(19)

(11) EP 2 325 648 B1

(12)

EUROPEAN PATENT SPECIFICATION

- (45) Date of publication and mention of the grant of the patent:23.04.2014 Bulletin 2014/17
- (21) Application number: 09805010.7
- (22) Date of filing: 05.08.2009

(51) Int Cl.: G01N 33/574^(2006.01) C12Q 1/68^(2006.01)

C12N 15/09^(2006.01) G01N 33/53^(2006.01)

- (86) International application number: PCT/JP2009/063883
- (87) International publication number: WO 2010/016527 (11.02.2010 Gazette 2010/06)

(54) **METHOD FOR DETECTING CANCER** VERFAHREN FÜR DEN NACHWEIS VON KREBS PROCÉDÉ DE DÉTECTION DU CANCER

(84) Designated Contracting States:
 AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
 HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL
 PT RO SE SI SK SM TR

- (30) Priority: 05.08.2008 JP 2008202320
- (43) Date of publication of application: 25.05.2011 Bulletin 2011/21
- (60) Divisional application: 14153299.4
- (73) Proprietor: Toray Industries, Inc. Tokyo 103-8666 (JP)
- (72) Inventors:
 - OKANO, Fumiyoshi Kamakura-shi Kanagawa 248-8555 (JP)
 - SUZUKI, Kana Kamakura-shi Kanagawa 248-8555 (JP)
- (74) Representative: Denison, Christopher Marcus et al Mewburn Ellis LLP
 33 Gutter Lane
 London
 EC2V 8AS (GB)
- WO-A2-01/72295
 WO-A2-02/092001

 WO-A2-2004/076682
 WO-A2-2004/097051

 WO-A2-2005/007830
 WO-A2-2006/002378

 WO-A2-2008/031041
 WO-A2-2008/088583

JP-T- 2002 540 790JP-T- 2003 528 587US-A1- 2003 118 599US-A1- 2003 190 640US-A1- 2004 029 114US-A1- 2006 019 256US-A1- 2006 069 054US-A1- 2007 154 931US-A1- 2008 107 668US-B1- 6 335 170

- KATSAFANAS, GEORGE C. ET AL.: 'Colocalization of transcription and translation within cytoplasmic poxvirus factories coordinates viral expression and subjugates host functions' CELL HOST & MICROBE vol. 2, no. 4, 2007, pages 221 - 228, XP008143194
- SOLOMON, SAMUEL ET AL.: 'Distinct structural features of caprin-1 mediate its interaction with G3BP-1 and its induction of phosphorylation of eukaryotic translation initiation factor 2 alpha, entry to cytoplasmic stress granules, and selective interaction with a subset of mRNAs' MOLECULAR AND CELLULAR BIOLOGY vol. 27, no. 6, 2007, pages 2324 2342, XP008143197
- LU HAILING ET AL: "Identification of an immunological signature of tumor rejection in the neu transgenic mouse.", PROCEEDINGS OF THE AMERICAN ASSOCIATION FOR CANCER RESEARCH ANNUAL MEETING, vol. 48, April 2007 (2007-04), page 979, XP008159883, & 98TH ANNUAL MEETING OF THE AMERICAN-ASSOCIATION-FOR-CANCER-RESEARCH; LOS ANGELES, CA, USA; APRIL 14 -18, 2007 ISSN: 0197-016X
- LUHETAL: "Targeting serum antibody for cancer diagnosis: A focus on colorectal cancer", EXPERT OPINION ON THERAPEUTIC TARGETS 200702GB, vol. 11, no. 2, February 2007 (2007-02), pages 235-244, ISSN: 1472-8222

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

• STOCKERT E ET AL: "A survey of the humoral immune response of cancer patients to a panel of human tumor antigens.", THE JOURNAL OF EXPERIMENTAL MEDICINE 20 APR 1998, vol. 187, no. 8, 20 April 1998 (1998-04-20), pages 1349-1354, ISSN: 0022-1007

Description

TECHNICAL FIELD

⁵ **[0001]** The present invention relates to a method for detecting cancer using CAPRIN-1 as a tumor marker.

BACKGROUND ART

[0002] Cancer is the leading cause of death. Treatment currently performed for cancer is mainly symptomatic therapy that mostly consists of surgical therapy with a combination of radiation therapy and chemotherapy. Owing to advancements in medical technology, cancer is now almost a curable disease if it can be detected early. Hence, a method for detecting cancer, by which detection can be conveniently performed using serum, urine, or the like without imposing physical or economic burdens on cancer patients, is now required.

- [0003] As a cancer diagnostic method using blood or urine, a method for measuring a tumor product such as a tumor marker has recently become popular. The term "tumor product" refers to a tumor-associated antigen, an enzyme, a specific protein, a metabolite, a tumor gene, a tumor gene product, a tumor suppressor gene, and the like. Carcinoembryonic antigen CEA, glycoprotein CA19-9, CA125, prostate-specific antigen PSA, calcitonin, which are peptide hormones produced in the thyroid and the like are used as tumor markers for diagnosis of some cancer types. However, tumor markers useful for cancer diagnosis are absent for many cancer types. Also, most currently known tumor markers
- ²⁰ are present in only trace amounts (on roughly a pg/mL order) in body fluids. Therefore, highly sensitive measurement methods or special techniques are required for detecting such tumor markers. Under the current circumstances, it is expected that provision of a new cancer testing means capable of detecting various types of cancer with high sensitivity involving a convenient procedure creates diagnostic applications for various types of cancer.
- [0004] Also, such cancer testing means is very useful if it is capable of not only detecting cancer but also diagnosing cancer having developed in a location invisible to the naked eye, the extent of cancer, the malignancy or postoperative course of cancer, recurrence, metastasis, and the like.

[0005] Specifically, if diagnosis of cancer that has developed in a location invisible to the naked eye becomes possible, such cancer testing means would be useful for early detection of cancer within a location such as an intraperitoneal part that is difficult to recognize. Also, a tumor that does not have a grossly visible size such as cancer that is undetectable even by ultrasonography. CT (computer tomography) or MRI (nuclear magnetic resonance imaging) can be detected

