

(12) United States Patent

Heinecke et al.

(54) LIPOPROTEIN-ASSOCIATED MARKERS FOR CARDIOVASCULAR DISEASE

Inventors: Jay W. Heinecke, Seattle, WA (US);

Tomas Vaisar, Bellevue, WA (US)

Assignee: University of Washington, Seattle, WA

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

Appl. No.: 13/104,757

Filed: May 10, 2011 (22)

Prior Publication Data (65)

US 2011/0212477 A1 Sep. 1, 2011

Related U.S. Application Data

Division of application No. 11/263,553, filed on Oct. (62)31, 2005, now Pat. No. 7,972,802.

(51) Int. Cl. G01N 31/00

(2006.01)(2006.01)

G01N 33/53 U.S. Cl.

USPC 435/7.21; 435/7.1; 436/501; 436/518

Field of Classification Search None See application file for complete search history.

(56)References Cited

U.S. PATENT DOCUMENTS

4,677,057 A	6/1987	Curtiss
6,107,045 A	8/2000	Koren
6,225,047 B1	5/2001	Hutchens
6,521,226 B1	2/2003	Radtke
6,677,114 B1	1/2004	Schneider
6,869,568 B2	3/2005	Fogelman
7,098,036 B2	8/2006	Koren
7,223,552 B2	5/2007	Hazen
7,238,475 B2	7/2007	Rubin
2002/0164598 A1	11/2002	Muhlestein
2004/0053321 A1	3/2004	Koren
2004/0053367 A1	3/2004	Griffin
2004/0096917 A1	5/2004	Ivey
2004/0158879 A1	8/2004	Ruvkun
2004/0197823 A1	10/2004	Najib
2004/0198656 A1	10/2004	Najib
2005/0003341 A1	1/2005	Polansky
2005/0079562 A1	4/2005	Thompson
2005/0142569 A1	6/2005	Guild
2005/0181451 A1	8/2005	Bates
2005/0192755 A1	9/2005	Nagalla

FOREIGN PATENT DOCUMENTS

EP	0 767 914 B1	4/1997
EP	1 186 299 A1	3/2002
WO	86/05493 A1	9/1986
WO	87/02059 A1	4/1987
WO	88/03175 A1	5/1988
WO	96/00903 A1	1/1996
WO	00/49043 A2	8/2000
WO	02/23191 A1	3/2002
WO	02/063005 A2	8/2002
WO	03/023407 A1	3/2003
WO	03/025150 A2	3/2003
WO	03/083081 A2	10/2003

US 8,420,337 B2 (10) Patent No.:

(45) **Date of Patent:** Apr. 16, 2013

WO	2004/043238	A2	5/2004
WO	2004/044165	A2	5/2004
WO	2005/011474	A2	2/2005

OTHER PUBLICATIONS

Allan, C.M., and J.M. Taylor, "Expression of a Novel Human Apolipoprotein (apoC-IV) Causes Hypertriglyceridemia in Transgenic Mice," Journal of Lipid Research 37(7):1510-1518, Jul.

Ansell, B.J., et al., "Inflammatory/Antiinflammatory Properties of High-Density Lipoprotein Distinguish Patients From Control Subjects Better Than High-Density Lipoprotein Cholesterol Levels and Are Favorably Affected by Simvastatin Treatment," Circulation

108(22):2751-2756, Dec. 2003. Artl, A., et al., "Role of Serum Amyloid A During Metabolism of Artl, A., et al., 'Role of Setuli Amylord A During in Calculation of Acute-Phase HDL by Macrophages," Arteriosclerosis, Thrombosis, and Vascular Biology 20(3):763-772, Mar. 2000.

Asztalos, B.F., and E.J. Schaefer, "High-Density Lipoprotein Subpopulations in Pathologic Conditions," American Journal of Cartinia (2012):17E Apr. 2002

diology 91(7A):12E-17E, Apr. 2003.

Ayub, A., et al., "Serum Paraoxonase After Myocardial Infarction," Arteriosclerosis, Thrombosis, and Vascular Biology 19(2):330-335,

Barter, P.J., et al., "Antiinflammatory Properties of HDL," Circulation Research 95(8):764-772, Oct. 2004.

Bergmeier, C., et al., "Distribution Spectrum of Paraoxonase Activity in HDL Fractions," Clinical Chemistry 50(12):2309-2315, Dec. 2004.

Bergt, C., et al., "The Myeloperoxidase Product Hypochlorous Acid Oxides HDL in the Human Artery Wall and Impairs ABCA1-Dependent Cholesterol Transport," Proceedings of the National Academy of Sciences of the United States of America (PNAS) 101(35):13032-13037, Aug. 2004.

Brinkmann, V., et al., "Neutrophil Extracellular Traps Kill Bacteria," Science 303(5663):1532-1535, Mar. 2004, 9 pages of supplemental online materials.

Bu, X., et al., "Linkage Analysis of the Genetic Determinants of High Density Lipoprotein Concentrations and Composition: Evidence for Involvement of the Apolipoprotein A-II and Cholesteryl Ester Transfer Protein Loci," Human Genetics 93(6):639-648, Jun. 1994.

Buring, J.E., "Decreased HDL2 and HDL3 Cholesterol, Apo A-I and Apo A-II, and Increased Risk of Myocardial Infarction," Circulation 85(1):22-29, Jan. 1992.

Chait, A., et al., "Thematic Review Series: The Immune System and Atherogenesis. Lipoprotein-Associated Inflammatory Proteins: Markers or Mediators of Cardiovascular Disease?" Journal of Lipid Research, 46(3):389-403, Mar. 2005.

(Continued)

Primary Examiner — Lisa Cook

(74) Attorney, Agent, or Firm - Christensen O'Connor Johnson Kindness PLLC

ABSTRACT

The invention provides methods of screening a mammalian subject to determine if the subject is at risk to develop, or is suffering from, cardiovascular disease. The methods comprise detecting an amount of at least one biomarker in a biological sample, or HDL subfraction thereof, from the subject, and comparing the detected amount of the biomarker to a predetermined value, where a difference between the detected amount and the predetermined value is indicative of the presence or risk of cardiovascular disease in the subject. In some embodiments, the biomarker comprises at least one of ApoC-IV, Paraoxonase 1, C3, C4, ApoA-IV, ApoE, ApoL1, C4B1, Histone H2A, ApoC-II, ApoM, Vitronectin, Haptoglobin-related protein, and Clusterin, or combinations thereof.

6 Claims, 6 Drawing Sheets

OTHER PUBLICATIONS

Daugherty, A., et al., "Hypercholesterolemia Stimulates Angiotensin Peptide Synthesis and Contributes to Atherosclerosis Through the AT 1A Receptor," Circulation 110(25):3849-3857, Dec. 2004.

Emlen, W., et al., "Regulation of Nuclear Antigen Expression on the Cell Surface of Human Monocytes," Journal of Immunology 148(10):3042-3048, May 1992.

Ezeh, B., et al., "Plasma Distribution of apoA-IV in Patients With Coronary Artery Disease and Healthy Controls," Journal of Lipid Research 44(8):1523-1529, Aug. 2003.

Frank, M.M., "Annihilating Host Defense," Nature Medicine 7(12):1285-1286, Dec. 2001.

Getz, G.S., "Thematic Review Series: The Immune System and Atherogenesis. Immune Function in Atherogenesis," Journal of Lipid Research 46(1):1-10, Jan. 2005.

Ghazalpour, A., et al., "Thematic Review Series: The Pathogenesis of Atherosclerosis." Toward a Biological Network for Atherosclerosis," Journal of Lipid Research 45(10):1793-1805, Oct. 2004, 4 pages of supplemental online materials.

Gordon, D.J., and B.M. Rifkind, "High-Density Lipoprotein—The Clinical Implications of Recent Studies," New England Journal of Medicine 321(19):1311-1316, Nov. 1989.

Gygi, S.P., et al., "Quantitative Analysis of Complex Protein Mixtures Using Isotope-Coded Affinity Tags," Nature Biotechnology 17(10):994-999, Oct. 1999.

Halkes, C.J.M., et al., "Postprandial Increase of Complement Component 3 in Normolipidemic Patients With Coronary Artery Disease: Effects of Expanded-Dose Simvastatin," Arteriosclerosis, Thrombosis, and Vascular Biology 21(9):1526-1530, Sep. 2001.

Hamilton, J.A., "Fatty Acid Interactions With Proteins: What X-Ray Crystal and NMR Solution Structures Tell Us," Progress in Lipid Research 43(3):177-199, May 2004.

Hasler-Rapacz, J., et al., "Elevated Concentrations of Plasma Lipids and Apolipoproteins B, C-III, and E Are Associated With the Progression of Coronary Artery Disease in Familial Hypercholesterolemic Swine," Arteriosclerosis, Thrombosis, and Vascular Biology 15(5):583-592, May 1995.

Heinecke, J.W., and A.J. Lusis, "Paraoxonase-Gene Polymorphisms Associated With Coronary Heart Disease: Support for the Oxidative Damage Hypothesis?" American Journal of Human Genetics 62(1):20-24, Jan. 1998.

Jarvik, G.P., et al., "Paraoxonase Activity, but Not Haplotype Utilizing the Linkage Disequilibrium Structure, Predicts Vascular Disease," Arteriosclerosis, Thrombosis, and Vascular Biology 23(8):1465-1471, Aug. 2003.

Karlsson, H., et al., "Lipoproteomics II: Mapping of Proteins in High-Density Lipoprotein Using Two-Dimensional Gel Electrophoresis and Mass Spectometry," Proteomics 5(5):1431-1445, Apr. 2005.

Khovidhunkit, W., et al., "Apolipoproteins A-IV and A-V Are Acute-Phase Proteins in Mouse HDL," Atherosclerosis 176(1)37-44, Sep. 2004.

Klos, K.L., et al., "Genome-Wide Linkage Analysis Reveals Evidence of Multiple Regions That Influence Variation in Plasma Lipid and Apolipoprotein Levels Associated With Risk of Coronary Heart Disease," Arteriosclerosis Thrombosis and Vascular Biology 21(6):971-978, Jun. 2001.

Kotite, L., et al., "Human apoC-IV: Isolation, Characterization, and Immunochemical Quantification in Plasma and Plasma Lipoproteins," Journal of Lipid Research 44(7):1387-1394, Jul. 2003.

Lachmann, P.J., et al., "Three Rat Monoclonal Antibodies to Human C3," Immunology 41(3):503-515, Nov. 1980.

Laine, P., et al., "Evidence for Complement Activation in Ruptured Coronary Plaques in Acute Myocardial Infarction," The American Journal of Cardiology 90(4):404-408, Aug. 2002.

Link, A.J., et al., "Direct Analysis of Protein Complexes Using Mass Spectrometry," Nature Biotechnology 17(7):676-682, Jul. 1999.

Linton, M.F., et al., "Prevention of Atherosclerosis in Apolipoprotein E-Deficient Mice by Bone Marrow Transplantation," Science 267(5200):1034-1037, Feb. 1995.

Mackness, M., et al., "Paraoxonase 1 Activity, Concentration and Genotype in Cardiovascular Disease," Current Opinion in Lipidology 15(4):399-404, Aug. 2004.

Mak, P.A., et al., "Regulated Expression of the Apolipoprotein E/C-I/C-IV/C-II Gene Cluster in Murine and Human Macrophages. A Critical Role for Nuclear Liver X Receptors α and β ," Journal of Biological Chemistry 277(35):31900-31908, Aug. 2002.

Manzato, E., et al., "Levels and Physicochemical Properties of Lipoprotein Subclasses in Moderate Hypertriglyceridemia," Clinica Chimica Acta 219(1-2):57-65, Oct. 1993.

Marathe, G.K., et al., "Platelet-Activating Factor Acetylhydrolase, and Not Paraoxonase-1, Is the Oxidized Phospholipid Hydrolase of High Density Lipoprotein Particles," Journal of Biological Chemistry 278(6):3937-3947, Feb. 2003.

McPhaden, A.R., and K. Whaley, "Complement Biosynthesis by Mononuclear Phagocytes," Immunologic Research 12(3):213-232, Sep. 1993.

Mendez, A.J., et al., "Protein Kinase C as a Mediator of High Density Lipoprotein Receptor-Dependent Efflux of Intracellular Cholesterol," Journal of Biological Chemistry 266(16):10104-10111, Jun. 1991.

Muscari, A., et al., "Relationship Between Serum C3 Levels and Traditional Risk Factors for Myocardial Infarction," Acta Cardiologica 53(6):345-354, Dec. 1998.

Navab, M., et al., "Thematic Review Series: The Pathogenesis of Atherosclerosis. The Oxidation Hypothesis of Atherogenesis: The Role of Oxidized Phospholipids and HDL," Journal of Lipid Research 45(6):993-1007, Jun. 2004.

Nissen, S.E., et al., "Effect of Recombinant ApoA-I Milano on Coronary Atherosclerosis in Patients With Acute Coronary Syndromes: A Randomized Controlled Trial," Journal of the American Medical Association (JAMA) 290(17):2292-2300, Nov. 2003.

Oksjoki, R., et al., "Role of Complement Activation in Atherosclerosis," Current Opinion in Lipidology 14(5):477-482, Oct. 2003.

Olsen, J.V., and M. Mann, "Improved Peptide Identification in Proteomics by Two Consecutive Stages of Mass Spectrometric Fragmentation," Proceedings of the National Academy of Sciences (PNAS) 101(37):13417-13422, Sep. 2004.

Onat, A., et al., "Cross-Sectional Study of Complement C3 as a Coronary Risk Factor Among Men and Women," Clinical Science (London) 108(2):129-135, Feb. 2005.

Oram, J.F., "HDL Apolipoproteins and ABCA1: Partners in the Removal of Excess Cellular Cholesterol," Arteriosclerosis, Thrombosis, and Vascular Biology 23(5):720-727, May 2003.

Parthasarathy, S., et al., "High-Density Lipoprotein Inhibits the Oxidative Modification of Low-Density Lipoprotein," Biochimica et Biophysica Acta 1044(2):275-283, May 1990.

Qian, W.-J., et al., "Comparative Proteome Analyses of Human Plasma Following in Vivo Lipopolysaccharide Administration Using Multidimensional Separations Coupled With Tandem Mass Spectrometry," Proteomics 5(2):572-584, Feb. 2005.

Resing, K.A., "Proteomics for Cell Protein Expression Profiling," Journal of Investigative Dermatology 121(1):xi-xii, Jul. 2003.

Rocke, D.M., "Design and Analysis of Experiments With High Throughput Biological Assay Data," Seminars in Cell & Developmental Biology 15(6):703-713, Dec. 2004.

Rozek, L.S., et al., "The Correlation of Paraoxonase (PON1) Enzyme Activities With Plasma Lipid and Lipoprotein Levels Differs for Subjects With and Without Vascular Disease," Journal of Lipid Research 46(9):1888-1895, Sep. 2005.

Sacks, F.M., et al., "VLDL, Apolipoproteins B, CIII, and E, and Risk of Recurrent Coronary Events in the Cholesterol and Recurrent Events (CARE) Trial," Circulation 102(16):1886-1892, Oct. 2000. Sackstein, R., and H.R. Colten, "Molecular Regulation of MHC Class III (C4 and Factor B) Gene Expression in Mouse Peritoneal Macrophages," Journal of Immunology 133(3)1618-1626, Sep.

Sampietro, T., et al., "Up Regulation of C3, C4, and Soluble Intercellular Adhesion Molecule-1 Co-Expresses With High Sensitivity C Reactive Protein in Familial Hypoalphalipoproteinaemia: Further Evidence of Inflammatory Activation," Heart 90(12):1438-1442, Dec. 2004.

Seifert, P.S., and G.K. Hansson, "Complement Receptors and Regulatory Proteins in Human Atherosclerotic Lesions," Arteriosclerosis, Thrombosis, and Vascular Biology 9(6):802-811, Nov.-Dec. 1989. Shih, D.M., et al., "Combined Serum Paraoxonase Knockout/ Apolipoprotein E Knockout Mice Exhibit Increased Lipoprotein Oxidation and Atherosclerosis," Journal of Biological Chemistry 275(23):17527-17535, Jun. 2000.

Shih, D.M., et al., "Mice Lacking Serum Paraoxonase Are Susceptible to Organophosphate Toxicity and Atherosclerosis," Nature 394(6690):284-287, Jul. 1998.

Stanley, B.A., et al., "Heart Disease, Clinical Proteomics and Mass Spectrometry," Disease Markers 20(3):167-178, Oct. 2004.

Stemmann, O., et al., "Dual Inhibition of Sister Chromatid Separa-

tion at Metaphase," Cell 107(6):715-726, Dec. 2001. Tall, A.R., et al., "Regulation and Mechanisms of Macrophage Cholesterol Efflux," Journal of Clinical Investigation 110(7):899-904,

Vergès, B.L., et al., "Macrovascular Disease Is Associated With Increased Plasma Apolipoprotein A-IV Levels in NIDDM," Diabetes 46(1):125-132, Jan. 1997.

Washburn, M.P., et al., "Reproducibility of Quantitative Proteomic Analyses of Complex Biological Mixtures by Multidimensional Protein Identification Technology," Analytical Chemistry 75(19):5054-5061, Oct. 2003.

Wolfrum, C., et al., "Apolipoprotein M Is Required for preβ-HDL Formation and Cholesterol Efflux to HDL and Protects Against Atherosclerosis," Nature Medicine 11(4):418-422, Apr. 2005, 8 pages of supplemental online materials.

Yasojima, K., et al., "Complement Components, but Not Complement Inhibitors, Are Upregulated in Atherosclerotic Plaques," Arteriosclerosis, Thrombosis, and Vascular Biology 21(7):1214-1219, Jul. 2001.

Yasojima, K., et al., "Generation of C-Reactive Protein and Complement Components in Atherosclerotic Plaques," American Journal of Pathology 158(3):1039-1051, Mar. 2001.

Ylä-Herttuala, S., et al., "Rabbit and Human Atherosclerotic Lesions Contain IgG That Recognizes Epitopes of Oxidized LDL," Arteriosclerosis, Thrombosis, and Vascular Biology 14(1):32-40, Jan. 1994. Yu, C.Y., and C.C. Whitacre, "Sex, MHC and Complement C4 in Autoimmune Diseases," TRENDS in Immunology 25(12):694-699,

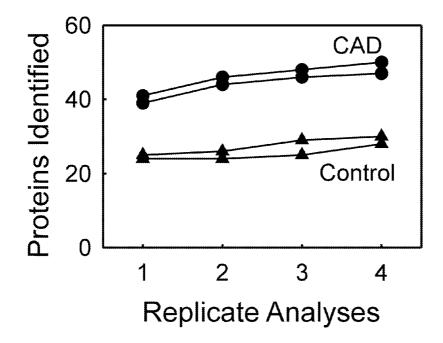


Fig.1.

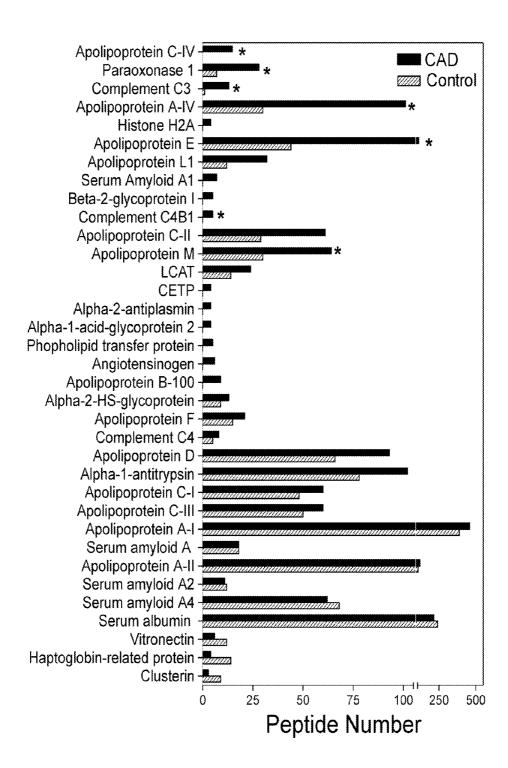


Fig.2A.

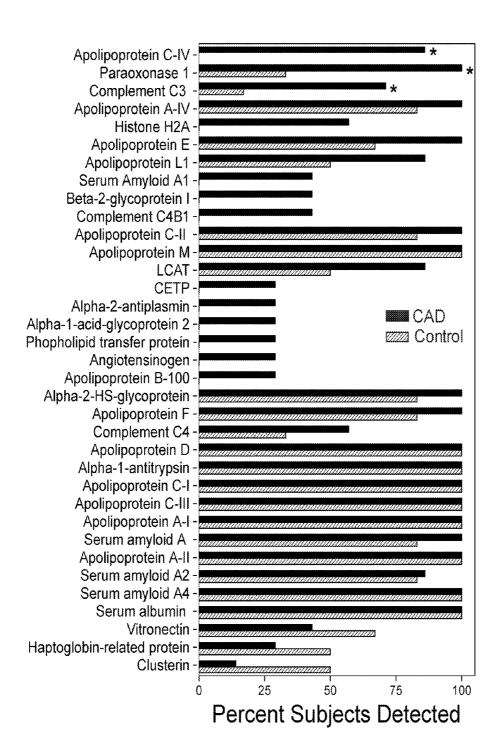


Fig.2B.

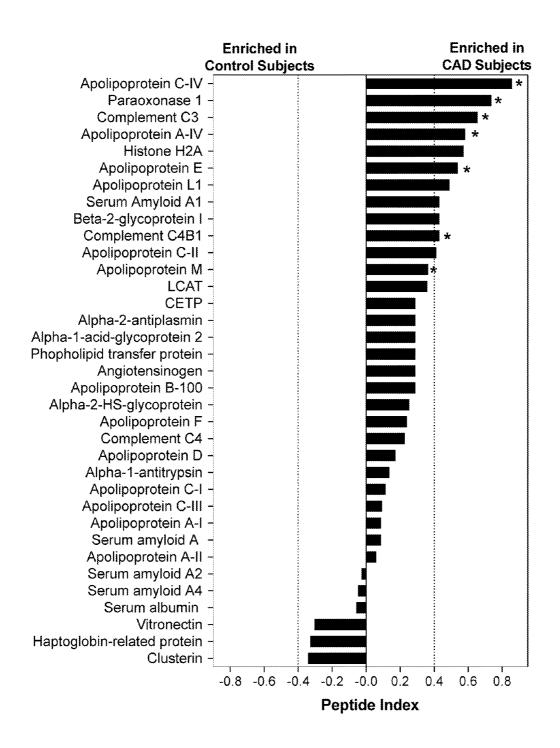


Fig.3.

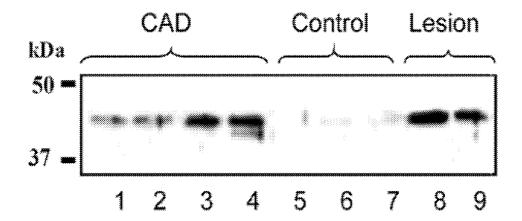



Fig.4.

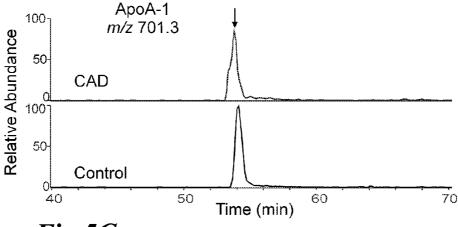


Fig.5C.

LIPOPROTEIN-ASSOCIATED MARKERS FOR CARDIOVASCULAR DISEASE

CROSS REFERENCE TO RELATED APPLICATION

This application is a division of application Ser. No. 11/263,553, filed Oct. 31, 2005, the disclosure of which is incorporated herein by reference in its entirety.

STATEMENT REGARDING SEQUENCE LISTING

The sequence listing associated with this application is provided in text format in lieu of a paper copy and is hereby incorporated by reference into the specification. The name of the text file containing the sequence listing is 37078SeqFinal.txt. The text file is 108 KB; was created on May 9, 2011; and is being submitted via EFS-Web with the filing of the specification.

FIELD OF THE INVENTION

The present invention generally relates to methods, reagents and kits for diagnosing cardiovascular disease in a ²⁵ subject, and particularly relates to the use of lipoprotein-associated markers to diagnose cardiovascular disease in a subject.

BACKGROUND OF THE INVENTION

Cardiovascular disease is a leading cause of morbidity and mortality, particularly in developed areas such as the United States and Western European countries. The incidence of mortality from cardiovascular disease has significantly 35 decreased in the United States over the past 30 years (see Braunwald, E., N. Engl. J. Med. 337:1360-1369, 1997; Hoyert, D. L., et al., "Deaths: Preliminary Data for 2003" in National Vital Statistics Reports. Hyattsville: National Center for Health Statistics, 2005). Many factors have contributed to 40 this improvement in patient outcome, including the identification of cardiovascular risk factors, the application of medical technologies to treat acute coronary syndrome, and the development of interventions that reduce cardiovascular risk factors. Despite these advances, however, cardiovascular dis-45 ease remains a leading cause of morbidity and mortality in developed countries (see Hoyert D. L., et al., National Vital Statistics Reports, 2005).

Thus, there is a pressing need to identify markers that may be used for the rapid, accurate and non-invasive diagnosis 50 and/or assessment of the risk of cardiovascular disease, and also to assess the efficacy of interventions designed to slow the initiation and progress of this disorder.

SUMMARY OF THE INVENTION

In accordance with the foregoing, in one aspect, the present invention provides methods of screening a mammalian subject to determine if the subject is at risk for developing, or is suffering from, cardiovascular disease ("CVD"). The method 60 of this aspect of the invention comprises detecting an amount of at least one biomarker in a biological sample, or high density lipoprotein subfraction thereof, of the subject, wherein the biomarker is selected from the group consisting of Apolipoprotein C-IV ("ApoC-IV"), Paraoxonase 1 ("PON-1"), Complement Factor 3 ("C3"), Apolipoprotein A-IV ("ApoA-IV"), Apolipoprotein E ("ApoE"), Apolipoprotein

2

L1 ("ApoL1"), Complement Factor C4 ("C4"), Complement Factor C4B1 ("C4B1"), Histone H2A, Apolipoprotein C-II ("ApoC-II"), Apolipoprotein M ("ApoM"), Vitronectin, Haptoglobin-related Protein and Clusterin. The detected amount of the biomarker is then compared to a predetermined value that is derived from measurements of the one or more biomarkers in comparable biological samples taken from the general population or a select population of mammalian subjects. A difference in the amount of the biomarker between the subject's sample and the predetermined value is indicative of the presence and/or risk of developing cardiovascular disease in the subject. In one embodiment of this aspect of the invention, an increased amount of a biomarker selected from the group consisting of ApoC-IV, PON-1, C3, C4, ApoA-IV, ApoE, ApoL1, C4B1, Histone H2A, ApoC-II, or ApoM in the subject's sample in comparison to a predetermined value, is indicative of the presence and/or risk of developing cardiovascular disease. In another embodiment of this aspect of the invention, a reduced amount of Vitronectin, Haptoglobin-20 related Protein or Clusterin in the subject's sample in comparison to a predetermined value is indicative of the presence or risk of developing cardiovascular disease.

In another aspect, the present invention provides methods of screening a mammalian subject to determine if the subject has one or more atherosclerotic lesions. The method of this aspect of the invention comprises detecting an amount of at least one biomarker protein in a biological sample, or HDL subfraction thereof (including a lipoprotein complex with a density from about 1.06 to about 1.21 g/mL, or from about 1.06 to 1.10 g/mL, or from about 1.10 to about 1.21 g/mL, or a complex containing ApoA-I or ApoA-II), isolated from the subject, wherein the biomarker is selected from the group consisting of PON-1, C3, C4, ApoE, ApoM and C4B1. The detected amount of the biomarker is then compared to a predetermined value that is derived from measurements of the one or more biomarkers in comparable biological samples taken from the general population or a select population of mammalian subjects. An increase in the amount of the biomarker in the HDL, HDL2, HDL3 and/or ApoA-I or ApoA-II fraction of the biological sample in comparison to the predetermined value is indicative of the presence of one or more atherosclerotic lesions in the subject.

In another aspect, the present invention provides an assay for determining the risk and/or presence of cardiovascular disease in a mammalian subject based on the detection of an amount of at least one protein marker in a blood sample, or HDL subfraction thereof (including a lipoprotein complex with a density from about 1.06 to about 1.21 g/mL, or from about 1.06 to 1.10 g/mL, or from about 1.10 to about 1.21 g/mL, or a complex containing ApoA-I or ApoA-II). The assay may be packaged into a kit that comprises (i) one or more detection reagents for detecting at least one marker protein selected from the group consisting of ApoC-IV, Paraoxonase 1, C3, ApoA-IV, ApoE, ApoL1, C4, C4B1, Histone H2A, ApoC-II, and ApoM, and (ii) written indicia indicating a positive correlation between the presence of the detected amount of the marker protein and risk of developing cardiovascular disease.

In another aspect, the present invention provides an assay for identifying the presence of one or more atherosclerotic lesions in a mammalian subject, based on the detection of an amount of at least one protein marker in a blood sample, or HDL subfraction thereof (including a lipoprotein complex with a density from about 1.06 to about 1.21 g/mL, or from about 1.06 to 1.10 g/mL, or from about 1.10 to about 1.21 g/mL, or a complex containing ApoA-I or ApoA-II). The assay may be packaged into a kit comprising (i) one or more

•

detection reagents for detecting at least one marker protein selected from the group consisting of Paraoxonase 1, C3, C4, ApoE, ApoM and C4B1, and (ii) written indicia indicating a positive correlation between the presence of the detected amount of the marker protein and the presence of one or more atherosclerotic lesions in the subject.

The invention thus provides methods, reagents, and kits for identifying protein markers that are indicative of the risk and/or presence of cardiovascular disease in a mammalian subject.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing aspects and many of the attendant advantages of this invention will become more readily appreciated as the same become better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:

FIG. 1 presents graphical results demonstrating the reproducible identification of HDL-associated proteins using tandem mass spectroscopy. Total HDL was isolated from two normal control subjects and from two subjects with established cardiovascular disease ("CVD") using methods in accordance with an embodiment of the invention, as described in EXAMPLE 3;

FIG. 2A presents graphical results demonstrating the relative abundance of particular HDL-associated proteins isolated from HDL₃ obtained from normal subjects and from subjects with CVD, as described in EXAMPLE 5;

FIG. 2B presents graphical results comparing the percentage of normal subjects and subjects with CVD in which particular HDL-associated proteins were detected using tandem mass spectroscopy, as described in EXAMPLE 5;

FIG. 3 presents graphical results demonstrating the relative abundance, as assessed by a peptide index, of particular HDL- 35 associated proteins isolated from HDL3 obtained from normal subjects and from subjects with CVD, as described in EXAMPLE 5;

FIG. 4 presents Western blot data demonstrating that Paraoxonase ("PON-1") is present at detectable levels in ⁴⁰ HDL₃ isolated from plasma obtained from four patients with CVD (lanes 1-4) and in HDL₃ isolated from atherosclerotic lesions obtained from two subjects with CVD (lanes 8-9), but is not detectable in HDL₃ isolated from plasma obtained from three normal control subjects (lanes 5-7), as described in ⁴⁵ EXAMPLE 6;

FIG. 5A presents graphical results obtained from tandem mass spectrometry, demonstrating that ApoC-IV is present at a high concentration in HDL₃ isolated from subjects with CVD, but is not detected in HDL₃ isolated from control subjects, as described in EXAMPLE 7;

FIG. **5**B presents graphical results obtained from tandem mass spectrometry, demonstrating that ApoM is present at a higher concentration in HDL₃ isolated from subjects with CVD as compared to the level observed in HDL₃ isolated 55 from control subjects, as described in EXAMPLE 7; and

FIG. **5**C presents graphical results obtained from mass spectrometry, demonstrating that Apolipoprotein A-I ("ApoA-I") is present at approximately equal concentrations in HDL₃ isolated from subjects with CVD and in HDL₃ isolated from control subjects, as described in EXAMPLE 7.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Unless specifically defined herein, all terms used herein have the same meaning as they would to one skilled in the art 4

of the present invention. The following definitions are provided in order to provide clarity with respect to the terms as they are used in the specification and claims to describe various embodiments of the present invention.

