(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 11 October 2001 (11.10.2001)

PCT

(10) International Publication Number WO 01/75171 A2

(51) International Patent Classification⁷: C12Q 1/68, G01N 33/543, 33/574 // C12N 5/08

(21) International Application Number: PCT/US01/10631

(22) International Filing Date: 2 April 2001 (02.04.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

 60/194,241
 3 April 2000 (03.04.2000)
 US

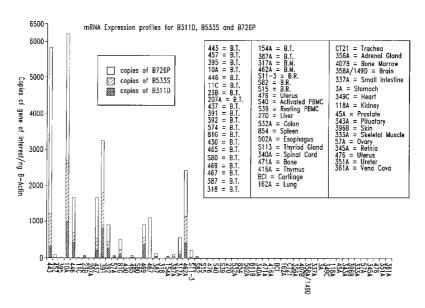
 60/219,862
 20 July 2000 (20.07.2000)
 US

 60/221,300
 27 July 2000 (27.07.2000)
 US

 60/256,592
 18 December 2000 (18.12.2000)
 US

(71) Applicant (for all designated States except US): CORIXA CORPORATION [US/US]; 1124 Columbia Street, Suite 200, Seattle, WA 98104 (US).

(72) Inventors; and


(75) Inventors/Applicants (for US only): HOUGHTON, Raymond, L. [US/US]; 2636 242nd Place S.E., Bothell, WA 98021 (US). DILLON, Davin, C. [US/US]; 18112 N.W. Montreux Drive, Issaquah, WA 98027 (US). MOLESH,

David, Alan [US/US]; 12385 N.E. Klabo Road, Kingston, WA 98346 (US). XU, Jiangchun [US/US]; 15805 S.E. 43rd Place, Bellevue, WA 98006 (US). ZEHENTNER, Barbara [DE/US]; 4420 Bluff Lane, Bainbridge Island, WA 98110 (US). PERSING, David, H. [US/US]; 22401 N.E. 25th Way, Redmond, WA 98053 (US).

- (74) Agents: POTTER, Jane, E., R. et al.; Seed Intellectual Property Law Group PLLC, Suite 6300, 701 Fifth Avenue, Seattle, WA 98104-7092 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: METHODS, COMPOSITIONS AND KITS FOR THE DETECTION AND MONITORING OF BREAST CANCER

(57) Abstract: Compositions and methods for the therapy and diagnosis of cancer, such as breast cancer, are disclosed. Compositions may comprise one or more breast tumor proteins, immunogenic portions thereof, or polynucleotides that encode such portions. Alternatively, a therapeutic composition may comprise an antigen presenting cell that expresses a breast tumor protein, or a T cell that is specific for cells expressing such a protein. Such compositions may be used, for example, for the prevention and treatment of diseases such as breast cancer. Diagnostic methods based on detecting a breast tumor protein, or mRNA encoding such a protein, in a sample are also provided.

WO 01/75171 A2

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 01/75171 PCT/US01/10631

METHODS, COMPOSITIONS AND KITS FOR THE DETECTION AND MONITORING OF BREAST CANCER

TECHNICAL FIELD OF THE INVENTION

The present invention relates generally to the field of cancer diagnostics.

5 More specifically, the present invention relates to methods, compositions and kits for the detection of cancer that employ oligonucleotide hybridization and/or amplification to simultaneously detect two or more tissue-specific polynucleotides in a biological sample suspected of containing cancer cells.

BACKGROUND OF THE INVENTION

15

20

25

10 Cancer remains a significant health problem throughout the world. The failure of conventional cancer treatment regimens can commonly be attributed, in part, to delayed disease diagnosis. Although significant advances have been made in the area of cancer diagnosis, there still remains a need for improved detection methodologies that permit early, reliable and sensitive determination of the presence of cancer cells.

Breast cancer is second only to lung cancer in mortality among women in the U.S., affecting more than 180,000 women each year and resulting in approximately 40,000-50,000 deaths annually. For women in North America, the lifetime odds of getting breast cancer are one in eight.

Management of the disease currently relies on a combination of early diagnosis (through routine breast screening procedures) and aggressive treatment, which may include one or more of a variety of treatments such as surgery, radiotherapy, chemotherapy and hormone therapy. The course of treatment for a particular breast cancer is often selected based on a variety of prognostic parameters, including analysis of specific tumor markers. *See*, *e.g.*, Porter-Jordan et al., *Breast Cancer* 8:73-100 (1994). The use of established markers often leads, however, to a result that is difficult to interpret; and the high mortality observed in breast cancer patients indicates that improvements are needed in the diagnosis of the disease.

The recent introduction of immunotherapeutic approaches to breast cancer treatment which are targeted to Her2/neu have provided significant motivation to

10

15

20

identify additional breast cancer specific genes as targets for therapeutic antibodies and T-cell vaccines as well as for diagnosis of the disease. To this end, mammaglobin, has been identified as one of the most breast-specific genes discovered to date, being expressed in approximately 70-80% of breast cancers. Because of its highly tissue-specific distribution, detection of mammaglobin gene expression has been used to identify micrometastatic lesions in lymph node tissues and, more recently, to detect circulating breast cancer cells in peripheral blood of breast cancer patients with known primary and metastatic lesions.

Mammaglobin is a homologue of a rabbit uteroglobin and the rat steroid binding protein subunit C3 and is a low molecular weight protein that is highly glycosylated. Watson et al., *Cancer Res.* <u>56</u>:860-5 (1996); Watson et al., *Cancer Res.* <u>59</u>:3028-3031 (1999); Watson et al., *Oncogene* <u>16</u>:817-24 (1998). In contrast to its homologs, mammaglobin has been reported to be breast specific and overexpression has been described in breast tumor biopsies (23%), primary and metastatic breast tumors (~75%) with reports of the detection of mammaglobin mRNA expression in 91% of lymph nodes from metastatic breast cancer patients. Leygue et al., *J. Pathol.* <u>189</u>:28-33 (1999) and Min et al., *Cancer Res.* <u>58</u>:4581-4584 (1998).

Since mammaglobin gene expression is not a universal feature of breast cancer, the detection of this gene alone may be insufficient to permit the reliable detection of all breast cancers. Accordingly, what is needed in the art is a methodology that employs the detection of two or more breast cancer specific genes in order to improve the sensitivity and reliability of detection of micrometastases, for example, in lymph nodes and bone marrow and/or for recognition of anchorage-independent cells in the peripheral circulation.

The present invention achieves these and other related objectives by providing methods that are useful for the identification of tissue-specific polynucleotides, in particular tumor-specific polynucleotides, as well as methods, compositions and kits for the detection and monitoring of cancer cells in a patient afflicted with the disease.

SUMMARY OF THE INVENTION

10

25

30

By certain embodiments, the present invention provides methods for identifying one or more tissue-specific polynucleotides which methods comprise the steps of: (a) performing a genetic subtraction to identify a pool of polynucleotides from a tissue of interest; (b) performing a DNA microarray analysis to identify a first subset of said pool of polynucleotides of interest wherein each member polynucleotide of said first subset is at least two-fold over-expressed in said tissue of interest as compared to a control tissue; and (c) performing a quantitative polymerase chain reaction analysis on polynucleotides within said first subset to identify a second subset of polynucleotides that are at least two-fold over-expressed as compared to the control tissue. Preferred genetic subtractions are selected from the group consisting of differential display and cDNA subtraction and are described in further detail herein below.

Alternate embodiments of the present invention provide methods of identifying a subset of polynucleotides showing concordant and/or complementary tissue-specific expression profiles in a tissue of interest. Such methods comprise the steps of, (a) performing an expression analysis selected from the group consisting of DNA microarray and quantitative PCR to identify a first polynucleotides that is at least two-fold over-expressed in a tissue of interest as compared to a control tissue; and (b) performing an expression analysis selected from the group consisting of DNA microarray and quantitative PCR to identify a first polynucleotides that is at least two-fold over-expressed in a tissue of interest as compared to a control tissue.

Further embodiments of the present invention provide methods for detecting the presence of a cancer cell in a patient. Such methods comprise the steps of:
(a) obtaining a biological sample from the patient; (b) contacting the biological sample with a first oligonucleotide pair wherein the members of the first oligonucleotide pair hybridize, under moderately stringent conditions, to a first polynucleotide and the complement thereof, respectively; (c) contacting the biological sample with a second oligonucleotide pair wherein the members of the second oligonucleotide pair hybridize, under moderately stringent conditions, to a second polynucleotide and the complement thereof, respectively and wherein the first polynucleotide is unrelated in nucleotide

10

15

20

25

30

sequence to the second polynucleotide; (d) amplifying the first polynucleotide and the second polynucleotide; and (e) detecting the amplified first polynucleotide and the amplified second polynucleotide; wherein the presence of the amplified first polynucleotide or amplified second polynucleotide indicates the presence of a cancer cell in the patient.

By some embodiments, detection of the amplified first and/or second polynucleotides may be preceded by a fractionation step such as, for example, gel electrophoresis. Alternatively or additionally, detection of the amplified first and/or second polynucleotides may be achieved by hybridization of a labeled oligonucleotide probe that hybridizes specifically, under moderately stringent conditions, to the first or second polynucleotide. Oligonucleotide labeling may be achieved by incorporating a radiolabeled nucleotide or by incorporating a fluorescent label.

In certain preferred embodiments, cells of a specific tissue type may be enriched from the biological sample prior to the steps of detection. Enrichment may be achieved by a methodology selected from the group consisting of cell capture and cell depletion. Exemplary cell capture methods include immunocapture and comprise the steps of: (a) adsorbing an antibody to a tissue-specific cell surface to cells said biological sample; (b) separating the antibody adsorbed tissue-specific cells from the remainder of the biological sample. Exemplary cell depletion may be achieved by cross-linking red cells and white cells followed by a subsequent fractionation step to remove the cross-linked cells.

Alternative embodiments of the present invention provide methods for determining the presence or absence of a cancer in a patient, comprising the steps of: (a) contacting a biological sample obtained from the patient with an oligonucleotide that hybridizes to a polynucleotide that encodes a breast tumor protein; (b) detecting in the sample a level of a polynucleotide (such as, for example, mRNA) that hybridizes to the oligonucleotide; and (c) comparing the level of polynucleotide that hybridizes to the oligonucleotide with a predetermined cut-off value, and therefrom determining the presence or absence of a cancer in the patient. Within certain embodiments, the amount of mRNA is detected via polymerase chain reaction using, for example, at least one oligonucleotide primer that hybridizes to a polynucleotide encoding a polypeptide as

10

20

30

recited above, or a complement of such a polynucleotide. Within other embodiments, the amount of mRNA is detected using a hybridization technique, employing an oligonucleotide probe that hybridizes to a polynucleotide that encodes a polypeptide as recited above, or a complement of such a polynucleotide.

In related aspects, methods are provided for monitoring the progression of a cancer in a patient, comprising the steps of: (a) contacting a biological sample obtained from a patient with an oligonucleotide that hybridizes to a polynucleotide that encodes a breast tumor protein; (b) detecting in the sample an amount of a polynucleotide that hybridizes to the oligonucleotide; (c) repeating steps (a) and (b) using a biological sample obtained from the patient at a subsequent point in time; and (d) comparing the amount of polynucleotide detected in step (c) with the amount detected in step (b) and therefrom monitoring the progression of the cancer in the patient.

Certain embodiments of the present invention provide that the step of amplifying said first polynucleotide and said second polynucleotide is achieved by the polymerase chain reaction (PCR).

Within certain embodiments, the cancer cell to be detected may be selected from the group consisting of prostate cancer, breast cancer, colon cancer, ovarian cancer, lung cancer head & neck cancer, lymphoma, leukemia, melanoma, liver cancer, gastric cancer, kidney cancer, bladder cancer, pancreatic cancer and endometrial cancer. Still further embodiments of the present invention provide that the biological sample is selected from the group consisting of blood, a lymph node and bone marrow. The lymph node may be a sentinel lymph node.

Within specific embodiments of present invention it is provided that the first polynucleotide is selected from the group consisting of mammaglobin, lipophilin B, GABAπ (B899P), B726P, B511S, B533S, B305D and B311D. Other embodiments provide that the second polynucleotide is selected from the group consisting of mammaglobin, lipophilin B, GABAπ (B899P), B726P, B511S, B533S, B305D and B311D.

Alternate embodiments of the present invention provide methods for detecting the presence or absence of a cancer in a patient, comprising the steps of: (a)

contacting a biological sample obtained from a patient with a first oligonucleotide that hybridizes to a polynucleotide selected from the group consisting of mammaglobin and lipophilin B; (b) contacting the biological sample with a second oligonucleotide that hybridizes to a polynucleotide sequence selected from the group consisting of $GABA\pi$ (B899P), B726P, B511S, B533S, B305D and B311D; (c) detecting in the sample an amount of a polynucleotide that hybridizes to at least one of the oligonucleotides; and (d) comparing the amount of polynucleotide that hybridizes to the oligonucleotide to a predetermined cut-off value, and therefrom determining the presence or absence of a cancer in the patient.

According to certain embodiments, oligonucleotides may be selected from those disclosed herein such as those presented in SEQ ID Nos:33-72. By other embodiments, the amount of polynucleotide that hybridizes to the oligonucleotide is determined using a polymerase chain reaction. Alternatively, the amount of polynucleotide that hybridizes to the oligonucleotide may be determined using a hybridization assay.

10

15

20

25

30

Still other embodiments of the present invention provide methods for determining the presence or absence of a cancer cell in a patient, comprising the steps of: (a) contacting a biological sample obtained from a patient with a first oligonucleotide that hybridizes to a polynucleotide selected from the group consisting of a polynucleotide depicted in SEQ ID NO:73 and SEQ ID NO:74 or complement thereof; (b) contacting the biological sample with a second oligonucleotide that hybridizes to a polynucleotide depicted in SEQ ID NO:75 or complement thereof; (c) contacting the biological sample with a third oligonucleotide that hybridizes to a polynucleotide selected from the group consisting of a polynucleotide depicted in SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:6 and SEQ ID NO:7 or complement thereof; (d) contacting the biological sample with a fourth oligonucleotide that hybridizes to a polynucleotide selected from the group consisting of a polynucleotide depicted in SEQ ID NO:11 or complement thereof; (e) contacting the biological sample with a fifth oligonucleotide that hybridizes to a polynucleotide selected from the group consisting of a polynucleotide depicted in SEQ ID NO:13, 15 and 17 or complement thereof; (f) contacting the biological sample with a sixth

10

PCT/US01/10631

oligonucleotide that hybridizes to a polynucleotide selected from the group consisting of a polynucleotide depicted in SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23 and SEQ ID NO:24 or complement thereof; (g) contacting the biological sample with a seventh oligonucleotide that hybridizes to a polynucleotide depicted in SEQ ID NO:30 or complement thereof; (h) contacting the biological sample with an eighth oligonucleotide that hybridizes to a polynucleotide depicted in SEQ ID NO:32 or complement thereof; (i) contacting the biological sample with a ninth oligonucleotide that hybridizes to a polynucleotide depicted in SEQ ID NO:76 or complement thereof; (j) detecting in the sample a hybridized oligonucleotide of any one of steps (a) through (i); and (j) comparing the amount of polynucleotide that hybridizes to the oligonucleotide to a predetermined cut-off value, wherein the presence of a hybridized oligonucleotide in any one of steps (a) through (i) in excess of the predetermined cut-off value indicates the presence of a cancer cell in the biological sample of said patient.

Other related embodiments of the present invention provide methods for 15 determining the presence or absence of a cancer cell in a patient, comprising the steps (a) contacting a biological sample obtained from a patient with a first of: oligonucleotide and a second oligonucleotide wherein said first and second oligonucleotides hybridize under moderately stringent conditions to a first and a second polynucleotide selected from the group selected from the group consisting of SEQ ID 20 NO:73, SEQ ID NO:74, SEQ ID NO:75, SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:30, SEQ ID NO:32, and SEQ ID NO:76 and wherein said first polynucleotide is unrelated structurally to said second polynucleotide; 25 (b) detecting in the sample said first and said second hybridized oligonucleotides; and (c) comparing the amount of polynucleotide that hybridizes to the oligonucleotide to a predetermined cut-off value, wherein the presence of a hybridized first oligonucleotide or a hybridized second oligonucleotide in excess of the pre-determined cut-off value indicates the presence of a cancer cell in the biological sample of said patient. 30

10

15

20

Other related embodiments of the present invention provide methods for determining the presence or absence of a cancer cell in a patient, comprising the steps of: (a) contacting a biological sample obtained from a patient with a first oligonucleotide and a second oligonucleotide wherein said first and second oligonucleotides hybridize under moderately stringent conditions to a first and a second polynucleotide are both tissue-specific polynucleotides of the cancer to be detected and wherein said first polynucleotide is unrelated structurally to said second polynucleotide; (b) detecting in the sample said first and said second hybridized oligonucleotides; and (c) comparing the amount of polynucleotide that hybridizes to the oligonucleotide to a predetermined cut-off value, wherein the presence of a hybridized first oligonucleotide or a hybridized second oligonucleotide in excess of the pre-determined cut-off value indicates the presence of a cancer cell in the biological sample of said patient.

In other related aspects, the present invention further provides compositions useful in the methods disclosed herein. Exemplary compositions comprise two or more oligonucleotide primer pairs each one of which specifically hybridizes to a distinct polynucleotide. Exemplary oligonucleotide primers suitable for compositions of the present invention are disclosed herein by SEQ ID NOs: 33-71. Exemplary polynucleotides suitable for compositions of the present invention are disclosed in SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:75, SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:30, SEQ ID NO:32, and SEQ ID NO:76.

The present invention also provides kits that are suitable for performing the detection methods of the present invention. Exemplary kits comprise oligonucleotide primer pairs each one of which specifically hybridizes to a distinct polynucleotide. Within certain embodiments, kits according to the present invention may also comprise a nucleic acid polymerase and suitable buffer. Exemplary oligonucleotide primers suitable for kits of the present invention are disclosed herein by SEQ ID NOs: 33-71. Exemplary polynucleotides suitable for kits of the present invention are disclosed in SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:75, SEQ ID

10

15

25

30

NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:30, SEQ ID NO:32, and SEQ ID NO:76.

These and other aspects of the present invention will become apparent upon reference to the following detailed description and attached drawings. All references disclosed herein are hereby incorporated by reference in their entirety as if each was incorporated individually.

BRIEF DESCRIPTION OF THE DRAWINGS AND SEQUENCE IDENTIFIERS

Figure 1 shows the mRNA expression profiles for B311D, B533S and B726P as determined using quantitative PCR (Taqman™). Abbreviations: B.T.: Breast tumor; B.M.: Bone marrow; B.R.: Breast reduction.

Figure 2 shows the relationship of B533S expression to pathological stage of tumor. Tissues from normal breast (8), benign breast disorders (3), and breast tumors stage I (5), stage II (6), stage III (7), stage IV (3) and metastases (1 lymph node and 3 pleural effusions) were tested in real-time PCR. The data is expressed as the mean copies/ng β -actin for each group tested and the line is the calculated trend line.

Figures 3A and 3B show the gene complementation of B305D C-form, B726P, $GABA\pi$ and mammaglobin in metastases and primary tumors, respectively.

The cut-off for each of the genes was 6.57, 1.65, 4.58 and 3.56 copies/ng β-Actin based on the mean of the negative normal tissues plus 3 standard deviations.

Figure 4 shows the full-length cDNA sequence for mammaglobin.

Figure 5 shows the determined cDNA sequence of the open reading frame encoding a mammaglobin recombinant polypeptide expressed in *E. coli*.

Figure 6 shows the full-length cDNA sequence for GABA π .

Figure 7 shows the mRNA expression levels for mammaglobin, $GABA\pi$, B305D (C form) and B726P in breast tumor and normal samples determined using real-time PCR and the SYBR detection system. Abbreviations: BT: Breast tumor; BR: Breast reduction; A. PBMC: Activated peripheral blood mononuclear cells; R. PBMC: resting PBMC; T. Gland: Thyroid gland; S. Cord: Spinal Cord; A. Gland: Adrenal gland; B. Marrow: Bone marrow; S. Muscle: Skeletal muscle.

WO 01/75171 PCT/US01/10631

Figure 8 is a bar graph showing a comparison between the LipophilinB alone and the LipophilinB-B899P-B305D-C-B726 multiplex assays tested on a panel of breast tumor samples. Abbreviations: BT: Breast tumor; BR: Breast reduction; SCID: severe combined immunodeficiency.

Figure 9 is a gel showing the unique band length of four amplification products of tumor genes of interest (mammaglobin, B305D, B899P, B726P) tested in a multiplex Real-time PCR assay.

5

10

25

Figure 10 shows a comparison of a multiplex assay using intron-exon border spanning primers (bottom panel) and those using non-optimized primers (top panel), to detect breast cancer cells in a panel of lymph node tissues.

SEQ ID NO: 1 is the determined cDNA sequence for a first splice variant of B305D isoform A.

SEQ ID NO: 2 is the amino acid sequence encoded by the sequence of SEQ ID NO: 1.

SEQ ID NO: 3 is the determined cDNA sequence for a second splice variant of B305D isoform A.

SEQ ID NO: 4 is the amino acid sequence encoded by the sequence of SEQ ID NO: 3.

SEQ ID NO: 5-7 are the determined cDNA sequences for three splice variants of B305D isoform C.

SEQ ID NO: 8-10 are the amino acid sequences encoded by the sequence of SEQ ID NO: 5-7, respectively.

SEQ ID NO: 11 is the determined cDNA sequence for B311D.

SEQ ID NO: 12 is the amino acid sequence encoded by the sequence of SEQ ID NO: 11.

SEQ ID NO: 13 is the determined cDNA sequence of a first splice variant of B726P.

SEQ ID NO: 14 is the amino acid sequence encoded by the sequence of SEQ ID NO: 13.

30 SEQ ID NO: 15 is the determined cDNA sequence of a second splice variant of B726P.

SEQ ID NO: 16 is the amino acid sequence encoded by the sequence of SEQ ID NO: 15.

WO 01/75171 PCT/US01/10631

SEQ ID NO: 17 is the determined cDNA sequence of a third splice variant of B726P.

SEQ ID NO: 18 is the amino acid sequence encoded by the sequence of SEQ ID NO: 17.

5 SEQ ID NO: 19-24 are the determined cDNA sequences of further splice variants of B726P.

SEQ ID NO: 25-29 are the amino acid sequences encoded by SEQ ID NO: 19-24, respectively.

SEQ ID NO: 30 is the determined cDNA sequence for B511S.

SEQ ID NO: 31 is the amino acid sequence encoded by SEQ ID NO: 30.

SEQ ID NO: 32 is the determined cDNA sequence for B533S.

SEQ ID NO:33 is the DNA sequence of Lipophilin B forward primer.

SEQ ID NO:34 is the DNA sequence of Lipophilin B reverse primer.

SEQ ID NO:35 is the DNA sequence of Lipophilin B probe.

SEQ ID NO:36 is the DNA sequence of GABA (B899P) forward primer.

SEQ ID NO:37 is the DNA sequence of GABA (B899P) reverse primer.

SEQ ID NO:38 is the DNA sequence of GABA (B899P) probe.

SEQ ID NO:39 is the DNA sequence of B305D (C form) forward

primer.

10

SEQ ID NO:40 is the DNA sequence of B305D (C form) reverse primer.

SEQ ID NO:41 is the DNA sequence of B305D (C form) probe.

SEQ ID NO:42 is the DNA sequence of B726P forward primer.

SEQ ID NO:43 is the DNA sequence of B726P reverse primer.

SEQ ID NO:44 is the DNA sequence of B726P probe.

SEQ ID NO:45 is the DNA sequence of Actin forward primer.

SEQ ID NO:46 is the DNA sequence of Actin reverse primer.

SEQ ID NO:47 is the DNA sequence of Actin probe.

SEQ ID NO:48 is the DNA sequence of Mammaglobin forward primer.

SEQ ID NO:49 is the DNA sequence of Mammaglobin reverse primer.

SEQ ID NO:50 is the DNA sequence of Mammaglobin probe.

SEQ ID NO:51 is the DNA sequence of a second GABA (B899P)

reverse primer.

30

SEQ ID NO:52 is the DNA sequence of a second B726P forward primer.

		SEQ ID NO:53 is the DNA sequence of a GABA B899P-INT forward
	primer.	
		SEQ ID NO:54 is the DNA sequence of a GABA B899P-INT reverse
	primer.	
5		SEQ ID NO:55 is the DNA sequence of a GABA B899P-INT Taqman
	probe.	,
		SEQ ID NO:56 is the DNA sequence of a B305D-INT forward primer.
		SEQ ID NO:57 is the DNA sequence of a B305D-INT reverse primer.
		SEQ ID NO:58 is the DNA sequence of a B305D-INT Taqman probe.
10		SEQ ID NO:59 is the DNA sequence of a B726-INT forward primer.
		SEQ ID NO:60 is the DNA sequence of a B726-INT reverse primer.
		SEQ ID NO:61 is the DNA sequence of a B726-INT Taqman probe.
		SEQ ID NO:62 is the DNA sequence of a GABA B899P Taqman probe
		SEQ ID NO:63 is the DNA sequence of a B311D forward primer.
15		SEQ ID NO:64 is the DNA sequence of a B311D reverse primer.
		SEQ ID NO:65 is the DNA sequence of a B311D Taqman probe.
		SEQ ID NO:66 is the DNA sequence of a B533S forward primer.
		SEQ ID NO:67 is the DNA sequence of a B533S reverse primer.
		SEQ ID NO:68 is the DNA sequence of a B533S Taqman probe.
20		SEQ ID NO:69 is the DNA sequence of a B511S forward primer.
		SEQ ID NO:70 is the DNA sequence of a B511S reverse primer.
		SEQ ID NO:71 is the DNA sequence of a B511S Taqman probe.
		SEQ ID NO:72 is the DNA sequence of a GABA π reverse primer.
		SEQ ID NO:73 is the full-length cDNA sequence for mammaglobin.
25		SEQ ID NO:74 is the determined cDNA sequence of the open reading
	frame encoding a mammaglobin recombinant polypeptide expressed in E. coli.	
		SEQ ID NO:75 is the full-length cDNA sequence for GABA π .
		SEQ ID NO:76 is the full-length cDNA sequence for lipophilin B.
		SEQ ID NO:77 is the amino acid sequence encoded by the sequence of
30	SEQ ID NO:7	76.

15

20

25

30

DETAILED DESCRIPTION OF THE INVENTION

As noted above, the present invention is directed generally to methods that are suitable for the identification of tissue-specific polynucleotides as well as to methods, compositions and kits that are suitable for the diagnosis and monitoring of cancer. While certain exemplary methods, compositions and kits disclosed herein are directed to the identification, detection and monitoring of breast cancer, in particular breast cancer-specific polynucleotides, it will be understood by those of skill in the art that the present invention is generally applicable to the identification, detection and monitoring of a wide variety of cancers, and the associated over-expressed polynucleotides, including, for example, prostate cancer, breast cancer, colon cancer, ovarian cancer, lung cancer, head & neck cancer, lymphoma, leukemia, melanoma, liver cancer, gastric cancer, kidney cancer, bladder cancer, pancreatic cancer and endometrial cancer. Thus, it will be apparent that the present invention is not limited solely to the identification of breast cancer-specific polynucleotides or to the detection and monitoring of breast cancer.

Identification of Tissue-specific Polynucleotides

Certain embodiments of the present invention provide methods, compositions and kits for the detection of a cancer cell within a biological sample. These methods comprise the step of detecting one or more tissue-specific polynucleotide(s) from a patient's biological sample the over-expression of which polynucleotides indicates the presence of a cancer cell within the patient's biological sample. Accordingly, the present invention also provides methods that are suitable for the identification of tissue-specific polynucleotides. As used herein, the phrases "tissue-specific polynucleotides" or "tumor-specific polynucleotides" are meant to include all polynucleotides that are at least two-fold over-expressed as compared to one or more control tissues. As discussed in further detail herein below, over-expression of a given polynucleotide may be assessed, for example, by microarray and/or quantitative real-time polymerase chain reaction (Real-time PCRTM) methodologies.

Exemplary methods for detecting tissue-specific polynucleotides may comprise the steps of: (a) performing a genetic subtraction to identify a pool of

polynucleotides from a tissue of interest; (b) performing a DNA microarray analysis to identify a first subset of said pool of polynucleotides of interest wherein each member polynucleotide of said first subset is at least two-fold over-expressed in said tissue of interest as compared to a control tissue; and (c) performing a quantitative polymerase chain reaction analysis on polynucleotides within said first subset to identify a second subset of polynucleotides that are at least two-fold over-expressed as compared to said control tissue.

Polynucleotides Generally

5

10

15

20

25

30

As used herein, the term "polynucleotide" refers generally to either DNA or RNA molecules. Polynucleotides may be naturally occurring as normally found in a biological sample such as blood, serum, lymph node, bone marrow, sputum, urine and tumor biopsy samples. Alternatively, polynucleotides may be derived synthetically by, for example, a nucleic acid polymerization reaction. As will be recognized by the skilled artisan, polynucleotides may be single-stranded (coding or antisense) or double-stranded, and may be DNA (genomic, cDNA or synthetic) or RNA molecules. RNA molecules include HnRNA molecules, which contain introns and correspond to a DNA molecule in a one-to-one manner, and mRNA molecules, which do not contain introns. Additional coding or non-coding sequences may, but need not, be present within a polynucleotide of the present invention, and a polynucleotide may, but need not, be linked to other molecules and/or support materials.

Polynucleotides may comprise a native sequence (*i.e.* an endogenous sequence that encodes a tumor protein, such as a breast tumor protein, or a portion thereof) or may comprise a variant, or a biological or antigenic functional equivalent of such a sequence. Polynucleotide variants may contain one or more substitutions, additions, deletions and/or insertions, as further described below. The term "variants" also encompasses homologous genes of xenogenic origin.

When comparing polynucleotide or polypeptide sequences, two sequences are said to be "identical" if the sequence of nucleotides or amino acids in the two sequences is the same when aligned for maximum correspondence, as described below. Comparisons between two sequences are typically performed by comparing the sequences over a comparison window to identify and compare local regions of sequence

30

similarity. A "comparison window" as used herein, refers to a segment of at least about 20 contiguous positions, usually 30 to about 75, 40 to about 50, in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned.

5 Optimal alignment of sequences for comparison may be conducted using the Megalign program in the Lasergene suite of bioinformatics software (DNASTAR, Inc., Madison, WI), using default parameters. This program embodies several alignment schemes described in the following references: Dayhoff, M.O. (1978) A model of evolutionary change in proteins – Matrices for detecting distant relationships. In Dayhoff, M.O. (ed.) Atlas of Protein Sequence and Structure, National Biomedical 10 Research Foundation, Washington DC Vol. 5, Suppl. 3, pp. 345-358; Hein J. (1990) Unified Approach to Alignment and Phylogenes pp. 626-645 Methods in Enzymology vol. 183, Academic Press, Inc., San Diego, CA; Higgins, D.G. and Sharp, P.M. (1989) CABIOS 5:151-153; Myers, E.W. and Muller W. (1988) CABIOS 4:11-17; Robinson, E.D. (1971) Comb. Theor 11:105; Santou, N. Nes, M. (1987) Mol. Biol. Evol. 4:406-15 425; Sneath, P.H.A. and Sokal, R.R. (1973) Numerical Taxonomy - the Principles and Practice of Numerical Taxonomy, Freeman Press, San Francisco, CA; Wilbur, W.J. and Lipman, D.J. (1983) Proc. Natl. Acad., Sci. USA 80:726-730.

Alternatively, optimal alignment of sequences for comparison may be conducted by the local identity algorithm of Smith and Waterman (1981) *Add. APL. Math* 2:482, by the identity alignment algorithm of Needleman and Wunsch (1970) *J. Mol. Biol.* 48:443, by the search for similarity methods of Pearson and Lipman (1988) *Proc. Natl. Acad. Sci. USA* 85: 2444, by computerized implementations of these algorithms (GAP, BESTFIT, BLAST, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group (GCG), 575 Science Dr., Madison, WI), or by inspection.

One preferred example of algorithms that are suitable for determining percent sequence identity and sequence similarity are the BLAST and BLAST 2.0 algorithms, which are described in Altschul *et al.* (1977) *Nucl. Acids Res.* 25:3389-3402 and Altschul *et al.* (1990) *J. Mol. Biol.* 215:403-410, respectively. BLAST and BLAST 2.0 can be used, for example with the parameters described herein, to determine percent

10

15

20

25

30

PCT/US01/10631

sequence identity for the polynucleotides and polypeptides of the invention. Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information. In one illustrative example, cumulative scores can be calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always >0) and N (penalty score for mismatching residues; always <0). For amino acid sequences, a scoring matrix can be used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T and X determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as defaults a wordlength (W) of 11, and expectation (E) of 10, and the BLOSUM62 scoring matrix (see Henikoff and Henikoff (1989) *Proc. Natl. Acad. Sci. USA* 89:10915) alignments, (B) of 50, expectation (E) of 10, M=5, N=-4 and a comparison of both strands.

Preferably, the "percentage of sequence identity" is determined by comparing two optimally aligned sequences over a window of comparison of at least 20 positions, wherein the portion of the polynucleotide or polypeptide sequence in the comparison window may comprise additions or deletions (*i.e.*, gaps) of 20 percent or less, usually 5 to 15 percent, or 10 to 12 percent, as compared to the reference sequences (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical nucleic acid bases or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the reference sequence (*i.e.*, the window size) and multiplying the results by 100 to yield the percentage of sequence identity.

Therefore, the present invention encompasses polynucleotide and polypeptide sequences having substantial identity to the sequences disclosed herein, for example those comprising at least 50% sequence identity, preferably at least 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% or higher, sequence identity compared to a polynucleotide or polypeptide sequence of this invention using

10

15

20

25

30

PCT/US01/10631

the methods described herein, (e.g., BLAST analysis using standard parameters, as described below). One skilled in this art will recognize that these values can be appropriately adjusted to determine corresponding identity of proteins encoded by two nucleotide sequences by taking into account codon degeneracy, amino acid similarity, reading frame positioning and the like.