- ³⁰ even by ultrasonography, CT (computer tomography), or MRI (nuclear magnetic resonance imaging) can be detected. [0006] Additionally, the extent of cancer is classified based on the degree to which a tumor spreads at the primary site and the presence or the absence of metastasis to regional lymph nodes or distant organs. In general, there are 5 disease stages (each referred to as "stage"), and higher stage numbers indicate more advanced stages of the disease. Strictly, the definition of stage differs depends on organs. However, for example, cancer at stage 0 is cancer that remains
- ³⁵ intraepithelial and cancer at stage IV is cancer that has metastasized to a distant location. If such extent of cancer is found, decisions about appropriate treatment courses as well as diagnosis of the therapeutic effects of an anticancer agent become possible. As specific examples of decisions about treatment courses, in the case of prostate cancer and the like, there is a type requiring no treatment because it has very low malignancy and will almost never progress. In contrast, there is a type requiring treatment because it is progressive and metastasizes to bone or the like and causes
- 40 patients to die painfully. Therapies such as hormone therapy and extirpative surgery are each associated with an adverse reaction. Thus, therapies should be appropriately determined and decided upon. Also, if evaluation concerning the selection of an anticancer agent can be appropriately made or if timing or the like for the termination of administration of an anticancer agent can be appropriately determined, physical and economical burdens on patients can also be reduced. Therefore, it is important to be able to diagnose the extent of cancer.
- ⁴⁵ **[0007]** One of the characteristics of cancer cells is that they undergo blastogenesis; that is, dedifferentiation. Except for some cancer types, poorly differentiated or undifferentiated cancer cells with a low degree of differentiation rapidly grow after metastasis and result in poor prognosis after therapy. Such cancer is said to have high malignancy. Conversely, highly differentiated cancer cells with a high degree of differentiation retain the structural and functional characteristics of affected organs. Such cancer can be said to have relatively low malignancy. If the malignancy of cancer can be
- ⁵⁰ determined, the following measures can be taken. Even if the tumor is small, a wide surgical margin can be secured upon tumor removal, when the malignancy is high. Moreover, follow-up is possible while paying attention to a wide range of peripheral tissue.

[0008] If diagnosis of postoperative courses including recurrence and metastasis is possible, diagnosis of whether or not a tumor can be completely removed by surgery becomes possible. Incomplete tumor removal likely results in recur-

⁵⁵ rence. Hence, such diagnosis can provide criteria for determining to more carefully perform follow-up at short intervals or to perform early reoperation if necessary. Also, if recurrence takes place, there is a high possibility of early detection. Detection is often delayed when distant metastasis takes place. However, if diagnosis of metastasis becomes possible, it becomes possible to provide criteria by which the range of testing can be broadened to include areas other than the site of removal and the periphery thereof.

40

[0009] It is known that dogs grow old 7 times faster than humans. Recently, companion animals are being raised as family members and often have lifestyle habits similar to those of their owners. Therefore, it is predictable that an owner's risk of developing cancer would be high when his or her companion animal develops cancer. If convenient and precise

⁵ cancer diagnosis becomes possible for companion animals, it would be expected to provide clues for preventing cancer of owners.

[0010] Currently, the number of domestic dogs in Japan is said to be about 6,700,000, and the same figure for the U.S. is said to be about 17,640,000. Quintuple, septuple, and octuple combined vaccines and the like have become prevalent, in addition to rabies shots, and thereby highly lethal infectious diseases have decreased, such as canine

- parvovirus infection, canine distemper virus infection, canine parainfluenza (kennel cough), canine adenovirus-2 infection (kennel cough), infectious canine hepatitis, canine coronavirus infection, and leptospirosis. Therefore, the average life span of dogs has increased. Elderly dogs, which are seven years old or older, account for 35.5% of all domestic dogs. Causes of death of domestic dogs are also similar to those of humans, such as cancer, hypertension, and cardiac disease, which are on the rise. In the U.S., about 4,000,000 dogs are diagnosed with cancer annually. Also in Japan, it is said that about 1,600,000 dogs are potentially affected with tumors.
- ¹⁵ is said that about 1,600,000 dogs are potentially affected with tumors. [0011] However, convenient cancer diagnostic agents for animals have been absent. Furtheremore, in animal medical care, testing methods that involve photographing or filming using X-rays, CT scans, MRI scans, or the like have not been prevalent. After palpation, a simple blood test, and testing using X-ray photography are performed, diagnosis currently depends significantly on the experience of veterinarians. Testing methods using serum have been partially
- ²⁰ begun, but the methods use human tumor markers since no canine tumor marker has been discovered. [0012] Precise cancer diagnosis requires abdominal surgery that imposes significant physical burdens on dogs and cost burdens on owners. If cancer diagnosis can be conveniently made for companion animals such as dogs and cats, it would lead to early detection or precise diagnosis of cancer and would be expected to be useful for cancer therapy for companion animals. Also, if such convenient cancer diagnosis using serum becomes possible, it would be expected
- ²⁵ not only to enable cancer diagnosis but also to significantly contribute to periodic health examinations, preoperative diagnosis, and decisions about therapeutic strategy.
 [0013] Health examination for companion animals, unlike the case of humans, is not prevalent. Hence, detection of

[0013] Health examination for companion animals, unlike the case of humans, is not prevalent. Hence, detection of cancer often occurs too late, such that an owner finds out the disease and then comes to a hospital only after the tumor has become large in many cases. If such tumor that has increased in size is malignant, it often results in treatment that

- ³⁰ is too late, even when surgical therapy such as surgery or medication using an anticancer agent or the like is performed. Hence, when a veterinarian determines that the tumor is malignant, anticancer agent treatment is generally performed without surgery. If surgery is performed, measures during surgery, such as determination of the size of margin to be secured, determination of the amount of blood required during surgery, and measures against cell scattering should also be strictly taken. It is desired that anticancer agent treatment is initiated immediately after surgery and that follow-
- ³⁵ up is performed at short intervals. Incorporation of the above cancer diagnosis into dog health checkups that are recently increasingly prevalent and are referred to as complete medical checkups for dogs is expected to lead to early cancer detection.

[0014] On the other hand, in the case of a benign tumor, surgery can be advised even if a tumor is large. After surgery, only resected areas need care without requiring any expensive anticancer agent treatment and without any need for apprehensions concerning follow-ups.

[0015] Under the current situation, provision of a convenient means for detecting cancer with high sensitivity, which is applicable to cancer diagnosis for animals, enables precise and efficient treatment and results in a number of advantages for both owners and veterinarians.

- [0016] Cytoplasmic-and proliferation-associated protein 1 (CAPRIN-1) is an intracellular protein that is expressed when normal cells in resting phase are activated or undergo cell division. CAPRIN-1 is also known to be involved in mRNA transport through intracellular formation of intracellular stress grains with RNA and translation control, for example. Meanwhile, CAPRIN-1 has many different names. Examples of such names include GPI-anchored membrane protein 1 and membrane component surface marker 1 protein (M11S1), as if the protein has been known to be a membrane protein. These different names are derived from a report (J Biol Chem. 270: 20717-20723 (1995)) that the gene sequence
- ⁵⁰ of CAPRIN-1 originally has a GPI-binding region and CAPRIN-1 is a membrane protein expressed in large bowel-derived cell lines. It has been later reported that: the CAPRIN-1 gene sequence in this report is an error; frame shift takes place by deletion of 1 nucleotide from the CAPRIN-1 gene sequence currently registered with GenBank or the like, so that 80 amino acids are deleted from the C terminus and the resulting artifact (74 amino acids) corresponds to the GPI binding portion of the previous report; and an error is also present on the 5' side of the gene sequence and deletion of 53 amino
- ⁵⁵ acids from the N terminus has been proven (J Immunol. 172: 2389-2400 (2004)). Also, it has been reported that a protein encoded by the CAPRIN-1 gene sequence currently registered with GenBank or the like is not a cell membrane protein (J Immunol. 172: 2389-2400 (2004)).