As used herein, the term "cardiovascular disease" or "CVD," generally refers to heart and blood vessel diseases, including atherosclerosis, coronary heart disease, cerebrovascular disease, and peripheral vascular disease. Cardiovascular disorders are acute manifestations of CVD and include myocardial infarction, stroke, angina pectoris, transient ischemic attacks, and congestive heart failure. Cardiovascular disease, including atherosclerosis, usually results from the build up of fatty material, inflammatory cells, extracellular matrix and plaque. Clinical symptoms and signs indicating the presence of CVD include one or more of the following: chest pain and other forms of angina, shortness of breath, sweatiness, Q waves or inverted T waves on an EKG, a high calcium score by CT scan, at least one stenotic lesion on coronary angiography, or heart attack.

As used herein, the term "biomarker" is a biological compound such as a protein or a fragment thereof, including a polypeptide or peptide that may be isolated from, or measured in the biological sample which is differentially present in a sample taken from a subject having established or potentially clinically significant CVD as compared to a comparable sample taken from an apparently normal subject that does not have CVD. A biomarker can be an intact molecule, or it can be a portion thereof that may be partially functional or recognized, for example, by a specific binding protein or other detection method. A biomarker is considered to be informative for CVD if a measurable aspect of the biomarker is associated with the presence of CVD in a subject in comparison to a predetermined value or a reference profile from a control population. Such a measurable aspect may include, for example, the presence, absence, or concentration of the biomarker, or a portion thereof, in the biological sample, and/or its presence as a part of a profile of more than one biomarker. A measurable aspect of a biomarker is also referred to as a feature. A feature may be a ratio of two or more measurable aspects of biomarkers. A biomarker profile comprises at least one measurable feature, and may comprise two, three, four, five, 10, 20, 30 or more features. The biomarker profile may also comprise at least one measurable aspect of at least one feature relative to at least one internal standard.

As used herein, the term "predetermined value" refers to the amount of one or more biomarkers in biological samples obtained from the general population or from a select population of subjects. For example, the select population may be comprised of apparently healthy subjects, such as individuals who have not previously had any sign or symptoms indicating the presence of CVD. In another example, the predetermined value may be comprised of subjects having established CVD. The predetermined value can be a cut-off value, or a range. The predetermined value can be established based upon comparative measurements between apparently healthy subjects and subjects with established CVD, as described herein.

As used herein, the term "high density lipoprotein" or "HDL, or a subfraction thereof" includes protein or lipoprotein complexes with a density from about 1.06 to about 1.21 g/mL, or from about 1.06 to 1.10 g/mL, or from about 1.10 to about 1.21 g/mL, or a complex containing ApoA-I or ApoA-II. HDL may be prepared by density ultracentrifugation, as described in Mendez, A. J., et al., *J. Biol. Chem.* 266:10104-10111, 1991, from plasma, serum, bodily fluids, or tissue. The HDL₃ subfraction in the density range of about 1.110 to about 1.210 g/mL, and the HDL₂ subfraction in the density range of about 1.06 to about 1.110g/mL may be isolated from plasma,

serum, bodily fluids, tissue or total HDL by sequential density ultracentrifugation, as described in Mendez, supra. HDL is known to contain two major proteins, Apolipoprotein A-I (ApoA-I) and Apolipoprotein A-II (ApoA-II); therefore, in some embodiments, the term "HDL, or a subfraction thereof" ⁵ also includes an ApoA-I and/or an ApoA-II containing protein or lipoprotein complex.

As used herein, the term "HDL-associated" refers to any biological compounds that float in the density range of HDL (d=about 1.06 to about 1.21 g/mL), and/or molecules present in a complex containing ApoA-I and/or ApoA-II, including full-length proteins, and fragments thereof, including peptides, or lipid-protein complexes such as microparticles, in HDL isolated from any sample, including lesions, blood, urine, or tissue samples.

As used herein, the term "mass spectrometer" refers to a device able to volatilize/ionize analytes to form gas-phase ions and determine their absolute or relative molecular masses. Suitable forms of volatilization/ionization are elec- 20 trospray, laser/light, thermal, electrical, atomized/sprayed and the like, or combinations thereof. Suitable forms of mass spectrometry include, but are not limited to, ion trap instruments, quadrupole instruments, electrostatic and magnetic sector instruments, time of flight instruments, Fourier-trans- 25 form mass spectrometers, and hybrid instruments composed of various combinations of these types of mass analyzers. These instruments may, in turn, be interfaced with a variety of sources that fractionate the samples (for example, liquid chromatography or solid-phase adsorption techniques based on 30 chemical, or biological properties) and that ionize the samples for introduction into the mass spectrometer, including Matrix Assisted Laser Desorption (MALDI), electrospray, or nanospray ionization (ESI) or combinations thereof.

As used herein, the term "affinity detection" or "affinity 35 purified" refers to any method that selectively detects and/or enriches the protein or analyte of interest. This includes methods based on physical properties like charge, amino acid sequence, and hydrophobicity, and can involve many different compounds that have an affinity for the analyte of interest, 40 including but not limited to antibodies, resins, RNA, DNA, proteins, hydrophobic materials, charged materials, and dyes.

As used herein, the term "antibody" encompasses antibodies and antibody fragments thereof derived from any antibody-producing mammal (e.g., mouse, rat, rabbit, and primate including human) that specifically bind to the biomarkers or portions thereof. Exemplary antibodies include polyclonal, monoclonal, and recombinant antibodies; multispecific antibodies (e.g., bispecific antibodies); humanized antibodies; murine antibodies; chimeric, mouse-human, 50 mouse-primate, primate-human monoclonal antibodies; and anti-idiotype antibodies, and may be any intact molecule or fragment thereof.

As used herein, the term "antibody fragment" refers to a portion derived from or related to a full length anti-biomarker 55 antibody, generally including the antigen binding or variable region thereof. Illustrative examples of antibody fragments include Fab, Fab', F(ab)₂, F(ab')₂ and Fv fragments, scFv fragments, diabodies, linear antibodies, single-chain antibody molecules and multispecific antibody fragments as used here may be incorporated into other proteins that can be produced by a variety of systems, including, but not limited to, bacteria, viruses, yeast and mammalian cells.

As used herein, "a subject" includes all mammals, includesing without limitation humans, non-human primates, dogs, cats, horses, sheep, goats, cows, rabbits, pigs and rodents.

6

As used herein, the term "percent identity" or "percent identical," when used in connection with a biomarker used in the practice of the present invention, is defined as the percentage of amino acid residues in a biomarker sequence that are identical with the amino acid sequence of a specified biomarker (such as the amino acid sequence of SEQ ID NO:1), after aligning the sequences to achieve the maximum percent identity. When making the comparison, no gaps are introduced into the biomarker sequences in order to achieve the best alignment.

Amino acid sequence identity can be determined, for example, in the following manner. The amino acid sequence of a biomarker (e.g., the amino acid sequence set forth in SEQ ID NO:1) is used to search a protein sequence database, such as the GenBank database using the BLASTP program. The program is used in the ungapped mode. Default filtering is used to remove sequence homologies due to regions of low complexity. The default parameters of BLASTP are utilized.

As used herein, the term "derivatives" of a biomarker, including proteins and peptide fragments thereof include an insertion, deletion, or substitution mutant. Preferably, any substitution mutation is conservative in that it minimally disrupts the biochemical properties of the biomarker. Thus, where mutations are introduced to substitute amino acid residues, positively-charged residues (H, K and R) preferably are substituted with positively-charged residues; negatively-charged residues (D and E) are preferably substituted with negatively-charged residues; neutral polar residues (C, G, N, Q, S, T, and Y) are preferably substituted with neutral polar residues; and neutral non-polar residues (A, F, I, L, M, P, V, and W) are preferably substituted with neutral non-polar residues.

As used herein, the amino acid residues are abbreviated as follows: alanine (Ala;A), asparagine (Asn;N), aspartic acid (Asp;D), arginine (Arg;R), cysteine (Cys;C), glutamic acid (Glu;E), glutamine (Gln;Q), glycine (Gly;G), histidine (His; H), isoleucine (Ile;I), leucine (Leu;L), lysine (Lys;K), methionine (Met;M), phenylalanine (Phe;F), proline (Pro;P), serine (Ser;S), threonine (Thr;T), tryptophan (Trp;W), tyrosine (Tyr;Y), and valine (Val;V).

In the broadest sense, the naturally occurring amino acids can be divided into groups based upon the chemical characteristic of the side chain of the respective amino acids. By "hydrophobic" amino acid is meant either Ile, Leu, Met, Phe, Trp, Tyr, Val, Ala, Cys or Pro. By "hydrophilic" amino acid is meant either Gly, Asn, Gln, Ser, Thr, Asp, Glu, Lys, Arg or His. This grouping of amino acids can be further subclassed as follows. By "uncharged hydrophilic" amino acid is meant either Ser, Thr, Asn or Gln. By "acidic" amino acid is meant either Glu or Asp. By "basic" amino acid is meant either Lys, Arg or His.

In the past, studies have been done to identify proteins in the blood of a subject that could be used as markers for cardiovascular disease (see, e.g., Stanley et al., Dis. Markers 20:167-178, 2004). However, this approach has been hampered by the vast number of candidate proteins in blood plasma, in concentrations that vary over six orders of magnitude, which complicate the discovery and validation processes (Qian, W. J., et al., Proteomics 5:572-584, 2005). Cholesterol is present in the blood as free and esterified cholesterol within lipoprotein particles, commonly known as chylomicrons, very low density lipoproteins (VLDLs) low density lipoproteins (LDLs) and high density lipoproteins (HDLs). HDL particles vary in size and density due to the differences in the number of apolipoproteins on the surface of the particles and the amount of cholesterol esters in the core of HDL (see Asztaloe et al., Am. J. Cardiol., 91:12 E-17E,

2003). HDL is composed of two principal subfractions based on density: HDL₂ and the denser HDL₃.

Elevated LDL cholesterol and total cholesterol are directly related to an increased risk of cardiovascular disease. See Anderson, Castelli, and Levy, "Cholesterol and Mortality: 30 years of Follow Up from the Framingham Study," JAMA 257:2176-90, 1987. In contrast, it has been established that the risk of cardiovascular disease is inversely proportional to plasma levels of HDL and the major HDL apolipoprotein, ApoA-I (Gordon, D. J., et al., N. Engl. J. Med. 321:1311- 10 1316, 1989). Studies have shown that high HDL levels are associated with longevity (Barzilai, N., et al., JAMA 290: 2030-2040, 2003). Consistent with these findings, an abnormally low HDL level is a well-accepted risk factor for the development of clinically significant atherosclerosis (particularly common in men with premature atherosclerosis (Gordon, D. J., et al., N. Engl. J. Med. 321:1311-1316, 1989; Wilson, P. W., et al., Arteriosclerosis 8:737-741, 1988)). The mechanism by which HDL renders its protective effect against atherosclerosis is the subject of continued debate. 20 Some studies have implicated that HDL may directly protect against atherosclerosis by removing cholesterol from artery wall macrophages (see Tall, A. R., et al., J. Clin. Invest. 110:899-904, 2002; Oram, J. F., et al., Arterioscler. Thromb. Vasc. Biol. 23:720-727, 2003). Other studies have reported 25 that HDL protects against LDL oxidative modification, which is believed to be central to the initiation and progression of atherosclerosis (see, e.g., Parthasarathy, S., et al., Biochim. Biophys. Acta, 1044:275-283, 1990; Barter, P. J., et al., Circ Res 95: 764-772, 2004). However, while HDL/LDL ratios 30 have been correlated with risk for cardiovascular disease on an overall population, HDL and/or LDL measurements have not been reliable indicators of risk at an individual level.

The present inventor has reduced the complexity of a whole serum analysis by identifying novel biomarkers associated 35 with a subset of proteins associated with high density lipoprotein ("HDL") that are correlated with the presence and/or risk of cardiovascular disease ("CVD"). HDL-associated proteins include proteins in protein complexes that have the same density as HDL, and protein complexes including ApoA-I 40 and/or ApoA-II, the major protein components of HDL. The novel biomarkers associated with CVD were identified through the use of proteomic pattern analysis of HDL or ApoA-I or ApoA-II containing complexes by mass spectrometry (MS). Using the MS-based approach, the mass spectra 45 generated from a set of HDL samples obtained from test populations were analyzed to identify diagnostic patterns comprising a subset of key mass-to-charge (m/z) species and their relative intensities, as further described in EXAMPLES 1-8 and shown in FIGS. 1-5C. The identification of HDL- 50 associated proteins that are present in subjects suffering from cardiovascular disease in amounts that differ from normal subjects provide new biomarkers which are useful in assays that are prognostic and/or diagnostic for the presence of cardiovascular disease and related disorders. The biomarkers 55 may also be used in various assays to assess the effects of exogenous compounds for the treatment of cardiovascular disease

In one aspect, the present invention provides a diagnostic test for characterizing a subject's risk of developing or currently suffering from CVD. The diagnostic test measures the level of HDL-associated proteins in a biological sample, or HDL subfraction thereof, or ApoA-I or ApoA-II containing complexes. The level of HDL-associated protein or proteins from the subject is then compared to a predetermined value 65 that is derived from measurements of the HDL-associated protein(s) or ApoA-I or ApoA-II containing complexes in

8

comparable biological samples from a control population, such as a population of apparently healthy subjects. The results of the comparison characterizes the test subject's risk of developing CVD. A difference in the amount of the biomarker between the subject's sample and the predetermined value, such as an average value measured from the control population, is indicative of the presence or risk of developing cardiovascular disease in the subject. In some embodiments, the method further comprises determining whether the mammalian subject is exhibiting symptoms related to CVD, as further described in EXAMPLE 4.

In one embodiment, the present invention provides an method of determining a mammalian test subject's risk of developing and or suffering from CVD. For example, the method includes the step of measuring the amount of ApoC-IV in a biological sample isolated from the subject and comparing the amount of ApoC-IV detected in the subject to a predetermined value to determine if the subject is at greater risk of developing or suffering from CVD than subjects with an amount of ApoC-IV that is at, or lower than the predetermined value. Moreover, the extent of the difference between the test subject's ApoC-IV level in the biological sample and the predetermined value is also useful for characterizing the extent of the risk, and thereby determining which subjects would most greatly benefit from certain therapies.

In another aspect, the present invention includes the step of determining the level of at least one or more biomarkers selected from the group consisting of ApoC-IV, PON-1, C3, C4, ApoA-IV, ApoE, ApoL-1, C4B1, Histone H2A, ApoC-II or ApoM, Vitronectin, Haptoglobin-related Protein and Clusterin, or portions or derivatives thereof. The detected amount of the biomarker is then compared to one or more predetermined values of the biomarker(s) measured in a control population of apparently healthy subjects.

The methods of this aspect of the invention are useful to screen any mammalian subject, including humans, non-human primates, canines, felines, murines, bovines, equines, and porcines. A human subject may be apparently healthy, or may be diagnosed as having a low HDL:LDL ratio and/or as being at risk for CVD based on certain known risk factors such as high blood pressure, high cholesterol, obesity, or genetic predisposition for CVD. The methods described herein are especially useful to identify subjects that are at high risk of developing CVD in order to determine what type of therapy is most suitable and to avoid potential side effects due to the use of medications in low risk subjects. For example, prophylactic therapy is useful for subjects at some risk for CVD, including a low fat diet and exercise. For those at higher risk, a number of drugs may be prescribed by physicians, such as lipid-lowering medications as well as medications to lower blood pressure in hypertensive patients. For subjects at high risk, more aggressive therapy may be indicated, such as administration of multiple medications.

In order to conduct sample analysis, a biological sample containing HDL-associated proteins or a complex containing ApoA-I or ApoA-II is provided to be screened. Any HDL-associated protein-containing sample or containing ApoA-I or ApoA-II complexes can be utilized with the methods described herein, including, but not limited to, whole blood or blood fractions (e.g., serum), bodily fluid, urine, cultured cells, tissue biopsies, or other tissue preparations. In some embodiments of the method of the invention, the biological samples include total HDL (density=about 1.06 to about 1.21 g/mL), or protein complexes that are isolated in this density range. In other embodiments of the method of the invention, an HDL₂ or HDL₃ subfraction (density=about 1.06 to about 1.11 g/mL, and about 1.11 to about 1.21 g/mL, respectively)

is isolated from the biological sample prior to analysis. The HDL₃ fraction may be isolated using any suitable method, such as, for example, through the use of ultracentrifugation, as described in EXAMPLE 1. In some embodiments of the method of this aspect of the invention, the HDL-associated proteins ApoA-I and/or ApoA-II are isolated from the biological sample using liquid chromatography, affinity chromatography, or antibody-based methods. In some embodiments, one or more of the biomarkers ApoC-IV, PON-1, C3, C4, ApoA-IV, ApoE, ApoL-1, C4B1, Histone H2A, ApoC-II, or ApoM are isolated by liquid chromatography, affinity chromatography or antibody-based methods from biological samples such as, but not limited to, blood, plasma, serum, urine, tissue, or atherosclerotic lesions.

The present inventor has identified a set of HDL-associated proteins and/or ApoA-1-associated and/or ApoA-II-associated proteins that are present in an amount that differs in subjects with CVD in comparison to control subjects, and, therefore, serve as biomarkers that are indicative of the pres- 20 ence and/or risk of developing cardiovascular disease in a subject. A single biomarker or combination of biomarkers (biomarker profile) may be used in accordance with the method of the invention. The biomarkers useful in the method of the invention, listed below in TABLE 1, were identified by comparing mass spectra of HDL-associated proteins derived from CVD subjects with HDL-associated proteins derived from normal subjects, as described in EXAMPLES 4-8. The CVD subjects used to identify the biomarkers shown in TABLE 1 were diagnosed according to standard clinical cri- 30 teria as described in EXAMPLE 4 and TABLE 2.

TABLE 1

BIOMARKERS USEFUL AS PROGNOSTIC AND/OR DIAGNOSTIC INDICATORS OF CARDIOVASCULAR DISEASE									
Protein	SEQ ID NO:								
ApoC-IV	SEQ ID NO: 1								
Paraoxonase 1 (PON-1)	SEQ ID NO: 2								
Complement C3	SEQ ID NO: 3								
ApoA-IV	SEQ ID NO: 4								
ApoE	SEQ ID NO: 5								
ApoL-I	SEQ ID NO: 6								
C4B1 (a haplotype of C4)	SEQ ID NO: 7								
Histone H2A	SEQ ID NO: 8								
ApoC-II	SEO ID NO: 9								
ApoM	SEQ ID NO: 10								
C3dg (aa 954-1303 of C3)	SEO ID NO: 11								
Vitronectin	SEQ ID NO: 12								
Haptoglobin-related Protein	SEQ ID NO: 13								
Clusterin	SEQ ID NO: 14								
Complement C4	SEQ ID NO: 15								

The HDL-associated biomarkers shown above in TABLE 1 were identified using various methods, including mass spectrometry and antibody detection methods, as described in EXAMPLES 1-9 and as shown in FIGS. 2A-5C. A total of 35 HDL-associated proteins were identified in samples obtained from control subjects and subjects with CVD, as described in EXAMPLE 5 and shown in TABLE 3. In order to empirically assess the relative abundance of the HDL-associated proteins in subjects with CVD and control subjects, a peptide index 60 ("PI") was used as follows. For each protein identified by mass spectrometry, the following parameters were determined: (1) the number of peptides corresponding to the protein that were identified in normal subjects, (2) the number of peptides corresponding to the protein that were identified in 65 CVD subjects, (3) the total number of peptides that were identified, (4) the percent of normal subjects in which at least

one peptide was identified, and (5) the percent of CVD subjects in which at least one peptide was identified.

Using these parameters, the peptide index ("PI") is calculated as follows:

PI=[(peptides in CVD subjects/total peptides)x(% of CVD subjects with 1 or more peptides)]-[(peptides in control subjects/total peptides)x(% of control subjects with 1 or more peptides)].

Using this calculation, a value of "0" indicates that the 10 numbers of peptides and subjects with detectable peptides are about equal in CVD subjects and healthy controls. A positive peptide index value correlates with enrichment of peptides derived from the protein of interest in CVD patients; whereas, a negative peptide index value correlates with enrichment in healthy control subjects. The parameters used to calculate the peptide index for each HDL-associated protein are provided below in TABLE 3. The peptide index calculated for each HDL-associated protein is shown in TABLE 5. In one embodiment, the biomarkers associated with an increased risk of developing or suffering from CVD are present at an increased amount in subjects with CVD in comparison to normal controls having a peptide index of equal to or greater than 0.30, more preferably greater than 0.35, more preferably greater than 0.40, more preferably greater than 0.50, more preferably greater than 0.60, such as greater than 0.70, such as greater than 0.80. In another embodiment, biomarkers associated with CVD are found to be absent, or at a reduced abundance in subjects with CVD in comparison to normal controls and have a peptide index of equal to or less than -0.30. The HDL-associated proteins that are equally abundant in CVD and normal subjects, such as ApoA-I and ApoA-II, have a peptide index value ranging from about 0.20 to about -0.20 and may be used as controls in the various embodiments of the methods of the invention.

In accordance with one embodiment of this aspect of the invention, HDL-associated biomarkers comprising ApoC-IV, PON-1, C3, C4, ApoA-IV, ApoE, ApoL1, C4B1, histone H2A, ApoC-II, ApoM, and derivatives and/or peptides thereof, are present at an increased amount in subjects with CVD as compared to control subjects. Apolipoprotein C-IV, PON-1, C3, C4, ApoA-IV, ApoE, ApoL1, C4B1 C4B1, Histone H2A, ApoC-II, and ApoM, were found as HDL-associated proteins enriched in the HDL3 fraction of biological samples from CVD as compared to the HDL3 fraction from biological samples taken from control subjects, as shown in TABLE 3, TABLE 5, and FIG. 3.

In accordance with this aspect of the invention, proteins having at least 70% homology (such as at least 80% identical, or such as at least 90% identical, or such as at least 95% identical) with ApoC-IV (SEQ ID NO:1), PON-1 (SEQ ID NO:2), C3 (SEQ ID NO:3), ApoA-IV (SEQ ID NO: 4), ApoE (SEQ ID NO: 5), ApoL-1 (SEQ ID NO:6), C4B1 (SEQ ID NO:7). Histone H2A (SEQ ID NO:8), ApoC-II (SEQ ID NO:9), and ApoM (SEQ ID NO:10) may be used as biomarkers for CVD which are present at increased concentration in CVD subjects as compared to normal controls. Peptide fragments derived from SEQ ID NOS:1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 may also be used as biomarkers, such as peptides from about 4 amino acids to at least about 50 amino acids, such as peptides from about 6 amino acids to at least about 20 amino acids or more. Representative examples of peptide fragments that may be used as biomarkers in which an increased amount of the biomarker in HDL₃ is indicative of the presence or risk of CVD include SEQ ID NO:16-SEQ ID NO:126, shown below in TABLE 5.

In accordance with another embodiment of this aspect of the invention, HDL-associated proteins comprising Vitronec-

tin, Haptoglobin-related protein and Clusterin, and derivatives and/or peptides thereof are present at a reduced amount in subjects with CVD as compared to control subjects. Vitronectin, Clusterin and Haptoglobin-related protein were found as HDL-associated proteins in the HDL₃ fraction of samples from normal subjects, but were not detected, or were found to be present at lower levels, in HDL3 derived from the patients with CVD, as shown in TABLE 3, TABLE 5 and FIG. 3. In accordance with this aspect of the invention, proteins having at least 70% homology (such as at least 80% identical, 10 EXAMPLE 4. or such as at least 90% identical, or such as at least 95% identical) with Vitronectin (SEQ ID NO:12), Haptoglobinrelated protein (SEQ ID NO:13) or Clusterin (SEQ ID NO:14) may be used as biomarkers for CVD which are present at reduced concentration in CVD subjects as compared to normal controls. Peptide fragments derived from SEO ID NOS:12. 13 or 14 may also be used as biomarkers. such as peptides at least about 4 amino acids to at least about 20 amino acids, such as peptides from about 6 amino acids to about 20 amino acids or more. Representative examples of 20 peptide fragments that may be used as biomarkers in which a reduced amount of the biomarker in HDL3 is indicative of the presence or risk of CVD include SEQ ID NOS:127-159 as shown below in TABLE 5.

The presence and/or amount of the one or more HDL-associated biomarkers in a biological sample comprising total HDL, or a subfraction thereof, and/or an ApoA-I and/or an ApoA-II containing complex may be determined using any suitable assay capable of detecting the amount of the one or more biomarker(s). Such assay methods include, but are not limited to, mass spectrometry, liquid chromatography, thin layer chromatography, fluorometry, radioisotope detection, affinity detection, and antibody detection. Other detection paradigms may optionally be used, such as optical methods, electrochemical methods, atomic force microscopy, and radio frequency methods (e.g., multipolar resonance spectroscopy). Optical methods include, for example, microscopy, detection of fluorescence, luminescence, chemiluminescence, absorbance, reflectance, and transmittance.

In one embodiment, the presence and amount of one or 40 more HDL-associated biomarkers is determined by mass spectrometry. In accordance with this embodiment, biological samples may be obtained and used directly, or may be separated into total HDL, or an HDL₃ subfraction. The HDLassociated proteins are digested into peptides with any suit- 45 able enzyme such as trypsin, which cleaves adjacent to lysine (K) or arginine (R) residues in proteins. The peptides are then analyzed by a mass spectrometry method such as MALDI-TOF-MS or M/MS (solid phase), liquid chromatography (LC)-MS or MS/MS, μLC-ESI-MS/MS, and iTRAQTM, ICAT, or other forms of isotope tagging. Any suitable method may be used for differential isotope labeling of proteins and/ or peptide, such as the use of a compound or isotope-labeled compound that reacts with an amino acid functional group. Label-specific fragment ions allow one to quantify the differ- 55 ences in relative abundance between samples. For example, one useful approach to achieve quantitative results, is the use of MALDI TOF/TOF or QTOF mass spectrometers and iTRAQ™, a commercially available stable isotope labeling system (Applied Biosystems, Foster City, Calif.). The 60 $iTRAQ^{TM}$ labeling system allows selective labeling of up to four different samples which are distinguished from one another in the mixture by MS/MS analysis.

By way of representative example, the method of μLC -ESI-MS/MS involves the following steps. The peptide mix- $_{65}$ tures are resolved by microscale liquid chromatography, and peptides are ionized by electrospray. Mass spectra are taken

every few seconds, followed by isolation of the most intense peptide ions, or the peptide ions of interest (e.g., one derived from specific peptides), fragmentation by collisions with an inert gas, and recording of a mass spectrum of the fragments. This fragment mass spectrum, known as MS/MS spectrum, tandem mass spectrum, or MS² spectrum, consists mainly of N- and C-terminal fragments of the peptide ions at the amide bonds, called b ions and y ions, respectively. The spectra are then matched to sequence databases, as further described in EXAMPLE 4.

In a typical application of MS analysis, proteins in a biological sample are reduced, alkylated, digested into peptides with trypsin, and analyzed using multidimensional liquid chromatography and tandem mass spectrometry (MS/MS). Tryptic peptides are then subjected to multidimensional chromatography in concert with MS/MS analysis. In multidimensional chromatography, the first chromatographic dimension typically involves separation of digested peptides on a strong cation exchange column. The peptides are then typically separated through a reverse-phase column with increasing concentrations of acetonitrile and then introduced into the source of the mass spectrometer or fractionated directly onto a MALDI sample plate. Tandem mass spectra may be acquired in the data-dependent mode on an ion-trap, QTOF or MALDI-TOF/TOF instrument. The most abundant peaks from a survey scan are submitted to tandem MS analysis. In other applications, peaks that differ in intensity between samples of interest (e.g., a control population of apparently healthy subjects and subjects with established CVD) are selected from the MS or MS/MS spectra by a suitable method such as pattern recognition (ref)., cluster analysis, or relative abundance (see Rocke D. M, Semin Cell Dev Biol, 15: 703-13, 2004; Ghazalpour A., et al., Lipid Res 45: 1793-805, 2004). The collection of tandem mass spectra may be submitted for a database search against a database (e.g., the Human International Protein Index (IPI) database, using the SEQUEST search engine (see Kersey, P. J., et al., "The International Protein Index: an integrated database for proteomics experiments," Proteomics 4:1985-1988, 2004)), using software programs such as PeptideProphet, (Nesvizhskii, A. I., et al., Anal. Chem. 75:4646-4658, 2003) and ProteinProphet (Yan, W., et al., Mol. Cell. Proteomics 3:1039-1041, 2004) in order to refine peptide and protein identification.

To achieve semiquantitative results, protein abundance is estimated by the number of MS/MS spectra, the number of peptides detected, or by the percent of the protein sequence covered in the analysis. Quantitative results can be obtained with ICAT isotope tagging, iTRAQTM isotope labeling, or other modifications or peptides involving stable isotopes. Label-specific ions or fragment ions allow quantification of differences between samples based on their relative abundances.

Mass spectrometry detection methods may include the use of isotope-labeled peptides or proteins. In accordance with one example of this detection method, as described by Zou, H., et al., *Cell* 107:715-726, 2001, a tryptic peptide is chosen from a protein of interest, for example, a tryptic peptide comprising a portion of SEQ ID NOS:1-15, such as SEQ ID NOS:16-175. The tryptic peptide is then synthesized to incorporate one or more stable isotope-labeled amino acids. The native peptide and the synthetic-labeled peptide share physical properties including size, charge, hydrophobicity, ionic character, and amenability to ionization. When mixed, they elute together chromatographically, migrate together electrophoretically, and ionize with the same intensity. However, they differ in molecular weight from as little as 1 to over 10 Daltons, depending on which stable isotope amino acid is

chosen for incorporation. The native peptide and the synthetic peptide are easily distinguishable by mass spectrometry. The synthetic peptide is used in an assay by adding a known amount of the synthetic peptide to a biological sample. In another example of this detection method, an isotope-labeled protein is prepared by a suitable method, such as by using a bacterial expression system and growing the bacteria on medium enriched with 15N-Nitrate or other isotope-labeled nutrients. The isotope-labeled peptide or protein is added to the sample containing native proteins and the mixture is then 10 digested and analyzed by mass spectrometry as described herein. Extracted ion chromatograms or selected ion chromatograms or peak ratios in a full scan mass spectrum are then generated for the native peptide and the synthetic peptide. The quantity of the native peptide is then calculated 15 using ratios of ion current or peak ratios.

