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USE OF CYTOKINES AND MITOGENS TO
INHIBIT GRAFT VERSUS HOST DISEASE

This application is a divisional application of U.S. Ser.
No. 09/261,890, filed Mar. 3, 1999, now U.S. Pat. No. 5
6,447,765, which claims the priority date of U.S. Ser. No.
60/076,677, filed Mar. 3, 1998.

FIELD OF THE INVENTION
10
The field of the invention is generally related to pharma-
ceutical agents useful in treating graft-versus-host disease
(GVHD) in patients that have received allogenic bone
marrow transplants.

15
BACKGROUND OF THE INVENTION

Organ transplantation is now used with great success to
improve the quality of human life. Substantial progress has
been made in using kidneys, hearts, and livers from unre-
lated individuals. However, transplantation of hematopoietic
stem cells from an unrelated (or allogeneic) donor is a more
complicated endeavor. Here multipotent stem cells which
have the capacity to regenerate all the blood-forming ele-
ments and the immune system are harvested from bone ;5
marrow or peripheral blood from one individual are trans-
ferred to another. However, histocompatibility differences
between donor and recipient results in a higher incidence of
transplant-related complications, and has limited the use of
this procedure (Forman et al., Blackwell Scientific Publica- 3
tions, 1994).

It is unfortunate that only few individuals are candidates
for allogeneic hematopoietic stem cell transplantation at the
present time because the spectrum of diseases treatable by
this procedure has steadily increased. These diseases now
include hematologic malignancies such as the acute or
chronic leukemias, multiple myeloma, myelodysplastic syn-
dromes; lymphomas; and the severe anemias such as aplastic
anemia or thalassemia.

Allogeneic stem cell transplantation begins with treat-
ment of the recipient with a highly immunosuppressive
conditioning regimen. This is most commonly accomplished
with high doses of chemotherapy and radiation which effec-
tively kill all the blood forming elements of the bone
marrow. Besides preparing the recipient bone marrow for
donor stem cell transplantation, the conditioning regimen
serves to kill much of the malignancy that remains in the
body. The period of time between the completion of the
conditioning regimen, and engraftment of the donor stem
cells is the most dangerous for the recipient. It is during this
time that the patient is completely immunocompromised and
susceptible to a host of life-threatening infections. This
vulnerability persists until the grafted donor stem cells
proliferate and differentiate into the needed white blood cells
and immune cells needed to combat infections.

Moreover, donor stem cell preparations generally contain
immune cells called T lymphocytes. Unless the donor stem
cells originate from an identical twin the transferred T cells
turn against the recipient’s tissues and trigger a deadly
ailment called graft versus host disease (or GVHD). This is
because the donor T lymphocytes recognize histocompat-
ibility antigens of the recipient as foreign and respond by
causing multi-organ dysfunction and destruction.

Current techniques of immunosuppression have made
allogeneic stem cell transplantation from a related, histo-
compatible (HLA-matched) donor much safer than it once
was. Allogeneic stem cell transplantation from an unrelated,
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HLA-matched donor is commonly complicated by serious,
often fatal GVHD. The threat of GVHD is even higher when
the stem cell donor is HLA mismatched.

Since only 30% of patients in need of allogeneic stem
cells will have a sibling with identical histocompatibility
antigens (Dupont, B., Immunol Reviews 157:12, 1997), there
is a great need to make HLA-matched unrelated, and HLA-
mismatched transplantation a safer procedure. There have
been two principal approaches to resolving this problem.
The first has been to deplete the graft of contaminating T
lymphocytes and the second has been to inactivate the T
cells so they cannot attack the recipient.

In the 1970’s it became evident that ex-vivo removal of
mature T lymphocytes from a bone marrow graft prior to
transplantation dramatically decreased or prevented GVHD
in animals receiving marrow grafts across major histocom-
patibility barriers (Rodt, H. J. Immunol 4:25-29, 1974; and
4 Vallera et al., Transplantation 31:218-222, 1981). How-
ever, with T cell depletion the incidence of graft failure, graft
rejection, relapse of leukemia, and viral-induced lympho-
proliferative disease markedly increased (Martin et al. Blood
66:664-672, 1985; 6 Patterson et al. Br J Hematol 63:221-
230, 1986; Goldman et al. Ann Intern Med 108:806-814,
1988; and Lucas et al. Blood 87:2594-2603, 1996). Thus, the
transplantation of donor T cells on the stem cells has
beneficial as well as deleterious effects. One needs the
facilitating effect of the T cells on the engraftement of stem
cells and the now well recognized graft-versus-tumor
effects, but not graft-versus host disease.

Several approaches have been used to decrease T cell
activation. These include: 1) in vivo immunosuppressive
effects of drugs such as FK506 and rapamycin (Blazar et al.
J. Immunol 153:1836-1846, 1994; Dupont et al. J. Immunol
144:251-258, 1990; Motris, Ann NY Acad Sci 685:63-72,
1993; and Blazar et al. J Immunol 151:5726-5741, 1993); 2)
the in vivo targeting of GVHD-reactive T cells using intact
and F(ab")2 fragments of monoclonal antibodies (mAb)
reactive against T cell determinants or mAb linked to toxins
(Gratama et al. Am j Kidrey Dis 11:149-152, 1984; Hiruma
et al. Blood 79:3050-3058, 1992; Anasetti et al. Transplan-
tation 54:844-851, 1992; Martin et al. Bone Marrow Trans-
plant 3:437-444,1989); 3) inhibition of T cell signaling via
either IL-2/cytokine receptor interactions (Herve et al. Blood
76:2639-2640, 1990) or the inhibition of T cell activation
through blockade of co-stimulatory or adhesogenic signals
(Boussiotis et al. J Exp Med 178:1753-1763, 1993; Gribben
et al. Blood 97:4887-4893, 1996; and Blazar et al. Immunol
Rev 157:79-90, 1997); 4) the shifting of the balance between
acute GVHD-inducing T helper-type 1 T cells to anti-
inflammatory T helper-type 2 T cells via the cytokine milieu
in which these cells are generated (Krenger et al. Trans-
plantation 58:1251-1257, 1994; Blazar et al. Blood 88:247,
1996, abstract; Krenger et al. J Immunol 153:585-593, 1995,
Fowler et al. Blood 84:3540-3549, 1994); 5) the regulation
of alloreactive T cell activation by treatment with peptide
analogs which affect either T cell receptor/major histocom-
patibility complex (MHC) interactions, class Il MHC/CD4
interactions, or class I MHC/CDS interactions (Townsend
and Korngold (unpublished data)); and 6) the use of gene
therapy to halt the attack of donated cells on the recipient’s
tissues (Bonini et al. Science 276:1719-24, 1997).

