

(11) **EP 3 121 277 A1**

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

25.01.2017 Bulletin 2017/04

(21) Application number: 16183829.7

(22) Date of filing: 06.02.2009

(51) Int Cl.:

C12N 15/09 (2006.01) A61P 25/28 (2006.01) G01N 33/53 (2006.01) G01N 33/68 (2006.01) A61K 39/395 (2006.01) C07K 16/18 (2006.01) C12P 21/08 (2006.01)

(84) Designated Contracting States:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

(30) Priority: 08.02.2008 JP 2008028386

01.08.2008 US 85545 04.08.2008 JP 2008201058

(62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC:

09707511.3 / 2 246 427

(71) Applicants:

- Immunas Pharma, Inc. Kanagawa 213-0012 (JP)
- National Center for Geriatrics and Gerontology Aichi 4748511 (JP)

(72) Inventors:

- MATSUBARA, Etsuro Hirosaki-shi Aomori 036-8216 (JP)
- SHIBATA, Masao
 Kawasaki-shi Kanagawa 213-0012 (JP)
- YOKOSEKI, Tatsuki Kawasaki-shi Kanagawa 213-0012 (JP)
- (74) Representative: Bösl, Raphael Konrad Isenbruck Bösl Hörschler LLP Patentanwälte
 Prinzregentenstraße 68
 81675 München (DE)

Remarks:

This application was filed on 11-08-2016 as a divisional application to the application mentioned under INID code 62.

(54) ANTIBODY CAPABLE OF BINDING SPECIFICALLY TO AB-OLIGOMER, AND USE THEREOF

(57) The present inventors successfully produced monoclonal antibodies that are specific to only soluble $A\beta$ oligomers, but do not recognize soluble $A\beta$ monomers, which are physiological molecules. It was demonstrated that the antibodies are useful as diagnostic/therapeutic monoclonal antibodies for Alzheimer's disease.

EP 3 121 277 A1

Description

Technical Field

5 [0001] The present invention relates to antibodies that specifically bind to Aβ oligomers and uses thereof.

Background Art

10

25

35

45

50

[0002] Various evidence has shown that deterioration of memory arises from synaptic dysfunction triggered by soluble A β oligomers (see Non-Patent Documents 1 and 2). Excessive accumulation and deposition of A β oligomers may be the trigger for a series of pathological cascades that lead to Alzheimer's disease (AD). Therefore, therapeutic intervention targeting A β oligomers may be effective for blocking these cascades. However, findings on neurodegeneration mediated by core molecules of this amyloid cascade hypothesis which are responsible for neurodegeneration, particularly by A β oligomers, originate from *in vitro* experiments (see Non-Patent Document 3). This neurodegeneration has not been proven directly *in vivo*. The greatest defect of previously reported *in vivo* experiments is that they failed to demonstrate synaptic toxicity of endogenous A β oligomers due to the lack of conformation-specific molecular tools (see Non-Patent Document 4). There has been known no technique capable of proving the toxicity within the human brain, an aspect which is difficult to demonstrate even in Alzheimer's disease mouse models. Thus, the *in vivo* neurotoxicity of endogenous A β has been often disregarded. It has been unknown why NFT formation and loss of nerve cells precede senile plaque formation in the human entorhinal cortex, and how A β oligomers are involved in this mechanism.

[0003] Prior art literature information relating to the present invention is shown below.

[Non-Patent Document 1] Klein WL, Trends Neurosci. 24: 219-224, 2001.

[Non-Patent Document 2] Selkoe DJ, Science 298: 789-791, 2002.

[Non-Patent Document 3] Hass C et al.: Nature Review 8: 101-12, 2007.

[Non-Patent Document 4] Lee EB, et al.: J. Biol. Chem. 281: 4292-4299, 2006.

Disclosure of the Invention

30 [Problems to be Solved by the Invention]

[0004] The present invention was achieved in view of the above circumstances. An objective of the present invention is to provide antibodies that bind specifically to $A\beta$ oligomers, and uses thereof. More specifically, the present invention provides antibodies that bind specifically to $A\beta$ oligomers, methods for detecting $A\beta$ oligomers using the antibodies, methods for diagnosing Alzheimer's disease using the antibodies, and pharmaceutical agents comprising the antibodies.

[Means for Solving the Problems]

[0005] The present inventors produced monoclonal antibodies that are specific to only soluble amyloid β (A β) oligomers and do not recognize soluble A β monomers which are physiological molecules, and confirmed that the antibodies have the following:

- (1) anti-neurotoxic activity;
- (2) activity to suppress Aβ amyloid fibril formation;
- (3) specificity to recognize only Aβ oligomers;
- (4) ability to capture Aβ oligomers in AD brain; and
- (5) ability to prevent the development of Alzheimer's disease-like phenotypes (memory impairment, brain A β accumulation) in APPswe transgenic mice (Tg2576).

[0006] Using an ultrafiltration/molecular sieve method, among the antibodies produced, monoclonal 1A9 and 2C3 were determined to specifically recognize oligomers of 30 kDa or more, mainly 100 kDa or more, but not monomers of approximately 4.5 kDa. The two antibodies were confirmed to have neurotoxicity-neutralizing activity by evaluating the neutralizing effect against Aβ 1-42-induced neurotoxicity in PC12 cells differentiated into nerve cells. Thioflavin T assay and electron microscopy showed that the antibodies have activity to suppress Aβ amyloid fibril formation. The ability of 1A9 and 2C3 to capture Aβ oligomers in AD brain was confirmed by immunoprecipitation using the antibodies in the presence of SDS-stable 4-, 5-, 8-, and 12-mers. Furthermore, to determine the *in vivo* neurotoxicity in the human brain, the amount of polymers recognized by the antibodies was evaluated in the human entorhinal cortex mostly at Braak NFT Stages I to III. By particularly focusing on the 12-mer, which has been reported to have neurotoxicity in animal

studies, it was confirmed that the polymer accumulation precedes the occurrence of cognitive impairment, and is increased with the progression of Braak NFT stage. This result shows for the first time that the 12-mer, which is specifically recognized by the antibodies, is a conformational assembly that causes *in vivo* neurotoxicity in the human brain. The present inventors also discovered that the oligomeric conformational structure recognized by the antibodies is present in cerebrospinal fluid (CSF), and is increased in AD patients. The present inventors used 1A9 or 2C3 in passive immunotherapy by intravenous injection as with other neurological disorders. It was confirmed that Tg2576 mice are protected from memory impairment, senile plaque formation, synaptic dysfunction, and A β accumulation by subchronic passive immunotherapy, without harmful side-effects. The results obtained by the present inventors demonstrated for the first time that monoclonal 1A9 and 2C3 are promising candidates for therapeutic antibodies for preventing Alzheimer's disease-like phenotypes in Tg2576 mice, which are expected to show their effect by conventional peripheral intravenous administration, and thus there is no need to consider brain transfer.

[0007] The present inventors also confirmed that passive immunotherapy using the 1A9 and 2C3 antibodies suppresses senile plaque amyloid formation and swollen dystrophic neurite formation. Furthermore, the present inventors discovered that a fraction of the 1A9 and 2C3 antibodies administered into the blood transfers into the brain.

[0008] As described above, the present inventors disclose herein that monoclonal 1A9 and 2C3, which are antibodies that specifically bind to $A\beta$ oligomers, fulfill all of the diagnostic/therapeutic antibody criteria, and are promising candidates for therapeutic antibodies for diagnosing/preventing Alzheimer's disease.

[0009] Furthermore, as with the 1A9 and 2C3 antibodies, the present inventors successfully obtained the 5A5, 5A9, 4F7, 4H5, 6E4, and 6H4 antibodies which bind specifically to A β oligomers, but do not recognize A β monomers. The present inventors discovered that these six types of antibodies have activity to neutralize A β -induced neurotoxicity and to suppress A β amyloid fibril formation.

[0010] The present inventors disclose that the above-mentioned 5A5, 5A9, 4F7, 4H5, 6E4, and 6H4 antibodies are promising candidates for therapeutic antibodies for diagnosing/preventing Alzheimer's disease.

[0011] More specifically, the present invention provides the following:

10

15

20

25

30

35

40

45

50

55

[1] an antibody binding to an Aβ oligomer that binds to an antibody comprising an H chain having the amino acid sequence of SEQ ID NO: 1 and an L chain having the amino acid sequence of SEQ ID NO: 3;

[2] an antibody binding to an A β oligomer that binds to an antibody comprising an H chain having the amino acid sequence of SEQ ID NO: 21 and an L chain having the amino acid sequence of SEQ ID NO: 23;

[3] an antibody binding to an A β oligomer that binds to an antibody comprising an H chain having the amino acid sequence of SEQ ID NO: 41 and an L chain having the amino acid sequence of SEQ ID NO: 43;

[4] an antibody binding to an A β oligomer that binds to an antibody comprising an H chain having the amino acid sequence of SEQ ID NO: 61 and an L chain having the amino acid sequence of SEQ ID NO: 63;

[5] an antibody binding to an A β oligomer that binds to an antibody comprising an H chain having the amino acid sequence of SEQ ID NO: 81 and an L chain having the amino acid sequence of SEQ ID NO: 83;

[6] an antibody binding to an A β oligomer that binds to an antibody comprising an H chain having the amino acid sequence of SEQ ID NO: 101 and an L chain having the amino acid sequence of SEQ ID NO: 103;

[7] an antibody of any one of (1) to (38) below:

- (1) an antibody that comprises an H chain having the amino acid sequence of SEQ ID NO: 9 as CDR1, the amino acid sequence of SEQ ID NO: 11 as CDR2, and the amino acid sequence of SEQ ID NO: 13 as CDR3; (2) an antibody that comprises an L chain having the amino acid sequence of SEQ ID NO: 15 as CDR1, the amino acid sequence of SEQ ID NO: 17 as CDR2, and the amino acid sequence of SEQ ID NO: 19 as CDR3; (3) an antibody that comprises the H chain of (1) and the L chain of (2);
- (4) an antibody that comprises an H chain having the amino acid sequence of SEQ ID NO: 5 as VH;
- (5) an antibody that comprises an L chain having the amino acid sequence of SEQ ID NO: 7 as VL;
- (6) an antibody that comprises the H chain of (4) and the L chain of (5);
- (7) an antibody that comprises an H chain having the amino acid sequence of SEQ ID NO: 29 as CDR1, the amino acid sequence of SEQ ID NO: 31 as CDR2, and the amino acid sequence of SEQ ID NO: 33 as CDR3;
- (8) an antibody that comprises an L chain having the amino acid sequence of SEQ ID NO: 35 as CDR1, the amino acid sequence of SEQ ID NO: 37 as CDR2, and the amino acid sequence of SEQ ID NO: 39 as CDR3; (9) an antibody that comprises the H chain of (7) and the L chain of (8);
- (10) an antibody that comprises an H chain having the amino acid sequence of SEQ ID NO: 25 as VH;
- (11) an antibody that comprises an L chain having the amino acid sequence of SEQ ID NO: 27 as VL;
- (12) an antibody that comprises the H chain of (10) and the L chain of (11);
- (13) an antibody that comprises an H chain having the amino acid sequence of SEQ ID NO: 49 as CDR1, the amino acid sequence of SEQ ID NO: 51 as CDR2, and the amino acid sequence of SEQ ID NO: 53 as CDR3; (14) an antibody that comprises an L chain having the amino acid sequence of SEQ ID NO: 55 as CDR1, the

amino acid sequence of SEQ ID NO: 57 as CDR2, and the amino acid sequence of SEQ ID NO: 59 as CDR3; (15) an antibody that comprises the H chain of (13) and the L chain of (14);

- (16) an antibody that comprises an H chain having the amino acid sequence of SEQ ID NO: 45 as VH;
- (17) an antibody that comprises an L chain having the amino acid sequence of SEQ ID NO: 47 as VL;
- (18) an antibody that comprises the H chain of (16) and the L chain of (17);

5

10

15

20

25

30

35

40

45

- (19) an antibody that comprises an H chain having the amino acid sequence of SEQ ID NO: 69 as CDR1, the amino acid sequence of SEQ ID NO: 71 as CDR2, and the amino acid sequence of SEQ ID NO: 73 as CDR3; (20) an antibody that comprises an L chain having the amino acid sequence of SEQ ID NO: 75 as CDR1, the amino acid sequence of SEQ ID NO: 77 as CDR2, and the amino acid sequence of SEQ ID NO: 79 as CDR3; (21) an antibody that comprises the H chain of (19) and the L chain of (20);
- (22) an antibody that comprises an H chain having the amino acid sequence of SEQ ID NO: 65 as VH;
- (23) an antibody that comprises an L chain having the amino acid sequence of SEQ ID NO: 67 as VL;
- (24) an antibody that comprises the H chain of (22) and the L chain of (23);
- (25) an antibody that comprises an H chain having the amino acid sequence of SEQ ID NO: 89 as CDR1, the amino acid sequence of SEQ ID NO: 91 as CDR2, and the amino acid sequence of SEQ ID NO: 93 as CDR3; (26) an antibody that comprises an L chain having the amino acid sequence of SEQ ID NO: 95 as CDR1, the amino acid sequence of SEQ ID NO: 97 as CDR2, and the amino acid sequence of SEQ ID NO: 99 as CDR3; (27) an antibody that comprises the H chain of (25) and the L chain of (26);
- (28) an antibody that comprises an H chain having the amino acid sequence of SEQ ID NO: 85 as VH;
- (29) an antibody that comprises an L chain having the amino acid sequence of SEQ ID NO: 87 as VL;
- (30) an antibody that comprises the H chain of (28) and the L chain of (29);
- (31) an antibody that comprises an H chain having the amino acid sequence of SEQ ID NO: 109 as CDR1, the amino acid sequence of SEQ ID NO: 111 as CDR2, and the amino acid sequence of SEQ ID NO: 113 as CDR3; (32) an antibody that comprises an L chain having the amino acid sequence of SEQ ID NO: 115 as CDR1, the amino acid sequence of SEQ ID NO: 117 as CDR2, and the amino acid sequence of SEQ ID NO: 119 as CDR3; (32) an antibody that comprises the LI shain of (34) and the Links of (32):
- (33) an antibody that comprises the H chain of (31) and the L chain of (32);
- (34) an antibody that comprises an H chain having the amino acid sequence of SEQ ID NO: 105 as VH;
- (35) an antibody that comprises an L chain having the amino acid sequence of SEQ ID NO: 107 as VL;
- (36) an antibody that comprises the H chain of (34) and the L chain of (35);
- (37) an antibody that comprises one or more amino acid substitutions, deletions, additions, and/or insertions in the antibody of any one of (1) to (36), which has equivalent activity to the antibody of any one of (1) to (36); and (38) an antibody that binds to the epitope bound by the antibody of any one of (1) to (36);
- [8] the antibody of [7], wherein the antibody is a chimeric antibody or a humanized antibody;
- [9] a composition comprising the antibody of any one of [1] to [8] and a pharmaceutically acceptable carrier;
 - [10] an agent against cognitive impairment, which comprises the antibody of any one of [1] to [8] or the composition of [9] as an active ingredient;
 - [11] a therapeutic agent for Alzheimer's disease, which comprises the antibody of any one of [1] to [8] or the composition of [9] as an active ingredient;
 - [12] an agent for suppressing the progression of Alzheimer's disease, which comprises the antibody of any one of [1] to [8] or the composition of [9] as an active ingredient;
 - [13] an agent for suppressing senile plaque formation, which comprises the antibody of any one of [1] to [8] or the composition of [9] as an active ingredient;
 - [14] an agent for suppressing A β accumulation, which comprises the antibody of any one of [1] to [8] or the composition of [9] as an active ingredient;
 - [15] an anti-neurotoxic agent, which comprises the antibody of any one of [1] to [8] or the composition of [9] as an active ingredient;
 - [16] an agent for inhibiting A β amyloid fibril formation, which comprises the antibody of any one of [1] to [8] or the composition of [9] as an active ingredient;
- [17] an agent against synaptic toxicity, which comprises the antibody of any one of [1] to [8] or the composition of [9] as an active ingredient;
 - [18] a method for detecting an A β oligomer, which comprises the step of detecting an A β oligomer contained in a sample collected from a subject using the antibody of any one of [1] to [8];
 - [19] a method of diagnosing whether or not a subject is a possible Alzheimer's disease patient, which comprises using the antibody of any one of [1] to [8] to detect an $A\beta$ oligomer in a sample collected from a subject;
 - [20] a method of diagnosing whether or not a subject is a possible Alzheimer's disease patient, which comprises the steps of:

- (a) contacting a sample collected from a subject with the antibody of any one of [1] to [8]; and
- (b) measuring the amount of Aβ oligomer in the sample,

wherein the subject is determined to be a possible Alzheimer's disease patient,

- when the amount measured in step (b) is higher than that of a healthy individual;
 - [21] a method of diagnosing whether or not a subject is a possible Alzheimer's disease patient, which comprises the steps of:
 - (a) contacting a sample collected from a subject with the antibody of any one of [1] to [8] and an antibody that binds to an $A\beta$ monomer; and
 - (b) measuring the ratio of $A\beta$ oligomer to $A\beta$ monomer in the sample,

wherein the subject is determined to be a possible Alzheimer's disease patient,

when the ratio measured in step (b) is higher than that of a healthy individual;

- [22] the method of any one of [18] to [21], wherein the sample is blood or cerebrospinal fluid;
- [23] a pharmaceutical agent for use in the method of any one of [18] to [21]; and
- [24] a kit for use in the method of any one of [18] to [21].

[0012] Furthermore, the present invention provides the following:

[25] a method for preventing and/or treating cognitive impairment, which comprises the step of administering the antibody of any one of [1] to [8] or the composition of [9] as an active ingredient;

[26] a method for preventing and/or treating Alzheimer's disease, which comprises the step of administering the antibody of any one of [1] to [8] or the composition of

[9] as an active ingredient;

5

10

15

20

25

30

35

40

45

50

- [27] a method for suppressing the progression of Alzheimer's disease, which comprises the step of administering the antibody of any one of [1] to [8] or the composition of [9] as an active ingredient;
- [28] a method for suppressing senile plaque formation, which comprises the step of administering the antibody of any one of [1] to [8] or the composition of [9] as an active ingredient;
- [29] a method for suppressing Aβ accumulation, which comprises the step of administering the antibody of any one of [1] to [8] or the composition of [9] as an active ingredient;
 - [30] a method for neutralizing neurotoxicity, which comprises the step of administering the antibody of any one of [1] to [8] or the composition of [9] as an active ingredient;
 - [31] a method for inhibiting $A\beta$ amyloid fibril formation, which comprises the step of administering the antibody of any one of [1] to [8] or the composition of [9] as an active ingredient;
 - [32] a method for neutralizing synaptic toxicity, which comprises the step of administering the antibody of any one of [1] to [8] or the composition of [9] as an active ingredient;
 - [33] use of the antibody of any one of [1] to [8] or the composition of [9] in the production of an agent against cognitive impairment;
 - [34] use of the antibody of any one of [1] to [8] or the composition of [9] in the production of a therapeutic agent for Alzheimer's disease;
 - [35] use of the antibody of any one of [1] to [8] or the composition of [9] in the production of an agent for suppressing the progression of Alzheimer's disease;
 - [36] use of the antibody of any one of [1] to [8] or the composition of [9] in the production of an agent for suppressing senile plaque formation;
 - [37] use of the antibody of any one of [1] to [8] or the composition of [9] in the production of an agent for suppressing $A\beta$ accumulation;
 - [38] use of the antibody of any one of [1] to [8] or the composition of [9] in the production of an agent for neutralizing (suppressing) neurotoxicity;
- [39] use of the antibody of any one of [1] to [8] or the composition of [9] in the production of an agent for inhibiting Aβ amyloid fibril formation;
 - [40] use of the antibody of any one of [1] to [8] or the composition of [9] in the production of an agent for neutralizing (suppressing) synaptic toxicity;
 - [41] the antibody of any one of [1] to [8] or the composition of [9] for use in preventing and/or treating cognitive impairment;
 - [42] the antibody of any one of [1] to [8] or the composition of [9] for use in preventing and/or treating Alzheimer's disease:
 - [43] the antibody of any one of [1] to [8] or the composition of [9] for use in suppressing the progression of Alzheimer's

disease;

5

- [44] the antibody of any one of [1] to [8] or the composition of [9] for use in suppressing senile plaque formation;
- [45] the antibody of any one of [1] to [8] or the composition of [9] for use in suppressing Aβ accumulation;
- [46] the antibody of any one of [1] to [8] or the composition of [9] for use in neutralizing (suppressing) neurotoxicity;
- [47] the antibody of any one of [1] to [8] or the composition of [9] for use in inhibiting A β amyloid fibril formation; and
- [48] the antibody of any one of [1] to [8] or the composition of [9] for use in neutralizing (suppressing) synaptic toxicity.

[Effects of the Invention]

10 [0013] The antibodies provided by the present invention are expected to greatly contribute to the establishment of preventive/therapeutic methods selective to molecules responsible for evoking pathological conditions of Alzheimer's disease, and the establishment of early diagnostic markers for Alzheimer's disease. The present inventors obtained evidence showing that, even in antibody therapy targeting pathological conditions in the brain, peripheral intravenous administration is sufficient and there is no need to consider brain transfer. Thus, the present invention is expected to 15 rapidly accelerate the progress of antibody drugs for Alzheimer's disease.

Brief Description of the Drawings

[0014]

20

25

30

35

40

45

50

55

Fig. 1 presents photographs and a graph showing the results of production and characteristic determination of oligomer-specific antibodies. A:

Electrophoresis of immunogens. The Aß 1-42 tetramer (black arrowhead) which is free of contamination of the Aβ 1-42 monomer (outlined arrowhead) was isolated using SDS-PAGE. Lane 1: Aβ 1-42 dissolved in 10 mM phosphate buffer; and Lane 2: Aβ 1-42 dissolved in distilled deionized water. B: Aβ amyloid, which is insoluble in a buffer but can be extracted using formic acid from the brain of Alzheimer's disease patients, was immunoprecipitated using the supernatant of a positive hybridoma cell culture, and the immune complex was selectively separated using protein-G agarose (Amersham). Nine clones were tested; lane 2 (asterisk) is 1A9 and lane 6 (double asterisk) is 2C3. C: Elution profile of SEC of a conditioned medium. Among the 24 SEC-collected fractions, fractions 8, 13, and 16 were subjected to 1A9 immunoprecipitation. Aβ immunoreactivity was detected using 4G8. The black arrowhead indicates the trimer and the outlined arrowhead indicates the dimer. Asterisk (*) indicates the anti-mouse IgG light chain.

Fig. 2 presents photographs and a graph showing the antitoxic activity of 1A9 and 2C3. A to F: Representative images of NGF-treated PC12 (PC12N) cells, which were exposed to seed-free Aβ 1-42 at 37°C for 48 hours in the presence or absence of the antibodies (left half of each panel). Representative calcein AM/PI staining where live cells were stained green and dead cells were stained red (right half of each panel). G: The viability of cells exposed to seed-free Aβ 1-42 (25 μM) with the following antibodies: non-specific IgG2b (filled square); 4G8 (open triangle); 1A9 (open square); and 2C3 (filled circle).

Fig. 3 presents photographs and a graph showing the size and morphological characteristics of the toxic Aβ assemblies targeted by 1A9 and 2C3. A: The 540,000 x g supernatant of A β 1-42 (25 μ M) was subjected to a continuous molecular sieving process using ultrafiltration membranes having a molecular weight cutoff value of 3, 10, 30, and 100 kDa (Microcon). The four types of filtrates thus fractioned were named as follows: fraction 1 (<3 kDa), fraction 2 (3 to 10 kDa), fraction 3 (10 to 30 kDa), fraction 4 (30 to 100 kDa); and fraction 5 (>100 kDa) which was finally retained. The presence of Aβ 1-42 in each of the above-mentioned fractions was detected by 4G8 immunoblotting. B: Representative images of NGF-treated PC12 (PC12N) cells treated with the five fractions at 37°C for 48 hours. The toxicity of each fraction was evaluated as described above for Fig. 2. C: The viability of cells treated with the 540,000 x g supernatant of Aβ 1-42 and the five fractions (fractions 1 to 5). Similar results were obtained from two independent experiments. The values are presented in percentage (mean ± SD) with respect to the control. D: Dot blot analysis of the five fractions (fractions 1 to 5). The blots were reacted with A11, 1A9, 2C3, and 4G8. E: AFM images of the five fractions. In fraction 5 (Fr. 5) that had the strongest toxicity, ring-shaped and bead-shaped structures were observed in addition to granular molecules.

Fig. 4 presents photographs and graphs showing the activity of 1A9 and 2C3 to suppress Aβ amyloid fibril formation. A: Amyloid fibril formation of A β 1-42 at various concentrations (10 μ M (open square), 25 μ M (filled diamond), and 50 μM (open circle)) was monitored by ThT assay at 37°C for up to 72 hours. B: Coexisting antibody dose-dependent inhibition of amyloid fibril formation of Aβ 1-42 was observed for 2C3 (open circle). In contrast, the 1A9 (open square), 4G8 (filled triangle), and non-specific IgG (filled square) antibodies did not inhibit fibril-forming assembly of seed-

free A β 1-42 (ThT-negative 540,000 x g supernatant). C: Coexisting antibody dose-dependent inhibition of fibril-forming assembly of A β 1-42 was observed for 2C3 (open circle), and nearly complete inhibition was observed also for 1A9 (open square) at 3 μ M. D: None of the test antibodies added after a 24-hour pre-incubation for A β 1-42 amyloid fibril formation could dissolve nor disassemble the A β 1-42 amyloid fibrils. E to G: EM images of A β 1-42 in the absence (Panel E) and presence of 2C3 (Panel F) and 1A9 (Panel G).

5

10

15

20

25

30

35

40

45

50

55

Fig. 5 presents photographs and graphs on toxicity-related Aβ 1-42 oligomers. A: Dot blot assay (upper half of Panel A): Aβ 1-42 monomers (25 μM) were incubated for a specified time (0 to 72 hours) at 37°C, and immobilized onto a nitrocellulose membrane, and subjected to dot blot assay that uses A11, 1A9, 2C3, or 4G8. The emergence of immunoreactivity-positive structures for each antibody was tested. Immunoreactivity intensity analysis (lower half of Panel A): The results of dot blot assay were analyzed semiquantitatively using the Multi Gauge v 3.0 software (Fuji Film, Tokyo). To correlate the oligomer formation and amyloid fibril formation, the ThT fluorescence value (the right Y axis) was overlaid on the same time axis. B: The Aβ 1-42 assembly after 0-, 2-, 4-, and 24-hour incubation at 37°C, and the change in Aβ 1-42 assembly after further 48-hour incubation. The Aβ 1-42 assembly was detected by 4G8 immunoblotting. C: The toxic activity of the above-mentioned various Aβ 1-42 assemblies. The viability of nerve cells was determined by the LIVE/DEAD assay as described for Fig. 2. D: The anti-neurotoxic activity of 1A9 and 2C3 was evaluated using various Aβ assemblies (the Aβ 1-42 assemblies formed at 37°C for 0 and 2 hours ("0h" and "2h"); and the ThT-positive supernatant collected after ultracentrifugation at 540,000 x g for two hours ("2h sup")). Representative images of PC12N cells exposed to various Aβ 1-42 assemblies in the absence or presence of the antibodies are shown in the left half of Panel D (a: "0h"; b: "2h"; c: "2h sup"; d: "2h sup" + lgG2b; e: "2h sup" + 1A9; f: "2h sup" + 2C3). The viability of cells exposed to various Aβ 1-42 assemblies in the absence or presence of the antibodies is presented in percentage (mean ± SD) with respect to the control, and this is shown in the right half of Panel D. Compared to the "0h" A β 1-42 assembly, the "2h" A β 1-42 assembly lowered the neurotoxicity. "2h sup" recovered the neurotoxicity to a degree similar to that of the "0h" Aβ 1-42 assembly. Nonspecific IgG2b could not block the neurotoxicity induction of the "2h sup" Aβ 1-42 assembly. Monoclonal 1A9 completely inhibited the "2h sup"-induced neurotoxicity, while the ability of 2C3 to inhibit the toxicity was slightly inferior. In the experiments using the two monoclonal antibodies (mAbs), the antitoxic activity of the mAbs was observed at a mAb:Aβ mole ratio of 1 :<25 to 50. This suggests that structurally different 1A9- and 2C3-recognized oligomeric assemblies exist at a relatively low concentration.

Fig. 6 presents photographs and graphs showing that soluble 1A9- and 2C3-recognized oligomers exist in the human brain. Antibodies against A β oligomers can detect senile plaques and vascular amyloids in AD brain only after pretreatment with Protease K. A: 1A9 staining; B: 2C3 staining; and C: A11 staining. D: 4G8 immunoblotting of 1A9- or 2C3-immunoprecipitated A β in buffer-soluble AD brain (lanes 1, 2, 4, and 5) and healthy control brain (lanes 3 and 6). Representative results for 1A9 and 2C3 are shown in the left and right half of the panel, respectively. E and F: Semiquantitative analysis (with actin control) of soluble 1A9-immunoreactive 12-mer (Panel E) and soluble 2C3-immunoreactive 12-mer (Panel F) in the human entorhinal cortex obtained from 50 autopsy cases of a healthy elderly population (Braak NFT Stage I or II: n = 35; Braak NFT Stage III or IV: n = 13; and Braak NFT Stage >IV, AD cases: n = 2).

Fig. 7-1 present graphs showing that soluble 1A9- and 2C3-recognized oligomers exist in human CSF. Pooled whole cerebrospinal fluid (CSF) (AD = 10 and NC = 10) (Panels A and B) and pooled lipoprotein-depleted CSF (AD = 10, and NC = 10) (Panels C and D) were subjected to size exclusion chromatography (SEC). In Panels A and B, the collected fractions were analyzed for the distribution of A β 40 and A β 42 monomers by BNT77-BA27 and BNT77-BC05 ELISAs. Panels C and D show the presence of A β 40 and A β 42 oligomers captured by 1A9/2C3 mixed antibodies.

Fig. 7-2 is the continuation of Fig. 7-1. The amount of 1A9-recognized oligomeric assembly (1A9-BC05 and 1A9-BA27 ELISAs) and the amount of 2C3-recognized assembly (2C3-BC05 and 2C3-BA27 ELISAs) were measured for 12 AD cases (open circle) and 13 NC cases (filled circle) (Panels E and G). The oligomer/monomer ratio is shown in Panels F (1A9) and H (2C3).

Fig. 8 presents graphs showing that the onset of memory impairment in Tg2576 mice can be prevented by passive immunization treatment. 13-month-old Tg2576 mice were divided into the following three groups to perform learning/behavior tests: PBS-administered group: n = 10; 1A9-administered group: n = 13; and 2C3-administered group: n = 11. All of the measured values were indicated as mean \pm SE. (A) Y-maze test. Spontaneous alteration behavior was monitored in each group during an eight-minute session of the Y-maze task. The results of one-way ANOVA were as follows: F(1, 52) = 3.09, p < 0.05; * p < 0.05 in the comparison with PBS-administered Tg2576 mice. (B) Novel object recognition test. The retention session was performed 24 hours after training. The exploratory preference in a ten-minute session in the novel object recognition test was determined in each group. The results of two-way ANOVA were as follows: training/retention, F(1, 64) = 31.53, P < 0.01; animal group, $F(2, 64) \sim 7.49$, P < 0.01; repeated training/retention by the animal group, P(2, 64) = 10.12, P < 0.01; ** P < 0.01 in the comparison with the corresponding untrained mice, ## P < 0.01 in the comparison with PBS-administered Tg2576 mice. (C) The swimming

path length during a 60-second session of water maze test was measured for each group. The results of two-way ANOVA were as follows: trial, F(9, 320) = 20.46, p < 0.01; animal group, F(2, 320) = 12.59, p < 0.01; repeated trial by the animal group, F(18, 320) = 1.78, p < 0.05; p < 0.05, ** p < 0.01 in the comparison with PBS-administered Tg2576 mice. Fear-conditioned learning test: Context-dependent (D) and clue-dependent freezing times (E) were determined. The results of two-way ANOVA were as follows: context-dependent test, F(2, 32) = 5.94, p < 0.01; clue-dependent test, F(2, 32) = 7.33, p < 0.01; * p < 0.05 and ** p < 0.01 in the comparison with PBS-administered Tg2576 mice.

5

10

15

20

25

30

35

40

45

50

Fig. 9 presents graphs and a photograph showing that the brain A β accumulation in Tg2576 can be prevented by passive immunotherapy. The hippocampus and cerebral cortex of three groups of 13-month-old Tg2576 mice (PBS-administered group, n = 10; 1A9-administered group, n = 13; and 2C3-administered group, n = 11) were extracted in three continuous steps to prepare the buffer-soluble, SDS-soluble, and formic acid (FA)-extractable fractions. Each of the fractions was subjected to A β -specific ELISAs (WAKO kit: BNT77-BA27 for A β x-40; BNT77-BC05 for A β x-42). The accumulation of A β 40 (SDS and FA) and A β 42 (SDS) was found to be significantly suppressed only in the 1A9-treated group. The accumulation-suppressing effect for the A11-positive oligomer (4-mer) was confirmed in the SDS-soluble cerebral cortex fractions from the two antibody-treated groups.

Fig. 10 presents photographs and graphs on A β oligomers in the plasma and brain of Tg2576. A and B: As a result of ELISA analysis, no significant difference in the amount of A β x-40 and A β x-42 in the plasma was observed between the PBS-administered group and the immunotherapy group. C: Similarly, no difference in the Aβ 40/Aβ 42 ratio was observed among the three groups tested. D: As a result of dot blot analysis using pooled brain homogenates, no difference in the amount of physiological saline-soluble A11-positive oligomer was observed among the three groups tested. Hippocampus (left panel) and cerebral cortex (right panel). PBS-administered group, n = 10; 1A9administered group, n = 13; and 2C3-administered group, n = 11. E: According to immunoblot analysis using the anti-oligomer A11 antibody, the immunoreactivity of the Aβ tetramer in the SDS-extracted cerebral cortex fraction (right panel) was decreased in the 1A9-and 2C3-administered groups compared to the PBS-administered group. On the other hand, this was not observed in the hippocampus (left panel). F: Blood (albumin-depleted plasma, upper part of Panel F; albumin/lipoprotein-depleted plasma, lower part of Panel F) was pooled from each of the groups, and subjected to A11 dot blot analysis. As a result, the A11 immunoreactivity was found to be increased in the 1A9and 2C3-administered groups compared to the PBS-administered group (Panel F). The proportion of the lipoproteinbound form of 2C3-recognized oligomers was higher than that of 1A9-recognized oligomers (lower part of Panel F). Furthermore, the A11 immunoblotting also showed positive signals at approximately 200 kDa, and the immunoreactivity was clearly increased in the 1A9- and 2C3-administered groups compared to the PBS-administered group (Panel G). From these results, it is conceivable that the therapeutic effect selective only to target Aβ oligomer molecules was obtained in the antibody-administered groups without affecting physiological molecules.

Fig. 11 presents photographs and graphs showing that senile plaque amyloid formation (A: $A\beta$ -specific antibody staining; and B: thioflavin-S-positive analysis) and swollen dystrophic neurite formation (C: synaptophysin-positive analysis) were suppressed in the Tg2576 mouse brain by passive immunization treatment.

Fig. 12 presents photographs showing the suppression of synaptic degeneration by passive immunization treatment with 1A9 and 2C3. Immunostaining of synaptophysin (left panels) and drebrin (right panels) in presynaptic and postsynaptic dot-like peripheral cells. Top: PBS administration; middle: 1A9 administration; and bottom: 2C3 administration.

Fig. 13 presents photographs showing the brain transfer of the antibodies by passive immunization treatment. The distribution of administered antibodies in the Tg2576 mouse brain is shown. Staining with anti-A β antibodies (left panels) and IgG (center panels). 1A9 administration (A), 2C3 administration (B), and PBS administration (C).

Fig. 14 presents photographs showing, by dot blot analysis, that the monoclonal antibodies 5A5, 5A9, 4F7, 4H5, 6E4, and 6H4 are specific to A β oligomers (3 to 96 hours), but do not recognize A β monomers (0 hour).

Fig. 15 presents graphs showing the $A\beta$ oligomer-selective binding ability of the six types of antibodies (4F7, 4H5, 5A5, 5A9, 6E4, and 6H4). The vertical axis indicates the absorbance at a wavelength of 450 nm, and the horizontal axis indicates the concentration of $A\beta$ oligomer or $A\beta$ monomer used as an inhibitor. In each graph, the dashed line indicates the antibody-binding activity when the $A\beta$ oligomer was used as the inhibitor, and the solid line indicates the antibody-binding activity when the $A\beta$ monomer was used as the inhibitor.

Fig. 16 presents graphs showing the neutralizing activity of the six types of antibodies (4F7, 4H5, 5A5, 5A9, 6E4, and 6H4) against $A\beta$ -induced neurotoxicity. The horizontal axis indicates the amount of antibody added, and the vertical axis shows the cytotoxicity relative to that under the antibody-free condition as the standard (see the equation in the figure). Control IgG (3F1), which is an antibody that does not bind to $A\beta$ 42, was used for comparison.

⁵⁵ Fig. 17 presents graphs showing the suppressing activity of the six types of antibodies (4F7, 4H5, 5A5, 5A9, 6E4, and 6H4) against Aβ amyloid fibril formation.

The antibodies were added at three different concentrations to a Aβ 1-42 solution (12.5 μM). After incubation at 37°C

for 24 hours, the level of $A\beta$ amyloid fibril formation was measured by the ThT fluorescence intensity method. The horizontal axis indicates the amount of antibody added, and the vertical axis shows the level of amyloid fibril formation by the antibody addition that is relative to the level of amyloid fibril formation without antibody addition as the standard.

Mode for Carrying Out the Invention

30

35

40

45

50

55

[0015] The present invention will be described more specifically below.

[0016] As described above, the present inventors succeeded in obtaining antibodies that bind specifically to $A\beta$ oligomers but not to $A\beta$ monomers. That is, the present invention provides antibodies that bind to $A\beta$ oligomers but not to $A\beta$ monomers. The antibodies are preferably isolated or purified.

[0017] The terms "isolated" and "purified" used for substances (antibodies and such) of the present invention indicate that the substances do not substantially include at least one substance that may be contained in the natural source. Therefore, "isolated antibodies" and "purified antibodies" refer to antibodies that do not substantially include cell materials such as hydrocarbons, lipids, or other contaminant proteins from the cell or tissue source from which the antibodies (proteins) are derived. When the antibodies are chemically synthesized, the terms refer to antibodies that do not substantially include chemical precursor substances or other chemical substances. In a preferred embodiment, the antibodies of the present invention are isolated or purified.

[0018] "Antibodies" refers to glycoproteins that have the same structural characteristics. Antibodies show binding specificity towards specific antigens. Herein, "antigens" refers to proteins that have the ability to bind to the corresponding antibodies, and induce antigen-antibody reactions *in vivo*.

[0019] A β proteins, which are the major constituents of amyloids, are peptides consisting of 40 to 42 amino acids, and are known to be produced from precursor proteins called amyloid precursor proteins (APPs) by the action of proteases. Besides amyloid fibrils collected in ultracentrifuged sediment fractions, the amyloid molecules produced from APPs include oligomeric non-fibrous assemblies in addition to soluble monomers. "A β oligomers" of the present invention refer to non-fibrous assemblies. The "A β oligomers" of the present invention include, for example, A β 40 (A β 1-40) oligomers and A β 42 (A β 1-42) oligomers. For example, "A β 42 oligomers" of the present invention are molecules showing a molecular weight of 45 to 160 kDa in SDS-PAGE, and 22.5 to 1,035 kDa in Blue Native PAGE. Using molecular sieves, the molecules are collected mainly in the >100 kDa retention solution. When observed under an atomic force microscope, the molecules show mixed morphologies of granular, bead-shaped, and ring-shaped molecules having a height of 1.5 to 3.1 nm. By the gel filtration method, the molecules were eluted in the void volume fraction 8 with a molecular weight of 680 kDa or more, and in fraction 15 with a molecular weight of 17 to 44 kDa.

[0020] There is no limitation on the origin and form of the antibodies used in the present invention as long as they bind to $A\beta$ oligomers but not to $A\beta$ monomers.