Another detection method that utilizes labeled peptide fragments is isotope-coded affinity tagging (ICAT). This technique, as described in Gygi, S. P., et al., Nature Biotech. 17:994-999, 1999, involves the use of isotope tags that 20 covalently bind to specific amino acids (cysteines) within a protein of interest. For example, the tag may contain three functional elements including a biotin tag (used during affinity capture), an isotopically encoded linker chain (such as an ether linkage with either eight hydrogens or eight deuteri- 25 ums), and the reactive group, which binds to and modifies the cysteine residues of the protein. The isotope tag is used in an assay by labeling a control sample with the light version of the tag and labeling a test sample with the heavy version of the tag. The two samples are then combined, enzymatically digested, and the labeled cysteinyl residues may be captured using avidin affinity chromatography. The captured peptides are then analyzed by mass spectrometry, which can determine the relative abundance for each peptide-pair.

In another embodiment, antibodies are used in an immunoassay to detect one or more biomarkers in accordance with the method of this aspect of the invention. Such immunoassays may comprise an antibody to one or more of the biomarkers. The antibody is mixed with a sample suspected of containing the biomarker and monitored for biomarker-antibody binding. For example, the biomarker can be detected in an enzyme-linked immunosorbent assay (ELISA), in which a biomarker antibody is bound to a solid phase, such as a chip, and an enzyme-antibody conjugate is used to detect and/or quantify the biomarker(s) present in a sample. Alternatively, 45 a Western blot assay may be used in which a solubilized and separated biomarker is bound to nitrocellulose filter, as shown in FIG. 4 and described in EXAMPLES 4, 7, and 8.

In one embodiment, the invention provides a method for diagnosing and/or assessing the risk of CVD in a subject, 50 comprising determining changes in a biomarker profile comprising the relative abundance of at least one, two, three, four, five, ten or more HDL-associated and/or ApoA-I or ApoA-II-associated biomarkers in biological samples from a test subject as compared to the predetermined abundance of the at 55 least one, two, three, four, five, ten or more HDL-associated biomarkers and/or ApoA-I or ApoA-II biomarkers from a reference population of apparently healthy subjects. The HDL-associated biomarkers and/or ApoA-I or ApoA-II associated markers are selected from the group consisting of the 60 biomarkers listed in TABLE 1 and TABLE 5. The biomarker profile may optionally include an internal reference standard that is expected to be equally abundant in subjects with CVD and apparently healthy subjects, such as ApoA-I or ApoA-II, and fragments thereof.

In another aspect, the present invention provides a method for screening a mammalian subject for the presence of one or more atherosclerotic lesions in the subject by detecting an amount of at least one biomarker in a blood sample. The invention provides biomarkers that are capable of identifying the presence of one or more atherosclerotic plaques in a subject, including PON-1, C3, C4, ApoE, ApoM and C4B1.

14

In the arterial disease atherosclerosis, fatty lesions form on the inside of the arterial wall. These lesions promote the loss of arterial flexibility and lead to the formation of blood clots. The lesions may also lead to thrombosis, resulting in most acute coronary syndromes. Thrombosis results from weakening of the fibrous cap, and thrombogenicity of the lipid core. It is well recognized that atherosclerosis is a chronic inflammatory disorder (see Ross, R., N. Engl. J. Med. 340:115-126, 1999). Chronic inflammation alters the protein composition of HDL, making it atherogenic (see Barter, P. J., et al., Circ. Res. 95:764-772, 2004; Chait, A., et al., J. Lipid Res. 46:389-403, 2005; Navab, M., et al., J. Lipid Res. 45:993-1007, 2004; and Ansell, B. J., et al., Circulation 108:2751-2756, 2003). However, the discovery of markers for cardiovascular disease, including atherosclerosis, has been hampered by the molecular complexity of plasma.

The present inventor has discovered that five of the ten described HDL-associated biomarkers that were found to be enriched in HDL₃ from CVD subjects were also found in the HDL isolated from human atherosclerotic lesions, referred to hereafter as "lesion HDL," including PON-1, C3, C4, ApoE, ApoM and C4B1, as shown in FIG. 4 and TABLE 6. While not wishing to be bound by theory, these results suggest that some of the protein cargo of circulating HDL in CVD patients may originate from diseased regions of artery walls. Accordingly, HDL-associated proteins that serve as biomarkers for CVD, and atherosclerotic lesions in particular, may be derived from macrophages, smooth muscle cells, and endothelial cells present in atherosclerotic lesions. In accordance with this aspect of the invention, HDL-associated biomarkers isolated from a blood sample represent a biochemical "biopsy" of the artery wall or endothelium lining the vasculature. It is likely that lesions that are most prone to rupture would increase their output of HDL due to the fact that enhanced proteolytic activity destroys the extracellular matrix and promotes plaque rupture. Indeed, short-term infusion of HDL into humans may promote lesion regression (Nissen, S. E., et al., JAMA 290:2292-2300, 2003), suggesting that HDL can remove components of atherosclerotic tissue. Therefore, the proteins included in the protein cargo associated with HDL, enriched in CVD subjects, and also known to be present in lesion HDL from a population of CVD patients, serve as biomarkers that may be used to detect the risk and/or presence of atherosclerotic plaques in an individual subject.

In accordance with this aspect of the invention, proteins having at least 70% homology (such as at least 80% identical, or such as at least 90% identical, or such as at least 95% identical) with PON-1 (SEQ ID NO:2), C3 (SEQ ID NO:3), C4 (SEQ ID NO: 15), ApoE (SEQ ID NO:5), ApoM (SEQ ID NO:10), or C4B1 (SEQ ID NO:7) may be used as biomarkers for the presence of one or more atherosclerotic lesions when present at increased amounts in HDL₃ in a biological sample isolated from a subject in comparison to the amount detected in a control population. Peptide fragments derived from SEQ ID NOS:2, 3, 5, 7, 10, or 15 may also be used as biomarkers, such as peptides having at least about 4 amino acids to at least about 20 amino acids, such as peptides from about 6 amino acids to about 20 amino acids or more. Representative examples of peptide fragments that may be used as biomarkers in which an increased amount of the biomarker in HDL₃ is indicative of the presence of one or more atherosclerotic

lesions includes SEQ ID NOS:23-49, SEQ ID NOS:68-82, SEQ ID NOS:93-113, and SEQ ID NOS:122-126, as shown below in TABLE 5.

15

In another aspect, the present invention provides assays comprising one or more detection reagents capable of detecting at least one biomarker that is indicative of the presence or risk of CVD in a subject. The biomarker is detected by mixing a detection reagent that detects at least one biomarker associated with CVD with a sample containing HDL-associated proteins and monitoring the mixture for detection of the biomarker with a suitable detection method such as spectrometry, immunoassay, or other method. In one embodiment, the assays are provided as a kit. In some embodiments, the kit comprises detection reagents for detecting at least two, three, four, five, ten or more HDL-associated biomarkers in biological samples from a test subject.

The kit also includes written indicia, such as instructions or other printed material for characterizing the risk of CVD based upon the outcome of the assay. The written indicia may include reference information, or a link to information 20 regarding the predetermined abundance of the at least one, two, three, four, five, ten or more HDL-associated biomarkers from a reference population of apparently healthy subjects and an indication of a correlation between the abundance of one or more HDL-associated biomarkers and the risk level 25 and/or diagnosis of CVD.

The detection reagents may be any reagent for use in an assay or analytical method, such as mass spectrometry, capable of detecting at least one biomarker selected from the group consisting of ApoC-IV, PON-1, C3, C4, ApoA-IV, 30 ApoE, ApoL-1, C4B1, Histone H2A, ApoC-II, ApoM, C3dg, C4, Vitronectin, Haptoglobin-related protein, and Clusterin. In another embodiment, the detection reagents include proteins with peptides identical to those of ApoC-IV, PON-1, C3, C4, ApoA-IV, ApoE, ApoL-1, C4B1, Histone H2A, ApoC-II, 35 ApoM, C3dg, C4, Vitronectin, Haptoglobin-related protein, and Clusterin, such as peptides provided in TABLE 5. In one embodiment, the detection reagents comprise one or more reagents capable of detecting a biomarker associated with the presence of one or more atherosclerotic lesions, such as PON- 40 1, C3, C4, ApoE, ApoM, and C4B1. A variety of protocols for measuring the relative abundance of the biomarkers may be used, including mass spectrometry, ELISAs, RIAs, and FACs, which are well known in the art.

In one embodiment, the detection reagent comprises one or 45 more antibodies which specifically bind one or more of the biomarkers provided in TABLE 4, TABLE 5 or TABLE 6 that may be used for the diagnosis and/or prognosis of CVD characterized by the relative abundance of the biomarker in the serum, or an HDL subfraction thereof. Standard values for 50 protein levels of the biomarkers are established by combining biological samples taken from healthy subjects, for example, by using criteria described in EXAMPLE 4, with antibodies to proteins determined to have a PI value of between 0.20 and -0.20, such as ApoA-I (PI=0.08) and ApoA-II (PI=0.06). 55 Deviation in the amount of the biomarker between control subjects and CVD subjects establishes the parameters for diagnosing and/or assessing risk levels, or monitoring disease progression. The biomarkers and fragments thereof can be used as antigens to generate antibodies specific for the CVD 60 biomarkers for use in immunodiagnostic assays. Purified samples of the biomarkers comprising the amino acid sequences shown in TABLE 4, TABLE 5, and TABLE 6 may be recovered and used to generate antibodies using techniques known to one of skill in the art.

In another embodiment, the detection reagent comprises isotope-labeled peptides, such as one or more of the peptides 16

described in TABLE 4, TABLE 5, and TABLE 6 that correspond to the biomarker to be detected. In accordance with this embodiment, the kit includes an enzyme, such as trypsin, and the amount of the biomarker in the tryptic digest of the sample is then quantified by isotope dilution mass spectrometry. The labeled peptides may be provided in association with a substrate, and the assay may be carried out in a multiplexed format. In one embodiment, a multiplexed format includes isotope-labeled peptides for at least two or more of the HDLassociated biomarkers described herein that are enriched in HDL of subjects with established CVD. The peptides are quantified of all the HDL-associated peptides in a biological sample obtained from a test subject using a technique such as isotope dilution mass spectrometry. The detection and quantification of multiple HDL-associated biomarker proteins may be used to increase the sensitivity and specificity of the assay to provide an accurate risk assessment and/or diagnosis of the presence of CVD in the test subject.

In one embodiment of the kit, the detection reagent is provided in association with, or attached to a substrate. For example, a sample of blood, or HDL subfraction thereof, may be contacted with the substrate, having the detection reagent thereon, under conditions that allow binding between the biomarker and the detection reagent. The biomarker and/or the detection reagent are then detected with a suitable detection method. The substrate may be any suitable rigid or semirigid support including membranes, filters, chips, slides, wafers, fibers, magnetic or nonmagnetic beads, gels, tubing, plates, polymers, microparticles, and capillaries. The substrate can have a variety of surface forms, such as wells, trenches, pins, channels, and pores to which the polypeptides are bound. For example, a chip, such as a biochip, may be a solid substrate having a generally planar surface to which a detection reagent is attached. For example, a variety of chips are available for the capture and detection of biomarkers, in accordance with the present invention, from commercial sources such as Ciphergen Biosystems (Fremont, Calif.), Packard BioScience Company (Meriden Conn.), Zyomyx (Hayward, Calif.), and Phylos (Lexington, Mass.). An example of a method for producing such a biochip is described in U.S. Pat. No. 6,225,047. The biomarkers bound to the substrates may be detected in a gas phase ion spectrometer. The detector translates information regarding the detected ions into mass-to-charge ratios. Detection of a biomarker also provides signal intensity, thereby allowing the determination of quantity and mass of the biomarker.

In another aspect, the present invention provides a method for determining the efficacy of a treatment regimen for treating and/or preventing CVD by monitoring the presence of one or more biomarkers in a subject during treatment for CVD. The treatment for CVD varies depending on the symptoms and disease progression. The general treatments include lifestyle changes, medications, and may include surgery. Lifestyle changes include, for example, weight loss, a low saturated fat, low cholesterol diet, reduction of sodium, regular exercise, and a prohibition on smoking. Medications useful to treat CVD include, for example, cholesterol-lowering medications, antiplatelet agents (e.g., aspirin, ticlopidine, clopidogrel), glycoprotein IIb-IIIa inhibitors (such as abciximab, eptifibatide or tirofiban), or antithrombin drugs (blood-thinners such as heparin) to reduce the risk of blood clots. Betablockers may be used to decrease the heart rate and lower oxygen use by the heart. Nitrates, such as nitroglycerin are used to dilate the coronary arteries and improve blood supply to the heart. Calcium-channel blockers are used to relax the coronary arteries and systemic arteries, and, thus, reduce the workload for the heart. Medications suitable for reducing

blood pressure are also useful to treat CVD, including ACE inhibitors, diuretics and other medications.

The treatment for cardiovascular disease may include surgical interventions such as coronary angioplasty, coronary atherectomy, ablative laser-assisted angioplasty, catheter-based thrombolysis, mechanical thrombectomy, coronary stenting, coronary radiation implant, coronary brachytherapy (delivery of beta or gamma radiation into the coronary arteries), and coronary artery bypass surgery.

The following examples merely illustrate the best mode 10 now contemplated for practicing the invention, but should not be construed to limit the invention.

Example 1

This example demonstrates the validation of a method used to identify HDL-associated protein biomarkers that correlate with cardiovascular disease, in accordance with one embodiment of the present invention.

Rationale: A proteomic approach was used to directly measure the proteins associated with HDL, also referred to as "shotgun proteomics." In order to minimize potential contamination with LDL, the lipoprotein's dense subfraction, HDL₃, was isolated and analyzed.

Sample isolation and preparation: All protocols involving 25 human subjects were approved by the Human Studies Committees at the University of Washington and Wake Forest University. Blood samples were collected from healthy adult males and from male patients with CVD after an overnight fast. Blood samples were anticoagulated with EDTA.

HDL isolation: HDL (d=about 1.06 to about 1.21 g/mL) and HDL₃ (d=about 1.11 to about 1.21 g/mL) were isolated from the blood samples by sequential density ultracentrifugation, according to the methods described in Mendez, A. J., et al., *J. Biol. Chem.* 266:10104-10111, 1991. Protein concentration was determined using the Lowry assay with albumin as the standard (BioRad, Hercules, Calif.).

Tryptic Digest: HDL-associated protein (20 μ g) was precipitated with 10% trichloroacetic acid (v/v), collected by centrifugation, and resolubilized with 100 μ L of 6 M urea in 25 mM ammonium bicarbonate. Following reduction with dithiothreitol (10 mM for 1 hour at 37° C.), the proteins were alkylated with iodoacetamide (40 mM) for 1 hour in the dark. The residual alkylating reagent was scavenged with a molar excess of dithiothreitol. Reduced, alkylated proteins were 45 resuspended in 0.6 M urea in 25 mM ammonium bicarbonate, digested overnight at 37° C. with trypsin (1:20, w/w, trypsin/HDL protein), acidified with acetic acid, dried under vacuum, and resuspended in 0.1% formic acid. Tryptic digests were desalted with a C18 zip-tip (Millipore, Billerica, Mass.) prior 50 to MS analysis.

Multidimensional micro-liquid chromatography-electrospray ionization (ESI) tandem mass spectrometric (MS/MS) analysis (µLC-ESI-MS/MS). Peptides from the HDL samples (10 µg protein) were separated using two-dimensional micro- 55 liquid chromatography (µLC) with a strong cation (SCX) exchange column (Hypersil Keystone, Thermo Electron Corporation, Waltham, Mass.) and a reverse-phase capillary HPLC column (180 μm×10 cm; 5 μm particles; Biobasic-18, Thermo Electron Corporation) (Link, A. J. et al., Nat Biotechnol 17: 676-682, 1999; Washburn, M. P. et al., Anal Chem 75: 5054-5061, 2003). The μLC system was interfaced with a Finnigan LCQ Deca ProteomeX ion trap mass spectrometer (Thermo Electron Corporation) equipped with an orthogonal electrospray interface. A fully automated 10-step chromatog- 65 raphy run with a quaternary Surveyor HPLC (Thermo Electron Corporation) was performed on each sample, using

18

buffer A (0.1% v/v formic acid in water), buffer B (100% acetonitrile in 0.1% formic acid), buffer C (5% acetonitrile in 0.1% formic acid), and buffer D (1 M ammonium chloride in buffer C). A survey scan from m/z 300 to m/z 1500 was initially performed, followed by data-dependent MS/MS analysis of the three most abundant ions. Relative collision energy was set to 35% with a 30 msec activation time.

Sequencing and identifying peptides: To identify HDL-associated proteins, MS/MS spectra were searched against the Human International Protein Index (IPI) database, using the SEQUEST search engine (see Kersey, P. J., et al., "The International Protein Index: an integrated database for proteomics experiments," *Proteomics* 4:1985-1988, 2004). The SEQUEST database searches were carried out using 2.5 Da (average) peptide mass tolerance and 1.0 Da (average) fragment ion mass tolerance. One incomplete cleavage site was allowed in peptides. Threshold Xcorr values of 2.56, 3.22, and 3.45 were employed for MH¹⁺, MH²⁺, and MH³⁺ ion charge states, respectively.

The SEQUEST results were further processed using PeptideProphet (Nesvizhskii, A. I., et al., *Anal. Chem.* 75:4646-4658, 2003) and ProteinProphet (Yan, W., et al., *Mol. Cell. Proteomics* 3:1039-1041, 2004). Peptide matches were accepted only with an adjusted probability of >0.9; for proteins, the accepted probability was >0.8. All protein identifications required detection of at least 2 unique peptides from each protein from at least 2 individuals. MS/MS spectra from proteins identified with <6 peptides were confirmed by visual inspection.

Example 2

This example demonstrates that shotgun proteomics may be used to reproducibly identify proteins associated with HDL from blood, and that the HDL from healthy subjects and from subjects with established CVD carry different associated protein cargo.

Methods: Using sequential density gradient ultracentrifugation, HDL (d=about 1.060 to about 1.21 g/mL) was isolated from the blood plasma of two apparently healthy men and from two men with established CVD, using the methods described in EXAMPLE 1. HDL proteins in each sample were precipitated with trichloroacetic acid, digested with trypsin and desalted. Each digest was then subjected to four μLC-ESI-MS/MS analyses with an ion trap instrument as described in EXAMPLE 1. Proteins were identified as described in EXAMPLE 1.

Results: FIG. 1 shows the results of the four separate analyses of the two samples taken from control individuals and two samples taken from individuals with CVD. As shown in FIG. 1, the μ LC-ESI-MS/MS analysis of the HDL from the two control subjects identified about 24 proteins; whereas, analysis of the HDL from the two subjects with CVD identified about 40 proteins. The variation between the four replicates in each set was approximately 20%.

Conclusions: These observations indicate that the protein composition of HDL differs substantially in subjects with CVD as compared to the protein composition of HDL isolated from control subjects. These results also demonstrate that a single analysis of HDL by μ LC-ESI-MS/MS provides a reasonable estimate of the number of proteins present, and that the results obtained using μ LC-ESI-MS/MS analysis are reproducible.

Example 3

This example describes the identification of particular HDL-associated proteins present in the HDL₃ subfraction isolated from normal control subjects and subjects with CVD.

Rationale: In order to further investigate the protein composition of HDL in control subjects and subjects with CVD, the HDL₃ subfraction was isolated to minimize potential contamination with LDL.

Methods:

Subjects Used in the Study:

 ${
m HDL_3}$ was isolated from the blood samples of 7 men with established CVD and from blood samples obtained from 6 apparently healthy age-matched control subjects mean age \pm SD, 54 \pm 7, and 54 \pm 14 years, respectively.

The CVD patients were newly diagnosed, as documented by clinical symptoms consistent with angina and q waves on their EKG, or at least one stenotic lesion [>50%] on coronary angiography. None of the subjects smoked cigarettes, nor did they have liver or renal disease. The subjects did not receive any lipid-lowering medications for at least 8 weeks before blood samples were collected. The healthy controls had no known history of CVD, had no family history of CVD, and were not hyperlipidemic or diabetic. Lipid values in the CVD subjects and healthy control subject are summarized below in TABLE 2.

TABLE 2

CHARACTERISTICS OF CONTROL SUBJECTS AND CVD SUBJECTS.								
Characteristic	Controls	CVD Patients	P Value					
Age - years	54 ± 14	54 ± 7	0.97					
Cholesterol	188 ± 39	231 ± 31	0.05					
LDL	126 ± 30	161 ± 19	0.03					
Triglycerides	91 ± 13	189 ± 101	0.04					
HDL	44.8 ± 12	39.6 ± 11	0.52					

Values represent mean ± SD. Lipid values are in mg/dL.

As shown in TABLE 2, the patients with CVD had higher levels of total cholesterol, LDL and triglycerides in their plasma as compared with the healthy control subjects. Importantly, the levels of HDL cholesterol were similar in the CVD patients and the control subjects.

Isolation of HDL:

HDL₃ (d=about 1.11 to about 1.21 g/mL) was isolated by sequential density gradient ultracentrifugation using the methods described above in EXAMPLE 1. Preliminary experiments showed that extracting lipids from HDL significantly diminished the complexity of the associated protein mixture, likely because some HDL-associated proteins can dissolve in organic solvents. Therefore, the intact lipoprotein was first precipitated with trichloroacetic acid before digesting it with trypsin, and the desalted proteolytic digest was

20

directly injected onto the strong-cation exchange column of the μ LC system. Each sample was independently analyzed.

Identification of HDL-Associated Proteins:

Tryptic digests of HDL_3 were subjected to two-dimensional μLC -ESI-MS/MS. MS/MS spectra were searched against the Human International Protein Index (IPI) database, using the SEQUEST search engine. One incomplete cleavage site was allowed in peptides. The SEQUEST results were further processed using PeptideProphet (Nesvizhskii, A. I., et al., supra) and ProteinProphet (Yan, W., et al., Mol. Cell. Proteomics 3:1039-1041, 2004). Peptide matches were only accepted with an adjusted probability of >0.9. Protein identification was based on the following criteria: (i) at least 2 peptides unique to the protein of interest had to be detected in at least 2 subjects; and (ii) MS/MS results had to have a high confidence score and be chemically plausible on visual inspection. All protein identifications required detection of at least 2 unique peptides from each protein from at least 2 individuals in order to maintain a high confidence score and markedly decrease the false-positive rate of protein identification, as described in Resing, K. A., et al., FEBS Lett. 579: 885-889, 2005.

Results: Using μ LC-ESI-MS/MS, a total of 35 proteins were identified in HDL₃ isolated from healthy controls and/or CVD subjects as shown below in TABLE 3, TABLE 4, and graphically displayed in FIG. **2A**. The proteins shown in FIG. **2A**, TABLE 3, and TABLE 4 are listed according to the peptide index (as described in more detail in EXAMPLE 5), and by statistical testing.

TABLE 3 shows the number of peptides detected for each HDL-associated protein (including repeated identifications of the same peptide). The total number of peptides detected for each protein in the 13 independent analysis ranges from 4 (the minimum number required for inclusion in this analysis) to 847 (for ApoA-I). FIG. 2A shows a graphical representation of the number of peptides detected for each protein in normal subjects and CVD subjects. FIG. 2B shows a graphical representation of the number of subjects in each group with detectable peptides for each protein. The columns marked with an asterisk ("*") have a P value <0.05. The P value was assessed by Student's t-test (peptide number) or Fisher's exact test (subject number). The Student's unpaired t-test was used to compare the number of unique peptides identified in CVD patients versus healthy subjects. For proteins in which no peptides were identified in one group, a one-sample t-test was used to compare the number of unique peptides to a theoretical mean of 0. Fisher's exact test was used to compare the number of subjects from which each protein was identified in CVD patients versus healthy subjects. For all statistical analyses, P<0.05 was considered significant.

TABLE 3

PROTEINS DETECTED BY 2-DIMENSIONAL μ LC-ESI-MS/MS IN HDL $_3$ ISOLATED FROM PLASMA OF CVD PATIENTS AND/OR CONTROL SUBJECTS (WITH AT LEAST TWO UNIQUE PEPTIDES IDENTIFIED PER PROTEIN)

Percent Peptides Percent of Peptides of CVD Normal in in CVD Total # Normal subjects subjects Protein ID Protein Description # Subjects subjects Peptides detected detected 0 85% IPI00022731 ApoC-IV 1.5 15 PON-1 35 42% 100% IPI00218732 28 IPI00164623 C3 (dg region 13 14 14.2% 71.4% 1 aa954-1303) IPI00304273 ApoA-IV 30 101 131 85.7% 100%

TABLE 3-continued

PROTEINS DETECTED BY 2-DIMENSIONAL μ LC-ESI-MS/MS IN HDL₃ ISOLATED FROM PLASMA OF CVD PATIENTS AND/OR CONTROL SUBJECTS (WITH AT LEAST TWO UNIQUE PEPTIDES IDENTIFIED PER PROTEIN)

Protein ID	Protein Description #	# Peptides in Normal Subjects	# Peptides in CVD subjects	Total # Peptides	Percent of Normal subjects detected	Percent of CVD subjects detected
IPI00021842	ApoE	44	114	158	66.1%	100%
IPI00177869	ApoL1	12	32	44	50.0%	85.7%
IPI00298828	Beta-2-glycoprotein I	0	5	5	0	42.8%
IPI00018524	Histone H2A	0	4	4	0	57.1%
IPI00418163	Complement C4B1	0	5	5	0	42.8%
IPI00452748	Serum Amyloid A1	0	7	7	0	42.8%
IPI00021856	Apo C-II	29	61	90	85.7%	100%
IPI00030739	ApoM	30	64	94	85.7%	100%
IPI00022331	Lecithin-cholesterol	14	24	38	57.1%	85.7%
	acetyltransferase					
IPI00006173	Cholesterol ester	0	4	4	0	28.5%
	transfer protein					
IPI00029863	Alpha-2-antiplasmin	0	4	4	0	28.5%
IPI00020091	alpha-1-acid	0	4	4	0	28.5%
	glycoprotein 2					
IPI00022733	Phospholipid transfer protein	0	5	5	0	28.5%
IPI00032220	Angiotensinogen	0	6	6	0	28.5%
IPI00022229	Apolipoprotein	0	9	9	0	28.5%
	B-100					
IPI00022431	Alpha-2-HS-glycoprotein	9	13	22	85.7%	100%
IPI00299435	ApoF	15	21	36	85.7%	100%
IPI00032258	C4	5	8	13	42.8%	57.1%
IPI00006662	ApoD	66	93	159	100%	100%
IPI00305457	Alpha-1-antitrypsin	78	102	180	100%	100%
IPI00021855	ApoC-I	98	60	108	100%	100%
IPI00021857	ApoC-III	50	60	110	100%	100%
IPI00021841	ApoA-I	388	459	847	100%	100%
IPI00022368	Serum amyloid A	18	18	36	85.7%	100%
IPI00021854	ApoA-II	108	121	229	100%	100%
IPI00006146	Serum amyloid A2	12	11	23	71.4%	85.7%
IPI00019399	Serum amyloid A4	68	62	130	100%	100%
IPI0002243	Serum albumin	241	216	457	100%	100%
IPI00298971	Vitronectin	12	6	18	71.4%	28.5%
IPI00296170	Haptoglobin-related	14	4	18	57.1%	28.5%
	protein					
IPI00291262	Clusterin	9	3	12	57.1%	14.2%

Example 4

This example describes the use of a peptide index ("PI") to compare the relative abundance of peptides derived from HDL-associated proteins in normal subjects and in subjects with CVD, in order to determine protein markers that may be used as biomarkers to diagnose and/or assess the risk of CVD 50 in an individual subject.

Rationale: Recent studies strongly support the hypothesis that quantifying the number of peptides, the number of MS/MS spectra, or the percent sequence coverage identified in the LC-MS/MS analysis provides a semiquantitative 55 assessment of relative protein abundance (Washburn, M. P., et al., *Anal. Chem.* 75:5054-5061, 2003). In order to obtain semi-quantitative data, a two-pronged strategy was adopted. First, it was determined whether the number of peptides derived from each protein in healthy controls differed significantly from that found in patients with CVD. Second, an empirical test was developed, referred to as the "peptide index" in order to provide a semiquantitative measure of relative protein abundance in the protein cargo associated with HDL.

Statistical analysis: For each protein identified by MS/MS, the peptide index ("PI") was calculated as:

PI=[(peptides in CVD subjects/total peptides)x(% of CVD subjects with 1 or more peptides)]-[(peptides in control subjects/total peptides)x(% of control subjects with 1 or more peptides)].

The Student's unpaired t-test was used to compare the number of unique peptides identified in CVD patients versus healthy subjects. For proteins in which no peptides were identified in one group, a one-sample t-test was used to compare the number of unique peptides to a theoretical mean of 0. Fisher's exact test was used to compare the number of subjects from which each protein was identified in CVD patients versus healthy subjects. For all statistical analyses, P<0.05 was considered significant. In this method, a value of "0" indicates that the numbers of peptides and subjects with detectable peptides are about equal in CVD subjects and healthy controls. A positive peptide index value correlates with enrichment of peptides derived from the protein of interest in HDL3 of CVD patients; whereas, a negative peptide index value correlates with enrichment in HDL3 of healthy control subjects as compared to CVD subjects (e.g., a deficiency of the protein of interest in HDL₃ of CVD subjects).

The biomarkers with PI values of greater than 0.30 and -0.30 or less are shown below in TABLE 4.

Protein

ApoA-IV

ApoE

SEQ ID

ЙO

43

44

45 46

48

49

50

51

52

53

54

55

56 57

58

59

60

61

62

63

64

65

66

68

69

70

71 72

73

74

75 76

77

78

79

80

HDL-ASSOCIATED PROTEINS ENRICHED IN PATIENTS WITH CVD AS ASSESSED BY THE PEPTIDE INDEX AND P VALUE.

Protein	Peptide Index	P Value	SEQ ID NO:	
ApoC-IV	0.86	0.006	SEQ ID NO: 1	_
Paraoxonase 1 (PON-1)	0.73	0.004	SEQ ID NO: 2	
C3	0.65	0.03	SEQ ID NO: 3	
ApoA-IV	0.58	0.002	SEQ ID NO: 4	
ApoE	0.54	0.0003	SEQ ID NO: 5	1
ApoL-I*	0.49	0.09	SEQ ID NO: 6	
C4B1	0.43	0.01	SEQ ID NO: 7	
Histone H2A*	0.43	0.08	SEQ ID NO: 8	
ApoC-II*	0.41	0.10	SEQ ID NO: 9	
ApoM	0.36	0.04	SEQ ID NO: 10	
C3dg	0.65	0.03	SEQ ID NO: 11	1
Vitronectin*	-0.30	0.10	SEQ ID NO: 12	1
Haptoglobin-related Protein*	-0.33	0.08	SEQ ID NO: 13	
Clusterin*	-0.34	0.15	SEQ ID NO: 14	

The P value was assessed by Student's t-test (peptide number) or Fisher's exact test (subject

Table 5 provides a set of representative tryptic peptides for the biomarker proteins ApoC-IV (SEQ ID NOS:16-22), PON-1 (SEQ ID NOS:23-33), C3dg (SEQ ID NOS:34-49), ApoA-IV (SEQ ID NOS:50-67), ApoE (SEQ ID NOS:68-82), ApoL1 (SEQ ID NOS:83-92), C4B1 (SEQ ID NOS:93-113), Histone H2A (SEQ ID NOS:114-117), ApoC-II (SEQ ID NOS:118-121), ApoM (SEQ ID NOS:122-126), Vitronectin (SEQ ID NOS:127-136), Clusterin (SEQ ID NOS:137-147), and Haptoglobin-related protein (SEQ ID NOS:148-159). A set of representative peptides from ApoA-I (SEQ ID NOS:160-170) and from ApoA-II (SEQ ID NO: 171-175) is also included in Table 5, which may be used as a control in a CVD assay in accordance with various embodiments of the present invention.