17

In additional embodiments, the present invention provides isolated polynucleotides and polypeptides comprising various lengths of contiguous stretches of sequence identical to or complementary to one or more of the sequences disclosed herein. For example, polynucleotides are provided by this invention that comprise at least about 15, 20, 30, 40, 50, 75, 100, 150, 200, 300, 400, 500 or 1000 or more contiguous nucleotides of one or more of the sequences disclosed herein as well as all intermediate lengths there between. It will be readily understood that "intermediate lengths", in this context, means any length between the quoted values, such as 16, 17, 18, 19, etc.; 21, 22, 23, etc.; 30, 31, 32, etc.; 50, 51, 52, 53, etc.; 100, 101, 102, 103, etc.; 150, 151, 152, 153, etc.; including all integers through 200-500; 500-1,000, and the like.

The polynucleotides of the present invention, or fragments thereof, regardless of the length of the coding sequence itself, may be combined with other DNA sequences, such as promoters, polyadenylation signals, additional restriction enzyme sites, multiple cloning sites, other coding segments, and the like, such that their overall length may vary considerably. It is therefore contemplated that a nucleic acid fragment of almost any length may be employed, with the total length preferably being limited by the ease of preparation and use in the intended recombinant DNA protocol. For example, illustrative DNA segments with total lengths of about 10,000, about 5000, about 3000, about 2,000, about 1,000, about 500, about 200, about 100, about 50 base pairs in length, and the like, (including all intermediate lengths) are contemplated to be useful in many implementations of this invention.

In other embodiments, the present invention is directed to polynucleotides that are capable of hybridizing under moderately stringent conditions to a polynucleotide sequence provided herein, or a fragment thereof, or a complementary sequence thereof. Hybridization techniques are well known in the art of molecular

10

15

25

biology. For purposes of illustration, suitable moderately stringent conditions for testing the hybridization of a polynucleotide of this invention with other polynucleotides include prewashing in a solution of 5 X SSC, 0.5% SDS, 1.0 mM EDTA (pH 8.0); hybridizing at 50°C-65°C, 5 X SSC, overnight; followed by washing twice at 65°C for 20 minutes with each of 2X, 0.5X and 0.2X SSC containing 0.1% SDS.

Moreover, it will be appreciated by those of ordinary skill in the art that, as a result of the degeneracy of the genetic code, there are many nucleotide sequences that encode a polypeptide as described herein. Some of these polynucleotides bear minimal homology to the nucleotide sequence of any native gene. Nonetheless, polynucleotides that vary due to differences in codon usage are specifically contemplated by the present invention. Further, alleles of the genes comprising the polynucleotide sequences provided herein are within the scope of the present invention. Alleles are endogenous genes that are altered as a result of one or more mutations, such as deletions, additions and/or substitutions of nucleotides. The resulting mRNA and protein may, but need not, have an altered structure or function. Alleles may be identified using standard techniques (such as hybridization, amplification and/or database sequence comparison).

Microarray Analyses

Polynucleotides that are suitable for detection according to the methods

of

the present invention may be identified, as described in more detail below, by screening a microarray of cDNAs for tissue and/or tumor-associated expression (e.g., expression that is at least two-fold greater in a tumor than in normal tissue, as determined using a representative assay provided herein). Such screens may be performed, for example, using a Synteni microarray (Palo Alto, CA) according to the manufacturer's instructions (and essentially as described by Schena et al., Proc. Natl. Acad. Sci. USA 93:10614-10619 (1996) and Heller et al., Proc. Natl. Acad. Sci. USA 94:2150-2155 (1997)).

Microarray is an effective method for evaluating large numbers of genes but due to its limited sensitivity it may not accurately determine the absolute tissue

5

10

19

distribution of low abundance genes or may underestimate the degree of overexpression of more abundant genes due to signal saturation. For those genes showing overexpression by microarray expression profiling, further analysis was performed using quantitative RT-PCR based on Taqman™ probe detection, which comprises a greater dynamic range of sensitivity. Several different panels of normal and tumor tissues, distant metastases and cell lines were used for this purpose.

Quantitative Real-time Polymerase Chain Reaction

Suitable polynucleotides according to the present invention may be further characterized or, alternatively, originally identified by employing a quantitative PCR methodology such as, for example, the Real-time PCR methodology. By this methodology, tissue and/or tumor samples, such as, *e.g.*, metastatic tumor samples, may be tested along side the corresponding normal tissue sample and/or a panel of unrelated normal tissue samples.

Real-time PCR (see Gibson et al., Genome Research 6:995-1001, 1996;

15 Heid et al., Genome Research 6:986-994, 1996) is a technique that evaluates the level of PCR product accumulation during amplification. This technique permits quantitative evaluation of mRNA levels in multiple samples. Briefly, mRNA is extracted from tumor and normal tissue and cDNA is prepared using standard techniques.

Real-time PCR may, for example, be performed either on the ABI 7700

Prism or on a GeneAmp® 5700 sequence detection system (PE Biosystems, Foster City, CA). The 7700 system uses a forward and a reverse primer in combination with a specific probe with a 5' fluorescent reporter dye at one end and a 3' quencher dye at the other end (Taqman™). When the Real-time PCR is performed using Taq DNA polymerase with 5'-3' nuclease activity, the probe is cleaved and begins to fluoresce allowing the reaction to be monitored by the increase in fluorescence (Real-time). The 5700 system uses SYBR® green, a fluorescent dye, that only binds to double stranded DNA, and the same forward and reverse primers as the 7700 instrument. Matching primers and fluorescent probes may be designed according to the primer express program (PE Biosystems, Foster City, CA). Optimal concentrations of primers and probes are initially determined by those of ordinary skill in the art. Control (e.g., β-

WO 01/75171 PCT/US01/10631

20

actin) primers and probes may be obtained commercially from, for example, Perkin Elmer/Applied Biosystems (Foster City, CA).

To quantitate the amount of specific RNA in a sample, a standard curve

5 generated using a plasmid containing the gene of interest. Standard curves are generated using the Ct values determined in the real-time PCR, which are related to the initial cDNA concentration used in the assay. Standard dilutions ranging from 10-10⁶ copies of the gene of interest are generally sufficient. In addition, a standard curve is generated for the control sequence. This permits standardization of initial RNA content of a tissue sample to the amount of control for comparison purposes.

In accordance with the above, and as described further below, the present

invention provides the illustrative breast tissue- and/or tumor-specific polynucleotides mammaglobin, lipophilin B, GABA π (B899P), B726P, B511S, B533S, B305D and B311D having sequences set forth in SEQ ID NO: 1, 3, 5-7, 11, 13, 15, 17, 19-24, 30, 32, and 73-76 illustrative polypeptides encoded thereby having amino acid sequences set forth in SEQ ID NO: 2, 4, 8-10, 12, 14, 16, 18, 25-29 and 31 and 77 that may be suitably employed in the detection of cancer, more specifically, breast cancer.

The methods disclosed herein will also permit the identification of additional and/or alternative polynucleotides that are suitable for the detection of a wide range of cancers including, but not limited to, prostate cancer, breast cancer, colon cancer, ovarian cancer, lung cancer head & neck cancer, lymphoma, leukemia, melanoma, liver cancer, gastric cancer, kidney cancer, bladder cancer, pancreatic cancer and endometrial cancer.

25

30

15

is

Methodologies for the Detection of Cancer

In general, a cancer cell may be detected in a patient based on the presence of one or more polynucleotides within cells of a biological sample (for example, blood, lymph nodes, bone marrow, sera, sputum, urine and/or tumor biopsies) obtained from the patient. In other words, such polynucleotides may be used as markers to indicate the presence or absence of a cancer such as, *e.g.*, breast cancer.

10

15

20

25

30

As discussed in further detail herein, the present invention achieves these and other related objectives by providing a methodology for the simultaneous detection of more than one polynucleotide, the presence of which is diagnostic of the presence of cancer cells in a biological sample. Each of the various cancer detection methodologies disclosed herein have in common a step of hybridizing one or more oligonucleotide primers and/or probes, the hybridization of which is demonstrative of the presence of a tumor- and/or tissue-specific polynucleotide. Depending on the precise application contemplated, it may be preferred to employ one or more intron-spanning oligonucleotides that are inoperative against polynucleotide of genomic DNA and, thus, these oligonucleotides are effective in substantially reducing and/or eliminating the detection of genomic DNA in the biological sample.

Further disclosed herein are methods for enhancing the sensitivity of these detection methodologies by subjecting the biological samples to be tested to one or more cell capture and/or cell depletion methodologies.

By certain embodiments of the present invention, the presence of a cancer cell in a patient may be determined by employing the following steps: (a) obtaining a biological sample from said patient; (b) contacting said biological sample with a first oligonucleotide that hybridizes to a first polynucleotide said first polynucleotide selected from the group consisting of polynucleotides depicted in SEQ ID NO:73 and SEQ ID NO:74; (c) contacting said biological sample with a second oligonucleotide that hybridizes to a second polynucleotide selected from the group consisting of SEQ ID NO: 1, 3, 5-7, 11, 13, 15, 17, 19-24, 30, 32, and 75; (d)

detecting in said sample an amount of a polynucleotide that hybridizes to at least one of the oligonucleotides; and (e) comparing the amount of the polynucleotide that hybridizes to said oligonucleotide to a predetermined cut-off value, and therefrom determining the presence or absence of a cancer in the patient.

Alternative embodiments of the present invention provide methods wherein the presence of a cancer cell in a patient is determined by employing the steps of: (a) obtaining a biological sample from said patient; (b) contacting said biological sample with a first oligonucleotide that hybridizes to a first polynucleotide said first polynucleotide depicted in SEQ ID NO:76; (c) contacting said biological sample with a

5

10

15

20

25

30

second oligonucleotide that hybridizes to a second polynucleotide selected from the group consisting of SEQ ID NO: 1, 3, 5-7, 11, 13, 15, 17, 19-24, 30, 32, and 75; (d) detecting in said sample an amount of a polynucleotide that hybridizes to at least one of the oligonucleotides; and (e) comparing the amount of the polynucleotide that hybridizes to said oligonucleotide to a predetermined cut-off value, and therefrom determining the presence or absence of a cancer in the patient.

Other embodiments of the present invention provide methods for determining the presence or absence of a cancer in a patient. Such methods comprise the steps of: (a) obtaining a biological sample from said patient; (b) contacting said biological sample obtained from a patient with a first oligonucleotide that hybridizes to a polynucleotide sequence selected from the group consisting of polynucleotides depicted in SEQ ID NO:73, SEQ ID NO:74 and SEQ ID NO:76; (c) contacting said biological sample with a second oligonucleotide that hybridizes to a polynucleotide as depicted in SEQ ID NO:75; (d) contacting said biological sample with a third oligonucleotide that hybridizes to a polynucleotide selected from the group consisting of polynucleotides depicted in SEQ ID NO:5, SEQ ID NO:6 and SEQ ID NO:7; (e)

contacting said biological sample with a fourth oligonucleotide that hybridizes to a polynucleotide selected from the group consisting of polynucleotides depicted in SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23 and SEQ ID NO:24; (f)detecting in said biological sample an amount of a polynucleotide that hybridizes to at least one of said oligonucleotides; and (g) comparing the amount of polynucleotide that hybridizes to the oligonucleotide to a predetermined cut-off value, and therefrom determining the presence or absence of a cancer in the patient.

To permit hybridization under assay conditions, oligonucleotide primers and probes should comprise an oligonucleotide sequence that has at least about 60%, preferably at least about 75% and more preferably at least about 90%, identity to a portion of a polynucleotide encoding a breast tumor protein that is at least 10 nucleotides, and preferably at least 20 nucleotides, in length. Preferably, oligonucleotide primers hybridize to a polynucleotide encoding a polypeptide described herein under moderately stringent conditions, as defined above. Oligonucleotide

5

10

15

20

30

primers which may be usefully employed in the diagnostic methods described herein preferably are at least 10-40 nucleotides in length. In a preferred embodiment, the oligonucleotide primers comprise at least 10 contiguous nucleotides, more preferably at least 15 contiguous nucleotides, of a DNA molecule having a sequence recited in SEQ ID NO: 1, 3, 5-7, 11, 13, 15, 17, 19-24, 30, 32 and 73-76. Techniques for both PCR based assays and hybridization assays are well known in the art (*see*, for example, Mullis *et al.*, *Cold Spring Harbor Symp. Quant. Biol.*, 51:263, 1987; Erlich ed., *PCR Technology*, Stockton Press, NY, 1989).

The present invention also provides amplification-based methods for detecting the presence of a cancer cell in a patient. Exemplary methods comprise the steps of (a) obtaining a biological sample from a patient; (b) contacting the biological sample with a first oligonucleotide pair the first pair comprising a first oligonucleotide and a second oligonucleotide wherein the first oligonucleotide and the second oligonucleotide hybridize to a first polynucleotide and the complement thereof, respectively; (c) contacting the biological sample with a second oligonucleotide pair the second pair comprising a third oligonucleotide and a fourth oligonucleotide wherein the third and the fourth oligonucleotide hybridize to a second polynucleotide and the complement thereof, respectively, and wherein the first polynucleotide is unrelated in nucleotide sequence to the second polynucleotide; (d) amplifying the first polynucleotide and the amplified second polynucleotide; wherein the presence of the amplified first polynucleotide or the amplified second polynucleotide indicates the presence of a cancer cell in the patient.

Methods according to the present invention are suitable for identifying polynucleotides obtained from a wide variety of biological sample such as, for example, blood, serum, lymph node, bone marrow, sputum, urine and tumor biopsy sample. In certain preferred embodiments, the biological sample is either blood, a lymph node or bone marrow. In other embodiments of the present invention, the lymph node may be a sentinel lymph node.

It will be apparent that the present methods may be employed in the detection of a wide variety of cancers. Exemplary cancers include, but are not limited

10

15

25

30

to, prostate cancer, breast cancer, colon cancer, ovarian cancer, lung cancer head & neck cancer, lymphoma, leukemia, melanoma, liver cancer, gastric cancer, kidney cancer, bladder cancer, pancreatic cancer and endometrial cancer.

Certain exemplary embodiments of the present invention provide methods wherein the polynucleotides to be detected are selected from the group consisting of mammaglobin, lipophilin B, GABAπ (B899P), B726P, B511S, B533S, B305D and B311D. Alternatively and/or additionally, polynucleotides to be detected may be selected from the group consisting of those depicted in SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:75, SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:30, SEQ ID NO:32, and SEQ ID NO:76.

Suitable exemplary oligonucleotide probes and/or primers that may be used according to the methods of the present invention are disclosed herein by SEQ ID N0s:33-35 and 63-72. In certain preferred embodiments that eliminate the background detection of genomic DNA, the oligonucleotides may be intron spanning oligonucleotides. Exemplary intron spanning oligonucleotides suitable for the detection of various polynucleotides disclosed herein are depicted in SEQ ID NOs:36-62.

Depending on the precise application contemplated, the artisan may prefer to detect the tissue- and/or tumor-specific polynucleotides by detecting a radiolabel and detecting a fluorophore. More specifically, the oligonucleotide probe and/or primer may comprises a detectable moiety such as, for example, a radiolabel and/or a fluorophore.

Alternatively or additionally, methods of the present invention may also comprise a step of fractionation prior to detection of the tissue- and/or tumor-specific polynucleotides such as, for example, by gel electrophoresis.

In other embodiments, methods described herein may be used as to monitor the progression of cancer. By these embodiments, assays as provided for the diagnosis of a cancer may be performed over time, and the change in the level of reactive polypeptide(s) or polynucleotide(s) evaluated. For example, the assays may be

WO 01/75171 PCT/US01/10631

25

performed every 24-72 hours for a period of 6 months to 1 year, and thereafter performed as needed. In general, a cancer is progressing in those patients in whom the level of polypeptide or polynucleotide detected increases over time. In contrast, the cancer is not progressing when the level of reactive polypeptide or polynucleotide either remains constant or decreases with time.

5

10

Certain *in vivo* diagnostic assays may be performed directly on a tumor. One such assay involves contacting tumor cells with a binding agent. The bound binding agent may then be detected directly or indirectly via a reporter group. Such binding agents may also be used in histological applications. Alternatively, polynucleotide probes may be used within such applications.

As noted above, to improve sensitivity, multiple breast tumor protein markers may be assayed within a given sample. It will be apparent that binding agents specific for different proteins provided herein may be combined within a single assay. Further, multiple primers or probes may be used concurrently. The selection of tumor protein markers may be based on routine experiments to determine combinations that results in optimal sensitivity. In addition, or alternatively, assays for tumor proteins provided herein may be combined with assays for other known tumor antigens.

5

10

15

20

Cell Enrichment

In other aspects of the present invention, cell capture technologies may be used prior to polynucleotide detection to improve the sensitivity of the various detection methodologies disclosed herein.

Exemplary cell enrichment methodologies employ immunomagnetic beads that are coated with specific monoclonal antibodies to surface cell markers, or tetrameric antibody complexes, may be used to first enrich or positively select cancer cells in a sample. Various commercially available kits may be used, including Dynabeads® Epithelial Enrich (Dynal Biotech, Oslo, Norway), StemSepTM (StemCell Technologies, Inc., Vancouver, BC), and RosetteSep (StemCell Technologies). The skilled artisan will recognize that other readily available methodologies and kits may also be suitably employed to enrich or positively select desired cell populations.

Dynabeads® Epithelial Enrich contains magnetic beads coated with mAbs specific for two glycoprotein membrane antigens expressed on normal and neoplastic epithelial tissues. The coated beads may be added to a sample and the sample then applied to a magnet, thereby capturing the cells bound to the beads. The unwanted cells are washed away and the magnetically isolated cells eluted from the beads and used in further analyses.

RosetteSep can be used to enrich cells directly from a blood sample and consists of a cocktail of tetrameric antibodies that target a variety of unwanted cells and crosslinks them to glycophorin A on red blood cells (RBC) present in the sample, forming rosettes. When centrifuged over Ficoll, targeted cells pellet along with the free RBC.

The combination of antibodies in the depletion cocktail determines which cells will be removed and consequently which cells will be recovered. Antibodies that are available include, but are not limited to: CD2, CD3, CD4, CD5, CD8, CD10, CD11b, CD14, CD15, CD16, CD19, CD20, CD24, CD25, CD29, CD33, CD34, CD36, CD38, CD41, CD45, CD45RA, CD45RO, CD56, CD66B, CD66e, HLA-30 DR, IgE, and TCRαβ. Additionally, it is contemplated in the present invention that mAbs specific for breast tumor antigens, can be developed and used in a similar

manner. For example, mAbs that bind to tumor-specific cell surface antigens may be conjugated to magnetic beads, or formulated in a tetrameric antibody complex, and used to enrich or positively select metastatic breast tumor cells from a sample.

Once a sample is enriched or positively selected, cells may be further analysed. For example, the cells may be lysed and RNA isolated. RNA may then be subjected to RT-PCR analysis using breast tumor-specific multiplex primers in a Real-time PCR assay as described herein.

In another aspect of the present invention, cell capture technologies may be used in conjunction with Real-time PCR to provide a more sensitive tool for detection of metastatic cells expressing breast tumor antigens. Detection of breast cancer cells in bone marrow samples, peripheral blood, and small needle aspiration samples is desirable for diagnosis and prognosis in breast cancer patients.

Probes and Primers

5

10

15

30

As noted above and as described in further detail herein, certain methods, compositions and kits according to the present invention utilize two or more oligonucleotide primer pairs for the detection of cancer. The ability of such nucleic acid probes to specifically hybridize to a sequence of interest will enable them to be of use in detecting the presence of complementary sequences in a biological sample.

Alternatively, in other embodiments, the probes and/or primers of the present invention may be employed for detection via nucleic acid hybridization. As such, it is contemplated that nucleic acid segments that comprise a sequence region of at least about 15 nucleotide long contiguous sequence that has the same sequence as, or is complementary to, a 15 nucleotide long contiguous sequence of a polynucleotide to be detected will find particular utility. Longer contiguous identical or complementary sequences, *e.g.*, those of about 20, 30, 40, 50, 100, 200, 500, 1000 (including all intermediate lengths) and even up to full length sequences will also be of use in certain embodiments.

Oligonucleotide primers having sequence regions consisting of contiguous nucleotide stretches of 10-14, 15-20, 30, 50, or even of 100-200 nucleotides or so (including intermediate lengths as well), identical or complementary to a polynucleotide to be detected, are particularly contemplated as primers for use in

10

15

20

25

30

PCT/US01/10631

amplification reactions such as, e.g., the polymerase chain reaction (PCRTM).. This would allow a polynucleotide to be analyzed, both in diverse biological samples such as, for example, blood, lymph nodes and bone marrow.

The use of a primer of about 15-25 nucleotides in length allows the formation of a duplex molecule that is both stable and selective. Molecules having contiguous complementary sequences over stretches greater than 15 bases in length are generally preferred, though, in order to increase stability and selectivity of the hybrid, and thereby improve the quality and degree of specific hybrid molecules obtained. One will generally prefer to design primers having gene-complementary stretches of 15 to 25 contiguous nucleotides, or even longer where desired.

Primers may be selected from any portion of the polynucleotide to be detected. All that is required is to review the sequence, such as those exemplary polynucleotides set forth in SEQ ID NO: 1, 3, 5-7, 11, 13, 15, 17, 19-24, 30, 32, 73-75 (Figures 3-6, respectively) and SEQ ID NO:76 (lipophilin B) or to any continuous portion of the sequence, from about 15-25 nucleotides in length up to and including the full length sequence, that one wishes to utilize as a primer. The choice of primer sequences may be governed by various factors. For example, one may wish to employ primers from towards the termini of the total sequence. The exemplary primers disclosed herein may optionally be used for their ability to selectively form duplex molecules with complementary stretches of the entire polynucleotide of interest such as those set forth in SEQ ID NO: 1, 3, 5-7, 11, 13, 15, 17, 19-24, 30, 32, 73-75 (Figures 3-6, respectively), and SEQ ID NO:76 (lipophilin B).

The present invention further provides the nucleotide sequence of various exemplary oligonucleotide primers and probes, set forth in SEQ ID NOs: 33-71, that may be used, as described in further detail herein, according to the methods of the present invention for the detection of cancer.

Oligonucleotide primers according to the present invention may be readily prepared routinely by methods commonly available to the skilled artisan including, for example, directly synthesizing the primers by chemical means, as is commonly practiced using an automated oligonucleotide synthesizer. Depending on the application envisioned, one will typically desire to employ varying conditions of

hybridization to achieve varying degrees of selectivity of probe towards target sequence. For applications requiring high selectivity, one will typically desire to employ relatively stringent conditions to form the hybrids, *e.g.*, one will select relatively low salt and/or high temperature conditions, such as provided by a salt concentration of from about 0.02 M to about 0.15 M salt at temperatures of from about 50°C to about 70°C. Such selective conditions tolerate little, if any, mismatch between the probe and the template or target strand, and would be particularly suitable for isolating related sequences.

10 Polynucleotide Amplification Techniques

5

15

2Ò

25

30

Each of the specific embodiments outlined herein for the detection of cancer has in common the detection of a tissue- and/or tumor-specific polynucleotide via the hybridization of one or more oligonucleotide primers and/or probes. Depending on such factors as the relative number of cancer cells present in the biological sample and/or the level of polynucleotide expression within each cancer cell, it may be preferred to perform an amplification step prior to performing the steps of detection. For example, at least two oligonucleotide primers may be employed in a polymerase chain reaction (PCR) based assay to amplify a portion of a breast tumor cDNA derived from a biological sample, wherein at least one of the oligonucleotide primers is specific for (*i.e.*, hybridizes to) a polynucleotide encoding the breast tumor protein. The amplified cDNA may optionally be subjected to a fractionation step such as, for example, gel electrophoresis.

A number of template dependent processes are available to amplify the target sequences of interest present in a sample. One of the best known amplification methods is the polymerase chain reaction (PCRTM) which is described in detail in U.S. Patent Nos. 4,683,195, 4,683,202 and 4,800,159, each of which is incorporated herein by reference in its entirety. Briefly, in PCRTM, two primer sequences are prepared which are complementary to regions on opposite complementary strands of the target sequence. An excess of deoxynucleoside triphosphates is added to a reaction mixture along with a DNA polymerase (*e.g.*, *Taq* polymerase). If the target sequence is present in a sample, the primers will bind to the target and the polymerase will cause the

5

10

15

PCT/US01/10631

primers to be extended along the target sequence by adding on nucleotides. By raising and lowering the temperature of the reaction mixture, the extended primers will dissociate from the target to form reaction products, excess primers will bind to the target and to the reaction product and the process is repeated. Preferably reverse transcription and PCRTM amplification procedure may be performed in order to quantify the amount of mRNA amplified. Polymerase chain reaction methodologies are well known in the art.

One preferred methodology for polynucleotide amplification employs RT-PCR, in which PCR is applied in conjunction with reverse transcription. Typically, RNA is extracted from a biological sample, such as blood, serum, lymph node, bone marrow, sputum, urine and tumor biopsy samples, and is reverse transcribed to produce cDNA molecules. PCR amplification using at least one specific primer generates a cDNA molecule, which may be separated and visualized using, for example, gel electrophoresis. Amplification may be performed on biological samples taken from a patient and from an individual who is not afflicted with a cancer. The amplification reaction may be performed on several dilutions of cDNA spanning two orders of magnitude. A two-fold or greater increase in expression in several dilutions of the test patient sample as compared to the same dilutions of the non-cancerous sample is typically considered positive.

Any of a variety of commercially available kits may be used to perform the amplification step. One such amplification technique is inverse PCR (see Triglia et al., Nucl. Acids Res. 16:8186, 1988), which uses restriction enzymes to generate a fragment in the known region of the gene. The fragment is then circularized by intramolecular ligation and used as a template for PCR with divergent primers derived from the known region. Within an alternative approach, sequences adjacent to a partial sequence may be retrieved by amplification with a primer to a linker sequence and a primer specific to a known region. The amplified sequences are typically subjected to a second round of amplification with the same linker primer and a second primer specific to the known region. A variation on this procedure, which employs two primers that initiate extension in opposite directions from the known sequence, is described in WO 96/38591. Another such technique is known as "rapid amplification of cDNA ends" or

WO 01/75171 PCT/US01/10631

31

RACE. This technique involves the use of an internal primer and an external primer, which hybridizes to a polyA region or vector sequence, to identify sequences that are 5' and 3' of a known sequence. Additional techniques include capture PCR (Lagerstrom *et al.*, *PCR Methods Applic. 1*:111-19, 1991) and walking PCR (Parker *et al.*, *Nucl. Acids. Res. 19*:3055-60, 1991). Other methods employing amplification may also be employed to obtain a full length cDNA sequence.

Another method for amplification is the ligase chain reaction (referred to as LCR), disclosed in Eur. Pat. Appl. Publ. No. 320,308 (specifically incorporated herein by reference in its entirety). In LCR, two complementary probe pairs are prepared, and in the presence of the target sequence, each pair will bind to opposite complementary strands of the target such that they abut. In the presence of a ligase, the two probe pairs will link to form a single unit. By temperature cycling, as in PCRTM, bound ligated units dissociate from the target and then serve as "target sequences" for ligation of excess probe pairs. U.S. Patent No. 4,883,750, incorporated herein by reference in its entirety, describes an alternative method of amplification similar to LCR for binding probe pairs to a target sequence.

10

15

20

25

30

Qbeta Replicase, described in PCT Intl. Pat. Appl. Publ. No. PCT/US87/00880, incorporated herein by reference in its entirety, may also be used as still another amplification method in the present invention. In this method, a replicative sequence of RNA that has a region complementary to that of a target is added to a sample in the presence of an RNA polymerase. The polymerase will copy the replicative sequence that can then be detected.

An isothermal amplification method, in which restriction endonucleases and ligases are used to achieve the amplification of target molecules that contain nucleotide 5'- $[\alpha$ -thio]triphosphates in one strand of a restriction site (Walker *et al.*, 1992, incorporated herein by reference in its entirety), may also be useful in the amplification of nucleic acids in the present invention.

Strand Displacement Amplification (SDA) is another method of carrying out isothermal amplification of nucleic acids which involves multiple rounds of strand displacement and synthesis, *i.e.* nick translation. A similar method, called Repair Chain Reaction (RCR) is another method of amplification which may be useful in the present

10

15

20

25

30

invention and is involves annealing several probes throughout a region targeted for amplification, followed by a repair reaction in which only two of the four bases are present. The other two bases can be added as biotinylated derivatives for easy detection. A similar approach is used in SDA.

Sequences can also be detected using a cyclic probe reaction (CPR). In CPR, a probe having a 3' and 5' sequences of non-target DNA and an internal or "middle" sequence of the target protein specific RNA is hybridized to DNA which is present in a sample. Upon hybridization, the reaction is treated with RNaseH, and the products of the probe are identified as distinctive products by generating a signal that is released after digestion. The original template is annealed to another cycling probe and the reaction is repeated. Thus, CPR involves amplifying a signal generated by hybridization of a probe to a target gene specific expressed nucleic acid.

Still other amplification methods described in Great Britain Pat. Appl. No. 2 202 328, and in PCT Intl. Pat. Appl. Publ. No. PCT/US89/01025, each of which is incorporated herein by reference in its entirety, may be used in accordance with the present invention. In the former application, "modified" primers are used in a PCR-like, template and enzyme dependent synthesis. The primers may be modified by labeling with a capture moiety (e.g., biotin) and/or a detector moiety (e.g., enzyme). In the latter application, an excess of labeled probes is added to a sample. In the presence of the target sequence, the probe binds and is cleaved catalytically. After cleavage, the target sequence is released intact to be bound by excess probe. Cleavage of the labeled probe signals the presence of the target sequence.

Other nucleic acid amplification procedures include transcription-based amplification systems (TAS) (Kwoh *et al.*, 1989; PCT Intl. Pat. Appl. Publ. No. WO 88/10315, incorporated herein by reference in its entirety), including nucleic acid sequence based amplification (NASBA) and 3SR. In NASBA, the nucleic acids can be prepared for amplification by standard phenol/chloroform extraction, heat denaturation of a sample, treatment with lysis buffer and minispin columns for isolation of DNA and RNA or guanidinium chloride extraction of RNA. These amplification techniques involve annealing a primer that has sequences specific to the target sequence. Following polymerization, DNA/RNA hybrids are digested with RNase H while double

10

15

20

25

stranded DNA molecules are heat-denatured again. In either case the single stranded DNA is made fully double stranded by addition of second target-specific primer, followed by polymerization. The double stranded DNA molecules are then multiply transcribed by a polymerase such as T7 or SP6. In an isothermal cyclic reaction, the RNAs are reverse transcribed into DNA, and transcribed once again with a polymerase such as T7 or SP6. The resulting products, whether truncated or complete, indicate target-specific sequences.

Eur. Pat. Appl. Publ. No. 329,822, incorporated herein by reference in its entirety, disclose a nucleic acid amplification process involving cyclically synthesizing single-stranded RNA ("ssRNA"), ssDNA, and double-stranded DNA (dsDNA), which may be used in accordance with the present invention. The ssRNA is a first template for a first primer oligonucleotide, which is elongated by reverse transcriptase (RNA-dependent DNA polymerase). The RNA is then removed from resulting DNA:RNA duplex by the action of ribonuclease H (RNase H, an RNase specific for RNA in a duplex with either DNA or RNA). The resultant ssDNA is a second template for a second primer, which also includes the sequences of an RNA polymerase promoter (exemplified by T7 RNA polymerase) 5' to its homology to its template. This primer is then extended by DNA polymerase (exemplified by the large "Klenow" fragment of E. coli DNA polymerase I), resulting as a double-stranded DNA ("dsDNA") molecule, having a sequence identical to that of the original RNA between the primers and having additionally, at one end, a promoter sequence. This promoter sequence can be used by the appropriate RNA polymerase to make many RNA copies These copies can then re-enter the cycle leading to very swift of the DNA. With proper choice of enzymes, this amplification can be done amplification. isothermally without addition of enzymes at each cycle. Because of the cyclical nature of this process, the starting sequence can be chosen to be in the form of either DNA or RNA.

PCT Intl. Pat. Appl. Publ. No. WO 89/06700, incorporated herein by reference in its entirety, disclose a nucleic acid sequence amplification scheme based on the hybridization of a promoter/primer sequence to a target single-stranded DNA ("ssDNA") followed by transcription of many RNA copies of the sequence. This

PCT/US01/10631

scheme is not cyclic; *i.e.* new templates are not produced from the resultant RNA transcripts. Other amplification methods include "RACE" (Frohman, 1990), and "one-sided PCR" (Ohara, 1989) which are well-known to those of skill in the art.

Compositions and Kits for the Detection of Cancer

5

10

15

20

25

30

The present invention further provides kits for use within any of the above diagnostic methods. Such kits typically comprise two or more components necessary for performing a diagnostic assay. Components may be compounds, reagents, containers and/or equipment. For example, one container within a kit may contain a monoclonal antibody or fragment thereof that specifically binds to a breast tumor protein. Such antibodies or fragments may be provided attached to a support material, as described above. One or more additional containers may enclose elements, such as reagents or buffers, to be used in the assay. Such kits may also, or alternatively, contain a detection reagent as described above that contains a reporter group suitable for direct or indirect detection of antibody binding.

The present invention also provides kits that are suitable for performing the detection methods of the present invention. Exemplary kits comprise oligonucleotide primer pairs each one of which specifically hybridizes to a distinct polynucleotide. Within certain embodiments, kits according to the present invention may also comprise a nucleic acid polymerase and suitable buffer. Exemplary oligonucleotide primers suitable for kits of the present invention are disclosed herein by SEQ ID NOs: 33-71. Exemplary polynucleotides suitable for kits of the present invention are disclosed in SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:75, SEQ ID NO:11, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:30, SEQ ID NO:32, and lipophilin B.

Alternatively, a kit may be designed to detect the level of mRNA encoding a breast tumor protein in a biological sample. Such kits generally comprise at least one oligonucleotide probe or primer, as described above, that hybridizes to a polynucleotide encoding a breast tumor protein. Such an oligonucleotide may be used,

for example, within a PCR or hybridization assay. Additional components that may be present within such kits include a second oligonucleotide and/or a diagnostic reagent or container to facilitate the detection of a polynucleotide encoding a breast tumor protein.