[0021] "Antibodies" of the present invention include both monoclonal and polyclonal antibodies. The antibodies of the present invention also include any type of antibodies such as non-human animal antibodies, humanized antibodies, chimeric antibodies, human antibodies, the later-described minibodies, amino acid sequence-modified antibodies, modified antibodies conjugated to other molecules (for example, polymers such as polyethylene glycol), and sugar chain-modified antibodies.

[0022] Herein, the term "monoclonal antibodies" refers to antibodies that are obtained from a substantially homogeneous population of antibodies. That is, the individual antibodies constituting the population are identical with the exception of possible natural mutants that may be present in a trace amount. Monoclonal antibodies are highly specific and recognize a single antigenic site. Each of the monoclonal antibodies recognizes a single determinant of the antigen, in contrast to conventional (polyclonal) antibody preparations that typically contain different antibodies against different antigenic determinants (epitopes).

[0023] In addition to the above-mentioned specificity, monoclonal antibodies have the advantage that they can be synthesized from a hybridoma culture that is not contaminated with other immunoglobulins. Therefore, "monoclonal" indicates the characteristics of antibodies that can be obtained from a substantially homogeneous antibody population. This term does not indicate the requirement for any specific method for antibody production.

[0024] Basically, monoclonal antibodies can be produced by using known techniques. For example, they may be produced by the hybridoma method first described by Kohler and Milstein (Nature 256: 495-7, 1975), or by the recombinant DNA method (Cabilly et al., Proc. Natl. Acad. Sci. USA 81:3273-7, 1984), but the methods are not limited thereto. For example, when using the hybridoma method, an A β oligomer (for example, the A β tetramer described in the Examples) is used as a sensitizing antigen, and immunization is carried out according to a conventional immunization method. The obtained immune cells are fused with known parent cells by a conventional cell fusion method, and monoclonal antibody-producing cells can be screened and isolated using a conventional screening method.

[0025] The monoclonal antibodies of the present invention can be produced as follows. Synthetic A β 1-42 (Peptide Institute, Inc., Osaka) is dissolved in distilled deionized water or a 10 mM phosphate buffer solution, and this is incubated at 37°C for 18 hours. Then, the peptides are separated by 4-12% SDS-PAGE, and visualized by CBB staining, and the

portion of the $A\beta$ 1-42 tetramer alone which is not contaminated with the $A\beta$ 1-42 monomer is cut out and used as an antigen. On the other hand, a preparation containing a large amount of the $A\beta$ 1-40 oligomer is prepared by mixing (i) a modified $A\beta$ 1-40 prepared by chemically linking 6-carboxytetramethylrhodamine (6-TAMRA) (SIGMA) to the N terminus of a synthetic $A\beta$ 1-40 peptide using a conventional method with (ii) synthetic $A\beta$ 1-40 (Peptide Institute, Inc., Osaka) at a ratio of 5:100, 10:100, 20:100, 30:100, 40:100, 50:100, 60:100, 70:100, or 80:100, preferably 90:100, or more preferably 100:100, and carrying out polymerization reaction for three hours, preferably six hours, or more preferably 20 hours. Next, Balb-c mice are immunized with 2.5 μ g of either the $A\beta$ 1-42 tetramer or $A\beta$ 1-40 oligomer emulsified using complete Freund's adjuvant by injecting the antigen into their foot pad. Subsequently, booster immunizations are carried out six times. Hybridomas are produced from the inguinal lymph node by fusion with Sp2/O-Ag14 cells using Polyethylene Glycol 1500.

[0026] The animals immunized with sensitizing antigens are not particularly limited, but are preferably selected considering the compatibility with parent cells used for cell fusion. Generally, rodents, lagomorphs, or primates are used. Rodents include, for example, mice, rats, and hamsters. Lagomorphs include, for example, rabbits. Primates include, for example, Catarrhini (old-world) monkeys such as *Macaca fascicularis, Macaca mulatta*, hamadryas, and chimpanzees.

10

15

30

35

40

45

50

[0027] Animals are immunized with sensitizing antigens according to known methods. For example, as a standard method, immunization is performed by intraperitoneal or subcutaneous injection of a sensitizing antigen into mammals. [0028] An example of the parent cells fused with the aforementioned immunocytes is the Sp2/O-Ag14 cell, which will be described below in the Examples. However, various other known cell lines can be used.

[0029] Cell fusion between the aforementioned immunocyte and a myeloma cell can be carried out basically according to known methods including the method by Kohler and Milstein (Kohler G. and Milstein C., Methods Enzymol. (1981) 73, 3-46).

[0030] Hybridomas obtained in this manner are selected by culturing them in a conventional selection culture medium such as a HAT culture medium, which contains hypoxanthine, aminopterin, and thymidine. Culturing in the abovementioned HAT culture medium is generally continued for several days to several weeks for an adequate time for killing cells other than the desired hybridomas (non-fused cells). Next, a conventional limiting dilution method is performed for screening and singly-cloning of a hybridoma that produces the desired antibody.

[0031] Thereafter, the obtained hybridoma is transplanted into the abdominal cavity of a mouse, and ascitic fluid containing the desired monoclonal antibodies is extracted. For example, the antibodies can be purified from the ascitic fluid by conventional protein separation and/or purification methods such as a selected combination of column chromatography including, but not limited to, affinity chromatography, filtration, ultrafiltration, salt precipitation, dialysis, SDS polyacrylamide gel electrophoresis, and isoelectric focusing (Antibodies: A Laboratory manual, Harlow and David, Lane (edit.), Cold Spring Harbor Laboratory, 1988).

[0032] Protein A columns and Protein G columns can be used for affinity columns. Examples of the Protein A columns used include Hyper D, POROS, and Sepharose F.F. (Pharmacia).

[0033] Chromatography (excluding affinity chromatography) includes ion exchange chromatography, hydrophobic chromatography, gel filtration, reverse-phase chromatography, and adsorption chromatography ("Strategies for Protein Purification and Characterization: A Laboratory Course Manual", Daniel R Marshak et al., Cold Spring Harbor Laboratory Press, 1996). When chromatography is carried out, liquid-phase chromatography methods such as HPLC and FPLC can be used.

[0034] Monoclonal antibody-producing hybridomas prepared in this manner can be subcultured in a conventional culture medium, and they can be stored for a long time in liquid nitrogen.

[0035] Any mammal can be immunized using an immunogen for antibody production. However, when preparing monoclonal antibodies by producing hybridomas, the compatibility with parent cells used in cell fusion for hybridoma production is preferably considered.

[0036] Generally, rodents, lagomorphs, or primates are used for the immunization. Rodents include, for example, mice, rats, and hamsters. Lagomorphs include, for example, rabbits. Primates include, for example, Catarrhini (oldworld) monkeys such as *Macaca fascicularis, Macaca mulatta*, hamadryas, and chimpanzees.

[0037] The use of transgenic animals that have a human antibody gene repertoire is known in the art (Ishida I, et al., Cloning and Stem Cells 4: 91-102, 2002). As with other animals, to obtain human monoclonal antibodies, the transgenic animals are immunized, then antibody-producing cells are collected from the animals and fused with myeloma cells to produce hybridomas, and anti-protein human antibodies can be prepared from these hybridomas (see International Publication Nos. WO92/03918, WO94/02602, WO94/25585, WO96/33735, and WO96/34096).

[0038] Alternatively, lymphocytes immortalized with oncogenes may be used for monoclonal antibody production. For example, human lymphocytes infected with EB virus or such is immunized *in vitro* with immunogens. Next, the immunized lymphocytes are fused with human-derived myeloma cells (U266, etc) capable of unlimited division, and thus hybridomas that produce the desired human antibodies are obtained (Japanese Patent Application Kokai Publication No. (JP-A) S63-17688 (unexamined, published Japanese patent application)).

[0039] Once monoclonal antibodies can be obtained by any of the aforementioned methods, the antibodies may also be prepared using genetic engineering methods (see, for example, Borrebaeck CAK and Larrick JW, Therapeutic Monoclonal Antibodies, MacMillan Publishers, UK, 1990). For example, recombinant antibodies may be prepared by cloning DNAs that encode the desired antibodies from antigen-producing cells such as hybridomas or immunized lymphocytes that produce the antibodies, then inserting the cloned DNAs into appropriate vectors, and transfecting the vectors into suitable host cells. Such recombinant antibodies are also included in the present invention.

[0040] Examples of the monoclonal antibodies of the present invention include the 1A9 monoclonal antibody, 2C3 monoclonal antibody, 5A5 monoclonal antibody, 5A9 monoclonal antibody, 4F7 monoclonal antibody, 4H5 monoclonal antibody, 6E4 monoclonal antibody, and 6H4 monoclonal antibody. Preferably, the monoclonal antibodies include the antibodies of (i) to (vi) below:

- (i) an antibody that comprises an H chain (heavy chain) having the amino acid sequence of SEQ ID NO: 1 and an L chain (light chain) having the amino acid sequence of SEQ ID NO: 3;
- (ii) an antibody that comprises an H chain (heavy chain) having the amino acid sequence of SEQ ID NO: 21 and an L chain (light chain) having the amino acid sequence of SEQ ID NO: 23;
- (iii) an antibody that comprises an H chain (heavy chain) having the amino acid sequence of SEQ ID NO: 41 and an L chain (light chain) having the amino acid sequence of SEQ ID NO: 43;
- (iv) an antibody that comprises an H chain (heavy chain) having the amino acid sequence of SEQ ID NO: 61 and an L chain (light chain) having the amino acid sequence of SEQ ID NO: 63;
- (v) an antibody that comprises an H chain (heavy chain) having the amino acid sequence of SEQ ID NO: 81 and an L chain (light chain) having the amino acid sequence of SEQ ID NO: 83;
- (vi) an antibody that comprises an H chain (heavy chain) having the amino acid sequence of SEQ ID NO: 101 and an L chain (light chain) having the amino acid sequence of SEQ ID NO: 103.
- [0041] In an embodiment, the antibodies of the present invention include minibodies. A minibody contains an antibody fragment lacking a portion of a whole antibody, and is not particularly limited as long as it has the ability to bind to an antigen. Examples of antibody fragments include Fab, Fab', F(ab')2, and Fv. Examples of minibodies include Fab, Fab', F(ab')2, Fv, scFv (single chain Fv), diabody, and sc(Fv)2 (single chain (Fv)2).
 - [0042] To obtain polyclonal antibodies against the proteins of the present invention, blood is removed from a mammal sensitized with an antigen after the serum level of the desired antibody is confirmed to be increased. Serum is separated from blood by a known method. When a polyclonal antibody is used, serum containing the polyclonal antibody may be utilized. Alternatively, if necessary, a fraction containing the polyclonal antibody may be isolated from serum and then used. For example, immunoglobulin G or M can be prepared by obtaining a fraction that specifically recognizes a protein of the present invention using an affinity column coupled with the protein, and then purifying this fraction using a Protein A or Protein G column.
 - **[0043]** In the present invention, the antibody that binds to an A β oligomer is an antibody binding to an A β oligomer that binds 1A9, 2C3, 5A5, 5A9, 4F7, 4H5, 6E4, or 6H4. Preferably, the antibody is any one of the antibodies of (A) to (F) below:
 - (A) an antibody binding to an $A\beta$ oligomer that binds to an antibody comprising an H chain having the amino acid sequence of SEQ ID NO: 1 and an L chain having
 - the amino acid sequence of SEQ ID NO: 3;
 - (B) an antibody binding to an Aβ oligomer that binds to an antibody comprising an H chain having the amino acid sequence of SEQ ID NO: 21 and an L chain having
- the amino acid sequence of SEQ ID NO: 23;

10

15

20

30

35

40

- (C) an antibody binding to an $A\beta$ oligomer that binds to an antibody comprising an H chain having the amino acid sequence of SEQ ID NO: 41 and an L chain having
- the amino acid sequence of SEQ ID NO: 43;
- (D) an antibody binding to an $A\beta$ oligomer that binds to an antibody comprising an H chain having the amino acid sequence of SEQ ID NO: 61 and an L chain having
- the amino acid sequence of SEQ ID NO: 63;
- (E) an antibody binding to an $A\beta$ oligomer that binds to an antibody comprising an H chain having the amino acid sequence of SEQ ID NO: 81 and an L chain having
- the amino acid sequence of SEQ ID NO: 83; and
- (F) an antibody binding to an Aβ oligomer that binds to an antibody comprising an H chain having the amino acid sequence of SEQ ID NO: 101 and an L chain
 - having the amino acid sequence of SEQ ID NO: 103.

- **[0044]** Furthermore, the present invention provides Aβ oligomers to which the antibodies of the present invention bind. Preferably, the antibodies include, for example, the 1A9 monoclonal antibody, 2C3 monoclonal antibody, 5A5 monoclonal antibody, 5A9 monoclonal antibody, 4F7 monoclonal antibody, 4H5 monoclonal antibody, 6E4 monoclonal antibody, and 6H4 monoclonal antibody. Such Aβ oligomers can be used as antigens for preparing antibodies, or vaccines.
- ⁵ **[0045]** In a preferred embodiment, the antibodies of the present invention include, for example, the antibody of any one of (1) to (38) below:
 - (1) an antibody that comprises an H chain having the amino acid sequence of SEQ ID NO: 9 as CDR1, the amino acid sequence of SEQ ID NO: 13 as CDR2, and the amino acid sequence of SEQ ID NO: 13 as CDR3;
 - (2) an antibody that comprises an L chain having the amino acid sequence of SEQ ID NO: 15 as CDR1, the amino acid sequence of SEQ ID NO: 17 as CDR2, and the amino acid sequence of SEQ ID NO: 19 as CDR3;
 - (3) an antibody that comprises the H chain of (1) and the L chain of (2);
 - (4) an antibody that comprises an H chain having the amino acid sequence of SEQ ID NO: 5 as VH;
 - (5) an antibody that comprises an L chain having the amino acid sequence of SEQ ID NO: 7 as VL;
- (6) an antibody that comprises the H chain of (4) and the L chain of (5);

10

20

25

30

35

40

45

- (7) an antibody that comprises an H chain having the amino acid sequence of SEQ ID NO: 29 as CDR1, the amino acid sequence of SEQ ID NO: 31 as CDR2, and the amino acid sequence of SEQ ID NO: 33 as CDR3;
- (8) an antibody that comprises an L chain having the amino acid sequence of SEQ ID NO: 35 as CDR1, the amino acid sequence of SEQ ID NO: 37 as CDR2, and the amino acid sequence of SEQ ID NO: 39 as CDR3;
- (9) an antibody that comprises the H chain of (7) and the L chain of (8);
- (10) an antibody that comprises an H chain having the amino acid sequence of SEQ ID NO: 25 as VH;
- (11) an antibody that comprises an L chain having the amino acid sequence of SEQ ID NO: 27 as VL;
- (12) an antibody that comprises the H chain of (10) and the L chain of (11);
- (13) an antibody that comprises an H chain having the amino acid sequence of SEQ ID NO: 49 as CDR1, the amino acid sequence of SEQ ID NO: 51 as CDR2, and the amino acid sequence of SEQ ID NO: 53 as CDR3;
 - (14) an antibody that comprises an L chain having the amino acid sequence of SEQ ID NO: 55 as CDR1, the amino acid sequence of SEQ ID NO: 57 as CDR2, and the amino acid sequence of SEQ ID NO: 59 as CDR3;
 - (15) an antibody that comprises the H chain of (13) and the L chain of (14);
 - (16) an antibody that comprises an H chain having the amino acid sequence of SEQ ID NO: 45 as VH;
 - (17) an antibody that comprises an L chain having the amino acid sequence of SEQ ID NO: 47 as VL;
 - (18) an antibody that comprises the H chain of (16) and the L chain of (17);
 - (19) an antibody that comprises an H chain having the amino acid sequence of SEQ ID NO: 69 as CDR1, the amino acid sequence of SEQ ID NO: 71 as CDR2, and the amino acid sequence of SEQ ID NO: 73 as CDR3;
 - (20) an antibody that comprises an L chain having the amino acid sequence of SEQ ID NO: 75 as CDR1, the amino acid sequence of SEQ ID NO: 77 as CDR2, and the amino acid sequence of SEQ ID NO: 79 as CDR3;
 - (21) an antibody that comprises the H chain of (19) and the L chain of (20);
 - (22) an antibody that comprises an H chain having the amino acid sequence of SEQ ID NO: 65 as VH;
 - (23) an antibody that comprises an L chain having the amino acid sequence of SEQ ID NO: 67 as VL;
 - (24) an antibody that comprises the H chain of (22) and the L chain of (23);
 - (25) an antibody that comprises an H chain having the amino acid sequence of SEQ ID NO: 89 as CDR1, the amino acid sequence of SEQ ID NO: 91 as CDR2, and the amino acid sequence of SEQ ID NO: 93 as CDR3;
 - (26) an antibody that comprises an L chain having the amino acid sequence of SEQ ID NO: 95 as CDR1, the amino acid sequence of SEQ ID NO: 97 as CDR2, and the amino acid sequence of SEQ ID NO: 99 as CDR3;
 - (27) an antibody that comprises the H chain of (25) and the L chain of (26);
 - (28) an antibody that comprises an H chain having the amino acid sequence of SEQ ID NO: 85 as VH;
 - (29) an antibody that comprises an L chain having the amino acid sequence of SEQ ID NO: 87 as VL;
 - (30) an antibody that comprises the H chain of (28) and the L chain of (29);
 - (31) an antibody that comprises an H chain having the amino acid sequence of SEQ ID NO: 109 as CDR1, the amino acid sequence of SEQ ID NO: 111 as CDR2, and the amino acid sequence of SEQ ID NO: 113 as CDR3;
- (32) an antibody that comprises an L chain having the amino acid sequence of SEQ ID NO: 115 as CDR1, the amino acid sequence of SEQ ID NO: 117 as CDR2, and the amino acid sequence of SEQ ID NO: 119 as CDR3;
 - (33) an antibody that comprises the H chain of (31) and the L chain of (32);
 - (34) an antibody that comprises an H chain having the amino acid sequence of SEQ ID NO: 105 as VH;
 - (35) an antibody that comprises an L chain having the amino acid sequence of SEQ ID NO: 107 as VL;
- 55 (36) an antibody that comprises the H chain of (34) and the L chain of (35);
 - (37) an antibody that comprises one or more amino acid substitutions, deletions, additions, and/or insertions in the antibody of any one of (1) to (36), which has equivalent activity as the antibody of any one of (1) to (36); and (38) an antibody that binds to the epitope bound by the antibody of any one of (1) to (36).

- [0046] An example of the VH in the above-mentioned "H chain having the amino acid sequence of SEQ ID NO: 9 (sequence of the 5A5 antibody H-chain CDR1) as CDR1, the amino acid sequence of SEQ ID NO: 11 (sequence of the 5A5 antibody H-chain CDR2) as CDR2, and the amino acid sequence of SEQ ID NO: 13 (sequence of the 5A5 antibody H-chain CDR3) as CDR3"of (1) is a VH having the amino acid sequence of SEQ ID NO: 5 (sequence of the 5A5 antibody VH).
- [0047] An example of the VL in the above-mentioned "L chain having the amino acid sequence of SEQ ID NO: 15 (sequence of the 5A5 antibody L-chain CDR1) as CDR1, the amino acid sequence of SEQ ID NO: 17 (sequence of the 5A5 antibody L-chain CDR2) as CDR2, and the amino acid sequence of SEQ ID NO: 19 (sequence of the 5A5 antibody L-chain CDR3) as CDR3" of (2) is a VL having the amino acid sequence of SEQ ID NO: 7 (sequence of the 5A5 antibody VL).
- [0048] An example of the VH in the above-mentioned "H chain having the amino acid sequence of SEQ ID NO: 29 (sequence of the 5A9 antibody H-chain CDR1) as CDR1, the amino acid sequence of SEQ ID NO: 31 (sequence of the 5A9 antibody H-chain CDR2) as CDR2, and the amino acid sequence of SEQ ID NO: 33 (sequence of the 5A9 antibody H-chain CDR3) as CDR3"of (7) is a VH having the amino acid sequence of SEQ ID NO: 25 (sequence of the 5A9 antibody VH).
- [0049] An example of the VL in the above-mentioned "L chain having the amino acid sequence of SEQ ID NO: 35 (sequence of the 5A9 antibody L-chain CDR1) as CDR1, the amino acid sequence of SEQ ID NO: 37 (sequence of the 5A9 antibody L-chain CDR2) as CDR2, and the amino acid sequence of SEQ ID NO: 39 (sequence of the 5A9 antibody L-chain CDR3) as CDR3"of (8) is a VL having the amino acid sequence of SEQ ID NO: 27 (sequence of the 5A9 antibody VL).
- [0050] An example of the VH in the above-mentioned "H chain having the amino acid sequence of SEQ ID NO: 49 (sequence of the 4F7 antibody H-chain CDR1) as CDR1, the amino acid sequence of SEQ ID NO: 51 (sequence of the 4F7 antibody H-chain CDR2) as CDR2, and the amino acid sequence of SEQ ID NO: 53 (sequence of the 4F7 antibody H-chain CDR3) as CDR3"of (13) is a VH having the amino acid sequence of SEQ ID NO: 45 (sequence of the 4F7 antibody VH).
- [0051] An example of the VL in the above-mentioned "L chain having the amino acid sequence of SEQ ID NO: 55 (sequence of the 4F7 antibody L-chain CDR1) as CDR1, the amino acid sequence of SEQ ID NO: 57 (sequence of the 4F7 antibody L-chain CDR2) as CDR2, and the amino acid sequence of SEQ ID NO: 59 (sequence of the 4F7 antibody L-chain CDR3) as CDR3"of (14) is a VL having the amino acid sequence of SEQ ID NO: 47 (sequence of the 4F7 antibody VL).
- [0052] An example of the VH in the above-mentioned "H chain having the amino acid sequence of SEQ ID NO: 69 (sequence of the 4H5 antibody H-chain CDR1) as CDR1, the amino acid sequence of SEQ ID NO: 71 (sequence of the 4H5 antibody H-chain CDR2) as CDR2, and the amino acid sequence of SEQ ID NO: 73 (sequence of the 4H5 antibody H-chain CDR3) as CDR3"of (19) is a VH having the amino acid sequence of SEQ ID NO: 65 (sequence of the 4H5 antibody VH).
- [0053] An example of the VL in the above-mentioned "L chain having the amino acid sequence of SEQ ID NO: 75 (sequence of the 4H5 antibody L-chain CDR1) as CDR1, the amino acid sequence of SEQ ID NO: 77 (sequence of the 4H5 antibody L-chain CDR2) as CDR2, and the amino acid sequence of SEQ ID NO: 79 (sequence of the 4H5 antibody L-chain CDR3) as CDR3"of (20) is a VL having the amino acid sequence of SEQ ID NO: 67 (sequence of the 4H5 antibody VL).
- [0054] An example of the VH in the above-mentioned "H chain having the amino acid sequence of SEQ ID NO: 89 (sequence of the 6E4 antibody H-chain CDR1) as CDR1, the amino acid sequence of SEQ ID NO: 91 (sequence of the 6E4 antibody H-chain CDR2) as CDR2, and the amino acid sequence of SEQ ID NO: 93 (sequence of the 6E4 antibody H-chain CDR3) as CDR3"of (25) is a VH having the amino acid sequence of SEQ ID NO: 85 (sequence of the 6E4 antibody VH).
- [0055] An example of the VL in the above-mentioned "L chain having the amino acid sequence of SEQ ID NO: 95 (sequence of the 6E4 antibody L-chain CDR1) as CDR1, the amino acid sequence of SEQ ID NO: 97 (sequence of the 6E4 antibody L-chain CDR2) as CDR2, and the amino acid sequence of SEQ ID NO: 99 (sequence of the 6E4 antibody L-chain CDR3) as CDR3"of (26) is a VL having the amino acid sequence of SEQ ID NO: 87 (sequence of the 6E4 antibody VL).
- [0056] An example of the VH in the above-mentioned "H chain having the amino acid sequence of SEQ ID NO: 109 (sequence of the 6H4 antibody H-chain CDR1) as CDR1, the amino acid sequence of SEQ ID NO: 111 (sequence of the 6H4 antibody H-chain CDR2) as CDR2, and the amino acid sequence of SEQ ID NO: 113 (sequence of the 6H4 antibody H-chain CDR3) as CDR3"of (31) is a VH having the amino acid sequence of SEQ ID NO: 105 (sequence of the 6H4 antibody VH).
- [0057] An example of the VL in the above-mentioned "L chain having the amino acid sequence of SEQ ID NO: 115 (sequence of the 6H4 antibody L-chain CDR1) as CDR1, the amino acid sequence of SEQ ID NO: 117 (sequence of the 6H4 antibody L-chain CDR2) as CDR2, and the amino acid sequence of SEQ ID NO: 119 (sequence of the 6H4 antibody L-chain CDR3) as CDR3" of (32) is a VL having the amino acid sequence of SEQ ID NO: 107 (sequence of the

6H4 antibody VL).

10

20

30

35

45

50

[0058] For the 5A5 antibody of the present invention, the amino acid sequence and the nucleotide sequence of the full-length H chain are shown in SEQ ID NO: 1 and SEQ ID NO: 2, respectively; the amino acid sequence and the nucleotide sequence of the full-length L chain are shown in SEQ ID NO: 3 and SEQ ID NO: 4, respectively; the amino acid sequence and the nucleotide sequence of the H-chain variable region (VH) are shown in SEQ ID NO: 5 and SEQ ID NO: 6, respectively; the amino acid sequence and the nucleotide sequence of the L-chain variable region (VL) are shown in SEQ ID NO: 7 and SEQ ID NO: 8, respectively; the amino acid sequence and the nucleotide sequence of the H-chain CDR1 are shown in SEQ ID NO: 9 and SEQ ID NO: 10, respectively; the amino acid sequence and the nucleotide sequence of the H-chain CDR2 are shown in SEQ ID NO: 11 and SEQ ID NO: 12, respectively; the amino acid sequence and the nucleotide sequence of the L-chain CDR3 are shown in SEQ ID NO: 15 and SEQ ID NO: 16, respectively; the amino acid sequence and the nucleotide sequence of the L-chain CDR2 are shown in SEQ ID NO: 17 and SEQ ID NO: 18, respectively; and the amino acid sequence and the nucleotide sequence of the L-chain CDR3 are shown in SEQ ID NO: 19 and SEQ ID NO: 20, respectively.

[0059] For the 5A9 antibody of the present invention, the amino acid sequence and the nucleotide sequence of the full-length H chain are shown in SEQ ID NO: 21 and SEQ ID NO: 22, respectively; the amino acid sequence and the nucleotide sequence of the full-length L chain are shown in SEQ ID NO: 23 and SEQ ID NO: 24, respectively; the amino acid sequence and the nucleotide sequence of the H-chain variable region (VH) are shown in SEQ ID NO: 25 and SEQ ID NO: 26, respectively; the amino acid sequence and the nucleotide sequence of the L-chain variable region (VL) are shown in SEQ ID NO: 27 and SEQ ID NO: 28, respectively; the amino acid sequence and the nucleotide sequence of the H-chain CDR1 are shown in SEQ ID NO: 39, respectively; the amino acid sequence and the nucleotide sequence of the H-chain CDR2 are shown in SEQ ID NO: 31 and SEQ ID NO: 32, respectively; the amino acid sequence and the nucleotide sequence of the L-chain CDR1 are shown in SEQ ID NO: 35, respectively; the amino acid sequence and the nucleotide sequence of the L-chain CDR1 are shown in SEQ ID NO: 35 and SEQ ID NO: 36, respectively; the amino acid sequence and the nucleotide sequence of the L-chain CDR2 are shown in SEQ ID NO: 37 and SEQ ID NO: 38, respectively; and the amino acid sequence and the nucleotide sequence of the L-chain CDR3 are shown in SEQ ID NO: 39 and SEQ ID NO: 40, respectively.

[0060] For the 4F7 antibody of the present invention, the amino acid sequence and the nucleotide sequence of the full-length H chain are shown in SEQ ID NO: 41 and SEQ ID NO: 42, respectively; the amino acid sequence and the nucleotide sequence of the full-length L chain are shown in SEQ ID NO: 43 and SEQ ID NO: 44, respectively; the amino acid sequence and the nucleotide sequence of the H-chain variable region (VH) are shown in SEQ ID NO: 45 and SEQ ID NO: 46, respectively; the amino acid sequence and the nucleotide sequence of the L-chain variable region (VL) are shown in SEQ ID NO: 47 and SEQ ID NO: 48, respectively; the amino acid sequence and the nucleotide sequence of the H-chain CDR1 are shown in SEQ ID NO: 49 and SEQ ID NO: 50, respectively; the amino acid sequence and the nucleotide sequence of the H-chain CDR2 are shown in SEQ ID NO: 51 and SEQ ID NO: 52, respectively; the amino acid sequence and the nucleotide sequence of the L-chain CDR1 are shown in SEQ ID NO: 54, respectively; the amino acid sequence and the nucleotide sequence of the L-chain CDR2 are shown in SEQ ID NO: 56, respectively; the amino acid sequence and the nucleotide sequence of the L-chain CDR2 are shown in SEQ ID NO: 57 and SEQ ID NO: 58, respectively; and the amino acid sequence and the nucleotide sequence of the L-chain CDR3 are shown in SEQ ID NO: 59 and SEQ ID NO: 59 and SEQ ID NO: 60, respectively.

[0061] For the 4H5 antibody of the present invention, the amino acid sequence and the nucleotide sequence of the full-length H chain are shown in SEQ ID NO: 61 and SEQ ID NO: 62, respectively; the amino acid sequence and the nucleotide sequence of the full-length L chain are shown in SEQ ID NO: 63 and SEQ ID NO: 64, respectively; the amino acid sequence and the nucleotide sequence of the H-chain variable region (VH) are shown in SEQ ID NO: 65 and SEQ ID NO: 66, respectively; the amino acid sequence and the nucleotide sequence of the L-chain variable region (VL) are shown in SEQ ID NO: 67 and SEQ ID NO: 68, respectively; the amino acid sequence and the nucleotide sequence of the H-chain CDR1 are shown in SEQ ID NO: 69 and SEQ ID NO: 70, respectively; the amino acid sequence and the nucleotide sequence of the H-chain CDR2 are shown in SEQ ID NO: 71 and SEQ ID NO: 72, respectively; the amino acid sequence and the nucleotide sequence of the L-chain CDR1 are shown in SEQ ID NO: 74, respectively; the amino acid sequence and the nucleotide sequence of the L-chain CDR1 are shown in SEQ ID NO: 75 and SEQ ID NO: 76, respectively; the amino acid sequence and the nucleotide sequence of the L-chain CDR2 are shown in SEQ ID NO: 77 and SEQ ID NO: 78, respectively; and the amino acid sequence and the nucleotide sequence of the L-chain CDR3 are shown in SEQ ID NO: 79 and SEQ ID NO: 80, respectively.

[0062] For the 6E4 antibody of the present invention, the amino acid sequence and the nucleotide sequence of the full-length H chain are shown in SEQ ID NO: 81 and SEQ ID NO: 82, respectively; the amino acid sequence and the nucleotide sequence of the full-length L chain are shown in SEQ ID NO: 83 and SEQ ID NO: 84, respectively; the amino acid sequence and the nucleotide sequence of the H-chain variable region (VH) are shown in SEQ ID NO: 85 and SEQ ID NO: 86, respectively; the amino acid sequence and the nucleotide sequence of the L-chain variable region (VL) are

shown in SEQ ID NO: 87 and SEQ ID NO: 88, respectively; the amino acid sequence and the nucleotide sequence of the H-chain CDR1 are shown in SEQ ID NO: 89 and SEQ ID NO: 90, respectively; the amino acid sequence and the nucleotide sequence of the H-chain CDR2 are shown in SEQ ID NO: 91 and SEQ ID NO: 92, respectively; the amino acid sequence and the nucleotide sequence of the H-chain CDR3 are shown in SEQ ID NO: 93 and SEQ ID NO: 94, respectively; the amino acid sequence and the nucleotide sequence of the L-chain CDR1 are shown in SEQ ID NO: 95 and SEQ ID NO: 96, respectively; the amino acid sequence and the nucleotide sequence of the L-chain CDR2 are shown in SEQ ID NO: 97 and SEQ ID NO: 98, respectively; and the amino acid sequence and the nucleotide sequence of the L-chain CDR3 are shown in SEQ ID NO: 99 and SEQ ID NO: 100, respectively.

[0063] For the 6H4 antibody of the present invention, the amino acid sequence and the nucleotide sequence of the full-length H chain are shown in SEQ ID NO: 101 and SEQ ID NO: 102, respectively; the amino acid sequence and the nucleotide sequence of the full-length L chain are shown in SEQ ID NO: 103 and SEQ ID NO: 104, respectively; the amino acid sequence and the nucleotide sequence of the H-chain variable region (VH) are shown in SEQ ID NO: 105 and SEQ ID NO: 106, respectively; the amino acid sequence and the nucleotide sequence of the L-chain variable region (VL) are shown in SEQ ID NO: 107 and SEQ ID NO: 108, respectively; the amino acid sequence and the nucleotide sequence of the H-chain CDR1 are shown in SEQ ID NO: 109 and SEQ ID NO: 110, respectively; the amino acid sequence and the nucleotide sequence of the H-chain CDR2 are shown in SEQ ID NO: 111 and SEQ ID NO: 112, respectively; the amino acid sequence and the nucleotide sequence of the H-chain CDR3 are shown in SEQ ID NO: 115 and SEQ ID NO: 116, respectively; the amino acid sequence and the nucleotide sequence of the L-chain CDR2 are shown in SEQ ID NO: 117 and SEQ ID NO: 118, respectively; and the amino acid sequence and the nucleotide sequence of the L-chain CDR2 are shown in SEQ ID NO: 117 and SEQ ID NO: 118, respectively; and the amino acid sequence and the nucleotide sequence of the L-chain CDR3 are shown in SEQ ID NO: 120, respectively.

10

20

30

35

45

50

55

[0064] The above-mentioned antibodies of (1) to (38) include not only monovalent antibodies but also multivalent antibodies with two or more valencies. The multivalent antibodies of the present invention include multivalent antibodies whose antigen binding sites are all the same and multivalent antibodies whose antigen binding sites are partially or completely different.

[0065] In a preferred embodiment, the above-mentioned antibody of (37) is an antibody with no modified CDRs. For example, the "antibody that comprises one or more amino acid substitutions, deletions, additions, and/or insertions in the antibody of (1), which has equivalent activity as the antibody of (1)" of the above-mentioned antibody of (37) is preferably "an antibody that has equivalent activity as the antibody of (1), and comprises one or more amino acid substitutions, deletions, additions, and/or insertions in the antibody of (1), and comprises an H chain having the amino acid sequence of SEQ ID NO: 9 as CDR1, the amino acid sequence of SEQ ID NO: 11 as CDR2, and the amino acid sequence of SEQ ID NO: 13 as CDR3". Another preferred antibody of the above-mentioned antibody of (37) can be expressed in a similar manner.

[0066] Herein, "equivalent activity" means that the antibody of interest has biological or biochemical activity similar to that of an antibody of the present invention. Examples of the "activity" of the present invention include the activity to bind specifically to $A\beta$ oligomers but not to $A\beta$ monomers, anti-neurotoxic activity, activity to suppress $A\beta$ amyloid fibril formation, anti-synaptic toxicity activity, and anti-memory impairment activity.

[0067] Methods for preparing a polypeptide having activity equivalent to that of a certain polypeptide that are well known to those skilled in the art include methods for introducing mutations into a polypeptide. For example, one skilled in the art can prepare an antibody having activity equivalent to that of an antibody of the present invention by introducing appropriate mutations into the antibody using site-directed mutagenesis (Hashimoto-Gotoh, T. et al. (1995) Gene 152, 271-275; Zoller, MJ, and Smith, M. (1983) Methods Enzymol. 100, 468-500; Kramer, W. et al. (1984) Nucleic Acids Res. 12, 9441-9456; Kramer W, and Fritz HJ (1987) Methods. Enzymol. 154, 350-367; Kunkel, TA (1985) Proc. Natl. Acad. Sci. USA. 82, 488-492; Kunkel (1988) Methods Enzymol. 85, 2763-2766) and such. Amino acid mutations may also occur naturally. The antibodies of the present invention also include an antibody that comprises an amino acid sequence with one or more amino acid mutations in the amino acid sequence of an antibody of the present invention, and which has activity equivalent to that of the antibody of the present invention. The number of mutated amino acids in such mutants may be generally 50 amino acids or less, preferably 30 amino acids or less, and more preferably ten amino acids or less (for example, five amino acids or less).

[0068] Amino acid residues are preferably mutated into other amino acids that conserve the properties of the amino acid side chains. For example, amino acids are categorized as follows depending on the side chain properties: hydrophobic amino acids (A, I, L, M, F, P, W, Y, and V), hydrophilic amino acids (R, D, N, C, E, Q, G, H, K, S, and T), amino acids with aliphatic side chains (G, A, V, L, I, and P), amino acids with hydroxyl-containing side chains (S, T, and Y), amino acids with sulfur atom-containing side chains (C and M), amino acids with carboxylic acid-and amide-containing side chains (D, N, E, and Q), amino acids with basic side chains (R, K, and H), and amino acids with aromatic ring-containing side chains (H, F, Y, and W) (amino acids are represented by one-letter codes in parentheses).

[0069] A polypeptide having an amino acid sequence, in which one or more amino acid residues are modified (deleted, added, and/or substituted with other amino acids) in a certain amino acid sequence, is known to retain its original

biological activity (function).

10

20

30

35

40

45

50

55

[0070] In addition to the above-mentioned modifications, the antibodies of the present invention may be conjugated to other substances as long as the activity is maintained. Examples of the substances include peptides, lipids, sugars and sugar chains, acetyl groups, and natural and synthetic polymers. These modifications may be performed to confer additional functions to the antibodies, or to stabilize the antibodies.

[0071] Antibodies in which several amino acid residues have been added to the amino acid sequence of an antibody of the present invention include fusion proteins containing the antibody. In the fusion proteins, the antibody is fused with another peptide or protein. Methods for producing a fusion protein can be carried out by ligating a polynucleotide encoding an antibody of the present invention in frame with a polynucleotide encoding another peptide or polypeptide, and inserting this into an expression vector, and expressing the fusion construct in a host. Techniques known to those skilled in the art can be used for this purpose. The peptides or polypeptides fused with an antibody of the present invention include, for example, known peptides such as FLAG (Hopp, T.P. et al., BioTechnology (1988) 6, 1204-1210), 6x His consisting of six histidine (His) residues, 10x His, Influenza hemagglutinin (HA), human c-myc fragments, VSV-GP fragments, p18HIV fragments, T7-tag, HSV-tag, E-tag, SV40T antigen fragments, Ick tag, α -tubulin fragments, B-tag, and Protein C fragments; glutathione-S-transferase (GST); immunoglobulin constant regions; α -galactosidase; and maltose-binding protein (MBP), etc. Commercially available polynucleotides encoding these peptides or polypeptides can be fused with polynucleotides encoding the antibodies of the present invention, and the fusion polypeptides can be produced by expressing the fusion polynucleotides thus prepared.

[0072] The antibodies of the present invention may differ in the amino acid sequence, molecular weight, presence or absence of sugar chains, structure and such, depending on the cell or host producing the antibodies or the purification method. However, as long as the obtained antibody has an activity equivalent to an antibody of the present invention, it is included in the present invention.

[0073] Antibodies that bind to an epitope to which an antibody of any one of (1) to (36) above binds can be obtained by methods known to those skilled in the art. For example, the antibodies can be obtained by (i) determining the epitope bound by the antibody of any one of (1) to (36) using a conventional method, and producing the antibodies using a polypeptide comprising an amino acid sequence included in the epitope as an immunogen; or (ii) determining the epitopes of antibodies produced by a conventional method, and selecting antibodies whose epitope is the same as that of the antibody of any one of (1) to (36).

[0074] The above-mentioned antibodies of (1) to (38) also include any type of antibodies such as the above-described minibodies, antibodies with modified amino acid sequences such as humanized antibodies and chimeric antibodies, non-human animal antibodies, human antibodies, modified antibodies conjugated to other molecules (for example, polymers such as polyethylene glycol), and sugar chain-modified antibodies.