[0017] In addition, based on the report of J Biol Chem. 270: 20717-20723 (1995) that CAPRIN-1 is a cell membrane

protein, US2008/0075722 and W02005/100998 disclose that CAPRIN-1 under the name of M11S1 can be a target for cancer therapy as a cell membrane protein (not mentioned in the Examples). However, as reported in J Immunol. 172: 2389-2400 (2004), it has been accepted from the time of filing of US2008/0075722 and WO2005/100998 up to now that CAPRIN-1 is not expressed on cell surfaces. It is obvious that the content of US2008/0075722 and WO2005/100998

⁵ based only on disinformation to the effect that CAPRIN-1 is a cell membrane protein should not be understood as technical commonsense of persons skilled in the art. Moreover, it has never been reported that CAPRIN-1 is expressed at higher levels in breast cancer cells or the like than in normal cells.

[0018] WO 2004/076682 discloses that a protein having a CAPRIN-1-like sequence is involved in suppression of apoptosis and a method for the diagnosis of a tumor that include determining the level of that protein as a biomarker in a patient sample, the level of the biomarker being indicative of the presence of tumor cells.

[0019] US 2008/107668 discloses immunogenic peptides derived from proteins expressed in cancer cells, including a protein having a CAPRIN-1-like sequence, and related compositions and methods for the treatment and diagnosis of cancer.

[0020] US 2003/190640 discloses that a protein having a CAPRIN-1-like sequence is differentially expressed in prostate cancer and methods to diagnose and treat prostate cancer.

[0021] US 2003/118599 discloses expression of a protein having a CAPRIN-1-like sequence in lung cancer and the use of corresponding polypeptides in vaccines and methods of diagnosis.

[0022] WO 2004/097051 discloses that a gene for a protein having a CAPRIN-1-like sequence is differentially expressed in bone marrow cells of patients having Myelodysplastic syndromes (MDS) or acute myelogenous leukemia (AML) as

20 compared to disease-free humans and the use of that gene as a molecular marker for detecting the presence or absence of AML or MDS.

[0023] US 2007/154931 discloses expression of a gene for a protein having a CAPRIN-1 sequence as a marker for chronic myeloid leukemia and methods and computer systems for monitoring the progression of CML in a patient based on measurements of this molecular marker.

[0024] US 2006/019256 discloses up-regulated expression of a gene for a protein having a CAPRIN-1 sequence in solid tumour stem cells and its use as a marker for the diagnosis, characterization, and treatment of solid tumour stem cells.
 [0025] US 2006/069054 discloses expression of a protein having a CAPRIN-1-like sequence in breast cancer and the use of corresponding polypeptides in therapy and methods of diagnosis.

[0026] WO 02/092001 discloses a protein having a CAPRIN-1-like sequence as a lung tumour polypeptide and related compositions for use in the diagnosis and treatment of lung cancer.

[0027] WO 2008/031041 discloses methods and compositions for evaluating gene expression in melanoma samples, including the expression of a gene for a protein having a CAPRIN-1-like sequence.

[0028] WO 2006/002378 discloses the presence of a gene for a protein having a CAPRIN-1-like sequence in a chromosomal region that is amplified within cancerous cells and the use of genes in this chromosomal region as drug targets.

³⁵ **[0029]** US 6 335 170 discloses methods for analysing tumour cells, particularly bladder tumour cells, by measuring gene expression, including the gene for a protein having a CAPRIN-1-like sequence, and related methods of diagnosis and prognostic tools.

[0030] WO 2005/007830 discloses methods and compositions for the diagnosis, staging, prognosis and treatment of prostate cancer, based on genomic markers for genomic DNA methylation and/or gene expression, including transcriptional silencing, and/or based on protein markers, including a protein having a CAPRIN-1-like sequence.

- tional silencing, and/or based on protein markers, including a protein having a CAPRIN-1-like sequence.
 [0031] US 2004/029114 discloses up or down regulated expression of a protein having a CAPRIN-1-like sequence in breast cancer and related methods and compositions that can be used for diagnosis and treatment of breast cancer.
 [0032] WO 01/72295 discloses that a protein having CAPRIN-1-like sequence is a lung tumour protein and related pharmaceutical compositions for the diagnosis and treatment of lung cancer.
- 45

10

SUMMARY OF THE INVENTION

PROBLEM TO BE RESOLVED BY THE INVENTION

⁵⁰ **[0033]** An object of the present invention is to provide a means for detecting cancer that is useful for cancer diagnosis.

MEANS FOR RESOLVING THE PROBLEM

[0034] As a result of intensive studies, the present inventors have obtained cDNA encoding a protein that binds to an antibody existing in cancer-bearing living organism-derived serum by a SEREX method using a canine testis-derived cDNA library and the serum of a cancer-bearing dog, and thus they have prepared canine CAPRIN proteins having the amino acid sequences shown in SEQ ID NOS: 6, 8, 10, 12, and 14 based on the cDNA. Also, the present inventors have prepared human CAPRIN-1 proteins having the amino acid sequences shown in SEQ ID NOS: 2 and 4 based on human

genes homologous to the obtained genes. The present inventors have further discovered that: genes encoding these proteins are specifically expressed in canine and human testes and malignant cancer cells (see Example 1 described later); recombinant polypeptides prepared based on the amino acid sequences of these proteins specifically react only with sera from cancer-bearing living organisms; and CAPRI-1 can be specifically detected from a cancer-bearing living

⁵ organism using antibodies prepared using the recombinant polypeptides. Thus, the present inventors have completed that present invention.

[0035] Specifically, the present invention provides a method as defined in the claims for detecting cancer comprising measuring CAPRIN-1 expression, which is performed for samples separated from living organisms. Also, disclosed are a reagent for detecting cancer comprising an antibody that is induced *in vivo* against CAPRIN-1 and a polypeptide that

- ¹⁰ undergoes an antigen-antibody reaction, and a reagent for detecting cancer comprising an antibody that undergoes an antigen-antibody reaction with CAPRIN-1 or an antigen-binding fragment thereof, and a reagent for detecting cancer comprising a polynucleotide that specifically hybridizes to a partial sequence of 15 or more nucleotides, preferably 20 to 25 or more nucleotides, and more preferably 30 or more nucleotides in the nucleotide sequence shown in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, or the like in the Sequence Listing.
- 15

ADVANTAGE OF THE INVENTION

[0036] According to the present invention, a new method for detecting a cancer is provided. As specifically described in Examples given later, a recombinant polypeptide prepared based on the amino acid sequence of CAPRIN-1 (or also