In other related aspects, the present invention further provides compositions useful in the methods disclosed herein. Exemplary compositions comprise two or more oligonucleotide primer pairs each one of which specifically hybridizes to a distinct polynucleotide. Exemplary oligonucleotide primers suitable for compositions of the present invention are disclosed herein by SEQ ID NOs: 33-71. Exemplary polynucleotides suitable for compositions of the present invention are disclosed in SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:75, SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:30, SEQ ID NO:32, and lipophilin B.

5

10

15

The following Examples are offered by way of illustration and not by way of limitation.

36

EXAMPLES

EXAMPLE 1

DIFFERENTIAL DISPLAY

This example discloses the use of differential display to enrich for polynucleotides that are over-expressed in breast tumor tissues.

Differential display was performed as described in the literature (see, e.g., Liang, P. et al., Science 257:967-971 (1993), incorporated herein by reference in its entirety) with the following modifications: (a) PCR amplification products were visualized on silver stained gels (b) genetically matched pairs of tissues were used to eliminate polymorphic variation (c) two different dilutions of cDNA were used as template to eliminate any dilutional effects (see, Mou, E. et al., Biochem Biophy Res Commun. 199:564-569 (1994), incorporated herein by reference in its entirety).

15 EXAMPLE 2

5

10

20

25

30

PREPARATION OF CDNA SUBTRACTION LIBRARY

This example discloses the preparation of a breast tumor cDNA subtraction library enriched in breast tumor specific polynucleotides.

cDNA library subtraction was performed as described with some modification. *See*, Hara, T. et al., *Blood* <u>84</u>: 189-199 (1994), incorporated herein by reference in its entirety. The breast tumor library (tracer) that was made from a pool of three breast tumors was subtracted with normal breast library (driver) to identify breast tumor specific genes. More recent subtractions utilized 6-10 normal tissues as driver to subtract out common genes more efficiently, with an emphasis on essential tissues along with one "immunological" tissue (*e.g.*, spleen, lymph node, or PBMC), to assist in the removal of cDNAs derived from lymphocyte infiltration in tumors. The breast tumor specific subtracted cDNA library was generated as follows: driver cDNA library was digested with EcoRI, NotI, and SfuI (SfuI cleaves the vector), filled in with DNA polymerase klenow fragment. After phenol-chloroform extraction and ethanol precipitation, the DNA was labeled with Photoprobe biotin and dissolved in H₂O. Tracer cDNA library was digested with BamHI and XhoI, phenol chloroform extracted,

37

passed through Chroma spin-400 columns, ethanol precipitated, and mixed with driver DNA for hybridization at 68°C for 20 hours [long hybridization (LH)]. The reaction mixture was then subjected to the streptavidin treatment followed by phenol/chloroform extraction for a total of four times. Subtracted DNA was precipitated and subjected to a hybridization at 68°C for 2 hours with driver DNA again [short hybridization (SH)]. After removal of biotinylated double-stranded DNA, subtracted cDNA was ligated into BamHI/XhoI site of Chloramphenicol resistant pBCSK⁺ and transformed into ElectroMax *E. coli* DH10B cells by electroporation to generate subtracted cDNA library. To clone less abundant breast tumor specific genes, cDNA library subtraction was repeated by subtracting the tracer cDNA library with the driver cDNA library plus abundant cDNAs from primary subtractions. This resulted in the depletion of these abundant sequences and the generation of subtraction libraries that contain less abundant sequences.

To analyze the subtracted cDNA library, plasmid DNA was prepared

15 from

100-200 independent clones, which were randomly picked from the subtracted library, and characterized by DNA sequencing. The determined cDNA and expected amino acid sequences for the isolated cDNAs were compared to known sequences using the most recent Genbank and human EST databases.

20

30

5

10

EXAMPLE 3

PCR-SUBTRACTION

This example discloses PCR subtraction to enrich for breast tumor specific

25 polynucleotides.

PCR-subtraction was performed essentially as described in the literature. See, Diatchenko, L. et al., Proc Natl Acad Sci U S A. 93:6025-6030 (1996) and Yang, G.P. et al., Nucleic acids Res. 27:1517-23 (1999), incorporated herein by reference in their entirety. Briefly, this type of subtraction works by ligating two different adapters to different aliquots of a restriction enzyme digested tester (breast tumor) cDNA sample, followed by mixing of the testers separately with excess driver (without

10

15

20

25

adapters). This first hybridization results in normalization of single stranded tester specific cDNA due to the second order kinetics of hybridization. These separate hybridization reactions are then mixed without denaturation, and a second hybridization performed which produces the target molecules; double stranded cDNA fragments containing both of the different adapters. Two rounds of PCR were performed, which results in the exponential amplification of the target population molecules (normalized tester specific cDNAs), while other fragments were either unamplified or only amplified in a linear manner. The subtractions performed included a pool of breast tumors subtracted with a pool of normal breast and a pool of breast tumors subtracted with a pool of normal tissues including PBMC, brain, pancreas, liver, small intestine, stomach, heart and kidney.

Prior to cDNA synthesis RNA was treated with DNase I (Ambion) in the presence of RNasin (Promega Biotech, Madison, WI) to remove DNA contamination. The cDNA for use in real-time PCR tissue panels was prepared using 25µl Oligo dT (Boehringer-Mannheim) primer with superscript II reverse transcriptase (Gibco BRL, Bethesda, MD).

EXAMPLE 4

DETECTION OF BREAST CANCER USING BREAST-SPECIFIC ANTIGENS

The isolation and characterization of the breast-specific antigens B511S and B533S is described in U.S. Patent Application 09/346,327, filed July 2, 1999, the disclosure of which is hereby incorporated by reference in its entirety. The determined cDNA sequence for B511S is provided in SEQ ID NO: 30, with the corresponding amino acid sequence being provided in SEQ ID NO: 31. The determined cDNA sequence for B533S is provided in SEQ ID NO: 32. The isolation and characterization of the breast-specific antigen B726P is described in U.S. Patent Applications 09/285,480, filed April 2, 1999, and 09/433,826, filed November 3, 1999, the disclosures of which are hereby incorporated by reference in their entirety.

The determined cDNA sequences for splice variants of B726P are provided in SEQ ID NO: 13, 15, 17 and 19-24, with the corresponding amino acid sequences being provided in SEQ ID NO: 14, 16, 18 and 25-29.

15

20

25

30

The isolation and characterization of the breast-specific antigen B305D forms A and C has been described in U.S. Patent Application 09/429,755, filed October 28, 1999, the disclosure of which is hereby incorporated by reference in its entirety. Determined cDNA sequences for B305D isoforms A and C are provided in SEQ ID NO: 1, 3 and 5-7, with the corresponding amino acid sequences being provided in SEQ ID NO: 2, 4 and 8-10.

The isolation and characterization of the breast-specific antigen B311D has been described in U.S. Patent Application 09/289,198, filed April 9, 1999, the disclosure of which is hereby incorporated by reference in its entirety. The determined cDNA sequence for B311D is provided in SEQ ID NO:11, with the corresponding amino acid sequence being provided in SEQ ID NO:12.

cDNA sequences for mammaglobin are provided in Figs. 4 and 5, with the cDNA sequence for GABA π being provided in Fig 6 and are disclosed in SEQ ID NOs: 73-75, respectively.

The isolation and characteization of the breast-specific antigen lipophilin B has been described in U.S. Patent Application 09/780,842, filed February 8, 2001, the disclosure of which is hereby incorporated by reference in its entirety. The determined cDNA sequence for lipophilin B is provided in SEQ ID NO:76, with the corresponding amino acid sequence being provided in SEQ ID NO:77. The nucleotide sequences of several sequence variants of lipophilin B are also described in the 09/780,842 application.

EXAMPLE 5

MICROARRAY ANALYSIS

This example discloses the use of microarray analyses to identify polynucleotides that are at least two-fold overexpressed in breast tumor tissue samples as compared to normal breast tissue samples.

mRNA expression of the polynucleotides of interest was performed as follows. cDNA for the different genes was prepared as described above and arrayed on a glass slide (Incyte, Palo Alto, CA). The arrayed cDNA was then hybridized with a 1:1 mixture of Cy3 or Cy5 fluorescent labeled first strand cDNAs obtained from

WO 01/75171

5

10

15

20

PCT/US01/10631

polyA+ RNA from breast tumors, normal breast and normal tissues and other tumors as described in Shalon, D. et al., *Genome Res.* <u>6</u>:639-45 (1996), incorporated herein by reference in its entirety. Typically Cy3 (Probe 1) was attached to cDNAs from breast tumors and Cy5 (Probe 2) to normal breast tissue or other normal tissues. Both probes were allowed to compete with the immobilized gene specific cDNAs on the chip, washed then scanned for fluorescence intensity of the individual Cy3 and Cy5 fluorescence to determine extent of hybridization. Data were analyzed using GEMTOOLS software (Incyte, Palo Alto, CA) which enabled the overexpression patterns of breast tumors to be compared with normal tissues by the ratios of Cy3/Cy5. The fluorescence intensity was also related to the expression level of the individual genes.

40

DNA microarray analyses was used primarily as a screening tool to determine tissue/tumor specificity of cDNA's recovered from the differential display, cDNA library and PCR subtractions, prior to more rigorous analysis by quantitative RT-PCR, northern blotting, and immunohistochemistry. Microarray analysis was performed on two microchips. A total of 3603 subtracted cDNA's and 197 differential display templates were evaluated to identify 40 candidates for further analysis by quantitative PCR. From these candidates, several were chosen on the basis of favorable tissue specificity profiles, including B305D, B311D, B726P, B511S and B533S, indicating their overexpression profiles in breast tumors and/or normal breast versus other normal tissues. It was evident that the expression of these genes showed a high degree of specificity for breast tumors and/or breast tissue. In addition, these genes have in many cases complementary expression profiles.

The two known breast-specific genes, mammaglobin and γ25 aminobutyrate type A receptor π subunit (GABAπ) were also subjected to microarray
analysis. mRNA expression of mammaglobin has been previously described to be
upregulated in proliferating breast tissue, including breast tumors. *See*, (Watson et al., *Cancer Res.*, 56: 860-5 (1996); Watson et al., Cancer Res., 59: 3028-3031 (1999);
Watson et al., Oncogene. 16:817-24 (1998), incorporated herein by reference in their
30 entirety). The GABAπ mRNA levels were over-expressed in breast tumors. Previous
studies had demonstrated its overexpression in uterus and to some degree in prostate

and lung (Hedblom et al., J Biol. Chem. <u>272</u>:15346-15350 (1997)) but no previous study had indicated elevated levels in breast tumors.

EXAMPLE 6

QUANTITATIVE REAL-TIME PCR ANALYSIS

5

10

15

20

25

30

the

This example discloses the use of quantitative Real-time PCR to confirm

microarray identification polynucleotide that are at least two-fold overexpressed in breast tumor tissue samples as compared to normal breast tissue samples.

The tumor- and/or tissue-specificity of the polynucleotides identified by the microarray analyses disclosed herein in Example 5, were confirmed by quantitative PCR analyses. Breast metastases, breast tumors, benign breast disorders and normal breast tissue along with other normal tissues and tumors were tested in quantitative (Real time) PCR. This was performed either on the ABI 7700 Prism or on a GeneAmp® 5700 sequence detection system (PE Biosystems, Foster City, CA). The 7700 system uses a forward and a reverse primer in combination with a specific probe designed to anneal to sequence between the forward and reverse primer. This probe was conjugated at the 5'end with a fluorescent reporter dye and a quencher dye at the other 3' end (Taqman™). During PCR the Taq DNA polymerase with it's 5'-3' nuclease activity cleaved the probe which began to fluoresce, allowing the reaction to be monitored by the increase in fluorescence (Real-time). Holland et al., Proc Natl Acad Sci U S A. 88:7276-7280 (1991). The 5700 system used SYBR® green, a fluorescent dye, that only binds to double stranded DNA (Schneeberger et al., PCR Methods Appl. 4:234-8 (1995)), and the same forward and reverse primers as the 7700 instrument. No probe was needed. Matching primers and fluorescent probes were designed for each of the genes according to the Primer Express program (PE Biosystems, Foster City, CA).

Table 1. Primer and Probe Sequences for the Genes of Interest

	Forward Primer	Reverse primer	Probe
Mammaglobin	TGCCATAGATG	TGTCATATATTAA	TCTTAACCAAACG
	AATTGAAGGAA	TTGCATAAACACC	GATGAAACTCTGA
	TG (SEQ ID	TCA (SEQ ID	GCAATG (SEQ ID

WO 01/75171

5

10

15

PCT/US01/10631

	Forward Primer	Reverse primer	Probe
	NO:48)	NO:49)	NO:50)
B305D-C form	AAAGCAGATGG	CCTGAGACCAAA	ATTCCATGCCGGC
	TGGTTGAGGTT	TGGCTTCTTC	TGCTTCTTCTG
	(SEQ ID NO:39)	(SEQ ID NO:40)	(SEQ ID NO:41)
B311D	CCGCTTCTGACA	CCTATAAAGATGT	CCCCTCCCTCAGG
	ACACTAGAGAT	TATGTACCAAAA	GTATGGCCC (SEQ
	C (SEQ ID NO:63)	ATGAAGT (SEQ ID	ID NO:65)
		NO:64)	
B726P	TCTGGTTTTCTC	TGCCAAGGAGCG	CAACCACGTGACA
	ATTCTTTATTCA	GATTATCT (SEQ	AACACTGGAATTA
	TTTATT (SEQ ID	ID NO:43)	CAGG (SEQ ID
	NO:42)		NO:44)
B533S	CCCTTTCTCACC	TGCATTCTCTCAT	CCGGGCCTCAGGC
	CACACACTGT	ATGTGGAAGCT	ATATACTATTCTA
	(SEQ ID NO:66)	(SEQ ID NO:67)	CTGTCTG (SEQ ID
			NO:68)
$GABA\pi$	AAGCCTCAGAG	AAATATAAGTGA	AATCCATTGTATC
	TCCTTCCAGTAT	AGAAAAAAATTA	TTAGAACCGAGGG
	G (SEQ ID NO:36)	GTAGAT (SEQ ID	ATTTGTTTAGA
		NO:72)	(SEQ ID NO:38)
B511S	GACATTCCAGTT	TGCAGAAGACTC	TCTCAGGGACACA
	TTACCCAAATG	AAGCTGATTCC	CTCTACCATTCGG
	G (SEQ ID NO:69)	(SEQ ID NO:70)	GA (SEQ ID NO:71)

The concentrations used in the quantitative PCR for the forward primers for mammaglobin, GABAπ, B305D C form, B311D, B511S, B533S and B726P were 900, 900, 300, 900, 300 and 300nM respectively. For the reverse primers they were 300, 900, 900, 900, 300, 900 and 900nM respectively. Primers and probes so produced were used in the universal thermal cycling program in real-time PCR. They were titrated to determine the optimal concentrations using a checkerboard approach. A pool of cDNA from target tumors was used in this optimization process. The reaction was performed in 25μl volumes. The final probe concentration in all cases was 160nM. dATP, dCTP and dGTP were at 0.2mM and dUTP at 0.4mM. Amplitaq gold and Amperase UNG (PE Biosystems, Foster City, CA) were used at 0.625 units and 0.25 units per reaction. MgCl₂ was at a final concentration of 5mM. Trace amounts of glycerol, gelatin and Tween 20 (Sigma Chem Co, St Louis, MO) were added to stabilize the reaction. Each reaction contained 2μl of diluted template. The cDNA from RT reactions prepared as above was diluted 1:10 for the gene of interest and 1:100 for β-Actin. Primers and probes for β-Actin (PE Biosystems, Foster City, CA) were used in

a similar manner to quantitate the presence of β-actin in the samples. In the case of the SYBR® green assay, the reaction mix (25μl) included 2.5μl of SYBR green buffer, 2μl of cDNA template and 2.5μl each of the forward and reverse primers for the gene of interest. This mix also contained 3mM MgCl₂, 0.25units of AmpErase UNG, 0.625 units of Amplitaq gold, 0.08% glycerol, 0.05% gelatin, 0.0001% Tween 20 and 1mM dNTP mix. In both formats, 40 cycles of amplification were performed.

In order to quantitate the amount of specific cDNA (and hence initial mRNA) in the sample, a standard curve was generated for each run using the plasmid containing the gene of interest. Standard curves were generated using the Ct values determined in the real-time PCR which were related to the initial cDNA concentration used in the assay. Standard dilutions ranging from $20\text{-}2x10^6$ copies of the gene of interest were used for this purpose. In addition, a standard curve was generated for the housekeeping gene β -actin ranging from 200fg-2000pg to enable normalization to a constant amount of β -Actin. This allowed the evaluation of the over-expression levels seen with each of the genes.

15

30

The genes B311D, B533S and B726P were evaluated in quantitative PCR as described above on two different panels consisting of: (a) breast tumor, breast normal and normal tissues; and (b) breast tumor metastases (primarily lymph nodes), using the primers and probes shown above in Table 1. The data for panel (a) is shown in Figure 1 for all three genes. The three genes showed identical breast tissue expression profiles. However, the relative level of gene expression was very different in each case. B311D in general was expressed at lower levels than B533S and both less than B726P, but all three were restricted to breast tissue. The quantitative PCR thus confirmed there was a differential expression between normal breast tissue and breast tumors for all three genes, and that approximately 50% of breast tumors over-expressed these genes. When tested on a panel of distant metastases derived from breast cancers all three genes reacted with 14/21 metastases and presented similar profiles. All three genes also exhibited increasing levels of expression as a function of pathological stage of the tumor, as shown for B533S in Figure 2.

Mammaglobin is a homologue of a rabbit uteroglobin and the rat steroid binding protein subunit C3 and is a low molecular weight protein that is highly glycosylated. In contrast to its homologs, mammaglobin has been reported to be breast

44

specific and over-expression has been described in breast tumor biopsies (23%) and primary and metastatic breast tumors (~75%) with reports of the detection of mammaglobin mRNA expression in 91% of lymph nodes from metastatic breast cancer patients. However, more rigorous analysis of mammaglobin gene expression by microarray and quantitative PCR as described above (panels (a) and (b) and a panel of other tumors and normal tissues and additional breast tumors), showed expression at significant levels in skin and salivary gland with much lower levels in esophagus and trachea, as shown in Table 2 below.

45

Table 2
Normalized Distribution of Mammaglobin and B511S mRNA in Various Tissues

Tissue	Mean Copies	PCR ·	Mean Copies B511S	PCR	PCR Positive
	Mammaglobin	Positive	/ng β-Actin ± SD	Positive	(Mammaglobin/
	/ng β-Actin ±				B511S)
	SD				
Breast	1233.88±3612	31/42	1800.40±3893.24	33/42	38/42
Tumors	.74				
Breast	1912.54±4625	14/24	3329.50±10820.71	14/24	17/24
tumor	.85				
Metastases					
Benign	121.87±78.63	3/3	524.66±609.43	2/3	3/3
Breast					
disorders					
Normal	114.19±94.40	11/11	517.64±376.83	8/9	11/11
breast					
Breast	231.50±276.6	2/3	482.54±680.28	1/2	2/3
reduction	8				
Other	0.13±0.65	1/39	24.17±36.00	5/23	
tumors					
Salivary	435.65±705.1	2/3	45766.61±44342.43	3/3	
gland	1				
Skin	415.74±376.1	7/9	7039.05±7774.24	9/9	
	4				
Esophagus	4.45±3.86	2/3	1.02±0.14	0/3	
Bronchia	0.16	0/1	84.44±53.31	2/2	
Other	0.33±1.07	0/85	5.49±10.65	3/75	
normal					
tissues				·	

The breast-specific gene B511S, while having a different profile of reactivity on breast tumors and normal breast tissue to mammaglobin, reacted with the same subset of normal tissues as mammaglobin. B511S by PSORT analysis is indicated to have an ORF of 90aa and to be a secreted protein as is the case for mammaglobin. B511S has no evidence of a transmembrane domain but may harbor a cleavable signal sequence. Mammaglobin detected 14/24 of distant metastatic breast tumors, 31/42 breast tumors and exhibited ten-fold over-expression in tumors and metastases as compared to normal breast tissue. There was at least 300-fold over-expression in normal breast tissue versus other negative normal tissues and tumors tested, which were essentially negative for mammaglobin expression. B511S detected

46

33/42 breast tumors and 14/24 distant metastases, while a combination of B511S with mammaglobin would be predicted to detect 38/42 breast tumors and 17/24 metastatic lesions (Table 2 above). The quantitative level of expression of B511S and mammaglobin were also in similar ranges, in concordance with the microarray profiles observed for these two genes. Other genes that were additive with mammaglobin are shown in Table 3.

47

Table 3 mRNA Complementation of Mammaglobin with Other Genes

	Mammaglobin Positive	Mammaglo	obin Negativ	e		
		B305D	GABAπ	B726P	B305D + GABAπ	B305D + GABAπ + B726P
Breast Metastases	13/21	2/8	5/8	3/8	7/8	8/8
Breast tumors	18/25	3/7	4/7	5/7	7/7	7/7

5

10

15

20

25

B305D was shown to be highly over-expressed in breast tumors, prostate tumors, normal prostate tissue and testis compared to normal tissues, including normal breast tissue. Different splice variants of B305D have been identified with form A and C being the most abundant but all tested have similar tissue profiles in quantitative PCR. The A and C forms contain ORF's of 320 and 385 aa, respectively. B305D is predicted by PSORT to be a Type II membrane protein that comprises a series of ankyrin repeats. A known gene shown to be complementary with B305D, in breast tumors, was GABA_T. This gene is a member of the GABA_A receptor family and encodes a protein that has 30-40% amino acid homology with other family members, and has been shown by Northern blot analysis to be over-expressed in lung, thymus and prostate at low levels and highly over-expressed in uterus. Its expression in breast tissue has not been previously described. This is in contrast to other GABAA receptors that have appreciable expression in neuronal tissues. Tissue expression profiling of this gene showed it to be over-expressed in breast tumors in an inverse relationship to the B305D gene (Table 3). GABAπ detected 15/25 tumors and 6/21 metastases including 4 tumors and 5 metastases missed by mammaglobin. In contrast, B305D detected 13/25 breast tumors and 8/21 metastases, again including 3 tumors and 2 metastases missed by mammaglobin. A combination of just B305D and the GABA π would be predicted to identify 22/25 breast tumors and 14/21 metastases. The combination of B305D and GABAπ with mammaglobin in detecting breast metastases is shown in Table 3 above and Figures. 3A and 3B. This combination detected 20/21 of the breast metastases as well as 25/25 breast tumors that were evaluated on the same panels for all three genes.

48

The one breast metastasis that was negative for these three genes was strongly positive for B726P (Figs. 3A and 3B).

To evaluate the presence of circulating tumor cells, an immunocapture (cell capture) method was employed to first enrich for epithelial cells prior to RT-PCR analysis. Immunomagnetic polystyrene beads coated with specific monoclonal antibodies to two glycoproteins on the surface of epithelial cells were used for this purpose. Such an enrichment procedure increased the sensitivity of detection (~100 fold) as compared to direct isolation of poly A⁺ RNA, as shown in Table 4.

5

49

Table 4
Extraction of Mammaglobin Positive Cells (MB415) Spiked into Whole Blood and Detection by Real-time PCR

MB415 cells/ml Blood	Epithelial cell extraction (Poly A ⁺ RNA)	Direct Extraction (Poly A ⁺ RNA)
	Copies Mammagle	
100000	54303.2	58527.1
10000	45761.9	925.9
1000	15421.2	61.6
100	368.0	5.1
10	282.0	1.1
1	110.2	0
0	0	0

5

10

15

20

Mammaglobin-positive cells (MB415) were spiked into whole blood at various concentrations and then extracted using either epithelial cell enrichment or direct isolation from blood. Using enrichment procedures, mammaglobin mRNA was found to be detectable at much lower levels than when direct isolation was used. Whole blood samples from patients with metatastic breast cancer were subsequently treated with the immunomagnetic beads. Poly A⁺ RNA was then isolated, cDNA prepared and run in quantitative PCR using two gene specific primers (Table 1) and a fluorescent probe (Tagman[™]). As observed in breast cancer tissues, complementation was also seen in the detection of circulating tumor cells derived from breast cancers. Again, mammaglobin PCR detected circulating tumor cells in a high percentage of blood samples, albeit at low levels, from metastatic breast cancer patients (20/32) when compared to the normal blood samples (Table 5) but several of the other genes tested to date further increased this detection rate. This included B726P, B305D, B311D, B533S and GABA π . The detection level of mammaglobin in blood samples from metastatic breast cancer patients is higher than described previously (62 vs. 49%), despite testing smaller blood volumes, probably because of the use of epithelial marker-specific enrichment in our study. A combination of all the genes tested indicate that 27/32 samples were positive by one or more of these genes.

Table 5
Gene Complementation in Epithelial Cells Isolated from Blood of Normal Individuals and Metastatic Breast Cancer Patients

Sample ID	Mammaglobin	B305D	B311D	B533S	B726P	GABAπ	Combo
2	+	-	-	+	_	-	+
3	+		-	+	-	_	+
5	+	+	+	~	+	_	+
6	+	-	+	+	+	_	+
8	_		+	-	_	_	+
9	+	+	+	-	+	-	+
10	+	-	+	-	+	-	+
11	_	-	-	-	_	-	-
12	+	+	+	-	-	_	+
13	-	-	-	+	-	-	+
15	-	-	_	-	-	-	-
18	+	_	-	-	-		+
19	+	-	-	-	-	+	+
21	+	-	-	-	-	-	+
22	-	-	-	-	-		-
23	+	-	-	-	-	-	+
24	+	-	-	-	-	-	+
25	-	+	-	-	-	-	+
26	-	-	-	-	-	-	-
29	+	-	+	+	+	-	+
31	+	-	-	+	-	-	+
32	-	-	-	-	-	土	土
33	-	-	-	-	+	-	+
34	+	-	-	+	-	+	+
35	+		-	-	+	-	+
36	-	-	-	-	-	+	+
37	+	-	-	+	~		+
38	200	-	-	-	had .	-	_
40	+	-	-	-	_	-	+_
41	+	-	-	+	-	-	+
42	+	-	-	-	-	-	+
43	-		-	100	-	+	+
Donor 104	-	-	-		-	+	+
Donor 348	-	-	-	-	-	Nd	-
Donor 392	-	_	-	-	-	Nd	_
Donor 408	-	-	-	-	-	Nd	-
Donor 244	-	-	-	-	-	-	-
Donor 355	-	-	-	-	-	-	-
Donor 264	-	-	-	-	-	-	-
Donor 232	-	-	-	-	-	Nd	-
Donor 12	_	-	-	-	-		-
Donor 415	-	12	-	-	-	Nd	-
Donor 35	-	-	-	-	-	-	-
Sensitivity	20/32	4/32	7/32	9/32	7/32	4/32	27/32

In further studies, mammaglobin, GABA π , B305D (C form) and B726P specific primers and specific Taqman probes were employed in different combinations

5

51

to analyze their combined mRNA expression profile in breast metastases (B. met) and breast tumor (B. tumors) samples using real-time PCR. The forward and reverse primers and probes employed for mammaglobin, B305D (C form) and B726P are shown in Table 1. The forward primer and probe employed for $GABA\pi$ are shown in with the primer being follows: Table 1, reverse 5 TTCAAATATAAGTGAAGAAAAAATTAG-TAGATCAA (SEQ ID NO:51). As shown below in Table 6, a combination of mammaglobin, GABAπ, B305D (C form) and B726P was found to detect 22/22 breast tumor samples, with an increase in expression being seen in 5 samples (indicated by ++).

10

Table 6
Real-time PCR Detection of Tumor Samples using Different Primer Combinations

Tumor sample	Mammaglobin	Mammaglobin + GABA	Mammaglobin + GABA + B305D	Mammaglobin + GABA + B305D + B726P
B. Met 316A		+	+	+
B. Met 317A	+	+	+	+
B. Met 318A		+	+	++
B. Met 595A	+	+	+	+
B. Met 611A	+	+	+	+
B. Met 612A	+	+	+	+
B. Met 614A		+	+	+
B. Met 616A		+	+	+
B. Met 618A	+	+	+	+
B. Met 620A	+	+	+	+
B. Met 621A	+	+	+	+
B. Met 624A	+	+	+	+
B. Met 625A			+	+
B. Met 627A	+		+	+
B. Met 629A		+	+	+
B. Met 631A	+	+	+	+
B. Tumor 154A	+	+	+	++
B. Tumor 155A	+	+	+	++
B. Tumor 81D			+	++
B. Tumor 209A		+	+	+
B. Tumor 208A		+	+	++
B. Tumor 10A	+	+	+	+

The increase of message signals by the addition of specific primers was further demonstrated in a one plate experiment employing the four tumor samples B. met 316A, B. met 317A, B. tumor 81D and B. tumor 209A.

Expression of a combination of mammaglobin, $GABA\pi$, B305D (C form) and B726P in a panel of breast tumor and normal tissue samples was also detected using real-time PCR with a SYBR Green detection system instead of the Taqman probe approach. The results obtained using this system are shown in Figure 7.

10

EXAMPLE 7

QUANTITATIVE PCR IN PERIPHERAL BLOOD OF BREAST CANCER PATIENTS

The known genes evaluated in this study were mammaglobin and γ

aminobutyrate type A receptor π subunit (GABAπ). In order to identify novel genes which are over-expressed in breast cancer we have used an improved version of the differential display RT-PCR (DDPCR) technique (Liang et al., Science 257:967-971 (1993); Mou et al., Biochem Biophy Res Commun. 199:564-569 (1994)); cDNA library

WO 01/75171

15

20

30

extraction methods (Hara et al., Blood <u>84</u>:189-199 (1994)) and PCR subtraction (Diatchenko et al., *Proc Natl Acad Sci U S A.*, <u>93</u>:6025-6030 (1996); Yang et al., Nucleic Acids Res. 27:1517-23 (1999)).

Differential display resulted in the recovery of two cDNA fragments designated as B305D and B311D (Houghton et al., *Cancer Res.* 40:Abstract #217, 32-33, (1999). B511S and B533S are two cDNA fragments isolated using cDNA library subtraction approach (manuscript in preparation) while the B726P cDNA fragment was derived from PCR subtraction (Jiang et al., Proceedings of the Amer Assoc Cancer Res. 40:Abstract #216, 32 (1999); Xu et al., Proceedings of the Amer Assoc Cancer Res. 40:Abstract #2115, 319 (1999); and Molesh et al., Proceedings of Amer Assoc Cancer Res. 41:Abstract #4330, 681 (2000).

Three of the novel genes, B311D, B533S and B726P, showed identical breast tissue expression profile by quantitative PCR analysis. These genes were evaluated in quantitative PCR on two different panels consisting of (a) breast tumor, breast normal and normal tissues and (b) panel of breast tumor metastases (primarily lymph nodes). Primers and probes used are shown in Table 1. The data for panel (a) is shown in Figure 2 for all three genes. Overall, the expression profiles are comparable and are in the same rank order, however, the levels of expression are considerably different. B311D in general was expressed at lower levels than B533S and both less than B726P but all three were restricted to breast tissue. All three sequences were used to search against the Genbank database. Both B311D and B533S sequences contain different repetitive sequences and an ORF has not been identified for either. B726P is a novel gene, with mRNA splicing yielding several different putative ORF's.

The quantitative PCR confirmed there was a differential mRNA expression

between normal breast tissue and breast tumors, with approximately 50% of breast tumors overexpressed these genes. When tested on a panel of distant metastases derived from breast cancers all three genes reacted with 14/21 metastases and presented similar profiles (data not shown). Interestingly, when tested on a prostate cancer panel, all three genes identified the same 3/24 prostate tumors but at much lower expression

10

15

20

25

30

levels than in breast. This group of genes exhibited increasing levels of expression as a function of pathological stage of the tumor as shown for B533S.

More rigorous analysis of mammaglobin gene expression by microarray, and quantitative PCR showed expression at significant levels in skin and salivary gland and much lower levels in esophagus and trachea. B511S had a slightly different profile of reactivity on breast tumors and normal breast tissue when compared to mammaglobin, yet reacted with a similar subset of normal tissues as mammaglobin. Mammaglobin detected 14/24 of distant metastatic breast tumors, 31/42 breast tumors and exhibited ten-fold over-expression in tumors and metastases as compared to normal breast tissue. There was at least 300-fold over-expression of mammaglobin in normal breast tissue versus other negative normal tissues and tumors tested. B511S detected 33/42 breast tumors and 14/24 distant metastases. A combination of B511S with mammaglobin would be predicted to detect 38/42 breast tumors and 17/24 metastatic lesions. The quantitative level of expression of B511S and mammaglobin were also in similar ranges, in concordance with the microarray profiles observed for these two genes.

Certain genes complemented mammglobin's expression profile, *i.e.* were shown to express in tumors that mammaglobin did not. B305D was highly over-expressed in breast tumors, prostate tumors, normal prostate tissue and testis compared to normal tissues including normal breast tissue. Different splice variants of B305D were identified with the forms A and C being the most abundant. All forms tested had similar tissue profiles in quantitative PCR. The A and C forms contain ORF's of 320 and 385 aa, respectively. A known gene shown to be complementary with B305D, in breast tumors, was GABAπ. This tissue expression profile is in contrast to other GABA_A receptors that typically have appreciable expression in neuronal tissues. An additional observation was that tissue expression profiling of this gene showed it to be over-expressed in breast tumors in an inverse relationship to the B305D gene (Table 3). GABAπ detected 15/25 tumors and 6/21 metastases including 4 tumors and 5 metastases missed by mammaglobin. In contrast, B305D detected 13/25 breast tumors and 8/21 metastases again including 3 tumors and 2 metastases missed by mammaglobin. A combination of just B305D and the GABAπ would be predicted to

10

15

20

identify 22/25 breast tumors and 14/21 metastases. This combination detected 20/21 of the breast metastases as well as 25/25 breast tumors that were evaluated on the same panels for all three genes. The one breast metastasis that was negative for these three genes was strongly positive for B726P.

