parameter are updated, the fluidic device calibration can occur, followed by the appropriate assay. Despite the corrective actions described here, the generated analyte concentrations values could still be erroneous. For example, the actual analyte concentration could be well outside the expected range, and thus the calibration parameters used may be incorrect. Values which are unlikely, impossible or inconsistent with prior data for a particularly 25 patient could be flagged and subjected to a software review. Values with suspect accuracy can be communicated to the appropriate decision maker, such as the patient's physician. The concept of the reference therapeutic index (TI) and how it is computed is illustrated in FIGS. 33 and 34. A TI is 30 computed from a retrospective analysis of many measured parameters, including the blood concentrations of drugs of interest, their metabolites, other analytes and biomarkers in blood that change concentrations due to the drugs the patient is consuming, physiologic parameters (such as blood pressure, respiratory rate, body temperature, heart rate, etc.), and clinical parameters that indicate disease progression (such as angina, stroke, infarct, etc.). Typically, many serial measurements would be made for the many treated patient and corresponding controls (unmedicated or placebo treated). The clinical parameter would be an "outcome parameter" (OP). The other measured parameters can be "input parameters" (IP). For the retrospective analysis and TI computation, data from many subjects and their respective output and input 45 parameters, including subject's relevant details such as height, weight, race, sex, family history, etc., would be populated in a database. Each candidate outcome parameter (stroke, infarct, angina, death, etc.) will be subject to multiple regression analysis against input parameters. The multiple regression analysis is performed for each candidate OP versus all available IPs. Database columns are constructed by using each IP, each IP<sup>2</sup>, and all cross-terms (IPi\*IPj). The analysis is then performed using the equation: $OPi = (a*IP1 + b*IP2 + \dots n*IPn) + (aa*IP1^2 + bb*IP2^2 + \dots + nn*IPn^2) + (aaa*IP1*IP2 + bbb*IP1*IP3 + \dots + nnn*IPn-1*IPn),$ where a . . . n, aa . . . nn, aaa . . . nnn are arbitrary constants. Multiple regression analysis establishes the best fit to the 60 equation and indicates which IPs are strong candidates for inclusion. Weakly correlated IPs are dropped and the analysis repeated until each candidate OP has an optimal relation to the remaining IPs. The therapeutic index will then have the form: $TI = a*IP + cc*IP3^2 + nnn*IP3*IP5 + \dots$ (Equation 6). FIG. 34 illustrates the computation of a TI and the use of the TI concept for determining therapeutic efficacy (the therapeutic index is also indicated by the term efficacy index). The example illustrated in FIG. 34 shows the time course of successful drug therapy of a disease state (such as atherosclerosis) that is indicated by three biochemical ana- lytes represented by parameters A, B and C. The disease is treated (with for example a Statin) starting on day zero. 44 Parameters A, B and C are measured daily using an ambulatory system as described herein. At the outset, relative to "ideal levels", Parameter A (for example LDLcholesterol) is elevated, Parameter B (for example HDLcholesterol) is low and Parameter C (for example, alanine aminotransferase, an indicator of liver damage) is normal. All parameters (A, B, C) are presented normalized to their respective ideal level. As therapy proceeds, the drug causes the levels of A and B to approach normal values but at different rates. Analyte C remains normal indicating the drug is not causing liver damage. The relative risk of an outcome for the patient is represented by an initially unknown TI. As described above, TI is a surrogate to the outcome parameter that reflects the physiological functions of the patient (blood pressure, etc.) or other pre-identified factors in a patient record and can be indicative of improvement in the patient's condition. We further assume that parameter TI is influenced by parameters A and B. In certain cases, at the beginning of the study this relationship