- ²⁰ referred to as Caprin-1) reacts with an antibody that specifically exists in the serum of a patient with cancer. Therefore, in accordance with the invention, the cancer existing in a living body can be detected by measuring the antibody in a sample by the method of the present invention. Also (but outside the scope of the claims) the cancer existing in a living body can be detected by measuring CAPRIN-1 itself. According to the method of the present invention, small-size cancer invisible to the naked eye or cancer in a deep part *in vivo* can be detected. Hence, the method of the present invention
- ²⁵ is useful for early detection of cancer at the time of health examination or the like. Furthermore, recurrent cancer can be detected early by the use of the method of the present invention for the follow-up of a patient after cancer treatment. Moreover, according to the method of the present invention, the extent of cancer can also be diagnosed, such as tumor increase, infiltration to the peripheral tissue, and cancer metastasis to a lymph node and a distant organ. Also, the serum antibody level is higher in a patient with highly malignant cancer than in a patient with low-malignant cancer. According
- 30 to the method of the present invention, the malignancy of cancer can also be diagnosed. Also, as described in Examples below, mRNA encoding CAPRIN-1 is specifically expressed at high levels in testes and cancer cells. Therefore, cancers can also (but outside the scope of the claims) be detected by measuring the mRNA.

BRIEF DESCRIPTION OF THE DRAWINGS

35

40

45

[0037]

Fig. 1 shows the expression patterns of the gene encoding a CAPRIN-1 protein in normal tissues and tumor cell lines. Reference No. I indicates the expression patterns of the gene encoding the CAPRIN-1 protein. Reference No. 2 indicates the expression patterns of the GAPDH gene.

Fig. 2 shows the results of detecting by Coomassie staining the canine CAPRIN-1-derived polypeptide that is an example of polypeptides to be used in the present invention, which were produced and purified using *Escherichia coli* in the Examples. Reference No. 3 indicates the band of a canine CAPRIN-1-derived polypeptide.

Fig. 3 shows some of the results of cancer diagnosis for cancer-bearing dogs using the canine CAPRIN-1-derived polypeptides prepared in the Examples.

Fig. 4 shows some of the results of detailed cancer diagnosis for cancer-bearing dogs using the canine CAPRIN-1-derived polypeptides prepared in the Examples.

BEST MODE OF CARRYING OUT THE INVENTION

quantitative determination, and semi-quantitative determination.

50

[0038] According to the method of the present invention, CAPRIN-1 expression is measured using a sample separated from a living- organism. Examples of a method for measuring CAPRIN-1 expression include a method (1st method in accordance with the invenition) that involves immunoassay for an antibody against CAPRIN-1 contained in a sample, a method (2nd method outside the scope of the claims) that involves immunoassay for CAPRIN-1 itself contained in a sample, and a method (3rd method outside the scope of the claims) that involves measurement of mRNA encoding CAPRIN-1 contained in a sample. In the method of the present invention, CAPRIN-1 expression may be measured as set out in the claims. In the present invention, the term "measurement" refers to any of detection, qualitative determination,

[0039] The amino acid sequence shown in SEQ ID NO: 6, 8, 10, 12, or 14 is the amino acid sequence of canine CAPRIN-1. Canine CAPRIN-1 having the amino acid sequence was identified as a polypeptide binding to an antibody specifically existing in the cancer-bearing dog-derived serum by the SEREX method using a canine testis-derived cDNA library and the serum of a cancer-bearing dog (see Example 1). Specifically, an antibody against CAPRIN-1 having the

- ⁵ amino acid sequence shown in SEQ ID NO: 6, 8, 10, 12, or 14 is specifically induced *in vivo* in a cancer-bearing dog. Therefore, canine cancer can be detected by measuring the above antibody against CAPRIN-1 having the amino acid sequence shown in SEQ ID NO: 6, 8, 10, 12, or 14 using the above 1st method (see Examples 3 and 4). Canine cancer can also be detected by measuring CAPRIN-1 itself as an antigen shown in SEQ ID NO: 6, 8, 10, 12, or 14 using the above 2nd method (see Examples 5 and 6). Also, canine cancer can be detected, as described in the following Examples,
- by measuring mRNA encoding CAPRIN-1 since the mRNA is expressed at significantly high levels in testes and cancer cells (see Example 1).
 [0040] The term "having an amino acid sequence" as used herein refers to amino acid residues being aligned in the

relevant order. Therefore, for example, the expression "polypeptide having the amino acid sequence shown in SEQ ID NO: 2" refers to a polypeptide having 709 amino acid residues, which consists of the amino acid sequence of Met Pro

- Ser Ala…(abbreviated). Gln Gln Val Asn shown in SEQ ID NO: 2. Also, for example, the expression "polypeptide having the amino acid sequence shown in SEQ ID NO: 2" may also be abbreviated as "the polypeptide of SEQ ID NO: 2." The same applies to the expression "having a/the nucleotide sequence." In this case, the term "having" may be substituted with the expressions "consisting of."
- [0041] Also, the term "polypeptide" as used herein refers to a molecule that is formed via peptide bonding of a plurality of amino acids. Examples of such molecule include not only polypeptide molecules with a large number of constituent amino acids, but also low-molecular-weight molecules (oligopeptides) with small number of amino acids and full-length proteins. The present invention further encompasses full-length CAPRIN-1 proteins each having an amino acid sequence shown in an even-numbered sequence ID from among SEQ ID NOS: 2-30.
- [0042] In the method of the present invention, not only canine CAPRIN-1 of SEQ ID NO: 6, 8, 10, 12, or 14, but also CAPRIN-1 of other mammals (hereinafter, may also be referred to as "homolog" for canine CAPRIN-1. When simply referred to as "CAPRIN-1," CAPRIN-1 from not only a dog but also from another mammal is also encompassed herein) are also subjected to measurement. As specifically described in the following Examples, mRNA encoding human CAPRIN-1 is significantly expressed at a high level in human testis and cancer cells, as in the case of canine CAPRIN-1 of SEQ ID NO: 6, 8, 10, 12 or 14. However, no antibody against the human CAPRIN-1 is detected in a healthy human
- ³⁰ body. Also, an antibody against feline CAPRIN-1 is not detected in a healthy cat body, but is detected in a cancer-bearing cat alone. Therefore, cancer of a mammal other than a dog can be detected by measuring CAPRIN-1 expression in the mammal. Examples of CAPRIN-1 of mammals other than dogs, which are measurement subjects in the method of the present invention, include, but are not limited to, human CAPRIN-1 and feline CAPRIN-1. A nucleotide sequence encoding human CAPRIN-1 and the amino acid sequence thereof are as separately shown in SEQ ID NO: 1 and 3, and 2 and 4,
- ³⁵ respectively, in the Sequence Listing. Sequence identity with canine CAPRIN-1 is 94% in terms of nucleotide sequence and is 98% in terms of amino acid sequence. Even dogs and humans which are genetically distant mammals share as very high as 98% sequence identity in terms of the amino acid sequence of CAPRIN-1. Therefore, it is thought that a dog and a mammal other than a human; that is, canine CAPRIN-1 and homolog thereof share sequence identity as high as about 85% or more. Therefore, CAPRIN-1, the expression of which is measured in the method of the present invention,
- ⁴⁰ has preferably 85% or more and more preferably 95% or more sequence identity with the amino acid sequence of canine CAPRIN-1 shown in SEQ ID NO: 6, 8, 10, 12, or 14. However, such examples are not particularly limited thereto. [0043] In the 1st method above, the above antibody that can be present in a sample can be easily measured by immunoassay using an antigenic substance that undergoes an antigen-antibody reaction with the antibody. Immunoassay itself is a known conventional method as specifically described below. As an antigenic substance for immunoassay, the
- ⁴⁵ canine CAPRIN-1 of SEQ ID NO: 6, 8, 10, 12, or 14 that causes the induction of the antibody within a cancer-bearing dog body can be used. Furthermore, an antibody has cross-reactivity. Thus, even a molecule other than an antigenic substance actually having served as an immunogen can bind to an antibody induced against the immunogen via an antigen-antibody reaction, as long as a structure analogous to the epitope of the immunogen is present on the molecule. In particular, a protein from a mammal and homolog thereof from another mammal share high amino acid sequence
- ⁵⁰ identity and often have epitope structures analogous to each other. As specifically described in the following Examples, the canine CAPRIN-1 of SEQ ID NO: 6, 8, 10, 12, or 14 undergoes an antigen-antibody reaction not only with an antibody induced against the canine CAPRIN-1 within a cancer-bearing dog body, but also with an antibody induced against feline CAPRIN-1 within a cancer-bearing cat body. Moreover, human CAPRIN-1 undergoes an antigen-antibody reaction with the above antibody induced within cancer-bearing dog or cancer-bearing cat bodies. Accordingly, in the 1st method of
- ⁵⁵ the present invention, CAPRIN-1 from any mammal can be used as an antigen for immunoassay. [0044] In general, when an antigenic substance is a protein or the like having a complicated structure and high molecular weight, a plurality of sites having different structures are present on the molecule. Therefore, a plurality of types of antibody capable of recognizing and binding to different sites of such antigenic substances are produced *in vivo*. Spe-