There is suggestive evidence that the T lymphocytes from
non-identical donors can become tolerant to the recipient’s
tissues. Unlike patients who receive solid organ allografts
for whom life-long immunosuppressive therapy is needed to
control chronic rejection, there is evidence of immunologic
tolerance with stem cell allografts. The majority of these
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patients can be withdrawn from immune suppression with-
out further evidence of GVHD (Storb et al. Blood 80:560-
561, 1992; and Sullivan et al. Semin Hematol 28:250-259,
1992).

Immunologic tolerance is a specific state of non-respon-
siveness to an antigen. Immunologic tolerance generally
involves more than the absence of an immune response; this
state is an adaptive response of the immune system, one
meeting the criteria of antigen specificity and memory that
are the hallmarks of any immune response. Tolerance devel-
ops more easily in fetal and neonatal animals than in adults,
suggesting that immature T and B cells are more susceptible
to the induction of tolerance. Moreover, studies have sug-
gested that T cells and B cells differ in their susceptibility to
tolerance induction. Induction of tolerance, generally, can be
by clonal deletion or clonal anergy. In clonal deletion,
immature lymphocytes are eliminated during maturation. In
clonal anergy, mature lymphocytes present in the peripheral
lymphoid organs become functionally inactivated.

Following antigenic challenge stimulation, T cells gener-
ally are stimulated to either promote antibody production or
cell-mediated immunity. However, they can also be stimu-
lated to inhibit these immune responses instead. T cells with
these down-regulatory properties are called “suppressor
cells”.

Although it is known that T suppressor cells produce
cytokines such as transforming growth factor beta (TGEF-
beta), interleukin 4 (IL-4) or interleukin (IL-10) with immu-
nosuppressive effects, until recently the mechanisms respon-
sible for the generation of these regulatory cells have been
poorly understood. It was generally believed that CD4+ T
cells induce CD8- T cells to develop down-regulatory
activity and that interleukin 2 (IL-2) produced by CD4+
cells mediates this effect. Although most immunologists
agree that IL.-2 has an important role in the development of
T suppressor cells, whether this cytokine works directly or
indirectly is controversial (Via et al. International Immunol
5:565-572, 1993; Fast, J Immunol 149:1510-1515,1992;
Hirohata et al. J Immunol 142:3104-3112, 1989; Taylor,
Advances Exp Med Biol 319:125-135, 1992; and Kinter et
al., Proc. Natl. Acad. Sci. US4 92:10985-10989, 1995).
Recently, IL.-2 has been shown to induce CD8+ cells to
suppress HIV replication in CD4- T cells by a non-lytic
mechanism. This effect is cytokine mediated, but the specific
cytokine with this effect has not been identified (Barker et al.
J Immunol 156:4476-83, 1996; and Kinter et al. Proc Nail
Acad Sci US4 92:10985-9:1995).

A model using human peripheral blood lymphocytes to
study T cell/B cell interactions in the absence of other
accessory cells has been developed (Hirokawa et al. J.
Immunol. 149:1859-1866, 1994). With this model it was
found that CD4+ T cells by themselves generally lacked the
capacity to induce CD8+ T cells to become potent suppres-
sor cells. The combination of CD8+ T cells and NK cells,
however, induced strong suppressive activity (Gray et al. .J
Exp Med 180:1937-1942, 1994). It was then demonstrated
that the contribution of NK cells was to produce TGF-beta
in its active form. It was then reported that a small non-
immunosuppressive concentration (10-100 pg/ml) of this
cytokine served as a co-factor for the generation of strong
suppressive effects on IgG and IgM production (Gray et al.
J Exp Med 180:1937-1942, 1994). Further, it was demon-
strated that NK cells are the principal lymphocyte source of
TGF-beta (Gray et al. J Immunol, 160:2248-2254,1998).

TGF-beta is a multifunctional family of cytokines impor-
tant in tissue repair, inflammation and immunoregulation
(Border et al. J Clin Invest 90:1-7, 1992; and Sporn et al. J
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Cell Biol 105:1039-1045, 1987). TGF-beta is unlike most
other cytokines in that the protein released is biologically
inactive and unable to bind to specific receptors (Massague,
Cell 69:1067-1070, 1992). The conversion of latent to active
TGF-beta is the critical step which determines the biological
effects of this cytokine.

There is some evidence that NK cell-derived TGF-beta
has a role in the prevention of GVHD. Whereas the transfer
of stem cells from one strain of mice to another histocom-
patibility mismatched strain resulted in death of all recipi-
ents from GVHD within 19 days, the simultaneous transfer
of NK cells from the donor animals completely prevented
this consequence. All the recipient mice survived indefi-
nitely. This therapeutic effect, however, was completely
blocked by antagonizing the effects of TGF-beta by the
administration of a neutralizing antibody (Murphy et al.
Immunol Rev 157:167-176, 1997).