remains to be determined. Data from the monitoring system (device input) and the patient input are analyzed by multiple regression of TI and measured values A, B and C, as described above. In the example shown, these data are analyzed using multiple regression analysis, which fits parameter TI as a function of parameters A, B, C and their squares and the pair-wise cross terms (A\*B, etc.) As shown in FIG. 35, for the simulated values shown in FIG. 34, an excellent fit was obtained (R^2=0.99) when all parameters were included. It is evident from inspection of the fit that most of the parameters can be eliminated leaving only A and A\*B. When this is done the fit is still very good (R^2=0.95). The multiple regression derived function is not identical to the base function which generated the first candidate TI data, but works well to compute an estimate of TI from (typically fewer) measured parameters, prior to clinical validation, if necessary. The appropriate threshold levels of TI, or the optimum TI is termed as TI<sub>ref</sub> (or "action threshold value".) Expert review can then determine the optimum therapeutic index for that particular patient or patient class. If the computed TI exceeds the preset TI<sub>ref</sub> appropriate action can be taken. An appropriate action could be alerting the physician, stopping the medication or the like. As can be understood, the appropriate TI<sub>ref</sub> for a patient would be decided based on the healthcare provider's judgment for that individual patient. The form of the TI is derived as a one time exercise using expert analysis of the data set derived from clinical studies and/or existing clinical information. Once the TI<sub>ref</sub> is identified, then the use of this parameter is illustrated in FIG. 36. Methods of measuring drug, analyte and biomarker concentrations and conducting a two-way communication with a database using a fluidic device and reader assembly are described in detail herein. The time course of various measured and computed parameters are shown in FIG. 36. The curve indicated CBX Dose illustrates the time course of a drug that is taken on a regular basis. The plotted values are normalized to what would be considered as "ideal levels" for that measurement. For example, if the expected ideal blood concentration of CBX is 100 ng/ml and if the measured concentration in blood is 100 ng/ml, the parameter value is 1.0 (with no offset) for CBX. Similarly, the concentrations of CXB, a metabolite of CBX, biomarkers Tx-M and PGI-M, which vary in response to the concentrations of the drug and the disease state, are also normalized to their ideal values and plotted. All the drug, 20 analyte and biomarker concentrations could be measured using a system as described herein. As explained above, the TI<sub>ref</sub> for this particular patient is plotted on FIG. 36 as a flat line. Using the parameter values (a . . . n, aa . . . nn, aaa . . . nnn) of Equation 6 and the measured input parameters (IP), 25 the current TI for the patient is calculated. If the computed TI exceeds the $TI_{ref}$ value, then an alert can be generated. The alert could be targeted to the patient's healthcare provider, who in turn can take the appropriate action. An appropriate action could be to watch the patient closely for 30 other clinical indications and/or alter the dosage and drugs the patient is taking. FIGS. **36** and **37** illustrate the concept as to how when the computed TI exceeds the $\text{TI}_{ref}$ a proactive action could avert an ADR. In FIG. **36**, the patient's TI exceeded $\text{TI}_{ref}$ about 35 day 15. The patient is monitored closely and as the TI values continue to increase after day 30, the physician intervenes and reduces the dosage. This action starts lowering the TI for the patient and ultimately retreats to an acceptable level about day 60. One or more individuals or entities that are involved in the care of the patient (nurses, physicians, pharmacist, etc.) can be alerted when the computed TI exceeds the $\text{TI}_{ref}$ so that they could take the appropriate action. Additionally, trends can be discerned and appropriate action taken before a TI 45 reaches a particular value. In some embodiments many different