cifically, an antibody that is produced *in vivo* against an antigenic substance such as protein is a polyclonal antibody that is a mixture of a plurality of types of antibody. An antibody discovered by the present inventors is also a polyclonal antibody. It is specifically present in cancer-bearing living organism-derived serum and specifically binds to a recombinant CAPRIN-1 protein via an antigen-antibody reaction. The term "polyclonal antibody" used in the present invention refers

- to an antibody that exists in serum from a living organism containing an antigenic substance therein and is induced in vivo against the antigenic substance.
 [0045] In Examples described later, polypeptides of SEQ ID NO: 6 and SEQ ID NO: 8 (canine CAPRIN-1) and the polypeptide of SEQ ID NO: 2 (human CAPRIN-1) were prepared as antigens for immunoassay of specific antibodies in the cancer-bearing living animals. Then reactivity between these polypeptides and the above antibody in serum from a
- ¹⁰ cancer-bearing living organism was confirmed. However, the above antibody is a polyclonal antibody, so that it naturally binds to a polypeptide consisting of the homolog of SEQ ID NO: 6, 8, or 2. Even in the case of a fragment of said polypeptides, it can bind to the above antibody contained in serum from a cancer-bearing living organism, since the polyclonal antibody can contain an antibody capable of recognizing the structure of the relevant fragment. That is, either a polypeptide (that is, full-length CAPRIN-1 protein) of the homolog of SEQ ID NO: 6, 8, or 2 or a fragment thereof can
- ¹⁵ be similarly used for measurement of the above polyclonal antibody contained specifically in serum of a cancer-bearing living organism and is useful for cancer detection. Therefore, examples of a polypeptide to be used as an antigen for immunoassay in the 1st method of the present invention include, not only a polypeptide that consists of the full-length region of CAPRIN-1 (e.g., SEQ ID NO: 6, 8, or 2), but also a polypeptide fragment that consists of continuous 7 or more, preferably continuous 8 or more, 9 or more, or 10 or more amino acids in the amino acid sequence of CAPRIN-1 and
- ²⁰ undergoes an antigen-antibody reaction with a polyclonal antibody against CAPRIN-1 (hereinafter, may be conveniently referred to as "a specifically reactive partial polypeptide"). It is known in the art that a polypeptide of about 7 or more amino acid residues exerts antigenicity. However, if the number of amino acid residues constituting a polypeptide is too low, such polypeptide highly likely cross-reacts with antibodies, which existes in the sample, against proteins other than CAPRIN-1. Accordingly, in view of increasing the accuracy of immunoassay, the desirable number of amino acid residues
- of a polypeptide fragment may be preferably 30 or more or 50 or more, further preferably 100 or more or 150 or more, further preferably 300 or more, even more preferably 600 or more, and further preferably 1000 or more and 1500 or more.
 [0046] Specific preferable examples of the polypeptides to be used as antigens are the polypeptides of the even-numbered SEQ ID NOS: 2-30 or fragments thereof.
- [0047] Nucleotide sequences of polynucleotides encoding proteins consisting of the amino acid sequences of the
 even-numbered SEQ ID NOS: 2-30 (that is, SEQ ID NOS: 2, 4, 6…28, 30) are shown in the odd-numbered SEQ ID NOS: 1-29 (that is, SEQ ID NOS: 1, 3, 5…27, 29).

[0048] In general, it is broadly known by persons skilled in the art concerning protein antigens such that even when few amino acid residues have been substituted, deleted, added, or inserted in the amino acid sequence of the protein, the resultant may retain antigenicity almost equivalent to that of the original protein. Therefore, a polypeptide: having a

- ³⁵ sequence that has a substitution, a deletion, and/or an insertion of a few (preferably one or several) amino acid residues with respect to the amino acid sequence of CAPRIN-1 and has 80% or more, 85% or more, preferably 90% or more, more preferably 95% or more, and further preferably 98% or more sequence identity with the original sequence; and specifically binding to a polyclonal antibody against CAPRIN-1 via an antigen-antibody reaction (hereinafter, may be conveniently referred to as "specifically reactive modified polypeptide") can be used for cancer detection in a manner
- 40 similar to that for the above polypeptides. Preferably, the specifically reactive modified polypeptide has an amino acid sequence that has a substitution, a deletion, an addition, and/or an insertion of one or several amino acid residues with respect to the amino acid sequence of CAPRIN-1. The term "several" as used herein refers to an integer of 2-10, preferably an integer of 2-6, and further preferably an integer of 2-4.
- [0049] The term "sequence identity (of amino acid sequences)" as used herein is obtained by aligning two amino acid sequences to be compared so that amino acid residues match as many as possible, subtracting the number of amino acid residues that have matched from the total number of amino acid residues, and then expressing the result in percentage form. Upon the above alignment, if necessary, gaps are appropriately inserted into one of or both sequences to be compared. Such sequence alignment can be performed using a known program such as BLAST, FASTA, or CLUSTAL W (Karlin and Altschul, Proc. Natl. Acad. Sci. U.S.A., 87: 2264-2268, 1993; Altschul et al., Nucleic Acids Res., 25: 3389-3402, 1997).