It is very likely, therefore, that the mechanism whereby
NK cell-derived TGF-beta prevented GVHD is similar to
that described by Horwitz et al. in the down-regulation of
antibody production. In each case NK cell-derived TGF-beta
was responsible for the generation of suppressor lympho-
cytes that blocked these respective immune responses. The
mouse study is of particular interest since the histocompat-
ibility differences between genetically disparate inbred mice
strains would mirror that of unrelated human donors. A
modification of this strategy, therefore might overcome
GVHD in mismatched humans.

Anti-CD2 monoclonal antibodies and other constructs
that bind to the CD2 co-receptor have been shown to be
immunosupressive. It has now been demonstrated that at
least one mechanism to explain this immunosuppressive
effect is by inducing the production of TGF-beta (Gray et al.
J Immunol, 160:2243-2254, 1998).

One strategy to prevent GVHD would be to isolate and
transfer NK cells along with the stem cells. Another would
be to treat the immunocompromised recipient who has
received allogeneic stem cells with TGF-beta, anti-CD2
monoclonal antibodies, IL-2 or a combination of these
cytokines. The first strategy would be difficult because NK
cells comprise only 10 to 20% of total lymphocytes so that
it would be difficult to harvest a sufficient number of cells for
transfer. The second strategy is limited by the systemic toxic
side effects of these monoclonal antibodies and cytokines.
1L-2 and TGF-beta have numerous effects on different body
tissues and are not very safe to deliver to a patient systemi-
cally. What is needed, therefore, is a way to induce mam-
malian cells to suppress the development of GVHD ex vivo.

SUMMARY OF THE INVENTION

In accordance with the objects outlined above, the present
invention provides methods for inducing T cell tolerance in
a sample of ex vivo peripheral blood mononuclear cells
(PBMCs) comprising adding a suppressive composition to
the cells. The suppressive composition can be IL-10, TGF-f,
or a mixture.

In an additional aspect, the present invention provides
methods for treating donor cells to ameliorate graft versus
host disease in a recipient patient. The methods comprise
removing peripheral blood mononuclear cells (PBMC) from
a donor, and treating the cells with a suppressive composi-
tion for a time sufficient to induce T cell tolerance. The cells
are then introducing to a recipient patient. The PBMCs can
be enriched for CD8+ cells, if desired. The methods may
additionally comprising adding the treated cells to donor
stem cells prior to introduction into the patient.
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In an additional aspect, the invention provides kits for the
treatment of donor cells comprising a cell treatment con-
tainer adapted to receive cells from a donor and at least one
dose of a suppressive composition. The kits may addition-
ally comprising written instructions and reagents. The cell
treatment container may comprise a sampling port to enable
the removal of a fraction of the cells for analysis, and an exit
port adapted to enable transpott at least a portion of the cells
to a recipient patient.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A and 1B depict that TGF-f can upregulate
expression of CD40 Ligand (CD40L) on T cells. Purified T
cells were stimulated with PMA (20 ng/ml) and ionomycin
(5 uM) in the presence or absence of TGF-f. After 6 hours
the cells were stained with anti-CD40L antibodies. In the
absence of TGF-f3, there were 30% positive cells (solid line,
panel A). With 100 pg/ml of TGF-f, 66% of the cells were
positive (solid line, panel B). The dotted line in both panenis
is the reactivity of a control antibody.

FIGS. 24, 2B, 2C and 2D depict that TGF-f} increases
TNF-a expression by CD8+ cells. Purified CD8+ cells were
stimulated for 24 hours with Con A (5 pg/ml)+TGF-f (10
pg.ml)=IL-2 (10). During the last 6 hours, monensin (2 uM)
was also present to prevent cytokine release. The cells were
first stained with anti-CD69 to distinguish the activated
cells. Then the cells were fixed (4% paraformaldhyde),
permeabilized (0.1% saponin) and stained with anti-TNF-a.
antibodies.

FIGS. 3A and 3B depict TGF-f} enhances IL.-2 expression
by T cells. Purified T cells were stimulated in the presence
or absence of TGF-p (1 ng/ml). In the absence of TGF-f,
36% of the cells were positive (panel A, solid line) whereas
with TGF-, 53% were positive (panel B, solid line).

FIGS. 4A, 4B and 4C depict that TGF-f can enhance or
inhibit cytotoxic activity. In panels A and B, purified T cells
were cultured with irradiated allogenic stimulator cells in the
presence or absence of the indicated cytokines. After 48
hours, the cells were washed and after a further 3 days,
assayed for cytotoxic activity against **Cr-labelled sitmula-
tor ConA blasts. In panel C, purified CD8+ cells were
cultured with irradiated allogenic cells in the presence or
absence of TGF-f (10 pg/ml) or IL-12 (100 U). After 48
hours, the cells were washed and added to autologous T cells
and irradiated allogenic cells. AFter 5 days of culture,
cytotoxic acitivity was determined using *'Cr-labelled
stimulator ConA blasts as target cells.

DETAILED DESCRIPTION OF THE
INVENTION

The present invention allows for the transfer of histoin-
compatible stem cells to humans with a variety of malignant
or hereditary diseases using a method to prevent life-
threatening graft-versus-host disease. This is accomplished
by treatment of donor cells with a combination of mitogens
and cytokines ex-vivo. The particular advantage of this
procedure is that it avoids the removal of donor T cells
which facilitate stem cell engraftment and that have the
potential to attack any remaining malignant cells. Once a
state of tolerance between donor and host has been achieved,
non-conditioned donor T cells can be transferred to maxi-
mize the beneficial graft-versus-tumor immune response.

This strategy is unlike almost all other treatment modali-
ties currently in use. These cytokines and mitogens
described would have severe toxic side effects if adminis-
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tered in vivo. The ex-vivo protocol described avoids these
side effects. The ability to successfully engraft histoincom-
patible stem cells for treatment of life-threatening diseases
would be a milestone in medicine.