The use of microarray analysis followed by quantitative PCR provided a methodology to accurately determine the expression of breast cancer genes both in breast tissues (tumor and normal) as well as in normal tissues and to assess their diagnostic and therapeutic potential. Five novel genes and two known genes were evaluated using these techniques. Three of these genes B311D, B533S and B726P exhibited concordant mRNA expression and collectively the data is consistent with coordinated expression of these three loci at the level of transcription control. All three genes showed differential expression in breast tumors versus normal breast tissue and the level of overexpression appeared related to the pathological stage of the tumor. In the case of mammaglobin, expression was found in other tissues apart from breast tissue. Expression was seen in skin, salivary gland and to a much lesser degree in trachea.

Expression of GABA π in breast tumors was also a novel observation. While the expression of several genes complemented that seen with mammaglobin, two genes in particular, B305D and GABA π added to the diagnostic sensitivity of mammaglobin detection. A combination of these three genes detected 45/46 (97.8%) breast tumors and metastases evaluated. Inclusion of B726P enabled the detection of all 25 of the breast tumors and 21 distant metastases.

EXAMPLE 8

25 ENRICHMENT OF CIRCULATING BREAST CANCER CELLS BY IMMUNOCAPTURE

This example discloses the enhanced sensitivity achieved by use of the immunocapture cell capture methodology for enrichment of circulating breast cancer cells.

To evaluate the presence of circulating tumor cells an immunocapture

method was adopted to first enrich for epithelial cells prior to RT-PCR analysis.

Epithelial cells were enriched from blood samples with an immunomagnetic bead

PCT/US01/10631

separation method (Dynal A.S, Oslo, Norway) utilizing magnetic beads coated with monoclonal antibodies specific for glycopolypeptide antigens on the surface of human epithelial cells. (Exemplary suitable cell-surface antigens are described, for example, in Momburg, F. et al., Cancer Res., 41:2883-91 (1997); Naume, B. et al., Journal of Hemotherapy. 6:103-113 (1997); Naume, B. et al., Int J Cancer. 78:556-60 (1998); Martin, V.M. et al., Exp Hematol., 26:252-64 (1998); Hildebrandt, M. et al., Exp Hematol. 25:57-65 (1997); Eaton, M.C. et al., Biotechniques 22:100-5 (1997); Brandt, B. et al., Clin Exp Metastases 14:399-408 (1996), each of which are incorporated herein by reference in their entirety. Cells isolated this way were lysed and the magnetic beads removed. The lysate was then processed for poly A⁺ mRNA isolation using magnetic beads (Dynabeads) coated with Oligo (dT) 25 After washing the beads in the kit buffer bead/polyA⁺RNA samples were finally suspended in 10mM Tris HCl pH 8 and subjected to reverse transcription. The RNA was then subjected to Real time PCR using gene specific primers and probes with reaction conditions as outlined herein above. β-Actin content was also determined and used for normalization. Samples with gene of interest copies/ng β -actin greater than the mean of the normal samples + 3 standard deviations were considered positive. Real time PCR on blood samples was performed exclusively using the Taqman™ procedure but extending to 50 cycles.

Mammaglobin mRNA using enrichment procedures was found to be detectable at much lower levels than when direct isolation was used. Whole blood 20 samples from patients with metatastic breast cancer were subsequently treated with the immunomagnetic beads, polyA+ RNA was then isolated, cDNA made and run in quantitative PCR using two gene specific primers to mammaglobin and a fluorescent probe (Taqman™). As observed in breast cancer tissues, complementation was also seen in the detection of circulating tumor cells derived from breast cancers. Again, 25 mammaglobin PCR detected circulating tumor cells in a high percentage of bloods, albeit at low levels, from metastatic breast cancer (20/32) when compared to the normal blood samples. Several of the other genes tested to date could further increase this detection rate; this includes B726P, B305D, B311D, B533S and GABAπ. combination of all the genes tested indicates that 27/32 samples were positive by one or 30 more of these genes.

EXAMPLE 9

MULTIPLEX DETECTION OF BREAST TUMORS

Additional Multiplex Real-time PCR assays were established in order to simultaneously detect the expression of four breast cancer-specific genes: LipophilinB, Gaba (B899P), B305D-C and B726P. In contrast to detection approaches relying on expression analysis of single breast cancer-specific genes, this Multiplex assay was able to detect all breast tumor samples tested.

This Multiplex assay was designed to detect LipophilinB expression instead of Mammaglobin. Due to their similar expression profiles, LipophilinB can replace Mammaglobin in this Multiplex PCR assay for breast cancer detection. The assay was carried out as follows: LipophilinB, B899P (Gaba), B305D, and B726P specific primers, and specific Taqman probes, were used to analyze their combined mRNA expression profile in breast tumors. The primers and probes are shown below:

15 LipophilinB: Forward Primer (SEQ ID NO: 33): 5' TGCCCCTCCGGAAGCT. Primer (SEQ ID NO:34): Reverse 5° CGTTTCTGAAGGGACATCTGATC. Probe (SEQ ID NO: 35) (FAM-5' - 3'-TAMRA): TTGCAGCCAAGTTAGGAGTGAAGAGATGCA.

GABA (B899P): Forward Primer (SEQ ID NO: 36): 5'

20 AAGCCTCAGAGTCCTTCCAGTATG. Reverse Primer (SEQ ID NO: 37): 5'

TTCAAATATAAGTGAAGAAAAAATTAGTAGATCAA. Probe (SEQ ID NO: 38)

(FAM-5' - 3'-TAMRA):

AATCCATTGTATCTTAGAACCGAGGGATTTGTTTAGA.

B305D (C form): Forward Primer (SEQ ID NO: 39): 5'
25 AAAGCAGATGGTTGAGGTT. Reverse Primer (SEQ ID NO: 40): 5'
CCTGAGACCAAATGGCTTCTTC. Probe (SEQ ID NO: 41) (FAM-5' – 3'-TAMRA)
ATTCCATGCCGGCTGCTTCTTCTG.

B726P: Forward Primer (SEQ ID NO: 42): 5'

TCTGGTTTTCTCATTCTTATTCATTTATT. Reverse Primer (SEQ ID NO: 43): 5'

30 TGCCAAGGAGCGGATTATCT. Probe (SEQ ID NO: 44) (FAM-5' – 3'-TAMRA):

CAACCACGTGACAAACACTGGAATTACAGG.

Actin: Forward Primer (SEQ ID NO: 45): 5' ACTGGAACGGTGAAGGTGACA. Reverse Primer (SEQ ID NO 46): 5' CGGCCACATTGTGAACTTTG. Probe (SEQ ID NO: 47): (FAM-5' – 3'-TAMRA): CAGTCGGTTGGAGCGAGCATCCC.

58

The assay conditions were:

5

10

25

Tagman protocol (7700 Perkin Elmer):

In 25 μ l final volume: 1x Buffer A, 5mM MgCl, 0.2 mM dCTP, 0.2 mM dATP, 0.4 mM dUTP, 0.2 mM dGTP, 0.01 U/ μ l AmpErase UNG, 0.025 u/ μ l TaqGold, 8% (v/v) Glycerol, 0.05% (v/v) Gelatin, 0.01% (v/v) Tween20, 4 pmol of each gene specific Taqman probe (LipophilinB + Gaba + B305D + B726P), 100 nM of B726P-F + B726P-R, 300 nM of Gaba-R, and 50 nM of LipophilinB-F + LipophilinB-R + B305D-R + Gaba-R, template cDNA (originating from 0.02 μ g polyA + RNA).

LipophilinB expression was detected in 14 out of 27 breast tumor samples.

However, the Multiplex assay for LipophilinB, B899P, B305D-C and B726P detected an expression signal in 27 out of 27 tumors with the detection level above 10 mRNA copies/1000 pg actin in the majority of samples and above 100 mRNA copies/1000 pg actin in 5 out of the 27 samples tested (Figure 8).

20 EXAMPLE 10

MULTIPLEX DETECTION OPTIMIZATION

The Multiplex Real-time PCR assay described above was used to detect the expression of Mammaglobin (or LipophilinB), Gaba (B899P), B305D-C and B726P simultaneously. According to this Example, assay conditions and primer sequences were optimized to achieve parallel amplification of four PCR products with different lengths. Positive samples of this assay can be further characterized by gel electrophoresis and the expressed gene(s) of interest can be determined according to the detected amplicon size(s).

Mammaglobin (or LipophilinB), Gaba (B899P), B305D and B726P specific primers and specific Taqman probes were used to simultaneously detect their expression. The primers and probes used in this example are shown below.

Mammaglobin: Forward Primer (SEQ ID NO: 48): 5' TGCCATAGATGAAGGAATG. Reverse Primer (SEQ ID NO: 49): 5' TGTCATATATTAATTGCATAAACACCTCA. Probe (SEQ ID NO: 50): (FAM-5' – 3'-TAMRA): TCTTAACCAAACGGATGAAACTCTGAGCAATG.

GABA (B899P): Forward Primer (SEQ ID NO: 36): 5'
AAGCCTCAGAGTCCTTCCAGTATG. Reverse Primer (SEQ ID NO: 51): 5'
ATCATTGAAAATTCAAATATAAGTGAAG. Probe (SEQ ID NO: 38) (FAM-5' –
3'-TAMRA) AATCCATTGTATCTTAGAACCGAGGGATTTGTTTAGA.

B305D (C form): Forward Primer (SEQ ID NO: 39): 5'

10 AAAGCAGATGGTTGAGGTT. Reverse Primer (SEQ ID NO: 40): 5'

CCTGAGACCAAATGGCTTCTTC. Probe (SEQ ID NO: 41): (FAM-5' - 3'
TAMRA): ATTCCATGCCGGCTGCTTCTTCTG.

B726P: Forward Primer (SEQ ID NO: 52): 5'
GTAGTTGTGCATTGAAATAATTATCATTAT. Reverse Primer (SEQ ID NO: 43):

15 5' TGCCAAGGAGCGGATTATCT. Probe (SEQ ID NO: 44) (FAM-5' - 3'TAMRA): CAACCACGTGACAAACACTGGAATTACAGG.

Primer locations and assay conditions were optimized to achieve parallel amplification of four PCR products with different sizes. The assay conditions were:

Tagman protocol (7700 Perkin Elmer):

In 25 μ1 final volume: 1x Buffer A, 5 mM MgCl, 0.2 mM dCTP, 0.2 mM dATP, 0.4 mM dUTP, 0.2 mM dGTP, 0.01 U/μl AmpErase UNG, 0.0375 U/μl TaqGold, 8% (v/v) Glycerol, 0.05% (v/v) Gelatin, 0.01% (v/v) Tween20, 4 pmol of each gene specific Taqman probe (Mammaglobin + Gaba + B305D + B726P), 300 nM of Gaba-R + Gaba-F, 100 nM of Mammaglobin-F + R; B726P-F + R, and 50 nM of B305D-F + R template cDNA (originating from 0.02 (μg polyA + RNA).

PCR protocol:

5

 50^{o} for 2': x 1, 95° for 10': X 1, and 95° for 15'' / 60 ° for 1' / 68 ° for 1': x 50.

Since each primer set in the multiplex assay results in a band of unique length, expression signals of the four genes of interest can be measured individually by agarose gel analysis (*see*, Figure 9), or the combined expression signal of all four genes

60

can be measured in real-time on an ABI 7700 Prism sequence detection system (PE Biosystems, Foster City, CA). The expression of LipophilinB can also be detected instead of Mammaglobin. Although specific primers have been described herein, different primer sequences, different primer or probe labeling and different detection systems could be used to perform this multiplex assay. For example, a second fluorogenic reporter dye could be incorporated for parallel detection of a reference gene by real-time PCR. Or, for example a SYBR Green detection system could be used instead of the Taqman probe approach.

10 EXAMPLE 11

5

15

20

25

30

DESIGN AND USE OF GENOMIC DNA-EXCLUDING, INTRON-EXON BORDER SPANNING
PRIMER RAIRS FOR BREAST CANCER MULTIPLEX ASSAY

The Multiplex Real-time PCR assay described herein can detect the expression of Mammaglobin, Gaba (B899P), B305D-C and B726P simultaneously. The combined expression levels of these genes is measured in real-time on an ABI 7700 Prism sequence detection system (PE Biosystems, Foster City, CA). Individually expressed genes can also be identified due to different amplicon sizes via gel electrophoresis. In order to use this assay with samples derived from non-DNase treated RNAs (e.g. lymph node cDNA) and to avoid DNase-treatment for small RNA-samples (e.g. from blood specimens, tumor and lymph node aspirates), intron-spanning primer pairs have been designed to exclude the amplification of genomic DNA and therefore to eliminate nonspecific and false positive signals. False positive signal is caused by genomic DNA contamination in cDNA specimens. The optimized Multiplex assay described herein excludes the amplification of genomic DNA and allows specific detection of target gene expression without the necessity of prior DNase treatment of RNA samples. Moreover the genomic match and the location of the Intron-Exon border could be verified with these primer sets.

Mammaglobin, Gaba (B899P), B305D and B726P specific primers and specific Taqman probes were used to simultaneously detect their expression (Table 7). Primer locations were optimized (Intron-Exon border spanning) to exclusively detect

10

15

cDNA and to exclude genomic DNA from amplification. The identity of the expressed gene(s) was determined by gel electrophoresis.

Table 7
Intron-Exon border Spanning Primer and Probe Sequences
for Breast Tumor Multiples Assay

Gene	Forward Primer	Reverse Primer	Taqman probe
			(FAM-5' – 3'TAMRA)
Mammaglobin	tgccatagatgaattgaagga atg (SEQ ID NO:48)	tgtcatatattaattgcataaacacct ca (SEQ ID NO:49)	tcitaaccaaacggatgaaactctgagca atg (SEQ ID NO:50)
B899P	aagcetcagagtcettccagta tg (SEQ ID NO:36)	ttcaaatataagtgaagaaaaaatta gtagatcaa (SEQ ID NO:37)	aatccattgtatcttagaaccgagggattt gttt (SEQ ID NO:62)
B305D	aaagcagatggtggttgaggt t (SEQ ID NO:39)	cctgagaccaaatggcttcttc (SEQ ID NO:40)	attccatgccggctgcttcttctg (SEQ ID NO:41)
B726P	tctggttttctcattctttattcatt tatt (SEQ ID NO:42)	tgccaaggagcggattatct (SEQ ID NO:43)	caaccacgtgacaaacactggaattaca gg (SEQ ID NO:44)
Actin	actggaacggtgaaggtgac a (SEQ ID NO:45	cggccacattgtgaactttg (SEQ ID NO:46)	cagtcggttggagcgagcatccc (SEQ ID NO:47)
B899P-INT	caattttggtggagaacccg (SEQ ID NO:53)	gctgtcggaggtatatggtg (SEQ ID NO:54)	catttcagagagtaacatggactacaca (SEQ ID NO:55)
B305D-INT	tctgataaaggccgtacaatg (SEQ ID NO:56)	tcacgacttgctgtttttgctc (SEQ ID NO:57)	atcaaaaaaaaaagcatggcctcacacca ct (SEQ ID NO:58)
B726P-INT	gcaagtgccaatgatcagagg (SEQ ID NO:59)	atatagactcaggtatacacact (SEQ ID NO:60)	tcccatcagaatccaaacaagaggaaga tg (SEQ ID NO:61)

Primer locations and assay conditions were optimized to achieve parallel amplification of the four PCR products. The assay conditions were as follows:

Tagman protocol (7700 Perkin Elmer)

In 25μl final volume: 1x Buffer A, 5 mM MgCl, 0.2 mM dCTP, 0.2 mM dATP, 0.4 mM dUTP, 0.2 mM dGTP, 0.01 U/AmpErase UNG, 8 % (v/v) Glycerol, 0.05 % (v/v) Gelatin, 0.01 % (v/v) Tween20, 4 pmol of each gene specific Taqman probe (Mammaglobin + B899P-INT + B305D-INT + B726P-INT), 300 nM of B305D-INT-F; B899P-INT-F, 100 nM of Mammaglobin-F + R; B726P-INT-F +R, 50 nM of B899P-INT-R; B305D-INT-R, template cDNA (originating from 0.02 μg polyA+RNA).

PCR cycling conditions

1 cycle at 50°C for 2 minutes, 1 cycle at 95°C for 10 minutes, 50 cycles 20 of 95°C for 1 minute and 68°C for 1 minute.

Figure 10 shows a comparison of the multiplex assay using intron-exon border spanning primers (bottom panel) and the multiplex assay using non-optimized

62

primers (top panel), to detect breast cancer cells in a panel of lymph node tissues. This experiment shows that reduction in background resulting from genomic DNA contamination in samples is achieved using the intron-exon spanning primers of the present invention.

5

10

15

20

25

30

EXAMPLE 12

MULTIPLEX DETECTION OF METASTASIZED BREAST TUMOR CELLS IN SENTINEL LYMPH NODE BIOPSY SAMPLES

Lymph node staging is important for determining appropriate adjuvant hormone and chemotherapy. In contrast to conventional axillary dissection a less invasive approach for staging of minimal residual disease is sentinel lymph node biopsy. Sentinel lymph node biopsy (SLNB) has the potential to improve detection of metastases and to provide prognostic values to lead to therapy with minimal morbidity associated with complete lymph node dissection. SLNB implements mapping of the one or two lymph nodes which primarily drain the tumor and therefore are most likely to harbor metastatic disease (the sentinel nodes). Routine pathological analysis of lymph nodes result in a high false-negative rate: one-third of women with pathologically negative lymph nodes develop recurrent disease [Bland: The Breast: Saunders 1991]. A more sensitive detection technique for tumor cells would be RT-PCR but its application is limited by lack of a single specific markers. The multimarker assay described above increases the likelihood of cancer detection across the population without producing false-positive results from normal lymph nodes.

As mentioned above, lymphatic afferents from a primary tumor drain into a single node, the sentinel lymph node, before drainage into the regional lymphatic basin occurs. Sentinel lymph nodes are located with dyes and/or radiolabelled colloid injected in the primary lesion site and sentinel lymph node biopsy allows pathological examination for micrometastatic deposits, staging of the axilla and therefore can avoid unnecessary axillary dissection. Nodal micrometastases can be located with staining (haematoxylin or eosin) or immunohistochemical analysis for cytokeratin proteins. Immunocytochemical staining techniques can produce frequent false-negative results by missing small metastatic foci due to inadequate sectioning of the node.

63

Immunohistochemistry can result in false-positive results due to illegitimate expression of cytokeratins (reticulum cells) or in false-negative results when using the antibody Ber-Ep4 which corresponding antigen is not expressed on all tumor cells.

The multiplex assay described herein could provide a more sensitive detection tool for positive sentinel lymph nodes. Moreover the detection of breast cancer cells in bone marrow samples, peripheral blood and small needle aspiration samples is desirable for diagnosis and prognosis in breast cancer patients.

Twenty-two metastatic lymph node samples, in addition to 15 samples also previously analyzed and shown in Figure 3A, were analyzed using the intron-exon border spanning multiplex PCR assay described herein. The results from this analysis are summarized in Table 8. Twenty-seven primary tumors were also analyzed and the results shown in Table 9. Twenty normal lymph node samples tested using this assay were all negative.

10

5

Table 8.
Multiples Real-time PCR Analysis of 37 Metastatic Lymph Nodes

breast metastatic	Mammaglobin	B305D	B899P	B726P	Multiplex
lymph node samples	lviammagioom	D303D	D0551	D7201	Manupiex
	++	+		+	+++
B.Met 317A		'	++		+++
B.Met 318A	+			+	+++
B.Met 595A	+	+	+++		++
B.Met 611A	++	++	777	+	++
B.Met 612A				++	+++
B.Met 614A		++	,	++	
B.Met 616A			+		++
B.Met 618A	+++	+			+++
B.Met 620A	++	++		++	+++
B.Met 621A	+	+++		+	+++
B.Met 624A			++		+++
B.Met 625A		++		++	+
B.Met 627A		+		+	+
B.Met 629A	++				+++
B.Met 631A	+		++		+
1255	+++	++		++	++
. 1257	+++	+	+	+	++
769	+++			+	++
1258	++	+	+		+
1259		++	++		+++
1250	+++	+		+	+++
1726	+++	+		+	+++
786	+++	+	+		+++
281-LI-r	+++				+++
289-L2	++	+			++
366-S	+				+
374-S+	+++	++			+++
376-S	++			+	++
381-S	+	+			+
383-Sx	+++	++			+++
496-M	+++	++			+++
591-SI-A	+	+			+
652-I		+	++		+++
772	+				+
777	+	+		++	++
778	+++				+++
779	+		++		++
117	L	<u> </u>	<u> </u>	<u> </u>	

65

Table 9
Multiplex Real-time PCR Analysis of 27 Primary Breast Tumors

breast primary	Mammaglobi	B305D	B899P	B726P	Multiplex
tumor samples	1	D303D	D0771	B/201	Windiplox
	<u>n</u>				, , ,
T443	+	++		+++	+++
T457		+	+		+
T395			++		++
T10A	+	+++		+++	+++
T446		+		++	++
T11C	+		+++		+++
T23B	+	++			+++
T207A		++			+
T437	+	+		++	+++
T391	+	++		+++	+++
T392	+	+	,		++
TS76	+	++			+++
T483	++	+			+++
T81G	+	+	++	++	+++
T430	+		++		++
T465	+	+		+	++
TS80			+		+
T469	+			+	+++
T467	+			++	+++
T439		+			+
T387	++		+	+	++
T318			+		++
T154A				+	+
T387A	+++		+	+	+++
T155A	+		++	+	+
T209A		++			++
T208A		+		+	++

From the foregoing it will be appreciated that, although specific embodiments of the invention have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims.

66

CLAIMS

We Claim:

1. A method for identifying one or more tissue-specific polynucleotides, said method comprising the steps of:

- (a) performing a genetic subtraction to identify a pool of polynucleotides from a tissue of interest;
- (b) performing a DNA microarray analysis to identify a first subset of said pool of polynucleotides of interest wherein each member polynucleotide of said first subset is at least two-fold over-expressed in said tissue of interest as compared to a control tissue; and
- (c) performing a quantitative polymerase chain reaction (PCR) analysis on polynucleotides within said first subset to identify a second subset of polynucleotides that are at least two-fold over-expressed as compared to said control tissue:

wherein a polynucleotide is identified as tissue-specific if it is at least two-fold overexpressed by both microarray and quantitative PCR analyses.

- 2. The method of claim 1 wherein said genetic subtraction is selected from the group consisting of differential display and cDNA subtraction.
- 3. A method for identifying a subset of polynucleotides showing complementary tissue-specific expression profiles in a tissue of interest, said method comprising the steps of:
- (a) performing a first expression analysis selected from the group consisting of DNA microarray and quantitative PCR to identify a first polynucleotide that is at least two-fold over-expressed in a first tissue sample of interest obtained from a first patient but not over-expressed in a second tissue sample of interest as compared to a control tissue; and

(b) performing a second expression analysis selected from the group consisting of DNA microarray and quantitative PCR to identify a second polynucleotide that is at least two-fold over-expressed in a second tissue sample of interest obtained from a second patient but not over-expressed in a first tissue sample of interest as compared to said control tissue;

wherein the first tissue sample and said second tissue sample are of the same tissue type, and wherein over-expression of said first polynucleotide in only said first tissue samples of interest and over-expression of said second polynucleotide in only said second tissue sample of interest indicates complementary tissue-specific expression of said first polynucleotide and said second polynucleotide.

- 4. A method for determining the presence of a cancer cell in a patient, said method comprising the steps of:
 - (a) obtaining a biological sample from said patient;
- (b) contacting said biological sample with a first oligonucleotide that hybridizes to a first polynucleotide said first polynucleotide selected from the group consisting of polynucleotides depicted in SEQ ID NO:73, SEQ ID NO:74 and SEQ ID NO:76;
- (c) contacting said biological sample with a second oligonucleotide that hybridizes to a second polynucleotide selected from the group consisting of SEQ ID NO: 1, 3, 5-7, 11, 13, 15, 17, 19-24, 30, 32, and 75;
- (d) detecting in said sample an amount of a polynucleotide that hybridizes to at least one of said oligonucleotides; and
- (e) comparing the amount of the polynucleotide that hybridizes to said oligonucleotide to a predetermined cut-off value, and therefrom determining the presence or absence of a cancer in the patient.
- 5. A method for determining the presence or absence of a cancer in a patient, said method comprising the steps of:
 - (a) obtaining a biological sample from said patient;

- (b) contacting said biological sample with a first oligonucleotide that hybridizes to a first polynucleotide selected from the group consisting of polynucleotides depicted in SEQ ID NO:73, SEQ ID NO:74 and SEQ ID NO:76;
- (c) contacting said biological sample with a second oligonucleotide that hybridizes to a second polynucleotide as depicted in SEQ ID NO:75;
- (d) contacting said biological sample with a third oligonucleotide that hybridizes to a third polynucleotide selected from the group consisting of polynucleotides depicted in SEQ ID NO:5, SEQ ID NO:6 and SEQ ID NO:7;
- (e) contacting said biological sample with a fourth oligonucleotide that hybridizes to a fourth polynucleotide selected from the group consisting of polynucleotides depicted in SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23 and SEQ ID NO:24;
- (f) detecting in said biological sample an amount of a polynucleotide that hybridizes to at least one of said oligonucleotides; and
- (g) comparing the amount of polynucleotide that hybridizes to the oligonucleotide to a predetermined cut-off value, and therefrom determining the presence or absence of a cancer in the patient.
- 6. A method for determining the presence or absence of a cancer in a patient, said method comprising the steps of:
 - (a) obtaining a biological sample from said patient;
- (b) contacting said biological sample with an oligonucleotide that hybridizes to a tissue-specific polynucleotide;
- (c) detecting in the sample a level of a polynucleotide that hybridizes to the oligonucleotide; and
- (d) comparing the level of polynucleotide that hybridizes to the oligonucleotide with a predetermined cut-off value, and therefrom determining the presence or absence of a cancer in the patient.

7. A method for monitoring the progression of a cancer in a patient, said method comprising the steps of:

- (a) obtaining a first biological sample from said patient;
- (b) contacting said biological sample with an oligonucleotide that hybridizes to a polynucleotide that encodes a breast tumor protein;
- (c) detecting in the sample an amount of said polynucleotide that hybridizes to said oligonucleotide;
- (d) repeating steps (b) and (c) using a second biological sample obtained from said patient at a subsequent point in time; and
- (e) comparing the amount of polynucleotide detected in step (d) with the amount detected in step (c) and therefrom monitoring the progression of the cancer in the patient.
- 8. The method any one of claim 6 and claim 7 wherein said polynucleotide encodes a breast tumor protein selected from the group consisting of mammaglobin, lipophilin B, GABA π (B899P), B726P, B511S, B533S, B305D and B311D.
- 9. A method for detecting the presence of a cancer cell in a patient, said method comprising the steps of:
 - (a) obtaining a biological sample from said patient;
- (b) contacting said biological sample with a first oligonucleotide that hybridizes to a first polynucleotide selected from the group consisting of mammaglobin and lipophilin B;
- (c) contacting said biological sample with a second oligonucleotide that hybridizes to a second polynucleotide sequence selected from the group consisting of GABA π (B899P), B726P, B511S, B533S, B305D and B311D;
- (d) detecting in said biological sample an amount of a polynucleotide that hybridizes to at least one of the oligonucleotides; and

- (e) comparing the amount of polynucleotide that hybridizes to the oligonucleotide to a predetermined cut-off value, and therefrom determining the presence or absence of a cancer in the patient.
- 10. A method for determining the presence of a cancer cell in a patient, said method comprising the steps of:
 - (a) obtaining a biological sample from said patient;
- (b) contacting said biological sample with a first oligonucleotide that hybridizes to a first polynucleotide selected from the group consisting of a polynucleotide depicted in SEQ ID NO:73 and SEQ ID NO:74 or complement thereof;
- (c) contacting said biological sample with a second oligonucleotide that hybridizes to a second polynucleotide depicted in SEQ ID NO:75 or complement thereof;
- (d) contacting said biological sample with a third oligonucleotide that hybridizes to a third polynucleotide selected from the group consisting of a polynucleotide depicted in SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:6 and SEQ ID NO:7 or complement thereof;
- (e) contacting said biological sample with a fourth oligonucleotide that hybridizes to a fourth polynucleotide selected from the group consisting of a polynucleotide depicted in SEQ ID NO:11 or complement thereof;
- (f) contacting said biological sample with a fifth oligonucleotide that hybridizes to a fifth polynucleotide selected from the group consisting of a polynucleotide depicted in SEQ ID NO:13, 15 and 17 or complement thereof;
- (g) contacting said biological sample with a sixth oligonucleotide that hybridizes to a sixth polynucleotide selected from the group consisting of a polynucleotide depicted in SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23 and SEQ ID NO:24 or complement thereof;
- (h) contacting said biological sample with a seventh oligonucleotide that hybridizes to a seventh polynucleotide depicted in SEQ ID NO:30 or complement thereof;

- (i) contacting said biological sample with an eighth oligonucleotide that hybridizes to an eighth polynucleotide depicted in SEQ ID NO:32 or complement thereof;
- (j) contacting said biological sample with a ninth oligonucleotide that hybridizes to a polynucleotide depicted in SEQ ID NO:76 or complement thereof;
- (k) detecting in said biological sample a hybridized oligonucleotide of any one of steps (b) through (j) and comparing the amount of polynucleotide that hybridizes to the oligonucleotide to a predetermined cut-off value, wherein the presence of a hybridized oligonucleotide in any one of steps (b) through (j) in excess of the pre-determined cut-off value indicates the presence of a cancer cell in the biological sample of said patient.
- 11. A method for determining the presence of a cancer cell in a patient, said method comprising the steps of:
 - (a) obtaining a biological sample from said patient;
- (b) contacting said biological sample with a first oligonucleotide and a second oligonucleotide;
- i. wherein said first oligonucleotide and said second oligonucleotide hybridize to a first polynucleotide and a second polynucleotide, respectively;
- ii. wherein said first polynucleotide and said second polynucleotide are selected from the group consisting of polynucleotides deptided in SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:75, SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:30, SEQ ID NO:32, and SEQ ID NO:76; and
 - iii. wherein said first polynucleotide is unrelated in nucleotide

sequence to said second polynucleotide;

72

- (c) detecting in said biological sample said hybridized first oligonucleotide and said hybridized second hybridized oligonucleotide; and
- (d) comparing the amount of said hybridized first oligonucleotide and said hybridized second hybridized oligonucleotide to a predetermined cut-off value; wherein an amount of said hybridized first oligonucleotide or said hybridized second oligonucleotide in excess of the pre-determined cut-off value indicates the presence of a cancer cell in the biological sample of said patient.
- 12. A method for determining the presence or absence of a cancer cell in a patient, said method comprising the steps of:
 - (a) obtaining a biological sample from said patient;
 - (b) contacting said biological sample with a first oligonucleotide and a

second oligonucleotide;

- i. wherein said first oligonucleotide and said second oligonucleotide hybridize to a first polynucleotide and a second polynucleotide, respectively;
- ii. wherein said first polynucleotide and said second
 polynucleotide are both tissue-specific polynucleotides of the cancer cell to be detected;
 and
 - iii. wherein said first polynucleotide is unrelated in nucleotide

sequence to said second polynucleotide;

- (c) detecting in said biological sample said first hybridized oligonucleotide and said second hybridized oligonucleotide; and
- (d) comparing the amount of polynucleotide that hybridizes to the oligonucleotide to a predetermined cut-off value, wherein the presence of a hybridized first oligonucleotide or a hybridized second oligonucleotide in excess of the predetermined cut-off value indicates the presence of a cancer cell in the biological sample of said patient.

13. A method for detecting the presence of a cancer cell in a patient, said method comprising the steps of:

73

- (a) obtaining a biological sample from said patient;
- (b) contacting said biological sample with a first oligonucleotide pair said first pair comprising a first oligonucleotide and a second oligonucleotide wherein said first oligonucleotide and said second oligonucleotide hybridize to a first polynucleotide and the complement thereof, respectively;
- (c) contacting said biological sample with a second oligonucleotide pair said second pair comprising a third oligonucleotide and a fourth oligonucleotide wherein said third and said fourth oligonucleotide hybridize to a second polynucleotide and the complement thereof, respectively, and wherein said first polynucleotide is unrelated in nucleotide sequence to said second polynucleotide;
 - (d) amplifying said first polynucleotide and said second polynucleotide;

and

(e) detecting said amplified first polynucleotide and said amplified second polynucleotide;

wherein the presence of said amplified first polynucleotide or said amplified second polynucleotide indicates the presence of a cancer cell in said patient.

- 14. The method of any one of claims 4-7 and 9-13 wherein said biological sample is selected from the group consisting of blood, serum, lymph node, bone marrow, sputum, urine and tumor biopsy sample.
- 15. The method of claim 14 wherein said biological sample is selected from the group consisting of blood, a lymph node and bone marrow.
- 16. The method of claim 15 wherein said lymph node is a sentinel lymph node.

- 17. The method of any one of claims 4-7 and 9-13 wherein said cancer is selected from the group consisting of prostate cancer, breast cancer, colon cancer, ovarian cancer, lung cancer head & neck cancer, lymphoma, leukemia, melanoma, liver cancer, gastric cancer, kidney cancer, bladder cancer, pancreatic cancer and endometrial cancer.
- 18. The method of any one of claims 12 and 13 wherein said first polynucleotide and said second polynucleotide are selected from the group consisting of mammaglobin, lipophilin B, GABA π (B899P), B726P, B511S, B533S, B305D and B311D.
- 19. The method of any one of claims 12 and 13 wherein said first polynucleotide and said second polynucleotide are selected from the group consisting of polynucleotide depicted in SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:75, SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:30, SEQ ID NO:32, and SEQ ID NO:76.
- 20. The method of any one of claims 12 and 13 wherein said oligonucleotides are selected from the group consisting of oligonucleotides depicted in SEQ ID N0s:33-35 and 63-72.
- 21. The method of any one of claims 12 and 13 wherein the step of detection of said first amplified polynucleotide and said second polynucleotide comprises a step selected from the group consisting of detecting a radiolabel and detecting a fluorophore.
- 22. The method of any one of claims 4-7 and 9-13 wherein said step of detection comprises a step of fractionation.