analytes can be measured and construed as input parameters, IPs, while computing the TI. Such analytes that may be used are described herein. Additionally, the can be expanded or 50 modified depending on the disease area as well. The appropriate list of parameters relating to certain diseases and drug treatments, for example, cancer and infectious diseases and patient on NSAIDS, are disclosed herein. In another aspect of this invention, the TI is calculated 55 using information derived from the patient's biological sample and patient information that is non-drug related, the device input. For example, in an ambulatory setting, information relating to concentration of drug, metabolite and other biological markers can be detected in blood as 60 described herein. The patient can also input many non-drug related personal parameters. This "patient input" can relate to the patient's personal information, for example, height, weight, gender, daily exercise status, food intake, etc. The patient input could also be provided by the patient's health-65 care provider. An example of a patient input parameter and the input means is shown in FIG. 38. 46 In some embodiments the device input and patient input are used to compute the TI. A reference TI for the patient is already known using retrospective analysis of the data contained in the database. In formulating the TI using multiple regression analysis, the parameters such as those shown in Equation 6 are used. The same parameters are then used with the device input and patient input to compute the TI. Comparing the TI to the TI<sub>ref</sub>, it is possible to determine the efficacy of the therapy. If the TI falls within a predetermined range of TI<sub>ref</sub>, then the treatment is considered to be efficacious. Values below that range indicate that the treatment is ineffective and values higher then the range are considered to be undesirable and could lead to adverse events. Another example illustrates the implementation of this invention for studying the efficacy of therapy in diseases where it is difficult to make frequent measurements and the efficacy of the treatment is difficult to quantify. An example is determining the efficacy of drug therapy in children with autism. Frequent sampling and concomitant laboratory analysis is impractical for children. Abnormalities in blood concentrations of certain metals are implicated in autism. Hence, following the blood concentration of certain metals, e.g., zinc, in autistic children might shed light on the efficacy of an intervention. However, it has been reported that lowered concentrations of, say, Zn due to a treatment does not imply that the therapy is working. It is an indicator, but not a definitive surrogate for determining therapeutic efficacy. Computing a TI and comparing it to a reference level would better indicate the efficacy. This is illustrated in FIG. 39 by simulating the concentration of various pertinent markers and their change due to a drug intervention in an autistic child. The program can involve monitoring subjects and matched control individuals over time for toxic metals, surrogate markers for metals (metallothionein, etc.), and other biochemical markers. Subjects are those prone to, or afflicted with autism; controls are situation-matched people. It is not mandatory that there be a situation-matched control. The scenario assumes that during the study a significant "event" occurs. Events could be movement into a more or 40 less risky environment or initiation of therapy. Subjects could be frequently monitored for several parameters (device input) using the ambulatory system described herein. Additional laboratory assays that are not determinable in the ambulatory system could be performed at a lower frequency using laboratory assays. Additional data such as patient information, local environment, use of drugs, diet, etc. would be logged (patient input). Of particular interest to this scenario is information such as exposure to lead, mercury The time course shown in FIG. **39** envisages an event (initiation of therapy) at 33 days. The subject who is exhibiting abnormal levels of CP and MT, gradually reverts to normal levels of markers. The TI captures the risk or