TABLE 5

DEDI	RESENTATIVE BIOMARKERS FOR C	TD.	•	ALMDETMK OWAGLVEK	81 82
REPI	RESENTATIVE BIOMARKERS FOR CO	עע	- 40	~	
		SEO ID	ApoL1	VSVLCIWMSALFLGVGVR	83
Protein	Sequence	NO		VTEPISAESGEQVER	84
			•	WWTQAQAHDLVIK	85
ApoC-IV	GFMQTYYDDHLR	16		ANLQSVPHASASRPR	86
	DGWQWFWSPSTFR	17		SKLEDNIRRLR	87
	THSLCPRLVCGDK	18	45	VNEPSILEMSR	88
	ELLETVVNR	19		SETAEELKK	89
	AWFLESK	20		NEADELRK	90
	DLGPLTK	21		MEGAALLR	91
	DSLLKK	22		ALADGVQK	92
PON-1	YVYIAELLAHK	23	50 C4B1	DDPDAPLQPVTPLQLFEGRR	93
	YVYIAELLAHKIHVYEK	24		ALEILQEEDLIDEDDIPVR	94
	VVAEGFDFANGINISPDGK	25		AACAQLNDFLQEYGTQGCQV	95
	AKLIALTLLGMGLALFR	26		AAFRLFETKI TQVLHFTK	96
	NHQSSYQTRLNALR	27		MRPSTDTITVMVENSHGLR	97
	STVELFKFQEEEK	28		GLESQTKLVNGQSHISLSK	98
	EVQPVELPNCNLVK	29	55	AVGSGATFSHYYYMILSR	99
	GKLLIGTVFHK	30	33	VDVQAGACEGKLELSVDGAK	100
	HANWTLTPLK	31		GHLFLQTDQPIYNPGQR	101
	ALYCEL	32		SRLLATLCSAEVCQCAEGK	102
	SLLHLK	33		GLEEELQFSLGSKINVK	103
				EPFLSCCQFAESLRKK	104
C3dq	ILLQGTPVAQMTEDAVDAER	34		GCGEQTMIYLAPTLAASR	105
J	AGDFLEANYMNLOR	35	60	AINEKLGQYASPTAKR	106
	DFDFVPPVVR	36		TTNIQGINLLFSSRR	107
	QLYNVEATSYALLALLQLK	37		HLVPGAPFLLQALVR	108
	DAPDHOELNLDVSLOLPSR	38		EELVYELNPLDHR	109
	SYTVAIAGYALAQMGRLK	39		NTTCQDLQIEVTVK	110
	DMALTAFVLISLQEAK	40		GPEVQLVAHSPWLK	111
	DICEEQVNSLPGSITK	41	65	CCQDGVTRLPMMR	112
	APSTWLTAYVVK	42		AEMADQAAAWLTR	113

24

REPRESENTATIVE BIOMARKERS FOR CVD

Sequence

QPSSAFAAFVKR

GYTQQLAFR QGALELIKK

WLNEQR

WLILEK

WEDPGK

GPLLNKFLTTAK

SLAELGGHLDQQVEEFRRR

ARLLPHANEVSQKIGDNLR

OKLGPHAGDVEGHLSELEK

ENADSLOASLRPHADELK

ELQQRLEPYADQLR

TQVNTQAEQLRR AVVLTLALVAVAGAR

VKTDQTVEELRR

GRLTPYADEFK

AKIDQNVEELK

ORLAPLAEDVR

ALVOOMEOLR

ARISASAEELR

VEPYGENFNK

VNSFFSTFK

OLTPYAOR

EAVEHLQK

GNTEGLQK

VRLASHLRKLRKRLLR

DADDLQKRLAVYQAGAR

VLWAALLVTFLAGCQAK

SELEEQLTPVAEETR WELALGRFWDYLR

GEVQAMLGQSTEELR

VOAAVGTSAAPVPSDNH

VEQAVETEPEPELR

SWFEPLVEDMQR AATVGSLAGQPLQER

ERLGPLVEQGR

QQTEWQSGQR

AQAWGERLR

TABLE 5-continued

REPRESENTATIVE BIOMARKERS FOR CVD								
Protein	Sequence	SEQ ID NO						
Histone H2A	VTIAQGGVLPNIQAVLLPKK	114						
	NDEELNKLLGK	115						
	AGLQFPVGR	116						
	VHRLLRK	117						
ApoC-II	STAAMSTYTGIFTDQVLSVLK	118						
	TYLPAVDEKLR	119						
	ESLSSYWESAK TAAQNLYEK	120 121						
	TANGNUTUK							
ApoM	WIYHLTEGSTDLR	122						
	NQEACELSNN	123						
	SLTSCLDSK TEGRPDMK	124						
	DGLCVPRK	125 126						
****	CDVDEMDED EVENTADD CEER	107						
Vitronectin	GDVFTMPEDEYTVYDDGEEK GSQYWRFEDGVLDPDYPR	127 128						
	DSWEDIFELLFWGR	129						
	SIAOYWLGCPAPGHL	130						
	AVRPGYPKLIR	131						
	GQYCYELDEK	132						
	VDTVDPPYPR	133						
	CTEGFNVDKK	134						
	NQNSRRPSR	135						
	NGSLFAFR	136						
Clusterin	EILSVDCSTNNPSQAKLRR	137						
	ASSIIDELFQDRFFTR	138						
	QQTHMLDVMQDHFSR	139						
	ELDESLQVAERLTRK	140						
	TLLSNLEEAKKKK	141						
	NPKFMETVAEK	142						
	QTCMKFYAR EIQNAVNGVK	143 144						
	ALQEYRKK	145						
	EDALNETR	146						
	HNSTGCLR	147						
Haptoglobin-	VGYVSGWGQSDNFKLTDHLK	148						
related	SPVGVQPILNEHTFCVGMSK	149						
protein	VVLHPNYHQVDIGLIKLK	150						
	NPANPVQRILGGHLDAK	151						
	AVGDKLPECEAVCGKPK	152						
	MSDLGAVISLLLWGR	153						
	NLFLNHSENATAK	154						
	TEGDGVYTLNDKK DIAPTLTLYVGKK	155 156						
	SCAVAEYGVYVK	157						
	VTSIQDWVQK	158						
	VMPICLPSK	159						
ApoA-I	Full length protein:	160						
(control protein)	DYVSQFEGSALGK	161						
(comonon process)	OKLHELOEKLSPLGEEMR	162						
	VSFLSALEEYTKKLNTQ	163						
	HFWQQDEPPQSPWDR	164						
	EQLGPVTQEFWDNLEK	165						
	AAVLTLAVLFLTGS QAR	166						
	ENGGARLAEYHAK	167						
	VQPYLDDFQKK	168						
	THLAPYSDELR WQEEMELYR	169 170						
ApoA-II	full length protein	171						
(control protein)	AGTELVNFLSYFVELGTQPATQ	172						
	EPCVESLVSQYFQTVTDYGK	173						
	EQLTPLIKK	174						
	SPELQAEAK	175						

The peptides shown in Table 5 are representative peptides 65 ranging in size from about 20 amino acids to about 6 amino acids, resulting from a digest of each biomarker protein with

trypsin, which cleaves adjacent to lysine (K) or arginine (R) residues in proteins. The peptides shown in Table 5 may be used to positively identify the presence of one or more CVD biomarkers in an assay, such as a mass spectrometry assay.

The protein abundance may be determined in comparison to a control peptide that is expected to be present in equal amounts in serum or an HDL subfraction thereof, in control subjects and CVD patients, such as proteins with a PI index from about 0.20 to about -0.20, including ApoA-I and ApoA-I II. A representative set of peptides for ApoA-I (SEQ ID NO: 171-175) is provided above in Table 5.

The peptides shown above in Table 5 may be used as antigens to raise antibodies specific for each biomarker using methods well known to one of skill in the art. The biomarker-specific antibodies may be used in the methods, assays, and kits described herein.

Results: The statistical analysis of peptide abundance, as described above, identified ten proteins that are significantly enriched in the CVD patient population in comparison to normal subjects, and are useful as CVD biomarkers as shown above in TABLE 4, TABLE 5, and FIG. 3. The CVD biomarkers include ApoC-IV, PON-1, C3, C4, ApoA-IV, ApoE, ApoL1, C4B1, histone H2A, ApoC-II, and ApoM. These ten biomarkers have a peptide index of equal to or above 0.30, which is one useful criteria by which to classify biomarkers enriched in CVD subjects in comparison to control subjects. The HDL-associated CVD biomarkers with corresponding peptide index and P values are shown above in TABLE 4. 30 Each of the ten biomarkers is described in more detail below.

ApoC-IV was unexpectedly found to be highly enriched in the HDL₃ of CVD subjects as compared to normal subjects, with a peptide index of 0.86 and a P value of 0.006 as shown in FIG. 3 and TABLE 4. ApoC-IV was recently identified in plasma of normal human subjects at low levels; however, no correlation was previously made with CVD (Kotite et al., *J. Lipid Res.* 44:1387-1394, 2003). ApoC-IV is known to be part of the ApoE/C-I/C-IV/C-II gene cluster. While not wishing to be bound by theory, it has been proposed that activation of the ApoE/C-I/C-IV/C-II gene cluster functions as a mechanism for removing lipids from macrophage foam cells (Mak, P. A. et al., *J. Biol. Chem.* 277:31900-31908, 2002).

ApoE and ApoC-II were also among the enriched proteins found in HDL₃ of CVD patients, as shown in TABLE 4 and FIG. 3. It has previously been shown that macrophage-specific expression of ApoE protects hyperlipidemic mice from atherosclerosis, suggesting that ApoE prevents foam cell formation in the artery wall (Linton, M. F., et al., *Science* 267: 1034-1037, 1995). ApoC-II and ApoL1 have previously been identified in HDL of healthy subjects (Karlsson et al., *Proteomics* 5:1431-1445, 2005); however, no correlation has previously been made between enriched levels of ApoC-II or ApoL1 in the HDL of CVD subjects.

With respect to the identification of ApoM as a biomarker for CVD, it has been previously shown that ApoM is needed for the formation of pre-β HDL in mice, and that atherosclerosis is exacerbated in animals deficient in the protein (Wolfrum, C., et al., *Nat. Med.* 11:418-422, 2005). However, enriched levels of ApoM in HDL has not been previously correlated with CVD.

Biomarkers associated with inflammation were found to be enriched in CVD subjects, including C3, C3dg, C4B1 and PON-1, as shown in FIGS. 3 and 6. C3 is known to be a key effector of the complement pathway, and may also be secreted by macrophages (Oksjoki, R., et al., *Curr. Opin. Lipidol.* 14:477-482, 2003). C3 activation results in its deposition on activating particles and/or downstream activation of the

membrane attack complex. The C3dg proteolytic fragment of C3 contains a reactive thioester bond that can cross-link to host or microbial proteins and target them for elimination by phagocytes (Frank, M. M., Nat. Med. 7:1285-1286, 2001). Therefore, it is noteworthy that all the peptides identified by MS in HDL₃ of CVD subjects were located in the C3dg region (SEQ ID NO: 11) of the C3 protein (SEQ ID NO: 3), as shown in TABLE 3 (e.g., SEQ ID NOS:34-49 shown in TABLE 5). For example, three representative peptides unique to C3dg ("ILLOGTPVAOMTEDAVDAER" SEO ID NO: 34), 10 kit, W., et al., Atherosclerosis 176:37-44, 2004), One study ("AGDFLEANYMNLQR" SEQ ID NO: 35), and ("DFD-FVPPVVR" SEQ ID NO:36), were identified by MS/MS spectrometry in HDL₃ isolated from the plasma of CVD subjects (see EXAMPLE 7). Moreover, both a polyclonal anti-C3 antibody and a monoclonal antibody specific for C3dg 15 reacted with proteins that were carried in HDL3, demonstrating that C3dg is present in a complex with HDL₃ proteins as further described in EXAMPLE 7.

An elevated level of PON-1 was unexpectedly found in the HDL₃ of CVD patients, as shown by mass spectroscopy (see 20 FIGS. 2A-2B and FIG. 3), and Western blotting (see FIG. 4). The role of PON-1 in pathogenesis of human atherosclerotic events is currently unclear (see Chait, A., et al., J. Lipid Res. 46:389-403, 2005). PON-1 is synthesized primarily in the liver and transported by HDL in plasma. In humans, it is 25 known that the highest level of PON activity is found in the HDL₃ fraction (Bergmeier, C., Clin. Chem. 50:2309-2315, 2004). It has been proposed that PON-1 acts as an antioxidant and might protect against atherosclerosis (Machness, M., et al., Curr. Opin. Lipidol. 15:399-404, 2004; Shih, D. M., et al., 30 Nature 394:284-287, 1998; Shih, D. M., et al., J. Biol. Chem. 275:17527-17535, 2000). However, the ability of PON-1 to degrade oxidized lipids and act as an antioxidant has recently been questioned (Marathe, G. K., et al., J. Biol. Chem. 278: 3937-3947, 2003). PON-1 activity decreases during the 35 acute-phase response in humans and animals, and human PON-1 gene polymorphisms have been associated with cardiovascular disease (Heinecke, J. W., et al., Am. J. Hum. Genet. 62:20-24, 1998). However, it has been accepted in the art that enzyme activity rather than genotype or protein level 40 correlates best with the risk of atherosclerotic events (Jarvik, G. P., et al., Arterioscler. Thromb. Vasc. Biol. 23:1465-1471, 2003). Importantly, previous studies in mouse models of hyperlipidemia have correlated decreased activity of PON-1 with susceptibility to atherosclerosis (Bergmeier, C., et al., 45 supra). Therefore, the accepted view of decreased activity and/or protein level of PON-1 correlation with CVD contrasts with the results provided in the present invention which demonstrate increased PON-1 protein in the HDL3 of CVD patients (PI=0.73, P=0.004), as shown in TABLE 4.

The HDL₃ derived from CVD subjects was unexpectedly found to be enriched in C4B1, a haplotype of C4 that has been implicated in the pathogenesis of autoimmune disease (Yu, C. Y., et al., Trends Immunol. 25:694-699, 2004). While not wishing to be bound by theory, it is possible that the C4B1 is 55 derived from macrophages, because it is known that C4 is synthesized in macrophages derived from mice and human monocytes. See Sackstein, R., et al., J. Immunol. 133:1618-1626, 1984; McPhaden, A. R., et al., Immunol. Res. 12:213-232 1993

Histone H2A was found to be present at enriched levels in CVD patients (PI=0.43, P=0.08), see TABLE 4. It was surprising to find histone H2A associated with HDL, because it is a component of the nucleosome, and as such is an intracellular protein. Prior studies have located histones on the 65 surfaces of various cells, including activated neutrophils, monocytes and lymphocytes (Brinkmann, V., et al., Science

303:1532-1535, 2004; Emlen, W., et al., J. Immunol. 148: 3042-3048, 1992). It is noteworthy that histone H2A incorporated into extracellular "nets" produced by activated neutrophils has been shown to have antimicrobial properties (Brinkmann, V., et al., Science 303:1532-1535, 2004).

ApoA-IV was also identified as a biomarker for CVD, with a PI=0.58, P=0.002. It is known that ApoA-IV protein becomes more abundant in HDL during acute inflammation (Chait, A., et al., J. Lipid Res. 46:389-403, 2005; Khovidhunhas reported increased plasma levels of ApoA-IV in NIDDM patients with macrovascular disease (Verges et al., Diabetes 46:125-132, 1997)

As shown in FIG. 3, seven proteins were identified that tended to be more abundant in HDL_3 of CVD patients than in HDL₃ of normal control subjects, with peptide indices ranging from 0.20 to 0.40, including LCAT, CETP, alpha-2-antiplasmin, alpha-1-acid-glycoprotein 2, phospholipid transfer protein, angiotensinogen, and apolipoprotein B-100, all with P values greater than 0.05. Several of these proteins, including phospholipid transfer protein and cholesterol ester transfer protein (CETP) are known to associate with HDL and/or play a role in HDL metabolism. Apolipoprotein B-100 is a major component of LDL, and is known to be present in humans with clinically significant atherosclerosis. Angiotensin has not been previously detected in circulating HDL, but increased levels of this protein have been found in hypercholesterolemic mice (Daugherty, A., et al., Circulation 110: 3849-3857, 2004).

With continued reference to FIG. 3, thirteen proteins were found to be equally abundant in HDL3 derived from CVD patients and normal control subjects, with peptide indices ranging from -0.20 to 0.20. This group includes six apolipoproteins. As expected, ApoA-I (PI=0.08) and ApoA-II (PI=0.06) were found to be present at similar levels in CVD and control subjects, with peptide indexes close to 0. Also included in this group are ApoF, ApoD, ApoC-I, and ApoC-III. This group also includes inflammatory proteins SAA2, SAA4, and complement C4. Of these, only C4 was not previously known to be associated with HDL. In addition, three plasma proteins were identified (albumin, alpha-2-HS-glycoprotein, and alpha-1-antitrypsin) that may also be associated with HDL, possibly due to hydrophobic interactions (see Hamilton, J. A., Prog. Lipid Res. 43:177-199, 2004).

Three proteins were identified that tended to be more enriched in HDL₃ of apparently healthy controls as compared to CVD subjects, with peptide indexes equal to or below -0.30, including vitronectin (PI=-0.40, P=0.10), haptoglobin-related protein (PI=-0.33; P=0.08), and clusterin (PI=-0.34; P=0.15). Both vitronectin and clusterin have been proposed to regulate complement activity (Oksjoki, R., et al., Curr. Opin. Lipidol. 14:477-482, 2003). Vitronectin and clusterin, as well as other proteins that regulate C3b, have been shown to be expressed in human atherosclerotic lesions (Seifert, P. S., et al., Arteriosclerosis 9:802-811, 1989; Yasojima, K., et al., Arterioscler. Thromb. Vasc. Biol. 21:1214-1219, 2001). It is known that both classic and alternative complement cascades are activated in human atherosclerotic lesions (Oksjoki, R., et al., Curr. Opin. Lipidol. 14:477-482, 2003; Yasojima, K., et al., Am. J. Pathol. 158:1039-1051, 2001). Complement C3b, but not C5b-9, is deposited in vulnerable and ruptured plaques, suggesting that complement might be involved in the acute coronary syndrome (Laine, P., et al., Am. J. Cardiol. 90:404-408, 2002). Proteins implicated in atherogenesis, including immunoglobulins, C-reactive protein, and unesterified cholesterol can activate the complement cascade, leading to the production of C3b (Yla-Herttuala, S., et al.,

Arterioscler. Thromb. 14:32-40, 1994). Both vitronectin and clusterin have been proposed to regulate complement activity (Oksjoki, R., et al., 2003, supra). Therefore, the presence of increased amounts of vitronectin and clusterin in normal subjects suggests that inhibition of the complement pathway may be atheroprotective. While not wishing to be bound by theory, these results suggest that the presence of these proteins in blood may be protective and beneficial to prevent CVD, and/or a deficiency in these proteins may be a risk factor or indicate a predisposition to CVD.

Conclusion: The present study identified a total of 35 HDLassociated proteins in HDL3 samples obtained from normal and/or CVD subjects. The majority of the identified proteins were known to reside in HDL, which validates the method used to identify and quantitate HDL-associated proteins. 15 Using the validated method, the results presented above demonstrate that 10 proteins are selectively enriched in HDL₃ from CVD subjects, as shown in TABLE 4. The peptide index is a useful measure of the relative abundance of HDL-associated proteins present in normal subjects and CVD subjects. 20 As shown in FIG. 3 and TABLE 4, using the peptide index, ten proteins were identified that are highly enriched in CVD subjects (PI greater than or equal to 0.30); seven proteins were identified that are somewhat more abundant in the CVD subjects than normal controls (PI greater than 0.02); thirteen 25 proteins were found to be equally abundant in the two populations (PI between 0.20 and -0.20); and three proteins were found to be enriched in HDL₃ of normal controls as compared to CVD subjects (PI equal to or below -0.30). These results demonstrate that the HDL3 subfraction carries several previously unsuspected HDL-associated proteins that are enriched in CVD patients and serve as novel biomarkers for the presence and/or risk of CVD. Therefore, the identification of elevated levels of the biomarkers shown in TABLE 4, including ApoC-IV, PON-1, C3, C4, C3dg, ApoA-IV, ApoE, 35 ApoL1, C4B1, histone H2A, ApoC-II, and ApoM in HDL, either individually, or in combination, may be used for the diagnosis and/or risk assessment of CVD in a subject.

Example 5

This example uses Western blotting techniques to quantify the relative levels of PON-1 in HDL₃ isolated from CVD patients and healthy control subjects.

Methods: HDL₃ was isolated from the blood plasma of four subjects with established CVD and healthy control subjects as described above in EXAMPLE 1. The HDL₃ proteins were separated by SDS-PAGE, transferred to a nitrocellulose membrane, and probed with a polyclonal antibody to PON-1 (provided by C. Furlong, University of Washington).

HDL was also isolated from human atherosclerotic tissue that was obtained at surgery from CVD subjects undergoing carotid endarterectomy, as described below in EXAMPLE 8.

Results: FIG. 4 shows the results of a Western blot probed with the PON-1 antibody. Lanes 1-4 contain HDL₃ samples 55 obtained from the CVD subjects, lanes 5-7 contain HDL₃ samples obtained from the healthy control subjects, and lanes 8-9 contain HDL derived from atherosclerotic lesions (each lane of lesion HDL represents material isolated from two different lesions). As shown in FIG. 4, PON-1 protein is 60 clearly associated with HDL and is present in HDL₃ of CVD patients. For example, a representative peptide unique to PON-1 ("YVYIAELLAHK" SEQ ID NO:23) was identified by MS/MS spectrometry in HDL₃ isolated from the plasma of CVD subjects. In contrast, PON-1 protein is not detectable in 65 the HDL₃ of control subjects (see FIG. 4, lanes 5-7). These results are consistent with the μLC-ESI-MS/MS analysis

30

described in EXAMPLES 3-4, where PON-1 was calculated to have a peptide index of 0.73 (P value 0.004), as shown in FIG. 3 and TABLE 4.

Example 6

This example describes the use of reconstructed ion chromatograms to quantify the relative abundance of peptides unique to biomarkers that were identified as being enriched in HDL samples isolated from CVD patients as compared to healthy control subjects.

Methods: The ion current and the charge state were extracted from a full scan mass spectrum for a given peptide, and this information was used to construct a chromatogram. The relative abundance of a given peptide was compared in tryptic digests of HDL_3 isolated from CVD subjects and control subjects that were subjected to μLC -ESI-MS/MS analysis as described in EXAMPLE 1.

Results: FIG. **5**A is a reconstructed chromatogram extracted from a full scan mass spectrum that graphically illustrates that the peptide GFMQTYYDDHLR (SEQ ID NO:16) with a charge state of 2+ and an ion current of 773.3 m/z was derived from a tryptic digest of ApoC-IV associated with HDL₃ isolated from a CVD subject, using tandem mass spectroscope methods, in agreement with the results shown in FIG. **3**.

FIG. **5**B is a reconstructed chromatogram extracted from a full scan mass spectrum that graphically illustrates that the peptide WIYHLTEGSTDLR (SEQ ID NO:122) derived from a tryptic digest of ApoM with a charge state of 3+ and an ion current of 531.1 m/z is present in increased concentration in HDL₃ isolated from CVD subjects as compared to HDL₃ isolated from healthy control subjects, in agreement with the results shown in FIG. **3**.

FIG. 5C is a reconstructed chromatogram extracted from a full scan mass spectrum that graphically illustrates that the peptide DYVSQFEGSALGK (SEQ ID NO:160) derived from a tryptic digest of ApoA-I with a charge state of 2+ and an ion current of 701.3 m/z is present in approximately equal abundance in HDL₃ isolated from CVD subjects as compared to HDL₃ isolated from healthy control subjects, in agreement with the results shown in FIG. 3.

Example 7

This example describes the unexpected identification of peptides derived from complement factors C3 and C4B1 in the HDL₃ of CVD patients.

Rationale: In view of the unexpected detection of peptides derived from C3 and C4B1 in the HDL₃ of CVD patients as described in EXAMPLE 4, the association between C3 and HDL₃ was further investigated to determine if C3 forms a complex with HDL. C3 is a major effector of the complement system, and has been implicated in atherogenesis (Oksjoki, R., et al., *Curr. Opin. Lipidol.* 14:477-482, 2003). Activation of C3 leads to the generation of nascent C3b, which may bind covalently to proteins or carbohydrates through its internal thioester bond. In blood, C3b is proteolytically cleaved by factor I and co-factor H to generate iC3b, which, in turn, is further cleaved into C3dg (see Frank, M. M., *Nat. Med.* 7:1285-1286, 2001).

Methods: HDL_3 was isolated from CVD patients or healthy controls as described above in EXAMPLE 1. The protein components of the isolated HDL_3 were run on SDS-PAGE under reducing and denaturing conditions. The separated proteins were then probed with a polyclonal antibody to human

C3 (Quidel), or a monoclonal antibody to C3dg (Lachmann, P., *J. Immunology* 41:503-515, 1980).

Results: The results of the Western blot analysis probed with polyclonal C3 antibody showed that C3 was present at detectable levels in HDL isolated from subjects with CVD as compared to HDL isolated from control subjects (data not shown). These observations suggest that C3, and/or C3 modified by proteolysis could serve as a biomarker for CVD, and, further, that C3 may originate, in part, from atherosclerotic tiesue

Significantly, all three unique peptides identified by MS/MS in HDL₃ from CVD patients were derived from within the C3dg region (SEQ ID NO:11), which includes as 954-1303 of C3 (SEQ ID NO:3).

The three unique C3dg peptides identified were:

ILLQGTPVAQMTEDAVDAER	(SEQ	ID	NO:	34)
AGDFLEANYMNLQR	(SEQ	ID	NO:	35)
DFDFVPPVVR	(SEQ	ID	NO:	36)

The above-identified peptides all fall within the C3dg region of C3 that contains the thioester bond that reacts with target molecules. Therefore, C3-derived peptides, and more particularly, C3dg-derived peptides, are present in the HDL $_{\rm 3}$ of CVD patients and are useful as biomarkers for CVD.

Example 8

This example describes the identification of HDL-associated proteins in lesions isolated from atherosclerotic plaques in CVD subjects.

Rationale: Lesion HDL was isolated from CVD subjects and analyzed to determine whether proteins found uniquely associated with and/or enriched in the HDL of CVD patients in comparison to control subjects were also present in the lesion HDL, indicating that they were derived from the artery wall

Methods: Lesion HDL was isolated from atherosclerotic tissue that was harvested from 6 patients during carotid endarterectomy surgery, snap-frozen, and stored at -80° C. until analysis. Lesions from a single subject (-0.5 g wet weight) were mixed with dry ice and pulverized with a pestle in a stainless steel mortar. HDL was extracted from tissue powder as described in Bergt, C., et al., *PNAS* 101:13032-13037, 2004. Briefly, the powdered tissue was re-suspended at 4° C. in 2 ml of antioxidant buffer (138 mM NaCl, 2.7 mM KCl, 10 mM sodium phosphate (pH 7.4)), a protease inhibitor cocktail (Roche Diagnostics, Mannheim, Germany), 100 µm diethylenetriaminepentaacetic acid (DTPA), and 100 µm butylated hydroxyl toluene (PHT) and rocked gently overnight. Tissue was removed by centrifugation, the supernatant was collected, and the pellet was extracted a second time with anti-

oxidant buffer for 1 hour. The pooled supernatants were centrifuged at 100,000×g for 30 minutes, and the pellet and uppermost lipemic layer were discarded.

Because arterial tissue contains relatively low levels of ApoA-I, total HDL was isolated and analyzed as "lesion HDL." The lesion HDL was analyzed by immunoblotting with a rabbit polyclonal antibody monospecific for human ApoA-I (Calbiochem) in order to measure the recovery of protein originally present in the lesions. Quantification of ApoA-I by Western blot showed that this procedure recovered ~80% of immunoreactive protein that was originally present in the lesions (data not shown).

HDL proteins isolated from three different pooled preparations of lesion HDL (prepared from two different individual subjects) were combined, digested with trypsin, and subjected to μ LC-ESI-MS/MS analysis as described in EXAMPLE 1. Proteins were identified as described in EXAMPLE 3.

Results: Using the peptide search strategy and the two-unique peptide criteria described in EXAMPLE 3, over 100 proteins were identified in the lesion HDL samples from three independent analyses. Importantly, 5 of the 10 proteins that were found to be enriched in the HDL $_3$ samples from CVD patients were also found to be present in lesion HDL samples, as shown below in TABLE 6.

TABLE 6

PROTEINS DETECTED BY 2-DIMENSIONAL µLC-ESI-MS/MS IN HDL ISOLATED FROM HUMAN ATHEROSCLEROTIC TISSUE AND PLASMA OF CVD PATIENTS.

35	Protein Description	Total Number of Peptides identified in Lesion HDL	Total Number of Peptides identified in CVD HDL ₃	Total Number of Peptides identified in HDL ₃ from normal controls
	Paraoxonase 1 (PON-1)	26	28	7
	C3	45	13	1
	ApoE	118	114	37
40	ApoM	26	64	25
	C4B1	28	5	0

It is noteworthy that three times as many peptides derived from C3 were identified in lesion HDL than in the circulating HDL_3 of patients with CVD. The tryptic digest from lesion HDL contained peptides derived from both the α and β chains of C3, consistent with the apparent MW of the bands that reacted with the antibody against C3 in lesion HDL (data not shown)

While the preferred embodiment of the invention has been illustrated and described, it will be appreciated that various changes can be made therein without departing from the scope of the invention.