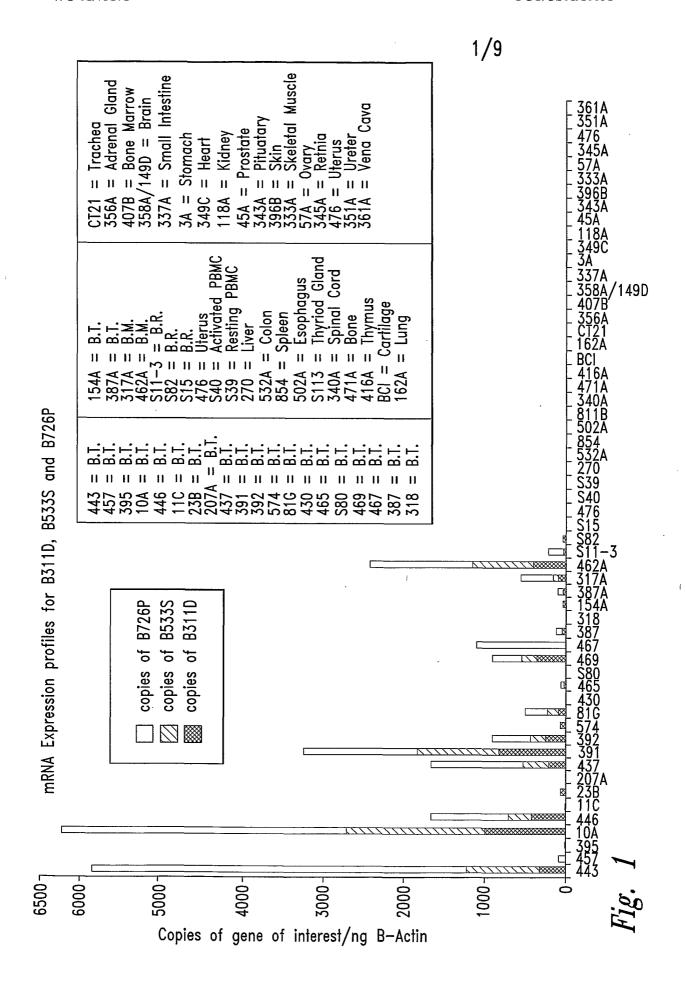
WO 01/75171 PCT/US01/10631

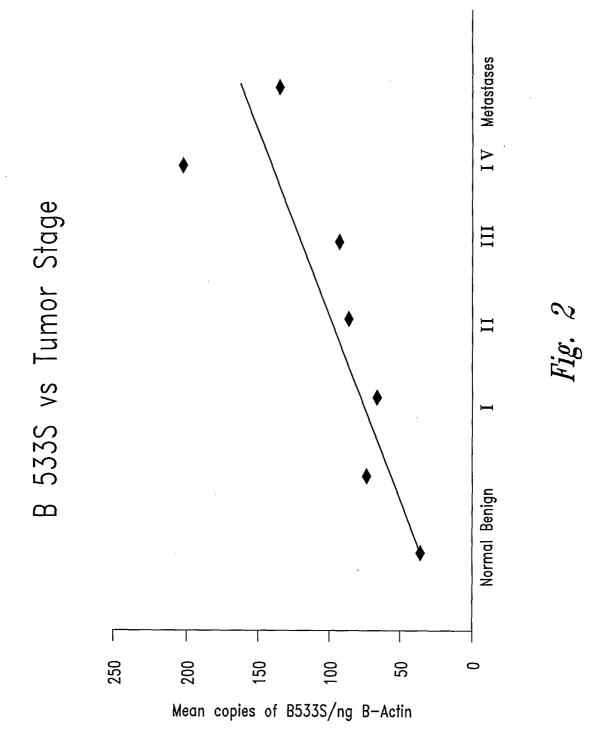
- 23. The method of any one of claims 12 and 13 wherein said first and said oligonucleotides are intron spanning oligonucleotides.
- 24. The method of claim 23 wherein said intron spanning oligonucleotides are selected from the group consisting of oligonucleotides depicted in SEQ ID NOs:36-62.
- 25. The method of claim 13 wherein detection of said amplified first or said second polynucleotide comprises contacting said amplified first or said second polynucleotide with a labeled oligonucleotide probe that hybridizes, under moderately stringent conditions, to said first or said second polynucleotide.
- 26. The method of claim 13 wherein said labeled oligonucleotide probe comprises a detectable moiety selected from the group consisting of a radiolabel and a fluorophore.
- 27. The method of any one of claims 4-7 and 9-13 further comprising a step of enriching said cancer cell from said biological sample prior to hybridizing said oligonucleotide primer(s).
- 28. The method of claim 27 wherein said step of enriching said cancer cell from said biological sample is achieved by a methodology selected from the group consisting of cell capture and cell depletion.
- 29. The method of claim 28 wherein cell capture is achieved by immunocapture, said immunocapture comprising the steps of:
 - (a) adsorbing an antibody to the surface of said cancer cells; and
 - (b) separating said antibody adsorbed cancer cells from the remainder of

said biological sample.

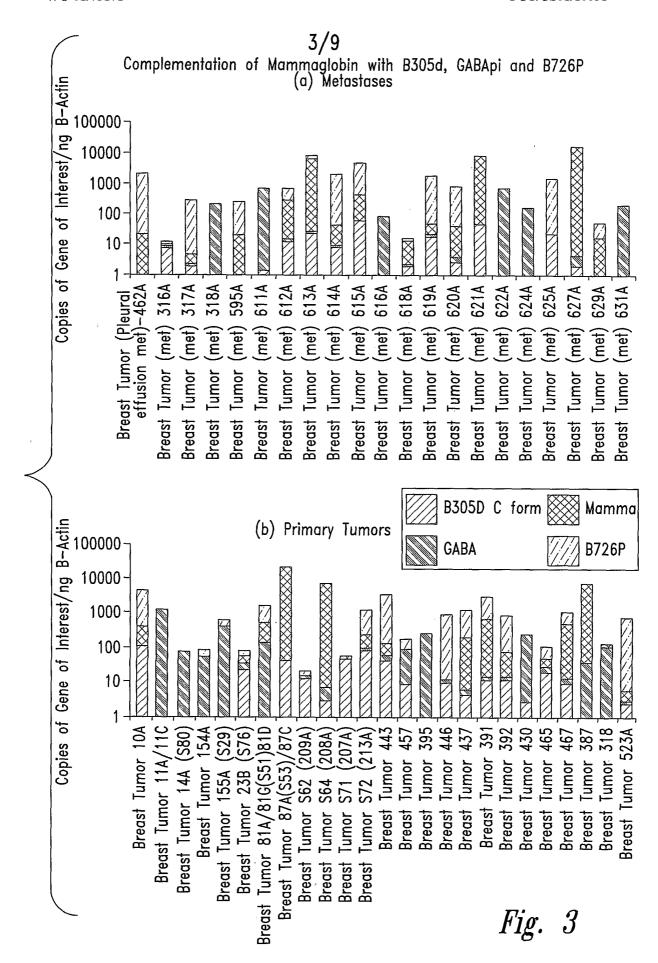
- 30. The method of claim 29 wherein said antibody is directed to an antigen selected from the group consisting of CD2, CD3, CD4, CD5, CD8, CD10, CD11b, CD14, CD15, CD16, CD19, CD20, CD24, CD25, CD29, CD33, CD34, CD36, CD38, CD41, CD45, CD45RA, CD45RO, CD56, CD66B, CD66e, HLA-DR, IgE and TCRαβ.
- 31. The method of claim 29 wherein said antibody is directed to a breast tumor antigen.
- 32. The method of any one of claims 29-31 wherein said antibody is a monoclonal antibody.
- 33. The method of claim 29 wherein said antibody is conjugated to magnetic beads.
- 34. The method of claim 29 wherein said antibody is formulated in a tetrameric antibody complex.
- 35. The method of claim 28 wherein cell depletion is achieved by a method comprising the steps of:
 - (a) cross-linking red cells and white cells, and
- (b) fractionating said cross-linked red and white cells from the remainder of said biological sample.
- 36. The method of claim 13 wherein said step of amplifying is achieved by a polynucleotide amplification methodology selected from the group consisting of reverse transcription polymerase chain reaction (RT-PCR), inverse PCR, RACE, ligase chain reaction (LCR), Qbeta Replicase, isothermal amplification, strand displacement amplification (SDA), rolling chain reaction (RCR), cyclic probe reaction (CPR), transcription-based amplification systems (TAS), nucleic acid sequence based amplification (NASBA) and 3SR.

77


- 37. A composition for detecting a cancer cell in a biological sample of a patient, said composition comprising:
 - (a) a first oligonucleotide; and
 - (b) a second oligonucleotide;


wherein said first oligonucleotide and said second oligonucleotide hybridize to a first polynucleotide and to a second polynucleotide, respectively; wherein said first polynucleotide is unrelated in nucleotide sequence from said second polynucleotide; and wherein said first polynucleotide and said second polynucleotide are tissue-specific polynucleotides of the cancer cell to be detected.

- 38. The composition of claim 37 wherein said first polynucleotide and said second polynucleotide are complementary tissue-specific polynucleotides of the tissue-type of said cancer cell.
- 39. The composition of any one of claim 37 and claim 38 wherein said first polynucleotide and said second polynucleotide are selected from the group consisting of the polynucleotides depicted in SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:75, SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:30, SEQ ID NO:32, and SEQ ID NO:76.
- 40. The composition of any one of claim 37 and claim 38 wherein said oligonucleotides are selected from the group consisting of oligonucleotides as disclosed in SEQ ID NOs: 33-72.
- 41. A composition for detecting a cancer cell in a biological sample of a patient, said composition comprising:
 - (a) a first oligonucleotide pair; and
 - (b) a second oligonucleotide pair;


wherein said first oligonucleotide pair and said second oligonucleotide pair hybridize to a first polynucleotide (or complement thereof) and to a second polynucleotide (or complement thereof), respectively; wherein said first polynucleotide is unrelated in nucleotide sequence from said second polynucleotide; and wherein said first polynucleotide and said second polynucleotide are tissue-specific polynucleotides of the cancer cell to be detected.

- 42. The composition of claim 41 wherein said first polynucleotide and said second polynucleotide are complementary tissue-specific polynucleotides of the tissue-type of said cancer cell.
- 43. The composition of any one of claim 41 and claim 42 wherein said first polynucleotide and said second polynucleotide are selected from the group consisting of the polynucleotides depicted in SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:75, SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:30, SEQ ID NO:32, and SEQ ID NO:76.
- 44. The composition of any one of claim 41 and claim 42 wherein said oligonucleotides are selected from the group consisting of oligonucleotides as disclosed in SEQ ID NOs: 33-72.
- 45. A composition comprising an oligonucleotide primer or probe of between 15 and 100 nucleotides that comprises an oligonucleotide selected from the group consisting of oligonucleotides depicted in SEQ ID N0s:33-72.
- 46. The composition of claim 45 comprising an oligonucleotide primer or probe selected from the group consisting of oligonucleotides depicted in SEQ ID N0s:33-72.

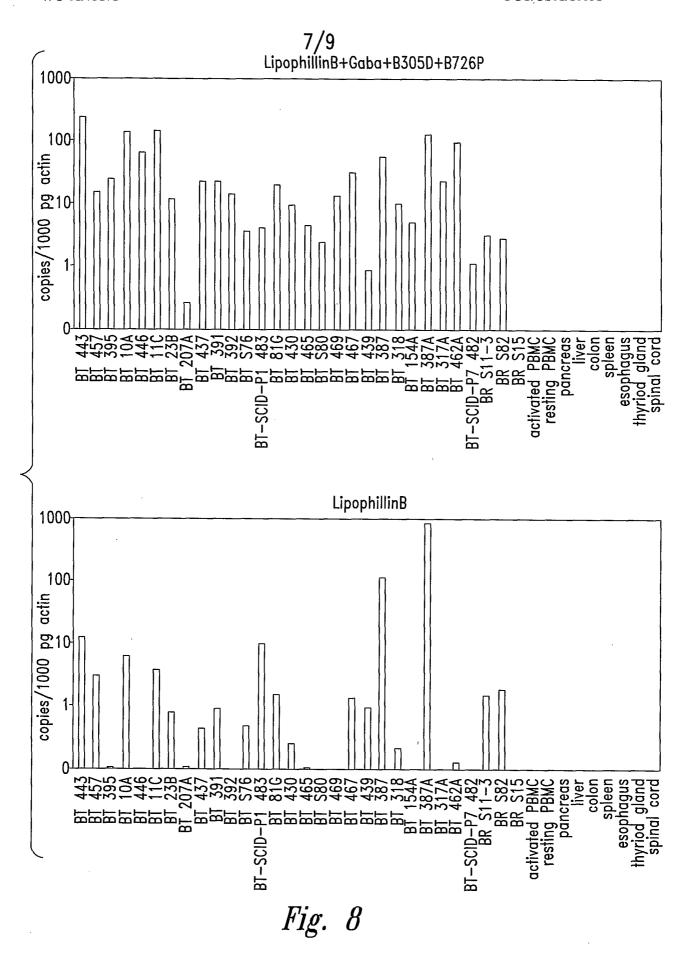
SUBSTITUTE SHEET (RULE26)

4/9

GACAGCGGCTTCCTTGATCCTTGCCACCCGCGACTGAACACCGACAGCAG	50
CAGCCTCACCATGAAGTTGCTGATGGTCCTCATGCTGGCGGCCCTCTCCC	100
AGCACTGCTACGCAGGCTCTGGCTGCCCCTTATTGGAGAATGTGATTTCC	150
AAGACAATCAATCCACAAGTGTCTAAGACTGAATACAAAGAACTTCTTCA	200
AGAGTTCATAGACGACAATGCCACTACAAATGCCATAGATGAATTGAAGG	250
AATGTTTTCTTAACCAAACGGATGAAACTCTGAGCAATGTTGAGGTGTTT	300
CTGCAATTAATATATGACAGCAGTCTTTGTGATTTATTTTAACTTTCTGC	350
AAGACCTTTGGCTCACAGAACTGCAGGGTATGGTGAGAAACCAACTACGG	400
ATTGCTGCAAACCACACCTTCTCTTTCTTATGTCTTTTTACTACAAACTA	450
CAAGACAATTGTTGAAACCTGCTATACATGTTTATTTTAATAAATTGATG	500
GCA 503	

Fig. 4

CACTGCTACGCAGGCTCTGGCTGCCCCTTATTGGAGAATGTGATTTCCAA	50
GACAATCAATCCACAAGTGTCTAAGACTGAATACAAAGAACTTCTTCAAG	100
AGTTCATAGACGACAATGCCACTACAAATGCCATAGATGAATTGAAGGAA	150
TGTTTTCTTAACCAAACGGATGAAACTCTGAGCAATGTTGAGGTGTTTAT	200
GCAATTAATATATGACAGCAGTCTTTGTGATTTATTTGGCGGCCATCACC	250
ATCACCATCACTAAGGTCCCGAGCTCGAATTCTGCAGATATCCATCACAC	300
Г 301	


Fig. 5

SUBSTITUTE SHEET (RULE26)

TCAACAACTACCTGGTGATTCCTACTTCAGCCCCTTGGTGTGAGCAGCTTCTCAACATGAACTACAGCCTCCACTTGGCCTTCGTGTGTCTCAGTCTCTT AACAAATTTCTCAGGCCCAATTTTGGTGGAGAACCCGTACAGATAGCGCTGACTCTGGACATTGCAAGTATCTCTAGCATTTCAGAGAGTAACATGGACT ACACAGCCACCATATACCTCCGACAGCGCTGGATGGACCAGCGGCTGGTGTTTTGAAGGCAACAAGAGCTTCACTCTGGATGCCCGCCTCGTGGAGTTCCT 500 CTGTATGCCCTCAGAATCACGACAACTGTTGCATGTAACATGGATCTGTCTAAATACCCCATGGACACACAGACATGCAAGTTGCAGCTGGAAAGCTGGG GCTATGATGGAAATGATGTGGAGTTCACCTGGCTGAGAGGGAACGACTCTGTGCGTGGACTGGAACACCTGCGGCTTGCTCAGTACACCATAGAGCGGTA TTTCACCTTAGTCACCAGATCGCAGCAGGAGACAGGAAATTACACTAGATTGGTCTTACAGTTTGAGCTTCGGAGGAATGTTCTGTATTTCATTTTGGAA 1000 TGTTATCAATGACCACACTGATGATCGGGTCCCGCACTTCTCTTCCCAACACCCAACTGCTTCATCAAGGCCATCGATGTGTACCTGGGGATCTGCTTTAG CTTTGTGTTTGGGGCCTTGCTAGAATATGCAGTTGCTCACTACAGTTCCTTACAGCAGATGGCAGCCAAAGATAGGGGGGACAACAAAGGAAGTAGAAGAA GTCAGTATTACTAATATCATCAACAGCTCCATCTCCAGCTTTAAACGGAAGATCAGCTTTGCCAGCATTGAAATTTCCAGCGACAACGTTGACTACAGTG ACTTGACAATGAAAACCAGCGACAAGTTCAAGTTTGTCTTCCGAGAAAAGATGGGCAGGATTGTTGATTATTTCACAATTCAAAACCCCAGTAATGTTGA TCACTATTCCAAACTACTGTTTCCTTTGATTTTTATGCTAGCCAATGTATTTTACTGGGCATACTACATGTATTTTTGAGTCAATGTTAAATTTCTTGCA 1500 TGCCATAGGTCTTCAACAGGACAAGATAATGATGTAAATGGTATTTTAGGCCAAGTGTGCACCCACATCCAATGGTGCTACAAGTGACTGAAATAATATT TGAGTCTTTCTGCTCAAAGAATGAAGCTCCAACCATTGTTCTAAGCTGTGTAGAAGTCCTAGCATTATAGGATCTTGTAATAGAAACATCAGTCCATTCC TCTTTCATCTTAATCAAGGACATTCCCATGGAGCCCAAGATTACAAATGTACTCAGGGCTGTTTATTCGGTGGCTCCCTGGTTTGCATTTACCTCATATA AAGAATGGGAAGGAGACCATTGGGTAACCCTCAAGTGTCAGAAGTTGTTTCTAAAGTAACTATACATGTTTTTTACTAAATCTCTGCAGTGCTTATAAAA TACATTGTTGCCTATTTAGGGAGTAACATTTTCTAGTTTTTGTTTCTGGTTAAAATGAAATATGGGCTTATGTCAATTCATTGGAAGTCAATGCACTAAC 2000 TCAATACCAAGATGAGTTTTTAAATAATGAATATTATTTAATACCACAACAGAATTATCCCCAATTTCCAATAAGTCCTATCATTGAAAAATTCAAATATA AGTGAAGAAAAATTAGTAGATCAACAATCTAAACAAATCCCTCGGTTCTAAGATACAATGGATTCCCCCATACTGGAAGGACTCTGAGGCTTTATTCCCC TAACTTGTTCTAGAAGTCTTAATATGGGCTGTTGCCATGAAGGCTTGCAGAATTGAGTCCATTTTCTAGCTGCCTTTATTCACATAGTGATGGGGTACTA AAAGTACTGGGTTGACTCAGAGAGTCGCTGTCATTCTGTCATTGCTGCTACTCTAACACTGAGCAACACTCTCCCAGTGGCAGATCCCCTGTATCATTCC 2500 GGCTTTGCTCAGATCCCTGATCCTTCCAGCTGGTCTGAGTGGCCTTATCCCGCATGAGCAGGAGCGTGCTGGCCCTGAGTACTGAACTTTCTGAGT AACAATGAGACACGTTACAGAACCTATGTTCAGGTTGCGGGTGAGCTGCCCTCTCCAAATCCAGGCAGAGATGCACATTCCTCGGCCAGTCTCAGCCAAC AGTACCAAAAGTGATTTTTGAGTGTCCAGGGTAAAGGCTTCCAGTTCAGCTCAGTTATTTTTAGACAATCTCGCCATCTTTAATTTCTTAGCTTCCTGT TCTAATAAATGCACGGCTTTACCTTTCCTGTCAGAAATAAACCAAGGCTCTAAAAGATGATTTCCCTTCTGTAACTCCCTAGAGCCACAGGTTCTCATTC 3000 AAAGAGATGAAATGTGGTTGTATGAGCCAATCATATTTGTGATTTTTTAAAAAAAGGTTTAAAAGGAAATATCTGTTCTGAAACCCCACTTAAGCATTGTT

Fig. 6

SUBSTITUTE SHEET (RULE26)

SUBSTITUTE SHEET (RULE26)

8/9

Multiplex PCR assay: Gene determination by amplicon size

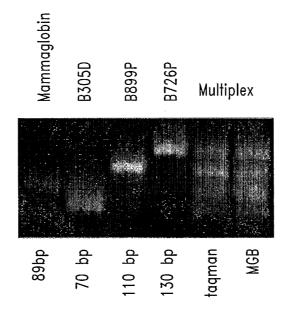
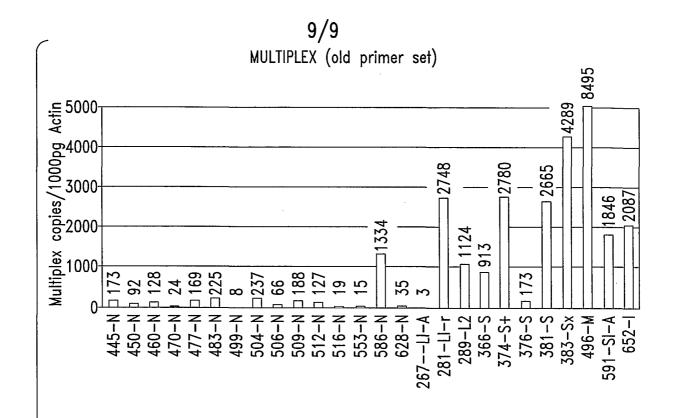



Fig. 9

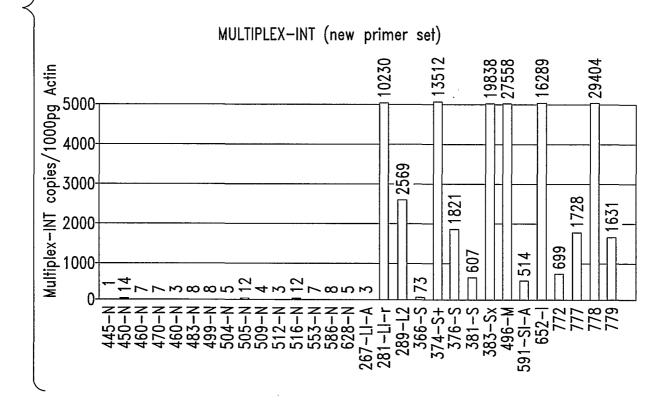


Fig. 10

1

SEQUENCE LISTING

<110> Corixa Corporation
 Houghton, Raymond L.
 Dillon, Davin C.
 Molesh, David A.
 Xu, Jiangchun
 Zehentner, Barbara
 Persing, David H.

<120> METHODS, COMPOSITIONS AND KITS FOR THE DETECTION AND MONITORING OF BREAST CANCER

<130> 210121.513PC

<140> PCT

<141> 2001-04-02

<160> 77

<170> FastSEQ for Windows Version 3.0

<210> 1

<211> 1851

<212> DNA

<213> Homo sapien

<400> 1

tcatcaccat tgccagcagc ggcaccgtta gtcaggtttt ctgggaatcc cacatgagta cttccgtgtt cttcattctt cttcaatagc cataaatctt ctagctctgg ctggctgttt 120 tcacttcctt taagcctttg tgactcttcc tctgatgtca gctttaagtc ttgttctgga 180 ttgctgtttt cagaagagat ttttaacatc tgtttttctt tgtagtcaga aagtaactgg 240 caaattacat gatgatgact agaaacagca tactctctgg ccgtctttcc agatcttgag 300 aaqatacatc aacattttqc tcaagtagag ggctgactat acttgctgat ccacaacata 360 cagcaagtat gagagcagtt cttccatatc tatccagcgc atttaaattc gctttttct 420 tgattaaaaa tttcaccact tgctgttttt gctcatgtat accaagtagc agtggtgtga 480 ggccatgctt gttttttgat tcgatatcag caccgtataa gagcagtgct ttggccatta 540 atttatcttc attgtagaca gcatagtgta gagtggtatt tccatactca tctggaatat 600 ttggatcagt gccatgttcc agcaacatta acgcacattc atcttcctgg cattgtacgg 660 cetttgtcag agetgtcctc tttttgttgt caaggacatt aagttgacat cgtctgtcca 720 qcacqagttt tactacttct gaattcccat tggcagaggc cagatgtaga gcagtcctct tttgcttgtc cctcttgttc acatccgtgt ccctgagcat gacgatgaga tcctttctgg qqactttacc ccaccaqqca qctctqtqqa qcttqtccaq atcttctcca tggacqtggt 900 acctgggatc catgaaggcg ctgtcatcgt agtctcccca agcgaccacg ttgctcttgc 960 cgctcccctg cagcagggga agcagtggca gcaccacttg cacctcttgc tcccaagcgt 1020 cttcacagag gagtcgttgt ggtctccaga agtgcccacg ttgctcttgc cgctcccct qtccatccaq ggaggaagaa atgcaggaaa tgaaagatgc atgcacgatg gtatactcct 1140 cagccatcaa acttctggac agcaggtcac ttccagcaag gtggagaaag ctgtccaccc 1200 acagaggatg agatccagaa accacaatat ccattcacaa acaaacactt ttcagccaga 1260 cacaggtact gaaatcatgt catctgcggc aacatggtgg aacctaccca atcacacatc 1320 aagagatgaa gacactgcag tatatctgca caacgtaata ctcttcatcc ataacaaaat aatataattt toototggag ocatatggat gaactatgaa ggaagaacto cocgaagaag 1440 ccagtcgcag agaagccaca ctgaagctct gtcctcagcc atcagcgcca cggacaggar 1500 tgtgtttctt ccccagtgat gcagcctcaa gttatcccga agctgccgca gcacacggtg 1560 gctcctgaga aacaccccag ctcttccggt ctaacacagg caagtcaata aatgtgataa 1620

1740

1800 1851

tcacataaac agaattaaaa gcaaagtcac ataagcatct caacagacac agaaaaggca tttqacaaaa tccaqcatcc ttgtatttat tgttgcagtt ctcagaggaa atgcttctaa cttttcccca tttagtatta tgttggctgt gggcttgtca taggtggttt ttattacttt aaggtatgtc ccttctatgc ctgttttgct gagggtttta attctcgtgc c <210> 2 <211> 329 <212> PRT <213> Homo sapien <400> 2 Met Asp Ile Val Val Ser Gly Ser His Pro Leu Trp Val Asp Ser Phe 10 Leu His Leu Ala Gly Ser Asp Leu Leu Ser Arg Ser Leu Met Ala Glu 20 25 Glu Tyr Thr Ile Val His Ala Ser Phe Ile Ser Cys Ile Ser Ser Ser 40 Leu Asp Gly Gln Gly Glu Arg Gln Glu Gln Arg Gly His Phe Trp Arg 55 60 Pro Gln Arg Leu Leu Cys Glu Asp Ala Trp Glu Gln Glu Val Gln Val 70 75 80 Val Leu Pro Leu Pro Leu Leu Gln Gly Ser Gly Lys Ser Asn Val Val Ala Trp Gly Asp Tyr Asp Asp Ser Ala Phe Met Asp Pro Arg Tyr 100 105 His Val His Gly Glu Asp Leu Asp Lys Leu His Arg Ala Ala Trp Trp 115 120 Gly Lys Val Pro Arg Lys Asp Leu Ile Val Met Leu Arg Asp Thr Asp 130 135 140 Val Asn Lys Arg Asp Lys Gln Lys Arg Thr Ala Leu His Leu Ala Ser 150 155 160 Ala Asn Gly Asn Ser Glu Val Val Lys Leu Val Leu Asp Arg Cys 165 170 175 Gln Leu Asn Val Leu Asp Asn Lys Lys Arg Thr Ala Leu Thr Lys Ala 185 190 Val Gln Cys Gln Glu Asp Glu Cys Ala Leu Met Leu Leu Glu His Gly 195 200 205 Thr Asp Pro Asn Ile Pro Asp Glu Tyr Gly Asn Thr Thr Leu His Tyr 210 215 220 Ala Val Tyr Asn Glu Asp Lys Leu Met Ala Lys Ala Leu Leu Leu Tyr 230 235 240 Gly Ala Asp Ile Glu Ser Lys Asn Lys His Gly Leu Thr Pro Leu Leu Leu Gly Ile His Glu Gln Lys Gln Gln Val Val Lys Phe Leu Ile Lys 265 270 Lys Lys Ala Asn Leu Asn Ala Leu Asp Arg Tyr Gly Arg Thr Ala Leu 275 280 Ile Leu Ala Val Cys Cys Gly Ser Ala Ser Ile Val Ser Pro Leu Leu 295 300 Glu Gln Asn Val Asp Val Ser Ser Gln Asp Leu Glu Arg Arg Pro Glu 305 310 315 Ser Met Leu Phe Leu Val Ile Ile Met 325 <210> 3 <211> 1852 <212> DNA <213> Homo sapiens

```
<400> 3
ggcacgagaa ttaaaaccct cagcaaaaca ggcatagaag ggacatacct taaagtaata 60
aaaaccacct atgacaagcc cacagccaac ataatactaa atggggaaaa gttagaagca 120
tttcctctga gaactgcaac aataaataca aggatgctgg attttgtcaa atgccttttc 180
tgtgtctgtt gagatgctta tgtgactttg cttttaattc tgtttatgtg attatcacat 240
ttattgactt gcctgtgtta gaccggaaga gctggggtgt ttctcaggag ccaccgtgtg 300
ctgcggcagc ttcgggataa cttgaggctg catcactggg gaagaaacac aytcctgtcc 360
gtggcgctga tggctgagga cagagcttca gtgtggcttc tctgcgactg gcttcttcgg 420
ggagttcttc cttcatagtt catccatatg gctccagagg aaaattatat tattttgtta 480
tggatgaaga gtattacgtt gtgcagatat actgcagtgt cttcatctct tgatgtgtga 540
ttgggtaggt tccaccatgt tgccgcagat gacatgattt cagtacctgt gtctggctga 600
aaagtgtttg tttgtgaatg gatattgtgg tttctggatc tcatcctctg tgggtggaca 660
gctttctcca ccttgctgga agtgacctgc tgtccagaag tttgatggct gaggagtata 720
ccatcgtgca tgcatctttc atttcctgca tttcttcctc cctggatgga cagggggagc 780
ggcaagagca acgtgggcac ttctggagac cacaacgact cctctgtgaa gacgcttggg 840
agcaagaggt gcaagtggtg ctgccactgc ttcccctgct gcagggggag cggcaagagc 900
aacgtggtcg cttggggaga ctacgatgac agcgccttca tggatcccag gtaccacgtc 960
catggagaag atctggacaa gctccacaga gctgcctggt ggggtaaagt ccccagaaag 1020
gatctcatcg tcatgctcag ggacacggat gtgaacaaga gggacaagca aaagaggact 1080
gctctacatc tggcctctgc caatgggaat tcagaagtag taaaactcgt gctggacaga 1140
cgatgtcaac ttaatgtcct tgacaacaaa aagaggacag ctctgacaaa ggccgtacaa 1200
tgccaggaag atgaatgtgc gttaatgttg ctggaacatg gcactgatcc aaatattcca 1260
gatgagtatg gaaataccac tctacactat gctgtctaca atgaagataa attaatggcc 1320
aaagcactgc tcttatacgg tgctgatatc gaatcaaaaa acaagcatgg cctcacacca 1380
ctgctacttg gtatacatga gcaaaaacag caagtggtga aatttttaat caagaaaaaa 1440
gcgaatttaa atgcgctgga tagatatgga agaactgctc tcatacttgc tgtatgttgt 1500
ggatcagcaa gtatagtcag ccctctactt gagcaaaatg ttgatgtatc ttctcaagat 1560
ctggaaagac ggccagagag tatgctgttt ctagtcatca tcatgtaatt tgccagttac 1620
tttctgacta caaagaaaaa cagatgttaa aaatctcttc tgaaaacagc aatccagaac 1680
aagacttaaa gctgacatca gaggaagagt cacaaaggct taaaggaagt gaaaacagcc 1740
agccagagct agaagattta tggctattga agaagaatga agaacacgga agtactcatg 1800
tgggattccc agaaaacctg actaacggtg ccgctgctgg caatggtgat ga
 <210> 4
 <211> 292
 <212> PRT
 <213> Homo sapiens
 <400> 4
Met His Leu Ser Phe Pro Ala Phe Leu Pro Pro Trp Met Asp Arg Gly
Ser Gly Lys Ser Asn Val Gly Thr Ser Gly Asp His Asn Asp Ser Ser
Val Lys Thr Leu Gly Ser Lys Arg Cys Lys Trp Cys Cys His Cys Phe
Pro Cys Cys Arg Gly Ser Gly Lys Ser Asn Val Val Ala Trp Gly Asp
Tyr Asp Asp Ser Ala Phe Met Asp Pro Arg Tyr His Val His Gly Glu
                    70
Asp Leu Asp Lys Leu His Arg Ala Ala Trp Trp Gly Lys Val Pro Arg
                                     90
```