safety level of the subject based on all information. The study will define the best inputs to determine TI. As described above, TI can be used for determining the efficacy of drug treatment. A similar approach is also well suited for determining the efficacy of drugs during clinical trials. Additionally, this approach could be beneficially used to identify sub-groups of patients who respond well or poorly to a given treatment regimen. The ability to segregate responders from non-responders is an extremely valuable tool. The concept of using TI can be used not only during a therapeutic regimen, but for performing diagnostic tests to determine, for example, whether or not a patient is in need of a biopsy after a complete examination of prostate specific markers. ## TABLE 4 | | TABLE 4 | | | |----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--| | | Exemplary Analystes | | | | Liver | LDH, (LD5), (ALT), Arginase 1 (liver type), Alpha-fetoprotein (AFP), Alkaline phosphatase, Alanine aminotransferase, Lactate dehydrogenase, and Bilirubin | | | | Kidney | TNFa Receptor, Cystatin C, Lipocalin-type urinary prostaglandin D, synthatase (LPGDS), Hepatocyte growth factor receptor, Polycystin 2, Polycystin 1, Fibrocystin, Uromodulin, Alanine, aminopeptidase, N-acetyl-B-D-glucosaminidase, Albumin, and Retinol-binding protein (RBP) | | | | Heart | Troponin I (TnI), Troponin T (TnT), CK, CKMB, Myoglobin, Fatty acid binding protein (FABP), CRP, D-dimer, S-100 protein, BNP, NT-proBNP, PAPP-A, Myeloperoxidase (MPO), Glycogen phosphorylase isoenzyme BB (GPBB), Thrombin Activatable Fibrinolysis Inhibitor (TAFI), Fibrinogen, Ischemia modified albumin (IMA), Cardiotrophin-1, and MLC-I (Myosin Light Chain-I) | | | | Pancrease | Amylase, Pancreatitis-Assocoated protein (PAP-1), and Regeneratein proteins (REG) | | | | Muscle tissue | Myostatin | | | | Blood | Erythopoeitin (EPO) | | | | Bone | Cross-linked N-telopeptides of bone type I collagen (NTx) Carboxyterminal cross-linking telopeptide of bone collagen, Lysyl- pyridinoline (deoxypyridinoline), Pyridinoline, Tartrate-resistant acid phosphatase, Procollagen type I C propeptide, Procollagen type I N propeptide, Osteocalcin (bone gla-protein), Alkaline phosphatase, Cathepsin K, COMP (Cartillage Oligimeric Matrix Protein), Osteocrin Osteoprotegerin (OPG), RANKL, sRANK, TRAP 5 (TRACP 5), Osteoblast Specific Factor 1 (OSF-1, Pleiotrophin), Soluble cell adhesion molecules (SCAMs), sTfR, sCD4, sCD8, sCD44, and Osteoblast Specific Factor 2 (OSF-2, Periostin) | | | | Cancer | PSA (total prostate specific antigen), Creatinine, Prostatic acid phosphatase, PSA complexes, Prostrate-specific gene-1, CA 12-5, Carcinoembryonic Antigen (CEA), Alpha feto protein (AFP), hCG (Human chorionic gonadotropin), Inhibin, CAA Ovarian C1824, CA 27.29, CA 15-3, CAA Breast C1924, Her-2, Pancreatic, CA 19-9, Carcinoembryonic Antigen, CAA pancreatic, Neuron-specific enolase, Angiostatin DcR3 (Soluble decoy receptor 3), Endostatin, Ep-CAM (MK-1), Free | | | | Infectious disease | Immunoglobulin Light Chain Kappa, Free Immunoglobulin Light Chain Lambda, Herstatin, Chromogranin A, Adrenomedullin, Integrin, Epidermal growth factor receptor, Epidermal growth factor receptor-Tyrosine kinase, Pro-adrenomedullin N-terminal 20 peptide, Vascular endothelial growth factor, Vascular endothelial growth factor receptor, Stem cell factor receptor, c-kit, KDR or Flt-1, KDR, AML, and Midkine Viremia, Bacteremia, Sepsis, PMN Elastase, PMN elastase/al-Pl complex, Surfactant Protein D (SP-D), HBVc antigen, HBVs antigen, Anti-HBVc, Anti-HIV, T-supressor cell antigen, T-cell antigen ratio, T-helper cell antigen, Anti-HCV, Pyrogens, p24 antigen, Muramyl-dipeptide | | | | Diabetes | C-Peptide, Hemoglobin A1c, Glycated albumin, Advanced glycosylation<br>end products (AGEs), 1,5-anhydroglucitol, Gastric Inhibitory<br>Polypeptide, Glucose, Hemoglobin, ANGPTL3 and 4 | | | | Inflamation | Rheumatoid factor (RF), Antinuclear Antibody (ANA), C-reactive protein (CRP), Clara Cell Protein (Uteroglobin) | | | | Allergy | Total IgE and Specific IgE | | | | Autism<br>Coagulation | Ceruloplasmin, Metalothioneine, Zinc, Copper, B6, B12, Glutathione,<br>Alkaline phosphatase, and activation of apo-alkaline