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 175

<210> SEQ ID NO 1

<211> LENGTH: 127
<212> TYPE: PRT

<213> ORGANISM: Homo Sapiens

<400> SEQUENCE: 1

-continue

Met Ser Leu Leu Arg Asn Arg Leu Gln Ala Leu Pro Ala Leu Cys Leu Cys Val Leu Val Leu Ala Cys Ile Gly Ala Cys Gl
n Pro Glu Ala Gl
n 20 25 30 Glu Gly Thr Leu Ser Pro Pro Pro Lys Leu Lys Met Ser Arg Trp Ser 35 40 45 Leu Val Arg Gly Arg Met Lys Glu Leu Leu Glu Thr Val Val Asn Arg 50 55 Thr Arg Asp Gly Trp Gln Trp Phe Trp Ser Pro Ser Thr Phe Arg Gly 65 $70\phantom{\bigg$ Phe Met Gln Thr Tyr Tyr Asp Asp His Leu Arg Asp Leu Gly Pro Leu 85 90 95 Thr Lys Ala Trp Phe Leu Glu Ser Lys Asp Ser Leu Leu Lys Lys Thr $100 \ 105 \ 110$ His Ser Leu Cys Pro Arg Leu Val Cys Gly Asp Lys Asp Gln Gly 115 125 120 125 <210> SEQ ID NO 2 <211> LENGTH: 354 <212> TYPE: PRT <213 > ORGANISM: Homo Sapiens <400> SEQUENCE: 2 Ala Lys Leu Ile Ala Leu Thr Leu Leu Gly Met Gly Leu Ala Leu Phe 1 $$ 5 $$ 10 $$ 15 Arg Asn His Gln Ser Ser Tyr Gln Thr Arg Leu Asn Ala Leu Arg Glu 25Val Gln Pro Val Glu Leu Pro Asn Cys Asn Leu Val Lys Gly Ile Glu 35 40 45 Thr Gly Ser Glu Asp Met Glu Ile Leu Pro Asn Gly Leu Ala Phe Ile 50 $\,$ 60 $\,$ Ser Ser Gly Leu Lys Tyr Pro Gly Ile Lys Ser Phe Asn Pro Asn Ser 65 70 75 80 Pro Gly Lys Ile Leu Leu Met Asp Leu Asn Glu Glu Asp Pro Thr Val 85 90 95 Leu Glu Leu Gly Ile Thr Gly Ser Lys Phe Asp Val Ser Ser Phe Asn Pro His Gly Ile Ser Thr Phe Thr Asp Glu Asp Asn Ala Met Tyr Leu 115 $$\rm 120$$ 125 Leu Val Val Asn His Pro Asp Ala Lys Ser Thr Val Glu Leu Phe Lys 130 135 Phe Gln Glu Glu Lys Ser Leu Leu His Leu Lys Thr Ile Arg His Lys Leu Leu Pro Asn Leu Asn Asp Ile Val Ala Val Gly Pro Glu His Phe Tyr Gly Thr Asn Asp His Tyr Phe Leu Asp Pro Tyr Leu Gln Ser \$180\$Trp Glu Met Tyr Leu Gly Leu Ala Trp Ser Tyr Val Val Tyr Tyr Ser 195 200 Pro Ser Glu Val Arg Val Val Ala Glu Gly Phe Asp Phe Ala Asn Gly 215 Ile Asn Ile Ser Pro Asp Gly Lys Tyr Val Tyr Ile Ala Glu Leu Leu 225 230 240 Ala His Lys Ile His Val Tyr Glu Lys His Ala Asn Trp Thr Leu Thr

-continued

Pro	Leu	Lys	Ser 260	Leu	Asp	Phe	Asn	Thr 265	Leu	Val	Asp	Asn	Ile 270	Ser	Val
Asp	Pro	Glu 275	Thr	Gly	Asp	Leu	Trp 280	Val	Gly	Cys	His	Pro 285	Asn	Gly	Met
ГÀа	Ile 290	Phe	Phe	Tyr	Asp	Ser 295	Glu	Asn	Pro	Pro	Ala 300	Ser	Glu	Val	Leu
Arg 305	Ile	Gln	Asn	Ile	Leu 310	Thr	Glu	Glu	Pro	Lys 315	Val	Thr	Gln	Val	Tyr 320
Ala	Glu	Asn	Gly	Thr 325	Val	Leu	Gln	Gly	Ser 330	Thr	Val	Ala	Ser	Val 335	Tyr
Lys	Gly	Lys	Leu 340	Leu	Ile	Gly	Thr	Val 345	Phe	His	ГÀа	Ala	Leu 350	Tyr	Сув
Glu Leu															
<210> SEQ ID NO 3 <211> LENGTH: 1663 <212> TYPE: PRT <213> ORGANISM: Homo Sapiens															
< 400)> SI	EQUEI	NCE :	3											
Met 1	Gly	Pro	Thr	Ser 5	Gly	Pro	Ser	Leu	Leu 10	Leu	Leu	Leu	Leu	Thr 15	His
Leu	Pro	Leu	Ala 20	Leu	Gly	Ser	Pro	Met 25	Tyr	Ser	Ile	Ile	Thr 30	Pro	Asn
Ile	Leu	Arg 35	Leu	Glu	Ser	Glu	Glu 40	Thr	Met	Val	Leu	Glu 45	Ala	His	Asp
Ala	Gln 50	Gly	Asp	Val	Pro	Val 55	Thr	Val	Thr	Val	His 60	Asp	Phe	Pro	Gly
Lys 65	Lys	Leu	Val	Leu	Ser 70	Ser	Glu	Lys	Thr	Val 75	Leu	Thr	Pro	Ala	Thr 80
Asn	His	Met	Gly	Asn 85	Val	Thr	Phe	Thr	Ile 90	Pro	Ala	Asn	Arg	Glu 95	Phe
Lys	Ser	Glu	Lys 100	Gly	Arg	Asn	Lys	Phe 105	Val	Thr	Val	Gln	Ala 110	Thr	Phe
Gly	Thr	Gln 115	Val	Val	Glu	Lys	Val 120	Val	Leu	Val	Ser	Leu 125	Gln	Ser	Gly
Tyr	Leu 130	Phe	Ile	Gln	Thr	Asp 135	Lys	Thr	Ile	Tyr	Thr 140	Pro	Gly	Ser	Thr
Val 145	Leu	Tyr	Arg	Ile	Phe 150	Thr	Val	Asn	His	Lys 155	Leu	Leu	Pro	Val	Gly 160
Arg	Thr	Val	Met	Val 165	Asn	Ile	Glu	Asn	Pro 170	Glu	Gly	Ile	Pro	Val 175	Lys
Gln	Asp	Ser	Leu 180	Ser	Ser	Gln	Asn	Gln 185	Leu	Gly	Val	Leu	Pro 190	Leu	Ser
Trp	Asp	Ile 195	Pro	Glu	Leu	Val	Asn 200	Met	Gly	Gln	Trp	Lys 205	Ile	Arg	Ala
Tyr	Tyr 210	Glu	Asn	Ser	Pro	Gln 215	Gln	Val	Phe	Ser	Thr 220	Glu	Phe	Glu	Val
Lys 225	Glu	Tyr	Val	Leu	Pro 230	Ser	Phe	Glu	Val	Ile 235	Val	Glu	Pro	Thr	Glu 240
Lys	Phe	Tyr	Tyr	Ile 245	Tyr	Asn	Glu	Lys	Gly 250	Leu	Glu	Val	Thr	Ile 255	Thr
Ala	Arg	Phe	Leu 260	Tyr	Gly	Lys	Lys	Val 265	Glu	Gly	Thr	Ala	Phe 270	Val	Ile
Phe	Gly	Ile	Gln	Asp	Gly	Glu	Gln	Arg	Ile	Ser	Leu	Pro	Glu	Ser	Leu

-continued

		275					280					285			
Lys	Arg 290	Ile	Pro	Ile	Glu	Asp 295	Gly	Ser	Gly	Glu	Val 300	Val	Leu	Ser	Arg
305	Val	Leu	Leu	Asp	Gly 310	Val	Gln	Asn	Leu	Arg 315	Ala	Glu	Asp	Leu	Val 320
Gly	Lys	Ser	Leu	Tyr 325	Val	Ser	Ala	Thr	Val 330	Ile	Leu	His	Ser	Gly 335	Ser
Asp	Met	Val	Gln 340	Ala	Glu	Arg	Ser	Gly 345	Ile	Pro	Ile	Val	Thr 350	Ser	Pro
Tyr	Gln	Ile 355	His	Phe	Thr	Lys	Thr 360	Pro	Lys	Tyr	Phe	Lys 365	Pro	Gly	Met
Pro	Phe 370	Asp	Leu	Met	Val	Phe 375	Val	Thr	Asn	Pro	380 Asp	Gly	Ser	Pro	Ala
Tyr 385	Arg	Val	Pro	Val	Ala 390	Val	Gln	Gly	Glu	Asp 395	Thr	Val	Gln	Ser	Leu 400
Thr	Gln	Gly	Asp	Gly 405	Val	Ala	Lys	Leu	Ser 410	Ile	Asn	Thr	His	Pro 415	Ser
Gln	Lys	Pro	Leu 420	Ser	Ile	Thr	Val	Arg 425	Thr	Lys	Lys	Gln	Glu 430	Leu	Ser
Glu	Ala	Glu 435	Gln	Ala	Thr	Arg	Thr 440	Met	Gln	Ala	Leu	Pro 445	Tyr	Ser	Thr
Val	Gly 450	Asn	Ser	Asn	Asn	Tyr 455	Leu	His	Leu	Ser	Val 460	Leu	Arg	Thr	Glu
Leu 465	Arg	Pro	Gly	Glu	Thr 470	Leu	Asn	Val	Asn	Phe 475	Leu	Leu	Arg	Met	Asp 480
Arg	Ala	His	Glu	Ala 485	ГÀа	Ile	Arg	Tyr	Tyr 490	Thr	Tyr	Leu	Ile	Met 495	Asn
Lys	Gly	Arg	Leu 500	Leu	ГÀа	Ala	Gly	Arg 505	Gln	Val	Arg	Glu	Pro 510	Gly	Gln
Asp	Leu	Val 515	Val	Leu	Pro	Leu	Ser 520	Ile	Thr	Thr	Asp	Phe 525	Ile	Pro	Ser
Phe	Arg 530	Leu	Val	Ala	Tyr	Tyr 535	Thr	Leu	Ile	Gly	Ala 540	Ser	Gly	Gln	Arg
Glu 545	Val	Val	Ala	Asp	Ser 550	Val	Trp	Val	Asp	Val 555	ГÀа	Asp	Ser	CAa	Val 560
Gly	Ser	Leu	Val	Val 565	ГÀа	Ser	Gly	Gln	Ser 570	Glu	Asp	Arg	Gln	Pro 575	Val
Pro	Gly	Gln	Gln 580	Met	Thr	Leu	Lys	Ile 585	Glu	Gly	Asp	His	Gly 590	Ala	Arg
Val	Val	Leu 595	Val	Ala	Val	Asp	600	Gly	Val	Phe	Val	Leu 605	Asn	Lys	Lys
Asn	Lys 610	Leu	Thr	Gln	Ser	Lys 615	Ile	Trp	Asp	Val	Val 620	Glu	Lys	Ala	Asp
Ile 625	Gly	Сла	Thr	Pro	Gly 630	Ser	Gly	Lys	Asp	Tyr 635	Ala	Gly	Val	Phe	Ser 640
Asp	Ala	Gly	Leu	Thr 645	Phe	Thr	Ser	Ser	Ser 650	Gly	Gln	Gln	Thr	Ala 655	Gln
Arg	Ala	Glu	Leu 660	Gln	СЛа	Pro	Gln	Pro 665	Ala	Ala	Arg	Arg	Arg 670	Arg	Ser
Val	Gln	Leu 675	Thr	Glu	Lys	Arg	Met 680	Asp	Lys	Val	Gly	Lys 685	Tyr	Pro	Lys
Glu	Leu 690	Arg	Lys	Cys	CAa	Glu 695	Asp	Gly	Met	Arg	Glu 700	Asn	Pro	Met	Arg

_	\sim	\cap	n	Τ.	٦	n	11	Ω	

Phe 705	Ser	CAa	Gln	Arg	Arg 710	Thr	Arg	Phe	Ile	Ser 715	Leu	Gly	Glu	Ala	Cys 720
Lys	Lys	Val	Phe	Leu 725	Asp	Cys	Cys	Asn	Tyr 730	Ile	Thr	Glu	Leu	Arg 735	Arg
Gln	His	Ala	Arg 740	Ala	Ser	His	Leu	Gly 745	Leu	Ala	Arg	Ser	Asn 750	Leu	Asp
Glu	Asp	Ile 755	Ile	Ala	Glu	Glu	Asn 760	Ile	Val	Ser	Arg	Ser 765	Glu	Phe	Pro
Glu	Ser 770	Trp	Leu	Trp	Asn	Val 775	Glu	Asp	Leu	Lys	Glu 780	Pro	Pro	Lys	Asn
Gly 785	Ile	Ser	Thr	Lys	Leu 790	Met	Asn	Ile	Phe	Leu 795	ГÀз	Asp	Ser	Ile	Thr 800
Thr	Trp	Glu	Ile	Leu 805	Ala	Val	Ser	Met	Ser 810	Asp	ГÀз	Lys	Gly	Ile 815	Сув
Val	Ala	Asp	Pro 820	Phe	Glu	Val	Thr	Val 825	Met	Gln	Asp	Phe	Phe 830	Ile	Asp
Leu	Arg	Leu 835	Pro	Tyr	Ser	Val	Val 840	Arg	Asn	Glu	Gln	Val 845	Glu	Ile	Arg
Ala	Val 850	Leu	Tyr	Asn	Tyr	Arg 855	Gln	Asn	Gln	Glu	Leu 860	Lys	Val	Arg	Val
Glu 865	Leu	Leu	His	Asn	Pro 870	Ala	Phe	CÀa	Ser	Leu 875	Ala	Thr	Thr	rys	Arg 880
Arg	His	Gln	Gln	Thr 885	Val	Thr	Ile	Pro	Pro 890	Lys	Ser	Ser	Leu	Ser 895	Val
Pro	Tyr	Val	Ile 900	Val	Pro	Leu	Lys	Thr 905	Gly	Leu	Gln	Glu	Val 910	Glu	Val
Lys	Ala	Ala 915	Val	Tyr	His	His	Phe 920	Ile	Ser	Asp	Gly	Val 925	Arg	Lys	Ser
Leu	930 Lys	Val	Val	Pro	Glu	Gly 935	Ile	Arg	Met	Asn	Lys 940	Thr	Val	Ala	Val
Arg 945	Thr	Leu	Asp	Pro	Glu 950	Arg	Leu	Gly	Arg	Glu 955	Gly	Val	Gln	Lys	Glu 960
Asp	Ile	Pro	Pro	Ala 965	Asp	Leu	Ser	Asp	Gln 970	Val	Pro	Asp	Thr	Glu 975	Ser
Glu	Thr	Arg	Ile 980	Leu	Leu	Gln	Gly	Thr 985	Pro	Val	Ala	Gln	Met 990	Thr	Glu
Asp	Ala	Val 995	Asp	Ala	Glu	Arg	Leu 100	-	s Hi	s Lei	ı Il	e Va 10		hr P:	ro Ser
Gly	Cys 1010		/ Glu	ı Glı	n Asr	n Met		le G	ly Me	et Tl		ro 020	Thr '	Val :	Ile
Ala	Val 1025		з Туг	. Le	ı Asp	Glu 103		nr G	lu G	ln T:		lu 035	Lys 1	Phe (Gly
Leu	Glu 1040		s Arg	g Glı	n Gly	7 Ala		eu G	lu Le	eu I		ys 050	Lys (Gly '	Tyr
Thr	Gln 1055		ı Lev	ı Ala	a Phe	2 Arg		ln P:	ro Se	er Se		la 065	Phe I	Ala A	Ala
Phe	Val 1070	_	s Arg	g Ala	a Pro	Sei 10		nr T:	rp Le	eu Tl		la 080	Tyr '	Val V	Val
Lys	Val 1085		e Sei	: Let	ı Ala	109		sn L	eu I	le A		le . 095	Asp :	Ser (Gln
Val	Leu 1100		∃ Gl∑	/ Ala	a Val	L Ly:		rp L	eu I	le L		lu 110	Lys (Gln 1	ГЛа
Pro	Asp 1115		/ Val	l Ph∈	e Glr	n Glu 112		sp A	la P:	ro Va		le 125	His (Gln (Glu

Met	Ile 1130	Gly	Gly	Leu	Arg	Asn 1135		Asn	Glu	Lys	Asp 1140	Met	Ala	Leu
Thr	Ala 1145		Val	Leu	Ile	Ser 1150		Gln	Glu	Ala	Lys 1155	Asp	Ile	Сув
Glu	Glu 1160		Val	Asn	Ser	Leu 1165	Pro	Gly	Ser	Ile	Thr 1170	Lys	Ala	Gly
Asp	Phe 1175	Leu	Glu	Ala	Asn	Tyr 1180		Asn	Leu	Gln	Arg 1185	Ser	Tyr	Thr
Val	Ala 1190	Ile	Ala	Gly	Tyr	Ala 1195	Leu	Ala	Gln	Met	Gly 1200	Arg	Leu	Lys
Gly	Pro 1205	Leu	Leu	Asn	Lys	Phe 1210	Leu	Thr	Thr	Ala	Lys 1215	Asp	Lys	Asn
Arg	Trp 1220	Glu	Asp	Pro	Gly	Lys 1225	Gln	Leu	Tyr	Asn	Val 1230	Glu	Ala	Thr
Ser	Tyr 1235	Ala	Leu	Leu	Ala	Leu 1240	Leu	Gln	Leu	Lys	Asp 1245	Phe	Asp	Phe
Val	Pro 1250	Pro	Val	Val	Arg	Trp 1255		Asn	Glu	Gln	Arg 1260	Tyr	Tyr	Gly
Gly	Gly 1265	Tyr	Gly	Ser	Thr	Gln 1270	Ala	Thr	Phe	Met	Val 1275	Phe	Gln	Ala
Leu	Ala 1280		Tyr	Gln	Lys	Asp 1285	Ala	Pro	Asp	His	Gln 1290	Glu	Leu	Asn
Leu	Asp 1295		Ser	Leu	Gln	Leu 1300	Pro	Ser	Arg	Ser	Ser 1305	Lys	Ile	Thr
His	Arg 1310	Ile	His	Trp	Glu	Ser 1315	Ala	Ser	Leu	Leu	Arg 1320	Ser	Glu	Glu
Thr	Lys 1325	Glu	Asn	Glu	Gly	Phe 1330	Thr	Val	Thr	Ala	Glu 1335	Gly	Lys	Gly
Gln	Gly 1340	Thr	Leu	Ser	Val	Val 1345	Thr	Met	Tyr	His	Ala 1350	Lys	Ala	Lys
Asp	Gln 1355	Leu	Thr	Cys	Asn	Lys 1360	Phe	Asp	Leu	Lys	Val 1365	Thr	Ile	Lys
Pro	Ala 1370	Pro	Glu	Thr	Glu	Lys 1375	Arg	Pro	Gln	Asp	Ala 1380	ГÀа	Asn	Thr
Met	Ile 1385	Leu	Glu	Ile	Cys	Thr 1390	Arg	Tyr	Arg	Gly	Asp 1395	Gln	Asp	Ala
Thr	Met 1400	Ser	Ile	Leu	Asp	Ile 1405	Ser	Met	Met	Thr	Gly 1410	Phe	Ala	Pro
Asp	Thr 1415	Asp	Asp	Leu	Lys	Gln 1420		Ala	Asn	Gly	Val 1425	Asp	Arg	Tyr
Ile	Ser 1430	Lys	Tyr	Glu	Leu	Asp 1435		Ala	Phe	Ser	Asp 1440	Arg	Asn	Thr
Leu	Ile 1445	Ile	Tyr	Leu	Asp	Lys 1450	Val	Ser	His	Ser	Glu 1455	Asp	Asp	Cys
Leu	Ala 1460	Phe	Lys	Val	His	Gln 1465		Phe	Asn	Val	Glu 1470	Leu	Ile	Gln
Pro	Gly 1475	Ala	Val	Lys	Val	Tyr 1480	Ala	Tyr	Tyr	Asn	Leu 1485	Glu	Glu	Ser
Cys	Thr 1490	Arg	Phe	Tyr	His	Pro 1495		Lys	Glu	Asp	Gly 1500	Lys	Leu	Asn
Lys	Leu 1505	СЛа	Arg	Asp	Glu	Leu 1510		Arg	Сув	Ala	Glu 1515	Glu	Asn	Cys
Phe	Ile	Gln	rys	Ser	Asp	Asp	ГЛа	Val	Thr	Leu	Glu	Glu	Arg	Leu

-continued

152	0		1525			1530	
Asp Lys		s Glu Pro	Gly 1540	Val As	ep Tyr V	al Tyr 1545	Lys Thr Arg
Leu Val 155		ıl Gln Le	ı Ser 1555	Asn As	sp Phe A	sp Glu 1560	Tyr Ile Met
Ala Ile 156		n Thr Ile	E Lys 1570	Ser Gl	ly Ser A	sp Glu 1575	Val Gln Val
Gly Gln 158		g Thr Ph	1585	Ser Pı	co Ile L	ya Cya 1590	Arg Glu Ala
Leu Lys 159		u Glu Ly:	1600 1600	His T	r Leu M	let Trp 1605	Gly Leu Ser
Ser Asp 161		p Gly Gl	1615	Pro As	en Leu S	er Tyr 1620	Ile Ile Gly
Lys Asp 162		p Val Gl	1 His 1630	Trp Pi	co Glu G	lu Asp 1635	Glu Cys Gln
Asp Glu 164		n Gln Ly	3 Gln 1645	Cys G]	ln Asp L	eu Gly 1650	Ala Phe Thr
Glu Ser 165		al Val Pho	e Gly 1660	Cys Pı	o Asn		
<211> L: <212> T	EQ ID NO ENGTH: 3 YPE: PRI RGANISM:	96	piens				
<400> S	EQUENCE :	4					
Met Phe	Leu Lys	Ala Val	Val Le	u Thr	Leu Ala	Leu Val	. Ala Val Ala 15
Gly Ala	Arg Ala	Glu Val	Ser Al	a Asp 25	Gln Val	Ala Thi	Val Met Trp
Asp Tyr	Phe Ser	Gln Leu	Ser As		Ala Lys	Glu Ala 45	a Val Glu His
Leu Gln 50	Lys Ser	Glu Leu	Thr Gl 55	n Gln	Leu Asn	Ala Leu 60	ı Phe Gln Asp
Lys Leu 65	Gly Glu	ı Val Asn 70	Thr Ty	r Ala	Gly Asp 75	Leu Glr	n Lys Lys Leu 80
Val Pro	Phe Ala	Thr Glu 85	Leu Hi	s Glu	Arg Leu 90	Ala Lys	Asp Ser Glu 95
Lys Leu	Lys Glu 100		Gly Ly	rs Glu 105	Leu Glu	Glu Leu	ı Arg Ala Arg 110
Leu Leu	Pro His	s Ala Asn	Glu Va 12		Gln Lys	Ile Gly 125	Asp Asn Leu
Arg Glu 130	Leu Glr	Gln Arg	Leu Gl 135	u Pro	Tyr Ala	Asp Glr 140	Leu Arg Thr
Gln Val 145	Asn Thr	Gln Ala 150	Glu Gl	n Leu	Arg Arg 155		Thr Pro Tyr 160
Ala Gln	Arg Met	Glu Arg 165	Val Le	u Arg	Glu Asn 170	Ala As <u>r</u>	Ser Leu Gln 175
Ala Ser	Leu Arg		Ala As	p Glu 185	Leu Lys	Ala Lys	: Ile Asp Gln 190
Asn Val	Glu Glu 195	ı Leu Lys	Gly Ar 20		Thr Pro	Tyr Ala 205	Asp Glu Phe
Lys Val 210	Lys Ile	Asp Gln	Thr Va 215	l Glu	Glu Leu	Arg Arg 220	g Ser Leu Ala
Pro Tyr	Ala Glr	a Asp Thr	Gln Gl	u Lys	Leu Asn	His Glr	n Leu Glu Gly

-continued															
225					230					235					240
Leu	Thr	Phe	Gln	Met 245	Lys	Lys	Asn	Ala	Glu 250	Glu	Leu	Lys	Ala	Arg 255	Ile
Ser	Ala	Ser	Ala 260	Glu	Glu	Leu	Arg	Gln 265	Arg	Leu	Ala	Pro	Leu 270	Ala	Glu
Asp	Val	Arg 275	Gly	Asn	Leu	Lys	Gly 280	Asn	Thr	Glu	Gly	Leu 285	Gln	ГЛа	Ser
Leu	Ala 290	Glu	Leu	Gly	Gly	His 295	Leu	Asp	Gln	Gln	Val 300	Glu	Glu	Phe	Arg
Arg 305	Arg	Val	Glu	Pro	Tyr 310	Gly	Glu	Asn	Phe	Asn 315	Lys	Ala	Leu	Val	Gln 320
Gln	Met	Glu	Gln	Leu 325	Arg	Gln	Lys	Leu	Gly 330	Pro	His	Ala	Gly	335	Val
Glu	Gly	His	Leu 340	Ser	Phe	Leu	Glu	Lys 345	Asp	Leu	Arg	Asp	150 150	Val	Asn
Ser	Phe	Phe 355	Ser	Thr	Phe	Lys	Glu 360	Lys	Glu	Ser	Gln	Asp 365	Lys	Thr	Leu
Ser	Leu 370	Pro	Glu	Leu	Glu	Gln 375	Gln	Gln	Glu	Gln	Gln 380	Gln	Glu	Gln	Gln
Gln 385	Glu	Gln	Val	Gln	Met 390	Leu	Ala	Pro	Leu	Glu 395	Ser				
<213 <213 <213	0> SI L> LI 2> TY 3> OF	ENGTI (PE : RGAN	H: 3: PRT ISM:	L7 Homo	Sap	piens	3								
< 400)> SI	EQUEI	NCE:	5											
Met 1	Lys	Val	Leu	Trp 5	Ala	Ala	Leu	Leu	Val 10	Thr	Phe	Leu	Ala	Gly 15	CAa
Gln	Ala	Lys	Val 20	Glu	Gln	Ala	Val	Glu 25	Thr	Glu	Pro	Glu	Pro 30	Glu	Leu
Arg	Gln	Gln 35	Thr	Glu	Trp	Gln	Ser 40	Gly	Gln	Arg	Trp	Glu 45	Leu	Ala	Leu
Gly	Arg 50	Phe	Trp	Asp	Tyr	Leu 55	Arg	Trp	Val	Gln	Thr 60	Leu	Ser	Glu	Gln
Val 65	Gln	Glu	Glu	Leu	Leu 70	Ser	Ser	Gln	Val	Thr 75	Gln	Glu	Leu	Arg	Ala 80
Leu	Met	Asp	Glu	Thr 85	Met	Lys	Glu	Leu	Pys 90	Ala	Tyr	Lys	Ser	Glu 95	Leu
Glu	Glu	Gln	Leu 100	Thr	Pro	Val	Ala	Glu 105	Glu	Thr	Arg	Ala	Arg 110	Leu	Ser
ГÀа	Glu	Leu 115	Gln	Ala	Ala	Gln	Ala 120	Arg	Leu	Gly	Ala	Asp 125	Met	Glu	Asp
Val	Cys 130	Gly	Arg	Leu	Val	Gln 135	Tyr	Arg	Gly	Glu	Val 140	Gln	Ala	Met	Leu
Gly 145	Gln	Ser	Thr	Glu	Glu 150	Leu	Arg	Val	Arg	Leu 155	Ala	Ser	His	Leu	Arg 160
Lys	Leu	Arg	Lys	Arg 165	Leu	Leu	Arg	Asp	Ala 170	Asp	Asp	Leu	Gln	Lys 175	Arg
Leu	Ala	Val	Tyr 180	Gln	Ala	Gly	Ala	Arg 185	Glu	Gly	Ala	Glu	Arg 190	Gly	Leu
Ser	Ala	Ile 195	Arg	Glu	Arg	Leu	Gly 200	Pro	Leu	Val	Glu	Gln 205	Gly	Arg	Val

Arg Ala Ala Thr Val Gly Ser Leu Ala Gly Gln Pro Leu Gln Glu Arg

-continued

210 215 Ala Gln Ala Trp Gly Glu Arg Leu Arg Ala Arg Met Glu Glu Met Gly Ser Arg Thr Arg Asp Arg Leu Asp Glu Val Lys Glu Gln Val Ala Glu Val Arg Ala Lys Leu Glu Glu Gln Ala Gln Gln Ile Arg Leu Gln Ala \$260\$Glu Ala Phe Gln Ala Arg Leu Lys Ser Trp Phe Glu Pro Leu Val Glu Asp Met Gln Arg Gln Trp Ala Gly Leu Val Glu Lys Val Gln Ala Ala 295 Val Gly Thr Ser Ala Ala Pro Val Pro Ser Asp Asn His 305 $$\rm 310$$ 315 <210> SEQ ID NO 6 <211> LENGTH: 398 <212> TYPE: PRT <213 > ORGANISM: Homo Sapiens <400> SEQUENCE: 6 Met Glu Gly Ala Ala Leu Leu Arg Val Ser Val Leu Cys Ile Trp Met 1 5 10 15 Ser Ala Leu Phe Leu Gly Val Gly Val Arg Ala Glu Glu Ala Gly Ala 20 25 30Arg Val Gln Gln Asn Val Pro Ser Gly Thr Asp Thr Gly Asp Pro Gln 35 40 45Ser Lys Pro Leu Gly Asp Trp Ala Ala Gly Thr Met Asp Pro Glu Ser 50 $\,$ 60 $\,$ Ser Ile Phe Ile Glu Asp Ala Ile Lys Tyr Phe Lys Glu Lys Val Ser 65 70 70 75 80 Thr Gln Asn Leu Leu Leu Leu Thr Asp Asn Glu Ala Trp Asn Gly Phe Val Ala Ala Ala Glu Leu Pro Arg Asn Glu Ala Asp Glu Leu Arg 105 Lys Ala Leu Asp Asn Leu Ala Arg Gln Met Ile Met Lys Asp Lys Asn 115 \$120\$Pro Arg Leu Lys Ser Lys Leu Glu Asp Asn Ile Arg Arg Leu Arg Ala 155 Val Val Ser Gly Ser Leu Ser Ile Ser Ser Gly Ile Leu Thr Leu Val Gly Met Gly Leu Ala Pro Phe Thr Glu Gly Gly Ser Leu Val Leu Leu 195 200 Glu Pro Gly Met Glu Leu Gly Ile Thr Ala Ala Leu Thr Gly Ile Thr 210 215220 Ser Ser Thr Ile Asp Tyr Gly Lys Lys Trp Trp Thr Gln Ala Gln Ala 225 230 230 His Asp Leu Val Ile Lys Ser Leu Asp Lys Leu Lys Glu Val Lys Glu 245 250 255 Phe Leu Gly Glu Asn Ile Ser Asn Phe Leu Ser Leu Ala Gly Asn Thr \$260\$Tyr Gln Leu Thr Arg Gly Ile Gly Lys Asp Ile Arg Ala Leu Arg Arg