4

Lys Asp Leu Ile Val Met Leu Arg Asp Thr Asp Val Asn Lys Arg Asp 105 Lys Gln Lys Arg Thr Ala Leu His Leu Ala Ser Ala Asn Gly Asn Ser 120 Glu Val Val Lys Leu Val Leu Asp Arg Arg Cys Gln Leu Asn Val Leu Asp Asn Lys Lys Arg Thr Ala Leu Thr Lys Ala Val Gln Cys Gln Glu Asp Glu Cys Ala Leu Met Leu Leu Glu His Gly Thr Asp Pro Asn Ile 170 Pro Asp Glu Tyr Gly Asn Thr Thr Leu His Tyr Ala Val Tyr Asn Glu Asp Lys Leu Met Ala Lys Ala Leu Leu Leu Tyr Gly Ala Asp Ile Glu 200 Ser Lys Asn Lys His Gly Leu Thr Pro Leu Leu Gly Ile His Glu 215 Gln Lys Gln Gln Val Val Lys Phe Leu Ile Lys Lys Lys Ala Asn Leu Asn Ala Leu Asp Arg Tyr Gly Arg Thr Ala Leu Ile Leu Ala Val Cys 250 Cys Gly Ser Ala Ser Ile Val Ser Pro Leu Leu Glu Gln Asn Val Asp 265 Val Ser Ser Gln Asp Leu Glu Arg Arg Pro Glu Ser Met Leu Phe Leu Val Ile Ile Met 290 <210> 5 <211> 1155 <212> DNA <213> Homo sapien <400> 5 atggtggttg aggttgattc catgccggct gcctcttctg tgaagaagcc atttggtctc 60 aggagcaaga tgggcaagtg gtgctgccgt tgcttcccct gctgcaggga gagcggcaag 120 agcaacgtgg gcacttctgg agaccacgac gactctgcta tgaagacact caggagcaag 180 atgggcaagt ggtgccgcca ctgcttcccc tgctgcaggg ggagtggcaa gagcaacgtg ggcgcttctg gagaccacga cgactctgct atgaagacac tcaggaacaa gatgggcaag 300 tggtgctgcc actgcttccc ctgctgcagg gggagcggca agagcaaggt gggcgcttgg 360 ggagactacg atgacagtgc cttcatggag cccaggtacc acgtccgtgg agaagatctg 420 gacaagctcc acagagctgc ctggtggggt aaagtcccca gaaaggatct catcgtcatg ctcagggaca ctgacgtgaa caagaaggac aagcaaaaga ggactgctct acatctggcc 540 tctgccaatg ggaattcaga agtagtaaaa ctcctgctgg acagacgatg tcaacttaat 600 gtccttgaca acaaaaagag gacagctctg ataaaggccg tacaatgcca ggaagatgaa 660 tgtgcgttaa tgttgctgga acatggcact gatccaaata ttccagatga gtatggaaat 720 accactctgc actacgctat ctataatgaa gataaattaa tggccaaagc actgctctta 780

```
tatggtgctg atatcgaatc aaaaaacaag catggcctca caccactgtt acttggtgta
                                                                    840
catgagcaaa aacagcaagt cgtgaaattt ttaatcaaga aaaaagcgaa tttaaatgca
                                                                   900
ctggatagat atggaaggac tgctctcata cttgctgtat gttgtggatc agcaagtata
                                                                   960
gtcagccttc tacttgagca aaatattgat gtatcttctc aagatctatc tggacagacg
                                                                  1020
gccagagagt atgctgtttc tagtcatcat catgtaattt gccagttact ttctgactac
                                                                  1080
aaagaaaaac agatgctaaa aatctcttct qaaaacagca atccaqaaaa tgtctcaaqa
                                                                  1140
accagaaata aataa
                                                                  1155
     <210> 6
     <211> 2000
     <212> DNA
     <213> Homo sapien
     <400> 6
atggtggttg aggttgattc catgccggct gcctcttctg tgaagaagcc atttggtctc
                                                                    60
aggagcaaga tgggcaagtg gtgctgccgt tgcttcccct gctgcaggga gagcggcaag
                                                                    120
agcaacgtgg gcacttctgg agaccacgac gactctgcta tgaagacact caggagcaag
                                                                    180
atgggcaagt ggtgccgcca ctgcttcccc tgctgcaggg ggagtggcaa gagcaacgtg
                                                                   240
ggcgcttctg gagaccacga cgactctgct atgaagacac tcaggaacaa gatgggcaag
                                                                    300
tggtgctgcc actgcttccc ctgctgcagg gggagcggca agagcaaggt gggcgcttgg
                                                                    360
ggagactacg atgacagtgc cttcatggag cccaggtacc acgtccgtgg agaagatctg
                                                                    420
                                                                    480
gacaagctcc acagagctgc ctggtggggt aaagtcccca gaaaggatct catcgtcatg
ctcagggaca ctgacgtgaa caagaaggac aagcaaaaga ggactgctct acatctggcc
                                                                    540
tctgccaatg ggaattcaga agtagtaaaa ctcctgctgg acagacgatg tcaacttaat
                                                                    600
gtccttgaca acaaaaagag gacagctctg ataaaggccg tacaatgcca ggaagatgaa
                                                                    660
tgtgcgttaa tgttgctgga acatggcact gatccaaata ttccagatga gtatggaaat
                                                                   720
accactctgc actacgctat ctataatgaa gataaattaa tggccaaagc actgctctta
                                                                   780
tatggtgctg atatcgaatc aaaaaacaag catggcctca caccactgtt acttggtgta
                                                                    840
catgagcaaa aacagcaagt cgtgaaattt ttaatcaaga aaaaagcgaa tttaaatgca
                                                                    900
ctggatagat atggaaggac tgctctcata cttgctgtat gttgtggatc agcaagtata
                                                                    960
gtcagccttc tacttgagca aaatattgat gtatcttctc aagatctatc tggacagacg
                                                                  1020
gccagagagt atgctgtttc tagtcatcat catgtaattt gccagttact ttctgactac
                                                                  1080
aaagaaaaac agatgctaaa aatctcttct gaaaacagca atccagaaca agacttaaaq
                                                                  1140
ctgacatcag aggaagagtc acaaaggttc aaaaggcagtg aaaatagcca gccagagaaa
                                                                  1200
atgtctcaag aaccagaaat aaataaggat ggtgatagag aggttgaaga agaaatgaag
                                                                  1260
aagcatgaaa gtaataatgt gggattacta gaaaacctga ctaatggtgt cactgctggc
                                                                  1320
aatggtgata atggattaat tcctcaaagg aagagcagaa cacctgaaaa tcagcaattt
                                                                  1380
cctgacaacg aaagtgaaga gtatcacaga atttgcgaat tagtttctga ctacaaagaa
                                                                  1440
aaacagatgc caaaatactc ttctgaaaac agcaacccag aacaagactt aaagctgaca
                                                                  1500
tcagaggaag agtcacaaag gcttgagggc agtgaaaatg gccagccaga gctagaaaat
                                                                  1560
tttatggcta tcgaagaaat gaagaagcac ggaagtactc atgtcggatt cccagaaaac
                                                                  1620
ctgactaatg gtgccactgc tggcaatggt gatgatggat taattcctcc aaggaagagc
                                                                  1680
agaacacctg aaagccagca atttcctgac actgagaatg aagagtatca cagtgacgaa
                                                                  1740
1800
attctgattc atgaagaaaa gcagatagaa gtggttgaaa aaatgaattc tgagctttct
                                                                  1860
cttagttgta agaaagaaaa agacatcttg catgaaaata gtacgttgcg ggaagaaatt
                                                                  1920
1980
aaaaaaaaa aaaaaaaaaa
                                                                  2000
     <210> 7
     <211> 2040
     <212> DNA
     <213> Homo sapien
     <400> 7
atggtggttg aggttgattc catgccggct gcctcttctg tgaagaagcc atttggtctc
                                                                    60
                                                                   120
aggagcaaga tgggcaagtg gtgctgccgt tgcttcccct gctgcaggga gagcggcaag
agcaacgtgg gcacttctgg agaccacgac gactctgcta tgaagacact caggagcaag
                                                                   180
```

atgggcaagt ggtgccgcca ctgcttcccc tgctgcaggg ggagtggcaa gagcaacgtg	240
ggcgcttctg gagaccacga cgactctgct atgaagacac tcaggaacaa gatgggcaag	300
tggtgctgcc actgcttccc ctgctgcagg gggagcggca agagcaaggt gggcgcttgg	360
ggagactacg atgacagtgc cttcatggag cccaggtacc acgtccgtgg agaagatctg	420
gacaagetee acagagetge etggtggggt aaagteecca gaaaggatet categteatg	480
ctcagggaca ctgacgtgaa caagaaggac aagcaaaaga ggactgctct acatctqqcc	540
totgocaatg ggaattoaga agtagtaaaa otootgotgg acagacgatg toaacttaat	600
gtccttgaca acaaaaagag gacagctctg ataaaggccg tacaatgcca ggaagatgaa	660
tgtgcgttaa tgttgctgga acatggcact gatccaaata ttccagatga gtatggaaat	720
accactctgc actacgctat ctataatgaa gataaattaa tggccaaagc actgctctta	780
tatggtgctg atatcgaatc aaaaaacaag catggcctca caccactgtt acttggtgta	840
catgagcaaa aacagcaagt cgtgaaattt ttaatcaaga aaaaagcgaa tttaaatgca	900
ctggatagat atggaaggac tgctctcata cttgctgtat gttgtggatc agcaagtata	960
gtcagccttc tacttgagca aaatattgat gtatcttctc aagatctatc tggacagacg	1020
gccagagagt atgctgtttc tagtcatcat catgtaattt gccagttact ttctgactac	1080
aaagaaaaac agatgctaaa aatctcttct gaaaacagca atccagaaca agacttaaag	1140
ctgacatcag aggaagagtc acaaaggttc aaaggcagtg aaaatagcca gccagagaaa	1200
atgtctcaag aaccagaaat aaataaggat ggtgatagag aggttgaaga agaaatgaag	1260
aagcatgaaa gtaataatgt gggattacta gaaaacctga ctaatggtgt cactgctggc	1320
aatggtgata atggattaat tootcaaagg aagagcagaa cacctgaaaa toagcaattt	1380
cctgacaacg aaagtgaaga gtatcacaga atttgcgaat tagtttctga ctacaaagaa	1440
aaacagatgc caaaatactc ttctgaaaac agcaacccag aacaagactt aaagctgaca	1500
tcagaggaag agtcacaaag gcttgagggc agtgaaaatg gccagccaga gaaaagatct	1560
caagaaccag aaataaataa ggatggtgat agagagctag aaaattttat ggctatcgaa	1620
gaaatgaaga agcacggaag tactcatgtc ggattcccag aaaacctgac taatggtgcc	1680
actgctggca atggtgatga tggattaatt cctccaagga agagcagaac acctgaaagc	1740
cagcaatttc ctgacactga gaatgaagag tatcacagtg acgaacaaaa tgatactcag	1800
aagcaatttt gtgaagaaca gaacactgga atattacacg atgagattct gattcatgaa	1860
gaaaagcaga tagaagtggt tgaaaaaatg aattctgagc tttctcttag ttgtaagaaa	1920
gaaaaagaca tottgcatga aaatagtacg ttgcgggaag aaattgccat gctaagactg	1980
gagctagaca caatgaaaca tcagagccag ctaaaaaaaaa aaaaaaaaaa	2040
gage - again - and games - anguige - ag communitie duminadad dadadadad	2010
<210> 8	
<211> 384	
<212> PRT	
<213> Homo sapien	
<400> 8	
Met Val Val Glu Val Asp Ser Met Pro Ala Ala Ser Ser Val Lys Lys	
1 5 10 15	
Pro Phe Gly Leu Arg Ser Lys Met Gly Lys Trp Cys Cys Arg Cys Phe	
20 25 30	
Pro Cys Cys Arg Glu Ser Gly Lys Ser Asn Val Gly Thr Ser Gly Asp	
35 40 45	
His Asp Asp Ser Ala Met Lys Thr Leu Arg Ser Lys Met Gly Lys Trp	
His Asp Asp Ser Ala Met Lys Thr Leu Arg Ser Lys Met Gly Lys Trp 50 55 60	
His Asp Asp Ser Ala Met Lys Thr Leu Arg Ser Lys Met Gly Lys Trp 50 55 60 Cys Arg His Cys Phe Pro Cys Cys Arg Gly Ser Gly Lys Ser Asn Val	
His Asp Asp Ser Ala Met Lys Thr Leu Arg Ser Lys Met Gly Lys Trp 50 55 60 60 Cys Arg His Cys Phe Pro Cys Cys Arg Gly Ser Gly Lys Ser Asn Val 75 80	
His Asp Asp Ser Ala Met Lys Thr Leu Arg Ser Lys Met Gly Lys Trp 50 55 60 Cys Arg His Cys Phe Pro Cys Cys Arg Gly Ser Gly Lys Ser Asn Val 65 70 75 80 Gly Ala Ser Gly Asp His Asp Asp Ser Ala Met Lys Thr Leu Arg Asn	
His Asp Asp Ser Ala Met Lys Thr Leu Arg Ser Lys Met Gly Lys Trp 50	
His Asp Asp Ser Ala Met Lys Thr Leu Arg Ser Lys Met Gly Lys Trp 50	
His Asp Asp Ser Ala Met Lys Thr Leu Arg Ser Lys Met Gly Lys Trp 50	
His Asp Asp Ser Ala Met Lys Thr Leu Arg Ser Lys Met Gly Lys Trp 50	
His Asp Asp Ser Ala Met Lys Thr Leu Arg Ser Lys Met Gly Lys Trp 50	
His Asp Asp Ser Ala Met Lys Thr Leu Arg Ser Lys Met Gly Lys Trp 50	

Arg Ala Ala Trp Trp Gly Lys Val Pro Arg Lys Asp Leu Ile Val Met 145 150 150

7

Leu Arg Asp Thr Asp Val Asn Lys Lys Asp Lys Gln Lys Arg Thr Ala 165 170 Leu His Leu Ala Ser Ala Asn Gly Asn Ser Glu Val Val Lys Leu Leu 180 185 Leu Asp Arg Arg Cys Gln Leu Asn Val Leu Asp Asn Lys Lys Arg Thr 195 200 205 Ala Leu Ile Lys Ala Val Gln Cys Gln Glu Asp Glu Cys Ala Leu Met 215 220 Leu Leu Glu His Gly Thr Asp Pro Asn Ile Pro Asp Glu Tyr Gly Asn 230 235 Thr Thr Leu His Tyr Ala Ile Tyr Asn Glu Asp Lys Leu Met Ala Lys 245 250 Ala Leu Leu Tyr Gly Ala Asp Ile Glu Ser Lys Asn Lys His Gly 260 265 Leu Thr Pro Leu Leu Gly Val His Glu Gln Lys Gln Gln Val Val 275 280 285 Lys Phe Leu Ile Lys Lys Lys Ala Asn Leu Asn Ala Leu Asp Arg Tyr 290 295 300 Gly Arg Thr Ala Leu Ile Leu Ala Val Cys Cys Gly Ser Ala Ser Ile 305 310 315 320 Val Ser Leu Leu Glu Gln Asn Ile Asp Val Ser Ser Gln Asp Leu 325 330 335 Ser Gly Gln Thr Ala Arg Glu Tyr Ala Val Ser Ser His His Val 340 345 350 Ile Cys Gln Leu Leu Ser Asp Tyr Lys Glu Lys Gln Met Leu Lys Ile 355 360 365 Ser Ser Glu Asn Ser Asn Pro Glu Asn Val Ser Arg Thr Arg Asn Lys 375 380 <210> 9 <211> 656 <212> PRT <213> Homo sapien <400> 9 Met Val Val Glu Val Asp Ser Met Pro Ala Ala Ser Ser Val Lys Lys 10 15 Pro Phe Gly Leu Arg Ser Lys Met Gly Lys Trp Cys Cys Arg Cys Phe 25 Pro Cys Cys Arg Glu Ser Gly Lys Ser Asn Val Gly Thr Ser Gly Asp 35 40 35 40 His Asp Asp Ser Ala Met Lys Thr Leu Arg Ser Lys Met Gly Lys Trp 50 55 60 Cys Arg His Cys Phe Pro Cys Cys Arg Gly Ser Gly Lys Ser Asn Val Gly Ala Ser Gly Asp His Asp Asp Ser Ala Met Lys Thr Leu Arg Asn 85 90 Lys Met Gly Lys Trp Cys Cys His Cys Phe Pro Cys Cys Arg Gly Ser 105 110 Gly Lys Ser Lys Val Gly Ala Trp Gly Asp Tyr Asp Asp Ser Ala Phe 115 120 125 Met Glu Pro Arg Tyr His Val Arg Gly Glu Asp Leu Asp Lys Leu His 135 140 Arg Ala Ala Trp Trp Gly Lys Val Pro Arg Lys Asp Leu Ile Val Met 145 150 155 160 Leu Arg Asp Thr Asp Val Asn Lys Lys Asp Lys Gln Lys Arg Thr Ala 165 170 Leu His Leu Ala Ser Ala Asn Gly Asn Ser Glu Val Val Lys Leu Leu

_	_	_	180	_			_	185	_	_	_	_ :	190	_	
	_	195	Arg	_			200			_		205		_	
Ala	Leu 210	Ile	Lys	Ala	Val	Gln 215	Суѕ	Gln	Glu	Asp	Glu 220	Суѕ	Ala	Leu	Met
Leu 225	Leu	Glu	His	Gly	Thr 230	Asp	Pro	Asn	Ile	Pro 235	Asp	Glu	Tyr	Gly	Asn 240
Thr	Thr	Leu	His	Tyr 245	Ala	Ile	Tyr	Asn	Glu 250	Asp	Lys	Leu	Met	Ala 255	ГÀЗ
Ala	Leu	Leu	Leu 260	Tyr	Gly	Ala	Asp	Ile 265	Glu	Ser	Lys	Asn	Lys 270	His	Gly
Leu	Thr	Pro 275	Leu	Leu	Leu	Gly	Val 280	His	Glu	Gln	Lys	Gln 285	Gln	Val	Val
Lys	Phe 290	Leu	Ile	Lys	Lys	Lys 295	Ala	Asn	Leu	Asn	Ala 300	Leu	Asp	Arg	Tyr
Gly 305	Arg	Thr	Ala	Leu	Ile 310	Leu	Ala	Val	Cys	Cys 315	Gly	Ser	Ala	Ser	Ile 320
Val	Ser	Leu	Leu	Leu 325	Glu	Gln	Asn	Ile	Asp 330	Val	Ser	Ser	Gln	Asp 335	Leu
Ser	Gly	Gln	Thr 340	Ala	Arg	Glu	Tyr	Ala 345	Val	Ser	Ser	His	His 350	His	Val
Ile	Cys	Gln 355	Leu	Leu	Ser	Asp	Tyr 360	Lys	Glu	Lys	Gln	Met 365	Leu	Lys	Ile
Ser	Ser 370	Glu	Asn	Ser	Asn	Pro 375	Glu	Gln	Asp	Leu	Lys 380	Leu	Thr	Ser	Glu
Glu 385	Glu	Ser	Gln	Arg	Phe 390	Lys	Gly	Ser	Glu	Asn 395	Ser	Gln	Pro	Glu	Lys 400
Met	Ser	Gln	Glu	Pro 405	Glu	Ile	Asn	ГЛЗ	Asp 410	Gly	Asp	Arg	Glu	Val 415	Glu
Glu	Glu	Met	Lys 420	Lys	His	Glu	Ser	Asn 425	Asn	Val	Gly	Leu	Leu 430	Glu	Asn
Leu	Thr	Asn 435	Gly	Val	Thr	Ala	Gly 440	Asn	Gly	Asp	Asn	Gly 445	Leu	Ile	Pro
Gln	Arg 450	Lys	Ser	Arg	Thr	Pro 455	Glu	Asn	Gln	Gln	Phe 460	Pro	Asp	Asn	Glu
Ser 465	Glu	Glu	Tyr	His	Arg 470	Ile	Сув	Glu	Leu	Val 475	Ser	Asp	Tyr	Lys	Glu 480
_			Pro	485	-				490					495	_
	_		Thr 500					505		_			510		
		515	Pro				520					525			
	530		Ser			535					540				
Ala 545	Thr	Ala	Gly	Asn	Gly 550	Asp	Asp	Gly	Leu	Ile 555	Pro	Pro	Arg	Lys	Ser 560
			Glu	565					570					575	
		_	Glu 580			_		585	_			_	590		
Asn	Thr	Gly 595	Ile	Leu	His	Asp	Glu 600	Ile	Leu	Ile	His	Glu 605	Glu	Lys	Gln
	610		Val			615					620				
625		_	Asp		630					635		_			640
Ala	Met	Leu	Arg	Leu	Glu	Leu	Asp	Thr	Met	Lys	His	Gln	Ser	Gln	Leu

9

655 645 650 <210> 10 <211> 671 <212> PRT <213> Homo sapien <400> 10 Met Val Val Glu Val Asp Ser Met Pro Ala Ala Ser Ser Val Lys Lys Pro Phe Gly Leu Arg Ser Lys Met Gly Lys Trp Cys Cys Arg Cys Phe 20 25 Pro Cys Cys Arg Glu Ser Gly Lys Ser Asn Val Gly Thr Ser Gly Asp His Asp Asp Ser Ala Met Lys Thr Leu Arg Ser Lys Met Gly Lys Trp 55 Cys Arg His Cys Phe Pro Cys Cys Arg Gly Ser Gly Lys Ser Asn Val 70 Gly Ala Ser Gly Asp His Asp Asp Ser Ala Met Lys Thr Leu Arg Asn 85 90 95 Lys Met Gly Lys Trp Cys Cys His Cys Phe Pro Cys Cys Arg Gly Ser 100 105 110 Gly Lys Ser Lys Val Gly Ala Trp Gly Asp Tyr Asp Asp Ser Ala Phe 120 Met Glu Pro Arg Tyr His Val Arg Gly Glu Asp Leu Asp Lys Leu His 130 135 140 Arg Ala Ala Trp Trp Gly Lys Val Pro Arg Lys Asp Leu Ile Val Met 150 155 Leu Arg Asp Thr Asp Val Asn Lys Lys Asp Lys Gln Lys Arg Thr Ala 165 170 Leu His Leu Ala Ser Ala Asn Gly Asn Ser Glu Val Val Lys Leu Leu 185 Leu Asp Arg Arg Cys Gln Leu Asn Val Leu Asp Asn Lys Lys Arg Thr 195 200 205 Ala Leu Ile Lys Ala Val Gln Cys Gln Glu Asp Glu Cys Ala Leu Met 210 215 Leu Leu Glu His Gly Thr Asp Pro Asn Ile Pro Asp Glu Tyr Gly Asn 225 230 235 Thr Thr Leu His Tyr Ala Ile Tyr Asn Glu Asp Lys Leu Met Ala Lys 245 250 255 Ala Leu Leu Leu Tyr Gly Ala Asp Ile Glu Ser Lys Asn Lys His Gly 265 270 Leu Thr Pro Leu Leu Gly Val His Glu Gln Lys Gln Gln Val Val 275 280 Lys Phe Leu Ile Lys Lys Lys Ala Asn Leu Asn Ala Leu Asp Arg Tyr 290 295 300 Gly Arg Thr Ala Leu Ile Leu Ala Val Cys Cys Gly Ser Ala Ser Ile 305 310 315 320 Val Ser Leu Leu Leu Glu Gln Asn Ile Asp Val Ser Ser Gln Asp Leu 325 330 Ser Gly Gln Thr Ala Arg Glu Tyr Ala Val Ser Ser His His His Val 340 345 350 Ile Cys Gln Leu Leu Ser Asp Tyr Lys Glu Lys Gln Met Leu Lys Ile 355 360 365 Ser Ser Glu Asn Ser Asn Pro Glu Gln Asp Leu Lys Leu Thr Ser Glu 370 375 380 Glu Glu Ser Gln Arg Phe Lys Gly Ser Glu Asn Ser Gln Pro Glu Lys

10

```
Met Ser Gln Glu Pro Glu Ile Asn Lys Asp Gly Asp Arg Glu Val Glu
              405
                                410
Glu Glu Met Lys Lys His Glu Ser Asn Asn Val Gly Leu Leu Glu Asn
          420
                            425
Leu Thr Asn Gly Val Thr Ala Gly Asn Gly Asp Asn Gly Leu Ile Pro
                         440
                                          445
Gln Arg Lys Ser Arg Thr Pro Glu Asn Gln Gln Phe Pro Asp Asn Glu
                      455
Ser Glu Glu Tyr His Arg Ile Cys Glu Leu Val Ser Asp Tyr Lys Glu
                 470
                                 475
Lys Gln Met Pro Lys Tyr Ser Ser Glu Asn Ser Asn Pro Glu Gln Asp
                                 490
Leu Lys Leu Thr Ser Glu Glu Glu Ser Gln Arg Leu Glu Gly Ser Glu
                            505
          500
Asn Gly Gln Pro Glu Lys Arg Ser Gln Glu Pro Glu Ile Asn Lys Asp
                         520
Gly Asp Arg Glu Leu Glu Asn Phe Met Ala Ile Glu Glu Met Lys Lys
   530
                     535
                                       540
His Gly Ser Thr His Val Gly Phe Pro Glu Asn Leu Thr Asn Gly Ala
                 550 555 560
Thr Ala Gly Asn Gly Asp Asp Gly Leu Ile Pro Pro Arg Lys Ser Arg
             565 570
Thr Pro Glu Ser Gln Gln Phe Pro Asp Thr Glu Asn Glu Glu Tyr His
         580 585 590
Ser Asp Glu Gln Asn Asp Thr Gln Lys Gln Phe Cys Glu Glu Gln Asn
                         600
                                            605
Thr Gly Ile Leu His Asp Glu Ile Leu Ile His Glu Glu Lys Gln Ile
                     615 620
Glu Val Val Glu Lys Met Asn Ser Glu Leu Ser Leu Ser Cys Lys Lys
                 630
                                  635
Glu Lys Asp Ile Leu His Glu Asn Ser Thr Leu Arg Glu Glu Ile Ala
             645 650
Met Leu Arg Leu Glu Leu Asp Thr Met Lys His Gln Ser Gln Leu
                           665
<210> 11
     <211> 800
     <212> DNA
     <213> Homo sapien
     <400> 11
atkagettee gettetgaca acactagaga teceteecet eeetcagggt atggeeetce
                                                                 60
acttcatttt tggtacataa catctttata ggacaggggt aaaatcccaa tactaacagg
                                                                120
agaatgctta ggactctaac aggtttttga gaatgtgttg gtaagggcca ctcaatccaa
                                                                180
tttttcttgg tcctccttgt ggtctaggag gacaggcaag ggtgcagatt ttcaagaatg
                                                                240
catcagtaag ggccactaaa tccgaccttc ctcgttcctc cttgtggtct gggaggaaaa
                                                                300
ctagtgtttc tgttgctgtg tcagtgagca caactattcc gatcagcagg gtccagggac
                                                                360
cactgcaggt tcttgggcag ggggagaaac aaaacaaacc aaaaccatgg gcrgttttgt
ctttcagatg ggaaacactc aggcatcaac aggctcacct ttgaaatgca tcctaagcca
                                                                480
                                                                540
atgggacaaa tttgacccac aaaccctgga aaaagaggtg gctcattttt tttgcactat
ggcttggccc caacattctc tctctgatgg ggaaaaatgg ccacctgagg gaagtacaga
                                                                600
ttacaatact atcctgcagc ttgacctttt ctgtaagagg gaaggcaaat ggagtgaaat
                                                                660
accttatgtc caagctttct tttcattgaa ggagaataca ctatgcaaag cttgaaattt
                                                                720
acateceaca ggaggacete teagettace eccatateet ageeteecta tageteecet
                                                                780
tcctattagt gataagcctc
                                                                800
```

<210> 12 <211> 102

```
<212> PRT
      <213> Homo sapien
      <220>
      <221> VARIANT
      <222> (1)...(102)
      <223> Xaa = Any Amino Acid
      <400> 12
Met Gly Xaa Phe Val Phe Gln Met Gly Asn Thr Gln Ala Ser Thr Gly
                                    10
Ser Pro Leu Lys Cys Ile Leu Ser Gln Trp Asp Lys Phe Asp Pro Gln
                                25
Thr Leu Glu Lys Glu Val Ala His Phe Phe Cys Thr Met Ala Trp Pro
        35
                            40
Gln His Ser Leu Ser Asp Gly Glu Lys Trp Pro Pro Glu Gly Ser Thr
Asp Tyr Asn Thr Ile Leu Gln Leu Asp Leu Phe Cys Lys Arg Glu Gly
                    70
                                       75
Lys Trp Ser Glu Ile Pro Tyr Val Gln Ala Phe Phe Ser Leu Lys Glu
Asn Thr Leu Cys Lys Ala
            100
<210> 13
      <211> 1206
      <212> DNA
      <213> Homo sapien
      <400> 13
ggcacgagga agttttgtgt actgaaaaag aaactgtcaq aagcaaaaga aataaaatca
                                                                        60
cagttagaga accaaaaagt taaatgggaa caagagctct gcagtgtgag gtttctcaca
                                                                       120
ctcatgaaaa tgaaaattat ctcttacatg aaaattgcat gttgaaaaag gaaattgcca
                                                                       180
tgctaaaact ggaaatagcc acactgaaac accaatacca ggaaaaggaa aataaatact
                                                                       240
ttgaggacat taagatttta aaagaaaaga atgctgaact tcagatgacc ctaaaactga
                                                                       300
aagaggaatc attaactaaa agggcatctc aatatagtgg gcagcttaaa gttctgatag
ctgagaacac aatgctcact tctaaattga aggaaaaaca agacaaagaa atactagagg
                                                                       420
cagaaattga atcacaccat cctagactgg cttctgctgt acaagaccat gatcaaattg
                                                                       480
tgacatcaag aaaaagtcaa gaacctgctt tccacattgc aggagatgct tgtttgcaaa
                                                                       540
gaaaaatgaa tgttgatgtg agtagtacga tatataacaa tgaggtgctc catcaaccac
                                                                       600
tttctgaagc tcaaaggaaa tccaaaagcc taaaaattaa tctcaattat gccggagatg
                                                                       660
ctctaagaga aaatacattg gtttcagaac atgcacaaag agaccaacgt gaaacacagt
                                                                       720
gtcaaatgaa ggaagctgaa cacatgtatc aaaacgaaca agataatgtg aacaaacaca
                                                                       780
ctgaacagca ggagtctcta gatcagaaat tatttcaact acaaagcaaa aatatgtggc
                                                                       840
ttcaacagca attagttcat gcacataaga aagctgacaa caaaagcaag ataacaattg
atattcattt tcttgagagg aaaatgcaac atcatctcct aaaagagaaa aatgaggaga
                                                                       960
tatttaatta caataaccat ttaaaaaacc gtatatatca atatgaaaaa gagaaagcag
                                                                      1020
aaacagaagt tatataatag tataacactg ccaaggagcg gattatctca tcttcatcct
                                                                      1080
gtaattccag tgtttgtcac gtggttgttg aataaatgaa taaagaatga gaaaaccaga
                                                                      1140
agctctgata cataatcata atgataatta tttcaatgca caactacggg tggtgctgct
                                                                      1200
cgtgcc
                                                                      1206
      <210> 14
      <211> 317
      <212> PRT
      <213> Homo sapien
     <400> 14
```

Met Gly Thr Arg Ala Leu Gln Cys Glu Val Ser His Thr His Glu Asn

1	OTA	1111	mrg	5	пец	GIII	СуБ	Giu	10	ner	што	7.117	штр	15	ASII		
	Asn	Tyr	Leu 20	_	His	Glu	Asn	Cys 25		Leu	Lys	Lys	Glu 30		Ala		
Met	Leu	Lys 35	Leu	Glu	Ile	Ala	Thr 40	Leu	Lys	His	Gln	Tyr 45		Glu	Lys		
Glu	Asn 50	Lys	Tyr	Phe	Glu	Asp 55	Ile	Lys	Ile	Leu	Lys 60	Glu	Lys	Asn	Ala		
65			Met		70					75				_	80	r	
			Tyr	85					90					95			
			Ser 100					105			-		110				
		115	Glu				120					125			_		
	130		Ile			135					140						
145			Asp -		150					155					160		
			Tyr	165					170					175			
			Ser 180					185				-	190	_	_		
		195	Glu				200					205	_	-			
_	210		Gln	_		215	_				220		_				
225	GT11	Asp	Asn	Val	230	тйз	птз	THE	GIU	235	GIII	GIU	ser	ьеи	Asp 240		
	Lys	Leu	Phe	Gln 245		Gln	Ser	Lys	Asn 250		Trp	Leu	Gln	Gln 255			
Leu	Val	His	Ala 260	His	Lys	Lys	Ala	Asp 265	Asn	Lys	Ser	Lys	Ile 270	Thr	Ile		
		275	Phe				280					285					
	290		Glu			295					300		Asn	Arg	Ile		
Tyr 305	Gln	Tyr	Glu	Lys	Glu 310	Lys	Ala	Glu	Thr	Glu 315	Val	Ile					
-210)> 15																
\Z.I.(1665	5							-						
	<2	212>	DNA												,		
	<2	213>	Homo	sar	pien												
	<4	<00	15														
															gaaatg gcagat		60 120
															ctgag		180
															caaaaa		240
															tggat		300
															cgtaca		360
															gaagca cgcagt		420 480
															gttga		540
aaaa	aggaa	at t	gcca	atgct	a aa	acto	gaaa	taq	gccac	cact	gaaa	acaco	caa t	tacca	aggaaa		600
agga	aaat	aa a	atact	ttga	ag ga	catt	aaga	ttt	taaa	aga	aaag	gaato	get o	gaact	tcaga		660