phosphatase<br>b-Thromboglobulin, Platelet factor 4, Von Willebrand factor | | | | disorders | | | | | COX inhibitors | TxB2 (Cox-1), 6-keto-PGF-1-alpha (Cox 2), 11-Dehydro-TxB-1a (Cox-1)<br>Neuron-specific enolase, GFAP, and S100B | | | | Geriatric<br>Nutritional status | Prealbumin, Albumin, Retinol-binding protein (RBP), Transferrin, Acylation-Stimulating Protein (ASP), Adiponectin, Agouti-Related Protein (AgRP), Angiopoietin-like Protein 4 (ANGPTL4, FIAF), C- peptide, AFABP (Adipocyte Fatty Acid Binding Protein, FABP4) Acylation-Stimulating Protein (ASP), EFABP (Epidermal Fatty Acid Binding Protein, FABP5), Glicentin, Glucagon, Glucagon-Like Peptide-1, | | | | Lipid metabolism<br>Coagulation status | Glucagon-Like Peptide-2, Ghrelin, Insulin, Leptin, Leptin Receptor, PYY, RELMs, Resistin, amd sTfR (soluble Transferrin Receptor) Apo-lipoproteins (several), Apo-A1, Apo-B, Apo-C-CII, Apo-D, Apo-E Factor I: Fibrinogen, Factor II: Prothrombin, Factor III: Tissue factor, Factor IV: Calcium, Factor V: Proaccelerin, Factor VI, Factor VII: Proconvertin, Factor VIII:, Anti-hemolytic factor, Factor IX: Christmas factor, Factor X: Stuart-Prower factor, Factor XI: Plasma thromboplastin antecedent, Factor XII: Hageman factor, Factor XIII: Fibrin-stabilizing factor, Prekallikrein, High-molecular-weight kininogen, Protein C, Protein S, D-dimer, Tissue plasminogen activator, Plasminogen, a2-Antiplasmin, Plasminogen activator inhibitor 1 (PAI1). | | | #### TABLE 4-continued | Exemplary Analyates | | | | | | |------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--| | Monoclonal<br>antibodies | those for EGFR, ErbB2, and IGF1R | | | | | | Tyrosine kinase<br>inhibitors<br>Serine/Threoline<br>Kinase Inhibitors | Ab1, Kit, PDGFR, Src, ErbB2, ErbB 4, EGFR, EphB, VEGFR1-4, PDGFRb, FLt3, FGFR, PKC, Met, Tie2, RAF, and Trk4; VEGF AKT, Aurora A/B/B, CDK, CDK (pan), CDK1-2, VEGFR2, PDGFRb, CDK4/6, MEK1-2, mTOR, and PKC-beta | | | | | | GPCR targets | Histamine Receptors, Serotonin Receptors, Angiotensin Receptors,<br>Adrenoreceptors, Muscarinic Acetylcholine Receptors, GnRH Receptors,<br>Dopamine Receptors, Prostaglandin Receptors, and ADP Receptors | | | | | | Other | Theophylline, CRP, CKMB, PSA, Myoglobin, CA125, Progesterone, TxB2, 6-keto-PGF-1-alpha, and Theophylline, Estradiol, Lutenizing hormone, High sensitivity CRP, Triglycerides, Tryptase, Low density lipoprotein Cholesterol, High density lipoprotein Cholesterol, Cholesterol, IGFR, Leptin, Leptin receptor, and Pro-calcitonin, Brain S100 protein, Substance P, 8-Iso-PGF-2a; GIP; GLP-1 | | | | | What is claimed is: 1. A method for detecting an analyte in a bodily fluid 20 sample of a subject, comprising: providing a cartridge comprising a sample collection unit and an assay assembly, the sample collection unit configured to receive the bodily fluid sample, and the assay assembly comprising a reaction site containing a 25 dry reactant to be liquefied prior to completing an assay, the dry reactant configured to react with the analyte in the bodily fluid sample; inserting the cartridge containing the bodily fluid sample into a reader assembly, the cartridge comprising an 30 identifier corresponding to a protocol to be used with the cartridge, the protocol including instructions to perform the assay, wherein the reader assembly is configured to receive the cartridge inside the reader assembly; receiving at the reader assembly a selected protocol from an external device, wherein the selected protocol is selected from a plurality of protocols in response to detecting the identifier of the cartridge; executing the selected protocol to perform the assay such 40 that an actuating element causes movement of the bodily fluid sample to the reaction site according to the selected protocol for reaction with the reactant contained within the reaction site, wherein the assay assembly yields a detectable signal generated from the 45 analyte in the sample that indicates a concentration of the analyte; detecting the detectable signal using a detector based on the selected protocol; and transmitting an indication that the detectable signal was 50 is a luminescent signal. detected from the detector to the external device. - 2. The method of claim 1, wherein the