In addition, a further advantage of the present invention is
that it may avoid or minimize the very toxic immunosup-
pressive medicines that must be given to the recipient to
prevent GVHD. These medicines also block the ability of
the donor-derived lymphocytes which repopulate the
immune system of the recipient from becoming “educated”
to their new host. Therefore, it is difficult to stop the
immunosuppressive drugs, unless an alternative treatment
such as the present invention is used.

The strategy of the present invention is to suppress
GVHD by both suppressing T cell activation and inducing a
tolerant state in the donor cells, which prevents the donor
cells from attacking recipient cells. Surprisingly, the meth-
ods outlined herein result in not only the suppression of the
treated cells but additionally induces them to prevent other
donor cells from killing recipient cells as well, i.e. they
become tolerant. That is, the methods outlined herein not
only decrease the capacity of the donor’s cells to attack the
recipient’s cells, but induces some of the donor’s cells to
assume a surveillance role and prevent other donor cells
from mounting an immune attack against the recipient host.
The net result is for the donor lymphocytes to be tolerant to
the histocompatibility antigens of the recipient, but does not
impair the ability of the the new lymphocytes to attack tumor
cells.

Another significant potential advantage of this strategy is
a low probability of serious adverse side effects. Since only
trace amounts of suppressive compositions such as cytok-
ines will be returned to the patient, there should be minimal
toxicity.

Accordingly, the present invention is drawn to methods of
treating donor cells for transplantation into a recipient that
comprise removing peripheral blood mononuclear cells (PB-
MCs) from the donor and treating the cells with a compo-
sition that is on one hand suppressive, but on the other hand
generates surveillance cells to prevent an immune attack.

The present invention shows that the treatment of the
donor cells by a suppressive composition blocks an immune
attack against the recipient’s cells. Without being bound by
theory, it appears that there are several ways the methods of
the invention may work. First of all, the donor cells are
activated to become tolerant to the recipient’s cells. Sec-
ondly, the donor CD8+ cells get activated to become regu-
latory cells, to prevent other donor cells from killing recipi-
ent cells. These results lead to amelioration of a GVH
response. Without being bound by theory, it appears that the
inhibition of cytotoxic activity may occur as a result of the
effects TGF-p on the cells; as depicted in the figures, the
addition of TGF-p causes the upregulation of CD40L on T
cells, increases TNF-o. expression by CD8+ cells, and
enhances IL-2 expression.

Thus, in a preferred embodiment, the present invention
induces tolerance in the donor cells to recipient tissue, thus
avoiding GVHD, by treating them with a suppressive com-
position ex vivo.

Accordingly, the present invention provides methods of
treating donor cells to induce or establish tolerance to
recipient cells prior to transplantation into a recipient patient
to decrease or eliminate a graft-versus-host response. By “T
cell tolerance” herein is meant immune non-responsiveness
to the recipient, i.e. a tolerance to the histocompatibility
antigens of the recipient. Without being bound by theory,
this may be due to anergy or death of the T cells. Preferably,
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the T cells retain the ability to recognize other antigens as
foreign, to facilitate tumor killing and general immunologi-
cal responses to foreign antigens.

Using the methods outlined herein, a GVH response is
suppressed or treated. By “treating” GVHD herein is meant
that at least one symptom of the GVHD is ameliorated by the
methods outlined herein. This may be evaluated in a number
of ways, including both objective and subjective factors on
the part of the patient as is known in the art. For example,
GVHD generally exhibits a skin rash, an abnormality in liver
function studies, fever, general symptoms including fatigue,
anemia, etc.

By “patient” herein is meant a mammalian subject to be
treated, with human patients being preferred. In some cases,
the methods of the invention find use in experimental
animals and in the development of animal models for
disease, including, but not limited to, rodents including
mice, rats, and hamsters; and primates.

The methods provide for the removal of blood cells from
a patient. In general, peripheral blood mononuclear cells
(PBMCs) are taken from a patient using standard tech-
niques. By “peripheral blood mononuclear cells” or
“PBMCs” herein is meant lymphocytes (including T-cells,
B-cells, NK cells, etc.) and monocytes. As outlined more
fully below, it appears that the main effect of the suppressive
composition is to enable CD8+ T cells to become tolerant.
Accordingly, the PBMC population should comprise CD8+
T cells. Preferably, only PBMCs are taken, either leaving or
returning red blood cells and polymorphonuclear leudocytes
to the patient. This is done as is known in the art, for
example using leukophoresis techniques. In general, a 5 to
7 liter leukophoresis step is done, which essentially removes
PBMCs from a patient, returning the remaining blood com-
ponents. Collection of the cell sample is preferably done in
the presence of an anticoagulant such as heparin, as is
known in the art.

In general, the sample comprising the PBMCs can be
pretreated in a wide variety of ways. Generally, once col-
lected, the cells can be additionally concentrated, if this was
not done simultaneously with collection or to further purify
and/or concentrate the cells. The cells may be washed,
counted, and resuspended in buffer.

The PBMCs are generally concentrated for treatment,
using standard techniques in the art. In a preferred embodi-
ment, the leukophoresis collection step results a concen-
trated sample of PBMCs, in a sterile leukopak, that may
contain reagents or doses of the suppressive composition, as
is more fully outlined below. Generally, an additional con-
centration/purification step is done, such as Ficoll-Hypaque
density gradient centrifugation as is known in the art.

In a preferred embodiment, the PBMCs are then washed
to remove serum proteins and soluble blood components,
such as autoantibodies, inhibitors, etc., using techniques
well known in the art. Generally, this involves addition of
physiological media or buffer, followed by centrifugation.
This may be repeated as necessary. They can be resuspended
in physiological media, preferably AIM-V serum free
medium (Life Technologies) (since serum contains signifi-
cant amounts of inhibitors of TGF-3) although buffers such
as Hanks balanced salt solution (HBBS) or physiological
buffered saline (PBS) can also be used.