[0075] In a preferred embodiment, the antibodies of the present invention are modified antibodies such as chimeric antibodies and humanized antibodies. Examples of preferred antibodies include (i) a chimeric antibody whose variable region is derived from the 2C3 antibody, 1A9 antibody, 5A5 antibody, 5A9 antibody, 4F7 antibody, 4H5 antibody, 6E4 antibody, or 6H4 antibody, and whose constant region is derived from a human immunoglobulin; and (ii) a humanized antibody whose CDR is derived from the 2C3 antibody, 1A9 antibody, 5A5 antibody, 5A9 antibody, 4F7 antibody, 4H5 antibody, 6E4 antibody, or 6H4 antibody, and whose FR is derived from a human immunoglobulin, and whose constant region is derived from a human immunoglobulin. These modified antibodies can be produced using known methods.

[0076] Since the antigenicity of a chimeric antibody or a humanized antibody in the human body is reduced, such an antibody is useful for administration to humans for therapeutic purposes or such.

[0077] Chimeric antibodies are produced by combining sequences derived from different animals. Examples of chimeric antibodies include antibodies comprising the heavy-chain and light-chain variable regions of a mouse antibody and the heavy-chain and light-chain constant regions of a human antibody. The production of chimeric antibodies can be carried out using known methods (see, for example, Jones et al., Nature 321:522-5, 1986; Riechmann et al., Nature 332:323-7, 1988; and Presta, Curr. Opin. Struct. Biol. 2:593-6, 1992). For example, first, genes encoding the variable regions or CDRs of the antibody of interest are prepared from the RNAs of antibody-producing cells by polymerase chain reaction (PCR) or such (see, for example, Larrick et al., "Methods: a Companion to Methods in Enzymology", Vol. 2: 106, 1991; Courtenay-Luck, "Genetic Manipulation of Monoclonal Antibodies" in Monoclonal Antibodies: Production, Engineering and Clinical Application; Ritter et al. (eds.), page 166, Cambridge University Press, 1995, and Ward et al., "Genetic Manipulation and Expression of Antibodies" in Monoclonal Antibodies: Principles and Applications; and Birch et al. (eds.), page 137, Wiley-Liss, Inc., 1995). The prepared genes encoding the variable regions are linked to genes encoding the constant regions or framework regions. The genes encoding the constant regions or framework regions may be determined in a manner similar to that for the CDR-encoding genes, or alternatively, they can be prepared based on the sequence information of known antibodies. DNA sequences encoding chimeric products and CDR-grafted products may be synthesized completely or partially using oligonucleotide synthesis techniques. For example, the oligonucleotide synthesis described by Jones et al. (Nature 321:522-5, 1986) may be performed. Furthermore, in some cases, sitedirected mutagenesis and polymerase chain reaction techniques may be appropriately used. Techniques for oligonu-

cleotide-specific mutagenesis of known variable regions described by Verhoeyen et al. (Science 239: 1534-6, 1988) and Riechmann et al. (Nature 332: 323-7, 1988) may be used for modifying the variable region sequences, for example, to enhance the binding ability of chimeric antibodies. Furthermore, if necessary, enzymatic fill-in of gapped oligonucle-otides using T4 DNA polymerase may be performed, for example, as described by Queen et al. (Proc. Natl. Acad. Sci. USA 86: 10029-33, 1989; and WO 90/07861).

[0078] For example, CDR-grafting techniques are known in the art ("Immunoglobulin genes", Academic Press (London), pp 260-74, 1989; and Michael A et al., Proc. Natl. Acad. Sci. USA 91: 969-73, 1994). Using the techniques, the CDRs of a certain antibody are replaced with the CDRs of another antibody. Through such replacement, the binding specificity of the former antibody is changed to that of the latter antibody. Among such chimeric antibodies, those in which the framework amino acids are derived from a human antibody are called "humanized antibodies (CDR-grafted antibodies)". When using antibodies to treat humans, human antibodies or humanized antibodies are preferably utilized.

[0079] Generally, chimeric antibodies comprise the variable regions of a non-human mammal-derived antibody and the constant regions derived from a human antibody. On the other hand, humanized antibodies comprise the complementarity-determining regions of a non-human mammal-derived antibody and the framework regions and constant regions derived from a human antibody.

[0080] After producing the chimeric antibodies or humanized antibodies, amino acids in the variable regions (for example, FRs) or the constant regions may be substituted with other amino acids.

[0081] The origin of the variable regions of the chimeric antibodies or the CDRs of the humanized antibodies is not particularly limited.

[0082] Human antibody-derived C-regions are used for the C-regions of the chimeric antibodies and humanized antibodies. For example, $C\gamma 1$, $C\gamma 2$, $C\gamma 3$, $C\gamma 4$, $C\mu$, $C\delta$, $C\alpha 1$, $C\alpha 2$, and $C\epsilon$ can be used for the H-chain C-regions, and $C\epsilon$ and $C\epsilon$ can be used for the L-chain C-regions. Their sequences are known. Furthermore, the human antibody C regions can be modified to improve the stability of the antibodies or their production.

20

30

35

40

45

50

55

[0083] The binding activity of the antibodies of the present invention to the antigens (Aβ oligomers) can be measured using, for example, an absorbance measurement method, an enzyme-linked immunosorbent assay (ELISA) method, an enzyme immunoassay (EIA) method, a radioimmunoassay (RIA) method, and/or a fluoroimmunoassay method. In ELISA, an antibody is immobilized on a plate, and an antigen for the antibody is added to the plate, then a sample containing the desired antibody, such as the culture supernatant of antibody-producing cells or a purified antibody is added. Next, a secondary antibody which recognizes the primary antibody and is tagged with an enzyme such as alkaline phosphatase is added to the plate, and this is preincubated. After washing, an enzyme substrate such as p-nitrophenyl phosphate is added to the plate, and the absorbance is measured to evaluate the antigen-binding ability of the sample of interest. The evaluation can be performed using BIAcore (Pharmacia).

[0084] Furthermore, the present invention provides compositions comprising the above-mentioned antibody of the present invention and a pharmaceutically acceptable carrier.

[0085] As described below, the present invention strongly suggests that monoclonal 1A9 and 2C3 antibody are promising candidates for therapeutic antibodies for preventing Alzheimer-like phenotypes. Memory deterioration has been shown to be related to synaptic dysfunction caused by soluble A β oligomers (Klein WL, 2001, Trends Neurosci; and Selkoe DJ, 2002, Science). Excessive accumulation and deposition of A β oligomers may trigger the complicated downstream cascades that cause Alzheimer's disease. If this is the case, therapeutic intervention using a composition comprising an antibody of the present invention and a pharmaceutically acceptable carrier could be effective for blocking the pathologic cascades, and thus this could enable the treatment of Alzheimer's disease.

[0086] The "treatment" of the present invention does not necessarily have complete therapeutic or preventive effects against organs or tissues exhibiting symptoms of disorders or diseases, but may have partial effects.

[0087] "Treatment of Alzheimer's disease" in the present invention means amelioration of at least one symptom that may be caused by Alzheimer's disease, and examples include amelioration or suppression of cognitive impairment, amelioration or suppression of senile plaque formation, amelioration or suppression of synaptic dysfunction, and reduction or suppression of A β accumulation in brain tissues, blood, or such. Herein, "cognitive impairment" includes, for example, memory impairment including long term/short term memory impairment, object recognition memory impairment, spatial memory impairment, and associative and emotional memory impairment.

[0088] The present invention provides pharmaceutical compositions or pharmaceutical agents which comprise as an active ingredient the above-described composition comprising an antibody of the present invention and a pharmaceutically acceptable carrier.

[0089] In the present invention, the phrase "comprising as an active ingredient the above-described composition comprising an antibody of the present invention and a pharmaceutically acceptable carrier" means comprising the above-described composition comprising an antibody of the present invention and a pharmaceutically acceptable carrier as a major ingredient, but does not limit its content rate.

[0090] Examples of the above-mentioned pharmaceutical compositions include agents against cognitive impairment, Alzheimer's disease agents, agents for suppressing the progression of Alzheimer's disease, agents for suppressing

senile plaque formation, agents for suppressing $A\beta$ accumulation, anti-neurotoxic agents (agents for neutralizing neurotoxicity), agents for inhibiting $A\beta$ amyloid fibril formation, and anti-synaptic toxicity agents (agents for neutralizing synaptic toxicity).

[0091] The above-mentioned pharmaceutical composition of the present invention can be expressed, for example, as "methods for suppressing Alzheimer's disease" which comprise the step of administering to a subject (individual) the above-described composition comprising an antibody of the present invention and a pharmaceutically acceptable carrier. In other embodiments, examples include methods for suppressing cognitive impairment, methods for suppressing the progression of Alzheimer's disease, methods for suppressing senile plaque formation, methods for suppressing A β accumulation, methods for neutralizing (suppressing) neurotoxic activity, methods for inhibiting A β amyloid fibril formation, and methods for neutralizing (suppressing) synaptic toxicity. In further embodiments, examples include methods for preventing and/or treating Cognitive impairment, and methods for preventing and/or treating Alzheimer's disease.

[0092] The present invention also provides use of a composition comprising the above-described antibody of the present invention and a pharmaceutically acceptable carrier in the production of the above-mentioned pharmaceutical composition.

15 **[0093]** Furthermore, the present invention relates to the following compositions.

10

20

25

30

35

40

45

50

55

- A composition comprising the above-described antibody of the present invention and a pharmaceutically acceptable carrier for use in preventing and/or treating cognitive impairment.
- A composition comprising the above-described antibody of the present invention and a pharmaceutically acceptable carrier for use in preventing and/or treating Alzheimer's disease.
- A composition comprising the above-described antibody of the present invention and a pharmaceutically acceptable carrier for use in suppressing the progression of Alzheimer's disease.
- A composition comprising the above-described antibody of the present invention and a pharmaceutically acceptable
 carrier for use in suppressing senile plaque formation.
- A composition comprising the above-described antibody of the present invention and a pharmaceutically acceptable carrier for use in suppressing Aβ accumulation.
 - A composition comprising the above-described antibody of the present invention and a pharmaceutically acceptable carrier for use in neutralizing (suppressing) neurotoxic activity.
- A composition comprising the above-described antibody of the present invention and a pharmaceutically acceptable carrier for use in inhibiting Aβ amyloid fibril formation.
- A composition comprising the above-described antibody of the present invention and a pharmaceutically acceptable carrier for use in neutralizing (suppressing) synaptic toxicity.

[0094] The above-mentioned pharmaceutical agents of the present invention can be administered to humans or other animals. In the present invention, non-human animals to which the pharmaceutical agents are administered include mice, rats, guinea pigs, rabbits, chickens, cats, dogs, sheep, pigs, cattle, monkeys, baboons, and chimpanzees. These animals preferably exhibit at least one symptom selected from, for example, cognitive impairment, senile plaque formation, synaptic dysfunction, Aß accumulation in brain tissues or blood, etc.

[0095] Antibodies contained in the pharmaceutical compositions of the present invention are not particularly limited as long as they are included in the above-mentioned antibodies of the present invention, and examples include the antibodies described herein.

[0096] When using the above-mentioned antibodies of the present invention for pharmaceutical compositions, they may be formulated by methods known to those skilled in the art. For example, as necessary, they can be prepared in the form of injectable sterile solutions or suspensions using water or another pharmaceutically acceptable liquid, and can be administered parenterally. For example, the antibodies to be included in the pharmaceutical compositions can be combined with acceptable carriers or media, specifically, sterile water, physiological saline, vegetable oils, emulsifiers, suspensions, surfactants, stabilizers, flavoring agents, excipients, solvents, preservatives, binders, or such, and mixed into a unit dose form required for generally accepted pharmaceutical practice. The phrase "pharmaceutically acceptable" indicates that the substance is inactive, and contains conventional substances used as diluents or vehicles for pharmaceuticals. Suitable excipients and their formulations are described, for example, in Remington's Pharmaceutical Sciences, 16th ed. (1980) Mack Publishing Co., ed. Oslo *et al.*

[0097] Physiological saline and other isotonic solutions containing glucose or adjuvants (for example, D-sorbitol, D-mannose, D-mannitol, and sodium chloride) can be used as aqueous solutions for injection. They can be used together with appropriate solubilizers such as alcohols, more specifically, ethanol and polyalcohols (propylene glycol, polyethylene glycol, and such), and non-ionic surfactants (Polysorbate 80™, HCO-50, and such).

[0098] Sesame oil or soybean oil can be used as an oleaginous liquid, and benzyl benzoate or benzyl alcohol can be used in combination as a solubilizer. Buffers (for example, phosphate buffer and sodium acetate buffer), soothing agents (for example, procaine hydrochloride), stabilizers (for example, benzyl alcohol and phenol), and antioxidants can be

used for the formulations. Prepared injection solutions can be filled into appropriate ampules.

[0099] The administration is preferably parenteral administration, and specific examples include administration by injection, transpala administration, transpulmonary administration, and transdermal administration. Examples of administration by injection include systemic and local administration by intravenous injection, intramuscular injection, intraperitoneal injection, subcutaneous injection, and such.

[0100] The pharmaceutical compositions contain a pharmaceutically effective amount of the active component (the above-mentioned antibody of the present invention). "Pharmaceutically effective amount (of a compound)" refers to an amount sufficient for treating and/or preventing disorders in which the antigens for the above-mentioned antibodies of the present invention play an important role. For example, "a pharmaceutically acceptable amount" may be an amount required for reducing $A\beta$ accumulation, neutralizing $A\beta$ -induced toxicity, reducing $A\beta$ fibril formation, or such, thereby treating or preventing conditions caused by Alzheimer's disease, when the compound is administered to individuals (patients). The reduction or neutralization may be, for example, a reduction or neutralization of at least approximately 5%, 10%, 20%, 30%, 40%, 50%, 75%, 80%, 90%, 95%, 99%, or 100%.

[0101] Assessment for determining such a pharmaceutically effective amount of the above-mentioned antibodies of the present invention may be carried out using a standard clinical protocol including histopathological diagnosis.

[0102] A suitable administration method may be selected depending on the age and symptoms of the patient. The dosage of an antibody-containing pharmaceutical composition may be selected, for example, within the range of 0.0001 mg to 1000 mg per kilogram body weight for each administration. Alternatively, for example, the dosage for each patient may be selected within the range of 0.001 to 100,000 mg/body; however, the dosage is not necessarily limited to these ranges. Although the dosage and administration methods vary depending on the patient's body weight, age, symptoms, and such, one skilled in the art can appropriately select them. In the later-described animal experiments, the dosage was selected based on the high-dose intravenous immunoglobulin therapy (400 mg/kg) covered by health insurance for humans.

[0103] Furthermore, the present invention provides methods for detecting $A\beta$ oligomers (examples include $A\beta40$ ($A\beta$ 1-40) and $A\beta42$ ($A\beta$ 1-42) oligomers) in samples. Examples of "samples" of the present invention include samples collected from subjects. Specifically, the present methods include the step of detecting $A\beta$ oligomers contained in a sample collected from a subject using an antibody of the present invention. $A\beta$ oligomers in a sample can be detected using, for example, sandwich solid-phase enzyme immunoassay methods that use chemiluminescence (chemiluminescence ELISA), immunoprecipitation methods that use the obtained antibodies, immunoblotting, flow cytometry, mass spectrometry, and immunohistochemical analysis.

[0104] When $A\beta$ oligomers are detected in a sample collected from a subject by the above-mentioned measurement methods, the subject may be an Alzheimer's disease patient. For example, when the amount of $A\beta$ oligomers in a sample collected from a subject is compared with that from a healthy individual, and if the amount of $A\beta$ oligomers is greater in the subject than in the healthy individual, the subject is determined to be a possible Alzheimer's disease patient. Whether or not a subject is a possible Alzheimer's disease patient is diagnosed usually by physicians (including individuals under instructions from physicians; same herein below). Data on the amount of $A\beta$ oligomers in samples collected from a subject and a healthy individual, which are obtained by the present methods of diagnosis, will be useful for diagnosis by physicians. Therefore, the present methods of diagnosis can be expressed as methods of collecting and presenting data useful for diagnosis by physicians.

[0105] Specifically, the present invention provides methods for diagnosing whether or not a subject is a possible Alzheimer's disease patient, wherein the methods comprise detecting $A\beta$ oligomers in a sample collected from the subject using an antibody of the present invention.

[0106] Furthermore, the present invention provides methods of diagnosing whether or not a subject is a possible Alzheimer's disease patient, which comprise the steps of:

- (a) contacting a sample collected from a subject with an antibody of the present invention and an antibody that binds to an $A\beta$ monomer; and
- (b) measuring the ratio of A β oligomer to A β monomer in the sample,

20

30

35

40

45

50

55

wherein the subject is determined to be a possible Alzheimer's disease patient, if the ratio measured in step (b) is higher than that of a healthy individual.

[0107] First, in the present methods, a sample collected from a subject is contacted with an antibody of the present invention and an antibody that binds to an $A\beta$ monomer. Herein, "contact" may be carried out, for example, by adding each of the above-mentioned antibodies to a sample collected from a subject, which is placed in a test tube. In this case, the antibody is added suitably in the form of a solution, a solid obtained by freeze-drying, or such. When adding the antibody as an aqueous solution, the solution may purely contain the antibody alone, or may contain, for example, surfactants, excipients, coloring agents, flavors, preservatives, stabilizers, buffers, suspending agents, tonicity agents, binding agents, disintegrants, lubricants, fluidity promoters, or corrigents. The concentration at which the antibody is

added is not particularly limited. For example, as with human immunoglobulin formulations, 500-mg, 1000-mg, and 2500-mg freeze-dried formulations and such may be suitably used.

[0108] Next, the ratio of $A\beta$ oligomer to $A\beta$ monomer (herein, this is also referred to as "O/M index") in the aforementioned sample is measured. To measure this ratio, the following method is suitably used. For example, as described below in the Examples, the measurement can be carried out using a method of comparing the oligomer and monomer ELISA values obtained from the same sample.

[0109] Then, this ratio is compared with the ratio for a healthy individual. When the ratio is higher in the subject than in the healthy individual, the subject is determined to be a possible Alzheimer's disease patient.

[0110] The methods of diagnosis of the present invention can be performed both *in vitro* and *in vivo*, but they are preferably performed *in vitro*.

[0111] Preferably, the "sample" of the present invention is not particularly limited as long as it is a tissue derived from a subject. Examples include the brain (brain parenchyma, and such), organs, and body fluids (blood, cerebrospinal fluid, and such) of a subject. In the present invention, the sample is preferably blood (more preferably, plasma) or cerebrospinal fluid.

[0112] Furthermore, the present invention provides pharmaceutical agents for use in the above-mentioned methods of measuring Aβ oligomers in a sample, or methods of diagnosing whether or not a subject is a possible Alzheimer's disease patient.

[0113] In the present invention, the pharmaceutical compositions comprising an antibody may be included in products and kits containing materials useful for treating pathological conditions of a subject. The products may comprise any labeled container for a compound. Suitable containers include bottles, vials, and test tubes. The containers may be formed from a variety of materials such as glass and plastic. The label on the container surface should indicate that the composition is used to treat or prevent one or more conditions of the disease. The label may also indicate descriptions for administration, and such.

[0114] In addition to the above-mentioned container, a kit containing a pharmaceutical composition comprising an antibody may optionally include a second container that stores a pharmaceutically acceptable diluent. The kit may further include other materials desirable from a commercial and user's standpoint, including other buffers, diluents, filters, needles, syringes, and package inserts with descriptions for use.

[0115] If necessary, the pharmaceutical compositions may be provided in a pack or dispenser device that may contain one or more unit dosage forms comprising an active ingredient. The pack may comprise metal or plastic foil, and, for example, it is a blister pack. The pack or dispenser device may be accompanied by instructions for administration.

[0116] In the above-mentioned pharmaceutical agents and kits, besides the antibody of the present invention that is an active ingredient, sterile water, physiological saline, vegetable oils, surfactants, lipids, solubilizing agents, buffers, protein stabilizers (BSA, gelatin, etc.), preservatives, blocking solutions, reaction solutions, reaction quenching solutions, reagents for treating samples, and such, may be mixed as necessary.

[0117] The present inventors showed that the antibodies of the present invention are effective for preventing Alzheimer's disease. That is, the present invention provides methods for suppressing the progression of Alzheimer's disease, wherein the methods comprise the step of administering to an individual affected with Alzheimer's disease, a composition comprising the above-mentioned antibody of the present invention and a pharmaceutically acceptable carrier.

[0118] All prior art references cited herein are incorporated by reference into this description.

[Examples]

10

30

35

40

45

[0119] Hereinbelow, the present invention is specifically described with reference to the Examples, but it is not to be construed as being limited thereto.

Methods

Preparation of antigens (1A9 and 2C3)

- 50 **[0120]** Synthetic Aβ 1-42 (Peptide Institute, Inc., Osaka) was dissolved in distilled water or 10 mM phosphate buffer, and incubated at 37°C for 18 hours. Then, the peptides were separated by SDS-PAGE (4-12% NuPAGE Tris-Glycine gel), and after visualization by CBB staining, just the Aβ 1-42 tetramer was excised without contamination of the Aβ 1-42 monomer
- ⁵⁵ Preparation of antigens 4F7, 4H5, 5A5, 5A9, 6E4, and 6H4)

[0121] A fluorescent dye, 6-carboxytetramethylrhodamine (6-TAMRA) (SIGMA) was chemically linked to the N terminus of a synthetic A β 1-40 peptide (Peptide Institute, Inc.) to produce a modified A β . An oligomer-rich sample (A β 1-40

oligomer) was prepared by copolymerizing the modified A β and synthetic A β 1-40 peptide. It is preferable to adjust the conditions so that the fluorescence intensity determined by ThT assay, which is described below, is one-fourth or less the fluorescence intensity in the absence of modified A β . More specifically, it is preferred that 100 μ M each of the modified A β and synthetic A β 1-40 peptide are mixed, and polymerized for 20 hours.

Preparation of antibody-producing hybridomas

[0122] Balb/c mice were immunized by injecting the antigen prepared by the method described above into their foot pads. Then, booster immunization was carried out six times. Hybridomas were prepared from inguinal lymph nodes by fusion with Sp2/O-Ag14 cells using Polyethylene Glycol 1500.

Antibody isotyping

5

10

15

20

25

30

35

40

45

50

55

[0123] Isotyping of purified immunoglobulins was carried out using a Serotec (Oxford, UK) mouse monoclonal antibody isotyping kit.

Dot blot analysis (primary screening)

[0124] The initial screening was carried out by dot blot analysis using a nitrocellulose membrane onto which $2.5~\mu$ l of A β 1-42 ($2.5~\mu$ g/dot) pre-incubated for 18 hours was immobilized. Non-specific binding sites on the membrane were blocked with a phosphate buffer containing 5% low-fat milk, 1% BSA, and 0.05% Tween-20, and then the membrane was incubated with a culture supernatant. A β oligomer-binding antibodies in the culture supernatant were detected by horseradish peroxidase-labeled goat anti-mouse F(ab')₂ (1:3000; Amersham), and visualized using an enhanced chemiluminescence (ECL) kit and LAS3000 mini (Fujitsu, Tokyo, Japan). Among 400 clones, 16 clones positive in the dot blotting, including 1A9 and 2C3, were subjected to the secondary screening described below.

Immunoprecipitation and immunoblot analysis secondary screening)

[0125] Immunoprecipitation experiments (Ghiso J, et al., Biochem J, 1993) were conducted using an Aβ oligomer-rich amyloid fraction (Matsubara E, et al., Neurobiol Aging, 2004) for the secondary screening to assess whether the 16 clones selected in the primary screening can capture Aβ oligomers in AD brain. A buffer-insoluble, formic acid-soluble fraction prepared from AD brain was incubated with a culture supernatant and Protein G-Sepharose. The immunoprecipitated Aβ oligomers were separated using an NuPAGE 4-12% Bis-Tris-Glycine gel, and transferred onto a nitrocellulose membrane or Immobilon P (Millipore) using 10 mM 3-cyclohexylamino-1-propane sulfonic acid (pH 11) containing 10% methanol at 400 mA for one hour. Non-specific binding sites on the membrane were blocked with a phosphate buffer containing 5% low-fat milk, 1 % BSA, and 0.05% Tween-20 at room temperature for three hours. The immunoprecipitated Aβ oligomers were detected by immunoblotting using the 4G8 (1:1000) or 6E10 (1:1000) monoclonal antibody as described above. Two clones, 1A9 and 2C3, were selected from the 16 clones as candidates for therapeutic antibodies for Alzheimer's disease.

Antibodies

[0126] The 6E10 and 4G8 monoclonal antibodies (Covance Immuno-Technologies, Dedham, MA) recognize the epitopes at amino acid positions 1-16 and 17-24 of the human Aβ sequence, respectively. Polyclonal A11 which specifically recognizes Aβ oligomers was purchased from Biosource (Camarillo, CA). Alex Fluor(AF)488- or 594-conjugated goat anti-mouse IgG and Alex Fluor(AF)488-conjugated goat anti-rat IgG were purchased from Molecular Probes (Eugene, OR). Anti-mouse IgG2b was purchased from Sigma (St. Louis, MO). An anti-synaptophysin antibody was purchased from Santa Cruz (Santa Cruz, CA), and an anti-drebrin antibody was purchased from MBL (Nagoya, Japan).

Size exclusion chromatography (SEC)

[0127] SEC was carried out to assess 1A9 and 2C3 for their size specificity. As previously reported (Matsubara E., etal., Neurobiol Aging, 25: 833-841, 2004), this method can selectively separate $A\beta$ monomers and $A\beta$ oligomers, or lipoprotein-bound $A\beta$ and lipoprotein-free $A\beta$. The present inventors concentrated the culture supernatant from APP/PS1-overexpessing HEK293 cells about ten-fold using a Microcon 3 kDa molecular weight cut-off filter (Millipore Corp.). Then, this concentrate was fractionated into 28 one-milliliter fractions using a Superose 12 size exclusion column (1 cm x 30 cm; Pharmacia Biotech., Uppsala, Sweden; flow rate of 0.5 ml/min) pre-equilibrated with a phosphate buffer. Half of each fraction was subjected to immunoprecipitation using 1A9 or 2C3. $A\beta$ contained in the resulting immunoprecipitates

was detected by immunoblotting using 4G8.

[0128] Cerebrospinal fluid (CSF) pooled from ten cases of Alzheimer's disease patients or age-matched healthy individuals, and lipoprotein-depleted CSF from the pools were also fractionated under the same conditions as described above. A β in the collected fractions was detected by ELISA analysis. To detect the lipid, the total cholesterol was enzymatically quantified using a standard kit (Wako, Osaka, Japan). Under the experimental conditions of the present inventors, the CSF lipoproteins were eluted at fractions 7 to 14, while fractions 15 to 28 contained cholesterol-free proteins.

Preparation of seed-free $A\beta$ solution

[0129] Synthetic Aβ 1-42 was dissolved at 250 μM in 0.02% ammonia water. Then, in order to prepare a seed-free Aβ solution, insoluble peptides, which may function as a seed, were precipitated by ultracentrifugation using an Optima TL ultracentrifuge (Beckman, USA) at 540,000 x g for three hours. The resulting supernatant was collected, aliquoted, and stored at -80°C until use. Samples were prepared by thawing the Aβ stock solutions immediately before use, and diluting them ten-fold with Tris-buffered saline (TBS; 150 mM NaCl and 10 mM Tris-HCl (pH 7.4)). The resulting 25 μM solutions were used in the experiments described below. Synthetic Aβ 1-40 (HCL form; Peptide Institute, Inc., Osaka) was prepared at 2x concentration.

Aβ incubation and ThT assay (Yamamoto N, et al., J Biol Chem, 282: 2646-2655, 2007)

[0130] An Aβ solution (25 μM) was incubated in the presence of a predetermined concentration of an antibody at 37°C for two or 24 hours. The ThT fluorescence intensity of the incubation mixture was determined using a fluorescence spectrophotometer (RF-5300PC; Shimadzu Co., Kyoto, Japan). The optimal fluorescence intensity was determined for Aβ amyloid fibrils at excitation and emission wavelengths of 446 and 490 nm, respectively, using 1.0 ml of a reaction mixture containing 5 μM ThT and 50 mM glycine-NaOH (pH 8.5). The fluorescence intensity was determined immediately after preparation of the mixture.

[0131] Furthermore, the activity of the 4F7, 4H5, 5A5, 5A9, 6E4, and 6H4 antibodies to suppress A β amyloid fibril formation was assessed by the following procedure. An A β 1-42 solution diluted to 12.5 μ M with cell culture medium was incubated in the presence or absence of each antibody at 37°C for 24 hours. The amount of formed amyloid fibrils was determined by the above-described ThT fluorescence intensity assay method.

Aβ-induced neurotoxicity (Yamamoto N, et al., J Biol Chem, 282: 2646-2655, 2007)

[0132] Rat pheochromocytoma PC12 cells were cultured in Dulbecco's Modified Eagle Medium (DMEM) (Invitrogen, Carlsbad, CA) containing 10% heat-inactivated horse serum (Invitrogen) and 5% fetal bovine serum (FBS) (Invitrogen). In order to induce the differentiation into nerve cells, PC12 cells were plated at a density of 20,000 cells/cm² in culture dishes coated with poly-L-lysine (10 mg/ml), and cultured for six days in DMEM supplemented with 100 ng/ml nerve growth factor (NGF; Alornone Labs, Jerusalem, Israel) (PC12N). PC12N was exposed to 25 μ M seed-free A β 1-42 or pre-incubated A β 1-42 in the presence or absence of antibody at 4°C for 48 hours. The neurotoxicity induced by A β 1-42 was assessed by Live/Dead dual-color fluorescence assay according to the supplier's instructions (Molecular Probes, Eugene, Oregon).

[0133] Furthermore, the activity of the 4F7, 4H5, 5A5, 5A9, 6E4, and 6H4 antibodies to neutralize A β -induced neurotoxicity was assessed by the method described below. First, human neuroblastoma cells (SH-SY5Y) were cultured for 24 hours in DMEM containing 10% FBS, at a density of 150,000 cells/well in 24-well plates. Then, the medium was replaced with serum-free culture medium containing A β 1-42 (12.5 μ M) in the presence or absence of antibody, and the cells were cultured for another 24 hours. To determine the cytotoxicity induced by A β 1-42, the level of dead cell-derived LDH released into the medium was measured by a CytoTox96 kit (Promega).

Ultrafiltration and molecular sieve

30

35

40

45

[0134] In order to determine the size-dependent characteristics of neurotoxic Aβ oligomers, the four types of filtrates (<3 kDa, 3 to 10 kDa, 10 to 30 kDa, 30 to 100 kDa) and the retention solution (>100 kDa) were prepared from a 25 μM Aβ oligomer solution by sequential ultrafiltration using Microcon 3 kDa, 10 kDa, 30 kDa, and 100 kDa cut-off membranes. Each of the fractions was subjected to the Aβ-induced neurotoxicity assay described above. PC12N was exposed to each fraction to identify the toxic fraction as described above. The distribution of the three-dimensional structures recognized by A11, 1A9, 2C3, and 4G8 was also identified by the dot blot analysis described above. The morphological characterization of the neurotoxic oligomers was performed by examining each fraction using an atomic force microscope.

Electron microscopy (EM) and atomic force microscopy (AFM)

[0135] Samples were diluted with distilled water and sprayed over carbon-coated grids to conduct electron microscopy. The grids were negatively-stained with 1% phosphotungstic acid and observed under a Hitachi H-7000 electron microscope (Tokyo, Japan) with an acceleration voltage of 77 kV. AFM assessment was carried out as recently reported. Drops of the samples were placed onto freshly cleaved mica. The mica was allowed to stand for 30 minutes and then washed with water, and the liquid samples were analyzed using Nanoscope IIIa (Digital Instruments, Santa Barbara, CA, USA) set to the tapping mode (Tero, R, et al., Langmuir 20, 7526-7531, 2004). The cantilever used was OMCLTR400PSA (Olympus, Japan).

Subject tissues and extraction

10

30

35

40

45

50

[0136] The present study was conducted based on autopsy cases (n = 50; 26 male and 24 female cases) from the Tokyo Metropolitan Brain Bank for Aging Research of the Tokyo Metropolitan Institute of Gerontology (Itabashi, Tokyo, Japan). This research project was approved by the institutional ethical committees of the Faculty of Medicine, the University of Tokyo; the Tokyo Metropolitan Geriatric Hospital of the Tokyo Metropolitan Institute of Gerontology; and the National Center of Geriatrics and Gerontology. Details of subjects and sample collection have been reported (Katsuno T, Neurology, 64: 687-692, 2005). However, that study analyzed insoluble brain fractions, whereas in this research project (Katsuno T, Neurology, 64: 687-692, 2005), the present inventors analyzed soluble brain fractions, which remain uncharacterized in previous studies. Frozen tissue samples (the anterior portion of entorhinal cortex) were homogenized in nine volumes of Tris-buffered saline (TS) containing a protease inhibitor cocktail. The homogenates were ultracentrifuged at 265,000 x g for 20 minutes. One-third aliquots (0.5 ml) of the resulting supernatants were subjected to immunoblot analysis.

²⁵ Immunohistochemistry

[0137] The left brain hemispheres of Tg2576 mice were sliced into 30-μm-thick sagittal sections using a cryotome (RM 2145; Leica, Wetzlar, Germany), and stained with thioflavin S as previously described (Wyss-Coray *et al.*, 2001). The formation of swollen dystrophic neurites was observed using an anti-synaptophysin antibody (Chemicon, Temecula, CA). The number of thioflavin S-positive plaques and synaptophysin-positive swollen dystrophic neurites was counted by observing four or five sections from the left brain hemisphere of each mouse at 40-fold magnification. To observe Aβ deposition, serial sections briefly pre-treated with formic acid or Protease K were stained using an Aβ immunostaining kit (Sigma, St. Louis, MO), and immuno-positive signals were visualized using an ABC elite kit (Vector Laboratories). Images of the cerebral cortex and hippocampus were recorded using a digital camera connected with a microscope, and analyzed using a simple PCI software (Compix Imaging System, Lake Oswego, OR). The brain translocation of antibodies was observed using a confocal laser microscope (Carl Zeiss LSM510). The number of thioflavin S-positive plaques and synaptophysin-positive swollen dystrophic neurites was determined in a double blind manner.

Passive immunotherapy and behavioral analysis

[0138] Three-month-old female non-transgenic (non-Tg) mice, and Tg2576 mice having and overexpressing the Swedish-type mutant human APP gene with dual mutations (K670N and M671 L) derived from familial AD were purchased from Taconics (Germantown, NY, USA). These mice were reared until 13 months old in the animal facility of the present inventors. To determine whether the Alzheimer-like phenotype is prevented by passive immunotherapy, 1A9 or 2C3 (0.4 mg/kg/week), or PBS was administered into the caudal vein of four-month-old Tg2576, and the administration was continued until 13 months. The memory function was assessed at month 13 as previously described (Mouri A, FASEB J, 21: 2135-2148, 2007), based on the following four behavioral paradigms:

- (1) Y-maze test for short-term memory;
- (2) novel object recognition test;
- (3) Morris water maze test; and
- (4) contextual fear conditioning test.

[0139] Three days after the behavioral tests, the mice were sacrificed for biochemical and histological assessments.
55 The experimental results were analyzed by one-way ANOVA and two-way ANOVA. Post-hoc analysis was carried out using Fisher test.

Separation and removal of lipoprotein

[0140] CSF was collected from 12 AD patients and 13 NC individuals. Then, lipoproteins were removed from 600 μ l each of the CSF by preparative continuous density gradient ultracentrifugation according to a protocol reported previously (Matsubara E, et al., Ann Neurol, 45: 537-541, 1999). The density of CSF was adjusted to 1.25 g/ml with KBr. The CSF was ultracentrifuged at 100,000 rpm and 16°C for eight hours using a Hitachi RP100AT centrifuge. Lipoproteins floating at a density of 1.25 g/ml and lipoprotein-depleted CSF (LPD-CSF) were subjected to ultrafiltration using a 3 kDa cut-off membrane (Microcon 3; Arnicon, Inc), and then frozen and stored, or stored at 4°C, until use.

[0141] Lipoproteins were also removed by affinity chromatography using PHML-LIPOSORB (Calbiochem, La Jolla, CA). Each sample (plasma or brain) and PHML-LIPOSORB (Calbiochem, La Jolla, CA) were combined at a ratio of 1.5:1, and mixed for 60 seconds. Then, the mixture was centrifuged at 3,000 rpm for ten minutes. The resulting supernatants (lipoprotein-free samples) were subjected to ELISA using 6E10 for the oligomers. The lipoprotein-bound samples were eluted from PHML-LIPOSORB using 20 mM sodium deoxycholate. The removal of specific lipoproteins was confirmed by agarose electrophoresis using 1% gel (Beckmann), followed by staining with FAST-RED 7B (Wako, Osaka, Japan).

Quantification of human Aß

15

20

25

30

35

40

[0142] Whole plasma and LPDP A β species were specifically quantified by sandwich ELISA as previously described (Matsubara E, et al., Ann Neurol, 537-541, 1999; Matsubara E, et al., Neurobiol Aging, 25: 833-841, 2004). To analyze brain A β species, soluble A β species in 100 μ l of buffer were directly subjected to ELISA, while insoluble A β samples extracted with 70% formic acid were neutralized with 1 M Tris-HCl (pH 8.0) and diluted 1,000-fold prior to ELISA. The values obtained by the assay were normalized using the brain wet weight, and ultimately presented in pmol/g. Normalization among plates was done by including the three standard plasma samples in all three plates.

Aβ oligomer-specific ELISA

[0143] Chemiluminescence-based sandwich solid-phase enzyme immunoassay (chemiluminescent ELISA) was used to specifically detect oligomeric $A\beta$ but not monomeric $A\beta$. Microplates were coated with monoclonal 1A9 (IgG2b isotype) or 2C3 (IgG2b isotype), or a mixture of 1A9 and 2C3. 100 μ l of a sample (brain or cerebrospinal fluid) was added and incubated continuously for 24 hours at 4°C. Then, horseradish peroxidase-conjugated BA27 Fab' fragment (anti- $A\beta$ 1-40 specific to $A\beta$ 40; Wako pure chemical, Osaka, Japan) or horseradish peroxidase-conjugated BCO5 Fab' fragment (anti- $A\beta$ 35-43 specific to $A\beta$ 42; Wako pure chemical, Osaka, Japan) was added and incubated at 4°C for 24 hours. The chemiluminescence generated using SuperSignal ELISA Pico Chemiluminescent Substrate (Pierce, Rockford, IL, USA) was quantified by a Veritas Microplate Luminometer (Promega).

[0144] To assess the *in vivo* efficacy of the peripheral administration of monoclonal 1A9 and 2C3, plasma and organ samples were collected from administered mice and analyzed for $A\beta$ oligomers by ELISA using HRP-labeled 6E10 (Senetek PLC, Napa, CA, USA) specific to the human oligomers. High-sensitivity detection was achieved by using the above-described chemiluminescent system. To avoid interference by lipoprotein-bound $A\beta$ monomers, the present inventors pre-treated plasma and organ samples using PHML-LIPOSORB in the same way as described above. The resulting lipoprotein-depleted samples were used for the assay.

Inhibition ELISA

45 [0145] Aβ oligomers used in this assay were prepared by diluting synthetic Aβ 1-40 (HCl form) to a concentration of 0.1 mg/ml with PBS and incubating this at 37°C for one hour. Meanwhile, Aβ monomers were prepared by diluting synthetic Aβ 1-40 (TFA form) to a concentration of 0.1 mg/ml with PBS. Aβ oligomers were immobilized onto 96-well immunoplates at 400 ng/well, and then the plates were blocked with BSA. Next, the Aβ monomers or oligomers stepwise-diluted in the range of 100 pg/ml to 100 μg/ml were reacted with the 4F7, 4H5, 5A5, 5A9, 6E4, or 6H4 antibodies, or the control anti-Aβ antibodies (4G8 and 6E10). After incubation for two hours, the mixtures were added to the above-described 96-well immunoplates, and incubated at room temperature for ten minutes. The binding of immobilized Aβ oligomers to each of the antibodies was detected by measuring the absorbance at 450 nm in the color development reaction using an HRP-labeled anti-mouse IgG antibody and a TMB solution.