[0050] Twenty types of amino acid constituting natural proteins can be grouped into neutral amino acids having side chains with low polarity (Gly, Ile, Val, Leu, Ala, Met, and Pro), neutral amino acids having hydrophilic side chains (Asn, Gln, Thr, Ser, Tyr, and Cys), acidic amino acids (Asp and Glu), basic amino acids (Arg, Lys, and His), and aromatic amino acids (Phe, Tyr, Trp, and His) in which the members of each group have properties analogous to each other. It

⁵⁵ is known that substitution among these amino acids (that is, conservative substitution) rarely alters the properties of the resulting polypeptide. Therefore, when amino acid residues of CAPRIN-1 are substituted, substitution is performed between members of the same group so that a possibility of maintaining binding with the corresponding antibody becomes higher. However, in the present invention, the above variant may involve non-conservative substitution, as long as

immune-inducing activity equivalent to or almost equivalent to that of a non-variant is imparted.

5

- **[0051]** A polypeptide (hereinafter, may conveniently be referred to as "specifically reactive addition polypeptide") that contains as a partial sequence the above polypeptide to be used in the present invention (that is, prepared by addition of another (poly)peptide to one end or both ends of a polypeptide to be used in the present invention) and specifically binds to a polyclonal antibody against CAPRIN-1 via an antigen-antibody reaction can also be used for cancer detection
- in a manner similar to that for the above polypeptides. **[0052]** The above polypeptides to be used in the present invention can be synthesized according to a chemical synthesis method such as an Fmoc method (fluorenylmethyloxycarbonyl method) and a tBoc method (t-butyloxy-carbonyl method) (Ed., The Japanese Biochemical Society, Seikagaku Jikken Koza (Biochemical Experimental Lecture Series) 1, Protein
- Chemistry IV, Chemical Modification and Peptide Synthesis, TOKYO KAGAKU DOZIN CO., LTD (Japan), 1981). Also, the polypeptides can also be synthesized by a conventional method using various commercially available peptide synthesizers. Alternatively, the polypeptides can be easily prepared using known genetic engineering techniques (Sambrook et al., Molecular Cloning, 2nd Edition, Current Protocols in Molecular Biology (1989), Cold Spring Harbor Laboratory Press, Ausubel et al., Short Protocols in Molecular Biology, 3rd Edition, A Compendium of Methods from Current Protocols
- ¹⁵ in Molecular Biology (1995), John Wiley & Sons, and the like). For example, from RNA extracted from a tissue expressing a gene encoding the human CAPRIN-1 of SEQ ID NO: 2 or a homolog thereof, cDNA of the gene is prepared by RT-PCR. The full-length sequence or a desired partial sequence of the cDNA is incorporated into an expression vector and then the vector is introduced into host cells, so that a polypeptide of interest can be obtained. The nucleotide sequences of cDNAs encoding canine CAPRIN-1 of SEQ ID NOS: 6, 8, 10, 12, and 14 are shown in SEQ ID NOS: 5, 7, 9, 11, and
- ²⁰ 13, respectively. The human factors homolog thereof; that is, the nucleotide sequences of cDNAs encoding human CAPRIN-1 of SEQ ID NOS: 2 and 4 are shown in SEQ ID NOS: 1 and 3, respectively. Hence, primers to be used for RT-PCR can be easily designed in reference to these nucleotide sequences. Also, as described later, a gene encoding CAPRIN-1 of a non-human mammal can be amplified using primers designed in reference to the nucleotide sequences of the odd-numbered SEQ ID NOS: 1-29. For example, cDNA encoding feline CAPRIN-1 can be easily prepared by
- techniques similar to the above techniques. RNA extraction, RT-PCR, cDNA incorporation into a vector, and introduction of a vector into host cells can be performed by known methods as described below, for example. Also, vectors and host cells to be used herein are also known and various vectors and host cells are commercially available. [0053] The above host cells may be any cells, as long as they can express the above polypeptides. Examples of
- prokaryotic host cells include *Escherichia coli* and the like. Examples of eukaryotic host cells include mammalian cultured
 cells such as monkey kidney cells (COS1), Chinese hamster ovary cells (CHO), the human embryonic kidney cell line (HEK293), and the mouse embryonic skin cell line (NIH3T3), budding yeast, fission yeast, silkworm cells, and Xenopusocytes.

[0054] When prokaryotic cells are used as host cells, an expression vector having a replication origin in prokaryotic cells, a promoter, a ribosome-binding site, a multi-cloning site, a terminator, a drug-resistance gene, an auxotrophic

- ³⁵ complementary gene, and the like are used. As expression vectors for *Escherichia coli*, pUC vectors, pBluescriptII, pET expression systems, pGEX expression systems, and the like can be exemplified. A DNA encoding the above polypeptide is incorporated into such an expression vector, prokaryotic host cells are transformed with the vector, and then the thus obtained transformant is cultured, so that the polypeptide encoded by the DNA can be expressed in the prokaryotic host cells. At this time, the polypeptide can also be expressed as a fusion protein with another protein. A DNA encoding the
- 40 above polypeptide can be obtained by preparing a cDNA by RT-PCR as described above, for example. Moreover, such DNA encoding the above polypeptide can be also synthesized by a conventional method using a commercially available nucleic acid synthesizer as described below. The nucleotide sequences of cDNAs of the genes encoding CAPRIN-1 of SEQ ID NOS: 2 and 4 are shown in SEQ ID NOS: 1 and 3, respectively, in the Sequence Listing.
- [0055] When eukaryotic cells are used as host cells, expression vectors for eukaryotic cells having a promoter, a splicing region, a poly(A) additional site, and the like are used. Examples of such expression vectors include pKA1, pCDM8, pSVK3, pMSG, pSVL, pBK-CMV, pBK-RSV, EBV vector, pRS, pcDNA3, and pYES2. Similarly to the above, a DNA encoding a polypeptide to be used in the present invention is incorporated into such an expression vector, eukaryotic host cells are transformed with the vector, and then the thus obtained transformant is cultured, so that the polypeptide encoded by the above DNA can be expressed in eukaryotic host cells. When pIND/V5-His, pFLAG-CMV-
- 2, pEGFP-N1, pEGFP-C1, or the like is used as an expression vector, the above polypeptide can be expressed as a fusion protein with various tags, such as a His tag (e.g., (His)₆ to (His)₁₀), a FLAG tag, a myc tag, a HA tag, and GFP. [0056] For introduction of an expression vector into a host cell, known methods can be employed such as electroporation, a calcium phosphate method, a liposome method, a DEAE dextran method, microinjection, viral infection, lipofection, and binding with a cell-membrane-permeable peptide.
- ⁵⁵ **[0057]** Isolation and purification of a polypeptide of interest from host cells can be performed using known isolation techniques in combination. Examples of such known techniques include treatment using a denaturing agent such as urea or a surfactant, ultrasonication, enzymatic digestion, salting-out, solvent fractionation and precipitation, dialysis, centrifugation, ultrafiltration, gel filtration, SDS-PAGE, isoelectric focusing, ion exchange chromatography, hydrophobic

chromatography, affinity chromatography, and reverse phase chromatography.