reader assembly comprises a detection assembly configured to detect the detectable signal, and a communication assembly configured detected to the external device. - 3. The method of claim 1 further comprising: providing a second cartridge configured to receive a second bodily fluid sample from the same subject at a second time, the second cartridge being configured the 60 same as the first cartridge and configured to perform the same assay; inserting the second cartridge containing the second bodily fluid sample of the same subject into the reader assembly, the second cartridge further comprising an 65 identifier corresponding to a protocol to be used with the second cartridge; receiving at the reader assembly a second selected protocol from the external device, wherein the second selected protocol is selected in response to detecting the identifier of the second cartridge; executing the second selected protocol such that the second cartridge's assay assembly yields a detectable signal generated from the analyte in the second sample that indicates a concentration of the analyte. - 4. The method of claim 1, wherein the selected protocol further comprises a detection method. - 5. The method of claim 1, wherein the selected protocol varies depending on the identifier of the cartridge that is recognizable by an identifier detector. - 6. The method of claim 1, wherein the reagent is an immunoassay reagent. - 7. The method of claim 1, wherein the analyte detected is selected from the group consisting of: a polypeptide, glycoprotein, polysaccharide, lipid, nucleic acid, and a combination thereof. - 8. The method of claim 1, wherein the analyte detected is selected from the group consisting of: drug, drug metabolite, biomarker indicative of a disease, tissue specific marker, and biomarker specific for a cell or cell type. - 9. The method of claim 1, wherein the analyte detected is a biomarker selected from said plurality of analytes listed in Table 4. - 10. The method of claim 1, wherein the reactant comprises a plurality of immunoassay reagents capable of reacting with a plurality of analytes. - 11. The method of claim 1, wherein the detectable signal - 12. The method of claim 1, wherein the cartridge further comprises a microneedle configured to obtain the bodily fluid sample. - 13. The method of claim 1, wherein the concentration of to transmit the indication that the detected signal was 55 the analyte is indicative of a pharmacokinetic or a pharmacodynamic parameter. - 14. The method of claim 1, wherein the bodily fluid sample comprises blood. - 15. The method of claim 3, wherein at least one pharmaceutical agent administered to said subject between when the first bodily fluid sample is obtained and the second bodily fluid sample is obtained is different from a pharmaceutical agent administered before the first bodily fluid sample is obtained. - 16. The method of claim 1, wherein the selected protocol effects dilution of said sample bringing the concentration of the analyte into a detectable range. 50 17. The method of claim 1, wherein the selected protocol is selected based on the identifier and, depending on changes in a treatment regime, based on at least one comparison of the concentration of the analyte with stored pharmacological data according to a bioinformatic model at said external 5 device 18. The method of claim 1, further comprising using an external server that stores mathematical algorithms to process a photon count from the reader assembly to calculate analyte concentration in the bodily fluid. 19. A method for detecting an analyte in a bodily fluid sample of a subject, comprising: providing a fluidic device comprising a sample collection unit and an assay assembly, the sample collection unit configured to receive the bodily fluid sample, and the 15 assay assembly comprising a reaction site containing a dry reactant to be contacted with liquid prior to completing an assay, the dry reactant configured to react with the analyte in the bodily fluid sample after being contacted with liquid; inserting the fluidic device containing the bodily fluid sample into a reader assembly, the fluidic device comprising an identifier corresponding to a protocol to be used with the