Geperally, the cells are then counted; in general from
1x10" to 2x10° white blood cells are collected from a 5-7
liter leukophoresis step. These cells are brought up roughly
200 mls of buffer or media.

In a preferred embodiment, the PBMCs may be enriched
for one or more cell types. For example, the PBMCs may be
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enriched for CD8+ T cells, CD4+ T cells or, in the case of
stem cell isolation as is more fully described below, CD34+
stem cells. This is done as is known in the art, as described
in Gray et al. (1998), J. Immunol. 160:2248, hereby incor-
porated by reference. Generally, this is done using commer-
cially available immunoabsorbent columns, or using
research procedures (the PBMCs are added to a nylon wool
column and the eluted, nonadherent cells are treated with
antibodies to CD4, CD16, CD11b, and CD74, followed by
treatment with immunomagnetic beads, leaving a population
enriched for CD8+ T cells). In one embodiment, cell popu-
lations are enriched for CD8+ cells, as these appear to be the
cells most useful in the methods of the invention. However,
one advantage of using PBMCs is that other cell types within
the PBMC population produce IL-10, thus decreasing or
even eliminating the requirement of the suppressive com-
position comprising I1L-10.

Once the cells have undergone any necessary pretreat-
ment, the cells are treated with a suppressive composition.
By “treated” in this context herein is meant that the cells are
incubated with the suppressive composition for a time
period suflicient to result in T cell tolerance, particularly
when transplanted into the recipient patient. The incubation
will generally be under physiological temperature.

By “suppressive composition” or “tolerance composition”
is meant a composition that can induce T cell tolerance.
Generally, these compositions are cytokines. Suitable sup-
pressive compositions include, but are not limited to, IL-10,
IL-2 and TGF-B. A preferred suppressive composition is a
mixture of IL-10 and TGF-f.

The concentration of the suppressive composition will
vary on the identity of the composition, but will generally be
at physiologic concentration, 1.e. the concentration required
to give the desired effect, i.e. an enhancement of specific
types of regulatory cells. In a preferred embodiment, TFG-f3
is used in the suppressive composition. By “transforming
growth factor -p” or “TGF-p” herein is meant any one of the
family of the TGF-fs, including the three isoforms TGF-1,
TGF-p2, and TGF-p3; see Massague, (1980), J. Ann. Rev.
Cell Biol 6:597. Lymphocytes and monocytes produce the
B1 isoform of this cytokine (Kehrl et al. (1991), Int J Cell
Cloning 9:438-450). The TFG-f can be any form of TFG-f
that is active on the mammalian cells being treated. In
humans, recombinant TFG-B is currently preferred. A
human TGF-p2 can be purchased from Genzyme Pharma-
ceuticals, Farmington, Mass. In general, the concentration of
TGF-p used ranges from about 2 picograms/ml of cell
suspension to about 2 nanograms, with from about 10 pg to
about 500 pg being preferred, and from about 50 pg to about
150 pg being especially preferred, and 100 pg being ideal.

In a preferred embodiment, 11.-10 is used in the suppres-
sive composition. The IL-10 can be any form of 1L-10 that
is active on the mammalian cells being treated. In humans,
recombinant IL-10 is currently preferred. Recombinant
human IL-10 can be purchased. In general, the concentration
of IL-10 used ranges from about 1 U/ml of cell suspension
to about 100, with from about 5 to about 50 being preferred,
and with 10 U/ml being especially preferred.

In a preferred embodiment, I1.-2 is used as the suppressive
composition. The IL-2 can be any form of IL-2 that is active
on the mammalian cells being treated. In humans, recom-
binant IL-2 is currently preferred. Recombinant human IL-2
can be purchased from Cetus, Emeryville, Calif. In general,
the concentration of 1L-2 used ranges from about 1 Unit/ml
of cell suspension to about 100 U/ml, with from about 5
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U/ml to about 25 U/ml being preferred, and with 10 U/ml
being especially preferred. In a preferred embodiment, 1L-2
is not used alone.

In a preferred embodiment, TGF-f can be used alone as
the suppressive composition. Alternate preferred embodi-
ments utilize 1L-10 alone, combinations of TGF-, IL-10
and TL-2, with the most preferred embodiment utilizing a
mixture of TGF-p3 and 1L-10.

The suppressive composition is incubated with the donor
cells and a population of irradiated PMBC recipient cells
(harvested as outlined above). The recipient cells are irra-
diated so that they cannot attack the donor cells, but will
stimulate the donor cells to become tolerant to the recipient
cells. The incubation occurs for a period of time suflicient to
cause an effect, generally from 4 hours to 96 hours, although
both shorter and longer time periods are possible.

In one embodiment, treatment of the donor cells with the
suppressive composition is followed by immediate trans-
plantation into the recipient patient, generally after the cells
have been washed to remove the suppressive composition.

In a preferred embodiment, a second step is done In this
embodiment, after the donor cells have been conditioned or
treated with the suppressive composition, they may be
frozen or otherwise stored. Then a second step comprising
obtaining a population of donor hematopoietic stem cells
from aspirated bone marrow or PBMCs. Stem cells com-
prise a very small percentage of the white blood cells in
blood, and are isolated as is known in the art, for example
as described in U.S. Pat. Nos. 5,635,387 and 4,865,204, both
of which are incorporated by reference in their entirety, or
harvested using commercial systems such as those sold by
Nexell. As outlined above, CD34+ stem cells can be con-
centrated using affinity columns; the eluted cells are a
mixture of CD34+ stem cells and lymphocytes. The con-
taminating lymphocytes are generally be removed using
known techniques such as staining with monoclonal anti-
bodies and removal using conventional negative selection
procedures.

Once the CD34+ stem cells have been isolated, they may
be mixed with the donor cells previously treated with the
suppressive composition and immediated introduced into
the recipient patient.