[Example 1]

5

10

15

20

25

30

35

40

45

50

55

Preparation of Aβ oligomer-specific monoclonal antibodies (1A9 and 2C3)

[0146] A β oligomers and monomers co-exist in a solution. Thus, it is essential to remove A β monomers for preparation of antigens to produce Aβ oligomer-specific antibodies. As shown in Fig. 1A, the present inventors succeeded in isolating SDS-stable Aβ tetramers without contamination of Aβ monomers by SDS-PAGE. After *in vivo* immunization with the isolated Aβ tetramers, positive hybridoma clones were selected by two-step screening using dot blot analysis followed by immunoprecipitation. Among 400 clones subjected to dot blot analysis, 16 clones were determined to be positive (positivity rate = 4%). To assess the specificity of the isolated positive clones to the oligomers, a phosphate bufferinsoluble and formic acid (FA)-soluble amyloid fraction derived from AD brain (Matsubara E et al., Neurobiol Aging, 25: 833-841, 2004) was analyzed by immunoprecipitation using the cell culture supernatants of the positive hybridomas (Fig. 1 B). The Aβ dimer, a smaller amount of the trimer, and a high-molecular-weight smear characteristic to aggregated Aβ molecular species were detected by immunoblot analysis using anti-Aβ monoclonal 4G8. A very small amount of Aβ monomers dissociated in the presence of SDS was also detected. To further confirm the existence of three-dimensional structures recognized by native 1A9 and 2C3 (i.e., oligomers), the present inventors detected the oligomers in conditioned medium (CM) of human embryonic kidney (HEK) 293 cells transfected with mutant PS1 cDNA (Nakaya Y et al., J Biol Chem, 280: 19070-19077, 2005). The present inventors fractionated HEK293 CM by SEC, and then identified the oligomers. As reported previously (Matsubara E et al., Neurobiol Aging, 25: 833-841, 2004; Yamamoto N, et al., J Biol Chem, 282: 2646-2655, 2007), this method can effectively separate the oligomers (fractions 8 to 13) from monomers (fractions 14 to 20). When immunoprecipitated with monoclonal 1A9, SDS-stable Aβ dimers secreted into CM were precipitated in fraction 8 (>680 kDa); SDS-stable Aβ dimers and trimers were precipitated in fraction 13 (17 to 44 kDa); and a very small amount of the dimers was precipitated in fraction 16 (Fig. 1 C). Similar results were obtained when immunoprecipitation was carried out using 2C3 (data not shown). These data demonstrate that monoclonal 1A9 and 2C3 are exactly specific to $A\beta$ oligomers but do not recognize $A\beta$ monomers.

[Example 2]

The anti-neurotoxic activity of monoclonal 1A9 and 2C3

[0147] To assess whether monoclonal 1A9 and 2C3 can prevent Aβ-induced neurotoxicity, NGF-differentiated PC12 cells (PC12N) were incubated with 25 μM seed-free Aβ 1-42 (ThT-negative 540,000 x g supernatant) in the presence or absence of the monoclonal antibodies (mAbs) at 37°C for 48 hours. The viability of nerve cells was determined by LIVE/DEAD assay (Fig. 2). Nerve cell death was detected at a significantly high level (50%) in the presence of Aβ 1-42 (Figs. 2B and 2G), as compared to the control assay (Fig. 2A). Non-specific IgG2b (Figs. 2C and 2G) could not inhibit the Aβ 1-42-induced neurotoxicity under the same conditions. The commercially available Aβ-specific monoclonal antibody 4G8 (IgG2b isotype; Figs. 2D and 2G) had a tendency to enhance the toxicity. Monoclonal 2C3 (IgG2b isotype; Figs. 2F and 2G) neutralized the neurotoxicity of Aβ 1-42 almost completely in a concentration-dependent manner. Thus, the *de novo*-formed neurotoxic three-dimensional structure recognized by 2C3 was speculated to take an oligomer form. Meanwhile, the anti-neurotoxic activity of 1A9 (IgG2b isotype; Figs. 2E and 2G) falls between the anti-neurotoxic activity of 2C3 and non-specific IgG2b. This suggests that the three-dimensional structure recognized by 1A9 is structurally different from the 2C3-recognized oligomers.

[Example 3]

[0148] Currently, the determination of the precise size and conformation of neurotoxic A β 1-42 oligomers is one of the most urgent issues and which is subjected to intense competition. The present inventors succeeded in isolating soluble neurotoxic A β 1-42 molecular species and fractionating the species into the following five fractions by ultrafiltration and molecular sieving (UC/MS) (Fig. 3A):

fraction 1, filtrate of <3 kDa (lane 1); fraction 2, filtrate of 3 to 10 kDa (lane 2); fraction 3, filtrate of 10 to 30 kDa (lane 3); fraction 4, filtrate of 30 to 100 kDa (lane 4); and fraction 5, retention solution of >100 kDa (lane 5).

[0149] The immunoblot analysis using monoclonal 4G8 (Fig. 3A) revealed that:

fraction 1 does not contain A β (lane 1); fraction 2 contains A β monomers (lane 2); lane 3 contains A β monomers and a small amount of A β dimers; fraction 4 contains A β monomers to pentamers (lane 4); and fraction 5 contains A β monomers to pentamers, and molecules of 45 to 160 kDa (lane 5).

[0150] These data suggest that 2% SDS depolymerizes high-molecular-weight (HMW) Aβ oligomers into Aβ monomers and low-molecular-weight (LMW) Aβ oligomers. To assess the size distribution of toxic Aβ 1-42, the present inventors measured the biological activity of each fraction incubated with PC12N at 37°C for 48 hours. As shown in Figs. 3B and 3C, it was demonstrated that: fraction 1 was non-toxic, and fraction 2 had a very weak toxicity, suggesting that Aβ monomers and dimers are unlikely to be toxic. Fractions 3 to 5 were significantly toxic (one-way ANOVA; p<0.0001), suggesting that the size of neurotoxic oligomers theoretically corresponds to the size of trimers or higher-molecularweight polymers. The dot blot analysis using the oligomer-specific A11 antibody demonstrated that the above-mentioned three neurotoxic fractions (3 to 5) were positive for A11, supporting the evidence that the neurotoxic molecules are oligomeric (Fig. 3D). The 2C3-recognized oligomers were detected in fractions 4 and 5 (Fig. 3D). Thus, 2C3 was demonstrated to actually react with neurotoxic Aβ oligomers (>30 kDa). Furthermore, the majority of the 2C3-recognized oligomers was detected in fraction 5 (>100 kDa) that was the most toxic, and thus the 2C3-recognized oligomers having a molecular weight over 100 kDa were considered to show a strong neurotoxicity (Fig. 3D). Meanwhile, only an extremely small amount of the 1A9-recognized oligomers was distributed in fraction 5 that was the most toxic. This is consistent with the result that the neutralization of neurotoxicity by 1A9 was insufficient (Figs. 2E and 2G). By contrast, monoclonal 4G8 having no anti-neurotoxic activity detected the Aβ species distributed in all of the fractions (Fig. 3D). This suggests the possibility that non-toxic and toxic oligomers of the same size co-exist.

[0151] To further assess the toxicity-structure correlation, each fraction was subjected to atomic force microscopy (AFM). The presence of globular particle morphology consistent with the fraction size was detected in the three neurotoxic fractions. Fig. 3E shows the atomic force microscopic images of non-toxic fraction 2 (Fr. 2), toxic fractions 3 (Fr. 3) and 4 (Fr. 4), and the most toxic fraction 5 (Fr. 5). The formation of many granular polymer molecules was clearly observed in the toxic fractions. In particular, fraction 5 was revealed to contain heterogeneous toxic molecules including bead-shaped and ring-shaped molecules in addition to various large and small granular molecules.

30 [Example 4]

35

45

50

55

5

The activity of 1A9 and 2C3 to suppress Aβ amyloid fibril formation

[0152] Next, the present inventors assessed the activity of 1A9 and 2C3 to suppress A β amyloid fibril formation. The formation of A β 1-42 amyloid fibrils (at 0, 10, 25, and 50 μ M) was assessed by measuring the ThT fluorescence for 72 hours at 37°C. Under the conditions used by the present inventors, seed-free Aβ 1-42 (ThT-negative supernatant fraction obtained by ultracentrifugation at 540,000 x g) was polymerized into amyloid fibrils by nucleation-dependent polymerization (Fig. 4A). To assess the activity of 1A9 and 2C3 to suppress Aß amyloid fibril formation, the present inventors incubated 25 μM seed-free Aβ 1-42 in the presence or absence of the antibodies at 37°C for 48 hours. As shown in Fig. 4B, the ThT fluorescence intensity was altered in a 2C3 concentration-dependent manner, while none of monoclonal 1A9 and 4G8 and non-specific IgG2b altered the florescence intensity. Meanwhile, when Aβ was polymerized by incubation for two hours, 1A9, as well as 2C3, showed the activity to almost completely suppress the fibril formation (Fig. 4C). Since the activity to suppress Aβ amyloid fibril formation was detected even when the molar ratio of 2C3 to Aβ was low, 2C3 was inferred to have the activity to inhibit the polymerization nucleus formed de novo or the seed function at an early stage of Aβ 1-42 amyloid fibril formation. Similar results were obtained by morphological observation. As shown in Fig. 4E (Aβ 42 alone) and Fig. 4F (Aβ 42 + 2C3, 25:3), electron microscopy (EM) demonstrated that the formation of Aβ amyloid fibrils was partially inhibited in the presence of monoclonal 2C3, while only a weak inhibitory effect was produced in the presence of 1A9 (Fig. 4G). Meanwhile, none of the test antibodies exhibited the effect of lysing or depolymerizing Aβ 1-42 amyloid fibrils that were formed by incubation for 24 hours (Fig. 4D).

[Example 5]

Toxicity-related oligomers targeted by 1A9 and 2C3

[0153] To elucidate the structural and kinetic connection between the Aβ 1-42 oligomerization and amyloid fibril formation, the polymerization time course was analyzed by dot blotting using A11, 1A9, 2C3, and 4G8. As shown in Fig. 5A, the majority of A11 antibody-reactive oligomers was formed during the lag time phase of polymerization (0 to 8 hours), and the ThT fluorescence intensity was relatively weak. During the next fibril extension phase (8 to 24 hours),

the level of A11-immunoreactive oligomers reached a plateau, and then was constant (about 20% of the peak level) until 72 hours (plateau phase). It has been demonstrated that, since the anti-oligomer A11 antibody does not recognize amyloid fibrils, the $A\beta$ oligomer formation can be specifically observed using the antibody (Kayed R, et al., Science 300, 486-489, 2003). Hence, the present results suggest that the $A\beta$ oligomer formation precedes amyloid fibril formation, and there is an oligomerization state that does not directly enter the amyloid fibril formation pathway. The 2C3-recognized oligomers were kinetically similar to the A11-recognized oligomers, but not the 1A9-recognized oligomers. The 1A9-recognized oligomers were detected only after four hours, and then the immunoreactivity to 1A9 increased twofold over time. This suggests that the 1A9-recognized oligomers are slowly formed. Meanwhile, it was revealed that the 2C3-recognized oligomers are transiently increased during the lag time phase (0 to 8 hours), and then exist at a very low level (less than 5%) in a oligomerized state from 8 to 72 hours. The above-described data obtained by the present inventors suggest the possibility that the A11-, 1A9-, and 2C3-recognized oligomers have structurally and immunologically different conformations or stability, and the 2C3-recognized oligomers are relatively unstable as compared to the 1A9-recognized oligomers.

[0154] To characterize the de novo toxic polymerization state, PC12N were exposed at 37°C for 48 hours to seedfree Aβ 1-42 (0 hour), or Aβ 1-42 pre-incubated for two, four, or 24 hours (Fig. 5B), and the neurotoxic activity was assayed. As shown in Fig. 5B, the immunoblotting analysis using 4G8 revealed that the monomers, dimers, and timers exist even at the 0 hour time point. The pre-incubation of two or four hours resulted in a high-molecular-weight (HMW) smear pattern of 45 to 160 kDa, in addition to the monomers to pentamers. At the time point of 24 hours, the HMW smear was dramatically reduced, and there were two types of major components: a high-molecular-weight species that could not enter the gel and thus remained in the well, and a small amount of the monomers. The HMW smear disappeared after further incubation at 37°C for 48 hours. As shown in Figs. 3A and 5C, the molecular sieve experiment revealed that seed-free Aβ 1-42 is converted into molecular species of 100 kDa or more, and exhibits the strongest toxicity. By SDS-PAGE, it was demonstrated that the toxic molecules include molecular species showing a high-molecular-weight (HMW) smear pattern of 45 to 160 kDa, in addition to the monomer to pentamer species, and the toxic polymers can be easily depolymerized into low-molecular-weight species in the presence of SDS. However, when seed-free Aβ 1-42 was pre-incubated for two, four, and 24 hours, the neurotoxic activity of de novo-formed Aβ oligomers was reduced by about 12.5% and 26%, respectively (Fig. 5C). This result suggests that the level of de novo-formed Aβ oligomers in the early period of Aß polymerization is a determining factor for neurotoxicity, and that the formation reaches a peak in the period of zero to two hours, and then the level of formed Aβ oligomers reduces over time. Alternatively, there is a possibility that nuclei for the de novo polymerization of Aβ amyloid fibrils, or amyloid fibrils themselves have the neurotoxicity-neutralizing activity. The present inventors incubated A β 1-42 for two hours, and then removed insoluble A β polymerization nuclei and amyloid fibrils by ultracentrifugation for three hours at 540,000 x g. The supernatant and pellet obtained by ultracentrifugation at 540,000 x g exhibited similar levels of thioflavin T signals, suggesting that the 540,000 x g supernatant contains soluble ThT-positive A β polymers (The ThT binding indicates structural changes to form a β sheet-rich structure, but not fibril formation). The neurotoxicity was restored and enhanced when PC12N was exposed to the soluble polymers (Fig. 5D). This suggests that insoluble $A\beta$ 1-42 itself has the anti-toxic activity. Under the conditions described above, monoclonal 1A9 completely neutralized the neurotoxicity induced by soluble Aβ oligomers enriched in β sheet structures, and this neutralizing activity was greater than that of 2C3. Meanwhile, non-specific IgG2b has no effect on the viability of cultured PC12N. Accordingly, it is speculated that neurotoxic 1A9-recognized polymers are basically soluble toxic oligomers that have been slightly stabilized due to some structural change, while neurotoxic 2C3recognized polymers are basically short-lived oligomeric intermediates that are very unstable due to drastic structural changes during the early stage of polymerization process.

[Example 6]

10

30

35

40

45

50

55

Monoclonal 1A9 and 2C3 recognize Aβ oligomers in the brain parenchyma

[0155] The present inventors demonstrated the specificity and biological activity of 1A9 and 2C3. Furthermore, the inventors detected 1A9 and 2C3 polymers in the brain by immunohistochemistry. The present inventors performed conventional immunohistochemistry methods to enhance immune reaction by formaldehyde fixation, and formic acid, SDS, or microwave treatment of brain sections. The two antibodies exhibited no immunoreactivity to AD brain by any one of the enhancement methods. Thus, the present inventors pre-treated the sections with Protease K, which is known to improve immunostaining (Wrzolek MA, et al., Am J Pathol, 141: 343-355, 1992). As a result, many senile plaques were stained with 1A9 (Fig. 6A), 2C3 (Fig. 6B), and A11 (Fig. 6C). Together with the finding from the *in vitro* experiments by the present inventors that A β amyloid fibrils neutralize the A β oligomer-induced neurotoxicity, the result described above suggests that a senile plaque serves as a defensive reservoir to isolate and store A β oligomers, and thus the interior of the reservoir is hardly accessible for antibodies. Indeed, immunoprecipitation using 1A9 and 2C3 demonstrated that amyloid fractions composed of senile plaques contain A β oligomers recognized by the two antibodies. Thus, the

hypothesis of the present inventors was proven to be consistent with the in vivo finding (see Fig. 1 B).

[0156] To further assess the existence of "soluble" 1A9- and 2C3-recognized polymers in the brain, the present inventors carried out immunoprecipitation experiments using the two antibodies. Brain homogenates were prepared using Tris-buffered saline (TBS) to avoid chemical modification during the extraction of soluble oligomers. The oligomers having a molecular weight of 4mer, 5mer, 8mer, and 12mer were immunoprecipitated with 1A9 from TBS samples of the cerebral cortex from AD brain (Fig. 6D, lane 2), while the level of the oligomers in the control healthy brain was below the detection limit (lane 3). While the intensity of 4mer, 5mer, and 8mer was comparable between 1A9 (lane 2) and the monoclonal 4G8/6E10 mixture (lane 1), 1A9 appeared to recover a larger amount of 12mer than 4G8/6E10. The immunoprecipitation with 2C3 showed a comparable result (Fig. 6, lanes 4 to 6). Next, the present inventors identified the molecules responsible for the in vivo neurotoxicity in the human entorhinal cortex. It is well known that neurofibrillary tangle (NFT) and nerve cell loss precede the formation of senile plaques in lesions in general elderly populations. The present inventors hypothesized that the lack of functional reservoirs such as senile plaques for 1A9-and 2C3-recognized polymers is harmful for entorhinal cortex neurons, and is a possible cause of memory disturbance. The level of 12mer in the buffer-soluble fractions of previously reported 50 autopsy cases was determined by immunoblotting using monoclonal 1A9 and 2C3. The 50 cases include two AD cases, 35 cases at Braak NFT stages I to II, and 13 cases at NFT stages III to IV (Katsuno et al., Neurology, 64: 687-692, 2005). As shown in Figs. 6E (1A9) and 6F (2C3), the immunological activity of 1A9- or 2C3-immunoreactive 12mer relative to actin was significantly higher in AD patients as compared to the healthy control group (Braak NFT stages I to II) and mild cognitive impairment group (Braak stages III to IV). Interestingly, the 12mer was accumulated in the entorhinal cortex of the healthy control group (Braak NFT stages I to II) and mild cognitive impairment group (Braak stages III to IV) at a level of about 40% and 60% (the level of AD cases is 100%), respectively (Figs. 6E and 6F). This result indicates that the accumulation of 12mer precedes the onset of cognitive impairment, and is increased as the Braak NFT stage advances, suggesting that the 1A9- and 2C3-imunoreactive 12mer are polymers responsible for the in vivo neurotoxicity.

²⁵ [Example 7]

10

15

20

30

35

40

45

50

55

Monoclonal 1A9 and 2C3 recognize $A\beta$ oligomers in the cerebrospinal fluid

[0157] The Aβ polymers (soluble 1A9- and 2C3-imuunoreactive 12mer) responsible for the *in vivo* neurotoxicity were found in the brain parenchyma. Thus, the present inventors speculated that CSF also contains the polymers. To verify this, the present inventors fractionated pooled CSFs from ten AD patients and ten age-matched healthy individuals as a control by SEC, and assayed the fractions by Aβ oligomer-specific sandwich ELISA using monoclonal BC05 or BA27 in the capturing and detection systems. The BC05/BC05 oligomer ELISA detected soluble Aβ 1-42 in fraction 13, while the BA27/BA27 ELISA detected soluble Aβ 1-40 in fractions 7 to 14 (data not shown). However, in each ELISA, the absorbance (O.D. at 450 nm) was low for sensitive detection of a small amount of Aß oligomers in CSF. The detection of A β monomers in the same fractions by BNT77 ELISA showed that lipoprotein-bound A β monomers (fractions 7 to 14) and lipoprotein-free Aβ monomers (fractions 15 to 17) coexist with Aβ oligomers in the fractions (Figs. 7-1A and 7-1B) (Matsubara E, et al., Neurobiol Aging, 25: 833-841, 2004). The level of lipoprotein-bound Aβ monomer in AD was comparable to that of the healthy control, while the level of lipoprotein-free Aβ40 monomer (Fig. 7-1A) and Aβ42 monomer (Fig. 7-1B) in AD was lower as compared to the age-matched healthy control. The present inventors also found that lipoprotein-bound Aβ monomers, in addition to the oligomers, can be detected when ELISA is designed to use HRPlabeled BC05 or BA27 as a capture antibody. This problem remained unnoticed in the prior art document (Lee EB, et al., J Biol Chem, 281: 4292-4299, 2006), which describes assay methods (for example, 6E10/6E10 ELISA) that are similar to the methods described herein. Since the oligomers and lipoprotein-bound $A\beta$ monomers are eluted at a comparable retention time in SEC, it is impossible to distinguish them by oligomer ELISA using the same antibody in capturing and detection. Thus, it was revealed that CSF containing lipoproteins is unsuitable for a test sample when Aβ oligomers are analyzed using $A\beta$ oligomer-nonselective antibodies.

[0158] To overcome the weaknesses of the prior art methods, the present inventors improved the detection antibodies and samples used in ELISA. Lipoproteins were pre-depleted from CSF, and the resulting lipoprotein-depleted CSF (LPD-CSF) was used as an assay sample. A β oligomer-specific 1A9 and 2C3 were used as detection antibodies for ELISA. Furthermore, chemiluminescence ELISA was developed to enhance the sensitivity. Pooled LPD-CSF (Figs. 7-1C to D) was fractionated by SEC, and each fraction was analyzed for A β oligomer distribution by luminescence ELISA using 1A9 or 2C3 as a detection antibody. As shown in Figs. 7-1C to D, A β oligomers were detected in SEC fractions 12 to 15 (relatively large A β with a molecular weight ranging within 18 to 108 kDa, which corresponds to the size of 4mer to 24mer). The level of 1A9-and 2C3-recognized oligomers was elevated in all of the AD patient-derived fractions in which the oligomers were detectable. To assess the usefulness of the A β oligomers as therapeutic markers, the level of A β oligomers in LPD-CSF from AD patients was compared to that from the age-matched healthy control, although a limited number of cases were analyzed. As shown in Fig. 7-2G, 2C3-recognized oligomers composed of A β x-42 were significantly

increased in the AD patient group as compared to the normal control group (nonparametric analysis; p = 0.0103). By contrast, for 2C3-recognized oligomers composed of A β x-42, there was no significant difference between the two groups. Meanwhile, the level of 1A9-recognized oligomers composed of A β x-42 was higher in AD than in the control, although the difference was not statistically significant. For 1A9-recognized oligomers composed of A β x-40, there was no significant difference between the two groups (Fig. 7-2E). The structural change from A β monomer to oligomer occurs in the earliest period of the process of A β polymerization. The ratio between A β oligomer and monomer (O/M index) can be used as a clinical indicator reflecting the pathological conditions of AD. As shown in Figs. 7-2F and 7-2H, the O/M indices for A β 42 and A β 40 were significantly increased in the AD patient group as compared to the healthy control group (1A9, P=0.0137 for A β 42 and P=0.0429 for A β 40; 2C3, P=0.0012 for A β 42 and P=0.0051 for A β 40). The results described above show that the 1A9- and 2C3-positive three-dimensional structures are present as A β oligomers in LPD-CSF, and increased in AD patients. In addition, the results obtained by the present inventors demonstrated that the structural conversion of lipoprotein-free soluble A β to the oligomeric intermediates occurs in CSF of AD patients, and the oligomers can be detected as useful biological markers for diagnosis of sporadic AD.

15 [Example 8]

20

25

30

35

40

45

50

55

Passive immunotherapy using monoclonal 1A9 and 2C3 prevents the onset of memory disturbance in Tg2576

[0159] To assess the *in vivo* preventive/therapeutic effect of passive immunotherapy based on the administration of 1A9 (n=13) or 2C3 (n=11), the present inventors administered 1A9 or 2C3 (0.4 mg/kg/week), or PBS to Tg2576 mice via the caudal vein during the 4 to 13 month period. The memory function was assessed at 13 months old in terms of the following four types of learning/behavioral paradigms:

- (1) short-term memory in Y-maze test (Fig. 8A);
- (2) object recognition memory in novel object recognition test (Fig. 8B);
- (3) spacial memory in water maze test (Fig. 8C); and
- (4) associative emotional memory in contextual fear conditioning test (Fig. 8D).

[0160] As compared to 1A9- and 2C3-administered Tg2576 mice, PBS-administered Tg2576 mice showed significant learning and behavioral impairments (Fig. 8A to 8D). Unlike the memory function of PBS-administered Tg2576 mice (n=10), the memory function of 1A9 and 2C3-administered Tg2576 mice was indistinguishable from that of age-matched non-administered wild type cohort mice, which was previously determined. Therefore, 1A9 and 2C3-administered Tg2576 mice were shown to retain both short- and long-term memory, which were impaired in the PBS administration group. That is, the present inventors obtained evidence supporting the view that the onset of memory disturbance, in particular AD, can be prevented by conducting passive immunotherapy targeting A β oligomers before the onset. Furthermore, the result described above presents the first *in vivo* evidence that directly indicates that A β oligomers are responsible for the onset of memory disturbance.

[Example 9]

Monoclonal 1A9 prevents $A\beta$ accumulation in the brain of Tg2576

[0161] Tg2576 mice administered with PBS (n=10) and Tg2576 mice treated with passive immunotherapy during the 4 to 13 month period (1A9 administration group, n=13; 2C3 administration group, n=11) were dissected after the learning/behavioral experiments. The amount of Aβ accumulated in the brain (cerebral cortex vs. hippocampus) was determined in the following three fractions (150 mg/extract) prepared by serial extraction: soluble fraction in Tris buffer containing protease inhibitors; 2% SDS-soluble amyloid fraction; and 2% SDS-insoluble and 70% formic acid-soluble amyloid fraction. It is considered that non-accumulative, physiological Aβ molecules are contained in the Tris buffer fraction, while 2% SDS-soluble A β includes A β in diffuse senile plaques before amyloid fibril formation, immunocytochemically undetectable A β , and conformationally altered, accumulative soluble oligomeric A β . A β was selectively quantified by Aβ40 and Aβ42 end-specific ELISA (BNT77/BA27 specific for Aβ40, BNT77/BC05 specific for Aβ42, WAKO kit). There was no marked difference among the three groups in the Aβ concentration in the Tris buffer fraction where the major components were non-accumulative, physiological Aβ molecules (Figs. 9A and 9C, Aβ x-40; Figs. 9B and 9D, Aβ x-42). Regarding soluble Aβ accumulated in the brain (SDS fraction), a significant suppressive effect on the accumulation of Aβ x-40 and Aβ x-42 in the cerebral cortex was observed only in the 1A9 administration group (Fig. 9E, Aβ x-40; Fig. 9F, Aβ x-42). No accumulation-suppressive effect was observed in the hippocampus (Fig. 9G, Aβ x-40; Fig. 9H, Aβ x-42). Meanwhile, regarding insoluble Aβ accumulated in the brain (FA fraction), a significant suppressive effect on the accumulation of Aβ x-40 in the cerebral cortex was observed only in the 1A9 administration group (Fig. 9I, Aβ x-40; Fig.

9J, $A\beta$ x-42). No accumulation-suppressive effect was observed in the hippocampus (Fig. 9K, $A\beta$ x-40; Fig. 9L, $A\beta$ x-42). The A11 immunoblot analysis of the SDS-soluble fractions showed a suppressive effect on the accumulation of A11-positive oligomer (4mer) in the cerebral cortex in the two antibody treatment groups (Fig. 9M).

5 [Example 10]

10

20

25

30

35

40

50

55

Plasma $A\beta$ oligomers are increased by passive immunotherapy with 1A9 and 2C3

[0162] There was no significant difference in the plasma $A\beta$ concentration among the following three groups: Tg2576 mice administered with PBS (n=10), and Tg2576 mice treated with passive immunotherapy during the 4 to 13 month period (1A9 administration group, n=13; 2C3 administration group, n=11) (Fig. 10A, $A\beta$ x-40; Fig. 10B, $A\beta$ x-42). There was also no significant difference in the $A\beta40/42$ ratio (Fig. 10C).

[0163] In order to elucidate the mechanism underlying the preventive effect of passive immunotherapy with 1A9 and 2C3 (IVIg) against the AD-like phenotype in Tg2576 mice, the present inventors assessed the level of physiological saline-soluble and -insoluble Aβ oligomers in pooled brain homogenates, and the level of Aβ oligomers in the peripheral blood and plasma. There was no difference in the amount of physiological saline-soluble Aβ oligomers in the pooled brain homogenates among the treatment groups (Fig. 10D). Meanwhile, the amount of insoluble A β oligomers was shown to be reduced in the 1A9 and 2C3 treatment groups (Fig. 10E). Furthermore, pooled plasma from each group (albumin-depleted plasma, upper part of Panel F; albumin/lipoprotein-depleted plasma, lower part of Panel F) was assayed for Aβ oligomers by A11 dot blotting. The result shows that the oligomers were present in the plasma from PBS-administered Tg2576 mice (Fig. 10F). A11-positive oligomers in plasma were clearly increased in the passive immunotherapy groups as compared to the PBS administration group (Fig. 10F). The proportion of 2C3-recognized oligomers in a lipoprotein-bound form was greater than that of 1A9-recognized oligomers (lower part of Panel F). Furthermore, plasma Aβ oligomers were detected by A11 immunoprecipitation. The result shows that the oligomers of about 200 kDa were increased in Tg2576 mice treated with passive immunotherapy as compared to the PBS administration group (Fig. 10G). The increase in plasma Aβ oligomers in the passive immunotherapy groups can be considered to directly reflect enhanced cerebral clearance. Thus, the present inventors obtained evidence that direct target molecules for intravenous passive immunotherapy are also present in blood in addition to brain, and that oligomer-selective cerebral clearance can be enhanced through peripheral sites of action. That is, the present inventors showed the clinical usefulness of the intravenous passive immunotherapy.

[Example 11]

Formation of senile amyloid plaques and swollen dystrophic neurites can be suppressed by passive immunotherapy using 1A9 and 2C3

[0164] Immunohistochemical A β deposition was suppressed in the passive immunotherapy groups (Fig. 11A). The formation of thioflavin S-positive senile amyloid plaques was significantly suppressed in both the cerebral cortex and hippocampus (Fig. 11B, upper part), and the reduction was also clearly demonstrated by histochemistry (Fig. 11B, lower part). The formation of synaptophysin-positive swollen dystrophic neurites was also significantly suppressed in the passive immunotherapy groups (Fig. 11 C).

[Example 12]

45 Immunostaining analysis using anti-synaptophysin and anti-drebrin antibodies

[0165] 1A9 and 2C3 suppressed the presynaptic and postsynaptic degeneration in the cerebral neocortex (Fig. 12).

[Example 13]

The antibodies translocate to the brain

[0166] The existence/localization of deposited A β and cerebral mouse IgG was assessed using a confocal laser microscope. The result shows that mouse IgG is localized almost independently of deposited A β within the areas containing diffuse senile plaques. Mouse IgG was observed only in the passive immunotherapy groups (1A9, Fig. 13A; 2C3, Fig. 13B), but not in the PBS administration group (Fig. 13C). Thus, a fraction of the antibodies administered into the blood was considered to translocate to the brain. This result shows that the preventive effect on memory disturbance was produced not only through the direct neutralization of the toxicity of soluble A β polymers by the antibodies translocated

to the brain, but also through the clearance of soluble $A\beta$ polymers in the form of a complex with the antibodies into the blood. Thus, the therapeutic effect was considered to be based on multiple action mechanisms.

[Example 14]

5

10

15

20

25

30

35

45

50

55

Preparation of Aβ oligomer-specific monoclonal antibodies (5A5, 5A9, 4F7, 4H5, 6E4, and 6H4) and dot blot analysis

[0167] 33 clones prepared by the above-described method that uses the A β 1-40 oligomer as an antigen were assessed by dot blot analysis. The result showed that the six types of monoclonal antibodies specifically recognize A β oligomers. As shown below, the isotype of the six types of antibodies (4F7, 4H5, 5A5, 5A9, 6E4, and 6H4) was determined:

4F7: κ for the L chain, and IgG2a for the H chain; 4H5: κ for the L chain, and IgG2a for the H chain; 5A5: κ for the L chain, and IgG2b for the H chain; 5A9: κ for the L chain, and IgG2b for the H chain; 6E4: κ for the L chain, and IgG1 for the H chain; and 6H4: κ for the L chain, and IgG2b for the H chain.

Furthermore, the immuno-dot blot analysis showed that, as with 2C3 described above, the 4F7, 4H5, 5A5, 5A9, 6E4, and 6H4 antibodies specifically bind to A β oligomers but do not recognize A β monomers (see Fig. 14).

[Example 15]

Inhibition ELISA

[0168] To assess the A β oligomer-selective binding activity of the six types of antibodies (4F7, 4H5, 5A5, 5A9, 6E4, and 6H4), each antibody was mixed with stepwise-diluted A β oligomers or monomers ("inhibitors"), and the pre-mixed solutions were added to A β oligomer-immobilized 96-well immunoplates, and then incubated (see the "Methods" section). The commercially available 4G8 and 6E10 antibodies were used as control antibodies that nonselectively bind to A β oligomers and monomers. When an antibody selectively binds to A β oligomers, the antibody pre-mixed with A β monomers does not bind to the A β monomers in the solution, and therefore can bind to immobilized A β oligomers. On the other hand, the antibody pre-mixed with A β oligomers binds to the A β oligomers in the solution, and therefore the amount of antibody bound to immobilized A β oligomers is reduced with the increase in inhibitor concentration. The results for the six types of antibodies (4F7, 4H5, 5A5, 5A9, 6E4, and 6H4) showed concentration-dependent reduction in the amount of bound antibody when A β oligomers were used. In contrast, no such strong reduction in binding was detected when A β monomers were used (see Fig. 15). Meanwhile, for 4G8 and 6E10, the concentration-dependent reduction in the amount of bound antibody was observed when A β monomers and oligomers were used (see Fig. 15). These results suggest that the six types of antibodies (4F7, 4H5, 5A5, 5A9, 6E4, and 6H4) selectively bind to A β oligomers.

40 [Example 16]

The activity of the six types of antibodies (4F7, 4H5, 5A5, 5A9, 6E4, and 6H4) to neutralize Aβ-induced neurotoxicity

[0169] To assess whether the six types of antibodies (4F7, 4H5, 5A5, 5A9, 6E4, and 6H4) have an activity of neutralizing A β -induced neurotoxicity, human neuroblastoma cells (SH-SY5Y) were cultured in a medium containing A β 1-42 (12.5 μ M) in the presence or absence of the antibodies for 24 hours, and the change in A β 1-42-induced cytotoxicity was monitored. As a result, the cytotoxicity was enhanced by addition of control IgG (3F1). Although the cytotoxicity was also increased by addition of the 4F7 and 4H5 antibodies, the increase was smaller than that observed for 3F1 (see Fig. 16). The remaining four types of antibodies (5A5, 5A9, 6E4, and 6H4) were found to markedly reduce the cytotoxicity (see Fig. 16). The results described above demonstrate that the four types of antibodies (5A5, 5A9, 6E4, and 6H4) have a strong activity of neutralizing A β -induced neurotoxicity. Since 4F7 and 4H5 lowered the cytotoxicity as compared to control IgG, these antibodies are also inferred to have an activity of neutralizing A β -induced neurotoxicity.

[Example 17]

The activity of the six types of antibodies (4F7, 4H5, 5A5, 5A9, 6E4, and 6H4) to suppress Aβ amyloid fibril formation

[0170] To assess whether the six types of antibodies (4F7, 4H5, 5A5, 5A9, 6E4, and 6H4) have an activity of suppressing

 $A\beta$ amyloid fibril formation, the formation of $A\beta$ amyloid fibrils was detected by the ThT fluorescence intensity assay method in a solution (medium) whose composition was the same as that used in the experiment for $A\beta$ -induced neurotoxicity (see the "Methods" section). 6E4 and 6H4 were found to suppress the fibril formation in an antibody concentration-dependent manner (see Fig. 17). The other four antibodies (4F7, 4H5, 5A5, and 5A9) were also inferred to have an activity of suppressing the fibril formation, since the antibodies exhibited the tendency of suppressing the fibril formation as compared to control IgG.

Discussion

20

30

35

40

45

50

55

[0171] The data obtained by the present inventors show that monoclonal 1A9 and 2C3 specifically recognize the "neurotoxic epitope" and "polymerization epitope" of soluble Aβ polymers that are responsible for the toxic activity and antigen fibril formation activity. Since monoclonal 1A9 and 2C3 do not react with soluble Aβ monomers, which are physiological molecules, it can be concluded that a three-dimensional structure having the epitope that is recognized by 1A9 or 2C3 is specific to soluble oligomeric polymers. The experiments using ultrafiltration and molecular sieve revealed that the size of 1A9- and 2C3-immunoreactive oligomers is greater than 100 kDa (>20mer). The result of morphological observation by AFM demonstrated that the toxic polymers are morphologically heterogeneous (granular, bead-shaped, and ring-shaped).

[0172] To demonstrate that the toxic polymers are actually bioactive molecules that exhibit *in vivo* synaptic toxicity, the present inventors commenced treatment of young Tg2576 mice before the onset of memory disturbance with anti-A β oligomer passive immunotherapy targeting 1A9- and 2C3-recognized toxic polymers. For the first time, the present inventors presented evidence supporting that age-dependent memory deterioration that naturally develops in Tg2576 mice can be prevented by passive immunotherapy using anti-A β oligomer-specific antibodies (1A9 and 2C3). Herein, short-term memory disturbance assessed by the Y-maze test is similar to the A β accumulation-associated memory disturbance observed in mild cognitive impairment (MCI) and early AD. The Y-maze test showed excellent and almost normal results in Tg2576 mice administered with 1A9 and 2C3, respectively. When assessed by the novel object recognition task, Morris water maze, and contextual fear conditioning task, the long-term memory was maintained nearly normal by the anti-A β oligomer antibodies.

[0173] A selective increase in A11-positive oligomers in blood was observed in the antibody-treated mouse groups as compared to the PBS treatment group, which is consistent with the ability of the antibodies to prevent the onset of memory disturbance (the memory maintenance ability). The 1A9 antibody treatment also exhibited the effect of suppressing cerebral A β accumulation. The 2C3 antibody treatment demonstrated a higher blood level of A11-positive oligomers as compared to the 1A9 antibody treatment. However, the cerebral A β accumulation-suppressing effect of the 2C3 antibody treatment was unclear. Accordingly, 1A9-recognized oligomers were considered to have greater contribution to the cerebral A β accumulation than 2C3-recognized oligomers. The involvement of the polymers in cerebral A β accumulation can be explained based on the following assumption: neurotoxic 1A9 polymers are soluble toxic oligomers that are somewhat conformationally, while neurotoxic 2C3 polymers are very unstable, short-lived oligomeric intermediates that appear at an early stage of the polymerization process, the conformation of which is easily changed. [0174] The present inventors disclose herein the *in vivo* preventive effect of anti-oligomer antibodies on Alzheimer's disease, and this is the first evidence that directly demonstrates that toxic A β oligomers formed *in vivo* can inhibit the functions of nerve cells, thereby inducing the symptoms of Alzheimer's disease.

[0175] The data obtained by the present inventors is also the first evidence supporting the view that $A\beta$ exhibits *in vivo* neurotoxicity in the human brain. It is well known that the human entorhinal cortex is an area that is easily affected with AD. In this area, NFT formation and nerve cell loss precede the formation of senile plaques. Thus, the entorhinal cortex is an exceptional area to which the commonly accepted amyloid cascade hypothesis cannot be applied. However, this inconsistency has been neglected and remained unstudied for a long time.