-continue	d
-----------	---

		275					280					285			
Ala	Arg 290	Ala	Asn	Leu	Gln	Ser 295	Val	Pro	His	Ala	Ser 300	Ala	Ser	Arg	Pro
Arg 305	Val	Thr	Glu	Pro	Ile 310	Ser	Ala	Glu	Ser	Gly 315	Glu	Gln	Val	Glu	Arg 320
Val	Asn	Glu	Pro	Ser 325	Ile	Leu	Glu	Met	Ser 330	Arg	Gly	Val	Lys	Leu 335	Thr
Asp	Val	Ala	Pro 340	Val	Ser	Phe	Phe	Leu 345	Val	Leu	Asp	Val	Val 350	Tyr	Leu
Val	Tyr	Glu 355	Ser	ГÀа	His	Leu	His 360	Glu	Gly	Ala	ГÀа	Ser 365	Glu	Thr	Ala
Glu	Glu 370	Leu	TÀa	ГÀа	Val	Ala 375	Gln	Glu	Leu	Glu	Glu 380	ГÀа	Leu	Asn	Ile
Leu 385	Asn	Asn	Asn	Tyr	390 Lys	Ile	Leu	Gln	Ala	Asp 395	Gln	Glu	Leu		
<210)> SI	EQ II	ои с	7											
<212	2 > T	YPE:			o Saj	piens	3								
<400)> SI	EQUEI	NCE :	7											
Met 1	Arg	Leu	Leu	Trp 5	Gly	Leu	Ile	Trp	Ala 10	Ser	Ser	Phe	Phe	Thr 15	Leu
Ser	Leu	Gln	Lys 20	Pro	Arg	Leu	Leu	Leu 25	Phe	Ser	Pro	Ser	Val 30	Val	His
Leu	Gly	Val 35	Pro	Leu	Ser	Val	Gly 40	Val	Gln	Leu	Gln	Asp 45	Val	Pro	Arg
Gly	Gln 50	Val	Val	ГÀв	Gly	Ser 55	Val	Phe	Leu	Arg	Asn 60	Pro	Ser	Arg	Asn
Asn 65	Val	Pro	Cys	Ser	Pro 70	ГÀв	Val	Asp	Phe	Thr 75	Leu	Ser	Ser	Glu	Arg 80
Asp	Phe	Ala	Leu	Leu 85	Ser	Leu	Gln	Val	Pro 90	Leu	Lys	Asp	Ala	Lys 95	Ser
СЛа	Gly	Leu	His 100	Gln	Leu	Leu	Arg	Gly 105	Pro	Glu	Val	Gln	Leu 110	Val	Ala
His	Ser	Pro 115	Trp	Leu	ГÀа	Asp	Ser 120	Leu	Ser	Arg	Thr	Thr 125	Asn	Ile	Gln
Gly	Ile 130	Asn	Leu	Leu	Phe	Ser 135	Ser	Arg	Arg	Gly	His 140	Leu	Phe	Leu	Gln
Thr 145	Asp	Gln	Pro	Ile	Tyr 150	Asn	Pro	Gly	Gln	Arg 155	Val	Arg	Tyr	Arg	Val 160
Phe	Ala	Leu	Asp	Gln 165	ГÀв	Met	Arg	Pro	Ser 170	Thr	Asp	Thr	Ile	Thr 175	Val
Met	Val	Glu	Asn 180	Ser	His	Gly	Leu	Arg 185	Val	Arg	Lys	Lys	Glu 190	Val	Tyr
Met	Pro	Ser 195	Ser	Ile	Phe	Gln	Asp 200	Asp	Phe	Val	Ile	Pro 205	Asp	Ile	Ser
Glu	Pro 210	Gly	Thr	Trp	Lys	Ile 215	Ser	Ala	Arg	Phe	Ser 220	Asp	Gly	Leu	Glu
Ser 225	Asn	Ser	Ser	Thr	Gln 230	Phe	Glu	Val	Lys	Lys 235	Tyr	Val	Leu	Pro	Asn 240
Phe	Glu	Val	Lys	Ile 245	Thr	Pro	Gly	Lys	Pro 250	Tyr	Ile	Leu	Thr	Val 255	Pro
Gly	His	Leu	Asp	Glu	Met	Gln	Leu	Asp	Ile	Gln	Ala	Arg	Tyr	Ile	Tyr

-continued

			260					265					270		
Gly	Lys	Pro 275	Val	Gln	Gly	Val	Ala 280	Tyr	Val	Arg	Phe	Gly 285	Leu	Leu	Asp
Glu	Asp 290	Gly	Lys	Lys	Thr	Phe 295	Phe	Arg	Gly	Leu	Glu 300	Ser	Gln	Thr	Lys
Leu 305	Val	Asn	Gly	Gln	Ser 310	His	Ile	Ser	Leu	Ser 315	ГÀа	Ala	Glu	Phe	Gln 320
Asp	Ala	Leu	Glu	Lys 325	Leu	Asn	Met	Gly	Ile 330	Thr	Asp	Leu	Gln	Gly 335	Leu
Arg	Leu	Tyr	Val 340	Ala	Ala	Ala	Ile	Ile 345	Glu	Ser	Pro	Gly	Gly 350	Glu	Met
Glu	Glu	Ala 355	Glu	Leu	Thr	Ser	Trp 360	Tyr	Phe	Val	Ser	Ser 365	Pro	Phe	Ser
Leu	Asp 370	Leu	Ser	Lys	Thr	Lys 375	Arg	His	Leu	Val	Pro 380	Gly	Ala	Pro	Phe
Leu 385	Leu	Gln	Ala	Leu	Val 390	Arg	Glu	Met	Ser	Gly 395	Ser	Pro	Ala	Ser	Gly 400
Ile	Pro	Val	Lys	Val 405	Ser	Ala	Thr	Val	Ser 410	Ser	Pro	Gly	Ser	Val 415	Pro
Glu	Val	Gln	Asp 420	Ile	Gln	Gln	Asn	Thr 425	Asp	Gly	Ser	Gly	Gln 430	Val	Ser
Ile	Pro	Ile 435	Ile	Ile	Pro	Gln	Thr 440	Ile	Ser	Glu	Leu	Gln 445	Leu	Ser	Val
Ser	Ala 450	Gly	Ser	Pro	His	Pro 455	Ala	Ile	Ala	Arg	Leu 460	Thr	Val	Ala	Ala
Pro 465	Pro	Ser	Gly	Gly	Pro 470	Gly	Phe	Leu	Ser	Ile 475	Glu	Arg	Pro	Asp	Ser 480
Arg	Pro	Pro	Arg	Val 485	Gly	Asp	Thr	Leu	Asn 490	Leu	Asn	Leu	Arg	Ala 495	Val
Gly	Ser	Gly	Ala 500	Thr	Phe	Ser	His	Tyr 505	Tyr	Tyr	Met	Ile	Leu 510	Ser	Arg
Gly	Gln	Ile 515	Val	Phe	Met	Asn	Arg 520	Glu	Pro	Lys	Arg	Thr 525	Leu	Thr	Ser
Val	Ser 530	Val	Phe	Val	Asp	His 535	His	Leu	Ala	Pro	Ser 540	Phe	Tyr	Phe	Val
Ala 545	Phe	Tyr	Tyr	His	Gly 550	Asp	His	Pro	Val	Ala 555	Asn	Ser	Leu	Arg	Val 560
Asp	Val	Gln	Ala	Gly 565	Ala	Cys	Glu	Gly	Lys 570	Leu	Glu	Leu	Ser	Val 575	Asp
Gly	Ala	Lys	Gln 580	Tyr	Arg	Asn	Gly	Glu 585	Ser	Val	Lys	Leu	His 590	Leu	Glu
Thr	Asp	Ser 595	Leu	Ala	Leu	Val	Ala 600	Leu	Gly	Ala	Leu	Asp 605	Thr	Ala	Leu
Tyr	Ala 610	Ala	Gly	Ser	ГÀа	Ser 615	His	Lys	Pro	Leu	Asn 620	Met	Gly	ГЛа	Val
Phe 625	Glu	Ala	Met	Asn	Ser 630	Tyr	Asp	Leu	Gly	Сув 635	Gly	Pro	Gly	Gly	Gly 640
Asp	Ser	Ala	Leu	Gln 645	Val	Phe	Gln	Ala	Ala 650	Gly	Leu	Ala	Phe	Ser 655	Asp
Gly	Asp	Gln	Trp 660	Thr	Leu	Ser	Arg	Lys 665	Arg	Leu	Ser	Сув	Pro 670	Lys	Glu
Lys	Thr	Thr 675	Arg	Lys	Lys	Arg	Asn 680	Val	Asn	Phe	Gln	Lys 685	Ala	Ile	Asn

-continued

Glu	690 Lys	Leu	Gly	Gln	Tyr	Ala 695	Ser	Pro	Thr	Ala	Lys 700	Arg	Cya	CAa	Gln
Asp 705	Gly	Val	Thr	Arg	Leu 710	Pro	Met	Met	Arg	Ser 715	Cys	Glu	Gln	Arg	Ala 720
Ala	Arg	Val	Gln	Gln 725	Pro	Asp	Cys	Arg	Glu 730	Pro	Phe	Leu	Ser	Cys 735	Cha
Gln	Phe	Ala	Glu 740	Ser	Leu	Arg	Lys	Lys 745	Ser	Arg	Asp	Lys	Gly 750	Gln	Ala
Gly	Leu	Gln 755	Arg	Ala	Leu	Glu	Ile 760	Leu	Gln	Glu	Glu	Asp 765	Leu	Ile	Asp
Glu	Asp 770	Asp	Ile	Pro	Val	Arg 775	Ser	Phe	Phe	Pro	Glu 780	Asn	Trp	Leu	Trp
Arg 785	Val	Glu	Thr	Val	Asp 790	Arg	Phe	Gln	Ile	Leu 795	Thr	Leu	Trp	Leu	Pro 800
Asp	Ser	Leu	Thr	Thr 805	Trp	Glu	Ile	His	Gly 810	Leu	Ser	Leu	Ser	Lys 815	Thr
Lys	Gly	Leu	Cys 820	Val	Ala	Thr	Pro	Val 825	Gln	Leu	Arg	Val	Phe 830	Arg	Glu
Phe	His	Leu 835	His	Leu	Arg	Leu	Pro 840	Met	Ser	Val	Arg	Arg 845	Phe	Glu	Gln
Leu	Glu 850	Leu	Arg	Pro	Val	Leu 855	Tyr	Asn	Tyr	Leu	Asp 860	TÀa	Asn	Leu	Thr
Val 865	Ser	Val	His	Val	Ser 870	Pro	Val	Glu	Gly	Leu 875	CÀa	Leu	Ala	Gly	Gly 880
Gly	Gly	Leu	Ala	Gln 885	Gln	Val	Leu	Val	Pro 890	Ala	Gly	Ser	Ala	Arg 895	Pro
Val	Ala	Phe	Ser 900	Val	Val	Pro	Thr	Ala 905	Ala	Thr	Ala	Val	Ser 910	Leu	Lys
Val	Val	Ala 915	Arg	Gly	Ser	Phe	Glu 920	Phe	Pro	Val	Gly	Asp 925	Ala	Val	Ser
Lys	Val 930	Leu	Gln	Ile	Glu	Lys 935	Glu	Gly	Ala	Ile	His 940	Arg	Glu	Glu	Leu
Val 945	Tyr	Glu	Leu	Asn	Pro 950	Leu	Asp	His	Arg	Gly 955	Arg	Thr	Leu	Glu	Ile 960
Pro	Gly	Asn	Ser	Asp 965	Pro	Asn	Met	Ile	Pro 970	Asp	Gly	Asp	Phe	Asn 975	Ser
Tyr	Val	Arg	Val 980	Thr	Ala	Ser	Asp	Pro 985	Leu	Asp	Thr	Leu	Gly 990	Ser	Glu
Gly	Ala	Leu 995	Ser	Pro	Gly	Gly	Val 1000		a Sei	r Lei	ı Le	u Ar		eu Pi	ro Arg
Gly	Cys 1010		/ Glu	ı Glr	n Thr	Met 101		le Ty	/r Le	eu Al		ro ' 020	Thr l	Leu A	Ala
Ala	Ser 1025		ј Туг	. Leu	ı Asp	Ly:		nr Gl	Lu G	ln Ti		er ' 035	Thr 1	Leu I	Pro
Pro	Glu 1040		: Lys	s Asp	His	3 Ala 104		al As	sp Le	eu II		ln 1 050	Lys (Gly :	Гуr
Met	Arg 1055		e Glr	n Glr	n Phe	106		/s Al	La As	ep Gi	_	er ' 065	Tyr I	Ala A	Ala
Trp	Leu 1070		r Arg	g Gl∑	/ Ser	Ser 10		ır Tı	гр Le	eu Th		la : 080	Phe \	Val I	Leu
Lys	Val 1085		ı Sei	r Leu	ı Ala	109		lu Gl	ln Vá	al G		ly : 095	Ser 1	Pro (Glu
Lys	Leu 1100		ı Glu	ı Thi	Ser	110		rp Le	eu Le	eu S∈		ln (110	Gln (Gln <i>l</i>	Ala

Asp	Glv	Ser	Phe	Gln	Asp	Leu	Ser	Pro	Val	Tle	His	Ara	Ser	Met
nop	1115	501	1110	0111	p	1120			741		1125		001	
Gln	Gly 1130	Gly	Leu	Val	Gly	Asn 1135		Glu	Thr	Val	Ala 1140		Thr	Ala
Phe	Val 1145	Thr	Ile	Ala	Leu	His 1150	His	Gly	Leu	Ala	Val 1155		Gln	Asp
Glu	Gly 1160	Ala	Glu	Pro	Leu	Lys 1165	Gln	Arg	Val	Glu	Ala 1170		Ile	Ser
Lys	Ala 1175	Ser	Ser	Phe	Leu	Gly 1180	Glu	Lys	Ala	Ser	Ala 1185	Gly	Leu	Leu
Gly	Ala 1190	His	Ala	Ala	Ala	Ile 1195	Thr	Ala	Tyr	Ala	Leu 1200	Thr	Leu	Thr
Lys	Ala 1205	Pro	Ala	Asp	Leu	Arg 1210	Gly	Val	Ala	His	Asn 1215	Asn	Leu	Met
Ala	Met 1220	Ala	Gln	Glu	Thr	Gly 1225	Asp	Asn	Leu	Tyr	Trp 1230	Gly	Ser	Val
Thr	Gly 1235	Ser	Gln	Ser	Asn	Ala 1240		Ser	Pro	Thr	Pro 1245	Ala	Pro	Arg
Asn	Pro 1250	Ser	Asp	Pro	Met	Pro 1255	Gln	Ala	Pro	Ala	Leu 1260	Trp	Ile	Glu
Thr	Thr 1265	Ala	Tyr	Ala	Leu	Leu 1270	His	Leu	Leu	Leu	His 1275	Glu	Gly	Lys
Ala	Glu 1280	Met	Ala	Asp	Gln	Ala 1285	Ala	Ala	Trp	Leu	Thr 1290	Arg	Gln	Gly
Ser	Phe 1295	Gln	Gly	Gly	Phe	Arg 1300	Ser	Thr	Gln	Asp	Thr 1305	Val	Ile	Ala
Leu	Asp 1310	Ala	Leu	Ser	Ala	Tyr 1315	Trp	Ile	Ala	Ser	His 1320	Thr	Thr	Glu
Glu	Arg 1325	Gly	Leu	Asn	Val	Thr 1330	Leu	Ser	Ser	Thr	Gly 1335	Arg	Asn	Gly
Phe	Lys 1340	Ser	His	Ala	Leu	Gln 1345	Leu	Asn	Asn	Arg	Gln 1350	Ile	Arg	Gly
Leu	Glu 1355	Glu	Glu	Leu	Gln	Phe 1360	Ser	Leu	Gly	Ser	Lys 1365		Asn	Val
Lys	Val 1370	Gly	Gly	Asn	Ser	Lys 1375	Gly	Thr	Leu	Lys	Val 1380	Leu	Arg	Thr
Tyr	Asn 1385	Val	Leu	Asp	Met	Lys 1390		Thr	Thr	Сув	Gln 1395	Asp	Leu	Gln
Ile	Glu 1400	Val	Thr	Val	Lys	Gly 1405	His	Val	Glu	Tyr	Thr 1410	Met	Glu	Ala
Asn	Glu 1415	Asp	Tyr	Glu	Asp	Tyr 1420	Glu	Tyr	Asp	Glu	Leu 1425	Pro	Ala	Lys
Asp	Asp 1430	Pro	Asp	Ala	Pro	Leu 1435	Gln	Pro	Val	Thr	Pro 1440	Leu	Gln	Leu
Phe	Glu 1445	Gly	Arg	Arg	Asn	Arg 1450	Arg	Arg	Arg	Glu	Ala 1455		ГЛа	Val
Val	Glu 1460	Glu	Gln	Glu	Ser	Arg 1465		His	Tyr	Thr	Val 1470		Ile	Trp
Arg	Asn 1475	Gly	Lys	Val	Gly	Leu 1480		Gly	Met	Ala	Ile 1485		Asp	Val
Thr	Leu 1490	Leu	Ser	Gly	Phe	His 1495	Ala	Leu	Arg	Ala	Asp 1500		Glu	Lys
Leu	Thr	Ser	Leu	Ser	Asp	Arg	Tyr	Val	Ser	His	Phe	Glu	Thr	Glu

												-00	IICII	iuec		
	1505					151	0					1515				
Gly	Pro 1520		Val	. Leu	. Leu	. Tyr 152		ne A	4ap	Ser	. Val	Pro 1530		Ser	Arg	
Glu	Cys 1535		l Gly	Phe	Glu	. Ala 154		al (∃ln	Glu	ı Val	Pro 1545		Gly	Leu	
Val	Gln 1550		Ala	. Ser	Ala	Thr 155		eu T	ľyr	Asp	Tyr	Tyr 1560		Pro	Glu	
Arg	Arg 1565		s Ser	Val	Phe	Tyr 157		ly A	Ala	Pro	Ser	Lys 1575		Arg	Leu	
Leu	Ala 1580		. Leu	. Сув	Ser	Ala 158		lu V	/al	Суя	: Gln	Cys 1590		Glu	Gly	
Lys	Cys 1595		Arg	g Glr	Arg	Arg 160		la I	∟eu	Glu	ı Arg	Gly 1605		Gln	Asp	
Glu	Asp 1610		y Tyr	Arg	Met	Lys 161		ne A	Ala	Суя	Tyr	Tyr 1620		Arg	Val	
Glu	Tyr 1625		⁄ Ph∈	Gln	Val	Lys 163		al I	∟eu	Arg	g Glu	Asp 1635		Arg	Ala	
Ala	Phe 1640		g Leu	. Phe	Glu	Thr 164		ys l	[le	Thr	Gln	Val 1650		His	Phe	
Thr	Lys 1655		Val	. Lys	Ala	. Ala 166		la A	Asn	Glr	Met	Arg 1665		Phe	Leu	
Val	Arg 1670		a Ser	Cys	Arg	Leu 167		rg I	₋eu	Glu	Pro	Gly 1680		Glu	Tyr	
Leu	Ile 1685		: Gly	Leu	. Asp	Gly 169		la T	hr	Туг	Asp	Leu 1695		Gly	His	
Pro	Gln 1700		: Leu	. Leu	. Asp	Ser 170		sn S	Ser	Trp	Ile	Glu 1710		Met	Pro	
Ser	Glu 1715		g Lev	. Сув	Arg	Ser 172		nr A	\rg	Glr	a Arg	Ala 1725		Cys	Ala	
Gln	Leu 1730		ı Asp	Phe	Leu	. Gln 173		lu 7	ľyr	Gly	Thr	Gln 1740		Сув	Gln	
Val																
<210> SEQ ID NO 8 <211> LENGTH: 127 <212> TYPE: PRT <213> ORGANISM: Homo Sapiens																
	0> SE															
Ser 1	Gly	Arg	Gly	Lys 5	Gln	Gly	Gly	Lys	3 Al		Arg A	la Ly	s Al	a Ly: 15	s Thr	
Arg	Ser	Ser	Arg 20	Ala	Gly	Leu	Gln	Phe 25	e Pi	0 V	al G	ly Ar	g Va 30	l Hi	s Arg	
Leu	Leu	Arg 35	ГХа	Gly	Asn		Ala 40	Glu	ı Aı	rg V	al G	ly Al 45	a Gl	y Ala	a Pro	
Val	Tyr 50	Leu	Ala	Ala		Leu 55	Glu	Туз	: Le	eu T		la Gl O	u Il	e Le	u Glu	
Leu 65	Ala	Gly	Asn	Ala	Ala 70	Arg	Asp	Asr	ı Ly		ys T 5	hr Ar	g Il	e Il	e Pro 80	
Arg	His	Leu	Gln	Leu 85	Ala	Ile	Arg	Asr	n As 90	_	Slu G	lu Le	u As:	n Ly: 95	s Leu	
Leu	Gly	Lys	Val 100	Thr	Ile	Ala	Gln	Gl _y 105		Ly V	al L	eu Pr	o As:		e Gln	
Ala	Val	Leu 115	Leu	Pro	Lys	Lys	Thr 120	Glu	ı Se	er F	His H	is Ly 12		r Ly:	9	

```
<210> SEQ ID NO 9
<211> LENGTH: 101
<212> TYPE: PRT
<213 > ORGANISM: Homo Sapiens
<400> SEQUENCE: 9
Met Gly Thr Arg Leu Leu Pro Ala Leu Phe Leu Val Leu Leu Val Leu
Gly Phe Glu Val Gln Gly Thr Gln Gln Pro Gln Gln Asp Glu Met Pro 20 \hspace{1cm} 25 \hspace{1cm} 30 \hspace{1cm}
Ser Pro Thr Phe Leu Thr Gln Val Lys Glu Ser Leu Ser Ser Tyr Trp 35 40 45
Glu Ser Ala Lys Thr Ala Ala Gln Asn Leu Tyr Glu Lys Thr Tyr Leu 50 \hspace{1.5cm} 60
Pro Ala Val Asp Glu Lys Leu Arg Asp Leu Tyr Ser Lys Ser Thr Ala 65 70 75 80
Ala Met Ser Thr Tyr Thr Gly Ile Phe Thr Asp Gln Val Leu Ser Val 85 90 95
Leu Lys Gly Glu Glu
<210> SEQ ID NO 10
<211> LENGTH: 188
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 10
Met Phe His Gln Ile Trp Ala Ala Leu Leu Tyr Phe Tyr Gly Ile Ile
                                         10
Leu Asn Ser Ile Tyr Gln Cys Pro Glu His Ser Gln Leu Thr Thr Leu 20 \hspace{1.5cm} 25 \hspace{1.5cm} 30 \hspace{1.5cm}
Gly Val Asp Gly Lys Glu Phe Pro Glu Val His Leu Gly Gln Trp Tyr 35 40 45
Phe Ile Ala Gly Ala Ala Pro Thr Lys Glu Glu Leu Ala Thr Phe Asp
Pro Val Asp Asn Ile Val Phe Asn Met Ala Ala Gly Ser Ala Pro Met
Gln Leu His Leu Arg Ala Thr Ile Arg Met Lys Asp Gly Leu Cys Val_{\rm 85} 90 _{\rm 95}
Pro Arg Lys Trp Ile Tyr His Leu Thr Glu Gly Ser Thr Asp Leu Arg
Thr Glu Gly Arg Pro Asp Met Lys Thr Glu Leu Phe Ser Ser Ser Cys
                                120
Pro Gly Gly Ile Met Leu Asn Glu Thr Gly Gln Gly Tyr Gln Arg Phe
Leu Leu Tyr Asn Arg Ser Pro His Pro Pro Glu Lys Cys Val Glu Glu
Phe Lys Ser Leu Thr Ser Cys Leu Asp Ser Lys Ala Phe Leu Leu Thr 165 170 170 175
Pro Arg Asn Gln Glu Ala Cys Glu Leu Ser Asn Asn
             180
<210> SEQ ID NO 11
<211> LENGTH: 353
```

<212> TYPE: PRT

<213> ORGANISM: Homo Sapiens

-continued

<400> SEQUENCE: 11 Arg Leu Gly Arg Glu Gly Val Gln Lys Glu Asp Ile Pro Pro Ala Asp Leu Ser Asp Gln Val Pro Asp Thr Glu Ser Glu Thr Arg Ile Leu Leu Arg Leu Lys His Leu Ile Val Thr Pro Ser Gly Cys Gly Glu Gln Asn Met Ile Gly Met Thr Pro Thr Val Ile Ala Val His Tyr Leu Asp Glu Thr Glu Gln Trp Glu Lys Phe Gly Leu Glu Lys Arg Gln Gly Ala Leu 85 90 95 Glu Leu Ile Lys Lys Gly Tyr Thr Gln Gln Leu Ala Phe Arg Gln Pro $100 \hspace{1cm} 105 \hspace{1cm} 110 \hspace{1cm}$ Ser Ser Ala Phe Ala Ala Phe Val Lys Arg Ala Pro Ser Thr Trp Leu 115 120 125 Thr Ala Tyr Val Val Lys Val Phe Ser Leu Ala Val Asn Leu Ile Ala 135 Lys Gln Lys Pro Asp Gly Val Phe Gln Glu Asp Ala Pro Val Ile His 165 $$170\$ Gln Glu Met Ile Gly Gly Leu Arg Asn Asn Asn Glu Lys Asp Met Ala 180 \$185\$Leu Thr Ala Phe Val Leu Ile Ser Leu Gln Glu Ala Lys Asp Ile Cys 195 \$200\$Glu Glu Gln Val Asn Ser Leu Pro Gly Ser Ile Thr Lys Ala Gly Asp 210 215 220Phe Leu Glu Ala Asn Tyr Met Asn Leu Gln Arg Ser Tyr Thr Val Ala 225 230 240 Ile Ala Gly Tyr Ala Leu Ala Gln Met Gly Arg Leu Lys Gly Pro Leu Leu Asn Lys Phe Leu Thr Thr Ala Lys Asp Lys Asn Arg Trp Glu Asp Pro Gly Lys Gln Leu Tyr Asn Val Glu Ala Thr Ser Tyr Ala Leu Leu 275 280 285 Ala Leu Leu Gln Leu Lys Asp Phe Asp Phe Val Pro Pro Val Val Arg 290 295 300 Trp Leu Asn Glu Gln Arg Tyr Tyr Gly Gly Gly Tyr Gly Ser Thr Gln 305 $$ 310 $$ 315 $$ 320 Ala Thr Phe Met Val Phe Gln Ala Leu Ala Gln Tyr Gln Lys Asp Ala Pro Asp His Gln Glu Leu Asn Leu Asp Val Ser Leu Gln Leu Pro Ser $340 \hspace{1cm} 345 \hspace{1cm} 345 \hspace{1cm} 350 \hspace{1cm}$ Arg <210> SEQ ID NO 12 <211> LENGTH: 478 <212> TYPE: PRT <213 > ORGANISM: Homo Sapiens <400> SEOUENCE: 12 Met Ala Pro Leu Arg Pro Leu Leu Ile Leu Ala Leu Leu Ala Trp Val 1 5 10 15

Ala	Leu	Ala	Asp 20	Gln	Glu	Ser	CÀa	Lys 25	Gly	Arg	CAa	Thr	Glu 30	Gly	Phe
Asn	Val	Asp 35	Lys	Lys	Cys	Gln	Cys 40	Asp	Glu	Leu	Сув	Ser 45	Tyr	Tyr	Gln
Ser	Сув 50	Сув	Thr	Asp	Tyr	Thr 55	Ala	Glu	Сув	Lys	Pro 60	Gln	Val	Thr	Arg
Gly 65	Asp	Val	Phe	Thr	Met 70	Pro	Glu	Asp	Glu	Tyr 75	Thr	Val	Tyr	Asp	Asp
Gly	Glu	Glu	Lys	Asn 85	Asn	Ala	Thr	Val	His 90	Glu	Gln	Val	Gly	Gly 95	Pro
Ser	Leu	Thr	Ser 100	Asp	Leu	Gln	Ala	Gln 105	Ser	Lys	Gly	Asn	Pro 110	Glu	Gln
Thr	Pro	Val 115	Leu	Lys	Pro	Glu	Glu 120	Glu	Ala	Pro	Ala	Pro 125	Glu	Val	Gly
Ala	Ser 130	Lys	Pro	Glu	Gly	Ile 135	Aap	Ser	Arg	Pro	Glu 140	Thr	Leu	His	Pro
Gly 145	Arg	Pro	Gln	Pro	Pro 150	Ala	Glu	Glu	Glu	Leu 155	Cys	Ser	Gly	Lys	Pro 160
Phe	Asp	Ala	Phe	Thr 165	Asp	Leu	Lys	Asn	Gly 170	Ser	Leu	Phe	Ala	Phe 175	Arg
Gly	Gln	Tyr	Cys 180	Tyr	Glu	Leu	Asp	Glu 185	Lys	Ala	Val	Arg	Pro 190	Gly	Tyr
Pro	Lys	Leu 195	Ile	Arg	Asp	Val	Trp 200	Gly	Ile	Glu	Gly	Pro 205	Ile	Asp	Ala
Ala	Phe 210	Thr	Arg	Ile	Asn	Cys 215	Gln	Gly	Lys	Thr	Tyr 220	Leu	Phe	Lys	Gly
Ser 225	Gln	Tyr	Trp	Arg	Phe 230	Glu	Asp	Gly	Val	Leu 235	Asp	Pro	Asp	Tyr	Pro 240
Arg	Asn	Ile	Ser	Asp 245	Gly	Phe	Asp	Gly	Ile 250	Pro	Asp	Asn	Val	Asp 255	Ala
Ala	Leu	Ala	Leu 260	Pro	Ala	His	Ser	Tyr 265	Ser	Gly	Arg	Glu	Arg 270	Val	Tyr
Phe	Phe	Lys 275	Gly	ГÀЗ	Gln	Tyr	Trp 280	Glu	Tyr	Gln	Phe	Gln 285	His	Gln	Pro
Ser	Gln 290	Glu	Glu	Cys	Glu	Gly 295	Ser	Ser	Leu	Ser	Ala 300	Val	Phe	Glu	His
Phe 305	Ala	Met	Met	Gln	Arg 310	Asp	Ser	Trp	Glu	Asp 315	Ile	Phe	Glu	Leu	Leu 320
Phe	Trp	Gly	Arg	Thr 325	Ser	Ala	Gly	Thr	Arg 330	Gln	Pro	Gln	Phe	Ile 335	Ser
Arg	Asp	Trp	His 340	Gly	Val	Pro	Gly	Gln 345	Val	Asp	Ala	Ala	Met 350	Ala	Gly
Arg	Ile	Tyr 355	Ile	Ser	Gly	Met	Ala 360	Pro	Arg	Pro	Ser	Leu 365	Ala	Lys	Lys
Gln	Arg 370	Phe	Arg	His	Arg	Asn 375	Arg	Lys	Gly	Tyr	Arg 380	Ser	Gln	Arg	Gly
His 385	Ser	Arg	Gly	Arg	Asn 390	Gln	Asn	Ser	Arg	Arg 395	Pro	Ser	Arg	Ala	Thr 400
Trp	Leu	Ser	Leu	Phe 405	Ser	Ser	Glu	Glu	Ser 410	Asn	Leu	Gly	Ala	Asn 415	Asn
Tyr	Asp	Asp	Tyr 420	Arg	Met	Asp	Trp	Leu 425	Val	Pro	Ala	Thr	Сув 430	Glu	Pro
Ile	Gln	Ser	Val	Phe	Phe	Phe	Ser	Gly	Asp	Lys	Tyr	Tyr	Arg	Val	Asn