In one embodiment, the cells are treated for a period of
time, washed to remove the suppressive composition, and
may additionally reincubated. The cells are preferably
washed as outlined herein to remove the suppressive com-
position. Further incubations for testing or evaluation may
also be done, ranging in time from a few hours to several
days. If evaluation of any cellular characteristics prior to
introduction to a patient is desirable, the cells may be
incubated for several days to several weeks to expand
numbers of suppressor cells.

Once the cells have been treated, they may be evaluated
or tested prior to transplantation into the patient. For
example, a sample may be removed to do: sterility testing;
gram staining, microbiological studies; LAL studies; myco-
plasma studies; flow cytometry to identify cell types; func-
tional studies, etc. Similarly, these and other lymphocyte
studies may be done both before and after treatment. A
preferred analysis is a test using labeled recipient cells;
incubating the treated tolerant donor cells with a labeled
population of the recipient cells will verify that the donor
cells are tolerant and won’t kill the recipient cells.

In a preferred embodiment, the treatment results in the
conditioning of the T cells to become non-responsive to
histocompatibility antigens of the recipient so that GVHD is
prevented.

10

15

20

25

30

35

40

45

50

55

60

65

10

In a preferred embodiment, prior to transplantation, the
amount of total or active TGF-f can also be tested. As noted
herein, TGF-f is made as a latent precursor that is activated
post-translationally.

After the cell treatment, the donor cells are transplanted
into the recipient patient. The MHC class I and class 1I
profiles of both the donor and the recipient are determined.
Preferably, a non-related donor is found that preferably
matches the recipients HLA antigens, but may mismatch at
one or more loci if a matched donor cannot be identified. The
recipient patient has generally undergone bone marrow
ablation, such as a high dose chemotherapy treatment, with
or without total body irradiation.

The donor cells are transplanted into the recipient patient.
This is generally done as is known in the art, and usually
comprises injecting or introducing the treated cells into the
patient as will be appreciated by those in the art. This may
be done via intravascular administration, including intrave-
nous or intraarterial administration, intraperitoneal admin-
istration, etc. For example, the cells may be placed in a 50
mol Fenwall infusion bag by injection using sterile syringes
or other sterile transfer mechanisms. The cells can then be
immediately infused via IV administration over a period of
time, such as 15 minutes, into a free flow IV line into the
patient. In some embodiments, additional reagents such as
buffers or salts may be added as well.

After reintroducing the cells into the patient, the effect of
the treatment may be evaluated, if desired, as is generally
outlined above and known in the art.

The treatment may be repeated as needed or required.
After a period of time, the leukemic cells may reappear.
Because the donor lymphocytes are now tolerant to the
recipient’s cells, the patient now receives a transfusion of
unconditioned donor lymphocytes which recognize the leu-
kemic cells as foreign and kill these cells.

In a preferred embodiment, the invention further provides
kits for the practice of the methods of the invention, i.e., the
incubation of the cells with the suppressive compositions.
The kit may have a number of components. The kit com-
prises a cell treatment container that is adapted to receive
cells from a donor. The container should be sterile. In some
embodiments, the cell treatment container is used for col-
lection of the cells, for example it is adaptable to be hooked
up to a leukophoresis machine using an inlet port. In other
embodiments, a separate cell collection container may be
used.

The form and composition of the cell treatment container
may vary, as will be appreciated by those in the art.
Generally, the container may be in a number of different
forms, including a flexible bag, similar to an IV bag, or a
rigid container similar to a cell culture vessel. It may be
configured to allow stirring. Generally, the composition of
the container will be any suitable, biologically inert material,
such as glass or plastic, including polypropylene, polyeth-
vylene, etc. The cell treatment container may have one or
more inlet or outlet ports, for the introduction or removal of
cells, reagents, suppressive compositions, etc. For example,
the container may comprise a sampling port for the removal
of a fraction of the cells for analysis prior to introduction
into the recipient patient. Similarly, the container may
comprise an exit port to allow introduction of the cells into
the recipient patient; for example, the container may com-
prise an adapter for attachment to an IV setup.

The kit further comprises at least one dose of a suppres-
sive composition. “Dose” in this context means an amount
of the suppressive composition such as cytokines, that is
sufficient to cause an effect. In some cases, multiple doses
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may be included. In one embodiment, the dose may be added
to the cell treatment container using a port; alternatively, in
a preferred embodiment, the dose is already present in the
cell treatment container. In a preferred embodiment, the dose
is in a lyophilized form for stability, that can be reconstituted
using the cell media, or other reagents.

In some embodiments, the kit may additionally comprise
at least one reagent, including buffers, salts, media, proteins,
drugs, etc. For example, mitogens can be included.

In some embodiments, the kit may additional comprise
written instructions for using the kits.

The following examples serve to more fully describe the
manner of using the above-described invention, as well as to
set forth the best modes contemplated for carrying out
various aspects of the invention. It is understood that these
examples in no way serve to limit the true scope of this
invention, but rather are presented for illustrative purposes.
All references cited herein are incorporated by reference in
their entirety.

EXAMPLES
Examples 1

Donor lymphocyte ex vivo Treatment to Prevent an
Immune Attack Against Blood Cells from an
Unrelated Recipient

A blood sample from a donor was obtained and lympho-
cytes prepared by density gradient centrifugation. T cells
were prepared using a conventional negative selection pro-
cedure. These T cells were conditioned to prevent them from
attacking the recipient cells. For this conditioning, the CD8+
T cells were mixed with irradiated stimulator cells from the
recipient. The stimulator cells were derived from T cell-
depleted blood cells from the recipient. The mixture of
donor T cells and recipient stimulator cells were cultured for
48 hours with different concentrations of one or more
cytokines. In this example the cytokines were TGF-f and
1L-10. This procedure abolished the potential of the donor T
cells to kill recipient cells, in FIG. 4B.