13

tgaccctaaa	actgaaagag gaa	atcattaa cta	aaaagggc	atctcaatat	agtgggcagc 720								
	gatagctgag aad												
	aagaaatact agaggcagaa attgaatcac accatcctag actggcttct gctgtacaag												
	ccatgatca aattgtgaca tcaagaaaaa gtcaagaacc tgctttccac attgcaggag												
	etgettgttt geaaagaaaa atgaatgttg atgtgagtag taegatatat aacaatgagg												
tgctccatca accactttct gaagctcaaa ggaaatccaa aagcctaaaa attaatctca													
attatgccgg agatgctcta agagaaaata cattggtttc agaacatgca caaagagacc aacgtgaaac acagtgtcaa atgaaggaag ctgaacacat gtatcaaaac gaacaagata													
	acacactgaa caq												
	gtggcttcaa cad												
	aattgatatt cat												
agaaaaatga	ggagatattt aat	ttacaata aco	catttaaa	aaaccgtata	tatcaatatg 1380								
	agcagaaaca gaa												
	gaccagatct tta												
	aaatcttacc aat												
	cttcctgaag cct												
aaaaaaagaa	agaaagaaat gco	ctgtgett aci	ttegette	ccagg	1665								
<210>	16												
<211>													
<212>													
	Homo sapien												
	-												
<400>	· ·												
	Gln Ala Glu I	Pro Pro Glu		Ser Ala Phe									
1	Mot Cln Ive 9	Sor Val Dro	10	Ala Ton Cla	15								
Ala lie Giu	Met Gln Lys S	25	изи пув	30	пец пуз								
Asn Glu Gln	Thr Leu Arg A		Met. Phe		Ser Lvs								
35	5	40		45	- ,, -								
Gln Lys Lys	Val Glu Glu A	Asn Ser Trp	Asp Ser	Glu Ser Leu	Arg Glu								
50	5	55		60									
	Gln Lys Asp V	Val Cys Val	_	Ala Thr His	Gln Lys								
65	70	_	75		80								
Glu Met Asp	Lys Ile Ser G	Gly Lys Leu		Ser Thr Ser									
True The Ten	85	Ida Com Cira	90	Ala Are Clu	95								
туз тте теп	Asp Thr Val F	ars ser cys	GIU ALG	Ala Arg Giu	ned Gru								
Lvs Asn His	Cys Glu Gln A		Tus Met		Tys Tys								
115	0,0 014 0111 1	120		125	-10 H10								
Lys Phe Cys	Val Leu Lys I		Ser Glu	Ala Lys Glu	Ile Lys								
130		135		140	-								
Ser Gln Leu	Glu Asn Gln I	Lys Val Lys	Trp Glu	Gln Glu Leu	Cys Ser								
145	150		155		160								
Val Arg Phe	Leu Thr Leu M	Met Lys Met		Ile Ser Tyr									
T1 - 71 - 7	165		170		175								
Ile Ala Cys													
<210>	17												
<211>													
<212>													
<213>	Homo sapien												

gatacagtca ttcttgtgaa agagcaaggg aacttcaaaa agatcactgt gaacaacgta

caggaaaaat ggaacaaatg aaaaagaagt tttgtgtact gaaaaagaaa ctgtcagaag caaaagaaat aaaatcacag ttagagaacc aaaaagttaa atgggaacaa gagctctgca

60

14

	•				
gactttaaac	caagaagaag	agaagagaag	aaatgccgat	atattaaatg	240
ggaagaatta	ggaagaatcg	aagagcagca	taggaaagag	ttagaagtga	300
tgaacaggct	ctcagaatac	aagatataga	attgaagagt	gtagaaagta	,360
ggtttctcac	actcatgaaa	atgaaaatta	tctcttacat	gaaaattgca	420
ggaaattgcc	atgctaaaac	tggaaatagc	cacactgaaa	caccaatacc	480
aaataaatac	tttgaggaca	ttaagatttt	aaaagaaaag	aatgctgaac	540
cctaaaactg	aaagaggaat	cattaactaa	aagggcatct	caatatagtg	600
agttctgata	gctgagaaca	caatgctcac	ttctaaattg	aaggaaaaac	660
aatactagag	gcagaaattg	aatcacacca	tcctagactg	gcttctgctg	720
tgatcaaatt	gtgacatcaa	gaaaaagtca	agaacctgct	ttccacattg	780
ttgtttgcaa	agaaaaatga	atgttgatgt	gagtagtacg	atatataaca	840
ccatcaacca	ctttctgaag	ctcaaaggaa	atccaaaagc	ctaaaaatta	900
tgccggagat	gctctaagag	aaaatacatt	ggtttcagaa	catgcacaaa	960
tgaaacacag	tgtcaaatga	aggaagctga	acacatgtat	caaaacgaac	1020
gaacaaacac	actgaacagc	aggagtctct	agatcagaaa	ttatttcaac	1080
aaatatgtgg	cttcaacagc	aattagttca	tgcacataag	aaagctgaca	1140
gataacaatt	gatattcatt	ttcttgagag	gaaaatgcaa	catcatctcc	1200
aaatgaggag	atatttaatt	acaataacca	tttaaaaaac	cgtatatatc	1260
agagaaagca	gaaacagaaa	actcatgaga	gacaagcagt	aagaaacttc	1320
acaacagacc	agatctttac	tcacaactca	tgctaggagg	ccagtcctag	1380
tgttgaaaaa	tcttaccaat	agtctgtgtc	aacagaatac	ttattttaga	1440
atgatttctt	cctgaagcct	acagacataa	aataacagtg	tgaagaatta	1500
aattgcataa	aagctgccca	ggatttccat	ctaccctgga	tgatgccgga	1560
aatccaacca	gaatctcgct	ctgtcactca	ggctggagtg	cagtgggcgc	1620
cactgcaact	ctgcctccca	ggttcacgcc	attctctggc	acagcctccc	1680
					1681
	ggaagaatta tgaacaggct ggtttctcac ggaaattgcc aaataaactg agttctgata aatactagag tgatcaaatt ttgtttgcaa ccatcaacca tgccggagat tgaacacaca gaacaaacac aaatatgtg gataacaatt aaatgaggag agagaaagca acaacagacc tgttgaaaaa atgattctt aattgcataa aatccaacca	ggaagaatta ggaagaatcg tgaacaggct ctcagaatac ggtttctcac actcatgaaa ggaaattgcc atgctaaaac aatacaactg aaagaggaat agttctgata gctgagaaca aatactagag gcagaaattg tgatcaaatt gtgacaaca cttttcgaag ccatcaacca ctttctgaag tgccggagat gctctaagag tgaacaacac actgaacag tgaacaacac actgaacag caatatgtg cttcaacagc gataacaatt gatttaatt aagagaagaa acaacagacc agatcttac tgttgaaaa tcttaccaat atgattct cctgaagcct aattgcataa aagctgccca aatccaacca gaatctcgct	ggaagaatta ggaagaatcg aagagcagca tgaacagcc ctcagaatac aagatataga ggtttctcac actcatgaaa atgaaaatta ggaaattgcc atgataaacc ttgagaaccaccaccaccaccaccaccaccaccaccaccacc	ggaagaatta ggaagaatcg aagagcagca taggaaagag tgaacaggct ctcagaatac aagatataga attgaagagt ggtttctcac actcatgaaa atgaaaatta tctcttacat ggaaattgcc atgctaaaac tggaaatagc cacactgaaa aaatacatcg aagaggaat cattaactaa aagggcatct agttctgata gctgagaaca caatgctcac ttctaaattg aatactagag gcagaaattg aatcacacca tcctagactg tgatcaaatt gtgacatcaa gaaaaagtca agaacctgct ttgttgcaa agaaaaatga atgttgatgt gagtagtacg ccatcaacca ctttctgaag ctcaaaggaa atccaaaagc tgccggagat gctctaagag aaaatacatt ggttcagaa tgaacacaca tgctagaa tgaacacaca tgctagaga acacatgata gaacaacaca tgtcaaatga aggaagctga acacatgtat gaacaacaca tgtcaaatga aggaagctga acacatgtat gaacaacaca actgaacagc aggagtctct agatcagaaa aaatatgtgg cttcaacagc aattagttca tgcacataag gataacaatt gatattcatt ttcttgagag gaaaatgcaa aaatagaggag atatttaatt acaataacca tttaaaaaac agagaaagca gaacacagaaa actcatgaga gacaagcagt acaacagacc agatcttac tcacaactca tgctaggagg tgttgaaaaa tcttaccaat agtctgtgtc aacagaatac atgattctt cctgaagcct acagacataa aataacagtg aattgcataa aagctgcca ggatttccat ctaccctgga aatccaacca gaatctcac ggatttccat ctaccctgga aatccaacca gaatctcac ctgtcactca ggctggagtg	gactttaaac caagaagaag agaagagaag aaatgccgat atattaaatg ggaagaatta ggaagaatcg aagagcagca taggaaagag ttagaagtga tgaacaggct ctcagaatac aagatataga attgaagagt gtagaaagta ggtttctcac actcatgaaa atgaaaatta tctcttacat gaaaattagc caaataaatac tttgaggaca ttaggaaatta caccatgaaa caccaatacc caaataacac tttgaggaca ttaagatttt aaaagaaaag

<210> 18

<211> 432

<212> PRT

<213> Homo sapien

<400> 18

Asp Thr Val His Ser Cys Glu Arg Ala Arg Glu Leu Gln Lys Asp His 5 10 Cys Glu Gln Arg Thr Gly Lys Met Glu Gln Met Lys Lys Phe Cys 20 25 Val Leu Lys Lys Lys Leu Ser Glu Ala Lys Glu Ile Lys Ser Gln Leu 35 40 45 Glu Asn Gln Lys Val Lys Trp Glu Gln Glu Leu Cys Ser Val Arg Leu 50 60 . Thr Leu Asn Gln Glu Glu Lys Arg Arg Asn Ala Asp Ile Leu Asn 65 70 75 80 Glu Lys Ile Arg Glu Glu Leu Gly Arg Ile Glu Glu Gln His Arg Lys 85 90 95 Glu Leu Glu Val Lys Gln Gln Leu Glu Gln Ala Leu Arg Ile Gln Asp 100 105 Ile Glu Leu Lys Ser Val Glu Ser Asn Leu Asn Gln Val Ser His Thr 115 120 125 His Glu Asn Glu Asn Tyr Leu Leu His Glu Asn Cys Met Leu Lys Lys 135 140 Glu Ile Ala Met Leu Lys Leu Glu Ile Ala Thr Leu Lys His Gln Tyr 145 150 155 160 Gln Glu Lys Glu Asn Lys Tyr Phe Glu Asp Ile Lys Ile Leu Lys Glu 165 170 175 Lys Asn Ala Glu Leu Gln Met Thr Leu Lys Leu Lys Glu Glu Ser Leu 180 185 190 Thr Lys Arg Ala Ser Gln Tyr Ser Gly Gln Leu Lys Val Leu Ile Ala

		195					200					205				
Glu	Asn 210	Thr	Met	Leu	Thr	Ser 215	Lys	Leu	Lys	Glu	Lys 220	Gln	Asp	Lys	Glu	
Ile 225	Leu	Glu	Ala	Glu	Ile 230	Glu	Ser	His	His	Pro 235	Arg	Leu	Ala	Ser	Ala 240	
Val	Gln	Asp	His	Asp 245	Gln	Ile	Val	Thr	Ser 250	Arg	Lys	Ser	Gln	Glu 255	Pro	
			260	Ala		_		265			-		270			
Asp	Val	Ser 275	Ser	Thr	Ile	Tyr	Asn 280	Asn	Glu	Val	Leu	His 285	Gln	Pro	Leu	
	290			Arg	_	295	_				300					
305				Leu	310					315					320	
				Glu 325					330					335		
			340	Gln	-			345	_				350			
		355		Lys			360					365				
	370			Val		375					380					
385	Thr	тте	Asp	Ile	H1S	Phe	ьeu	GLu	Arg	ьуs 395	Met	GIN	His	HIS	ьеи 400	
	Lys	Glu	Lys	Asn 405		Glu	Ile	Phe	Asn 410		Asn	Asn	His	Leu 415		
Asn	Arg	Ile	Tyr 420	Gln	Tyr	Glu	Lys	Glu 425		Ala	Glu	Thr	Glu 430		Ser	
<210> 19 <211> 3681 <212> DNA <213> Homo sapiens																
)> 19 agcto		cacac	racao	c caa	aggaa	agat	acto	rtaaa	aga (gtcad	rcago	cc ac	caqco	cctgg	60
ctago	ctggd	cc ct	gtg	ggcat	: tta	itta	gtaa	agtt	ttaa	atg a	acaa	agct	ct to	gagto	caaca	120
															ggtga aacac	
															ggaaa	
															cttgg	
															gaac gaaat	
															cacac	
															aaaag	
															gtgg	
															gcat	
															agaat ctctg	
															agag	
															aact	
ctgtt	ccaa	aa ta	aaago	ccttt	gaa	attga	aaga	atga	acaa	aac a	attga	agago	ca ga	atcc	gatgt	1020
															ctct	
															aatag cacct	
															ttca	
															gtctg	

```
tcccaaataa agccttggaa ttgaaaaatg aacaaacatt gagagcagat gagatactcc 1380
catcagaatc caaacaaaag gactatgaag aaagttcttg ggattctgag agtctctgtg 1440
agactgtttc acagaaggat gtgtgtttac ccaaggctrc rcatcaaaaa gaaatagata 1500
aaataaatgg aaaattagaa gggtctcctg ttaaagatgg tcttctgaag gctaactgcg 1560
gaatgaaagt ttctattcca actaaagcct tagaattgat ggacatgcaa actttcaaag 1620
cagagectee egagaageea tetgeetteg ageetgeeat tgaaatgeaa aagtetgtte 1680
caaataaagc cttggaattg aagaatgaac aaacattgag agcagatgag atactcccat 1740
cagaatccaa acaaaaggac tatgaagaaa gttcttggga ttctgagagt ctctgtgaga 1800
ctgtttcaca gaaggatgtg tgtttaccca aggctrcrca tcaaaaagaa atagataaaa 1860
taaatggaaa attagaagag totootgata atgatggttt totgaaggot cootgoagaa 1920
tgaaagtttc tattccaact aaagccttag aattgatgga catgcaaact ttcaaagcag 1980
agcctcccga gaagccatct gccttcgagc ctgccattga aatgcaaaag tctgttccaa 2040
ataaagcctt ggaattgaag aatgaacaaa cattgagagc agatcagatg ttcccttcag 2100
aatcaaaaca aaagaasgtt gaagaaaatt cttgggattc tgagagtctc cgtgagactg 2160
tttcacagaa ggatgtgtgt gtacccaagg ctacacatca aaaagaaatg gataaaataa 2220
gtggaaaatt agaagattca actagcctat caaaaatctt ggatacagtt cattcttgtg 2280
aaagagcaag ggaacttcaa aaagatcact gtgaacaacg tacaggaaaa atggaacaaa 2340
tgaaaaagaa gttttgtgta ctgaaaaaga aactgtcaga agcaaaagaa ataaaatcac 2400
agttagagaa ccaaaaagtt aaatgggaac aagagctctg cagtgtgagg tttctcacac 2460
tcatgaaaat gaaaattatc tcttacatga aaattgcatg ttgaaaaagg aaattgccat 2520
gctaaaactg gaaatagcca cactgaaaca ccaataccag gaaaaggaaa ataaatactt 2580
tgaggacatt aagattttaa aagaaaagaa tgctgaactt cagatgaccc taaaactgaa 2640
agaggaatca ttaactaaaa gggcatctca atatagtggg cagcttaaag ttctgatagc 2700
tgagaacaca atgctcactt ctaaattgaa ggaaaaacaa gacaaagaaa tactagaggc 2760
agaaattgaa tcacaccatc ctagactggc ttctgctgta caagaccatg atcaaattgt 2820
gacatcaaga aaaagtcaag aacctgcttt ccacattgca ggagatgctt gtttgcaaag 2880
aaaaatgaat gttgatgtga gtagtacgat atataacaat gaggtgctcc atcaaccact 2940
ttctgaagct caaaggaaat ccaaaaqcct aaaaattaat ctcaattatq cmqqaqatqc 3000
tctaagagaa aatacattgg tttcagaaca tgcacaaaga gaccaacgtg aaacacagtg 3060
tcaaatgaag gaagctgaac acatgtatca aaacgaacaa gataatgtga acaaacacac 3120
tgaacagcag gagtctctag atcagaaatt atttcaacta caaagcaaaa atatgtggct 3180
tcaacagcaa ttagttcatg cacataagaa agctgacaac aaaagcaaga taacaattga 3240
tattcatttt cttgagagga aaatgcaaca tcatctccta aaaqagaaaa atgaggagat 3300
atttaattac aataaccatt taaaaaaccg tatatatcaa tatgaaaaaag agaaagcaga 3360
aacagaaaac tcatgagaga caagcagtaa gaaacttctt ttggagaaac aacagaccag 3420
atctttactc acaactcatg ctaggaggcc agtcctagca tcaccttatg ttgaaaatct 3480
taccaatagt ctgtgtcaac agaatactta ttttagaaga aaaattcatg atttcttcct 3540
gaagcctaca gacataaaat aacagtgtga agaattactt gttcacgaat tgcataaagc 3600
tgcacaggat tcccatctac cctgatgatg cagcagacat cattcaatcc aaccagaatc 3660
tcgctctgtc actcaggctg g
                                                                  3681
 <210> 20
 <211> 1424
 <212> DNA
 <213> Homo sapiens
<400> 20
tccgagctga ttacagacac caaggaagat gctgtaaaga gtcagcagcc acagccctgg 60
ctagctggcc ctgtgggcat ttattagtaa agttttaatg acaaaagctt tgagtcaaca 120
caccegtggg taattaacct qqtcatcccc accetqqaqa qccatcctqc ccatqqqtqa 180
tcaaagaagg aacatctgca ggaacacctg atgaggctgc acccttggcg gaaagaacac 240
ctgacacagc tgaaagcttg gtggaaaaaa cacctgatga ggctgcaccc ttggtggaaa 300
gaacacctga cacggctgaa agcttggtgg aaaaaacacc tgatgaggct gcatccttgg 360
tggagggaac atctgacaaa attcaatgtt tggagaaagc gacatctgga aagttcgaac 420
agtcagcaga agaaacacct agggaaatta cqaqtcctqc aaaaqaaaca tctqaqaaat 480
ttacgtggcc agcaaaagga agacctagga agatcgcatg ggagaaaaaa gaagacacac 540
ctagggaaat tatgagtccc gcaaaagaaa catctgagaa atttacgtgg gcagcaaaag 600
gaagacctag gaagatcgca tgggagaaaa aagaaacacc tgtaaagact ggatgcgtgg 660
```

```
caagagtaac atctaataaa actaaagttt tggaaaaagg aagatctaag atgattgcat 720
gtcctacaaa agaatcatct acaaaagcaa gtgccaatga tcagaggttc ccatcagaat 780
ccaaacaaga ggaagatgaa gaatattctt gtgattctcg gagtctcttt gagagttctg 840
caaagattca agtgtgtata cctgagtcta tatatcaaaa agtaatggag ataaatagag 900
aagtagaaga gcctcctaag aagccatctg ccttcaagcc tgccattgaa atgcaaaact 960
ctgttccaaa taaagccttt gaattgaaga atgaacaaac attgagagca gatccgatgt 1020
toccaccaga atocaaacaa aaggactatg aagaaaatto ttgggattot gagagtotot 1080
gtgagactgt ttcacaqaaq gatqtqtqtt tacccaaqqc tacacatcaa aaaqaaataq 1140
ataaaataaa tggaaaatta gaaggtaaga accgtttttt atttaaaaat cagttgaccg 1200
aatatttctc taaactgatg aggagggata tcctctagta qctqaaqaaa attacctcct 1260
aaatgcaaac catggaaaaa aagagaagtg caatggtcgt aagttgtatg tctcatcagg 1320
tgttggcaac agactatatt gagagtgctg aaaaggagct gaattattag tttgaattca 1380
agatattqca agacctgaga gaaaaaaaaa aaaaaaaaa aaaa
<210> 21
<211> 674
 <212> DNA
<213> Homo sapiens
<400> 21
attccgagct gattacagac accaaggaag atgctgtaaa gagtcagcag ccacagccct 60
ggctagctgg ccctgtgggc atttattagt aaagttttaa tgacaaaagc tttgagtcaa 120
cacaccegtg ggtaattaac ctggtcatcc ccaccetgga gagecatect geccatgggt 180
gatcaaagaa ggaacatctg caggaacacc tgatgaggct gcacccttgg cggaaagaac 240
acctgacaca gctgaaagct tggtggaaaa aacacctgat gaggctgcac ccttggtgga 300
aagaacacct gacacggctg aaagcttggt ggaaaaaaca cctgatgagg ctgcatcctt 360
ggtggaggga acatctgaca aaattcaatg tttggagaaa gcgacatctg gaaagttcga 420
acagtcagca gaagaaacac ctagggaaat tacgagtcct gcaaaagaaa catctgagaa 480
atttacgtgg ccagcaaaag gaagacctag gaagatcgca tgggagaaaa aagatgactc 540
aaaaaaaaa aaaa
<210> 22
<211> 1729
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> (11)
<223> n=A,T,C or G
<221> unsure
<222> (1128)
<223> n=A,T,C or G
<400> 22
gaaagttcga ncagtcagca gaagaaacac ctagggaaat tacgagtcct gcaaaagaaa 60
catctgagaa atttacgtgg ccagcaaaag gaagacctag gaagatcgca tgggagaaaa 120
aagaagacac acctagggaa attatgagtc ccgcaaaaga aacatctgag aaatttacgt 180
gggcagcaaa aggaagacct aggaagatcg catgggagaa aaaagaaaca cctgtaaaga 240
ctggatgcgt ggcaagagta acatctaata aaactaaagt tttggaaaaa ggaagatcta 300
agatgattgc atgtcctaca aaagaatcat ctacaaaagc aagtgccaat gatcagaggt 360
toccatcaga atccaaacaa gaggaagatg aagaatatto ttqtqattot cqqaqtotot 420
ttgagagttc tgcaaagatt caagtgtgta tacctgagtc tatatatcaa aaagtaatgg 480
agataaatag agaagtagaa gagcctccta agaagccatc tgccttcaag cctgccattg 540
cagatccgat gttcccacca gaatccaaac aaaaggacta tgaagaaaat tcttgggatt 660
```

```
ctgagagtct ctgtgagact gtttcacaga aggatgtgtg tttacccaag gctacacatc 720
aaaaagaaat agataaaata aatggaaaat tagaagagtc tcctaataaa qatqqtcttc 780
tgaaggctac ctgcggaatg aaagtttcta ttccaactaa agccttagaa ttgaaggaca 840
tgcaaacttt caaagcagag cctccgggga agccatctgc cttcgagcct gccactgaaa 900
tgcaaaagtc tgtcccaaat aaagccttgg aattgaaaaa tgaacaaaca ttgagagcag 960
atgagatact cccatcagaa tccaaacaaa aggactatga agaaaattct tgggatactg 1020
agagtetetg tgagactgtt teacagaagg atgtgtgttt acceaagget gegeateaaa 1080
aagaaataga taaaataaat ggaaaattag aagggtctcc tggtaaanat ggtcttctga 1140
aggctaactg cggaatgaaa gtttctattc caactaaagc cttagaattg atggacatgc 1200
aaactttcaa agcagagcct cccgagaagc catctgcctt cgagcctgcc attgaaatgc 1260
aaaagtctgt tccaaataaa gccttggaat tgaagaatga acaaacattg agagcagatg 1320
agatactccc atcagaatcc aaacaaaagg actatgaaga aagttcttgg gattctgaga 1380
gtctctgtga gactgtttca cagaaggatg tgtgtttacc caaggctgcg catcaaaaag 1440
aaatagataa aataaatgga aaattagaag gtaagaaccg ttttttattt aaaaatcatt 1500
tgaccaaata tttctctaaa ttgatgagga aggatatcct ctagtagctg aagaaaatta 1560
cctcctaaat gcaaaccatg gaaaaaaaga gaagtgcaat ggtcataagc tatgtgtctc 1620
atcaggcatt ggcaacagac tatattgtga gtgctgaaga ggagctgaat tactagttta 1680
aattcaagat attccaagac gtgaggaaaa tgagaaaaaa aaaaaaaaa
 <210> 23
 <211> 1337
 <212> DNA
 <213> Homo sapiens
 <400> 23
aaaaagaaat agataaaata aatggaaaat tagaagggtc tcctgttaaa qatggtcttc 60
tgaaggctaa ctgcggaatg aaagtttcta ttccaactaa agccttagaa ttgatggaca 120
tgcaaacttt caaagcagag cctcccgaga agccatctgc cttcgagcct gccattgaaa 180
tgcaaaagtc tgttccaaat aaagccttgg aattgaagaa tgaacaaaca ttgagagcag 240
atgagatact cccatcagaa tccaaacaaa aggactatga agaaagttct tgggattctg 300
agagtetetg tgagaetgtt teacagaagg atgtgtgttt acceaagget gegeateaaa 360
aagaaataga taaaataaat ggaaaattag aagagtctcc tgataatgat ggttttctga 420
aggctccctg cagaatgaaa gtttctattc caactaaagc cttagaattg atggacatgc 480
aaactttcaa agcagagcct cccgagaagc catctqcctt cgagcctqcc attgaaatgc 540
aaaagtctgt tccaaataaa gccttggaat tgaagaatga acaaacattg agaqcaqatc 600
agatgttccc ttcagaatca aaacaaaaga aggttgaaga aaattcttgg gattctgaga 660
gtctccgtga gactgtttca cagaaggatg tgtgtgtacc caaggctaca catcaaaaag 720
aaatggataa aataagtgga aaattagaag attcaactag cctatcaaaa atcttggata 780
caqttcattc ttqtqaaaqa qcaaqqqaac ttcaaaaaqa tcactqtqaa caacqtacaq 840
qaaaaatgga acaaatgaaa aagaagtttt gtgtactgaa aaagaaactg tcagaagcaa 900
aagaaataaa atcacagtta gagaaccaaa aagttaaatg ggaacaagag ctctgcagtg 960
tqaqattqac tttaaaccaa qaaqaaqaqa aqaqaaqaaa tqccqatata ttaaatqaaa 1020
aaattaggga agaattagga agaatcgaag agcaqcatag gaaagagtta gaagtgaaac 1080
aacaacttga acaggctctc agaatacaag atatagaatt qaagagtgta gaaaqtaatt 1140
tgaatcaggt ttctcacact catgaaaatg aaaattatct cttacatgaa aattgcatgt 1200
tgaaaaagga aattgccatg ctaaaactgg aaatagccac actgaaacac caataccagg 1260
aaaaggaaaa taaatacttt gaggacatta agattttaaa agaaaagaat gctgaacttc 1320
agatgacccc tcgtgcc
<210> 24
<211> 2307
 <212> DNA
<213> Homo 'sapiens
<400> 24
attgagagca gatgagatac tcccatcaga atccaaacaa aaggactatg aagaaagttc 60
ttgggattct gagagtctct gtgagactgt ttcacagaag gatgtgtgtt tacccaaggc 120
tacacatcaa aaagaaatag ataaaataaa tggaaaatta gaagggtctc ctgttaaaga 180
```

PCT/US01/10631

19

```
tggtcttctg aaggctaact gcggaatgaa agtttctatt ccaactaaag ccttagaatt 240
gatggacatg caaactttca aagcagagcc tcccgagaag ccatctgcct tcgagcctgc 300
cattgaaatg caaaagtctg ttccaaataa agccttggaa ttgaagaatg aacaaacatt 360
qaqaqcaqat qaqatactcc catcaqaatc caaacaaaag qactatgaag aaagttcttg 420
ggattctgag agtctctgtg agactgtttc acagaaggat gtgtgtttac ccaaggctac 480
acatcaaaaa gaaatagata aaataaatgg aaaattagaa gagtctcctg ataatgatgg 540
ttttctqaag tctccctqca qaatqaaaqt ttctattcca actaaagcct taqaattgat 600
ggacatgcaa actitcaaag cagagctcc cgagaagcca tctgccttcg agcctgccat 660
tgaaatgcaa aagtctgttc caaataaagc cttggaattg aagaatgaac aaacattgag 720
agcagatcag atgttccctt cagaatcaaa acaaaagaac gttgaagaaa attcttggga 780
tictgagagi ctccgtgaga ctgtttcaca gaaggatgtg tgtgtaccca aggctacaca 840
tcaaaaagaa atggataaaa taagtggaaa attagaagat tcaactagcc tatcaaaaat 900
cttggataca gttcattctt gtgaaagagc aagggaactt caaaaagatc actgtgaaca 960
acqtacagga aaaatggaac aaatgaaaaa gaagttttgt gtactgaaaa agaaactgtc 1020
aqaaqcaaaa qaaataaaat cacaqttaga gaaccaaaaa gttaaatggg aacaagagct 1080
ctgcagtgtg aggtttctca cactcatgaa aatgaaaatt atctcttaca tgaaaattgc 1140
atgttgaaaa aggaaattgc catgctaaaa ctggaaatag ccacactgaa acaccaatac 1200
caggaaaagg aaaataaata ctttgaggac attaagattt taaaagaaaa gaatgctgaa 1260
cttcagatga ccctaaaact gaaagaggaa tcattaacta aaagggcatc tcaatatagt 1320
gggcagctta aagttctgat agctgagaac acaatgctca cttctaaatt gaaggaaaaa 1380
caagacaaag aaatactaga ggcagaaatt gaatcacacc atcctagact ggcttctgct 1440
gtacaagacc atgatcaaat tgtgacatca agaaaaagtc aagaacctgc tttccacatt 1500
gcaggagatg cttgtttgca aagaaaaatg aatgttgatg tgagtagtac gatatataac 1560
aatgaggtgc tccatcaacc actttctgaa gctcaaagga aatccaaaag cctaaaaatt 1620
aatctcaatt atgcaggaga tgctctaaga gaaaatacat tggtttcaga acatgcacaa 1680
agagaccaac gtgaaacaca gtgtcaaatg aaggaagctg aacacatgta tcaaaacgaa 1740
caagataatg tgaacaaaca cactgaacag caggagtctc tagatcagaa attatttcaa 1800
ctacaaagca aaaatatgtg gcttcaacag caattagttc atgcacataa gaaagctgac 1860
aacaaaagca agataacaat tgatattcat tttcttgaga ggaaaatgca acatcatctc 1920
ctaaaagaga aaaatgagga gatatttaat tacaataacc atttaaaaaa ccgtatatat 1980
caatatgaaa aagagaaagc agaaacagaa aactcatgag agacaagcag taagaaactt 2040
cttttggaga aacaacagac cagatettta etcacaacte atgetaggag gecagteeta 2100
gcatcacctt atgttgaaaa tcttaccaat agtctgtgtc aacagaatac ttattttaga 2160
agaaaaattc atgatttctt cctgaagcct acagacataa aataacagtg tgaagaatta 2220
cttqttcacq aattqcataa agctqcacag gattcccatc taccctgatg atgcagcaga 2280
catcattcaa tccaaccaga atctcgc
 <210> 25
 <211> 650
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> unsure
 <222> (310)
 <223> Xaa = Any Amino Acid
 <221> unsure
 <222> (429)
 <223> Xaa = Any Amino Acid
 <221> unsure
 <222> (522)
 <223> Xaa = Any Amino Acid
 <400> 25
Met Ser Pro Ala Lys Glu Thr Ser Glu Lys Phe Thr Trp Ala Ala Lys
```

Gly Arg Pro Arg Lys Ile Ala Trp Glu Lys Lys Glu Thr Pro Val Lys

			20					25					30		
Thr	Gly	Cys 35	Val	Ala	Arg	Val	Thr 40	Ser	Asn	Lys	Thr	Lys 45	Val	Leu	Glu
Lys	Gly 50	Arg	Ser	Lys	Met	Ile 55	Ala	Cys	Pro	Thr	Lys 60	Glu	Ser	Ser	Thr
Lys 65	Ala	Ser	Ala	Asn	Asp 70	Gln	Arg	Phe	Pro	Ser 75	Glu	Ser	Lys	Gln	Glu 80
Glu	Asp	Glu	Glu	Tyr 85	Ser	Cys	Asp	Ser	Arg 90	Ser	Leu	Phe	Glu	Ser 95	Ser
Ala	Lys	Ile	Gln 100	Val	Cys	Ile	Pro	Glu 105	Ser	Ile	Tyr	Gln	Lys 110	Val	Met
Glu	Ile	Asn 115	Arg	Glu	Val	Glu	Glu 120	Pro	Pro	Lys	Lys	Pro 125	Ser	Ala	Phe
Lys	Pro 130	Ala	Ile	Glu	Met	Gln 135	Asn	Ser	Val	Pro	Asn 140	Lys	Ala	Phe	Glu
Leu 145	Lys	Asn	Glu	Gln	Thr 150	Leu	Arg	Ala	Asp	Pro 155	Met	Phe	Pro	Pro	Glu 160
Ser	Lys	Gln	Lys	Asp 165	Tyr	Glu	Glu	Asn	Ser 170	Trp	Asp	Ser	Glu	Ser 175	Leu
Суз	Glu	Thr	Val 180	Ser	Gln	Lys	Asp	Val 185	Cys	Leu	Pro	Lys	Ala 190	Thr	His
Gln	Lys	Glu 195	Ile	Asp	Lys	Ile	Asn 200	Gly	Lys	Leu	Glu	Glu 205	Ser	Pro	Asn
Lys	Asp 210	Gly	Leu	Leu	Lys	Ala 215	Thr	Cys	Gly	Met	Lys 220	Val	Ser	Ile	Pro
Thr 225	Lys	Ala	Leu	Glu	Leu 230	Lys	Asp	Met	Gln	Thr 235	Phe	Lys	Ala	Glu	Pro 240
Pro	Gly	Lys	Pro	Ser 245	Ala	Phe	Glu	Pro	Ala 250	Thr	Glu	Met	Gln	Lys 255	Ser
Val	Pro	Asn	Lys 260	Ala	Leu	Glu	Leu	Lуs 265	Asn	Glu	Gln	Thr	Leu 270	Arg	Ala
Asp	Glu	Ile 275	Leu	Pro	Ser	Glu	Ser 280	Lys	Gln	Lys	Asp	Tyr 285	Glu	Glu	Ser
Ser	Trp 290	Asp	Ser	Glu	Ser	Leu 295	Cys	Glu	Thr	Val	Ser 300	Gln	Lys	Asp	Val
Cys 305	Leu	Pro	Lys	Ala	Xaa 310	His	Gln	Lys	Glu	Ile 315	Asp	Lys	Ile	Asn	Gly 320
Lys	Leu	Glu	Gly	Ser 325	Pro	Val	Lys	Asp	Gly 330	Leu	Leu	Lys	Ala	Asn 335	Cys

21 .