[0058] Polypeptides obtained by the above methods include polypeptides in the form of fusion proteins with any other proteins. An example of such a fusion protein include a fusion protein with glutathione-S-transferase (GST), a His tag, or the like. Polypeptides in the form of such fusion proteins are also examples of the above-described specifically reactive

- ⁵ addition polypeptides and can be used for the 1st detection method of the present invention. Furthermore, a polypeptide expressed in transformed cells may be subjected to various types of modification within cells after translation. Such polypeptide that is modified after translation can be used in the 1st detection method of the present invention, as long as it is capable of binding to a polyclonal antibody against CAPRIN-1. Examples of such post-translation modification include the removal of N-terminal methionine, N-terminal acetylation, glycosylation, limited proteolysis by intracellular proteose, myristoylation, isoprenylation, and phosphorylation.
- ¹⁰ protease, myristoylation, isoprenylation, and phosphorylation. [0059] An antibody in a sample can be easily measured by immunoassay using the above polypeptide as an antigen. Immunoassay itself is known in the art. Immunoassay is classified into a sandwich method, a competition method, an agglutination method, Western blot method, and the like based on types of reaction. Also, immunoassay is classified based on labels into radioimmunoassay, fluorescence immunoassay, enzyme immunoassay, and biotin immunoassay.
- ¹⁵ for example. Immunoassay of the above antibody can be performed using any of these methods. Sandwich ELISA or the agglutination method are preferably applicable as an immunoassay technique for the above antibody in the method of the present invention, since the procedures of these methods are convenient and require no extensive apparatus and the like. But the techniques are not limited to them. When an enzyme is used as a label for an antibody, such enzyme is not particularly limited, as long as it satisfies conditions such that: the turn over number is high; it remains stable even
- 20 if it is bound to an antibody, it specifically causes the color development of the substrate, and the like. Examples of enzymes that can be used for general enzyme immunoassay include peroxidase, β-galactosidase, alkaline phosphatase, glucose oxidase, acetylcholine esterase, glucose-6-phosphorylation dehydrogenase, and malic acid dehydrogenase. Also, enzyme-inhibiting substances, coenzymes, and the like can be used. Binding of these enzymes with antibodies can be performed by known methods using a cross-linking agent such as a maleimide compound. As a substrate, a
- ²⁵ known substance can be used depending on the type of an enzyme to be used. For example, when peroxidase is used as an enzyme, 3,3',5,5'-tetramethylbenzidine can be used. Also when alkaline phosphatase is used as an enzyme, paranitrophenol or the like can be used. As a radio isotope, a radio isotope that is generally used for radioimmunoassay, such as ¹²⁵I and ³H can be used. As a fluorescent dye, a fluorescent dye that is used for general fluorescent antibody techniques, such as fluorescence isothiocyanate (FITC) and tetramethylrhodamine isothiocyanate (TRITC) can be used.
- 30 [0060] There is no need to explain the above immunoassay techniques in the Description, since they are well-known. However, when these immunoassay techniques are briefly described, the sandwich method involves immobilizing the above polypeptide to be used as an antigen to a solid phase, reacting it with a sample such as serum, washing, reacting with an appropriate secondary antibody, washing, and then measuring the secondary antibody bound to the solid phase, for example. An unbound secondary antibody can be easily removed by immobilization of an antigen polypeptide to a
- ³⁵ solid phase. Hence, this is preferable as an embodiment of the method for detecting cancer of the present invention. As a secondary antibody, an anti-canine IgG antibody can be used if a sample is derived from a dog. A secondary antibody is labeled in advance with a labeling substance exemplified above, so that the secondary antibody binding to a solid phase can be measured. The thus measured amount of the secondary antibody corresponds to the amount of the above antibody in the serum sample. When an enzyme is used as a labeling substance, the amount of the antibody can be
- 40 measured by adding a substrate that is digested to develop color by enzymatic action and then optically measuring the amount of the substrate degraded. When a radio isotope is used as a labeling substance, the amount of radiation from the radio isotope can be measured using a scintillation counter or the like.
 [0061] In the 2nd method of the present disclosure, CAPRIN-1 that can be contained in a sample from a living organism
- ⁴⁵ reaction with CAPRIN-1 of a dog, a human, or the like is significantly high. This indicates that the amount of CAPRIN-1 accumulated as an antigen is significantly high in cancer cells. Cancer can also be detected by directly measuring CAPRIN-1, as specifically described in Examples below. Therefore, cancer can be detected *in vivo* by measuring CAPRIN-1 itself similarly to the 1st method above.
- [0062] A polypeptide in a sample can be easily measured by well-known immunoassay techniques. Specifically, for example, an antibody or an antigen-binding fragment thereof, which undergoes an antigen-antibody reaction with CAPRIN-1, is prepared, immunoassay is performed using the antibody or its antigen-binding fragment thereof, and then CAPRIN-1 that may be present in the sample can be measured. As described above, an antibody has cross-reactivity. Hence, for example, through the use of an antibody or the antigen-binding fragment thereof, which undergoes an antigenantibody reaction with the canine CAPRIN-1 of SEQ ID NO: 6, not only the canine CAPRIN-1 of SEQ ID NO: 6, but also
- ⁵⁵ its homolog in other mammals (e.g., the human CAPRIN-1 of SEQ ID NO: 2 or 4 and feline CAPRIN-1) can be measured.
 An immunoassay technique itself is a known conventional technique as described above.
 [0063] This examination revealed that CAPRIN-1 is a cell membrane protein that is expressed on the surfaces of cancer cells. A living organism with cancer contains many kinds of proteases. Specifically, in a living organism with

cancer, an extracellularly expressed portion of the CAPRIN-1 sequence is separated from the cancer cells by degradation, so that such portion exists at a level higher than an intracellularly expressed portion of the CAPRIN-1 sequence. Therefore, when an antibody against CAPRIN-1 or an antigen-binding fragment thereof to be used in this measurement, which binds to the surface of the cancer cell, is used, CAPRIN-1 can be detected at higher levels and cancer can be diagnosed