fluidic device, the protocol including instructions to perform the assay, wherein the reader assembly is configured to receive the fluidic device inside the reader assembly; receiving at the reader assembly a selected protocol from an external device, wherein the selected protocol is selected from a plurality of protocols in response to 30 detecting the identifier of the fluidic device; executing the selected protocol to perform the assay such that an actuating element causes movement of the bodily fluid sample within the fluidic device to the reaction site according to the selected protocol for 35 reaction with the reactant contained within the reaction site after the reactant is contacted with liquid, wherein the assay assembly yields a detectable signal generated from the analyte in the sample, indicating the presence of the analyte; detecting the detectable signal using a detector; and transmitting from the detector to the external device an indication that the detectable signal was detected. 52 **20**. A method of testing for an analyte in a bodily fluid sample of a subject, comprising: providing a fluidic device comprising a sample collection unit and an assay assembly, the sample collection unit configured to receive the bodily fluid sample, and the assay assembly comprising a reaction site containing a dry reactant to be contacted with liquid prior to completing an assay, the dry reactant configured to react with the analyte, if present, in the bodily fluid sample after being contacted with liquid; inserting the fluidic device containing the bodily fluid sample into a reader assembly, the fluidic device comprising an identifier corresponding to a protocol to be used with the fluidic device, the protocol including instructions to perform the assay, wherein the reader assembly is configured to receive the fluidic device inside the reader assembly; receiving at the reader assembly a selected protocol from an external device, wherein the selected protocol is selected from a plurality of protocols in response to detecting the identifier of the fluidic device; executing the selected protocol to perform the assay such that an actuating element causes movement of the bodily fluid sample within the fluidic device to the reaction site according to the selected protocol for reaction with the reactant contained within the reaction site after the reactant is contacted with liquid if the analyte is present, wherein the assay assembly does not yield a detectable signal that indicates the presence of the analyte; and transmitting to the external device an indication that no detectable signal was detected. - 21. The method of claim 19 or 20, wherein the reader assembly comprises a detection assembly configured to detect the detectable signal, if generated, and a communication assembly configured to transmit to the external device the indication that the detected signal was or was not detected. - 22. The method of claim 19 or 20, wherein the fluidic device comprises a cartridge. \* \* \* \* \* | 专利名称(译) | 用于分析物检测的系统和方法 | | | |----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------| | 公开(公告)号 | <u>US10712282</u> | 公开(公告)日 | 2020-07-14 | | 申请号 | US14/481264 | 申请日 | 2014-09-09 | | [标]申请(专利权)人(译) | 赛拉诺斯股份有限公司 | | | | 申请(专利权)人(译) | THERANOS INC. | | | | [标]发明人 | HOLMES ELIZABETH A GIBBONS IAN KEMP TIMOTHY M HOWARD JOHN ROY SHAUNAK | | | | 发明人 | HOLMES, ELIZABETH A. GIBBONS, IAN KEMP, TIMOTHY M. HOWARD, JOHN ROY, SHAUNAK | | | | IPC分类号 | G01N21/76 A61B5/157 B01L3/00 /63 A61B5/15 G01N33/50 A61B5/1 | | 33/543 A61B5/145 A61B5/00 G16H40 | | CPC分类号 | A61B5/15142 G01N21/76 G16H40<br>B01L3/50273 G01N33/5302 A61B<br>B01L2300/0887 Y10T436/12 B01L<br>/115831 B01L2300/0883 B01L230<br>/143333 A61B5/150022 B01L2300<br>Y10T436/11 B01L2300/0877 G01N | 5/1427 A61B5/14532 G01N33/<br>.2300/044 B01L2300/0816 A61<br>0/0867 B01L2300/0636 A61B5<br>//023 A61B5/1495 A61B5/1508 | 53 G01N33/54386 Y10T436/10<br>B5/14546 B01L2300/087 Y10T436<br>5/150099 A61B5/150251 Y10T436 | | 优先权 | 60/721097 2005-09-28 US<br>60/717192 2005-09-16 US<br>60/705489 2005-08-05 US<br>60/678801 2005-05-09 US | | | | 其他公开文献 | US20150099311A1 | | | ### 摘要(译) 本发明在医疗设备领域。 具体地,本发明提供了允许实时检测来自生物流体的分析物的便携式医疗设备。 该方法和设备对于为各种医疗应用提供即时检验是特别有用的。