To test the ability of the donor T cells to recognize and kill
recipient blood cells, the donor T cells were cultured with
irradiated stimulator cells for 5 days. Then the donor cells
were cultured for 4 hours with a sample of recipient radio-
labeled blood cells. When the recipient’s cells are killed they
release radioisotope into the culture medium. By determin-
ing the amount of radioisotope released, one can calculate
the percentage of cells killed. In the standard cytotoxicity
assay shown in FIG. 1, donor cells were cultured with
labeled recipient cells in 30to 1, 15 to 1, and 7.5 to 1 ratios.
These combinations of donor and recipient cells are called
effector to target ratios. Killing is indicated by the various
symbols. As expected, maximum killing was seen at the
highest effector to target cell ratio. In panel A, the open
circles shows that if 30 donor cells were mixed with 1
recipient cell, 40 percent of the recipient cells were killed.
When donor T cells were conditioned with very small
concentrations of TGF-f (0.01 or 0.1 nanograms per ml),
they had no effect on killing. However, if the T cells were
treated with 1 nanogram per ml of TGF-f, the killing of
recipient cells decreased by 50 percent. Panel B shows that
if the T cells were treated with IL-10, killing also decreased
by 50%. If the T cells had been conditioned with both I1.-10
and TGF-f at 1 nanogram per nil, these cells completed
blocked the killing of recipient cells; killing was almost
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undetectable. Various combinations of mitogens, cytokines,
and monoclonal antibodies can be used to make T cells
non-responsive.

Example 2

CD8+ T cells from the donor conditioned ex vivo to
prevent other donors T cells from mounting an attack against
blood cells from an unrelated recipient.

A blood sample from a donor was obtained and lymphoc-
ites prepared. CD8+ T cells were mixed with irradiated
stimulator cells of the recipient and either TGF-§ (pico-
grams per ml) or IL-12 100 U/ml. IL-12 is known to enhance
the ability of CD8+ T cells to develop the capacity to kill.
Here 11-12 was used to show that a given population of
CD8+ cells can be induced to kill or to block killing
depending upon how they are activated. Other CD8+ cells
were cultured in culture medium only as a control (CD8
med).

The CD8+ T cells, the stimulator cells and the cytokines
were cultured for 48 hours and the cytokines were removed
from the cultures by washing. This procedure not only
abolished the potential of the TGF-} conditioned CD8+ cells
to kill the recipient cells, but also induced them to prevent
other donor T cells from killing the recipient cells (FIG. 4C).

To enable the donor T cells to recognize and kill recipient
blood cells, the donor cells were cultured with irradiated
stimulator cells for five days. Then the donor cells were
cultured for 4 hours with a sample of recipient radiolabeled
blood cells. The open circles show the level of donor cells
of recipient cells when no CD8+ cells were added. At a 30:1
effector to target cell ration, 30% of the recipient’s cells were
killed. If CD8+ cells that had been cultured for 48 hours
without cytokines were added, there was no change in the
killing (CD8++Med, solid circles). If the CD8+ cells had
been conditioned with TGF-f, killing was suppressed by
about 50%. However, the CD8+ T cells conditioned with
TGF-f not only did not kill, but the decreased levels of
cytotoxicity indicate that they blocked the ability of other T
cells to kill blood cells of the recipient.

Example 3

Treating a Patient with Chronic Myelocytic
Leukemia with the Stem Cells from a
Histoincompatible Donor: Tolerization with
Mitogens

The harvested PBMC of the donor are placed in a sterile
container in HBBS as in Example 1. The cells are then
incubated with mitogens to induce lymphocytes to become
non-responsive to histocompatibility antigens of the recipi-
ent. In this case the cells are incubated with physiological
concentrations of concanavalin A (Con A) for 4 to 72 hours
using standard incubation techniques. The concentration of
Con A used can range from about 0.01 to about 10 micro-
grams/ml with 1 microgram/ml being presently preferred.
Alternatively, SEB may be used as the mitogen at concen-
trations of 0.001 to 100 ng/ml.

The incubation of the mononuclear cells in the mitogen
solution increases the population of T suppressor cells.
These cells, when transferred to the recipient, will enable the
stem cells to engraft without causing GVHD. Although it is
not known how the mitogens work, it is believed to induce
the production of TGF-beta by certain mononuclear cells in
preparation, and the TGF-beta acts on T cells to become
suppressor cells.
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After the cells have been incubated with the mitogens, the
cells are washed with HBBS to remove any mitogens that
are in the solution. The cells are suspended in 200-500 ml of
HBBS, mixed with the stem cells and administered to a
patient with CML who has been treated with myeloablative
agents to prepare the stem cells for engraftment.

Once the donor hematopoietic cells lymphocites engraft
in the recipient, and the patient again becomes healthy and
free of leukemic cells. If the leukemic cells recur, the patient
receives a transfusion of donor lymphocites and the leuke-
mic cells again disappear.

Example 4

Treating a Patient with Chronic Myelocytic
Leukemia with the Stem Cells from a
Histoincompatible Donor: Tolerization with
Anti-CD2 Monoclonal Antibodies

The harvested enriched stem cell preparation of the donor
are placed in a sterile container in HBBS as in Example 1.
The cells are then incubated with anti-CD2 monoclonal
antibodies to induce lymphocytes to become non-responsive
to histocompatibility antigens of the recipient. In this case,
the cells are incubated with anti-CD2 monoclonal antibodies
for 4 to 72 hours using standard incubation techniques. The
concentration of anti-CD2 monoclonal antibodies are 10
ng/ml to 10 ug/ml. Optionally, 1-1000 units of IL-2 can be
added.