[0176] The present inventors proposed and examined the hypothesis that previously unidentifiable, invisible $A\beta$ oligomers are harmful for nerve cells in the entorhinal cortex and cause memory disturbance. To examine this hypothesis, the present inventors performed semi-quantitative analysis of 1A9- and 2C3-immunoreactive 12mer in the entorhinal cortex of elderly individuals who were mostly at Braak NFT stages I to III. The 1A9- and 2C3-immunoreactive 12mer were already present in the entorhinal cortex of healthy individuals at Braak NFT stages I to II, and increased with the advancement of Braak NFT stage. The 12mer was found to be significantly increased in AD. Thus, the appearance of 1A9- and 2C3-immunoreactive 12mer was demonstrated to precede the onset of cognitive impairment in the human brain. On the other hand, by biochemical and immunohistochemical techniques, it was demonstrated that senile plaques contain 1A9- and 2C3-immunoreactive A β oligomers. In addition, insolubilized amyloid fibrils themselves were revealed to have an activity of neutralizing the neurotoxicity. These findings suggest that, under conditions where A β oligomers are present without senile plaque formation, A β oligomers exert *in vivo* toxicity and thus can be a cause of memory disturbance

[0177] As described above, the data of the present inventors show for the first time evidence that directly demonstrates

in vivo the memory disturbance resulting from synaptic dysfunction caused by endogenous Aβ oligomers. Although active immunotherapy (Janus D, 2000, Nature; Morgan D, 2000, Nature) and passive immunotherapy (Bard F, 2222, Nat med; DeMattos RB, PNAS, 2001) have been used previously, the mechanism by which learning disability and memory disturbance can be prevented has remained a matter of conjecture. One widely proposed possibility is that the antibodies reach the brain through the blood-brain barrier and directly neutralize in vivo soluble Aβ oligomers that cause memory impairment. The second possibility, the "sink theory", is that the antibodies act peripherally to deplete the peripheral blood A β pool and thus activate A β clearance from the brain. DeMattos et al. have reported that a peripherally administered anti-A β antibody rapidly transports not only cerebral A β monomers but also A β dimers into plasma, and also cerebral Aβ into CSF (DeMattos RB et al., PNAS, 98; 8850-8855, 2001). The present inventors also revealed that Aβ oligomers are present in human CSF and increased in AD patients. Thus, the present inventors demonstrated that the Aβ oligomers can be used as diagnostic markers for AD. Furthermore, the present inventors presented the first evidence supporting the view that A β oligomers are present in the plasma of Tg2576 mice, and, in passive immunotherapy by which Aβ oligomers are specifically captured and neutralized through intravenous injection, intracerebral antibody delivery is not required and the clearance of Aß oligomers from the brain to blood can be enhanced at the peripheral sites of action, i.e., blood vessels. In addition, the present inventors presented the first evidence that passive immunotherapy can suppress senile amyloid plaque formation, and indirectly suppress nerve cell damage (swollen dystrophic neurite formation) through senile amyloid plaque suppression. These results confirm that the A β oligomer is the molecular basis for the onset of Alzheimer's disease, and selective control using oligomer-specific antibodies enables the control of Alzheimer's disease from a prophylactic viewpoint, in addition to a therapeutic viewpoint. Furthermore, a fraction of the administered antibodies was proven to translocate into the brain. This suggests that the effect of suppressing memory disturbance is exerted by a combination of multiple actions such as direct neutralization of soluble Aß oligomers in the brain, transport of antibody-Aβ oligomer immune complexes into blood by the neonatal Fc receptor (Deane R, 2005, J Neurosci), and the "sink" action described above.

[0178] The establishment of accurate pre-onset diagnosis to identify cases at a high risk of developing AD is essential to design preventive/therapeutic strategies. The significant increase in the CSF O/M ratio in AD, which is reported herein, is expected to be one of the leading candidates for pre-onset diagnostic markers.

Industrial Applicability

[0179] The antibodies provided by the present invention can be used, for example, in intravenous injection-based preventive passive immunotherapy for Alzheimer's disease, and as biological markers for pre-onset diagnosis, disease monitoring, drug efficacy monitoring/assessment for the disease, and such.

[0180] Furthermore, the antibodies of the present invention are expected to greatly contribute to the establishment of preventive/therapeutic methods for Alzheimer's disease that are selective to molecules responsible for evoking the pathological conditions of the disease, and the establishment of early diagnostic markers. The present inventors obtained evidence supporting that antibody therapies, even when they target intracerebral pathological conditions, can be satisfactorily achieved by peripheral intravenous administration, without the need to consider intracerebral transfer of the antibodies. In addition, the present inventors obtained evidence demonstrating that a fraction of administered antibodies translocates to the brain and produces a direct effect even in peripheral intravenous administration therapy, again without the need to consider intracerebral transfer of the antibodies. Thus, the present invention is expected to rapidly accelerate the progress of antibody therapeutics for Alzheimer's disease.

Specific Embodiments of the Invention

45 **[0181]**

10

15

20

35

40

- 1. An antibody binding to an $A\beta$ oligomer that binds to an antibody comprising an H chain having the amino acid sequence of SEQ ID NO: 1 and an L chain having the amino acid sequence of SEQ ID NO: 3.
- 2. An antibody binding to an Aβ oligomer that binds to an antibody comprising an H chain having the amino acid sequence of SEQ ID NO: 21 and an L chain having the amino acid sequence of SEQ ID NO: 23.
 - 3. An antibody binding to an $A\beta$ oligomer that binds to an antibody comprising an H chain having the amino acid sequence of SEQ ID NO: 41 and an L chain having the amino acid sequence of SEQ ID NO: 43.
 - 4. An antibody binding to an $A\beta$ oligomer that binds to an antibody comprising an H chain having the amino acid sequence of SEQ ID NO: 61 and an L chain having the amino acid sequence of SEQ ID NO: 63.

- 5. An antibody binding to an Aβ oligomer that binds to an antibody comprising an H chain having the amino acid sequence of SEQ ID NO: 81 and an L chain having the amino acid sequence of SEQ ID NO: 83.
- 6. An antibody binding to an Aβ oligomer that binds to an antibody comprising an H chain having the amino acid sequence of SEQ ID NO: 101 and an L chain having the amino acid sequence of SEQ ID NO: 103.
- 7. An antibody of any one of (1) to (38) below:

5

10

15

20

25

30

35

40

45

50

- (1) an antibody that comprises an H chain having the amino acid sequence of SEQ ID NO: 9 as CDR1, the amino acid sequence of SEQ ID NO: 11 as CDR2, and the amino acid sequence of SEQ ID NO: 13 as CDR3; (2) an antibody that comprises an L chain having the amino acid sequence of SEQ ID NO: 15 as CDR1, the amino acid sequence of SEQ ID NO: 17 as CDR2, and the amino acid sequence of SEQ ID NO: 19 as CDR3; (3) an antibody that comprises the H chain of (1) and the L chain of (2);
 - (4) an antibody that comprises an H chain having the amino acid sequence of SEQ ID NO: 5 as VH;
 - (5) an antibody that comprises an L chain having the amino acid sequence of SEQ ID NO: 7 as VL;
 - (6) an antibody that comprises the H chain of (4) and the L chain of (5);
 - (7) an antibody that comprises an H chain having the amino acid sequence of SEQ ID NO: 29 as CDR1, the amino acid sequence of SEQ ID NO: 31 as CDR2, and the amino acid sequence of SEQ ID NO: 33 as CDR3; (8) an antibody that comprises an L chain having the amino acid sequence of SEQ ID NO: 35 as CDR1, the amino acid sequence of SEQ ID NO: 37 as CDR2, and the amino acid sequence of SEQ ID NO: 39 as CDR3; (9) an antibody that comprises the H chain of (7) and the L chain of (8);
 - (10) an antibody that comprises an H chain having the amino acid sequence of SEQ ID NO: 25 as VH;
 - (11) an antibody that comprises an L chain having the amino acid sequence of SEQ ID NO: 27 as VL;
 - (12) an antibody that comprises the H chain of (10) and the L chain of (11);
 - (13) an antibody that comprises an H chain having the amino acid sequence of SEQ ID NO: 49 as CDR1, the amino acid sequence of SEQ ID NO: 51 as CDR2, and the amino acid sequence of SEQ ID NO: 53 as CDR3; (14) an antibody that comprises an L chain having the amino acid sequence of SEQ ID NO: 55 as CDR1, the amino acid sequence of SEQ ID NO: 57 as CDR2, and the amino acid sequence of SEQ ID NO: 59 as CDR3; (15) an antibody that comprises the H chain of (13) and the L chain of (14);
 - (16) an antibody that comprises an H chain having the amino acid sequence of SEQ ID NO: 45 as VH;
 - (17) an antibody that comprises an L chain having the amino acid sequence of SEQ ID NO: 47 as VL;
 - (18) an antibody that comprises the H chain of (16) and the L chain of (17);
 - (19) an antibody that comprises an H chain having the amino acid sequence of SEQ ID NO: 69 as CDR1, the amino acid sequence of SEQ ID NO: 71 as CDR2, and the amino acid sequence of SEQ ID NO: 73 as CDR3; (20) an antibody that comprises an L chain having the amino acid sequence of SEQ ID NO: 75 as CDR1, the amino acid sequence of SEQ ID NO: 77 as CDR2, and the amino acid sequence of SEQ ID NO: 79 as CDR3; (21) an antibody that comprises the H chain of (19) and the L chain of (20);
 - (22) an antibody that comprises an H chain having the amino acid sequence of SEQ ID NO: 65 as VH;
 - (23) an antibody that comprises an L chain having the amino acid sequence of SEQ ID NO: 67 as VL;
 - (24) an antibody that comprises the H chain of (22) and the L chain of (23);
 - (25) an antibody that comprises an H chain having the amino acid sequence of SEQ ID NO: 89 as CDR1, the amino acid sequence of SEQ ID NO: 91 as CDR2, and the amino acid sequence of SEQ ID NO: 93 as CDR3; (26) an antibody that comprises an L chain having the amino acid sequence of SEQ ID NO: 95 as CDR1, the amino acid sequence of SEQ ID NO: 97 as CDR2, and the amino acid sequence of SEQ ID NO: 99 as CDR3; (27) an antibody that comprises the H chain of (25) and the L chain of (26);
 - (28) an antibody that comprises an H chain having the amino acid sequence of SEQ ID NO: 85 as VH;
 - (29) an antibody that comprises an L chain having the amino acid sequence of SEQ ID NO: 87 as VL;
 - (30) an antibody that comprises the H chain of (28) and the L chain of (29);
 - (31) an antibody that comprises an H chain having the amino acid sequence of SEQ ID NO: 109 as CDR1, the amino acid sequence of SEQ ID NO: 111 as CDR2, and the amino acid sequence of SEQ ID NO: 113 as CDR3; (32) an antibody that comprises an L chain having the amino acid sequence of SEQ ID NO: 115 as CDR1, the amino acid sequence of SEQ ID NO: 117 as CDR2, and the amino acid sequence of SEQ ID NO: 119 as CDR3; (33) an antibody that comprises the H chain of (31) and the L chain of (32);
 - (34) an antibody that comprises an H chain having the amino acid sequence of SEQ ID NO: 105 as VH;
 - (35) an antibody that comprises an L chain having the amino acid sequence of SEQ ID NO: 107 as VL;
 - (36) an antibody that comprises the H chain of (34) and the L chain of (35);
 - (37) an antibody that comprises one or more amino acid substitutions, deletions, additions, and/or insertions in the antibody of any one of (1) to (36), which has equivalent activity to the antibody of any one of (1) to (36); and

- (38) an antibody that binds to the epitope bound by the antibody of any one of (1) to (36).
- 8. The antibody of item 7 above, wherein the antibody is a chimeric antibody or a humanized antibody.
- 5 9. A composition comprising the antibody of any one of items 1 to 8 above and a pharmaceutically acceptable carrier.
 - 10. An agent against cognitive impairment, which comprises the antibody of any one of items 1 to 8 above or the composition of item 9 above as an active ingredient.
- 10 11. A therapeutic agent for Alzheimer's disease, which comprises the antibody of any one of items 1 to 8 above or the composition of item 9 above as an active ingredient.
 - 12. An agent for suppressing the progression of Alzheimer's disease, which comprises the antibody of any one of items 1 to 8 above or the composition of item 9 above as an active ingredient.
 - 13. An agent for suppressing senile plaque formation, which comprises the antibody of any one of items 1 to 8 above or the composition of item 9 above as an active ingredient.
 - 14. An agent for suppressing Aβ accumulation, which comprises the antibody of any one of items 1 to 8 above or the composition of item 9 above as an active ingredient.
 - 15. An anti-neurotoxic agent, which comprises the antibody of any one of items 1 to 8 above or the composition of item 9 above as an active ingredient.
- 25 16. An agent for inhibiting $A\beta$ amyloid fibril formation, which comprises the antibody of any one of items 1 to 8 above or the composition of item 9 above as an active ingredient.
 - 17. An agent against synaptic toxicity, which comprises the antibody of any one of items 1 to 8 above or the composition of item 9 above as an active ingredient.
 - 18. A method for detecting an Aβ oligomer, which comprises the step of detecting an Aβ oligomer contained in a sample collected from a subject using the antibody of any one of items 1 to 8 above.
 - 19. A method of diagnosing whether or not a subject is a possible Alzheimer's disease patient, which comprises using the antibody of any one of items 1 to 8 above to detect an Aβ oligomer in a sample collected from a subject.
 - 20. A method of diagnosing whether or not a subject is a possible Alzheimer's disease patient, which comprises the steps of:
 - (a) contacting a sample collected from a subject with the antibody of any one of items 1 to 8 above; and
 - (b) measuring the amount of $A\beta$ oligomer in the sample,

wherein the subject is determined to be a possible Alzheimer's disease patient, when the amount measured in step (b) is higher than that of a healthy individual.

- 21. A method of diagnosing whether or not a subject is a possible Alzheimer's disease patient, which comprises the steps of:
 - (a) contacting a sample collected from a subject with the antibody of any one of items 1 to 8 above and an antibody that binds to an $A\beta$ monomer; and
 - (b) measuring the ratio of A β oligomer to A β monomer in the sample,

wherein the subject is determined to be a possible Alzheimer's disease patient, when the ratio measured in step (b) is higher than that of a healthy individual.

- 22. The method of any one of items 18 to 21 above, wherein the sample is blood or cerebrospinal fluid.
- 23. A pharmaceutical agent for use in the method of any one of items 18 to 21 above.

35

15

20

30

35

40

45

50

 $24.\ \mbox{A}$ kit for use in the method of any one of items 18 to 21 above.

SEQUENCE LISTING

	<110> IMMUNAS PHARMA, INC.
5	<120> ANTIBODY CAPABLE OF BINDING SPECIFICALLY TO AB-OLIGOMER, AND USE THEREOF
	<130> S67372PCEPT1
10	<140> PCT/JP2009/052039 <141> 2009-02-06
	<150> JP 2008-28386 <151> 2008-02-08
15	<150> US 61/085,545 <151> 2008-08-01
	<150> JP 2008-201058 <151> 2008-08-04
20	<160> 120
	<170> PatentIn version 3.4
25	<210> 1 <211> 452 <212> PRT <213> Mus musculus
	<400> 1
30	Asp Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15
	Ser Arg Lys Leu Ser Cys Ala Thr Ser Gly Phe Thr Phe Ser Ser Phe 20 25 30
35	Gly Met His Trp Val Arg Gln Ala Pro Glu Lys Gly Leu Glu Trp Val 35 40 45
	Ala Tyr Ile Ser Ser Gly Ser Ser Ala Ile Tyr Tyr Ala Asp Thr Val 50 55 60
40	Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Pro Lys Asn Thr Leu Phe 70 75 80
	Leu Gln Met Thr Ser Leu Arg Ser Glu Asp Thr Ala Met Tyr Tyr Cys 85 90 95
45	Ala Arg Ser Gly Asp Thr Met Asp Tyr Trp Gly Gln Gly Thr Ser Val 100 105 110
50	Thr Val Ser Ser Ala Lys Thr Thr Pro Pro Ser Val Tyr Pro Leu Ala 115 120 125
	Pro Gly Cys Gly Asp Thr Thr Gly Ser Ser Val Thr Leu Gly Cys Leu 130 135 140
55	Val Lys Gly Tyr Phe Pro Glu Ser Val Thr Val Thr Trp Asn Ser Gly 145 150 155 160
	Ser Leu Ser Ser Ser Val His Thr Phe Pro Ala Leu Leu Gln Ser Gly

		165	170	175
	Leu Tyr Thr Met		nr Val Pro Ser Ser Thr 190	Trp Pro
5	Ser Gln Thr Val	Thr Cys Ser Val Al	La His Pro Ala Ser Ser 205	Thr Thr
10	Val Asp Lys Lys 210	Leu Glu Pro Ser Gl 215	Ly Pro Ile Ser Thr Ile 220	Asn Pro
	Cys Pro Pro Cys 225	Lys Glu Cys His Ly 230	vs Cys Pro Ala Pro Asn 235	Leu Glu 240
15	Gly Gly Pro Ser	Val Phe Ile Phe Pr 245	ro Pro Asn Ile Lys Asp 250	Val Leu 255
	Met Ile Ser Leu 260		or Cys Val Val Val Asp 270	Val Ser
20	Glu Asp Asp Pro 275	Asp Val Gln Ile Se 280	er Trp Phe Val Asn Asn 285	Val Glu
	Val His Thr Ala 290	Gln Thr Gln Thr Hi 295	Ls Arg Glu Asp Tyr Asn 300	Ser Thr
25	Ile Arg Val Val 305	Ser Thr Leu Pro II 310	Le Gln His Gln Asp Trp 315	Met Ser 320
	Gly Lys Glu Phe	Lys Cys Lys Val As 325	sn Asn Lys Asp Leu Pro 330	Ser Pro 335
30	Ile Glu Arg Thr 340		vs Gly Leu Val Arg Ala 15 350	Pro Gln
	Val Tyr Ile Leu 355	Pro Pro Pro Ala Gl 360	lu Gln Leu Ser Arg Lys 365	Asp Val
35	Ser Leu Thr Cys 370	Leu Val Val Gly Ph 375	ne Asn Pro Gly Asp Ile 380	Ser Val
40	Glu Trp Thr Ser 385	Asn Gly His Thr Gl 390	lu Glu Asn Tyr Lys Asp 395	Thr Ala 400
40	_	405	yr Phe Ile Tyr Ser Lys 410	415
45	420	42		
	435	440	r Leu Lys Lys Thr Ile 445	Ser Arg
50	Ser Pro Gly Lys 450			
	<210> 2 <211> 1359 <212> DNA <213> Mus musc	ulus		
55	<400> 2 gatgtgcagc tggt	ggagtc tgggggaggc t	tagtgcagc ctggagggtc c	eeggaaacte 60

	tcctgtgcaa	cctctggatt	cactttcagt	agctttggaa	tgcactgggt	tcgtcaggct	120
	ccagagaagg	gactggagtg	ggtcgcatac	attagtagtg	gcagtagtgc	catctactat	180
5	gcagacacag	tgaagggccg	attcaccatc	tccagagaca	atcccaagaa	caccctgttc	240
	ctgcaaatga	ccagtctaag	gtctgaggac	acggccatgt	attactgtgc	aagatctggg	300
	gatactatgg	actactgggg	tcaaggaacc	tcagtcaccg	tctcctcagc	caaaacaaca	360
10	cccccatcag	tctatccact	ggcccctggg	tgtggagata	caactggttc	ctccgtgact	420
	ctgggatgcc	tggtcaaggg	ctacttccct	gagtcagtga	ctgtgacttg	gaactctgga	480
45	tccctgtcca	gcagtgtgca	caccttccca	gctctcctgc	agtctggact	ctacactatg	540
15	agcagctcag	tgactgtccc	ctccagcacc	tggccaagtc	agaccgtcac	ctgcagcgtt	600
	gctcacccag	ccagcagcac	cacggtggac	aaaaaacttg	agcccagcgg	gcccatttca	660
20	acaatcaacc	cctgtcctcc	atgcaaggag	tgtcacaaat	gcccagctcc	taacctcgag	720
	ggtggaccat	ccgtcttcat	cttccctcca	aatatcaagg	atgtactcat	gatctccctg	780
	acacccaagg	tcacgtgtgt	ggtggtggat	gtgagcgagg	atgacccaga	cgtccagatc	840
25	agctggtttg	tgaacaacgt	ggaagtacac	acagctcaga	cacaaaccca	tagagaggat	900
	tacaacagta	ctatccgggt	ggtcagcacc	ctccccatcc	agcaccagga	ctggatgagt	960
	ggcaaggagt	tcaaatgcaa	ggtcaacaac	aaagacctcc	catcacccat	cgagagaacc	1020
30	atctcaaaaa	ttaaagggct	agtcagagct	ccacaagtat	acatcttgcc	gccaccagca	1080
	gagcagttgt	ccaggaaaga	tgtcagtctc	acttgcctgg	tcgtgggctt	caaccctgga	1140
	gacatcagtg	tggagtggac	cagcaatggg	catacagagg	agaactacaa	ggacaccgca	1200
35	ccagtcctgg	actctgacgg	ttcttacttc	atatatagca	agctcaatat	gaaaacaagc	1260
	aagtgggaga	aaacagattc	cttctcatgc	aacgtgagac	acgagggtct	gaaaaattac	1320
40	tacctgaaga	agaccatctc	ccggtctccg	ggtaaatga			1359
	<210> 3 <211> 219 <212> PRT <213> Mus	musculus					
45	<400> 3						
	Asp Val Le	u Met Thr G	ln Thr Pro	Leu Ser Leu 10	Pro Val Ser	Leu Gly	
50	Asp Gln Ala	a Ser Ile Se 20		Ser Ser Gln 25	Asn Ile Val	. His Ser	
	Asn Gly Ass 35	n Thr Tyr Le	eu Glu Trp : 40	Tyr Leu Gln	Lys Pro Gly 45	Gln Ser	
55	Pro Lys Le	u Leu Ile T	yr Lys Val :	Ser Asn Arg	Phe Ser Gly	Val Pro	

	Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile 65 70 75 80
5	Ser Ser Val Glu Ala Glu Asp Leu Gly Val Tyr Tyr Cys Phe Gln Val 85 90 95
	Ser His Val Pro Pro Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys 100 105 110
10	Arg Ala Asp Ala Ala Pro Thr Val Ser Ile Phe Pro Pro Ser Ser Glu 115 120 125
	Gln Leu Thr Ser Gly Gly Ala Ser Val Val Cys Phe Leu Asn Asn Phe 130 135 140
15	Tyr Pro Lys Asp Ile Asn Val Lys Trp Lys Ile Asp Gly Ser Glu Arg 145 150 155 160
	Gln Asn Gly Val Leu Asn Ser Trp Thr Asp Gln Asp Ser Lys Asp Ser 165 170 175
20	Thr Tyr Ser Met Ser Ser Thr Leu Thr Leu Thr Lys Asp Glu Tyr Glu 180 185 190
	Arg His Asn Ser Tyr Thr Cys Glu Ala Thr His Lys Thr Ser Thr Ser 195 200 205
25	Pro Ile Val Lys Ser Phe Asn Arg Asn Glu Cys 210 215
30	<210> 4 <211> 660 <212> DNA <213> Mus musculus
	<400> 4 gatgttttga tgacccaaac tccactctcc ctgcctgtca gtcttggaga tcaagcctcc 6
35	atctcttgca gatctagtca gaacattgta catagtaatg gaaacaccta tttagaatgg 12
	tacctgcaga aaccaggcca gtctccaaag ctcctgatct acaaagtttc caaccgattt 18
40	tctggggtcc cagacaggtt cagtggcagt ggatcaggga cagatttcac actcaagatc 24
	agcagcgtgg aggctgagga tctgggagtt tattactgct ttcaagtttc acatgttcct 30
	ccgacgttcg gtggaggcac caagctggaa atcaaacggg ctgatgctgc accaactgta 36
45	tccatcttcc caccatccag tgagcagtta acatctggag gtgcctcagt cgtgtgcttc 42 ttgaacaact tctaccccaa agacatcaat gtcaagtgga agattgatgg cagtgaacga 48
	caaaatggcg tcctgaacag ttggactgat caggacagca aagacagcac ctacagcatg 54
50	agcagtaccc tcacgttgac caaggacgag tatgaacgac ataacagcta tacctgtgag 60
	gccactcaca agacatcaac ttcacccatt gtcaagagct tcaacaggaa tgagtgttag 66
55	<210> 5 <211> 116 <212> PRT <213> Mus musculus

	<400>	> 5	i														
_	Asp V	/al	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly	
5	Ser A	Arg	Lys	Leu 20	Ser	Cys	Ala	Thr	Ser 25	Gly	Phe	Thr	Phe	Ser 30	Ser	Phe	
10	Gly M	l et	His 35	Trp	Val	Arg	Gln	Ala 40	Pro	Glu	Lys	Gly	Leu 45	Glu	Trp	Val	
	Ala 1	Tyr 50	Ile	Ser	Ser	Gly	Ser 55	Ser	Ala	Ile	Tyr	Tyr 60	Ala	Asp	Thr	Val	
15	Lys (31y	Arg	Phe	Thr	Ile 70	Ser	Arg	Asp	Asn	Pro 75	Lys	Asn	Thr	Leu	Phe 80	
	Leu (3ln	Met	Thr	Ser 85	Leu	Arg	Ser	Glu	Asp 90	Thr	Ala	Met	Tyr	Tyr 95	Cys	
20	Ala A	Arg	Ser	Gly 100	Asp	Thr	Met	Asp	Tyr 105	Trp	Gly	Gln	Gly	Thr 110	Ser	Val	
	Thr V	/al	Ser 115	Ser													
25	<210><211><211><212><213>	→ 3 → D	48 NA	nuscu	ılus												
30	<400> gatgt			ggto	gagt	c to	gggg	gaggo	: tta	agtgo	cagc	ctg	gaggg	gtc (ccgga	aactc	60
	tccto	gtgc	aa c	ctct	ggat	t ca	acttt	cagt	ago	ettte	ggaa	tgca	actgo	ggt t	tagta	caggct	120
	ccaga	agaa	igg g	racto	gagt	g gg	gtcgc	catao	att	agta	agtg	gcag	gtagt	gc (catct	actat	180
35	gcaga	acac	ag t	gaaç	ggco	g at	tcac	ccato	tac	cagaç	gaca	atco	ccaaç	gaa d	cacco	ctgttc	240
	ctgca	aaat	ga c	cagt	ctaa	ıg gt	ctga	aggad	acq	gcca	atgt	atta	ctgt	gc a	aagat	ctggg	300
40	gatad	ctat	.gg a	ctac	tggg	gg to	caago	gaaco	c tca	agtca	accg	tcto	ectea	1			348
	<210><211><211><212><212><213>	> 1 > P	12 RT	iuscu	ılus												
45	<400>	> 7															
	Asp V	/al	Leu	Met	Thr 5	Gln	Thr	Pro	Leu	Ser 10	Leu	Pro	Val	Ser	Leu 15	Gly	
50	Asp (Gln	Ala	Ser 20	Ile	Ser	Cys	Arg	Ser 25	Ser	Gln	Asn	Ile	Val 30	His	Ser	
	Asn (31y	Asn 35	Thr	Tyr	Leu	Glu	Trp 40	Tyr	Leu	Gln	Lys	Pro 45	Gly	Gln	Ser	
55	Pro I	Lys 50	Leu	Leu	Ile	Tyr	Lys 55	Val	Ser	Asn	Arg	Phe 60	Ser	Gly	Val	Pro	

	Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile 65 70 75 80	
5	Ser Ser Val Glu Ala Glu Asp Leu Gly Val Tyr Tyr Cys Phe Gln Val 85 90 95	
	Ser His Val Pro Pro Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys 100 105 110	
10	<210> 8 <211> 336 <212> DNA <213> Mus musculus	
15	<400> 8 gatgttttga tgacccaaac tccactctcc ctgcctgtca gtcttggaga tcaagcctcc	60
	atctcttgca gatctagtca gaacattgta catagtaatg gaaacaccta tttagaatgg	120
	tacctgcaga aaccaggcca gtctccaaag ctcctgatct acaaagtttc caaccgattt	180
20	tctggggtcc cagacaggtt cagtggcagt ggatcaggga cagatttcac actcaagatc	240
	agcagcgtgg aggctgagga tctgggagtt tattactgct ttcaagtttc acatgttcct	300
	ccgacgttcg gtggaggcac caagctggaa atcaaa	336
25	<210> 9 <211> 5 <212> PRT <213> Mus musculus	
30	<400> 9	
	Ser Phe Gly Met His 1 5	
35	<210> 10 <211> 15 <212> DNA <213> Mus musculus	
40	<400> 10	15
70	agctttggaa tgcac <210> 11 <211> 10 <212> PRT	13
45	<213> Mus musculus	
	<400> 11	
50	Tyr Ile Ser Ser Gly Ser Ser Ala Ile Tyr 1 5 10	
50	<210> 12 <211> 30 <212> DNA <213> Mus musculus	
55	<400> 12 tacattagta gtggcagtag tgccatctac	30

```
<210> 13
         <211> 7
         <212> PRT
         <213> Mus musculus
5
         <400> 13
         Ser Gly Asp Thr Met Asp Tyr
10
         <210> 14
         <211> 21
         <212> DNA
<213> Mus musculus
         <400> 14
15
         tctggggata ctatggacta c
                                                                                        21
         <210> 15
         <211> 16
         <212> PRT
20
         <213> Mus musculus
         <400> 15
         Arg Ser Ser Gln Asn Ile Val His Ser Asn Gly Asn Thr Tyr Leu Glu
25
         <210> 16
         <211> 48
         <212> DNA
         <213> Mus musculus
30
         <400> 16
         agatctagtc agaacattgt acatagtaat ggaaacacct atttagaa
                                                                                        48
        <210> 17
<211> 7
<212> PRT
<213> Mus musculus
35
         <400> 17
40
         Lys Val Ser Asn Arg Phe Ser
         <210> 18
<211> 21
<212> DNA
<213> Mus musculus
45
         <400> 18
         aaagtttcca accgattttc t
                                                                                        21
50
         <210> 19
        <211> 9
<212> PRT
<213> Mus musculus
         <400> 19
55
         Phe Gln Val Ser His Val Pro Pro Thr
```

	1				5												
5	<210 <211 <212 <213	.> : !> !	20 27 O NA Mus 1	muscı	ılus												
	<400 tttc		20 ttt d	cacat	gtto	ec to	ccgad	g									27
10	<210 <211 <212 <213	.> ' !>]	21 455 PRT Mus r	nusci	ılus												
15	<400)> 2	21														
	Gln 1	Val	Thr	Leu	Lys 5	Glu	Ser	Gly	Pro	Gly 10	Ile	Leu	Gln	Pro	Ser 15	Gln	
20	Thr	Leu	Ser	Leu 20	Thr	Cys	Ser	Phe	Ser 25	Gly	Phe	Ser	Leu	Thr 30	Thr	Ser	
	Ala	Met	Gly 35	Val	Ser	Trp	Val	Arg 40	Gln	Pro	Ser	Arg	Lys 45	Gly	Leu	Glu	
25	Trp	Leu 50	Ala	His	Ile	Tyr	Trp 55	Asp	Asp	Asp	Lys	Arg 60	Tyr	Asn	Pro	Ser	
	Leu 65	Lys	Ser	Arg	Leu	Thr 70	Ile	Ser	Lys	Asp	Thr 75	Ser	Ser	Asn	Gln	Val 80	
30	Phe	Leu	Lys	Ile	Thr 85	Ser	Val	Asp	Thr	Ala 90	Asp	Thr	Ala	Thr	Tyr 95	Tyr	
	Суз	Ala	Arg	Lys 100	Gly	Leu	Gly	Gly	Ala 105	Met	Asp	Tyr	Trp	Gly 110	Gln	Gly	
35	Thr	Ser	Val 115	Thr	Val	Ser	Ser	Ala 120	Lys	Thr	Thr	Pro	Pro 125	Ser	Val	Tyr	
	Pro	Leu 130	Ala	Pro	Gly	Cys	Gly 135	Asp	Thr	Thr	Gly	Ser 140	Ser	Val	Thr	Leu	
40	Gly 145	Cys	Leu	Val	Lys	Gly 150	Tyr	Phe	Pro	Glu	Ser 155	Val	Thr	Val	Thr	Trp 160	
45	Asn	Ser	Gly	Ser	Leu 165	Ser	Ser	Ser	Val	His 170	Thr	Phe	Pro	Ala	Leu 175	Leu	
45	Gln	Ser	Gly	Leu 180	Tyr	Thr	Met	Ser	Ser 185	Ser	Val	Thr	Val	Pro 190	Ser	Ser	
50	Thr	Trp	Pro 195	Ser	Gln	Thr	Val	Thr 200	Cys	Ser	Val	Ala	His 205	Pro	Ala	Ser	
	Ser	Thr 210	Thr	Val	Asp	Lys	Lys 215	Leu	Glu	Pro	Ser	Gly 220	Pro	Ile	Ser	Thr	
55	Ile 225	Asn	Pro	Cys	Pro	Pro 230	Cys	Lys	Glu	Cys	His 235	Lys	Cys	Pro	Ala	Pro 240	
	Asn	Leu	Glu	Gly	Gly	Pro	Ser	Val	Phe	Ile	Phe	Pro	Pro	Asn	Ile	Lys	

					245					250					255		
-	Asp	Val	Leu	Met 260	Ile	Ser	Leu	Thr	Pro 265	Lys	Val	Thr	Cys	Val 270	Val	Val	
5	Asp	Val	Ser 275	Glu	Asp	Asp	Pro	Asp 280	Val	Gln	Ile	Ser	Trp 285	Phe	Val	Asn	
10	Asn	Val 290	Glu	Val	His	Thr	Ala 295	Gln	Thr	Gln	Thr	His 300	Arg	Glu	Asp	Tyr	
	As n 305	Ser	Thr	Ile	Arg	Val 310	Val	Ser	Thr	Leu	Pro 315	Ile	Gln	His	Gln	Asp 320	
15	Trp	Met	Ser	Gly	Lys 325	Glu	Phe	Lys	Cys	Lys 330	Val	Asn	Asn	Lys	Asp 335	Leu	
	Pro	Ser	Pro	Ile 340	Glu	Arg	Thr	Ile	Ser 345	Lys	Ile	Lys	Gly	Leu 350	Val	Arg	
20	Ala	Pro	Gln 355	Val	Tyr	Ile	Leu	Pro 360	Pro	Pro	Ala	Glu	Gln 365	Leu	Ser	Arg	
	Lys	Asp 370	Val	Ser	Leu	Thr	C ys 375	Leu	Val	Val	Gly	Phe 380	Asn	Pro	Gly	Asp	
25	Ile 385	Ser	Val	Glu	Trp	Thr 390	Ser	Asn	Gly	His	Thr 395	Glu	Glu	Asn	Tyr	Lys 400	
	Asp	Thr	Ala	Pro	Val 405	Leu	Asp	Ser	Asp	Gly 410	Ser	Tyr	Phe	Ile	Tyr 415	Ser	
30	Lys	Leu	Asn	Met 420	Lys	Thr	Ser	Lys	Trp 425	Glu	Lys	Thr	Asp	Ser 430	Phe	Ser	
	Cys	Asn	Val 435	Arg	His	Glu	Gly	Leu 440	Lys	Asn	Tyr	Tyr	Leu 445	Lys	Lys	Thr	
35	Ile	Ser 450	Arg	Ser	Pro	Gly	Lys 455										
40	<210 <211 <212 <213	L> 1 2> I	22 1368 ONA Mus r	nuscı	ılus												
	<400 cago		22 ctc t	gaaa	ıgagt	c to	ggcco	ctggg	g ata	attgo	cagc	ccto	ccaç	gac (cctca	agtctg	60
45	actt	gtto	ctt t	ctct	ggat	t tt	cact	gaco	c act	tato	gcta	tgg	gtgt	gag (ctggg	gttegt	120
	cago	cctto	caa q	gaaag	ggto	et go	gagto	gata	g gca	acaca	attt	acto	gggat	ga t	gaca	agcgc	180
50	tata	acco	cat o	cacto	gaaga	ag co	egget	caca	a ato	etcca	agg	atad	cctc	cag (caaco	caggta	240
																gaaag	300
																gttcc	360 420
55																acttgg	480

	aactctggat ccctgtccag cagtgtgcac accttcccag ctctcctgca gtctggactc	540
	tacactatga gcagetcagt gactgtcccc tccagcacct ggccaagtca gaccgtcacc	600
5	tgcagcgttg ctcacccagc cagcagcacc acggtggaca aaaaacttga gcccagcggg	660
	cccatttcaa caatcaaccc ctgtcctcca tgcaaggagt gtcacaaatg cccagctcct	720
	aacctcgagg gtggaccatc cgtcttcatc ttccctccaa atatcaagga tgtactcatg	780
10	atctccctga cacccaaggt cacgtgtgtg gtggtggatg tgagcgagga tgacccagac	840
	gtccagatca gctggtttgt gaacaacgtg gaagtacaca cagctcagac acaaacccat	900
	agagaggatt acaacagtac tatccgggtg gtcagcaccc tccccatcca gcaccaggac	960
15	tggatgagtg gcaaggagtt caaatgcaag gtcaacaaca aagacctccc atcacccatc	1020
	gagagaacca tctcaaaaat taaagggcta gtcagagctc cacaagtata catcttgccg	1080
00	ccaccagcag agcagttgtc caggaaagat gtcagtctca cttgcctggt cgtgggcttc	1140
20	aaccctggag acatcagtgt ggagtggacc agcaatgggc atacagagga gaactacaag	1200
	gacaccgcac cagtcctgga ctctgacggt tcttacttca tatatagcaa gctcaatatg	1260
25	aaaacaagca agtgggagaa aacagattcc ttctcatgca acgtgagaca cgagggtctg	1320
	aaaaattact acctgaagaa gaccatctcc cggtctccgg gtaaatga	1368
30	<210> 23 <211> 219 <212> PRT <213> Mus musculus	
	Asp Val Val Met Thr Gln Thr Pro Leu Ser Leu Pro Val Ser Leu Gly	
35	1 5 10 15	
	Asp Gln Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Leu His Ser 20 25 30	
40	Asn Gly Asn Thr Tyr Leu His Trp Tyr Leu Gln Lys Pro Gly Gln Ser 35 40 45	
	Pro Lys Leu Leu Ile Tyr Lys Val Ser Asn Arg Phe Ser Gly Val Pro 50 55 60	
45	Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile 65 70 75 80	
	Ser Arg Val Glu Ala Glu Asp Leu Gly Val Tyr Phe Cys Ser Gln Ser 85 90 95	
50	Thr His Val Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu Lys 100 105 110	
	Arg Ala Asp Ala Ala Pro Thr Val Ser Ile Phe Pro Pro Ser Ser Glu 115 120 125	
55	Gln Leu Thr Ser Gly Gly Ala Ser Val Val Cys Phe Leu Asn Asn Phe 130 135 140	

	Tyr Pro Lys Asp Ile Asn Val Lys Trp Lys Ile Asp Gly Ser Glu Arg 145 150 155 160	
5	Gln Asn Gly Val Leu Asn Ser Trp Thr Asp Gln Asp Ser Lys Asp Ser 165 170 175	
	Thr Tyr Ser Met Ser Ser Thr Leu Thr Leu Thr Lys Asp Glu Tyr Glu 180 185 190	
10	Arg His Asn Ser Tyr Thr Cys Glu Ala Thr His Lys Thr Ser Thr Ser 195 200 205	
	Pro Ile Val Lys Ser Phe Asn Arg Asn Glu Cys 210 215	
15	<210> 24 <211> 660 <212> DNA <213> Mus musculus	
20	<400> 24 gatgttgtga tgacccaaac tccgctctcc ctgcctgtca gtcttggaga tcaagcctcc	60
	atctcttgca gatctagtca gagccttcta cacagtaatg gaaacaccta tttacattgg	120
0.5	tacctgcaga agccaggcca gtctccaaag ctcctgatct acaaagtttc caaccgattt	180
25	tctggggtcc cagacaggtt cagtggcagt ggatcaggga cagatttcac actcaagatc	240
	agcagagtgg aggctgagga tctgggagtt tatttctgct ctcaaagtac acatgttccg	300
30	ctcacgttcg gtgctgggac caagctggag ctgaaacggg ctgatgctgc accaactgta	360
	tccatcttcc caccatccag tgagcagtta acatctggag gtgcctcagt cgtgtgcttc	420
	ttgaacaact tctaccccaa agacatcaat gtcaagtgga agattgatgg cagtgaacga	480
35	caaaatggcg tcctgaacag ttggactgat caggacagca aagacagcac ctacagcatg	540
	agcagtaccc tcacgttgac caaggacgag tatgaacgac ataacagcta tacctgtgag	600
40	gccactcaca agacatcaac ttcacccatt gtcaagagct tcaacaggaa tgagtgttag	660
40	<210> 25 <211> 119 <212> PRT <213> Mus musculus	
45	<400> 25	
	Gln Val Thr Leu Lys Glu Ser Gly Pro Gly Ile Leu Gln Pro Ser Gln 1 5 10 15	
50	Thr Leu Ser Leu Thr Cys Ser Phe Ser Gly Phe Ser Leu Thr Thr Ser 20 25 30	
	Ala Met Gly Val Ser Trp Val Arg Gln Pro Ser Arg Lys Gly Leu Glu 35 40 45	
55	Trp Leu Ala His Ile Tyr Trp Asp Asp Asp Lys Arg Tyr Asn Pro Ser 50 55 60	