-COILCIIIu

Leu Arg Thr Arg Arg Val Asp Thr Val Asp Pro Pro Tyr Pro Arg Ser

440

Ile Ala Gln Tyr Trp Leu Gly Cys Pro Ala Pro Gly His Leu

<210> SEQ ID NO 13

435

<211> LENGTH: 348

<212> TYPE: PRT

<213 > ORGANISM: Homo Sapiens

<400> SEQUENCE: 13

Met Ser Asp Leu Gly Ala Val Ile Ser Leu Leu Leu Trp Gly Arg Gln 1 5 10 15

Leu Phe Ala Leu Tyr Ser Gly Asn Asp Val Thr Asp Ile Ser Asp Asp $20 \ \ 25 \ \ 30$

Arg Phe Pro Lys Pro Pro Glu Ile Ala Asn Gly Tyr Val Glu His Leu $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45 \hspace{1.5cm}$

Phe Arg Tyr Gln Cys Lys Asn Tyr Tyr Arg Leu Arg Thr Glu Gly Asp $50 \ \ \,$

Gly Val Tyr Thr Leu Asn Asp Lys Lys Gln Trp Ile Asn Lys Ala Val 65 70 75 80

Gly Asp Lys Leu Pro Glu Cys Glu Ala Val Cys Gly Lys Pro Lys Asn $85 \hspace{1.5cm} 90 \hspace{1.5cm} 95 \hspace{1.5cm}$

Pro Ala Asn Pro Val Gln Arg Ile Leu Gly Gly His Leu Asp Ala Lys

Gly Ser Phe Pro Trp Gln Ala Lys Met Val Ser His His Asn Leu Thr 115 120 125

Thr Gly Ala Thr Leu Ile Asn Glu Gln Trp Leu Leu Thr Thr Ala Lys

Asn Leu Phe Leu Asn His Ser Glu Asn Ala Thr Ala Lys Asp Ile Ala 150 155

Pro Thr Leu Thr Leu Tyr Val Gly Lys Lys Gln Leu Val Glu Ile Glu 170

Lys Val Val Leu His Pro Asn Tyr His Gln Val Asp Ile Gly Leu Ile 180 \$185\$

Lys Leu Lys Gln Lys Val Leu Val Asn Glu Arg Val Met Pro Ile Cys 195 200 205

Gly Trp Gly Gln Ser Asp Asn Phe Lys Leu Thr Asp His Leu Lys Tyr 225 230 240

Val Met Leu Pro Val Ala Asp Gln Tyr Asp Cys Ile Thr His Tyr Glu 245 250 255

Gly Ser Thr Cys Pro Lys Trp Lys Ala Pro Lys Ser Pro Val Gly Val $$ 260 $$ 265 $$ 270

Gln Pro Ile Leu Asn Glu His Thr Phe Cys Val Gly Met Ser Lys Tyr 275 280 285

Gln Glu Asp Thr Cys Tyr Gly Asp Ala Gly Ser Ala Phe Ala Val His 290 \$295\$

Asp Leu Glu Glu Asp Thr Trp Tyr Ala Ala Gly Ile Leu Ser Phe Asp 305 310 315

Lys Ser Cys Ala Val Ala Glu Tyr Gly Val Tyr Val Lys Val Thr Ser 325 330 335

Ile Gln Asp Trp Val Gln Lys Thr Ile Ala Glu Asn

340 345

<210> SEQ ID NO 14 <211> LENGTH: 449

<212> TYPE: PRT

<213 > ORGANISM: Homo Sapiens

<400> SEQUENCE: 14

Met Met Lys Thr Leu Leu Leu Phe Val Gly Leu Leu Leu Thr Trp Glu 1 5 5 10 15

Ser Gly Gln Val Leu Gly Asp Gln Thr Val Ser Asp Asn Glu Leu Gln 20

Glu Met Ser Asn Gln Gly Ser Lys Tyr Val Asn Lys Glu Ile Gln Asn 35 404045

Glu Glu Arg Lys Thr Leu Leu Ser Asn Leu Glu Glu Ala Lys Lys 65 70 75 80

Lys Glu Asp Ala Leu Asn Glu Thr Arg Glu Ser Glu Thr Lys Leu Lys 85 90 95

Glu Leu Pro Gly Val Cys Asn Glu Thr Met Met Ala Leu Trp Glu Glu 100 \$105\$

Cys Lys Pro Cys Leu Lys Gln Thr Cys Met Lys Phe Tyr Ala Arg Val \$115\$ \$120\$ \$125\$

Cys Arg Ser Gly Ser Gly Leu Val Gly Arg Gln Leu Glu Glu Phe Leu 130 $$135\$

Asn Gln Ser Ser Pro Phe Tyr Phe Trp Met Asn Gly Asp Arg Ile Asp 145 150 150 160

Ser Leu Leu Glu Asn Asp Arg Gln Gln Thr His Met Leu Asp Val Met 165 $$170\$

Asp Arg Phe Phe Thr Arg Glu Pro Gln Asp Thr Tyr His Tyr Leu Pro 195 200 205

Phe Ser Leu Pro His Arg Arg Pro His Phe Phe Phe Lys Ser Arg 210 215

Ile Val Arg Ser Leu Met Pro Phe Ser Pro Tyr Glu Pro Leu Asn Phe 225 230 240

His Ala Met Phe Gln Pro Phe Leu Glu Met Ile His Glu Ala Gln Gln 245 250 255

Ala Met Asp Ile His Phe His Ser Pro Ala Phe Gln His Pro Pro Thr $260 \ \ \, 265 \ \ \, 270$

Glu Phe Ile Arg Glu Gly Asp Asp Asp Arg Thr Val Cys Arg Glu Ile 275 280 280

Arg His Asn Ser Thr Gly Cys Leu Arg Met Lys Asp Gln Cys Asp Lys $290 \hspace{1.5cm} 295 \hspace{1.5cm} 300 \hspace{1.5cm}$

Cys Arg Glu Ile Leu Ser Val Asp Cys Ser Thr Asn Asn Pro Ser Gln 305 $$ 310 $$ 315 $$ 320

Ala Lys Leu Arg Arg Glu Leu Asp Glu Ser Leu Gln Val Ala Glu Arg 325 330 335

Leu Thr Arg Lys Tyr Asn Glu Leu Leu Lys Ser Tyr Gln Trp Lys Met \$340\$

Leu Asn Thr Ser Ser Leu Leu Glu Gln Leu Asn Glu Gln Phe Asn Trp 355 360 365

Val Ser Arg Leu Ala Asn Leu Thr Gln Gly Glu Asp Gln Tyr Tyr Leu

-continued

Arg Val Thr Thr Val Ala Ser His Thr Ser Asp Ser Asp Val Pro Ser Gly Val Thr Glu Val Val Val Lys Leu Phe Asp Ser Asp Pro Ile Thr Val Thr Val Pro Val Glu Val Ser Arg Lys Asn Pro Lys Phe Met Glu $420 \hspace{1.5cm} 425 \hspace{1.5cm} 430 \hspace{1.5cm}$ Thr Val Ala Glu Lys Ala Leu Gln Glu Tyr Arg Lys Lys His Arg Glu Glu <210> SEQ ID NO 15 <211> LENGTH: 1744 <212> TYPE: PRT <213> ORGANISM: Homo Sapiens <400> SEQUENCE: 15 Met Arg Leu Leu Trp Gly Leu Ile Trp Ala Ser Ser Phe Phe Thr Leu 1 $$ 10 $$ 15 Ser Leu Gln Lys Pro Arg Leu Leu Leu Phe Ser Pro Ser Val Val His $20 \ \ 25 \ \ 25 \ \ 30$ Leu Gly Val Pro Leu Ser Val Gly Val Gln Leu Gln Asp Val Pro Arg Gly Gln Val Val Lys Gly Ser Val Phe Leu Arg Asn Pro Ser Arg Asn 50 $\,$ 60 $\,$ Asn Val Pro Cys Ser Pro Lys Val Asp Phe Thr Leu Ser Ser Glu Arg 65 70 70 75 80 Asp Phe Ala Leu Leu Ser Leu Gln Val Pro Leu Lys Asp Ala Lys Ser Cys Gly Leu His Gln Leu Leu Arg Gly Pro Glu Val Gln Leu Val Ala His Ser Pro Trp Leu Lys Asp Ser Leu Ser Arg Thr Thr Asn Ile Gln \$115\$Gly Ile Asn Leu Leu Phe Ser Ser Arg Arg Gly His Leu Phe Leu Gln 130 $$135\$ Thr Asp Gln Pro Ile Tyr Asn Pro Gly Gln Arg Val Arg Tyr Arg Val 145 $$ 150 $$ 155 $$ 160 Phe Ala Leu Asp Gln Lys Met Arg Pro Ser Thr Asp Thr Ile Thr Val Met Val Glu Asn Ser His Gly Leu Arg Val Arg Lys Lys Glu Val Tyr 180 185 190 Met Pro Ser Ser Ile Phe Gln Asp Asp Phe Val Ile Pro Asp Ile Ser 195 200 205 Glu Pro Gly Thr Trp Lys Ile Ser Ala Arg Phe Ser Asp Gly Leu Glu Ser Asn Ser Ser Thr Gln Phe Glu Val Lys Lys Tyr Val Leu Pro Asn 225 230 235 Gly His Leu Asp Glu Met Gln Leu Asp Ile Gln Ala Arg Tyr Ile Tyr \$260\$ \$265\$ \$270\$Gly Lys Pro Val Gln Gly Val Ala Tyr Val Arg Phe Gly Leu Leu Asp 280 Glu Asp Gly Lys Lys Thr Phe Phe Arg Gly Leu Glu Ser Gln Thr Lys

Leu 305	Val	Asn	Gly	Gln	Ser 310	His	Ile	Ser	Leu	Ser 315	Lys	Ala	Glu	Phe	Gln 320
Asp	Ala	Leu	Glu	Lys 325	Leu	Asn	Met	Gly	Ile 330	Thr	Asp	Leu	Gln	Gly 335	Leu
Arg	Leu	Tyr	Val 340	Ala	Ala	Ala	Ile	Ile 345	Glu	Ser	Pro	Gly	Gly 350	Glu	Met
Glu	Glu	Ala 355	Glu	Leu	Thr	Ser	Trp 360	Tyr	Phe	Val	Ser	Ser 365	Pro	Phe	Ser
Leu	Asp 370	Leu	Ser	Lys	Thr	Lys 375	Arg	His	Leu	Val	Pro 380	Gly	Ala	Pro	Phe
Leu 385	Leu	Gln	Ala	Leu	Val 390	Arg	Glu	Met	Ser	Gly 395	Ser	Pro	Ala	Ser	Gly 400
Ile	Pro	Val	Lys	Val 405	Ser	Ala	Thr	Val	Ser 410	Ser	Pro	Gly	Ser	Val 415	Pro
Glu	Val	Gln	Asp 420	Ile	Gln	Gln	Asn	Thr 425	Asp	Gly	Ser	Gly	Gln 430	Val	Ser
Ile	Pro	Ile 435	Ile	Ile	Pro	Gln	Thr 440	Ile	Ser	Glu	Leu	Gln 445	Leu	Ser	Val
Ser	Ala 450	Gly	Ser	Pro	His	Pro 455	Ala	Ile	Ala	Arg	Leu 460	Thr	Val	Ala	Ala
Pro 465	Pro	Ser	Gly	Gly	Pro 470	Gly	Phe	Leu	Ser	Ile 475	Glu	Arg	Pro	Asp	Ser 480
Arg	Pro	Pro	Arg	Val 485	Gly	Asp	Thr	Leu	Asn 490	Leu	Asn	Leu	Arg	Ala 495	Val
Gly	Ser	Gly	Ala 500	Thr	Phe	Ser	His	Tyr 505	Tyr	Tyr	Met	Ile	Leu 510	Ser	Arg
Gly	Gln	Ile 515	Val	Phe	Met	Asn	Arg 520	Glu	Pro	Lys	Arg	Thr 525	Leu	Thr	Ser
Val	Ser 530	Val	Phe	Val	Asp	His 535	His	Leu	Ala	Pro	Ser 540	Phe	Tyr	Phe	Val
Ala 545	Phe	Tyr	Tyr	His	Gly 550	Asp	His	Pro	Val	Ala 555	Asn	Ser	Leu	Arg	Val 560
Asp	Val	Gln	Ala	Gly 565	Ala	Сув	Glu	Gly	Lys 570	Leu	Glu	Leu	Ser	Val 575	Asp
Gly	Ala	Lys	Gln 580	Tyr	Arg	Asn	Gly	Glu 585	Ser	Val	Lys	Leu	His 590	Leu	Glu
Thr	Asp	Ser 595	Leu	Ala	Leu	Val	Ala 600	Leu	Gly	Ala	Leu	Asp 605	Thr	Ala	Leu
Tyr	Ala 610	Ala	Gly	Ser	Lys	Ser 615	His	Lys	Pro	Leu	Asn 620	Met	Gly	Lys	Val
Phe 625	Glu	Ala	Met	Asn	Ser 630	Tyr	Asp	Leu	Gly	635	Gly	Pro	Gly	Gly	Gly 640
Asp	Ser	Ala	Leu	Gln 645	Val	Phe	Gln	Ala	Ala 650	Gly	Leu	Ala	Phe	Ser 655	Asp
Gly	Asp	Gln	Trp 660	Thr	Leu	Ser	Arg	Lys 665	Arg	Leu	Ser	CÀa	Pro 670	Lys	Glu
Lys	Thr	Thr 675	Arg	Lys	Lys	Arg	Asn 680	Val	Asn	Phe	Gln	Lys 685	Ala	Ile	Asn
Glu	Lys 690	Leu	Gly	Gln	Tyr	Ala 695	Ser	Pro	Thr	Ala	Lys 700	Arg	Сув	Сув	Gln
Asp 705	Gly	Val	Thr	Arg	Leu 710	Pro	Met	Met	Arg	Ser 715	Сув	Glu	Gln	Arg	Ala 720
Ala	Arg	Val	Gln	Gln	Pro	Asp	Cas	Arg	Glu	Pro	Phe	Leu	Ser	CAa	Cys

				725					730					735	
Gln	Phe	Ala	Glu 740		Leu	Arg	Lys	Lys 745		Arg	Asp	ГÀз	Gly 750		Ala
Gly	Leu	Gln 755	Arg	Ala	Leu	Glu	Ile 760	Leu	Gln	Glu	Glu	Asp 765	Leu	Ile	Asp
Glu	Asp 770	Asp	Ile	Pro	Val	Arg 775	Ser	Phe	Phe	Pro	Glu 780	Asn	Trp	Leu	Trp
Arg 785	Val	Glu	Thr	Val	Asp 790	Arg	Phe	Gln	Ile	Leu 795	Thr	Leu	Trp	Leu	Pro 800
Asp	Ser	Leu	Thr	Thr 805	Trp	Glu	Ile	His	Gly 810	Leu	Ser	Leu	Ser	Lys 815	Thr
Lys	Gly	Leu	Cys 820	Val	Ala	Thr	Pro	Val 825	Gln	Leu	Arg	Val	Phe 830	Arg	Glu
Phe	His	Leu 835	His	Leu	Arg	Leu	Pro 840	Met	Ser	Val	Arg	Arg 845	Phe	Glu	Gln
Leu	Glu 850	Leu	Arg	Pro	Val	Leu 855	Tyr	Asn	Tyr	Leu	Asp 860	Lys	Asn	Leu	Thr
Val 865	Ser	Val	His	Val	Ser 870	Pro	Val	Glu	Gly	Leu 875	CAa	Leu	Ala	Gly	Gly 880
Gly	Gly	Leu	Ala	Gln 885	Gln	Val	Leu	Val	Pro 890	Ala	Gly	Ser	Ala	Arg 895	Pro
Val	Ala	Phe	Ser 900	Val	Val	Pro	Thr	Ala 905	Ala	Ala	Ala	Val	Ser 910	Leu	Lys
Val	Val	Ala 915	Arg	Gly	Ser	Phe	Glu 920	Phe	Pro	Val	Gly	Asp 925	Ala	Val	Ser
Lys	Val 930	Leu	Gln	Ile	Glu	Lys 935	Glu	Gly	Ala	Ile	His 940	Arg	Glu	Glu	Leu
Val 945	Tyr	Glu	Leu	Asn	Pro 950	Leu	Asp	His	Arg	Gly 955	Arg	Thr	Leu	Glu	Ile 960
Pro	Gly	Asn	Ser	Asp 965	Pro	Asn	Met	Ile	Pro 970	Asp	Gly	Asp	Phe	Asn 975	Ser
Tyr	Val	Arg	Val 980	Thr	Ala	Ser	Asp	Pro 985	Leu	Asp	Thr	Leu	Gly 990	Ser	Glu
Gly	Ala	Leu 995	Ser	Pro	Gly	Gly	Val		a Se:	r Le	ı Le	u Ar		eu P:	ro Arg
Gly	Cys 1010		/ Gli	ı Glı	n Thi	10:		le T	yr Le	eu Ai		ro ' 020	Thr l	Leu <i>I</i>	Ala
Ala	Ser 1025		g Ty:	r Lei	ı Asl	100 100		hr G	lu G	ln T:	_	er ' 035	Thr I	Leu 1	Pro
Pro	Glu 1040		c Ly:	s Asj	o His	3 Ala 104		al A	ap L	eu I		ln 1 050	rys (Gly '	Tyr
Met	Arg 1055		e Gli	n Gli	n Phe	100		ys A	la A	sp G		er ' 065	Tyr 2	Ala A	Ala
Trp	Leu 1070		r Ar	g Asj	o Sei	10'		hr T:	rp Le	eu Tl		la 1 080	Phe V	Val 1	Leu
Lys	Val 1085		ı Se:	r Lei	ı Alá	109		lu G	ln Va	al G		ly : 095	Ser 1	Pro (Glu
Lys	Leu 1100		ı Glı	ı Th:	r Sei	110		rp L	eu Le	eu Se		ln (110	Gln (Gln A	Ala
Asp	Gly 1115		r Phe	e Glı	n Ası	Pro 112		ys P:	ro Va	al L		sp 2 125	Arg :	Ser I	Met
Gln	Gly 1130		/ Let	ı Vai	l Gly	/ Ası 11:		ap G	lu Ti	hr Va		la : 140	Leu '	Thr A	Ala

-continued	
------------	--

Phe	Val 1145	Thr	Ile	Ala	Leu	His 1150	His	Gly	Leu	Ala	Val 1155	Phe	Gln	Asp
Glu	Gly 1160	Ala	Glu	Pro	Leu	Lys 1165	Gln	Arg	Val	Glu	Ala 1170	Ser	Ile	Ser
ГÀа	Ala 1175	Asn	Ser	Phe	Leu	Gly 1180	Glu	Lys	Ala	Ser	Ala 1185	Gly	Leu	Leu
Gly	Ala 1190	His	Ala	Ala	Ala	Ile 1195	Thr	Ala	Tyr	Ala	Leu 1200	Ser	Leu	Thr
ГÀа	Ala 1205	Pro	Val	Asp	Leu	Leu 1210	Gly	Val	Ala	His	Asn 1215	Asn	Leu	Met
Ala	Met 1220	Ala	Gln	Glu	Thr	Gly 1225		Asn	Leu	Tyr	Trp 1230	Gly	Ser	Val
Thr	Gly 1235	Ser	Gln	Ser	Asn	Ala 1240		Ser	Pro	Thr	Pro 1245	Ala	Pro	Arg
Asn	Pro 1250	Ser	Asp	Pro	Met	Pro 1255	Gln	Ala	Pro	Ala	Leu 1260	Trp	Ile	Glu
Thr	Thr 1265	Ala	Tyr	Ala	Leu	Leu 1270		Leu	Leu	Leu	His 1275	Glu	Gly	ГÀз
Ala	Glu 1280	Met	Ala	Asp	Gln	Ala 1285	Ser	Ala	Trp	Leu	Thr 1290	Arg	Gln	Gly
Ser	Phe 1295	Gln	Gly	Gly	Phe	Arg 1300	Ser	Thr	Gln	Asp	Thr 1305	Val	Ile	Ala
Leu	Asp 1310	Ala	Leu	Ser	Ala	Tyr 1315		Ile	Ala	Ser	His 1320	Thr	Thr	Glu
Glu	Arg 1325	Gly	Leu	Asn	Val	Thr 1330		Ser	Ser	Thr	Gly 1335	Arg	Asn	Gly
	1340					1345				_	Gln 1350		Arg	Gly
Leu	Glu 1355	Glu	Glu	Leu	Gln	Phe 1360		Leu	Gly	Ser	Lys 1365	Ile	Asn	Val
ГÀв	Val 1370	Gly	Gly	Asn	Ser	Lys 1375	Gly	Thr	Leu	ГÀв	Val 1380	Leu	Arg	Thr
Tyr	Asn 1385	Val	Leu	Asp	Met	Lys 1390		Thr	Thr	Cys	Gln 1395	Asp	Leu	Gln
	1400					1405				-	Thr 1410			
	1415	-	•		-	1420		•	-		Leu 1425			•
	1430					1435					Pro 1440			
	1445	_	_	_		1450	_	_	_		Ala 1455		-	
	1460					1465			•		Val 1470	•		-
	1475	•	•		•	1480		•			Ile 1485		-	
	Leu 1490					1495					Asp 1500			
	1505					1510					Phe 1515			
Gly	Pro 1520	His	Val	Leu	Leu	Tyr 1525	Phe	Asp	Ser	Val	Pro 1530	Thr	Ser	Arg
Glu	Сув 1535	Val	Gly	Phe	Glu	Ala 1540	Val	Gln	Glu	Val	Pro 1545	Val	Gly	Leu

```
Val Gln Pro Ala Ser Ala Thr Leu Tyr Asp Tyr Tyr Asn Pro Glu
                          1555
Arg Arg Cys Ser Val Phe Tyr Gly Ala Pro Ser Lys Ser Arg Leu
Leu Ala Thr Leu Cys Ser Ala Glu Val Cys Gln Cys Ala Glu Gly
                          1585
Glu Asp Gly Tyr Arg Met Lys Phe Ala Cys Tyr Tyr Pro Arg Val
                         1615
Glu Tyr Gly Phe Gln Val Lys Val Leu Arg Glu Asp Ser Arg Ala 1625 \phantom{\bigg|} 1630 \phantom{\bigg|} 1635
Ala Phe Arg Leu Phe Glu Thr Lys Ile Thr Gln Val Leu His Phe
                          1645
   1640
                                                1650
Thr Lys Asp Val Lys Ala Ala Ala Asn Gln Met Arg Asn Phe Leu 1655 \phantom{0} 1660 \phantom{0} 1665
Val Arg Ala Ser Cys Arg Leu Arg Leu Glu Pro Gly Lys Glu Tyr
                          1675
Leu Ile Met Gly Leu Asp Gly Ala Thr Tyr Asp Leu Glu Gly His 1685 \phantom{\bigg|} 1695 \phantom{\bigg|} 1695 \phantom{\bigg|}
Pro Gln Tyr Leu Leu Asp Ser Asn Ser Trp Ile Glu Glu Met Pro 1700 1700 1705
Ser Glu Arg Leu Cys Arg Ser Thr Arg Gln Arg Ala Ala Cys Ala
                          1720
Gln Leu Asn Asp Phe Leu Gln Glu Tyr Gly Thr Gln Gly Cys Gln
Val
<210> SEQ ID NO 16
<211> LENGTH: 12
<212> TYPE: PRT
<213 > ORGANISM: Homo Sapiens
<400> SEQUENCE: 16
Gly Phe Met Gln Thr Tyr Tyr Asp Asp His Leu Arg
     5
<210> SEQ ID NO 17
<211> LENGTH: 13
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 17
Asp Gly Trp Gln Trp Phe Trp Ser Pro Ser Thr Phe Arg
<210> SEQ ID NO 18
<211> LENGTH: 13
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 18
Thr His Ser Leu Cys Pro Arg Leu Val Cys Gly Asp Lys
<210> SEQ ID NO 19
<211> LENGTH: 9
<212> TYPE: PRT
<213 > ORGANISM: Homo Sapiens
```

```
<400> SEQUENCE: 19
Glu Leu Leu Glu Thr Val Val Asn Arg
<210> SEQ ID NO 20
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 20
Ala Trp Phe Leu Glu Ser Lys
<210> SEQ ID NO 21
<211> LENGTH: 7
<212> TYPE: PRT
<213 > ORGANISM: Homo Sapiens
<400> SEQUENCE: 21
Asp Leu Gly Pro Leu Thr Lys
<210> SEQ ID NO 22
c211> LENGTH: 6
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 22
Asp Ser Leu Leu Lys Lys 1
<210> SEQ ID NO 23
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 23
Tyr Val Tyr Ile Ala Glu Leu Leu Ala His Lys
                5
<210> SEQ ID NO 24
<211> LENGTH: 17
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 24
Tyr Val Tyr Ile Ala Glu Leu Leu Ala His Lys Ile His Val Tyr Glu
Lys
<210> SEQ ID NO 25
<211> LENGTH: 19
<212> TYPE: PRT
<213 > ORGANISM: Homo Sapiens
<400> SEQUENCE: 25
Val Val Ala Glu Gly Phe Asp Phe Ala Asn Gly Ile Asn Ile Ser Pro
                   5
                                           10
Asp Gly Lys
<210> SEQ ID NO 26
<211> LENGTH: 17
<212> TYPE: PRT
```

-continued <213 > ORGANISM: Homo Sapiens <400> SEQUENCE: 26 Ala Lys Leu Ile Ala Leu Thr Leu Leu Gly Met Gly Leu Ala Leu Phe Arg <210> SEQ ID NO 27 <211> LENGTH: 14 <212> TYPE: PRT <213> ORGANISM: Homo Sapiens <400> SEQUENCE: 27 Asn His Gln Ser Ser Tyr Gln Thr Arg Leu Asn Ala Leu Arg <210> SEQ ID NO 28 <211> LENGTH: 13 <212> TYPE: PRT <213> ORGANISM: Homo Sapiens <400> SEQUENCE: 28 Ser Thr Val Glu Leu Phe Lys Phe Gln Glu Glu Lys <210> SEQ ID NO 29 <211> LENGTH: 14 <212> TYPE: PRT <213> ORGANISM: Homo Sapiens <400> SEQUENCE: 29 Glu Val Gln Pro Val Glu Leu Pro Asn Cys Asn Leu Val Lys 5 <210> SEQ ID NO 30 <211> LENGTH: 11 <212> TYPE: PRT <213 > ORGANISM: Homo Sapiens <400> SEQUENCE: 30 Gly Lys Leu Leu Ile Gly Thr Val Phe His Lys 1 5 <210> SEQ ID NO 31 <211> LENGTH: 10 <212> TYPE: PRT <213> ORGANISM: Homo Sapiens <400> SEQUENCE: 31 His Ala Asn Trp Thr Leu Thr Pro Leu Lys 1 $$ 5 $$ 10 <210> SEQ ID NO 32 <211> LENGTH: 6 <212> TYPE: PRT <213> ORGANISM: Homo Sapiens <400> SEQUENCE: 32 Ala Leu Tyr Cys Glu Leu

<210> SEQ ID NO 33 <211> LENGTH: 6 <212> TYPE: PRT

<213 > ORGANISM: Homo Sapiens

```
<400> SEQUENCE: 33
Ser Leu Leu His Leu Lys
<210> SEQ ID NO 34
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 34
Ile Leu Leu Gln Gly Thr Pro Val Ala Gln Met Thr Glu Asp Ala Val
                                           10
Asp Ala Glu Arg
<210> SEQ ID NO 35
<211> LENGTH: 14
<212> TYPE: PRT
<213 > ORGANISM: Homo Sapiens
<400> SEQUENCE: 35
Ala Gly Asp Phe Leu Glu Ala Asn Tyr Met Asn Leu Gln Arg 1 \phantom{\bigg|} 5 \phantom{\bigg|} 10
<210> SEQ ID NO 36
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 36
Asp Phe Asp Phe Val Pro Pro Val Val Arg
                  5
<210> SEQ ID NO 37
<211> LENGTH: 19
<212> TYPE: PRT
<213 > ORGANISM: Homo Sapiens
<400> SEQUENCE: 37
Gln Leu Tyr Asn Val Glu Ala Thr Ser Tyr Ala Leu Leu Ala Leu Leu
Gln Leu Lys
<210> SEQ ID NO 38
<211> LENGTH: 19
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 38
Asp Ala Pro Asp His Gln Glu Leu Asn Leu Asp Val Ser Leu Gln Leu
                                           10
Pro Ser Arg
<210> SEQ ID NO 39
<211> LENGTH: 18
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 39
Ser Tyr Thr Val Ala Ile Ala Gly Tyr Ala Leu Ala Gln Met Gly Arg 1 \phantom{\bigg|} 5 \phantom{\bigg|} 10 \phantom{\bigg|} 15
Leu Lys
```

```
<210> SEQ ID NO 40
<211> LENGTH: 16
<212> TYPE: PRT
<213 > ORGANISM: Homo Sapiens
<400> SEQUENCE: 40
Asp Met Ala Leu Thr Ala Phe Val Leu Ile Ser Leu Gln Glu Ala Lys
                                          10
<210> SEQ ID NO 41
<211> LENGTH: 16
<212> TYPE: PRT
<213 > ORGANISM: Homo Sapiens
<400> SEQUENCE: 41
Asp Ile Cys Glu Glu Gln Val Asn Ser Leu Pro Gly Ser Ile Thr Lys
<210> SEQ ID NO 42
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 42
Ala Pro Ser Thr Trp Leu Thr Ala Tyr Val Val Lys
<210> SEQ ID NO 43
<211> LENGTH: 12
<212> TYPE: PRT
<213 > ORGANISM: Homo Sapiens
<400> SEQUENCE: 43
Gln Pro Ser Ser Ala Phe Ala Ala Phe Val Lys Arg
                 5
<210> SEQ ID NO 44
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 44
Gly Pro Leu Leu Asn Lys Phe Leu Thr Thr Ala Lys
<210> SEQ ID NO 45
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 45
Gly Tyr Thr Gln Gln Leu Ala Phe Arg
<210> SEQ ID NO 46
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 46
Gln Gly Ala Leu Glu Leu Ile Lys Lys
<210> SEQ ID NO 47
```

```
-continued
<211> LENGTH: 6
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 47
Trp Leu Asn Glu Gln Arg
<210> SEQ ID NO 48
<211> LENGTH: 6
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 48
Trp Leu Ile Leu Glu Lys
<210> SEQ ID NO 49
<211> LENGTH: 6
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 49
Trp Glu Asp Pro Gly Lys
<210> SEQ ID NO 50
<211> LENGTH: 19
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 50
Ser Leu Ala Glu Leu Gly Gly His Leu Asp Gln Gln Val Glu Glu Phe
                                           10
Arg Arg Arg
<210> SEQ ID NO 51
<211> LENGTH: 19
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 51
Ala Arg Leu Leu Pro His Ala Asn Glu Val Ser Gln Lys Ile Gly Asp 1 \phantom{\bigg|} 10 \phantom{\bigg|} 15
Asn Leu Arg
<210> SEQ ID NO 52
<211> LENGTH: 19
<212> TYPE: PRT
<213 > ORGANISM: Homo Sapiens
<400> SEQUENCE: 52
Gln Lys Leu Gly Pro His Ala Gly Asp Val Glu Gly His Leu Ser Phe 1 \phantom{\bigg|} 5 \phantom{\bigg|} 10 \phantom{\bigg|} 15
Leu Glu Lys
<210> SEQ ID NO 53
<211> LENGTH: 18
<212> TYPE: PRT
<213 > ORGANISM: Homo Sapiens
<400> SEOUENCE: 53
Glu Asn Ala Asp Ser Leu Gln Ala Ser Leu Arg Pro His Ala Asp Glu
```