Gly	Met	Lys	Val 340	Ser	Ile	Pro	Thr	Lys 345	Ala	Leu	Glu	Leu	Met 350	Asp	Met
Gln	Thr	Phe 355	Lys	Ala	Glu	Pro	Pro 360	Glu	Lys	Pro	Ser	Ala 365	Phe	Glu	Pro
Ala	Ile 370	Glu	Met	Gln	Lys	Ser 375	Val	Pro	Asn	Lys	Ala 380	Leu	Glu	Leu	Lys
Asn 385	Glu	Gln	Thr	Leu	Arg 390	Ala	Asp	Glu	Ile	Leu 395	Pro	Ser	Glu	Ser	Lys 400
Gln	Lys	Asp	Tyr	Glu 405	Glu	Ser	Ser	Trp	Asp 410	Ser	Glu	Ser	Leu	Cys 415	Glu
Thr	Val	Ser	Gln 420	Lys	Asp	Val	Cys	Leu 425	Pro	Lys	Ala	Xaa	His 430	Gln	Lys
Glu	Ile	Asp 435	Lys	Ile	Asn	Gly	Lys 440	Leu	Glu	Glu	Ser	Pro 445	Asp	Asn	Asp
Gly	Phe 450	Leu	Lys	Ala	Pro	Cys 455	Arg	Met	Lys	Val	Ser 460	Ile	Pro	Thr	Lys
Ala 465	Leu	Glu	Leu	Met	Asp 470	Met	Gln	Thr	Phe	Lуs 475	Ala	Glu	Pro	Pro	Glu 480
Lys	Pro	Ser	Ala	Phe 485	Glu	Pro	Ala	Ile	Glu 490	Met	Gln	Lys	Ser	Val 495	Pro
			Leu 500					505					510		
Met	Phe	Pro 515	Ser	Glu	Ser	Lys	Gln 520	Lys	Xaa	Val	Glu	Glu 525	Asn	Ser	Trp
	530		Ser			535					540				
545 •			Thr		550					555					560
			Thr	565					570					575	
			Arg 580					585					590		
		595	Gln			-	600		_			605		_	
	610		Lys			615					620		_		_
Trp 625	Glu	Gln	Glu	Leu	Cys 630	Ser	Val	Arg	Phe	Leu 635	Thr	Leu	Met	Lys	Met 640

22

Lys Ile Ile Ser Tyr Met Lys Ile Ala Cys 645 650

<210> 26

<211> 228

<212> PRT

<213> Homo sapiens

<400> 26

Met Ser Pro Ala Lys Glu Thr Ser Glu Lys Phe Thr Trp Ala Ala Lys 5 10 15

Gly Arg Pro Arg Lys Ile Ala Trp Glu Lys Lys Glu Thr Pro Val Lys 20 25 30

Thr Gly Cys Val Ala Arg Val Thr Ser Asn Lys Thr Lys Val Leu Glu 35 40 45

Lys Gly Arg Ser Lys Met Ile Ala Cys Pro Thr Lys Glu Ser Ser Thr 50 55

Lys Ala Ser Ala Asn Asp Gln Arg Phe Pro Ser Glu Ser Lys Gln Glu 65 70 75 80

Glu Asp Glu Glu Tyr Ser Cys Asp Ser Arg Ser Leu Phe Glu Ser Ser 85 90 95

Ala Lys Ile Gln Val Cys Ile Pro Glu Ser Ile Tyr Gln Lys Val Met 100 105 110

Glu Ile Asn Arg Glu Val Glu Glu Pro Pro Lys Lys Pro Ser Ala Phe 115 120 125

Lys Pro Ala Ile Glu Met Gln Asn Ser Val Pro Asn Lys Ala Phe Glu 130 135 140

Ser Lys Gln Lys Asp Tyr Glu Glu Asn Ser Trp Asp Ser Glu Ser Leu 165° 170 175

Cys Glu Thr Val Ser Gln Lys Asp Val Cys Leu Pro Lys Ala Thr His 180 185 190

Gln Lys Glu Ile Asp Lys Ile Asn Gly Lys Leu Glu Gly Lys Asn Arg 195 200 205

Phe Leu Phe Lys Asn Gln Leu Thr Glu Tyr Phe Ser Lys Leu Met Arg 210 215 220

Arg Asp Ile Leu

<210> 27 <211> 154

23

<212> PRT <213> Homo sapiens <220> <221> unsure <222> (148) <223> Xaa = Any Amino Acid <400> 27 Met Arg Leu His Pro Trp Arg Lys Glu His Leu Thr Gln Leu Lys Ala

Trp Trp Lys Lys His Leu Met Arg Leu His Pro Trp Trp Lys Glu His

Leu Thr Arg Leu Lys Ala Trp Trp Lys Lys His Leu Met Arg Leu His

Pro Trp Trp Arg Glu His Leu Thr Lys Phe Asn Val Trp Arg Lys Arg

His Leu Glu Ser Ser Asn Ser Gln Gln Lys Lys His Leu Gly Lys Leu

Arg Val Leu Gln Lys Lys His Leu Arg Asn Leu Arg Gly Gln Gln Lys 90

Glu Asp Leu Gly Arg Ser His Gly Arg Lys Lys Met Thr Gln Leu Arg

Lys Lys Lys Lys Lys Lys Lys Lys

<210> 28

<211> 466

<212> PRT

<213> Homo sapiens

<220>

<221> unsure

<222> (329)

<223> Xaa = Any Amino Acid

<400> 28

Met Ser Pro Ala Lys Glu Thr Ser Glu Lys Phe Thr Trp Ala Ala Lys

Gly Arg Pro Arg Lys Ile Ala Trp Glu Lys Lys Glu Thr Pro Val Lys

Thr Gly Cys Val Ala Arg Val Thr Ser Asn Lys Thr Lys Val Leu Glu

		35					40					45			
Lys	Gly 50	Arg	Ser	Lys	Met	Ile 55	Ala	Cys	Pro	Thr	Lys 60	Glu	Ser	Ser	Thr
Lys 65	Ala	Ser	Ala	Asn	Asp 70	Gln	Arg	Phe	Pro	Ser 75	Glu	Ser	Lys	Gln	Glu 80
Glu	Asp	Glu	Glu	Tyr 85	Ser	Cys	Asp	Ser	Arg 90	Ser	Leu	Phe	Glu	Ser 95	Ser
Ala	Lys	Ile	Gln 100	Val	Cys	Ile	Pro	Glu 105	Ser	Ile	Tyr	Gln	Lys 110	Val	Met
Glu	Ile	Asn 115	Arg	Glu	Val	Glu	Glu 120	Pro	Pro	Lys	Lys	Pro 125	Ser	Ala	Phe
Lys	Pro 130	Ala	Ile	Glu	Met	Gln 135	Asn	Ser	Val	Pro	Asn 140	Lys	Ala	Phe	Glu
Leu 145	Lys	Asn	Glu	Gln	Thr 150	Leu	Arg	Ala	Asp	Pro 155	Met	Phe	Pro	Pro	Glu 160
Ser	Lys	Gln	Lys	Asp 165	Tyr	Glu	Glu	Asn	Ser 170	Trp	Asp	Ser	Glu	Ser 175	Leu
Cys	Glu	Thr	Val 180	Ser	Gln	Lys	Asp	Val 185	Cys	Leu	Pro	Lys	Ala 190	Thr	His
Gln	Lys	Glu 195	Ile	Asp	Lys	Ile	Asn 200	Gly	Lys	Leu	Glu	Glu 205	Ser	Pro	Asn
Lys	Asp 210	Gly	Leu	Leu	Lys	Ala 215	Thr	Cys	Gly	Met	Lys 220	Val	Ser	Ile	Pro
Thr 225	Lys	Ala	Leu	Glu	Leu 230	Lys	Asp	Met	Gln	Thr 235	Phe	Lys	Ala	Glu	Pro 240
Pro	Gly	Lys	Pro	Ser 245	Ala	Phe	Glu	Pro	Ala 250	Thr	Glu	Met	Gln	Lys 255	Ser
Val	Pro	Asn	Lys 260	Ala	Leu	Glu	Leu	Lys 265	Asn	Glu	Gln	Thr	Leu 270	Arg	Ala
Asp	Glu	Ile 275	Leu	Pro	Ser	Glu	Ser 280	Lys	Gln	Lys	Asp	Tyr 285	Glu	Glu	Asn
Ser	Trp 290	Asp	Thr	Glu	Ser	Leu 295	Cys	Glu	Thr	Val	Ser 300	Gln	Lys	Asp	Val
Cys 305	Leu	Pro	Lys	Ala	Ala 310	His	Gln	Lys	Glu	Ile 315	Asp	Lys	Ile	Asn	Gly 320
Lys	Leu	Glu	Gly	Ser 325	Pro	Gly	Lys	Xaa	Gly 330	Leu	Leu	Lys	Ala	Asn 335	Cys
Gly	Met	Lys	Val 340	Ser	Ile	Pro	Thr	Lys 345	Ala	Leu	Glu	Leu	Met 350	Asp	Met

Gln Thr Phe Lys Ala Glu Pro Pro Glu Lys Pro Ser Ala Phe Glu Pro Ala Ile Glu Met Gln Lys Ser Val Pro Asn Lys Ala Leu Glu Leu Lys 375 Asn Glu Gln Thr Leu Arg Ala Asp Glu Ile Leu Pro Ser Glu Ser Lys Gln Lys Asp Tyr Glu Glu Ser Ser Trp Asp Ser Glu Ser Leu Cys Glu 410 Thr Val Ser Gln Lys Asp Val Cys Leu Pro Lys Ala Ala His Gln Lys 425 Glu Ile Asp Lys Ile Asn Gly Lys Leu Glu Gly Lys Asn Arg Phe Leu 440 Phe Lys Asn His Leu Thr Lys Tyr Phe Ser Lys Leu Met Arg Lys Asp Ile Leu 465 <210> 29 <211> 445 <212> PRT <213> Homo sapiens <400> 29 Lys Glu Ile Asp Lys Ile Asn Gly Lys Leu Glu Gly Ser Pro Val Lys Asp Gly Leu Leu Lys Ala Asn Cys Gly Met Lys Val Ser Ile Pro Thr Lys Ala Leu Glu Leu Met Asp Met Gln Thr Phe Lys Ala Glu Pro Pro Glu Lys Pro Ser Ala Phe Glu Pro Ala Ile Glu Met Gln Lys Ser Val 5.5 Pro Asn Lys Ala Leu Glu Leu Lys Asn Glu Gln Thr Leu Arg Ala Asp Glu Ile Leu Pro Ser Glu Ser Lys Gln Lys Asp Tyr Glu Glu Ser Ser Trp Asp Ser Glu Ser Leu Cys Glu Thr Val Ser Gln Lys Asp Val Cys 105 Leu Pro Lys Ala Ala His Gln Lys Glu Ile Asp Lys Ile Asn Gly Lys Leu Glu Glu Ser Pro Asp Asn Asp Gly Phe Leu Lys Ala Pro Cys Arg

Met 145	Lys	Val	Ser	Ile	Pro 150	Thr	Lys	Ala	Leu	G1u 155	Leu	Met	Asp	Met	G1n 160
Thr	Phe	Lys	Ala	Glu 165	Pro	Pro	Glu	Lys	Pro 170	Ser	Ala	Phe	Glu	Pro 175	Ala
Ile	Glu	Met	Gln 180	Lys	Ser	Val	Pro	Asn 185	Lys	Ala	Leu	Glu	Leu 190	Lys	Asn
Glu	Gln	Thr 195	Leu	Arg	Ala	Asp	Gln 200	Met	Phe	Pro	Ser	Glu 205	Ser	Lys	Gln
Lys	Lys 210	Val	Glu	Glu	Asn	Ser 215	Trp	Asp	Ser	Glu	Ser 220	Leu	Arg	Glu	Thr
Val 225	Ser	Gln	Lys	Asp	Val 230	Cys	Val	Pro	Lys	Ala 235	Thr	His	Gln	Lys	Glu 240
Met	Asp	Lys	Ile	Ser 245	Gly	Lys	Leu	Glu	Asp 250	Ser	Thr	Ser	Leu	Ser 255	Lys
Ile	Leu	Asp	Thr 260	Val	His	Ser	Cys	Glu 265	Arg	Ala	Arg	Glu	Leu 270	Gln	Lys
Asp	His	Cys 275	Glu	Gln	Arg	Thr	Gly 280	Lys	Met	Glu	Gln	Met 285	Lys	Lys	Lys
Phe	Cys 290	Val	Leu	Lys	Lys	Lys 295	Leu	Ser	Glu	Ala	300	Glu	Ile	Lys	Ser
Gln 305	Leu	Glu	Asn	Gln	Lys 310	Val	Lys	Trp	Glu	Gln 315	Glu	Leu	Cys	Ser	Val 320
Arg	Leu	Thr	Leu	Asn 325	Gln	Glu	Glu	Glu	Lys 330	Arg	Arg	Asn	Ala	Asp 335	Ile
Leu	Asn	Glu	Lys 340	Ile	Arg	Glu	Ġlu	Leu 345	Gly	Arg	Ile	Glu	Glu 350	Gln	His
Arg	Lys	Glu 355	Leu	Glu	Val	Lys	Gln 360	Gln	Leu	Glu	Gln	Ala 365	Leu	Arg	Ile
Gln	Asp 370	Ile	Glu	Leu	Lys	Ser 375	Val	Glu	Ser	Asn	Leu 380	Asn	Gln	Val	Ser
His 385	Thr	His	Glu	Asn	Glu 390	Asn	Tyr	Leu	Leu	His 395	Glu	Asn	Cys	Met	Leu 400
Lys	Lys	Glu	Ile	Ala 405	Met	Leu	Lys	Leu	Glu 410	Ile	Ala	Thr	Leu	Lys 415	His
Gln	Tyr	Gln	Glu 420	Lys	Glu	Asn	Lys	Tyr 425	Phe	Glu	Asp	Ile	Lys 430	Ile	Leu
Lys	Glu	Lys 435	Asn	Ala	Glu	Leu	Gln 440	Met	Thr	Pro	Arg	Ala 445			

```
<210> 30
     <211> 578
     <212> DNA
     <213> Human
<400> 30
 cttgccttct cttaggcttt gaagcatttt tgtctgtgct ccctgatctt caggtcacca
                                                                      60
 ccatgaaqtt cttaqcaqtc ctqqtactct tqqqaqtttc catctttctq qtctctqccc
                                                                     120
 agaatccqac aacagctqct ccaqctqaca cqtatccaqc tactqqtcct qctqatqatq
                                                                     180
 aagcccctga tgctgaaacc actgctgctg caaccactgc gaccactgct gctcctacca
                                                                     240
 ctgcaaccac cgctgcttct accactgctc gtaaagacat tccagtttta cccaaatggg
                                                                     300
 ttggggatct cccgaatggt agagtgtgtc cctgagatgg aatcagcttg agtcttctgc
                                                                     360
 aattggtcac aactattcat getteetgtg attteateca actaettace ttgeetacga
                                                                     420
 tatccccttt atctctaatc aqtttatttt ctttcaaata aaaaataact atgagcaaca
                                                                     480
 540
 aaaaaaaaa aaaaaaaaaa aaaaaaaaa
                                                                     578
 <210> 31
      <211> 90
      <212> PRT
      <213> Homo sapien
      <400> 31
Met Lys Phe Leu Ala Val Leu Val Leu Gly Val Ser Ile Phe Leu
 1
                5
                                    10
 Val Ser Ala Gln Asn Pro Thr Thr Ala Ala Pro Ala Asp Thr Tyr Pro
                                25
Ala Thr Gly Pro Ala Asp Asp Glu Ala Pro Asp Ala Glu Thr Thr Ala
                            40
                                               45
Ala Ala Thr Thr Ala Thr Ala Ala Pro Thr Thr Ala Thr Thr Ala .
                        55
                                            60
Ala Ser Thr Thr Ala Arg Lys Asp Ile Pro Val Leu Pro Lys Trp Val
                70
 Gly Asp Leu Pro Asn Gly Arg Val Cys Pro
      <210> 32
      <211> 3101
      <212> DNA
      <213> Homo sapien
      <400> 32
 tgttggggcc tcagcctccc aagtagctgg gactacaggt gcctgccacc acgcccagct
                                                                      60
aattttttgt atattttta gtagagacgg ggtttcaccg tggtctcaat ctcctgacct
                                                                     120
 cqtqatctqc caqccttqqc ctcccaaaqt qtattctctt tttattatta ttattatttt
tgagatggag tctgtctctg tcgcccaggc tggagtgcag tggtgcgatc tctgctcact
                                                                     240
 gcaageteeg ceteetgggt teatgecatt eteetgeete ageeteeega gtagetggga
                                                                     300
 ctacaggccc ctgccaccac acccggctaa ttttttgtat ttttagtaga gacagggttt
                                                                     360
 caccatgtta gccagggtgg tctctatctt ctgacctcgt gatccgcctg cctcagtctc
                                                                     420
 tcaaagtgct gggattacag gcgtgagcca ccgcgaccag ccaactattg ctgtttattt
                                                                     480
 ttaaatatat tttaaagaaa caattagatt tgttttcttt ctcattcttt tacttctact
                                                                     540
cttcatgtat gtataattat atttgtgttt tctattacct tttctccttt tactgtattg
                                                                     600
gactataata attgtgctca ctaatttctg ttcactaata ttatcagctt agataatact
                                                                     660
 ttaattttta acttatatat tgagtattaa attgatcagt tttatttgta attatctatc
                                                                     720
                                                                     780
 ttccgcttgg ctgaatataa cttcttaagc ttataacttc ttgttctttc catgttattt
 ttttctttt tttaatgtat tgaatttctt ctgacactca ttctagtaac ttttttctcg
                                                                     840
 gtgtgcaacg taagttataa tttgtttctc agatttgaga tctgccataa gtttgaggct
                                                                     900
 ttatttttt tttttatttg ctttatggca agtcggacaa cctgcatgga tttggcatca
                                                                     960
```

```
atgtagtcac ccatatctaa gagcagcact tgcttcttaq catgatqaqt tgtttctqqa
                                                                     1020
ttgtttcttt attttactta tattcctggt agattcttat attttccctt caactctatt
                                                                     1080
cagcatttta ggaattctta ggactttctg agaattttag ctttctgtat taaatgtttt
                                                                     1140
taatgagtat tgcattttct caaaaagcac aaatatcaat agtgtacaca tgaggaaaac
                                                                     1200
tatatatata ttctgttgca gatgacagca tctcataaca aaatcctagt tacttcattt
                                                                     1260
aaaagacagc tctcctccaa tatactatga ggtaacaaaa atttgtagtg tgtaattttt
                                                                     1320
ttaatattag aaaactcatc ttacattgtg cacaaatttc tgaagtgata atacttcact
                                                                     1380
gtttttctat agaagtaact taatattggc aaaattactt atttgaattt aggttttggc
                                                                     1440
tttcatcata tacttcctca ttaacatttc cctcaatcca taaatgcaat ctcagtttga
                                                                     1500
atcttccatt taacccagaa gttaattttt aaaaccttaa taaaatttga atgtagctag
                                                                     1560
atattatttg ttggttacat attagtcaat aatttatatt acttacaatg atcagaaaat
                                                                     1620
atgatctgaa tttctgctgt cataaattca ataacgtatt ttaggcctaa acctttccat
                                                                     1680
ttcaaatcct tgggtctggt aattgaaaat aatcattatc ttttgttttc tggccaaaaa
                                                                     1740
tgctgcccat ttattctat ccctaattag tcaaactttc taataaatgt atttaacgtt
                                                                     1800
aatgatgttt atttgcttgt tgtatactaa aaccattagt ttctataatt taaatgtcac
                                                                     1860
ctaatatgag tgaaaatgtg tcagaggctg gggaagaatg tggatggaga aagggaaggt
                                                                     1920
gttgatcaaa aagtacccaa gtttcagtta cacaggaggc atgagattga tctagtgcaa
                                                                     1980
aaaatgatga gtataataaa taataatgca ctgtatattt tgaaattgct aaaagtagat
                                                                     2040
ttaaaattga tttacataat attttacata tttataaagc acatgcaata tgttgttaca
                                                                    2100
tgtatagaat gtgcaacgat caagtcaggg tatctgtggt atccaccact ttgaqcattt
                                                                    2160
atcgattcta tatgtcagga acatttcaag ttatctgttc tagcaaggaa atataaaata
                                                                     2220
cattatagtt aactatggcc tatctacagt gcaactaaac actagatttt attcctttcc
                                                                    2280
aactgtgggt ttgtattcat ttaccaccct cttttcattc cctttctcac ccacacactg
                                                                    2340
tgccgggcct caggcatata ctattctact gtctgtctct gtaaggatta tcattttagc ttccacatat gagagaatgc atgcaaagtt tttctttcca tgtctggctt atttcactta
                                                                     2400
                                                                     2460
acaaaatgac ctccgcttcc atccatgtta tttatattac ccaatagtgt tcataaatat
                                                                     2520
atatacacac atatatacca cattgcattt gtccaattat tcattgacgg aaactggtta
                                                                     2580
atgttatatc gttgctattg tgaatagtgc tgcaataaac acgcaagtgg ggatataatt
                                                                    2640
tgaagagttt ttttgttgat gttccataca aattttaaga ttgttttgtc tatgtttgtg
                                                                     2700
aaaatggcgt tagtattttc atagagattg cattgaatct gtagattgct ttgggtaagt
                                                                     2760
atggttattt tgatggtatt aattttttca ttccatgaag atgagatgtc tttccatttg
                                                                     2820
tttgtgtcct ctacattttc tttcatcaaa gttttgttgt atttttgaag tagatgtatt
                                                                     2880
2940
attgccttct cgatttcttt ttcacttaat tcattattag tgtatggaaa tgttatggat
                                                                     3000
ttttatttgt tggtttttaa tcaaaaactg tattaaactt agagtttttt gtggagtttt
                                                                     3060
taagtttttc tagatataag atcatgacat ctaccaaaaa a
                                                                     3101
```

```
<210> 33
<211> 16
<212> DNA
<213> Artificial Sequence
<220>
<223> PCR primer
<400> 33
tgcccctccg gaagct
<210> 34
<211> 23
<212> DNA
<213> Artificial Sequence
```

<220>

<223> PCR primer

<400> 34 cgtttctgaa gggacatctg atc	23
<210> 35 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> PCR primer	
<400> 35 ttgcagccaa gttaggagtg aagagatgca	30
<210> 36 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> PCR primer	
<400> 36 aagcetcaga gteetteeag tatg	24
<210> 37 <211> 35 <212> DNA <213> Artificial Sequence	
<220> <223> PCR primer	
<400> 37 ttcaaatata agtgaagaaa aaattagtag atcaa	35
<210> 38 <211> 37 <212> DNA <213> Artificial Sequence	
<220> <223> PCR primer	
<400> 38 aatccattgt atcttagaac cgagggattt gtttaga	37
<210> 39 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> PCR primer	
<400> 39 aaagcagatg gtggttgagg tt	22

<210> <211> <212> <213>	22	
<220> <223>	PCR primer	
<400> cctgag	40 gacca aatggcttct tc	22
<210> <211> <212> <213>	24	
<220> <223>	PCR primer	
<400> attcca	41 atgee ggetgettet tetg	24
<210> <211> <212> <213>	30	
<220> <223>	PCR primer	
<400> tctggt	42 ctttc tcattctta ttcatttatt	30
<210> <211> <212> <213>	20	
<220> <223>	PCR primer	
<400> tgccaa	43 aggag cggattatct	20
<210> <211> <212> <213>	30	
<220> <223>	PCR primer	
<400> caacca	44 acgtg acaaacactg gaattacagg	30
<210> <211>	21	

<213> Artificial Sequence	
<220> <223> PCR primer	
<400> 45 actggaacgg tgaaggtgac a	21
<210> 46	
<220> <223> PCR primer	
<400> 46 cggccacatt gtgaactttg	20
<210> 47 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> PCR primer	
<400> 47 cagtcggttg gagcgagcat ccc	23
<210> 48 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> PCR primer	
<400> 48 tgccatagat gaattgaagg aatg	24
<210> 49 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> PCR primer	
<400> 49 tgtcatatat taattgcata aacacctca	29
<210> 50 <211> 32 <212> DNA <213> Artificial Sequence	
<220>	

<223> PCR primer	
<400> 50 tcttaaccaa acggatgaaa ctctgagcaa tg	32
<210> 51 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> PCR primer	
<400> 51 atcattgaaa attcaaatat aagtgaag	28
<210> 52 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> PCR primer	
<400> 52 gtagttgtgc attgaaataa ttatcattat	30
<210> 53 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> PCR Primer	
<400> 53 caattttggt ggagaacccg	20
<210> 54 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> PCR Primer	
<400> 54 gctgtcggag gtatatggtg	20
<210> 55 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> PCR Primer	

<400> 55 catttcagag agtaacatgg actacaca	28
<210> 56 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> PCR Primer	
<400> 56 tctgataaag gccgtacaat g	21
<210> 57 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> PCR Primer	
<400> 57 tcacgacttg ctgtttttgc tc	22
<210> 58 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> PCR Primer	
<400> 58 atcaaaaaac aagcatggcc tcacaccact	30
<210> 59 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> PCR Primer	
<400> 59 gcaagtgcca atgatcagag g	21
<210> 60 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> PCR Primer	
<400> 60 atatagactc aggtatacac act	23

PCT/US01/10631

<210> 61 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> PCR Primer	
<400> 61 tcccatcaga atccaaacaa gaggaagatg	30
<210> 62 <211> 34 <212> DNA <213> Artificial Sequence	
<220> <223> PCR Primer	
<400> 62 aatccattgt atcttagaac cgagggattt gttt	34
<210> 63 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> PCR Primer	
<400> 63 ccgcttctga caacactaga gatc	24
<210> 64 <211> 32 <212> DNA <213> Artificial Sequence	
<220> <223> PCR Primer	
<400> 64 cctataaaga tgttatgtac caaaaatgaa gt	32
<210> 65 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> PCR Primer	
<400> 65 cccctccctc agggtatggc cc	. 22
<210> 66 <211> 22	

<212> DNA <213> Artificial Sequence	
<220> <223> PCR Primer	
<400> 66 ccctttctca cccacacact gt	22
<210> 67 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> PCR Primer	
<400> 67 tgcattctct catatgtgga agct	24
<210> 68 <211> 33 <212> DNA <213> Artificial Sequence	
<220> <223> PCR Primer	
<400> 68 ccgggcctca ggcatatact attctactgt ctg	33
<210> 69 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> PCR Primer	
<400> 69 gacattccag ttttacccaa atgg	24
<210> 70 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> PCR Primer	
<400> 70 tgcagaagac tcaagctgat tcc	23
<210> 71 <211> 28 <212> DNA <213> Artificial Sequence	

<220> <223> PCR I	?rimer					
<400> 71 tctcagggac	acactctacc	attcggga				28
<210> 72 <211> 30 <212> DNA <213> Artis	ficial Seque	ence				
<220> <223> PCR I	Primer					
<400> 72 aaatataagt	gaagaaaaaa	attagtagat				30
<210> 73 <211> 503 <212> DNA <213> Homo	sapiens					
atgaagttgc ggctgccct gaatacaaag gaattgaagg ctgcaattaa gctcacagaa ctctttctta	tccttgatcc tgatggtcct tattggagaa aacttcttca aatgttttct tatatgacag ctgcagggta tgtcttttta taaattgatg	catgctggcg tgtgatttcc agagttcata taaccaaacg cagtctttgt tggtgagaaa ctacaaacta	gccctctccc aagacaatca gacgacaatg gatgaaactc gatttatttt ccaactacgg	agcactgcta atccacaagt ccactacaaa tgagcaatgt aactttctgc attgctgcaa	cgcaggctct gtctaagact tgccatagat tgaggtgttt aagacctttg accacacctt	60 120 180 240 300 360 420 480 503
<210> 74 <211> 301 <212> DNA <213> Homo	sapiens					
ccacaagtgt actacaaatg agcaatgttg	caggctctgg ctaagactga ccatagatga aggtgtttat atcaccatca	atacaaagaa attgaaggaa gcaattaata	cttcttcaag tgttttctta tatgacagca	agttcataga accaaacgga gtctttgtga	cgacaatgcc tgaaactctg tttatttggc	60 120 180 240 300 301
<210> 75 <211> 3282 <212> DNA <213> Homo	sapiens					
gtcctgcctg cctacttcag ttcgtgtgtc gaggtcggca	tgaggatgag taggcctgaa ccccttggtg tgagtctctt gaagtgacaa tcaggcccaa	ggacttgccc tgagcagctt cactgagagg gctttccctg	taacagagcc ctcaacatga atgtgcatcc cctggctttg	tcaacaacta actacagcct aggggagtca agaacctcac	cctggtgatt ccacttggcc gttcaacgtc agcaggatat	60 120 180 240 300 360

	tctctagcat					420
	ggatggacca					480
	tggagttcct					540
	aagtcactgt					600
	tcagaatcac					660
	agacatgcaa					720
	ggctgagagg					780
	tagagcggta					840
	tggtcttaca					900
	cttccacttt					960
	ctgcaagaac					1020
	cccgcacttc					1080
	tctgctttag					1140
tacagttcct	tacagcagat	ggcagccaaa	gataggggga	caacaaagga	agtagaagaa	1200
gtcagtatta	ctaatatcat	caacagctcc	atctccagct	ttaaacggaa	gatcagcttt	1260
gccagcattg	aaatttccag	cgacaacgtt	gactacagtg	acttgacaat	gaaaaccagc	1320
gacaagttca	agtttgtctt	ccgagaaaag	atgggcagga	ttgttgatta	tttcacaatt	1380
caaaacccca	gtaatgttga	tcactattcc	aaactactgt	ttcctttgat	ttttatgcta	1440
	tttactgggc					1500
	cttcaacagg					1560
	aatggtgcta					1620
	aaccattgtt					1680
	agtccattcc			-	-	1740
	actcagggct					1800
	aggagaccat					1860
	ttttactaaa					1920
						1920
	ttctagtttt					
	atgcactaac					2040
	agaattatcc					2100
	aaattagtag					2160
	tactggaagg					2220
	tacacacatc					2280
	gattttttg					2340
	aattgagtcc					2400
	gttgactcag					2460
	ctcccagtgg					2520
	atcaggaatg					2580
	aagtaaactt					2640
	atcccgcatg					2700
aacaatgaga	cacgttacag	aacctatgtt	caggttgcgg	gtgagctgcc	ctctccaaat	2760
	atgcacattc					2820
agtgtgccag	ggtaaaggct	tccagttcag	cctcagttat	tttagacaat	ctcgccatct	2880
	agcttcctgt					2940
accaaggctc	taaaagatga	tttcccttct	gtaactccct	agagccacag	gttctcattc	3000
	tatacttctc					3060
	tctaacggga					3120
	tcatatttgt					3180
	aagcattgtt					3240
	attagctacc				5 - 5	3282
44444	accagocacc					0202
<210> 76						
<211> 463						
<212> DNA						
<213> Homo	eaniere					
ZIONO	paprens					
<400> 76						
	aaaaa~~++-	attataaa	+00000+000	taattatt=	tannaatan	60
	cggccgctta					60 120
gereacagea	aaacaagcca	ccatgaaget	gceggtgtgt	creergergg	ceaegetgge	120

ctto ggaa acga aaaa	ettet agete agee aactt	tc a gtt g ctc a	attag gcago attgo	gtgaa ccaag cggaa cggtt	ac ct gt ta ag to ct co	tctgt aggag cctgg cactg	tcaa gtgaa gtgaa gtctt	gtt gag a aat tca	caagt gatgo catto aatgo	cett cacg gaag acac	gcca gato aaat ccto	aati cagat cgtaq	itg a igt d gtg 1	atgco ccctt cgtga	gttaga cectec cagaa acatgt cagaat	24 30 36 42	30 40 00 50 20
<211 <212)> 77 l> 90 ?> PF 3> Ho) RT	sapie	ens													
< 400)> 77	7															
			Ser	Val 5	Cys	Leu	Leu	Leu	Val 10	Thr	Leu	Ala	Leu	Cys 15	Cys		
Tyr	Gln	Ala	Asn 20	Ala	Glu	Phe	Cys	Pro 25	Ala	Leu	Val	Ser	Glu 30	Leu	Leu		
Asp	Phe	Phe 35	Phe	Ile	Ser	Glu	Pro 40	Leu	Phe	Lys	Leu	Ser 45	Leu	Ala	Lys		
Phe	Asp 50	Ala	Pro	Pro	Glu	Ala 55	Val	Ala	Ala	Lys	Leu 60	Gly	Val	Lys	Arg		
Cys 65	Thr	Asp	Gln	Met	Ser 70	Leu	Gln	Lys	Arg	Ser 75	Leu	Ile	Ala	Glu	Val 80		
Leu	Val	Lys	Ile	Leu 85	Lys	Lys	Cys	Ser	Val								

专利名称(译)	用于检测和监测乳腺癌的方法,组合	合物和试剂盒					
公开(公告)号	EP1272668A2	公开(公告)日	2003-01-08				
申请号	EP2001926549	申请日	2001-04-02				
[标]申请(专利权)人(译)	科里克萨有限公司						
申请(专利权)人(译)	Corixa公司CORPORATION						
当前申请(专利权)人(译)	Corixa公司CORPORATION						
[标]发明人	HOUGHTON RAYMOND L DILLON DAVIN C MOLESH DAVID ALAN XU JIANGCHUN ZEHENTNER BARBARA PERSING DAVID H						
发明人	HOUGHTON, RAYMOND, L. DILLON, DAVIN, C. MOLESH, DAVID, ALAN XU, JIANGCHUN ZEHENTNER, BARBARA PERSING, DAVID, H.						
IPC分类号	C12Q1/68 G01N33/53 C12N5/08 C12N15/09 G01N33/543 G01N33/566 G01N33/574 G01N33/58						
CPC分类号	C12Q1/6844 C12Q1/6809 C12Q1/6851 C12Q1/6886 C12Q2600/16						
优先权	60/194241 2000-04-03 US 60/221300 2000-07-27 US 60/219862 2000-07-20 US 60/256592 2000-12-18 US						
其他公开文献	EP1272668B1						
外部链接	<u>Espacenet</u>						

摘要(译)

公开了用于治疗和诊断癌症(例如乳腺癌)的组合物和方法。组合物可包含一种或多种乳腺肿瘤蛋白,其免疫原性部分或编码这些部分的多核苷酸。或者,治疗组合物可包含表达乳腺肿瘤蛋白的抗原呈递细胞,或对表达这种蛋白的细胞特异的T细胞。此类组合物可用于例如预防和治疗诸如乳腺癌的疾病。还提供了基于在样品中检测乳腺肿瘤蛋白或编码这种蛋白的mRNA的诊断方法。