	Leu Lys Ser Arg Leu Thr Ile Ser Lys Asp Thr Ser Ser Asn Gln Val 65 70 75 80	
5	Phe Leu Lys Ile Thr Ser Val Asp Thr Ala Asp Thr Ala Thr Tyr Tyr 85 90 95	
	Cys Ala Arg Lys Gly Leu Gly Gly Ala Met Asp Tyr Trp Gly Gln Gly 100 105 110	
10	Thr Ser Val Thr Val Ser Ser 115	
15	<210> 26 <211> 357 <212> DNA <213> Mus musculus	
	<400> 26 caggttactc tgaaagagtc tggccctggg atattgcagc cctcccagac cctcagtctg	60
20	acttgttett tetetggatt tteactgace acttetgeta tgggtgtgag etgggttegt	120
	cagcetteaa gaaagggtet ggagtggetg geacacattt actgggatga tgacaagege	180
	tataacccat ccctgaagag ccggctcaca atctccaagg atacctccag caaccaggta	240
25	ttcctcaaga tcaccagtgt ggacactgca gatactgcca catactactg tgctcgaaag	300
	ggactgggag gtgctatgga ctactggggt caaggaacct cagtcaccgt ctcctca	357
30	<210> 27 <211> 112 <212> PRT <213> Mus musculus	
	<400> 27	
35	Asp Val Val Met Thr Gln Thr Pro Leu Ser Leu Pro Val Ser Leu Gly 1 5 10 15	
	Asp Gln Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Leu His Ser 20 25 30	
40	Asn Gly Asn Thr Tyr Leu His Trp Tyr Leu Gln Lys Pro Gly Gln Ser 35 40 45	
45	Pro Lys Leu Leu Ile Tyr Lys Val Ser Asn Arg Phe Ser Gly Val Pro 50 55 60	
45	Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile 65 70 75 80	
50	Ser Arg Val Glu Ala Glu Asp Leu Gly Val Tyr Phe Cys Ser Gln Ser 85 90 95	
	Thr His Val Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu Lys 100 105 110	
55	<210> 28 <211> 336 <212> DNA <213> Mus musculus	

	<400> 28	
	gatgttgtga tgacccaaac tccgctctcc ctgcctgtca gtcttggaga tcaagcctcc	60
	atctcttgca gatctagtca gagccttcta cacagtaatg gaaacaccta tttacattgg	120
5	tacctgcaga agccaggcca gtctccaaag ctcctgatct acaaagtttc caaccgattt	180
	tctggggtcc cagacaggtt cagtggcagt ggatcaggga cagatttcac actcaagatc	240
	agcagagtgg aggctgagga tctgggagtt tatttctgct ctcaaagtac acatgttccg	300
10	ctcacgttcg gtgctgggac caagctggag ctgaaa	336
	<210> 29	
	<211> 7	
15	<212> PRT	
15	<213> Mus musculus	
	<400> 29	
	Thr Ser Ala Met Gly Val Ser	
20	1 5	
	<210> 30	
	<211> 21	
	<212> DNA	
	<213> Mus musculus	
25		
	< 400> 30	
	acttctgcta tgggtgtgag c	21
	<210> 31	
30	<211> 9	
00	<212> PRT	
	<213> Mus musculus	
	4005 21	
	<400> 31	
35	His Ile Tyr Trp Asp Asp Asp Lys Arg	
	1 5	
	<210> 32	
	<211> 27	
	<212> DNA	
40	<213> Mus musculus	
	<400> 32	
	cacatttact gggatgatga caagcgc	27
45	<210> 33	
45	<211> 9	
	<212> PRT	
	<213> Mus musculus	
	V213/ Mus musculus	
50	<400> 33	
50		
	Lys Gly Leu Gly Gly Ala Met Asp Tyr	
	1 5	
	<210> 34	
55	<211> 27	
55	<212> DNA	
	<213> Mus musculus	

```
<400> 34
        aagggactgg gaggtgctat ggactac
                                                                                   27
        <210> 35
        <211> 16
<212> PRT
<213> Mus musculus
5
        <400> 35
10
        Arg Ser Ser Gln Ser Leu Leu His Ser Asn Gly Asn Thr Tyr Leu His
        <210> 36
<211> 48
<212> DNA
<213> Mus musculus
15
        <400> 36
                                                                                  48
        agatctagtc agagccttct acacagtaat ggaaacacct atttacat
20
        <210> 37
        <211> 7
        <212> PRT
        <213> Mus musculus
        <400> 37
25
        Lys Val Ser Asn Arg Phe Ser
                         5
        <210> 38
30
        <211> 21
        <212> DNA
        <213> Mus musculus
        <400> 38
        aaagtttcca accgattttc t
                                                                                   21
35
        <210> 39
        <211> 9
        <212> PRT
        <213> Mus musculus
40
        <400> 39
        Ser Gln Ser Thr His Val Pro Leu Thr
45
        <210> 40
        <211> 27
        <212> DNA
        <213> Mus musculus
50
        <400> 40
        tctcaaagta cacatgttcc gctcacg
                                                                                   27
        <210> 41
        <211> 447
55
        <212> PRT
        <213> Mus musculus
```

	<400)> 4	41													
5	Gln 1	Val	Thr	Leu	Lys 5	Asp	Ser	Gly	Pro	Gly 10	Ile	Leu	Gln	Pro	Ser 15	Gln
	Thr	Leu	Ser	Leu 20	Thr	Cys	Ser	Phe	Ser 25	Gly	Phe	Ser	Leu	Ser 30	Thr	Ser
10	Gly	Met	Gly 35	Val	Ser	Trp	Ile	Arg 40	Gln	Pro	Ser	Gly	Lys 45	Gly	Leu	Glu
15	Trp	Leu 50	Ala	His	Ile	Tyr	Trp 55	Asp	Asp	Asp	Lys	Arg 60	Tyr	Asn	Pro	Ser
20	Leu 65	Lys	Ser	Arg	Leu	Thr 70	Ile	Ser	Lys	Asp	Thr 75	Ser	Ser	Asn	Gln	Val 80
	Phe	Leu	Lys	Ile	Thr 85	Ser	Val	Asp	Thr	Ala 90	Asp	Ser	Ala	Thr	Tyr 95	Tyr
25	Cys	Ser	Thr	Met 100	Ile	Thr	Gly	Phe	Val 105	Tyr	Trp	Gly	Gln	Gly 110	Thr	Leu
30	Val	Thr	Val 115	Ser	Ala	Ala	Lys	Thr 120	Thr	Ala	Pro	Ser	Val 125	Tyr	Pro	Leu
35	Ala	Pro 130	Val	Cys	Gly	Asp	Thr 135	Thr	Gly	Ser	Ser	Val 140	Ala	Leu	Gly	Cys
	Leu 145	Val	Lys	Gly	Tyr	Phe 150	Pro	Glu	Pro	Val	Thr 155	Leu	Thr	Trp	Asn	Ser 160
40	Gly	Ser	Leu	Ser	Ser 165	Gly	Val	His	Thr	Phe 170	Pro	Ala	Val	Leu	Gln 175	Ser
45	Asp	Leu	Tyr	Thr 180	Leu	Ser	Ser	Ser	Val 185	Thr	Val	Thr	Ser	Ser 190	Thr	Trp
50	Pro	Ser	Gln 195	Ser	Ile	Thr	Cys	Asn 200	Val	Ala	His	Pro	Ala 205	Ser	Ser	Thr
	Lys	Val 210	Asp	Lys	Lys	Ile	Glu 215	Pro	Arg	Gly	Pro	Thr 220	Ile	Lys	Pro	Cys
55	Pro 225	Pro	Cys	Lys	Cys	Pro 230	Ala	Pro	Asn	Leu	Leu 235	Gly	Gly	Pro	Ser	Val 240

	Phe	Ile	Phe	Pro	Pro 245	Lys	Ile	Lys	Asp	Val 250	Leu	Met	Ile	Ser	Leu 255	Ser	
5	Pro	Ile	Val	Thr 260	Cys	Val	Val	Val	Asp 265	Val	Ser	Glu	Asp	Asp 270	Pro	Asp	
10	Val	Gln	Ile 275	Ser	Trp	Phe	Val	Asn 280	Asn	Val	Glu	Val	His 285	Thr	Ala	Gln	
	Thr	Gln 290	Thr	His	Arg	Glu	Asp 295	Tyr	Asn	Ser	Thr	Leu 300	Arg	Val	Val	Ser	
15	Ala 305	Leu	Pro	Ile	Gln	His 310	Gln	Asp	Trp	Met	Ser 315	Gly	Lys	Glu	Phe	Lys 320	
20	Cys	Lys	Val	Asn	A sn 325	Lys	Asp	Leu	Pro	Ala 330	Pro	Ile	Glu	Arg	Thr 335	Ile	
25	Ser	Lys	Pro	Lys 340	Gly	Ser	Val	Arg	Ala 345	Pro	Gln	Val	Tyr	Val 350	Leu	Pro	
23	Pro	Pro	Glu 355	Glu	Glu	Met	Thr	Lys 360	Lys	Gln	Val	Thr	Leu 365	Thr	Cys	Met	
30	Val	Thr 370	Asp	Phe	Met	Pro	Glu 375	Asp	Ile	Tyr	Val	Glu 380	Trp	Thr	Asn	Asn	
35	Gly 385	Lys	Thr	Glu	Leu	A sn 390	Tyr	Lys	Asn	Thr	Glu 395	Pro	Val	Leu	Asp	Ser 400	
	Asp	Gly	Ser	Tyr	Phe 405	Met	Tyr	Ser	Lys	Leu 410	Arg	Val	Glu	Lys	Lys 415	Asn	
40	Trp	Val	Glu	Arg 420	Asn	Ser	Tyr	Ser	Cys 425	Ser	Val	Val	His	Glu 430	Gly	Leu	
45	His	Asn	His 435	His	Thr	Thr	Lys	Ser 440	Phe	Ser	Arg	Thr	Pro 445	Gly	Lys		
50	<210 <211 <212 <213	L> 1 2> I	ONA	muscı	ılus												
	<400 cago		12 ctc t	tgaaa	agact	c to	gaca	ctggg	g ata	attgo	eage	ccto	ccaç	gac c	cctca	agtctg	60
55	actt	gtto	ett t	tatat	gggt	t tt	cact	gago	c act	tctc	ggta	tggg	gtgtg	gag d	ctgga	attcgt	120
	cago	ctto	cag q	gaaaq	gggto	et go	gagto	gata	g gca	acaca	ttt	acto	gggat	ga t	gaca	agcgc	180

	tataacccat	ccctgaagag	ccggctcaca	atctccaagg	atacctccag	caaccaggta	240
	ttcctcaaga	tcaccagtgt	ggacactgca	gattctgcca	catactactg	ttccactatg	300
5	attacggggt	ttgtttactg	gggccaaggg	actctggtca	ctgtctctgc	agccaaaaca	360
	acagccccat	cggtctatcc	cctggcccct	gtgtgtggag	atacaactgg	ctcctcggtg	420
	gctctaggat	gcctggtcaa	gggttatttc	cctgagccag	tgaccttgac	ctggaactct	480
10	ggatccctgt	ccagtggtgt	gcacaccttc	ccagctgtcc	tgcagtctga	cctctacacc	540
	ctcagcagct	cagtgactgt	aacctcgagc	acctggccca	gccagtccat	cacctgcaat	600
	gtggcccacc	cggcaagcag	caccaaggtg	gacaagaaaa	ttgagcccag	agggcccaca	660
15	atcaagccct	gtcctccatg	caaatgccca	gcacctaacc	tcttgggtgg	accatccgtc	720
	ttcatcttcc	ctccaaagat	caaggatgta	ctcatgatct	ccctgagccc	catagtcaca	780
20	tgtgtggtgg	tggatgtgag	cgaggatgac	ccagatgtcc	agatcagctg	gtttgtgaac	840
. •	aacgtggaag	tacacacagc	tcagacacaa	acccatagag	aggattacaa	cagtactctc	900
	cgggtggtca	gtgccctccc	catccagcac	caggactgga	tgagtggcaa	ggagttcaaa	960
25	tgcaaggtca	acaacaaaga	cctcccagcg	cccatcgaga	gaaccatctc	aaaacccaaa	1020
	gggtcagtaa	gagctccaca	ggtatatgtc	ttgcctccac	cagaagaaga	gatgactaag	1080
	aaacaggtca	ctctgacctg	catggtcaca	gacttcatgc	ctgaagacat	ttacgtggag	1140
30	tggaccaaca	acgggaaaac	agagctaaac	tacaagaaca	ctgaaccagt	cctggactct	1200
	gatggttctt	acttcatgta	cagcaagctg	agagtggaaa	agaagaactg	ggtggaaaga	1260
	aatagctact	cctgttcagt	ggtccacgag	ggtctgcaca	atcaccacac	gactaagagc	1320
35	ttctcccgga	ctccgggtaa	atga				1344
10	<210> 43 <211> 219 <212> PRT						
		musculus					
	<400> 43						
1 5	Asp Val Let	Met Thr Gl	ln Thr Pro 1	Leu Ser Leu	Pro Val Se	Leu Gly	

Asp Gln Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Ile Val His Ser 20 25

Asn Gly Asn Thr Tyr Leu Glu Trp Tyr Leu Gln Lys Pro Gly Gln Ser

55 Pro Lys Leu Leu Ile Tyr Lys Val Ser Asn Arg Phe Ser Gly Val Pro 55

50

	Asp 65	Arg	Phe	Ser	GTĀ	Ser 70	GTA	Ser	GLY	Thr	Asp 75	Phe	Thr	Leu	Lys	80	
5	Ser	Arg	Val	Glu	Ala 85	Glu	Asp	Leu	Gly	Val 90	Tyr	Tyr	Суѕ	Phe	Gln 95	Gly	
10	Ser	His	Val	Pro 100	Leu	Thr	Phe	Gly	Ala 105	Gly	Thr	Lys	Leu	Glu 110	Leu	Lys	
	Arg	Ala	Asp 115	Ala	Ala	Pro	Thr	Val 120	Ser	Ile	Phe	Pro	Pro 125	Ser	Ser	Glu	
15	Gln	Leu 130	Thr	Ser	Gly	Gly	Ala 135	Ser	Val	Val	Cys	Phe 140	Leu	Asn	Asn	Phe	
20	Tyr 145	Pro	Lys	Asp	Ile	Asn 150	Val	Lys	Trp	Lys	Ile 155	Asp	Gly	Ser	Glu	Arg 160	
25	Gln	Asn	Gly	Val	Leu 165	Asn	Ser	Trp	Thr	Asp 170	Gln	Asp	Ser	Lys	Asp 175	Ser	
	Thr	Tyr	Ser	Met 180	Ser	Ser	Thr	Leu	Thr 185	Leu	Thr	Lys	Asp	Glu 190	Tyr	Glu	
30	Arg	His	Asn 195	Ser	Tyr	Thr	Cys	Glu 200	Ala	Thr	His	Lys	Thr 205	Ser	Thr	Ser	
35	Pro	Ile 210	Val	Lys	Ser	Phe	Asn 215	Arg	Asn	Glu	Cys						
40	<210 <211 <211 <211	L> (2> I	44 660 ONA Mus 1	musci	ılus												
	<400 gate		44 tga 1	tgaco	ccaaa	ac to	ccact	ctc	c cto	gaato	gtca	gtct	tgga	aga t	tcaaq	jectec	60
45	atc	tatt	gca (gatct	agto	ea ga	agcat	tgta	a cat	agta	aatg	gaaa	acaco	cta 1	tttaq	gaatgg	120
	taco	ctgca	aga a	aacca	aggco	a gt	ata	caaaq	gcto	cctga	atct	acaa	agtt	tc o	caaco	gattt	180
50	tct	ggggt	taa (cagad	caggt	t ca	agtg	gcagt	gga	atcaç	ggga	caga	attto	cac a	actca	agatc	240
	agta	agagt	tgg a	aggct	gago	ga to	ctggg	gagtt	: tat	tact	gct	ttca	aaggt	tc a	acato	gttccg	300
																actgta	360
55																gcttc	420
	ttg	aacaa	act 1	tctad	ccca	aa aq	gacat	caat	gto	caagt	gga	agat	tgat	gg (cagto	gaacga	480

	caaaatggcg teetgaacag ttggaetgat caggaeagea aagaeageae etaeageatg	540
	agcagtaccc tcacgttgac caaggacgag tatgaacgac ataacagcta tacctgtgag	600
5	gccactcaca agacatcaac ttcacccatt gtcaagagct tcaacaggaa tgagtgttag	660
10	<210> 45 <211> 117 <212> PRT <213> Mus musculus	
	<400> 45	
15	Gln Val Thr Leu Lys Asp Ser Gly Pro Gly Ile Leu Gln Pro Ser Gln 1 5 10 15	
00	Thr Leu Ser Leu Thr Cys Ser Phe Ser Gly Phe Ser Leu Ser Thr Ser 20 25 30	
20	Gly Met Gly Val Ser Trp Ile Arg Gln Pro Ser Gly Lys Gly Leu Glu 35 40 45	
25	Trp Leu Ala His Ile Tyr Trp Asp Asp Asp Lys Arg Tyr Asn Pro Ser 50 55 60	
30	Leu Lys Ser Arg Leu Thr Ile Ser Lys Asp Thr Ser Ser Asn Gln Val 65 70 75 80	
	Phe Leu Lys Ile Thr Ser Val Asp Thr Ala Asp Ser Ala Thr Tyr Tyr 85 90 95	
35	Cys Ser Thr Met Ile Thr Gly Phe Val Tyr Trp Gly Gln Gly Thr Leu 100 105 110	
40	Val Thr Val Ser Ala 115	
45	<210> 46 <211> 351 <212> DNA <213> Mus musculus	
50	<400> 46 caggttactc tgaaagactc tggccctggg atattgcagc cctcccagac cctcagtctg	60
	acttgttctt tctctgggtt ttcactgagc acttctggta tgggtgtgag ctggattcgt	120
	cagcetteag gaaagggtet ggagtggetg geacacattt actgggatga tgacaagege	180
55	tataacccat ccctgaagag ccggctcaca atctccaagg atacctccag caaccaggta	240
	ttcctcaaga tcaccagtgt ggacactgca gattctgcca catactactg ttccactatg	300

	attacggggt ttgtttactg gggccaaggg actctggtca ctgtctctgc a	351
5	<210> 47 <211> 112 <212> PRT <213> Mus musculus	
	<400> 47	
10	Asp Val Leu Met Thr Gln Thr Pro Leu Ser Leu Pro Val Ser Leu Gly 1 10 15	
15	Asp Gln Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Ile Val His Ser 20 25 30	
	Asn Gly Asn Thr Tyr Leu Glu Trp Tyr Leu Gln Lys Pro Gly Gln Ser 35 40 45	
20	Pro Lys Leu Leu Ile Tyr Lys Val Ser Asn Arg Phe Ser Gly Val Pro 50 55 60	
25	Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile 70 75 80	
20	Ser Arg Val Glu Ala Glu Asp Leu Gly Val Tyr Tyr Cys Phe Gln Gly 85 90 95	
30	Ser His Val Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu Lys 100 105 110	
35	<210> 48 <211> 336 <212> DNA <213> Mus musculus	
40	<400> 48 gatgttttga tgacccaaac tccactctcc ctgcctgtca gtcttggaga tcaagcctcc	60
	atctcttgca gatctagtca gagcattgta catagtaatg gaaacaccta tttagaatgg	120
	tacctgcaga aaccaggcca gtctccaaag ctcctgatct acaaagtttc caaccgattt	180
45	tctggggtcc cagacaggtt cagtggcagt ggatcaggga cagatttcac actcaagatc	240
	agtagagtgg aggctgagga tctgggagtt tattactgct ttcaaggttc acatgttccg	300
50	ctcacgttcg gtgctgggac caagctggag ctgaaa	336
55	<210> 49 <211> 7 <212> PRT <213> Mus musculus	
	<400> 49	

```
Thr Ser Gly Met Gly Val Ser
          <210> 50
<211> 21
<212> DNA
<213> Mus musculus
5
          <400> 50
10
          acttctggta tgggtgtgag c
                                                                                                     21
          <210> 51
          <211> 9
<212> PRT
<213> Mus musculus
          <400> 51
          His Ile Tyr Trp Asp Asp Asp Lys Arg
20
          <210> 52
<211> 27
<212> DNA
<213> Mus musculus
          <400> 52
                                                                                                     27
          cacatttact gggatgatga caagcgc
30
          <210> 53
          <211> 7
<212> PRT
<213> Mus musculus
35
          <400> 53
          Met Ile Thr Gly Phe Val Tyr
40
          <210> 54
<211> 21
<212> DNA
<213> Mus musculus
45
          <400> 54
                                                                                                     21
          atgattacgg ggtttgttta c
          <210> 55
          <211> 16
<212> PRT
<213> Mus musculus
50
          <400> 55
          Arg Ser Ser Gln Ser Ile Val His Ser Asn Gly Asn Thr Tyr Leu Glu
```

	<210>	56														
	<211>	48														
	<212>															
	<213>		ma.	.1												
	\Z13 /	Mus	musci	urus												
5																
	<400>	56														
	agatct	agtc	agago	catto	gt ac	cata	gtaat	gga	aaaca	acct	att	taga	a			48
	_	_			•							_				
10	<210>															
70	<211>	7														
	<212>	PRT														
	<213>		musci	11115												
	1225															
	.400															
	<400>	5/														
15																
	Lys Va	ıl Ser	Asn	Arg	Phe	Ser										
	1			5												
20	<210>															
	<211>	21														
	<212>	DNA														
	<213>	Mus	musci	ulus												
	<400>	E 0														
25																0.1
25	aaagtt	tcca	accga	attti	tc t											21
	<210>	59														
	<211>															
30	<212>															
	<213>	Mus	muscu	ulus												
	<400>	59														
	Dho Cl	n C1.		ui a	37-1	Dwo	T 011	The sec								
35	Phe Gl	л сту	ser		۷ат	PIO	ьeu	THE								
30	1			5												
	<210>	60														
	<211>															
40	<212>	DNA		_												
	<213>	Mus	musc	ulus												
	<400>	60														
	tttcaa		cacat	tatta	ים מנ	ctica	rα									27
	000000	.9900	0000	900	JU 9.	0000	-9									
45																
-		_														
	<210>	61														
	<211>	445														
	<212>															
	<213>		muscu	11110												
	~213/	Hus	muscl	urus												
50																
	<400>	61														
	Asp Va	l Gln	Leu	Val	Glu	Ser	Glv	Glv	Glv	Leu	Val	Gln	Pro	Glv	Glv	
	1			5					10					15	-4	
	_			_					-0					-5		
55																
	_		_	_	_			_					_	_		
	Ser Ar	g Lys	Leu	Ser	Cys	Ala	Ala	Ser	Gly	Phe	Thr	Phe	Ser	Ser	Phe	

5	Gly	Met	His 35	Trp	Val	Arg	Gln	Ala 40	Pro	Glu	Lys	Gly	Leu 45	Glu	Trp	Val
10	Ala	Tyr 50	Ile	Ser	Ser	Gly	Ser 55	Ser	Thr	Ile	Tyr	Tyr 60	Ala	Asp	Thr	Val
	Lys 65	Gly	Arg	Phe	Thr	Ile 70	Ser	Arg	Asp	Asn	Pro 75	Lys	Asn	Thr	Leu	Phe
15	Leu	Gln	Met	Thr	Ser 85	Leu	Arg	Ser	Glu	Asp 90	Thr	Ala	Met	Tyr	Tyr 95	Cys
20	Ala	Gly	Thr	Gly 100	Thr	Arg	Ala	Tyr	Trp 105	Gly	Gln	Gly	Thr	Leu 110	Val	Thr
	Val	Ser	Ala 115	Ala	Lys	Thr	Thr	Ala 120	Pro	Ser	Val	Tyr	Pro 125	Leu	Ala	Pro
25	Val	Cys 130	Gly	Asp	Thr	Thr	Gly 135	Ser	Ser	Val	Ala	Leu 140	Gly	Cys	Leu	Val
30	Lys 145	Gly	Tyr	Phe	Pro	Glu 150	Pro	Val	Thr	Leu	Thr 155	Trp	Asn	Ser	Gly	Ser 160
35	Leu	Ser	Ser	Gly	Val 165	His	Thr	Phe	Pro	Ala 170	Val	Leu	Gln	Ser	Asp 175	Leu
	Tyr	Thr	Leu	Ser 180	Ser	Ser	Val	Thr	Val 185	Thr	Ser	Ser	Thr	Trp 190	Pro	Ser
40	Gln	Ser	Ile 195	Thr	Cys	Asn	Val	Ala 200	His	Pro	Ala	Ser	Ser 205	Thr	Lys	Val
45	Asp	Lys 210	Lys	Ile	Glu	Pro	Arg 215	Gly	Pro	Thr	Ile	Lys 220	Pro	Cys	Pro	Pro
50	Cys 225	Lys	Cys	Pro	Ala	Pro 230	Asn	Leu	Leu	Gly	Gly 235	Pro	Ser	Val	Phe	Ile 240
	Phe	Pro	Pro	Lys	Ile 245	Lys	Asp	Val	Leu	Met 250	Ile	Ser	Leu	Ser	Pro 255	Ile
55	Val	Thr	Cys	Val 260	Val	Val	Asp	Val	Ser 265	Glu	Asp	Asp	Pro	Asp 270	Val	Gln

	Ile	Ser	Trp 275	Phe	Val	Asn	Asn	Val 280	GLu	Val	His	Thr	A1a 285	GIn	Thr	GIn	
5	Thr	His 290	Arg	Glu	Asp	Tyr	As n 295	Ser	Thr	Leu	Arg	Val 300	Val	Ser	Ala	Leu	
10	Pro 305	Ile	Gln	His	Gln	Asp 310	Trp	Met	Ser	Gly	Lys 315	Glu	Phe	Lys	Сув	Lys 320	
	Val	Asn	Asn	Lys	Asp 325	Leu	Pro	Ala	Pro	Ile 330	Glu	Arg	Thr	Ile	Ser 335	Lys	
15	Pro	Lys	Gly	Ser 340	Val	Arg	Ala	Pro	Gln 345	Val	Tyr	Val	Leu	Pro 350	Pro	Pro	
20	Glu	Glu	Glu 355	Met	Thr	Lys	Lys	Gln 360	Val	Thr	Leu	Thr	Cys 365	Met	Val	Thr	
0.5	Asp	Phe 370	Met	Pro	Glu	Asp	Ile 375	Tyr	Val	Glu	Trp	Thr 380	Asn	Asn	Gly	Lys	
25	Thr 385	Glu	Leu	Asn	Tyr	Lys 390	Asn	Thr	Glu	Pro	Val 395	Leu	Asp	Ser	Asp	Gly 400	
30	Ser	Tyr	Phe	Met	Tyr 405	Ser	Lys	Leu	Arg	Val 410	Glu	Lys	Lys	Asn	Trp 415	Val	
35	Glu	Arg	Asn	Ser 420	Tyr	Ser	Cys	Ser	Val 425	Val	His	Glu	Gly	Leu 430	His	Asn	
	His	His	Thr 435	Thr	Lys	Ser	Phe	Ser 440	Arg	Thr	Pro	Gly	Lys 445				
40	<210 <211 <212 <213	L> : 2> I	62 1338 ONA Mus 1	musci	ılus												
45	<400 gate		62 agc t	tggtg	ggagt	c to	gggg	gaggo	: tta	agtgo	cagc	ctg	gaggg	gtc (ccgga	aactc	60
	taat	tgtg	cag o	catat	ggat	t ca	actti	cagt	ago	ettte	ggaa	tgca	actg	ggt 1	cgto	cagget	120
50	cca	gagaa	agg (ggcto	ggagt	g g	gtcg	catac	c att	agta	agtg	gca	gtagt	cac o	catct	actat	180
																ctgttc	240
																actggg	300
55																acagcc	360 420
	CCal	Juggi			July	ات ت	July	Jugu	. yyc	-yalo	Luaa	cug	g((99 - 99	gctcta	720

	ggatgcctgg tcaagggtta tttccctgag ccagtgacct tgacctggaa ctctggatcc	480
	ctgtccagtg gtgtgcacac cttcccagct gtcctgcagt ctgacctcta caccctcagc	540
5	ageteagtga etgtaacete gageacetgg eccagecagt ceateacetg caatgtggee	600
	cacceggeaa geageaceaa ggtggacaag aaaattgage eeagagggee cacaateaag	660
	ccctgtcctc catgcaaatg cccagcacct aacctcttgg gtggaccatc cgtcttcatc	720
10	ttccctccaa agatcaagga tgtactcatg atctccctga gccccatagt cacatgtgtg	780
	gtggtggatg tgagcgagga tgacccagat gtccagatca gctggtttgt gaacaacgtg	840
45	gaagtacaca cageteagae acaaaceeat agagaggatt acaacagtae teteegggtg	900
15	gtcagtgccc tccccatcca gcaccaggac tggatgagtg gcaaggagtt caaatgcaag	960
	gtcaacaaca aagacctccc agcgcccatc gagagaacca tctcaaaacc caaagggtca	1020
20	gtaagagete cacaggtata tgtettgeet ecaceagaag aagagatgae taagaaacag	1080
	gtcactctga cctgcatggt cacagacttc atgcctgaag acatttacgt ggagtggacc	1140
	aacaacggga aaacagagct aaactacaag aacactgaac cagtcctgga ctctgatggt	1200
25	tcttacttca tgtacagcaa gctgagagtg gaaaagaaga actgggtgga aagaaatagc	1260
	tactcctgtt cagtggtcca cgagggtctg cacaatcacc acacgactaa gagcttctcc	1320
	cggactccgg gtaaatga	1338
30	<210> 63 <211> 219 <212> PRT <213> Mus musculus	
35	<400> 63	
40	Asp Val Leu Met Thr Gln Thr Pro Leu Ser Leu Pro Val Ser Leu Gly 1 5 10 15	
40	Asp Gln Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Ile Val His Ser 20 25 30	
45	Asn Gly Asn Thr Tyr Leu Glu Trp Tyr Leu Gln Lys Pro Gly Gln Ser 35 40 45	
	Pro Lys Leu Leu Ile Tyr Lys Val Ser Asn Arg Phe Ser Gly Val Pro 50 55 60	

Ser Arg Val Glu Ala Glu Asp Leu Gly Val Tyr Tyr Cys Phe Gln Gly 85 90 95

Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile

50

55

	Ser	His	Val	Pro 100	Pro	Thr	Phe	Gly	Gly 105	Gly	Thr	Lys	Leu	Glu 110	Ile	Lys	
5	Arg	Ala	Asp 115	Ala	Ala	Pro	Thr	Val 120	Ser	Ile	Phe	Pro	Pro 125	Ser	Ser	Glu	
10	Gln	Leu 130	Thr	Ser	Gly	Gly	Ala 135	Ser	Val	Val	Cys	Phe 140	Leu	Asn	Asn	Phe	
15	Tyr 145	Pro	Lys	Asp	Ile	Asn 150	Val	Lys	Trp	Lys	Ile 155	Asp	Gly	Ser	Glu	A rg 160	
	Gln	Asn	Gly	Val	Leu 165	Asn	Ser	Trp	Thr	Asp 170	Gln	Asp	Ser	Lys	Asp 175	Ser	
20	Thr	Tyr	Ser	Met 180	Ser	Ser	Thr	Leu	Thr 185	Leu	Thr	Lys	Asp	Glu 190	Tyr	Glu	
25	Arg	His	Asn 195	Ser	Tyr	Thr	Cys	Glu 200	Ala	Thr	His	Lys	Thr 205	Ser	Thr	Ser	
30	Pro	Ile 210	Val	Lys	Ser	Phe	Asn 215	Arg	Asn	Glu	Cys						
25	<210 <211 <212 <213	L> (2> I	64 660 ONA Mus 1	nusci	ılus												
35	<400 gate		64 cga t	gaco	ccaaa	ac to	ccact	teted	c cto	gaato	gtca	gtct	tgga	aga t	tcaaq	gaataa	60
40	atct	ctt	gca q	gatct	tagto	ca ga	agcat	ttgta	a cat	agta	aatg	gaaa	acaco	cta 1	tttag	gaatgg	120
40	taco	ctgca	aga a	aacca	aggco	ca gt	ctco	ctaaç	gcto	cctga	atct	acaa	agtt	tc o	caaco	gattt	180
	tct	ggggt	cac o	cagao	caggt	t ca	agtg	gcagt	gga	atcaç	ggga	caga	attt	cac a	actca	aagatc	240
45	agca	agagt	gg a	aggct	tgagg	ga to	ctggg	gagtt	tat	tact	gct	ttca	aggt	tc a	acato	gttcct	300
	ccga	acgtt	cg q	gtgga	aggca	ac ca	aagct	tggaa	ato	caaac	cggg	ctga	atgct	gc a	accaa	actgta	360
	tcca	atcti	ccc o	cacca	atcca	ag to	gagca	agtta	a aca	atcto	ggag	gtg	cctca	agt o	cgtgt	gcttc	420
50	ttga	acaa	act t	cta	ccca	aa aq	gacat	tcaat	gto	caagt	gga	agat	tgat	gg (cagto	gaacga	480
	caaa	aatg	gcg t	cct	gaaca	ag tt	ggad	ctgat	caç	ggaca	agca	aaga	acago	cac o	ctaca	agcatg	540
55	agca	agtad	cac t	cac	gttga	ac ca	aagga	acgaç	y tat	gaad	cgac	ataa	acago	cta 1	tacct	gtgag	600
-	gcca	actca	aca a	agaca	atcaa	ac tt	caco	ccatt	gto	caaga	agct	tcaa	acago	gaa 1	tgagt	gttag	660

	<210 <211 <212 <213	L> 2>	65 115 PRT Mus	muscı	ılus												
5	<400)>	65														
	Asp 1	Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly	
10	Ser	Arg	Lys	Leu	Ser	Cys	Ala	Ala		Gly	Phe	Thr	Phe		Ser	Phe	
				20					25					30			
15	Gly	Met	His 35	Trp	Val	Arg	Gln	Ala 40	Pro	Glu	Lys	Gly	Leu 45	Glu	Trp	Val	
20	Ala	Tyr 50	Ile	Ser	Ser	Gly	Ser 55	Ser	Thr	Ile	Tyr	Tyr 60	Ala	Asp	Thr	Val	
	Lys 65	Gly	Arg	Phe	Thr	Ile 70	Ser	Arg	Asp	Asn	Pro 75	Lys	Asn	Thr	Leu	Phe 80	
25	Leu	Gln	. Met	Thr	Ser 85	Leu	Arg	Ser	Glu	Asp 90	Thr	Ala	Met	Tyr	Tyr 95	Cys	
30	Ala	Gly	Thr	Gly 100	Thr	Arg	Ala	Tyr	Trp 105	Gly	Gln	Gly	Thr	Leu 110	Val	Thr	
35	Val	Ser	Ala 115														
	<210 <211 <212	L>	66 345 DNA														
40				musc	ılus												
	<400 gate		66 agc	tggt	ggagt	c to	ggggg	gaggo	tta	gtgo	cagc	ctg	gaggg	gtc o	ccgga	aactc	60
45	tcct	gtg	cag	cctct	ggat	ct ca	acttt	cagt	ago	ettte	ggaa	tgca	actg	ggt t	cgto	caggct	120
70																actat	180
																etgttc	240
50				actg										.ge c	:ggga	actggg	300 345
55	<210 <211 <212 <213	L> 2>	67 112 PRT Mus	muscı	ılus												

	<400	0>	67														
5	Asp 1	Val	Leu	Met	Thr 5	Gln	Thr	Pro	Leu	Ser 10	Leu	Pro	Val	Ser	Leu 15	Gly	
	Asp	Gln	Ala	Ser 20	Ile	Ser	Cys	Arg	Ser 25	Ser	Gln	Ser	Ile	Val 30	His	Ser	
10	Asn	Gly	Asn 35	Thr	Tyr	Leu	Glu	Trp 40	Tyr	Leu	Gln	Lys	Pro 45	Gly	Gln	Ser	
15	Pro	Lys 50	Leu	Leu	Ile	Tyr	Lys 55	Val	Ser	Asn	Arg	Phe 60	Ser	Gly	Val	Pro	
	Asp 65	Arg	Phe	Ser	Gly	Ser 70	Gly	Ser	Gly	Thr	Asp 75	Phe	Thr	Leu	Lys	Ile 80	
20	Ser	Arg	Val	Glu	Ala 85	Glu	Asp	Leu	Gly	Val 90	Tyr	Tyr	Cys	Phe	Gln 95	Gly	
25	Ser	His	Val	Pro 100	Pro	Thr	Phe	Gly	Gly 105	Gly	Thr	Lys	Leu	Glu 110	Ile	Lys	
30	<210 <211 <212 <213	1> . 2> :	68 336 DNA Mus 1	musci	ılus												
	<400 gate		68 tga t	tgaco	ccaa	ac to	ccact	tatad	c cto	gaato	gtca	gtct	tgga	aga 1	caaç	gaataa	60
35	atct	tctt	gca (gatct	agto	ca ga	agcat	tgta	cat	agta	atg	gaaa	acaco	cta 1	ttag	gaatgg	120
	taco	ctgc	aga a	aacca	aggco	ca gt	ctc	ctaaç	g cto	cctga	atct	acaa	aagtt	tc o	caaco	cgattt	180
	tct	gggg	tcc (cagao	caggt	t ca	agtg	gcagt	gga	atcaç	ggga	caga	attto	cac a	actca	agatc	240
40	agca	agag	tgg a	aggct	gago	ga to	ctgg	gagtt	tat	tact	gct	ttca	aaggt	tc a	acato	gttcct	300
	ccga	acgt	tcg q	gtgga	aggca	ac ca	agct	ggaa	ato	caaa							336
45	<210 <211 <212 <213	1> 2> :	69 5 PRT Mus 1	musci	ılus												
50	<400	0>	69														
	Ser 1	Phe	Gly	Met	His 5												
55	<210 <210 <210		70 15														