-continued

```
<210> SEQ ID NO 54
<211> LENGTH: 14
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 54
Glu Leu Gln Gln Arg Leu Glu Pro Tyr Ala Asp Gln Leu Arg
                                        10
<210> SEQ ID NO 55
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 55
Val Lys Ile Asp Gln Thr Val Glu Glu Leu Arg Arg
                 5
<210> SEQ ID NO 56
<211> LENGTH: 12
<212> TYPE: PRT
<213 > ORGANISM: Homo Sapiens
<400> SEQUENCE: 56
Thr Gln Val Asn Thr Gln Ala Glu Gln Leu Arg Arg
<210> SEQ ID NO 57
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 57
<210> SEQ ID NO 58
<211> LENGTH: 11
<212> TYPE: PRT
<213 > ORGANISM: Homo Sapiens
<400> SEQUENCE: 58
Gly Arg Leu Thr Pro Tyr Ala Asp Glu Phe Lys
<210> SEQ ID NO 59
<211> LENGTH: 11
<212> TYPE: PRT
<213 > ORGANISM: Homo Sapiens
<400> SEQUENCE: 59
Ala Lys Ile Asp Gln Asn Val Glu Glu Leu Lys
<210> SEQ ID NO 60
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 60
Gln Arg Leu Ala Pro Leu Ala Glu Asp Val Arg
```

5

10

```
<210> SEQ ID NO 61
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 61
Ala Leu Val Gln Gln Met Glu Gln Leu Arg
<210> SEQ ID NO 62
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 62
Ala Arg Ile Ser Ala Ser Ala Glu Glu Leu Arg
                  5
<210> SEQ ID NO 63
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 63
Val Glu Pro Tyr Gly Glu Asn Phe Asn Lys
     5
<210> SEQ ID NO 64
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 64
Val Asn Ser Phe Phe Ser Thr Phe Lys
<210> SEQ ID NO 65
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 65
Gln Leu Thr Pro Tyr Ala Gln Arg
<210> SEQ ID NO 66
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 66
Glu Ala Val Glu His Leu Gln Lys
                    5
<210> SEQ ID NO 67
<211> LENGTH: 8
<212> TYPE: PRT
<213 > ORGANISM: Homo Sapiens
<400> SEQUENCE: 67
Gly Asn Thr Glu Gly Leu Gln Lys
<210> SEQ ID NO 68
<211> LENGTH: 16
```

```
<212> TYPE: PRT
<213 > ORGANISM: Homo Sapiens
<400> SEQUENCE: 68
Val Arg Leu Ala Ser His Leu Arg Lys Leu Arg Lys Arg Leu Leu Arg
<210> SEQ ID NO 69
<211> LENGTH: 17
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 69
Arg
<210> SEQ ID NO 70
<211> LENGTH: 17
<212> TYPE: PRT
<213 > ORGANISM: Homo Sapiens
<400> SEQUENCE: 70
Val Leu Trp Ala Ala Leu Leu Val Thr Phe Leu Ala Gly Cys Gln Ala
Lys
<210> SEQ ID NO 71
<211> LENGTH: 15
<212> TYPE: PRT
<213 > ORGANISM: Homo Sapiens
<400> SEQUENCE: 71
Ser Glu Leu Glu Glu Gln Leu Thr Pro Val Ala Glu Glu Thr Arg
               5
                                       10
<210> SEQ ID NO 72
<211> LENGTH: 13
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 72
Trp Glu Leu Ala Leu Gly Arg Phe Trp Asp Tyr Leu Arg
<210> SEQ ID NO 73
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 73
Gly Glu Val Gln Ala Met Leu Gly Gln Ser Thr Glu Glu Leu Arg
<210> SEQ ID NO 74
<211> LENGTH: 14
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 74
Val Glu Gln Ala Val Glu Thr Glu Pro Glu Pro Glu Leu Arg
                                        1.0
<210> SEQ ID NO 75
```

```
<211> LENGTH: 17
<212> TYPE: PRT
<213 > ORGANISM: Homo Sapiens
<400> SEQUENCE: 75
Val Gln Ala Ala Val Gly Thr Ser Ala Ala Pro Val Pro Ser Asp Asn
                                          10
<210> SEQ ID NO 76
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 76
Ser Trp Phe Glu Pro Leu Val Glu Asp Met Gln Arg
      5
<210> SEQ ID NO 77
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEOUENCE: 77
Ala Ala Thr Val Gly Ser Leu Ala Gly Gln Pro Leu Gln Glu Arg
     5
                                          10
<210> SEQ ID NO 78
<211> LENGTH: 11 <212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 78
Glu Arg Leu Gly Pro Leu Val Glu Gln Gly Arg
<210> SEQ ID NO 79
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 79
Gln Gln Thr Glu Trp Gln Ser Gly Gln Arg 1 5 10
<210> SEQ ID NO 80
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 80
Ala Gln Ala Trp Gly Glu Arg Leu Arg
<210> SEQ ID NO 81
<211> LENGTH: 8
<212> TYPE: PRT
<213 > ORGANISM: Homo Sapiens
<400> SEQUENCE: 81
Ala Leu Met Asp Glu Thr Met Lys
<210> SEQ ID NO 82
<211> LENGTH: 8
```

```
<213 > ORGANISM: Homo Sapiens
<400> SEQUENCE: 82
Gln Trp Ala Gly Leu Val Glu Lys
<210> SEQ ID NO 83
<211> LENGTH: 18
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 83
Val Ser Val Leu Cys Ile Trp Met Ser Ala Leu Phe Leu Gly Val Gly 1 \phantom{\bigg|} 10 \phantom{\bigg|} 15
Val Arg
<210> SEQ ID NO 84
<211> LENGTH: 15
<212> TYPE: PRT
<213 > ORGANISM: Homo Sapiens
<400> SEQUENCE: 84
Val Thr Glu Pro Ile Ser Ala Glu Ser Gly Glu Gln Val Glu Arg
<210> SEQ ID NO 85
<211> LENGTH: 13
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 85
Trp Trp Thr Gln Ala Gln Ala His Asp Leu Val Ile Lys
<210> SEQ ID NO 86
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 86
Ala Asn Leu Gln Ser Val Pro His Ala Ser Ala Ser Arg Pro Arg
                                               1.0
<210> SEQ ID NO 87
<211> LENGTH: 11
<212> TYPE: PRT
<213 > ORGANISM: Homo Sapiens
<400> SEQUENCE: 87
Ser Lys Leu Glu Asp Asn Ile Arg Arg Leu Arg
<210> SEQ ID NO 88
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 88
Val Asn Glu Pro Ser Ile Leu Glu Met Ser Arg
                    5
<210> SEQ ID NO 89
<211> LENGTH: 9
<212> TYPE: PRT
```

```
<213 > ORGANISM: Homo Sapiens
<400> SEQUENCE: 89
Ser Glu Thr Ala Glu Glu Leu Lys Lys
<210> SEQ ID NO 90
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 90
Asn Glu Ala Asp Glu Leu Arg Lys
                  5
<210> SEQ ID NO 91
<211> LENGTH: 8
<212> TYPE: PRT
<213 > ORGANISM: Homo Sapiens
<400> SEQUENCE: 91
Met Glu Gly Ala Ala Leu Leu Arg
<210> SEQ ID NO 92
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 92
Ala Leu Ala Asp Gly Val Gln Lys
<210> SEQ ID NO 93
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 93
Asp Asp Pro Asp Ala Pro Leu Gln Pro Val Thr Pro Leu Gln Leu Phe 1 5 10
Glu Gly Arg Arg
<210> SEQ ID NO 94
<211> LENGTH: 19
<212> TYPE: PRT
<213 > ORGANISM: Homo Sapiens
<400> SEQUENCE: 94
Ala Leu Glu Ile Leu Gln Glu Glu Asp Leu Ile Asp Glu Asp Asp Ile
Pro Val Arg
<210> SEQ ID NO 95
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 95
Ala Ala Cys Ala Gln Leu Asn Asp Phe Leu Gln Glu Tyr Gly Thr Gln
                                           10
Gly Cys Gln Val
```

```
<210> SEQ ID NO 96
<211> LENGTH: 18
<212> TYPE: PRT
<213 > ORGANISM: Homo Sapiens
<400> SEQUENCE: 96
Ala Ala Phe Arg Leu Phe Glu Thr Lys Ile Thr Gln Val Leu His Phe
Thr Lys
<210> SEQ ID NO 97
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 97
Met Arg Pro Ser Thr Asp Thr Ile Thr Val Met Val Glu Asn Ser His
                                         10
Gly Leu Arg
<210> SEQ ID NO 98
<211> LENGTH: 19
<211> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 98
Gly Leu Glu Ser Gln Thr Lys Leu Val Asn Gly Gln Ser His Ile Ser
Leu Ser Lys
<210> SEQ ID NO 99
<211> LENGTH: 18
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 99
Ala Val Gly Ser Gly Ala Thr Phe Ser His Tyr Tyr Tyr Met Ile Leu 1 5 10 15
Ser Arg
<210> SEQ ID NO 100
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 100
Val Asp Val Gln Ala Gly Ala Cys Glu Gly Lys Leu Glu Leu Ser Val
Asp Gly Ala Lys
<210> SEQ ID NO 101
<211> LENGTH: 17
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 101
Gly His Leu Phe Leu Gln Thr Asp Gln Pro Ile Tyr Asn Pro Gly Gln
                                         10
Arg
```

```
<210> SEQ ID NO 102
<211> LENGTH: 19
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 102
Ser Arg Leu Leu Ala Thr Leu Cys Ser Ala Glu Val Cys Gln Cys Ala
Glu Gly Lys
<210> SEQ ID NO 103
<211> LENGTH: 17
<211> DENGIH: 17
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 103
Gly Leu Glu Glu Glu Leu Gln Phe Ser Leu Gly Ser Lys Ile Asn Val
Lys
<210> SEQ ID NO 104
<211> LENGTH: 16
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 104
Glu Pro Phe Leu Ser Cys Cys Gln Phe Ala Glu Ser Leu Arg Lys Lys
                                          10
<210> SEQ ID NO 105
<211> LENGTH: 18
<212> TYPE: PRT
<213 > ORGANISM: Homo Sapiens
<400> SEQUENCE: 105
Gly Cys Gly Glu Gln Thr Met Ile Tyr Leu Ala Pro Thr Leu Ala Ala
Ser Arg
<210> SEQ ID NO 106
<211> LENGTH: 16
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 106
Ala Ile Asn Glu Lys Leu Gly Gln Tyr Ala Ser Pro Thr Ala Lys Arg
<210> SEQ ID NO 107
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 107
Thr Thr Asn Ile Gln Gly Ile Asn Leu Leu Phe Ser Ser Arg Arg
<210> SEQ ID NO 108
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 108
```

```
His Leu Val Pro Gly Ala Pro Phe Leu Leu Gln Ala Leu Val Arg
<210> SEQ ID NO 109
<211> LENGTH: 13
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 109
Glu Glu Leu Val Tyr Glu Leu Asn Pro Leu Asp His Arg
<210> SEQ ID NO 110
<211> LENGTH: 14
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 110
Asn Thr Thr Cys Gln Asp Leu Gln Ile Glu Val Thr Val Lys
                  5
                                          10
<210> SEQ ID NO 111
<211> LENGTH: 14
<212> TYPE: PRT
<213 > ORGANISM: Homo Sapiens
<400> SEQUENCE: 111
Gly Pro Glu Val Gln Leu Val Ala His Ser Pro Trp Leu Lys
<210> SEQ ID NO 112
<211> LENGTH: 13
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 112
Cys Cys Gln Asp Gly Val Thr Arg Leu Pro Met Met Arg 1 \phantom{-}5\phantom{+} 10
<210> SEQ ID NO 113
<211> LENGTH: 13
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 113
Ala Glu Met Ala Asp Gln Ala Ala Ala Trp Leu Thr Arg
<210> SEQ ID NO 114
<211> LENGTH: 20
<212> TYPE: PRT
<213 > ORGANISM: Homo Sapiens
<400> SEQUENCE: 114
Val Thr Ile Ala Gln Gly Gly Val Leu Pro Asn Ile Gln Ala Val Leu
Leu Pro Lys Lys
<210> SEQ ID NO 115
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 115
```

```
Asn Asp Glu Glu Leu Asn Lys Leu Leu Gly Lys
<210> SEQ ID NO 116
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 116
Ala Gly Leu Gln Phe Pro Val Gly Arg
<210> SEQ ID NO 117
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 117
Val His Arg Leu Leu Arg Lys
<210> SEQ ID NO 118
<211> LENGTH: 21
<212> TYPE: PRT
<213 > ORGANISM: Homo Sapiens
<400> SEQUENCE: 118
Ser Thr Ala Ala Met Ser Thr Tyr Thr Gly Ile Phe Thr Asp Gln Val
                                             10
Leu Ser Val Leu Lys
<210> SEQ ID NO 119
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 119
Thr Tyr Leu Pro Ala Val Asp Glu Lys Leu Arg
           5
<210> SEQ ID NO 120
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 120
Glu Ser Leu Ser Ser Tyr Trp Glu Ser Ala Lys
<210> SEQ ID NO 121
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 121
Thr Ala Ala Gln Asn Leu Tyr Glu Lys
<210> SEQ ID NO 122
<211> LENGTH: 13
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 122
```

```
Trp Ile Tyr His Leu Thr Glu Gly Ser Thr Asp Leu Arg
<210> SEQ ID NO 123
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 123
Asn Gln Glu Ala Cys Glu Leu Ser Asn Asn
<210> SEQ ID NO 124
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 124
Ser Leu Thr Ser Cys Leu Asp Ser Lys
<210> SEQ ID NO 125
<211> LENGTH: 8
<212> TYPE: PRT
<213 > ORGANISM: Homo Sapiens
<400> SEQUENCE: 125
Thr Glu Gly Arg Pro Asp Met Lys
<210> SEQ ID NO 126
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 126
Asp Gly Leu Cys Val Pro Arg Lys 1 5
<210> SEQ ID NO 127
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 127
Gly Asp Val Phe Thr Met Pro Glu Asp Glu Tyr Thr Val Tyr Asp Asp
Gly Glu Glu Lys
<210> SEQ ID NO 128
<211> LENGTH: 18
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 128
Gly Ser Gln Tyr Trp Arg Phe Glu Asp Gly Val Leu Asp Pro Asp Tyr 1 \phantom{\bigg|} 5 \phantom{\bigg|} 10 \phantom{\bigg|} 15
Pro Arg
<210> SEQ ID NO 129
<211> LENGTH: 14
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
```

-continued

```
<400> SEQUENCE: 129
Asp Ser Trp Glu Asp Ile Phe Glu Leu Leu Phe Trp Gly Arg
                                        10
<210> SEQ ID NO 130
<211> LENGTH: 15
<212> TYPE: PRT
<213 > ORGANISM: Homo Sapiens
<400> SEQUENCE: 130
Ser Ile Ala Gln Tyr Trp Leu Gly Cys Pro Ala Pro Gly His Leu
<210> SEQ ID NO 131
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 131
<210> SEQ ID NO 132
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 132
Gly Gln Tyr Cys Tyr Glu Leu Asp Glu Lys
<210> SEQ ID NO 133
<211> LENGTH: 10
<212> TYPE: PRT
<213 > ORGANISM: Homo Sapiens
<400> SEQUENCE: 133
Val Asp Thr Val Asp Pro Pro Tyr Pro Arg
<210> SEQ ID NO 134
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 134
Cys Thr Glu Gly Phe Asn Val Asp Lys Lys
<210> SEQ ID NO 135
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 135
<210> SEQ ID NO 136
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 136
```

Asn Gly Ser Leu Phe Ala Phe Arg

```
5
<210> SEQ ID NO 137
<211> LENGTH: 19
<212> TYPE: PRT
<213 > ORGANISM: Homo Sapiens
<400> SEQUENCE: 137
Glu Ile Leu Ser Val Asp Cys Ser Thr Asn Asn Pro Ser Gln Ala Lys
                                         10
Leu Arg Arg
<210> SEQ ID NO 138
<211> LENGTH: 16
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 138
Ala Ser Ser Ile Ile Asp Glu Leu Phe Gln Asp Arg Phe Phe Thr Arg
                                         10
<210> SEQ ID NO 139
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 139
Gln Gln Thr His Met Leu Asp Val Met Gln Asp His Phe Ser Arg
<210> SEQ ID NO 140
<211> LENGTH: 15
<212> TYPE: PRT
<213 > ORGANISM: Homo Sapiens
<400> SEQUENCE: 140
Glu Leu Asp Glu Ser Leu Gln Val Ala Glu Arg Leu Thr Arg Lys
<210> SEQ ID NO 141
<211> LENGTH: 13
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 141
Thr Leu Leu Ser Asn Leu Glu Glu Ala Lys Lys Lys 1 ^{\rm 5}
<210> SEQ ID NO 142
<211> LENGTH: 11
<212> TYPE: PRT
<213 > ORGANISM: Homo Sapiens
<400> SEQUENCE: 142
Asn Pro Lys Phe Met Glu Thr Val Ala Glu Lys
                  5
<210> SEQ ID NO 143
<211> LENGTH: 9
<212> TYPE: PRT
<213 > ORGANISM: Homo Sapiens
<400> SEOUENCE: 143
Gln Thr Cys Met Lys Phe Tyr Ala Arg
```

```
<210> SEQ ID NO 144
<211> LENGTH: 10
<212> TYPE: PRT
<213 > ORGANISM: Homo Sapiens
<400> SEQUENCE: 144
Glu Ile Gln Asn Ala Val Asn Gly Val Lys
<210> SEQ ID NO 145
<211> LENGTH: 8
<212> TYPE: PRT
<213 > ORGANISM: Homo Sapiens
<400> SEQUENCE: 145
Ala Leu Gln Glu Tyr Arg Lys Lys
<210> SEQ ID NO 146
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 146
Glu Asp Ala Leu Asn Glu Thr Arg
<210> SEQ ID NO 147
<211> LENGTH: 8
<212> TYPE: PRT
<213 > ORGANISM: Homo Sapiens
<400> SEQUENCE: 147
His Asn Ser Thr Gly Cys Leu Arg
                  5
<210> SEQ ID NO 148
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 148
Val Gly Tyr Val Ser Gly Trp Gly Gln Ser Asp Asn Phe Lys Leu Thr
Asp His Leu Lys
<210> SEQ ID NO 149
<210   SEQ 10 No 12
<211   LENGTH: 20
<212   TYPE: PRT
<213 > ORGANISM: Homo Sapiens
<400> SEQUENCE: 149
Ser Pro Val Gly Val Gln Pro Ile Leu Asn Glu His Thr Phe Cys Val
                                           10
Gly Met Ser Lys
<210> SEQ ID NO 150
<211> LENGTH: 18
<212> TYPE: PRT
<213 > ORGANISM: Homo Sapiens
<400> SEQUENCE: 150
```

```
Val Val Leu His Pro Asn Tyr His Gln Val Asp Ile Gly Leu Ile Lys
                                            10
Leu Lys
<210> SEQ ID NO 151
<211> LENGTH: 17
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 151
Asn Pro Ala Asn Pro Val Gln Arg Ile Leu Gly Gly His Leu Asp Ala
                                           1.0
Lys
<210> SEQ ID NO 152
<211> LENGTH: 17
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 152
Ala Val Gly Asp Lys Leu Pro Glu Cys Glu Ala Val Cys Gly Lys Pro
                                           10
<210> SEQ ID NO 153
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 153
Met Ser Asp Leu Gly Ala Val Ile Ser Leu Leu Leu Trp Gly Arg
<210> SEQ ID NO 154
<211> LENGTH: 13
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 154
Asn Leu Phe Leu Asn His Ser Glu Asn Ala Thr Ala Lys
                  5
                                           1.0
<210> SEQ ID NO 155
<211> LENGTH: 13
<212> TYPE: PRT
<213 > ORGANISM: Homo Sapiens
<400> SEQUENCE: 155
Thr Glu Gly Asp Gly Val Tyr Thr Leu Asn Asp Lys Lys
<210> SEQ ID NO 156
<211> LENGTH: 13
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 156
Asp Ile Ala Pro Thr Leu Thr Leu Tyr Val Gly Lys Lys
                 5
<210> SEQ ID NO 157
<211> LENGTH: 12
<212> TYPE: PRT
```

```
<213 > ORGANISM: Homo Sapiens
<400> SEQUENCE: 157
Ser Cys Ala Val Ala Glu Tyr Gly Val Tyr Val Lys
<210> SEQ ID NO 158
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 158
Val Thr Ser Ile Gln Asp Trp Val Gln Lys
              5
<210> SEQ ID NO 159
<211> LENGTH: 9
<212> TYPE: PRT
<213 > ORGANISM: Homo Sapiens
<400> SEQUENCE: 159
Val Met Pro Ile Cys Leu Pro Ser Lys
<210> SEQ ID NO 160
<211> LENGTH: 267
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 160
Met Lys Ala Ala Val Leu Thr Leu Ala Val Leu Phe Leu Thr Gly Ser
Asp Arg Val Lys Asp Leu Ala Thr Val Tyr Val Asp Val Leu Lys Asp
                          40
Ser Gly Arg Asp Tyr Val Ser Gln Phe Glu Gly Ser Ala Leu Gly Lys
Gln Leu Asn Leu Lys Leu Leu Asp Asn Trp Asp Ser Val Thr Ser Thr 65 70 75 80
Phe Ser Lys Leu Arg Glu Gln Leu Gly Pro Val Thr Gln Glu Phe Trp 85 90 95
Asp Leu Glu Glu Val Lys Ala Lys Val Gln Pro Tyr Leu Asp Asp Phe 115 $120$ 125
Gln Lys Lys Trp Gln Glu Glu Met Glu Leu Tyr Arg Gln Lys Val Glu 130 $135$
Leu Gl<br/>n Glu Lys Leu Ser Pro Leu Gly Glu Glu Met Arg Asp Arg Ala<br/> 165 170 170 175
Arg Ala His Val Asp Ala Leu Arg Thr His Leu Ala Pro Tyr Ser Asp
180 185 190
Glu Leu Arg Gln Arg Leu Ala Ala Arg Leu Glu Ala Leu Lys Glu Asn 195 \phantom{\bigg|}200\phantom{\bigg|} 200 \phantom{\bigg|}205\phantom{\bigg|}
Ser Thr Leu Ser Glu Lys Ala Lys Pro Ala Leu Glu Asp Leu Arg Gln
```

```
225
                       230
Gly Leu Leu Pro Val Leu Glu Ser Phe Lys Val Ser Phe Leu Ser Ala
                 245
Leu Glu Glu Tyr Thr Lys Lys Leu Asn Thr Gln
<210> SEQ ID NO 161
<211> LENGTH: 13
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 161
Asp Tyr Val Ser Gln Phe Glu Gly Ser Ala Leu Gly Lys
<210> SEQ ID NO 162
<211> LENGTH: 18
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 162
Gln Lys Leu His Glu Leu Gln Glu Lys Leu Ser Pro Leu Gly Glu Glu
                                         10
<210> SEQ ID NO 163
<211> LENGTH: 17
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 163
Val Ser Phe Leu Ser Ala Leu Glu Glu Tyr Thr Lys Lys Leu Asn Thr
Gln
<210> SEQ ID NO 164
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 164
His Phe Trp Gln Gln Asp Glu Pro Pro Gln Ser Pro Trp Asp Arg
<210> SEQ ID NO 165
<211> LENGTH: 16
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 165
Glu Gln Leu Gly Pro Val Thr Gln Glu Phe Trp Asp Asn Leu Glu Lys
                                         10
<210> SEQ ID NO 166
<211> LENGTH: 17
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 166
Ala Ala Val Leu Thr Leu Ala Val Leu Phe Leu Thr Gly Ser Gln Ala
                                         10
Arg
```

```
<210> SEQ ID NO 167
<211> LENGTH: 13
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 167
Glu Asn Gly Gly Ala Arg Leu Ala Glu Tyr His Ala Lys
<210> SEQ ID NO 168
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 168
Val Gln Pro Tyr Leu Asp Asp Phe Gln Lys Lys
                 5
<210> SEQ ID NO 169
<211> LENGTH: 11
<212> TYPE: PRT
<213 > ORGANISM: Homo Sapiens
<400> SEQUENCE: 169
Thr His Leu Ala Pro Tyr Ser Asp Glu Leu Arg
    5
<210> SEQ ID NO 170
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 170
Trp Gln Glu Glu Met Glu Leu Tyr Arg
<210> SEQ ID NO 171
<211> LENGTH: 100
<212> TYPE: PRT
<213 > ORGANISM: Homo Sapiens
<400> SEQUENCE: 171
Met Lys Leu Leu Ala Ala Thr Val Leu Leu Leu Thr Ile Cys Ser Leu 1 \phantom{\bigg|} 10 \phantom{\bigg|} 15
Glu Gly Ala Leu Val Arg Arg Gln Ala Lys Glu Pro Cys Val Glu Ser 20 \hspace{1cm} 25 \hspace{1cm} 30 \hspace{1cm}
Leu Val Ser Gln Tyr Phe Gln Thr Val Thr Asp Tyr Gly Lys Asp Leu
Met Glu Lys Val Lys Ser Pro Glu Leu Gln Ala Glu Ala Lys Ser Tyr
Phe Glu Lys Ser Lys Glu Gln Leu Thr Pro Leu Ile Lys Lys Ala Gly
                      70
Thr Glu Leu Val Asn Phe Leu Ser Tyr Phe Val Glu Leu Gly Thr Gln
                 85
                                         90
Pro Ala Thr Gln
            100
<210> SEQ ID NO 172
<211> LENGTH: 22
<212> TYPE: PRT
<213 > ORGANISM: Homo Sapiens
<400> SEQUENCE: 172
```

55

```
Ala Gly Thr Glu Leu Val Asn Phe Leu Ser Tyr Phe Val Glu Leu Gly 1 \phantom{\bigg|} 5 \phantom{\bigg|} 10 \phantom{\bigg|} 15
Thr Gln Pro Ala Thr Gln
<210> SEQ ID NO 173
<211> LENGTH: 20
<212> TYPE: PRT
<213 > ORGANISM: Homo Sapiens
<400> SEQUENCE: 173
Glu Pro Cys Val Glu Ser Leu Val Ser Gln Tyr Phe Gln Thr Val Thr 1 \phantom{\bigg|} 5 \phantom{\bigg|} 10 \phantom{\bigg|} 15
Asp Tyr Gly Lys
<210> SEQ ID NO 174
<211> LENGTH: 9
<212> TYPE: PRT
<213 > ORGANISM: Homo Sapiens
<400> SEOUENCE: 174
Glu Gln Leu Thr Pro Leu Ile Lys Lys
<210> SEQ ID NO 175
<211> LENGTH: 9
<212> TYPE: PRT
<213 > ORGANISM: Homo Sapiens
<400> SEQUENCE: 175
Ser Pro Glu Leu Gln Ala Glu Ala Lys
                  5
```

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:

- 1. A method of screening a mammalian subject to determine if the subject is at risk to develop, or is suffering from, cardiovascular disease, the method comprising:
 - (a) detecting an amount of a biomarker present in a high density lipoprotein (HDL) subfraction, a complex con- 45 taining Apolipoprotein A-I (ApoA-I), or a complex containing Apolipoprotein A-II (ApoA-II) isolated from a biological sample obtained from the subject, wherein the biomarker is Apolipoprotein C-IV (ApoC-IV) set forth as SEQ ID NO:1 or a portion and/or derivative thereof, wherein the derivative thereof consists of naturally occurring protein having at least 95% homology with SEQ ID NO:1, and wherein the portion thereof comprises a peptide fragment consisting of at least 6 continuous amino acids to 20 continuous amino acids from SEQ ID NO:1, and
 - (b) comparing the detected amount of the biomarker in the biological sample to a reference amount of the biomarker determined from a control population of healthy subjects, wherein a difference in the amount of the biomarker between the biological sample and the reference

amount is indicative of the presence or risk of cardiovascular disease in the subject.

- 2. The method of claim 1, wherein the biomarker is present in at least one of a high density lipoprotein subfraction in the density range of about 1.06 to about 1.110 g/mL or a high density lipoprotein subfraction in the density range of about 1.110 to about 1.210 g/mL of the biological sample.
- 3. The method of claim 1, wherein the biological sample is selected from the group consisting of a blood sample, a serum sample, a plasma sample, a tissue sample, bodily fluid sample and urine sample.
- 4. The method of claim 1, wherein the biomarker is ApoC-IV set forth as SEQ ID NO:1, a portion and/or a derivative thereof, and wherein an increased amount of the biomarker in the biological sample in comparison to the reference amount is indicative of the presence or risk of cardiovascular disease in the subject.
- 5. The method of claim 1, wherein the amount of the biomarker in the biological sample is detected using mass spectrometry.
- 6. The method of claim 1, wherein the amount of the biomarker in the biological sample is detected using at least one antibody specific to the biomarker.

专利名称(译)	脂蛋白相关的心血管疾病标志物			
公开(公告)号	US8420337	公开(公告)日	2013-04-16	
申请号	US13/104757	申请日	2011-05-10	
[标]申请(专利权)人(译)	华盛顿大学			
申请(专利权)人(译)	华盛顿大学			
当前申请(专利权)人(译)	华盛顿大学			
[标]发明人	HEINECKE JAY W VAISAR TOMAS			
发明人	HEINECKE, JAY W. VAISAR, TOMAS			
IPC分类号	G01N31/00 G01N33/53			
CPC分类号	G01N33/92 G01N2800/32 G01N280	0/323		
审查员(译)	COOK , LISA			
其他公开文献	US20110212477A1			
外部链接	Espacenet USPTO			

摘要(译)

本发明提供筛选哺乳动物受试者的方法,以确定受试者是否有发展或患有心血管疾病的风险。该方法包括检测来自受试者的生物样品或其HDL亚组分中的至少一种生物标志物的量,并将检测到的生物标志物的量与预定值进行比较,其中检测量与预定值之间的差异为指示受试者中心血管疾病的存在或风险。在一些实施方案中,生物标志物包含ApoC-IV,对氧磷酶1,C3,C4,ApoA-IV,ApoE,ApoL1,C4B1,组蛋白H2A,ApoC-II,ApoM,玻连蛋白,触珠蛋白相关蛋白和Clusterin中的至少一种。或其组合。

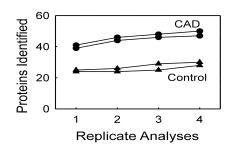


Fig.1.