The incubation of the mononuclear cells in the anti-CD2
solution increases the population of T suppressor cells.
These cells, when transferred to the recipient will enable the
stem cells to engraft without causing GVHD. It is believed
that incubation with anti-CD2 monoclonal antibodies
induces the production of TGF-beta by certain monuclear
cells in preparation, and the TGF-beta acts on T cells to
become suppressor cells.

After the cells have been incubated with the anti-CD2
monoclonal antibodies, the cells are washed with HBBS to
remove antibodies that are in the solution. The cells are
suspended in 200-500 ml of HBBS mixed with the stem cells
harvested previously and administered to a patient with
CML who has been treated with myeloblative agents to
prepare the stem cells for engraftment.

Once the donor hematopoietic cells lymphocytes engraft
in the recipient, and the patient again becomes healthy and
free of leukemic cells. If the leukemic cells recur, the patient
receives a transfusion of donor lymphocytes and the leuke-
mic cells again disappear.

Example 5

Treating a Patient with Chronic Myelocytic
Leukemia with the Stem Cells from a
Histoincompatible Donor: Tolerization with
Mitogens and Cytokines

The harvested PBMC of the donor are placed in a sterile
container HBBS as in Example 1. The cells are then incu-
bated with cytokines and mitogens to induce lymphocytes to
become non-responsive to histocompatibility antigens of the
recipient. In this case the cells are incubated with physi-
ological concentrations of Con A or SEB, IL-2 or IL-10 and
TGF-beta for 4 to 72 hours using standard incubation
techniques.

After the cells have been incubated with the cytokines and
mitogens, the cells are washed with HBBS to remove any
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cytokine and mitogen that are in the solution. The cells are
suspended in 200-500 ml of HBBS mixed with the stem cells
and administered to a patient with CML who has been
treated with myeloabative agents to prepare the stem cells
for engraftment.

Once the donor hematopoietic cells and lymphocytes
engraft in recipient and the patient again becomes healthy
and free of leukemic cells. If the leukemic cells recur, the
patient receives a transfusion of donor lymphocytes and the
leukemic cells again disappear.

Example 6

Treating a Patient with Chronic Myelocytic
Leukemia with the Stem Cells from a
Histoincompatible Donor; Tolerization with a
Mitogen and Cytokine

The harvested PBMC of the donor are placed in a sterile
container in HBBS as in Example 1. The cells are then
incubated with a cytokine and a mitogen to induce lympho-
cytes to become non-responsive to histocompatibility anti-
gens of the recipient. In this case the cells are incubated with
physiological concentrations of ConA, and IL-2 for 4 to 72
hours using standard incubation techniques. In another case,
SEB could be used.

After the cells have been incubated with the cytokines and
mitogens, the cells are washed with HBBS to remove any
cytokine and mitogen that are in the solution. The cells are
suspended in 200-500 ml of HBBS mixed with stem cells
and administered to a patient with CML who has been
treated with myeloablative agents to prepare the stem cells
for engraftment.

Example 7

Treating a Patient with Chronic Myelocytic
Leukemia who has Developed GVHD Following
the Stem Cell Transplant

In the instance that the initial procedure to prevent early
or late GVHD following the stem cell transplant is not
successful, this event will be managed BY transfer of a
larger number of donor T cells that have been conditioned to
become suppressor cells. Approximately 1x10° PBMCs
obtained by leukopheresis are concentrated in a sterile
leukopak; in Hanks balanced salt solution (HBBS). The
PMMCs or separated CD8+ T cells (or the specific suppres-
sor cell precursor subset CD8+CD45RA+C27+) prepared by
immunoaflinity columns will be treated with antiCD2 mono-
clonal antibodies and/or mitogens and/or cytokines
described above to condition them to become suppressor
cells.

After incubation with the cytokines or mitogens for a
period of time ranging from 4 hours to 72 hours, the cells are
washed to remove the cytokines or mitogens and then are
transferred to the recipient. These conditioned T cells
migrate to lymphoid organs and suppress the GVHD.

Besides chronic myelocytic leukemia, other hematologic
malignancies such as acute and chronic leukemias, lympho-
mas, solid tumors such as breast carcinoma or renal cell
carcinoma among a few, and non-malignant diseases such as
severe anemias (thalassemia, sickle cell anemia) can be
treated with mismatched allogeneic stem cells.
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Another aspect of this invention is a kit to perform the cell
incubation with the cytokines. The kit comprises a sterile
incubating container with the appropriate concentration of
cytokines preloaded within the container. In one embodi-
ment of the kit, the cytokines are present in lyophilized form
in the container. The container is preferably a bag, similar to
an TV bag. The lyophilized cytokines are reconstituted with
HBBS and then the cells are injected into the container and
thoroughly mixed and incubated. In another embodiment of
the invention the cytokines are already in solution within the
container and all that has to be done is the injection of
washed stem cell preparation and incubation.

What is claimed is:

1. A kit for the treatment of donor cells to inhibit Graft
Versus Host Disease (GVHD) comprising a sterile cell
treatment container comprising one or more inlet or outlet
ports and at least one dose of a suppressive composition
comprising TGF-f and IL-2 which together are sufficient to
induce T-cell tolerance.

10
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2. The kit of claim 1 further comprising: one or more
monoclonal antibodies for the enrichment of one or more T
cell subsets from a peripheral blood mononuclear cell
(PBMC) population.

3. A kit according to claim 2, wherein said monoclonal
antibodies enrich for CD4xT cells.

4. A kit according to claim 2, wherein said monoclonal
antibodies enrich for GD8xT cells.

5. A kit according to claim 1, wherein said dose is in a
lyophilized form.

6. A kit according to claim 1 comprising multiple doses of
said suppressive composition.

7. The kit of claim 2 further comprising immunomagnetic
beads for the selection of one or more of said T cell subsets
cross-reactive with said one or more monoclonal antibodies.
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Col. 16, Claim 4, line 8, change “CD8xT” to --CD8+T--.
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