	<213>	Mus	muscul	us											
	<400>	70													
	agcttt		tocac												15
5	_	,,													
	<210>														
	<211> <212>														
			muscul	15											
10	1210		mascar	40											
	<400>	71													
		_			_			_							
	Tyr II 1	e Ser	Ser G	Ly Ser	Ser	Thr	Ile	Tyr 10							
	1		3					10							
15															
		72													
	<211>														
	<212>		_												
20	<213>	Mus	muscul	us											
20	<400>	72													
			gtggca	gtag t	acca	tctac	2								30
		-													
	0.1.0														
25	<210> <211>	13 6													
	<212>														
			muscul	us											
	<400>	73													
30	ሞኮ _ድ ር1	v Thr	Arg A	la Tur	•										
	1	y 1111	5 ALG A	LA IYI	•										
35	<210> <211>	7 4 18													
30	<211>														
			muscul	us											
	<400>	74													
40	actggg	acga	gagctt	ac											18
	<210>	75													
	<211>	16													
	<212>	PRT													
45	<213>	Mus	muscul	us											
	<400>	75													
	12001														
		r Ser	Gln Se	er Ile	val	His	Ser		Gly	Asn	Thr	Tyr		Glu	
50	1		5					10					15		
00															
	<210>	76													
	<211>	48													
	<212>	DNA													
55	<213>	Mus	muscul	us											
	<400>	76													
	ヘせいひと	70													

	agatct	agtc a	agago	attg	rt ac	cata	gtaat	gga	aaaca	acct	atti	cagaa	1			48
	<210>	77														
5	<211>	7														
	<212>	PRT														
	<213>	Mus 1	muscu	ılus												
	<400>	77														
10	Lys Va	l Ser	Asn	Arg	Phe	Ser										
	1			5												
	<210>	78														
45	<211>	21														
15	<212>	DNA														
	<213>	Mus 1	muscu	ılus												
	<400>	78														
	aaagtt	tcca a	accga	ıtttt	c t											21
20																
	<210>	7 9														
	<211>	9														
	<212>	PRT														
	<213>	Mus 1	muscu	ılus												
25																
	<400>	79														
	Phe Gl	n Gly	Ser		Val	Pro	Pro	Thr								
	1			5												
30																
	<210>															
	<211>															
	<212>			-												
35	<213>	Mus 1	muscu	ııus												
	<400>	80														
	tttcaa		cacat	gtto	c to	ccga	cg									27
				_		-	-									
	<210>	81														
40	<211>	442														
	<212>	PRT														
	<213>	Mus 1	muscu	ılus												
	<400>	81														
45																
	Gln Va	l Gln	Leu		Gln	Pro	Gly	Ala		Leu	Val	Lys	Pro		Ala	
	1			5					10					15		
	O 17-	1 7	T	O	~	T	31-	O	01	Ш	m1	Dl	m1	0	m	
50	Ser Va	т туѕ		ser	Cys	туѕ	Ата		GIY	Tyr	Thr	Pne		ser	Tyr	
30			20					25					30			
	Trp Me	t Wie	Ψνν	Va 1	Tare	T. 4.11	۵ra	Dro	G1 **	Gln	G1 ***	Dhe	G1	Тъъ	Tle	
	TTP Me	35	тър	٧ФТ	пλя	т∈п	40	LIO	сту	GTII	GTĀ	45	GIU	ттЪ	TTE	
		33					-2-0					-2-0				
55																
	Gly Gl	u Ile	Asn	Pro	Ara	Asn	Glv	Glv	Thr	Asn	Asn	Asn	G111	Asn	Phe	
					- 3		1	1								

5	Lys 65	Arg	Lys	Ala	Thr	Leu 70	Thr	Val	Asp	Lys	Ser 75	Ser	Ser	Thr	Ala	Tyr 80
10	Met	Gln	Leu	Ser	Ser 85	Leu	Thr	Ser	Glu	Asp 90	Ser	Ala	Val	Tyr	Tyr 95	Cys
	Thr	Arg	Asp	Gly 100	Asn	Tyr	Asp	Pro	Phe 105	Ala	Tyr	Trp	Gly	Gln 110	Gly	Thr
15	Leu	Val	Thr 115	Val	Ser	Ala	Ala	Lys 120	Thr	Thr	Pro	Pro	Ser 125	Val	Tyr	Pro
20	Leu	Ala 130	Pro	Gly	Ser	Ala	Ala 135	Gln	Thr	Asn	Ser	Met 140	Val	Thr	Leu	Gly
	Cys 145	Leu	Val	Lys	Gly	Tyr 150	Phe	Pro	Glu	Pro	Val 155	Thr	Val	Thr	Trp	Asn 160
25	Ser	Gly	Ser	Leu	Ser 165	Ser	Gly	Val	His	Thr 170	Phe	Pro	Ala	Val	Leu 175	Gln
30	Ser	Asp	Leu	Tyr 180	Thr	Leu	Ser	Ser	Ser 185	Val	Thr	Val	Pro	Ser 190	Ser	Thr
35	Trp	Pro	Ser 195	Glu	Thr	Val	Thr	Cys 200	Asn	Val	Ala	His	Pro 205	Ala	Ser	Ser
	Thr	Lys 210	Val	Asp	Lys	Lys	Ile 215	Val	Pro	Arg	Asp	Cys 220	Gly	Cys	Lys	Pro
40	Cys 225	Ile	Cys	Thr	Val	Pro 230	Glu	Val	Ser	Ser	Val 235	Phe	Ile	Phe	Pro	Pro 240
45	Lys	Pro	Lys	Asp	Val 245	Leu	Thr	Ile	Thr	Leu 250	Thr	Pro	Lys	Val	Thr 255	Cys
50	Val	Val	Val	Asp 260	Ile	Ser	Lys	Asp	Asp 265	Pro	Glu	Val	Gln	Phe 270	Ser	Trp
	Phe	Val	Asp 275	Asp	Val	Glu	Val	His 280	Thr	Ala	Gln	Thr	Gln 285	Pro	Arg	Glu
55	Glu	Gln 290	Phe	Asn	Ser	Thr	Phe 295	Arg	Ser	Val	Ser	Glu 300	Leu	Pro	Ile	Met

	305	GIII	Asp	пр	ьеи	310	GLY	туѕ	GIU	Pile	315	Cys	Arg	Val	ASII	320	
5	Ala	Ala	Phe	Pro	Ala 325	Pro	Ile	Glu	Lys	Thr 330	Ile	Ser	Lys	Thr	Lys 335	Gly	
10	Arg	Pro	Lys	Ala 340	Pro	Gln	Val	Tyr	Thr 345	Ile	Pro	Pro	Pro	Lys 350	Glu	Gln	
	Met	Ala	Lys 355	Asp	Lys	Val	Ser	Leu 360	Thr	Cys	Met	Ile	Thr 365	Asp	Phe	Phe	
15	Pro	Glu 370	Asp	Ile	Thr	Val	Glu 375	Trp	Gln	Trp	Asn	Gly 380	Gln	Pro	Ala	Glu	
20	As n 385	Tyr	Lys	Asn	Thr	Gln 390	Pro	Ile	Met	Asp	Thr 395	Asp	Gly	Ser	Tyr	Phe 400	
05	Val	Tyr	Ser	Lys	Leu 405	Asn	Val	Gln	Lys	Ser 410	Asn	Trp	Glu	Ala	Gly 415	Asn	
25	Thr	Phe	Thr	Cys 420	Ser	Val	Leu	His	Glu 425	Gly	Leu	Leu	Asn	Leu 430	His	Thr	
30	Glu	Lys	Ser 435	Leu	Ser	Leu	Ser	Pro 440	Gly	Lys							
35	<210 <211 <212 <213	L> 1 2> [32 1329 NA Mus n	nuscu	ılus												
	<400 cago		32 aac t	ccaç	gcago	ec to	gggg	ctgaa	ı ctç	ggtga	agc	ctg	gggct	tc a	agtga	agttg	60
40	tcct	gcaa	agg c	ettet	ggat	a ca	acctt	cacc	ago	tact	gga	tgca	actgo	gt d	gaago	tgagg	120
	ccto	ggaca	aag ç	gcttt	gagt	g ga	attgg	gagag	att	aato	ccta	gaaa	tggt	.gg t	tacta	acaac	180
	aato	gagaa	act t	caaç	gagaa	a go	gccad	cacto	r act	gtag	jaca	aato	ctcc	ag d	cacaç	geetae	240
45	atgo	caact	ca c	gcago	ctga	c at	ctga	aggac	tct	gege	gtct	atta	actgt	ac a	aagaq	gatggt	300
	aact	acga	acc c	cttt	gctt	a ct	gggg	gccaa	ggg	gacto	ctgg	tcad	ctgto	etc t	gcag	rccaaa	360
50	acga	acaco	ccc c	catct	gtct	a to	ccact	ggcc	cct	ggat	ctg	ctgo	ccaa	ac t	aact	ccatg	420
	gtga	accct	gg g	gatgo	ctgo	jt ca	aggg	gctat	tto	ccto	gagc	cagt	gaca	ıgt ç	gacct	ggaac	480
	tcto	gato	ccc t	gtcc	agco	g to	gtgca	acaco	tto	ccaç	gctg	tcct	gcaç	jtc t	gaco	tctac	540
55	acto	ctgaç	gca ç	gctca	igtga	c to	gteed	cctcc	ago	cacct	ggc	ccaç	gcgag	gac o	egtea	ectgc	600
	aaco	gttgo	ecc a	cccc	gcca	ig ca	agcad	caaq	gto	gaca	aaga	aaat	tgto	jaa d	caggo	gattgt	660

	ggttgtaagc cttgcatatg tacagtccca gaagtatcat ctgtcttcat cttcccccca	720
	aagcccaagg atgtgctcac cattactctg actcctaagg tcacgtgtgt tgtggtagac	780
5	atcagcaagg atgatcccga ggtccagttc agctggtttg tagatgatgt ggaggtgcac	840
	acagctcaga cgcaaccccg ggaggagcag ttcaacagca ctttccgctc agtcagtgaa	900
	cttcccatca tgcaccagga ctggctcaat ggcaaggagt tcaaatgcag ggtcaacagt	960
10	gcagctttcc ctgcccccat cgagaaaacc atctccaaaa ccaaaggcag accgaaggct	1020
	ccacaggtgt acaccattcc acctcccaag gagcagatgg ccaaggataa agtcagtctg	1080
	acctgcatga taacagactt cttccctgaa gacattactg tggagtggca gtggaatggg	1140
15	cagccagcgg agaactacaa gaacactcag cccatcatgg acacagatgg ctcttacttc	1200
	gtttacagca agctcaatgt gcagaagagc aactgggagg caggaaatac tttcacctgc	1260
20	totgtgttac atgagggcct gctcaacctc catactgaga agagcctctc cctctcct	1320
	ggtaaatga	1329
25	<210> 83 <211> 220 <212> PRT <213> Mus musculus	
	<400> 83	
30	Asp Val Val Met Thr Gln Thr Pro Leu Ser Leu Pro Val Ser Leu Gly 1 5 10 15	
35	Asp Gln Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Val His Ser 20 25 30	
	Asn Gly Asn Thr Tyr Leu His Trp Tyr Leu Gln Lys Pro Gly Gln Ser 35 40 45	
40	Pro Lys Leu Leu Ile Tyr Lys Val Ser Asn Arg Phe Ser Gly Val Pro 50 55 60	
45	Asp Arg Phe Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile 70 75 80	
50	Ser Arg Val Glu Ala Glu Asp Leu Gly Val Tyr Phe Cys Ser Gln Ser 85 90 95	
	Thr His Val Pro Pro Tyr Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile 100 105 110	
55	Lys Arg Ala Asp Ala Ala Pro Thr Val Ser Ile Phe Pro Pro Ser Ser 115 120 125	

	Glu	Gln 130	Leu	Thr	Ser	Gly	Gly 135	Ala	Ser	Val	Val	Cys 140	Phe	Leu	Asn	Asn	
5	Phe 145	Tyr	Pro	Lys	Asp	Ile 150	Asn	Val	Lys	Trp	Lys 155	Ile	Asp	Gly	Ser	Glu 160	
10	Arg	Gln	Asn	Gly	Val 165	Leu	Asn	Ser	Trp	Thr 170	Asp	Gln	Asp	Ser	Lys 175	Asp	
	Ser	Thr	Tyr	Ser 180	Met	Ser	Ser	Thr	Leu 185	Thr	Leu	Thr	Lys	Asp 190		Tyr	
15	Glu	Arg	His 195	Asn	Ser	Tyr	Thr	Cys 200	Glu	Ala	Thr	His	Lys 205	Thr	Ser	Thr	
20	Ser	Pro 210	Ile	Val	Lys	Ser	Phe 215	Asn	Arg	Asn	Glu	Cys 220					
25	<210 <211 <212 <213	L> (2> I	84 663 ONA Mus	musci	ılus												
	<400 gate		84 tga	tgaco	ccaa	ac to	ccact	ctcc	: ctç	geeto	gtca	gtc	ttgga	aga 1	tcaaq	gaataa	60
30	atct	cctt	gca (gatct	tagto	ca ga	agcct	tgta	cac	cagta	aatg	gaa	acaco	cta 1	ttta	cattgg	120
	taco	ctgca	aga (agcca	aggco	ca gt	ctc	caaac	cto	cctga	atct	acaa	aagti	tc (caac	cgattt	180
35	tct	ggggt	tcc	caga	caggt	ct ca	agtg	gcagt	gga	atcaç	ggga	caga	attto	cac a	actca	aagatc	240
	agca	agagt	tgg (aggct	tgag	ga to	ctggg	gagtt	. tat	ttct	gct	ctca	aaagt	ac a	acat	gttcct	300
	ccgt	cacao	cgt ·	tcgga	aggg	gg ga	accaa	agcto	gaa	aataa	aaac	ggg	ctgat	.gc 1	tgcad	ccaact	360
40	gtat	ccat	tct ·	tccca	accat	c ca	agtga	agcaç	r tta	acat	ctg	gag	gtgc	ctc a	agtc	gtgtgc	420
	ttct	tgaa	aca (actt	ctaco	cc ca	aaaga	acato	: aat	gtca	aagt	gga	agati	ga t	tggca	agtgaa	480
	cgad	caaaa	atg (gcgto	cctga	aa ca	agtto	ggact	gat	cago	gaca	gca	aagad	cag (cacct	tacago	540
45	atga	agca	gta	ccct	cacgt	t ga	accaa	aggac	gaç	gtato	gaac	gaca	ataad	cag (ctata	acctgt	600
	gag	gcca	ctc	acaa	gacat	c aa	actto	cacco	att	gtca	aaga	gcti	tcaad	cag (gaat	gagtgt	660
50	tag																663
55	<210 <211 <211 <211	L> : 2> I	85 118 PRT Mus	muscı	ılus												
	<400)> {	85														

	Gln 1	Val	Gln	Leu	Gln 5	Gln	Pro	Gly	Ala	Glu 10	Leu	Val	Lys	Pro	Gly 15	Ala	
5	Ser	Val	Lys	Leu 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Tyr	Thr	Phe	Thr 30	Ser	Tyr	
10	Trp	Met	His 35	Trp	Val	Lys	Leu	Arg 40	Pro	Gly	Gln	Gly	Phe 45	Glu	Trp	Ile	
	Gly	Glu 50	Ile	Asn	Pro	Arg	Asn 55	Gly	Gly	Thr	Asn	Asn 60	Asn	Glu	Asn	Phe	
15	Lys 65	Arg	Lys	Ala	Thr	Leu 70	Thr	Val	Asp	Lys	Ser 75	Ser	Ser	Thr	Ala	Tyr 80	
20	Met	Gln	Leu	Ser	Ser 85	Leu	Thr	Ser	Glu	Asp 90	Ser	Ala	Val	Tyr	Tyr 95	Cys	
25	Thr	Arg	Asp	Gly 100	Asn	Tyr	Asp	Pro	Phe 105	Ala	Tyr	Trp	Gly	Gln 110	Gly	Thr	
	Leu	Val	Thr 115	Val	Ser	Ala											
30	<210 <211 <212 <213	L> 3 2> [36 354 ONA Mus n	nusci	ılus												
35	<400 cago	-	36 aac t	ccaç	gcago	cc to	gggg	ctgaa	a cto	ggtga	aagc	ctg	gggct	tc a	agtga	agttg	60
	tcct	gcaa	agg o	cttct	ggct	ca ca	acctt	caco	c ago	ctact	gga	tgca	actg	ggt g	gaago	ctgagg	120
40	ccto	gaca	aag q	gcttt	gagt	g ga	attg	gagag	g att	aato	ccta	gaaa	atggt	.gg t	tacta	acaac	180
	aato	gagaa	act t	caaq	gagaa	aa go	gccad	cacto	g act	gtag	gaca	aato	cctco	cag d	cacaç	gcctac	240
45	atgo	caact	ca ç	gcago	cctga	ac at	ctga	aggad	e tet	gege	gtct	atta	actgt	ac a	aagaq	gatggt	300
40	aact	acga	acc o	ccttt	gctt	a ct	gggg	gccaa	a ggg	gacto	ctgg	tcad	ctgto	ctc t	tgca		354
50	<210 <211 <212 <213	L> 1 2> E	37 113 PRT Mus r	nusci	ılus												
	<400)> 8	37														
55	Asp 1	Val	Val	Met	Thr 5	Gln	Thr	Pro	Leu	Ser 10	Leu	Pro	Val	Ser	Leu 15	Gly	

	Asp Gln Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Val 1 20 25 30	His Ser
5	Asn Gly Asn Thr Tyr Leu His Trp Tyr Leu Gln Lys Pro Gly (35 40 45	Gln Ser
10	Pro Lys Leu Leu Ile Tyr Lys Val Ser Asn Arg Phe Ser Gly V 50 55 60	Val Pro
	Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu 165 70 75	Lys Ile 80
15	Ser Arg Val Glu Ala Glu Asp Leu Gly Val Tyr Phe Cys Ser (Gln Ser 95
20	Thr His Val Pro Pro Tyr Thr Phe Gly Gly Gly Thr Lys Leu 0	Glu Ile
	Lys	
25 30	<210> 88 <211> 339 <212> DNA <213> Mus musculus	
	<400> 88 gatgttgtga tgacccaaac tccactctcc ctgcctgtca gtcttggaga to	caagcctcc 60
0.5	atctcttgca gatctagtca gagccttgta cacagtaatg gaaacaccta t	ttacattgg 120
35	tacctgcaga agccaggcca gtctccaaag ctcctgatct acaaagtttc ca	aaccgattt 180
	tctggggtcc cagacaggtt cagtggcagt ggatcaggga cagatttcac ac	ctcaagatc 240
40	agcagagtgg aggctgagga tctgggagtt tatttctgct ctcaaagtac ac	catgttcct 300
	ccgtacacgt tcggaggggg gaccaagctg gaaataaaa	339
45	<210> 89 <211> 5 <212> PRT <213> Mus musculus	
	<400> 89	
50	Ser Tyr Trp Met His 1 5	
55	<210> 90 <211> 15 <212> DNA <213> Mus musculus	

	<400> 90 agctactgga tgcac	15
5	<210> 91 <211> 10 <212> PRT <213> Mus musculus	
10	<400> 91	
	Glu Ile Asn Pro Arg Asn Gly Gly Thr Asn 1 5 10	
15	<210> 92 <211> 30 <212> DNA <213> Mus musculus	
20	<400> 92 gagattaatc ctagaaatgg tggtactaac	30
25	<210> 93 <211> 9 <212> PRT <213> Mus musculus	
	<400> 93	
30	Asp Gly Asn Tyr Asp Pro Phe Ala Tyr 1 5	
35	<210> 94 <211> 27 <212> DNA <213> Mus musculus	
	<400> 94 gatggtaact acgacccctt tgcttac	27
40	<210> 95 <211> 16 <212> PRT <213> Mus musculus	
45	<400> 95	
	Arg Ser Ser Gln Ser Leu Val His Ser Asn Gly Asn Thr Tyr Leu His 1 5 10 15	
50	<210> 96 <211> 48 <212> DNA <213> Mus musculus	
55	<400> 96 agatctagtc agagccttgt acacagtaat ggaaacacct atttacat	48

```
<210> 97
        <211> 7
<212> PRT
<213> Mus musculus
5
         <400> 97
        Lys Val Ser Asn Arg Phe Ser
10
        <210> 98
        <211> 21
<212> DNA
<213> Mus musculus
15
        <400> 98
        aaagtttcca accgattttc t
                                                                                           21
        <210> 99
<211> 10
<212> PRT
<213> Mus musculus
20
         <400> 99
         Ser Gln Ser Thr His Val Pro Pro Tyr Thr
                          5
        <210> 100
30
        <211> 30
<212> DNA
         <213> Mus musculus
        <400> 100
35
                                                                                           30
        tctcaaagta cacatgttcc tccgtacacg
        <210> 101
<211> 453
<212> PRT
<213> Mus musculus
40
         <400> 101
        Gln Val Thr Leu Lys Glu Ser Gly Pro Gly Ile Leu Gln Pro Ser Gln
         Thr Leu Ser Leu Thr Cys Ser Phe Ser Gly Phe Ser Leu Ser Thr Ser
50
         Gly Met Gly Val Ser Trp Ile Arg Gln Pro Ser Gly Glu Gly Leu Glu
                                         40
         Trp Leu Ala His Ile Tyr Trp Asp Asp Asp Lys Arg Tyr Asn Pro Ser
                                    55
```

	Leu 65	Lys	Ser	Arg	Leu	Thr 70	Ile	Ser	Lys	Asp	Thr 75	Ser	Arg	Asn	Gln	Val 80
5	Phe	Leu	Lys	Ile	Thr 85	Ser	Val	Asp	Thr	Ala 90	Asp	Thr	Ala	Thr	Tyr 95	Tyr
10	Сув	Gly	Arg	Tyr 100	Arg	Tyr	Gly	Phe	Ala 105	Tyr	Trp	Gly	Gln	Gly 110	Thr	Leu
	Val	Thr	Val 115	Ser	Ala	Ala	Lys	Thr 120	Thr	Pro	Pro	Ser	Val 125	Tyr	Pro	Leu
15	Ala	Pro 130	Gly	Cys	Gly	Asp	Thr 135	Thr	Gly	Ser	Ser	Val 140	Thr	Leu	Gly	Cys
20	Leu 145	Val	Lys	Gly	Tyr	Phe 150	Pro	Glu	Ser	Val	Thr 155	Val	Thr	Trp	Asn	Ser 160
25	Gly	Ser	Leu	Ser	Ser 165	Ser	Val	His	Thr	Phe 170	Pro	Ala	Leu	Leu	Gln 175	Ser
	Gly	Leu	Tyr	Thr 180	Met	Ser	Ser	Ser	Val 185	Thr	Val	Pro	Ser	Ser 190	Thr	Trp
30	Pro	Ser	Gln 195	Thr	Val	Thr	Суз	Ser 200	Val	Ala	His	Pro	Ala 205	Ser	Ser	Thr
35	Thr	Val 210	Asp	Lys	Lys	Leu	Glu 215	Pro	Ser	Gly	Pro	Ile 220	Ser	Thr	Ile	Asn
	Pro 225	Cys	Pro	Pro	Cys	Lys 230	Glu	Cys	His	Lys	Cys 235	Pro	Ala	Pro	Asn	Leu 240
40	Glu	Gly	Gly	Pro	Ser 245	Val	Phe	Ile	Phe	Pro 250	Pro	Asn	Ile	Lys	Asp 255	Val
45	Leu	Met	Ile	Ser 260	Leu	Thr	Pro	Lys	Val 265	Thr	Cys	Val	Val	Val 270	Asp	Val
50	Ser	Glu	Asp 275	Asp	Pro	Asp	Val	Gln 280	Ile	Ser	Trp	Phe	Val 285	Asn	Asn	Val
	Glu	Val 290	His	Thr	Ala	Gln	Thr 295	Gln	Thr	His	Arg	Glu 300	Asp	Tyr	Asn	Ser
55	Thr 305	Ile	Arg	Val	Val	Ser 310	Thr	Leu	Pro	Ile	Gln 315	His	Gln	Asp	Trp	Met 320

	Ser	Gly	Lys	Glu	Phe 325	Lys	Cys	Lys	Val	Asn 330	Asn	Lys	Asp	Leu	Pro 335	Ser	
5	Pro	Ile	Glu	Arg 340	Thr	Ile	Ser	Lys	Ile 345	Lys	Gly	Leu	Val	Arg 350	Ala	Pro	
10	Gln	Val	Tyr 355	Ile	Leu	Pro	Pro	Pro 360	Ala	Glu	Gln	Leu	Ser 365	Arg	Lys	Asp	
	Val	Ser 370	Leu	Thr	Cys	Leu	Val 375	Val	Gly	Phe	Asn	Pro 380	Gly	Asp	Ile	Ser	
15	Val 385	Glu	Trp	Thr	Ser	Asn 390	Gly	His	Thr	Glu	Glu 395	Asn	Tyr	Lys	Asp	Thr 400	
20	Ala	Pro	Val	Leu	Asp 405	Ser	Asp	Gly	Ser	Tyr 410	Phe	Ile	Tyr	Ser	Lys 415	Leu	
25	Asn	Met	Lys	Thr 420	Ser	Lys	Trp	Glu	Lys 425	Thr	Asp	Ser	Phe	Ser 430	Cys	Asn	
	Val	Arg	His 435	Glu	Gly	Leu	Lys	Asn 440	Tyr	Tyr	Leu	Lys	Lys 445	Thr	Ile	Ser	
30	Arg	Ser 450	Pro	Gly	Lys												
35	<210 <211 <212 <213	L> : 2> I	102 1362 ONA Mus 1	muscu	ılus												
40	<400 cago		102 ctc 1	tgaaa	agagt	a tạ	ggaa	ctggg	g ata	attgo	cagc	ccto	cca	gac (cctca	agtctg	60
	actt	gtto	ctt 1	tctct	gggt	t tt	cact	gago	e act	tete	ggta	tggg	gtgt	gag (ctgga	attcgt	120
	cago	cctto	cag (gagaç	gggto	ct go	gagto	gata	g gca	acaca	attt	acto	gggat	ga t	tgaca	agcgc	180
45	tata	aacco	cat (ccct	gaaga	ag co	egget	caca	a ato	ctcca	aagg	atad	cata	cag a	aaaco	caggta	240
	ttc	ctcaa	aga 1	tcaco	cagto	gt go	gacad	ctgca	a gat	acto	gcca	cata	acta	ctg 1	tggto	gatat	300
	aggt	cacgo	gct 1	ttgct	tact	g gg	ggcca	aaggg	g act	ctg	gtca	ctgt	ctc	gc a	agcca	aaaaca	360
50	acad	caca	cat (cagto	ctato	cc ac	ctgg	ccct	ggg	gtgtg	ggag	atad	caact	gg t	ttaat	ccgtg	420
	acto	ctgg	gat (gaato	ggtca	aa go	gcta	actto	c act	gagt	cag	tgad	ctgt	gac 1	ttgga	actct	480
55	ggat	ccct	tgt (ccago	cagto	gt go	cacao	cctto	c cca	agcto	ctcc	tgca	agtc	gg a	actct	acact	540
	atga	agca	gct (cagt	gacto	gt co	ccct	ccago	e acc	ctggc	ccaa	gtca	agaco	gt (cacct	gcagc	600

	gttg	ctca	acc (cagco	cagca	g ca	accad	eggto	g gad	caaaa	aaac	ttga	agcco	cag	cgggd	ccatt	660
	tcaa	caat	ca a	accc	ctgtc	c to	ccat	gcaaq	g gag	gtgto	caca	aato	gada	agc ·	tccta	acctc	720
5	gagg	gtgg	gac (catco	cgtct	t ca	atcti	caat	cca	aata	atca	agga	atgta	act (catga	atctcc	780
	ctga	caco	cca a	aggto	cacgt	g to	gtggl	ggto	g gat	gtga	agcg	agga	atgad	ccc a	agaco	gtccag	840
	atca	gcto	ggt 1	ttgtg	gaaca	a co	gtgga	aagta	cac	cacaç	gata	agad	cacaa	aac	ccata	agagag	900
10	gatt	acaa	aca (gtact	atco	g g	gtggl	ccago	aco	cctco	ccca	tcca	agcad	cca (ggact	ggatg	960
	agtg	gcaa	agg a	agtto	caaat	g ca	aaggt	ccaac	aac	caaaq	gacc	tcc	catca	acc (catco	gagaga	1020
15	acca	tctc	caa a	aaatt	aaag	g go	ctagi	ccaga	a gct	cca	caag	tata	acato	ctt (gccg	ccacca	1080
	gcag	agca	agt 1	tgtco	cagga	a aç	gatgi	cagt	cto	cactt	gcc	tggt	cgt	ggg (cttca	aaccct	1140
	ggag	acat	ca	gtgtg	ggagt	g ga	accaç	gcaat	ggg	gcata	acag	agga	agaad	cta	caago	gacacc	1200
20	gcac	cagt	cc 1	tggad	ctctg	a co	ggtto	cttac	tto	catat	tata	gcaa	agcto	caa ·	tatga	aaaaca	1260
	agca	agto	ggg a	agaaa	acag	a tt	tccti	cctca	ı tgo	caacq	gtga	gaca	acga	ggg .	tctga	aaaaat	1320
25	tact	acct	ga a	agaaq	gacca	t ct	taaa	ggtct	ccc	gggta	aaat	ga					1362
30	<210 <211 <212 <213	> 2 > E > M	103 219 PRT Mus 1	musci	ılus												
				30-1	m1	61 -	ml		- -		- -	5	**- 1	a	- -	61	
35	Asp 1	vaı	ьeu	Met	5	GIN	Tnr	Pro	ьеи	ser 10	ьeu	Pro	vaı	ser	Leu 15	GIĀ	
	Asp	Gln	Ala	Ser 20	Ile	Ser	Cys	Arg	Ser 25	Ser	Gln	Ser	Ile	Val 30	His	Ser	
40	Asn	Gly	Asn 35	Thr	Tyr	Leu	Glu	Trp 40	Tyr	Leu	Gln	Lys	Pro 45	Gly	Gln	Ser	
45	Pro	Lys 50	Leu	Leu	Ile	Tyr	Lys 55	Val	Ser	Asn	Arg	Phe 60	Ser	Gly	Val	Pro	
50	Asp	Arg	Phe	Ser	Gly	Ser 70	Gly	Ser	Gly	Thr	Asp 75	Phe	Thr	Leu	Lys	Ile 80	
	Ser	Arg	Val	Glu	Ala 85	Glu	Asp	Leu	Gly	Val 90	Tyr	Tyr	Cys	Phe	Gln 95	Gly	
55	Ser	His	Val	Pro 100	Leu	Thr	Phe	Gly	Ala 105	Gly	Thr	Lys	Leu	Glu 110	Leu	Lys	

	Arg	ALG	115	AIA	AIA	PIO	IIIE	120	ser	iie	File	PIO	125	ser	ser	GIU		
5	Gln	Leu 130	Thr	Ser	Gly	Gly	Ala 135	Ser	Val	Val	Суз	Phe 140	Leu	Asn	Asn	Phe		
10	Tyr 145	Pro	Lys	Asp	Ile	Asn 150	Val	Lys	Trp	Lys	Ile 155	Asp	Gly	Ser	Glu	Arg 160		
	Gln	Asn	Gly	Val	Leu 165	Asn	Ser	Trp	Thr	Asp 170	Gln	Asp	Ser	Lys	Asp 175	Ser		
15	Thr	Tyr	Ser	Met 180	Ser	Ser	Thr	Leu	Thr 185	Leu	Thr	Lys	Asp	Glu 190	Tyr	Glu		
20	Arg	His	Asn 195	Ser	Tyr	Thr	Cys	Glu 200	Ala	Thr	His	Lys	Thr 205	Ser	Thr	Ser		
	Pro	Ile 210	Val	Lys	Ser	Phe	Asn 215	Arg	Asn	Glu	Суз							
25	<210 <210 <210 <210	1> (2> I	104 660 ONA Mus 1	nusci	ılus													
30	<40	0> :	104			ac to	ccact	ctc	c cto	gaato	gtca	gtct	tgga	aga 1	tcaaq	gaata	3	60
	atc	tctt	gca (gatct	agto	ca ga	agcat	tgta	a cat	agta	aatg	gaaa	acaco	cta 1	tttaq	gaatg	J	120
35	tac	ctgca	aga a	aacca	aggco	ca gt	ctc	caaaq	gcto	cctga	atct	acaa	agtt	tc	caaco	cgattt	:	180
	tct	ggggl	taa (cagao	caggt	t ca	agtgo	gcagt	gga	atcaç	ggga	caga	attto	cac a	actca	aagato	3	240
	agca	agagl	tgg a	aggct	gag	ga to	ctggg	gagtt	tat	tact	gct	ttca	aaggt	tc i	acato	gttccc	J	300
40	ctca	acgti	tag (gtgct	ggga	ac ca	aagct	ggag	g cto	gaaac	cggg	ctga	atgct	.gc i	accaa	actgta	1	360
	tcc	atcti	taa (cacca	atcca	ag to	gagca	agtta	a aca	atcto	ggag	gtgo	cctca	agt (cgtgl	gctto	3	420
	ttga	aacaa	act 1	tctac	ccca	aa aq	gacat	caat	gto	caagt	gga	agat	tgat	.gg (cagto	gaacga	1	480
45	caa	aatg	gcg 1	tcctç	gaaca	ag tt	ggad	ctgat	caç	ggaca	agca	aaga	acago	cac (ctaca	agcato	J	540
	agca	agta	ccc 1	tcacç	gttga	ac ca	aagga	acgaç	y tat	gaad	cgac	ataa	acago	cta 1	tacct	gtgaç	J	600
50	gcca	actca	aca a	agaca	atcaa	ac tt	caco	ccatt	gto	caaga	agct	tcaa	acag	gaa t	tgagt	gttag	Į	660
55	<210 <211 <211 <211	1> : 2> :	105 116 PRT Mus 1	nusci	ılus													
	<40	0> :	105															

	Gln 1	Val	Thr	Leu	Lys 5	Glu	Ser	Gly	Pro	Gly 10	Ile	Leu	Gln	Pro	Ser 15	Gln		
5	Thr	Leu	Ser	Leu 20	Thr	Cys	Ser	Phe	Ser 25	Gly	Phe	Ser	Leu	Ser 30	Thr	Ser		
10	Gly	Met	Gly 35	Val	Ser	Trp	Ile	Arg 40	Gln	Pro	Ser	Gly	Glu 45	Gly	Leu	Glu		
	Trp	Leu 50	Ala	His	Ile	Tyr	Trp 55	Asp	Asp	Asp	Lys	Arg 60	Tyr	Asn	Pro	Ser		
15	Leu 65	Lys	Ser	Arg	Leu	Thr 70	Ile	Ser	Lys	Asp	Thr 75	Ser	Arg	Asn	Gln	Val 80		
20	Phe	Leu	Lys	Ile	Thr 85	Ser	Val	Asp	Thr	Ala 90	Asp	Thr	Ala	Thr	Tyr 95	Tyr		
25	Cys	Gly	Arg	Tyr 100	Arg	Tyr	Gly	Phe	Ala 105	Tyr	Trp	Gly	Gln	Gly 110	Thr	Leu		
	Val	Thr	Val 115	Ser														
30	<210 <211 <212 <213	> 3 > [.06 348 ONA fus n	nusci	ılus													
35	<400 cagg		.06 etc t	gaaa	agagt	c tọ	ggaad	ctgg	g ata	attgo	cagc	cct	cca	gac (cctca	agtctg	•	60
	actt	gtto	tt t	ctct	gggt	t tt	cact	gago	c act	tate	ggta	tgg	gtgt	gag d	ctgga	attcgt	12	20
40	cago	ctto	ag g	gagag	ggto	et go	gagto	ggct	g gca	acaca	attt	acto	gggat	ga t	gaca	aagcgc	18	30
	tata	acco	at o	cccto	gaaga	ag co	egget	caca	a ato	ctcca	aagg	atad	cctc	cag a	aaaco	caggta	24	40
45	ttcc	tcaa	ıga t	caco	cagto	gt go	gacad	ctgca	a gat	acto	gcca	cata	acta	ctg t	ggto	cgatat	30	00
40	aggt	acgo	jct t	tgct	tact	g gg	ggcca	aaggo	g act	ctg	gtca	ctg	ctct	=			34	48
50	<210 <211 <212 <213	> 1 > E		nusci	ılus													
	<400	> 1	.07															
55	Asp 1	Val	Leu	Met	Thr 5	Gln	Thr	Pro	Leu	Ser 10	Leu	Pro	Val	Ser	Leu 15	Gly		

	Asp	Gln	Ala	Ser 20	Ile	Ser	Cys	Arg	Ser 25	Ser	Gln	Ser	Ile	Val 30	His	Ser	
5	Asn	Gly	Asn 35	Thr	Tyr	Leu	Glu	Trp 40	Tyr	Leu	Gln	Lys	Pro 45	Gly	Gln	Ser	
10	Pro	Lys 50	Leu	Leu	Ile	Tyr	Lys 55	Val	Ser	Asn	Arg	Phe 60	Ser	Gly	Val	Pro	
	Asp 65	Arg	Phe	Ser	Gly	Ser 70	Gly	Ser	Gly	Thr	Asp 75	Phe	Thr	Leu	Lys	Ile 80	
15	Ser	Arg	Val	Glu	Ala 85	Glu	Asp	Leu	Gly	Val 90	Tyr	Tyr	Cys	Phe	Gln 95	Gly	
20	Ser	His	Val	Pro 100	Leu	Thr	Phe	Gly	Ala 105	Gly	Thr	Lys	Leu	Glu 110	Leu	Lys	
25	<210 <211 <212 <213	L> : 2> I	108 336 ONA Mus 1	musci	ılus												
	<400 gate		108 tga t	tgaco	ccaa	ac to	ccact	tctc	c cto	gaate	gtca	gtc	ttgga	aga 1	tcaaq	geetee	60
30	atct	cctt	gca d	gatct	agto	ca ga	agcat	ttgta	a cat	agta	aatg	gaaa	acac	cta 1	ttta	gaatgg	120
	taco	ctgca	aga a	aacca	aggc	ca gi	tata	caaaq	gcto	cctga	atct	acaa	aagti	ttc (caaco	cgattt	180
	tctg	ggggt	taa d	cagao	caggi	tt ca	agtg	gcagt	gga	atcaç	ggga	caga	attt	cac a	actca	aagatc	240
35	agca	agagt	tgg a	aggct	gag	ga to	ctgg	gagti	t tai	tact	gct	ttca	aaggt	ttc a	acato	gttccg	300
	ctca	acgti	tog q	gtgct	ggga	ac ca	aagct	tgga	gcto	gaaa							336
40		L> ' 2> 1		nusci	ılus												
45	<400)> :	109														
	Thr 1	Ser	Gly	Met	Gly 5	Val	Ser										
50		L> 2 2> 1		musci	ılus												
55	<400 actt		110 gta 1	tgggt	gtga	ag c											21

```
<210> 111
          <211> 9
<212> PRT
<213> Mus musculus
5
          <400> 111
           His Ile Tyr Trp Asp Asp Asp Lys Arg
10
          <210> 112
<211> 27
<212> DNA
<213> Mus musculus
          <400> 112
                                                                                                   27
          cacatttact gggatgatga caagcgc
          <210> 113
<211> 7
<212> PRT
<213> Mus musculus
20
           <400> 113
           Tyr Arg Tyr Gly Phe Ala Tyr
           <210> 114
          <211> 21
<212> DNA
30
           <213> Mus musculus
           <400> 114
                                                                                                   21
           tataggtacg gctttgctta c
35
          <210> 115
          <211> 16
<212> PRT
<213> Mus musculus
40
           <400> 115
           Arg Ser Ser Gln Ser Ile Val His Ser Asn Gly Asn Thr Tyr Leu Glu
                              5
45
          <210> 116
<211> 48
<212> DNA
<213> Mus musculus
50
          <400> 116
           agatctagtc agagcattgt acatagtaat ggaaacacct atttagaa
                                                                                                   48
          <210> 117
<211> 7
           <212> PRT
```

```
<213> Mus musculus
       <400>
              117
5
       Lys Val Ser Asn Arg Phe Ser
                         5
       <210>
               118
       <211>
               21
10
       <212>
              DNA
       <213>
              Mus musculus
       <400>
              118
                                                                                   21
       aaagtttcca accgattttc t
15
       <210>
               119
       <211>
               9
       <212>
              PRT
20
       <213>
              Mus musculus
       <400>
              119
       Phe Gln Gly Ser His Val Pro Leu Thr
                         5
25
       <210>
               120
       <211>
              27
       <212>
              DNA
30
       <213> Mus musculus
       <400> 120
       tttcaaggtt cacatgttcc gctcacg
                                                                                   27
35
```

Claims

40

- 1. An antibody that binds to an $A\beta$ oligomer but not to an $A\beta$ monomer, wherein the antibody is a monoclonal antibody and selected from the group consisting of:
 - (1) an antibody that comprises an H chain having the amino acid sequence of SEQ ID NO: 69 as CDR1, the amino acid sequence of SEQ ID NO: 71 as CDR2, and the amino acid sequence of SEQ ID NO: 73 as CDR3 and an L chain having the amino acid sequence of SEQ ID NO: 75 as CDR1, the amino acid sequence of SEQ ID NO: 77 as CDR2, and the amino acid sequence of SEQ ID NO: 79 as CDR3;
 - (2) an antibody that comprises an H chain having the amino acid sequence of SEQ ID NO: 65 as VH and an L chain having the amino acid sequence of SEQ ID NO: 67 as VL; and
 - (3) an antibody comprising an H chain having the amino acid sequence of SEQ ID NO: 61 and an L chain having the amino acid sequence of SEQ ID NO: 63.
- 50 **2.** The antibody of claim 1, wherein the antibody is a chimeric antibody or a humanized antibody.
 - 3. A composition comprising the antibody of claim 1 or 2 and a pharmaceutically acceptable carrier.
- **4.** An agent for use in treating cognitive impairment, which comprises the antibody of claim 1 or 2 or the composition of claim 3 as an active ingredient.
 - 5. A therapeutic agent for use in treating Alzheimer's disease, which comprises the antibody of claim 1 or 2 or the composition of claim 3 as an active ingredient.

- **6.** An agent for use in suppressing the progression of Alzheimer's disease, which comprises the antibody of claim 1 or 2 or the composition of claim 3 as an active ingredient.
- 7. An agent for use in suppressing senile plaque formation, which comprises the antibody of claim 1 or 2 or the composition of claim 3 as an active ingredient.
 - 8. An agent for use in suppressing $A\beta$ accumulation, which comprises the antibody of claim 1 or 2 or the composition of claim 3 as an active ingredient.
- **9.** An agent for use in neutralizing neurotoxicity, which comprises the antibody of claim 1 or 2 or the composition of claim 3 as an active ingredient.
 - **10.** An agent for use in inhibiting Aβ amyloid fibril formation, which comprises the antibody of claim 1 or 2 or the composition of claim 3 as an active ingredient.
 - **11.** An agent for use in neutralizing synaptic toxicity, which comprises the antibody of claim 1 or 2 or the composition of claim 3 as an active ingredient.
 - **12.** A method for detecting an Aβ oligomer, which comprises the step of detecting an Aβ oligomer contained in a sample collected from a subject using the antibody of claim 1 or 2.
 - **13.** A method of diagnosing whether or not a subject is a possible Alzheimer's disease patient, which comprises the step of (a0) below:
 - (a0) using the antibody of claim 1 or 2 to detect an $A\beta$ oligomer in a sample collected from a subject; or

the steps of (a1) to (c1) below:

- (a1) contacting a sample collected from a subject with the antibody of claim 1 or 2;
 - (b1) measuring the amount of $A\beta$ oligomer in the sample; and
 - (c1) determining that the subject is a possible Alzheimer's disease patient, when the amount measured in step
 - (b1) is higher than that of a healthy individual;
- or the steps of (a2) to (c2) below:

15

20

25

30

40

45

50

55

- (a2) contacting a sample collected from a subject with the antibody of claim 1 or 2 and an antibody that binds to an Aβ monomer;
- (b2) measuring the ratio of $A\beta$ oligomer to $A\beta$ monomer in the sample; and
- (c2) determining that the subject is a possible Alzheimer's disease patient, when the ratio measured in step
- (b2) is higher than that of a healthy individual.
- **14.** The method of claim 12 or 13, wherein the sample is blood or cerebrospinal fluid.
- **15.** A pharmaceutical agent for use in diagnosing whether or not a subject is a possible Alzheimer's disease patient, which comprises the antibody of claim 1 or 2.

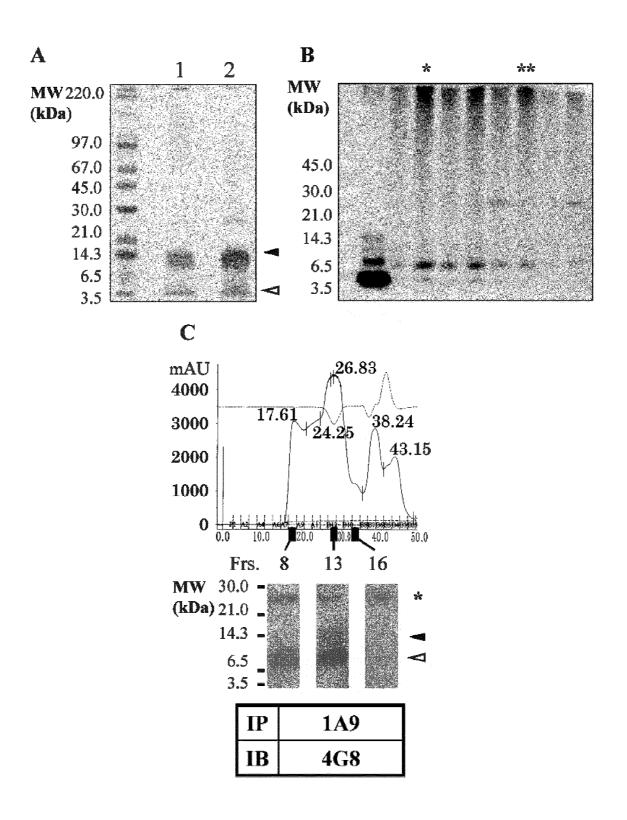


FIG. 1

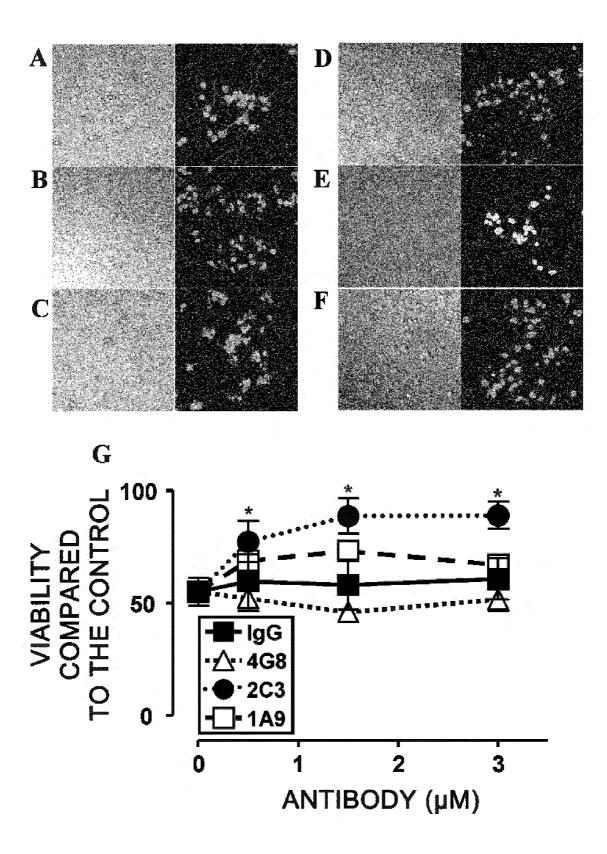


FIG. 2

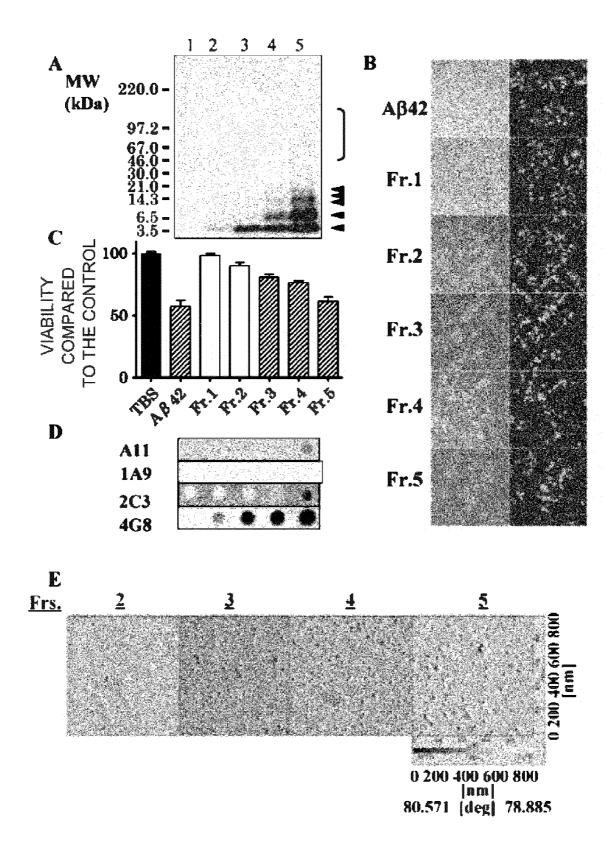


FIG. 3

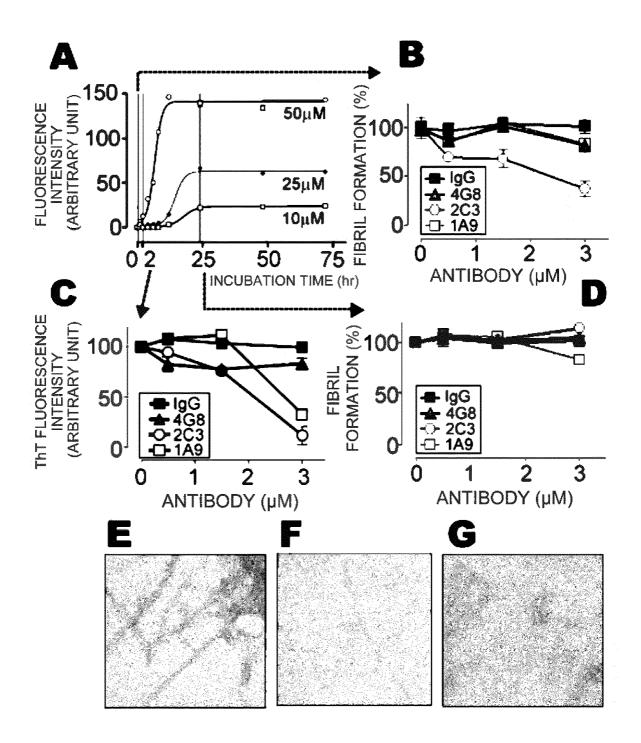


FIG. 4

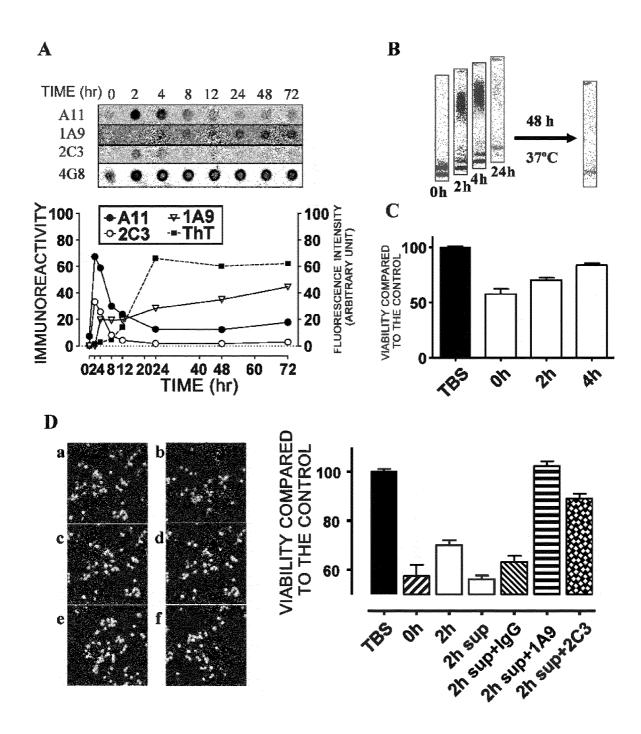


FIG. 5

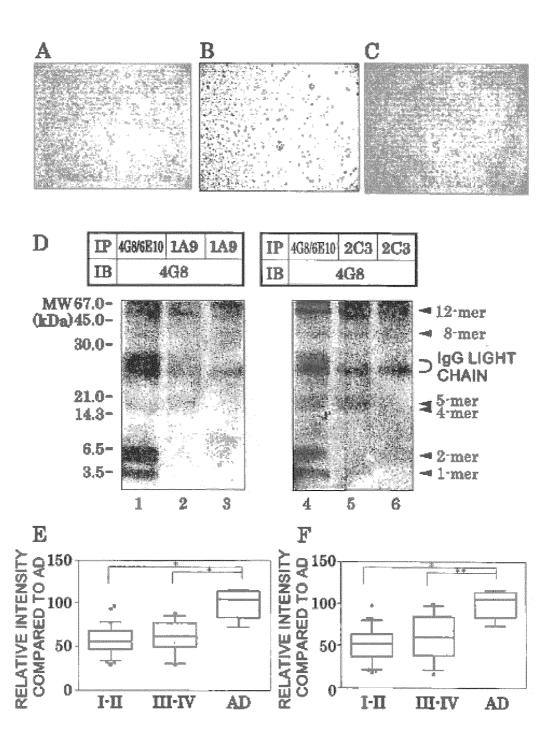


FIG. 6

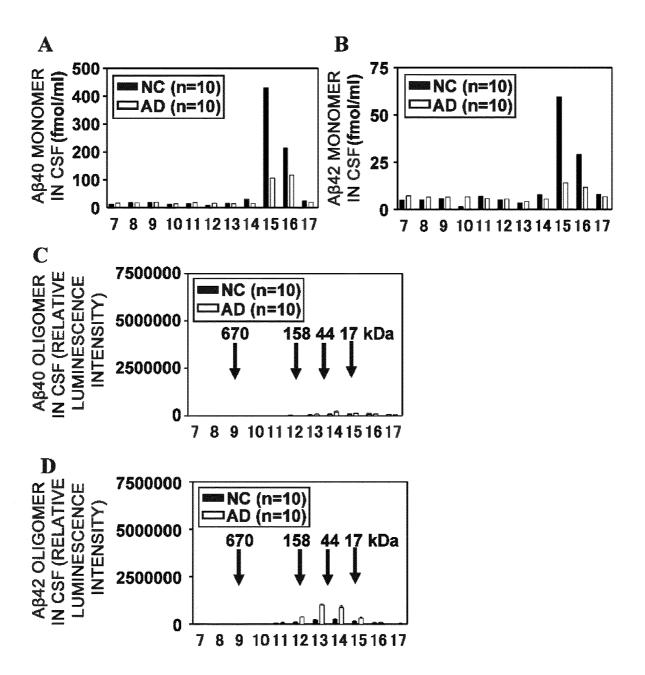


FIG. 7-1

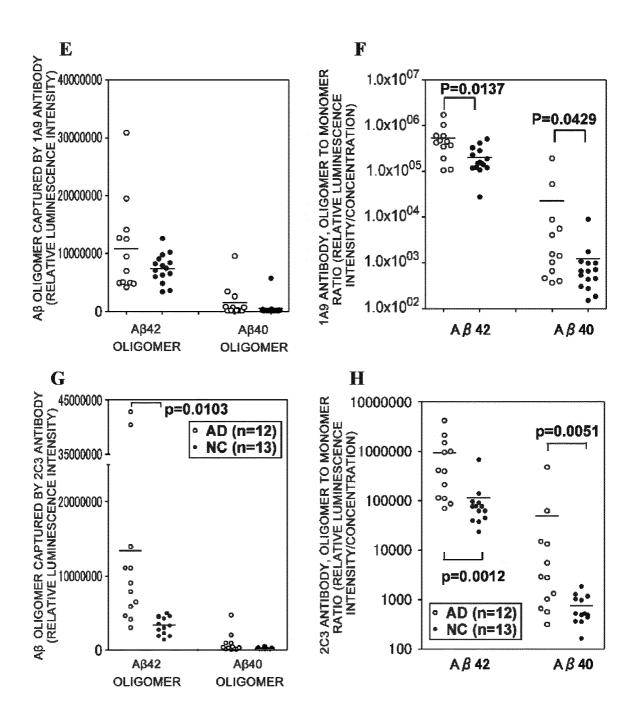
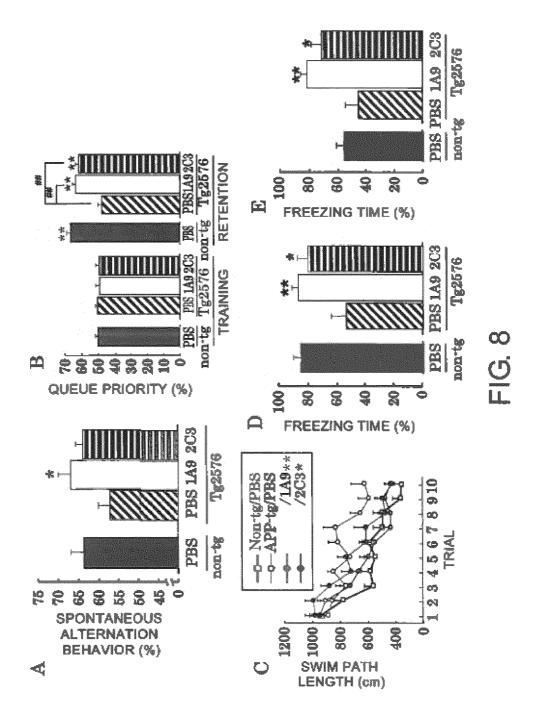



FIG. 7-2

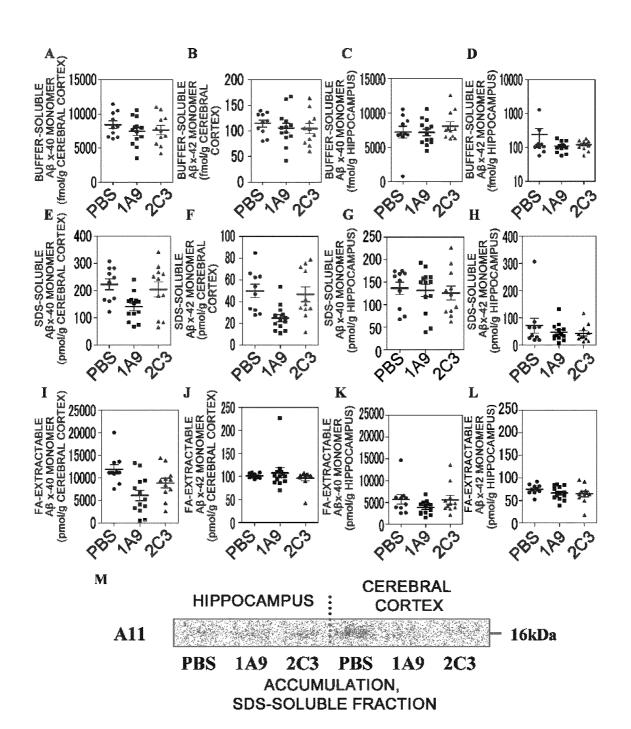


FIG. 9

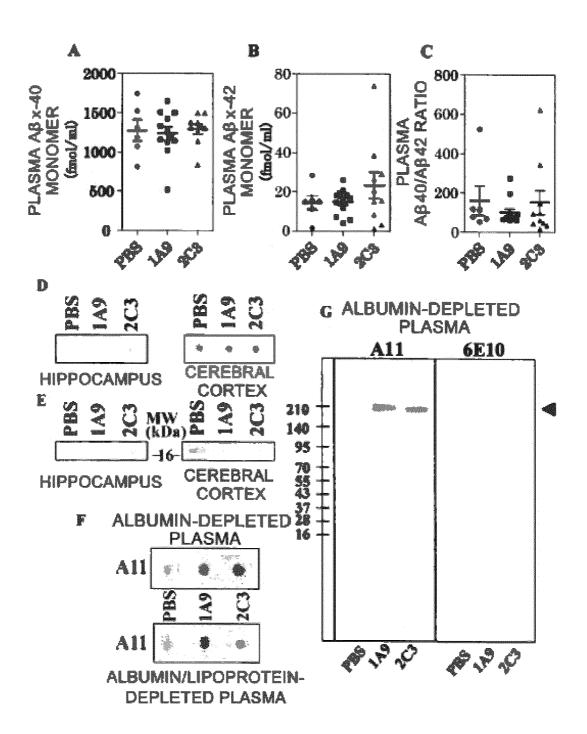
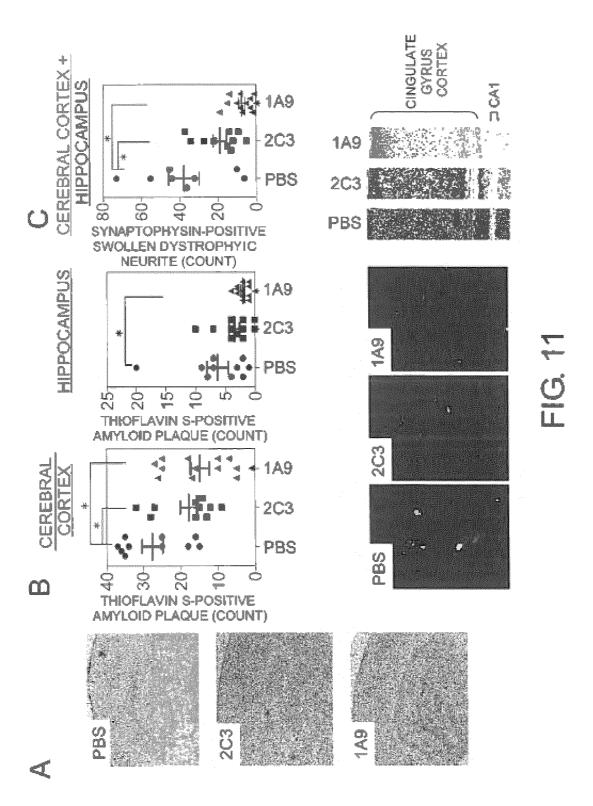



FIG. 10

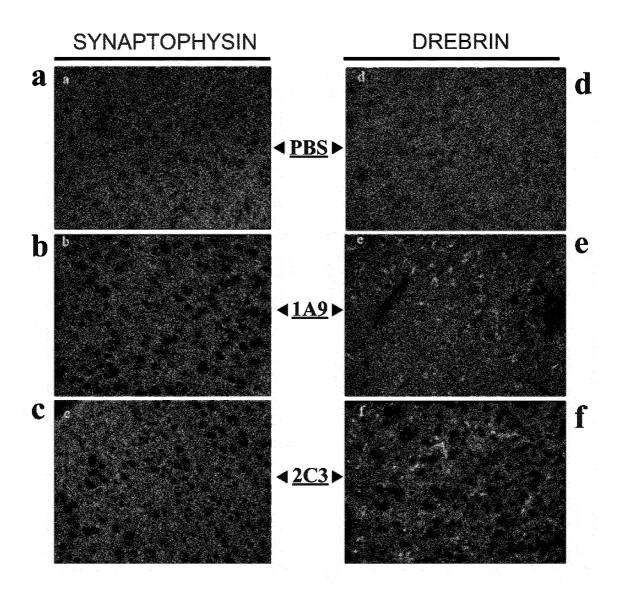


FIG. 12

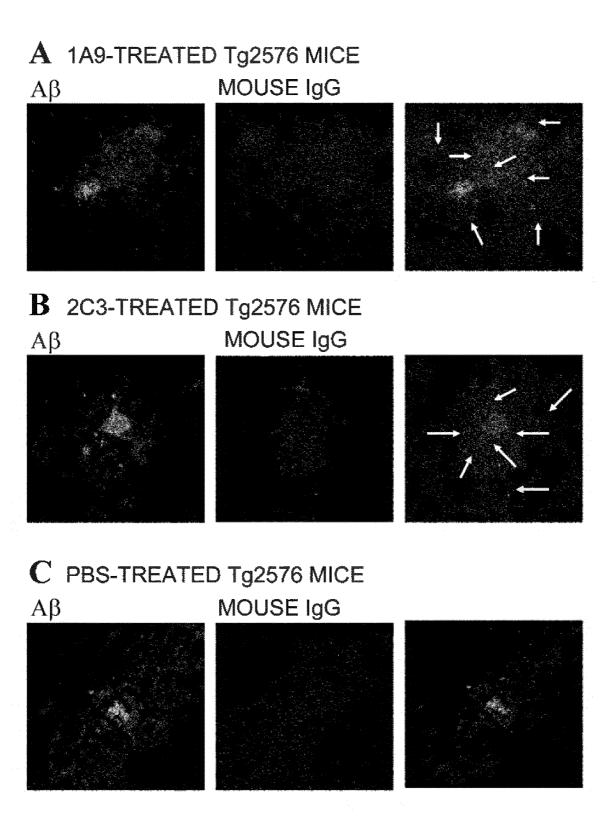
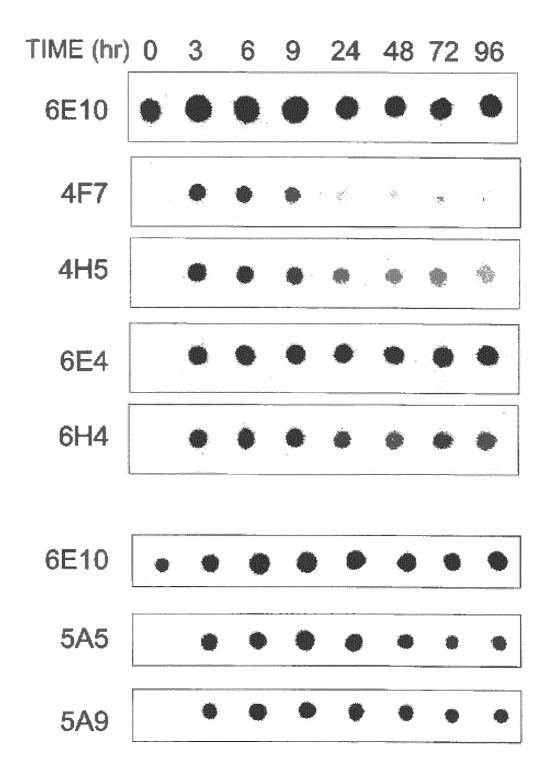
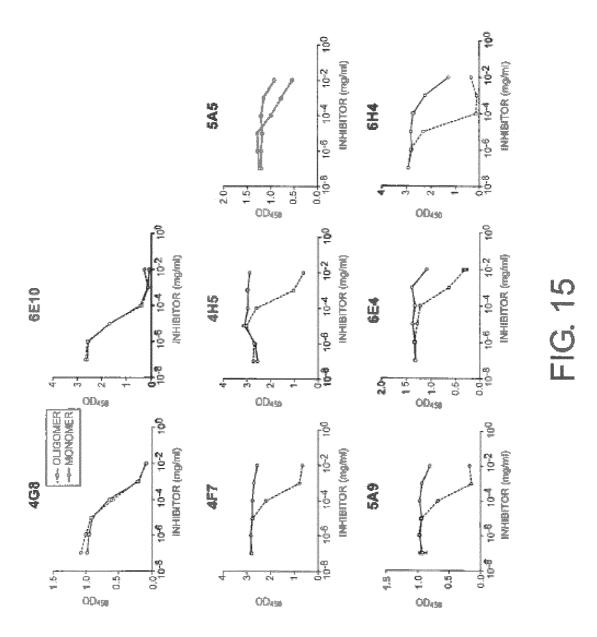
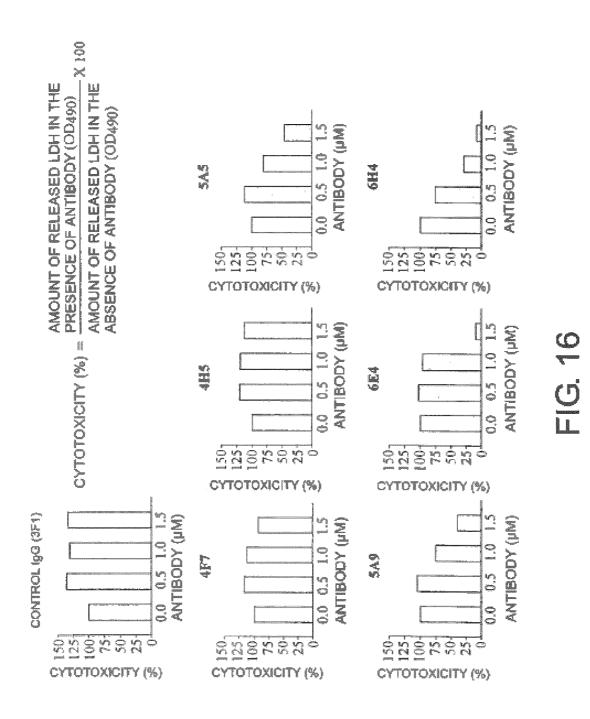
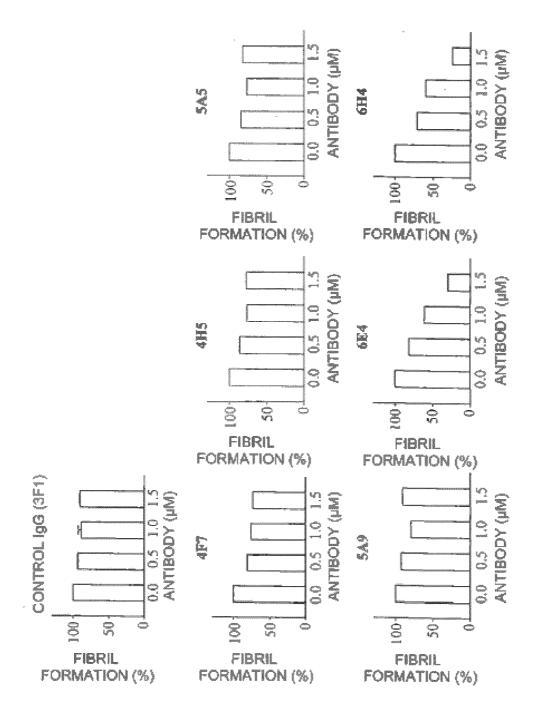


FIG. 13


FIG. 14

100

EUROPEAN SEARCH REPORT

Application Number

EP 16 18 3829

1	0	

Category	Citation of document with indi		Relevant	CLASSIFICATION OF THE
A	wo 03/104437 A2 (UNII UNIV SOUTHERN CALIFOR WILLIAM L) 18 December * pages 7, 77-78, example 22; fig. 19, 20 *	/ NORTHWESTERN [US]; RNIA [US]; KLEIN	to claim	INV. C12N15/09 A61K39/395 A61P25/28 C07K16/18 G01N33/53
Ą	WO 2006/055178 A2 (MI ACUMEN PHARMACEUTICA NORTHWESTER) 26 May 2 * examples 1, 2, 7, 9 pages 8-9 *	_S INC [US]; UNIV 2006 (2006-05-26)	1-15	C12P21/08 G01N33/68
A	Alzheimer amyloid-bewith a thioredoxin-coepitope peptide",	onstrained B-cell CHEMISTRY, AMERICAN STRY AND MOLECULAR 4-01), pages 1806, : 00	1-15	TECHNICAL FIELDS SEARCHED (IPC)
	Place of search	Date of completion of the search	<u> </u>	Examiner
	Munich	9 November 2016	Ber	nhardt, Wiebke
X : parti Y : parti docu A : tech O : non	ATEGORY OF CITED DOCUMENTS icularly relevant if taken alone icularly relevant if combined with another ument of the same category unological background -written disolosure rmediate document	T: theory or principle E: earlier patent doc after the filing date D: document cited in L: document cited fo 8: member of the sa document	underlying the i ument, but publi e the application r other reasons	nvention shed on, or

EUROPEAN SEARCH REPORT

Application Number

EP 16 18 3829

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

55

<u> </u>	DOCUMENTS CONSIDERED		1	
Category	Citation of document with indication of relevant passages	n, where appropriate,	Relevant to claim	CLASSIFICATION OF THE APPLICATION (IPC)
A	WILLIAM KLEIN: "Abeta Alzheimer's disease: gla (ADDLs) as new vaccine NEUROCHEMISTRY INTERNAT vol. 41, no. 5, 1 November 2002 (2002-1 345-352, XP055016511, ISSN: 0197-0186 * in particular: abstract pg. 350 - 351 *	obular oligomers and drug targets.", IONAL,	1-15	TECHNICAL FIELDS SEARCHED (IPC)
	The present search report has been dr	awn un for all claims		SEARCHED (IPC)
	Place of search	Date of completion of the search		Examiner
	Munich	9 November 2016	Bei	rnhardt, Wiebke
X : parti Y : parti docu A : tech	ATEGORY OF CITED DOCUMENTS cularly relevant if taken alone cularly relevant if combined with another ment of the same category nological background written disclosure mediate document	T : theory or principl E : earlier patent doc after the filing dat D : document cited in L : document cited for & : member of the sa	cument, but puble e n the application or other reasons	lished on, or

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 16 18 3829

5

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

09-11-2016

10	Patent document cited in search report	Publication date	Patent family member(s)	Publication date
15	WO 03104437	18-12-2003	AU 2003253673 A1 CA 2489195 A1 EP 1551447 A2 JP 2006509721 A US 2003068316 A1 US 2007048312 A1 US 2009285804 A1 WO 03104437 A2	22-12-2003 18-12-2003 13-07-2005 23-03-2006 10-04-2003 01-03-2007 19-11-2009 18-12-2003
20	WO 2006055178	A2 26-05-2006	AU 2005306997 A1 BR PI0516962 A CA 2584859 A1 EP 1812062 A2 EP 2465872 A2	26-05-2006 30-09-2008 26-05-2006 01-08-2007 20-06-2012
25			JP 5173426 B2 JP 5634975 B2 JP 2008520553 A JP 2012087139 A JP 2012097096 A	03-04-2013 03-12-2014 19-06-2008 10-05-2012 24-05-2012
30			JP 2013035843 A KR 20070094890 A NZ 554725 A RU 2007119382 A US 2006228349 A1 US 2008175835 A1	21-02-2013 27-09-2007 30-10-2009 27-11-2008 12-10-2006 24-07-2008
35			US 2010272714 A1 US 2011159013 A1 WO 2006055178 A2	28-10-2010 30-06-2011 26-05-2006
40				
45				
50	FORM P0459			
55	P.O.B.			

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- WO 9203918 A [0037]
- WO 9402602 A [0037]
- WO 9425585 A [0037]
- WO 9633735 A [0037]

- WO 9634096 A [0037]
- JP S6317688 A [0038]
- WO 9007861 A [0077]

Non-patent literature cited in the description

- KLEIN WL. Trends Neurosci, 2001, vol. 24, 219-224
 [0003]
- **SELKOE DJ.** *Science*, 2002, vol. 298, 789-791 [0003]
- HASS C et al. Nature, 2007, vol. 8, 101-12 [0003]
- LEE EB et al. J. Biol. Chem., 2006, vol. 281, 4292-4299 [0003]
- KOHLER; MILSTEIN. Nature, 1975, vol. 256, 495-7
 [0024]
- CABILLY et al. Proc. Natl. Acad. Sci. USA, 1984, vol. 81, 3273-7 [0024]
- KOHLER G.; MILSTEIN C. Methods Enzymol., 1981, vol. 73, 3-46 [0029]
- Antibodies: A Laboratory manual. Cold Spring Harbor Laboratory, 1988 [0031]
- DANIEL R MARSHAK et al. Strategies for Protein Purification and Characterization: A Laboratory Course Manual. Cold Spring Harbor Laboratory Press, 1996 [0033]
- ISHIDA I et al. Cloning and Stem Cells, 2002, vol. 4, 91-102 [0037]
- BORREBAECK CAK; LARRICK JW. Therapeutic Monoclonal Antibodies. MacMillan Publishers, 1990 [0039]
- HASHIMOTO-GOTOH, T. et al. Gene, 1995, vol. 152, 271-275 [0067]
- ZOLLER, MJ; SMITH, M. Methods Enzymol., 1983, vol. 100, 468-500 [0067]
- **KRAMER, W. et al.** *Nucleic Acids Res.,* 1984, vol. 12, 9441-9456 **[0067]**
- KRAMER W; FRITZ HJ. Methods. Enzymol., 1987, vol. 154, 350-367 [0067]
- KUNKEL, TA. Proc. Natl. Acad. Sci. USA., 1985, vol. 82, 488-492 [0067]
- KUNKEL. Methods Enzymol., 1988, vol. 85, 2763-2766 [0067]
- **HOPP, T.P. et al.** *BioTechnology,* 1988, vol. 6, 1204-1210 [0071]
- **JONES et al.** *Nature,* 1986, vol. 321, 522-5 **[0077]**
- RIECHMANN et al. Nature, 1988, vol. 332, 323-7 [0077]

- PRESTA. Curr. Opin. Struct. Biol., 1992, vol. 2, 593-6
 [0077]
- LARRICK et al. Methods: a Companion to Methods in Enzymology, 1991, vol. 2, 106 [0077]
- Genetic Manipulation of Monoclonal Antibodies.
 COURTENAY-LUCK et al. Monoclonal Antibodies:
 Production, Engineering and Clinical Application.
 Cambridge University Press, 1995, 166 [0077]
- Genetic Manipulation and Expression of Antibodies.
 WARD et al. Monoclonal Antibodies: Principles and Applications. Wiley-Liss, Inc, 1995, 137 [0077]
- VERHOEYEN et al. Science, 1988, vol. 239, 1534-6
 [0077]
- QUEEN et al. Proc. Natl. Acad. Sci. USA, 1989, vol. 86, 10029-33 [0077]
- Immunoglobulin genes. Academic Press, 1989, 260-74 [0078]
- MICHAEL A et al. Proc. Natl. Acad. Sci. USA, 1994, vol. 91, 969-73 [0078]
- KLEIN WL. Trends Neurosci, 2001 [0085]
- SELKOE DJ. Science, 2002 [0085]
- Remington's Pharmaceutical Sciences. Mack Publishing Co, 1980 [0096]
- GHISO J et al. Biochem J, 1993 [0125]
- MATSUBARA E et al. Neurobiol Aging, 2004 [0125]
- MATSUBARA E. et al. Neurobiol Aging, 2004, vol. 25, 833-841 [0127]
- TERO, R et al. Langmuir, 2004, vol. 20, 7526-7531 [0135]
- KATSUNO T. Neurology, 2005, vol. 64, 687-692
 [0136]
- MOURI A. FASEB J, 2007, vol. 21, 2135-2148 [0138]
- MATSUBARA E et al. Ann Neurol, 1999, vol. 45, 537-541 [0140]
- MATSUBARA E et al. Ann Neurol, 1999, 537-541 [0142]
- MATSUBARA E et al. Neurobiol Aging, 2004, vol. 25, 833-841 [0142] [0146] [0157]
- NAKAYA Y et al. J Biol Chem, 2005, vol. 280, 19070-19077 [0146]

- YAMAMOTO N et al. J Biol Chem, 2007, vol. 282, 2646-2655 [0146]
- KAYED R et al. Science, 2003, vol. 300, 486-489 [0153]
- WRZOLEK MA et al. Am J Pathol, 1992, vol. 141, 343-355 [0155]
- KATSUNO et al. *Neurology*, 2005, vol. 64, 687-692 [0156]
- LEE EB et al. *J Biol Chem*, 2006, vol. 281, 4292-4299 [0157]
- JANUS D. Nature, 2000 [0177]
- MORGAN D. Nature, 2000 [0177]
- BARD F. Nat med, 2222 [0177]
- **DEMATTOS RB.** *PNAS*, 2001 **[0177]**
- DEMATTOS RB et al. PNAS, 2001, vol. 98, 8850-8855 [0177]
- **DEANE R.** *J Neurosci*, 2005 **[0177]**

专利名称(译)	能够特异性结合ab-寡聚体的抗体及其用途		
公开(公告)号	EP3121277A1	公开(公告)日	2017-01-25
申请号	EP2016183829	申请日	2009-02-06
[标]申请(专利权)人(译)	NAT癌症CENT		
申请(专利权)人(译)	IMMUNAS PHARMA,INC. 国家中心的老年医学和老年病学		
当前申请(专利权)人(译)	IMMUNAS PHARMA,INC. 国家中心的老年医学和老年病学		
[标]发明人	MATSUBARA ETSURO SHIBATA MASAO YOKOSEKI TATSUKI		
发明人	MATSUBARA, ETSURO SHIBATA, MASAO YOKOSEKI, TATSUKI		
IPC分类号	C12N15/09 A61K39/395 A61P25/28 C07K16/18 G01N33/53 C12P21/08 G01N33/68		
CPC分类号	A61K2039/505 A61P17/00 A61P25/00 A61P25/28 C07K16/18 C07K2317/56 C07K2317/565 C07K2317 /73 C07K2317/76 G01N33/6896 G01N2333/4709 G01N2800/2821 A61K39/3955		
优先权	2008028386 2008-02-08 JP 12/085545 2008-08-01 US 2008201058 2008-08-04 JP		
其他公开文献	EP3121277B1		
外部链接	Espacenet		

摘要(译)

本发明人成功地制备了仅对可溶性Aβ寡聚体特异的单克隆抗体,但不识别作为生理分子的可溶性Aβ单体。已证明该抗体可用作阿尔茨海默病的诊断/治疗性单克隆抗体。