- ⁵ with higher sensitivity. Therefore, antibodies binding to a portion of the CAPRIN-1 protein existing on the surfaces of cancer cells, are preferably used. An example of a partial peptide of the CAPRIN-1 protein existing on the surfaces of cancer cells, is a polypeptide comprising a sequence of continuous 7 or more amino acid residues within the region of amino acid residue Nos. (aa) 50-98 or amino acid residue Nos. (aa) 233-305 in the amino acid sequences shown in the even-numbered SEQ ID NOS: 2-30 in the Sequence Listing excluding SEQ ID NO: 6 and SEQ ID NO: 18. A specific
- 10 example thereof is the amino acid sequence shown in SEQ ID NO: 43 or SEQ ID NO: 61 (in the amino acid sequence shown in SEQ ID NO: 61, a region of the amino acid sequence shown in SEQ ID NO: 62 or SEQ ID NO: 63 is preferred) or an amino acid sequence having 80% or more, preferably 85% or more, more preferably 90% or more, further preferably 95% or more sequence identity with the relevant amino acid sequence. Examples of an antibody to be used include all antibodies binding to these peptides. Specific examples of the antibody include an antibody or antigen-binding fragment
- ¹⁵ thereof which binds to SEQ ID NO: 43, a monoclonal antibody or antigen-binding fragment thereof having the amino acid sequences of SEQ ID NOS: 44 and 45, a monoclonal antibody or antigen-binding fragment thereof having the amino acid sequences of SEQ ID NOS: 44 and 46, a monoclonal antibody or antigen-binding fragment thereof having the amino acid sequences of SEQ ID NOS: 44 and 47, a monoclonal antibody or antigen-binding fragment thereof having the amino acid sequences of SEQ ID NOS: 44 and 47, a monoclonal antibody or antigen-binding fragment thereof having the amino acid sequences of SEQ ID NOS: 44 and 47, a monoclonal antibody or antigen-binding fragment thereof having the amino acid sequences of SEQ ID NOS: 44 and 48, a monoclonal antibody an antigen-binding fragment thereof having the amino acid sequences of SEQ ID NOS: 44 and 48, a monoclonal antibody an antigen-binding fragment thereof having the amino acid sequences of SEQ ID NOS: 44 and 48, a monoclonal antibody an antigen-binding fragment thereof having the amino acid sequences of SEQ ID NOS: 44 and 48, a monoclonal antibody an antigen-binding fragment thereof having the amino acid sequences of SEQ ID NOS: 44 and 48, a monoclonal antibody an antigen-binding fragment thereof having the amino acid sequences of SEQ ID NOS: 44 and 48, a monoclonal antibody and antigen-binding fragment thereof having the amino acid sequences of SEQ ID NOS: 44 and 48, a monoclonal antibody and antigen-binding fragment thereof having the amino acid sequences of SEQ ID NOS: 44 and 48, a monoclonal antibody and antigen-binding fragment thereof having the amino acid sequences of SEQ ID NOS: 44 and 48, a monoclonal antibody and antigen-binding fragment thereof having the amino acid sequences of SEQ ID NOS: 44 and 48, a monoclonal antibody and 48, a monoclonal ant
- amino acid sequences of SEQ ID NOS: 49 and 50, a monoclonal antibody or antigen-binding fragment thereof having the amino acid sequences of SEQ ID NOS: 51 and 52, a monoclonal antibody or antigen-binding fragment thereof having the amino acid sequences of SEQ ID NOS: 53 and 54, a monoclonal antibody or antigen-binding fragment thereof having the amino acid sequences of SEQ ID NOS: 55 and 56, a monoclonal antibody or antigen-binding fragment thereof having the amino acid sequences of SEQ ID NOS: 57 and 58, or a monoclonal antibody or antigen-binding fragment thereof having the amino acid sequences of SEQ ID NOS: 57 and 58, or a monoclonal antibody or antigen-binding fragment thereof having the amino acid sequences of SEQ ID NOS: 59 and 60
- ²⁵ having the amino acid sequences of SEQ ID NOS: 59 and 60. [0064] The term "antigen-binding fragment" as used herein refers to an antibody fragment capable of binding to an antigen such as a Fab fragment and a F(ab')₂ fragment contained in an antibody molecule. An antibody to be used herein may be a polyclonal antibody or a monoclonal antibody. For immunoassay and the like, a monoclonal antibody with high reproducibility is preferable. A method for preparing a polyclonal antibody and a monoclonal antibody using a
- ³⁰ polypeptide as an immunogen is known and can be easily performed by a conventional method. For example, CAPRIN-1 is bound to a carrier protein such as keyhole limpet hemocyanin (KLH), casein, or serum albumin and then an animal is immunized with the resultant as an immunogen together with an adjuvant, and thereby an antibody against CAPRIN-1 can be induced. Antibody-producing cells such as splenocytes or lymphocytes collected from the immunized animal are fused to myeloma cells to prepare hybridomas, and then hybridomas producing an antibody that binds to CAPRIN-
- ³⁵ 1 are selected and then grown, so that a monoclonal antibody, whose the corresponding antigen is CAPRIN-1, can be obtained from the cultured supernatant. The above method is a known conventional method.
 [0065] In the 3rd method of the present disclosure, mRNA encoding CAPRIN-1 that can be contained in a sample obtained from a living organism is measured. As specifically described in Examples below, mRNA encoding the canine CAPRIN-1 of SEQ ID NO: 6, 8, 10, 12, or 14 or human CAPRIN-1 of SEQ ID NO: 2 or 4 is expressed at a significantly
- ⁴⁰ high level in cancer cells. Therefore, cancer can be detected *in vivo* by measuring such mRNA in a sample. [0066] mRNA in a sample can be quantitatively determined by a conventional method such as real-time detection RT-PCR using the mRNA as a template, for example. Such mRNA can generally be quantitatively determined based on staining intensity or the like in Northern blot that is a conventional method. The cDNA sequences encoding CAPRIN-1 polypeptides of the even-numbered SEQ ID NOS: 2-30 are shown in the odd-numbered SEQ ID NOS: 1-29, respectively.
- ⁴⁵ Hence, based on these sequences, a polynucleotide specifically hybridizing to a partial region in the nucleotide sequence shown in any of the odd-numbered SEQ ID NOS: 1-29 (hereinafter, referred to as "polynucleotide for cancer detection") is prepared and then the amount of the mRNA in a sample can be measured using the polynucleotide as a probe or a primer for a nucleic acid amplification method. As described later, if it is a polynucleotide specifically hybridizing to a partial region in the nucleotide sequence shown in any of the odd-numbered SEQ ID NOS: 1-29, mRNA encoding
- 50 CAPRIN-1 in mammals other than dogs and humans can also be determined. In addition, a polynucleotide may be RNA or DNA.

[0067] The term "specifically hybridizing to" as used herein refers to that under general hybridization conditions, a subject hybridizes to only a target partial region, but does not substantially hybridize to the other regions.

[0068] The term "(under) general hybridization conditions" as used herein refers to conditions employed for annealing in general PCR or detection using a probe. For example, in the case of PCR using Taq polymerase, the term refers to conditions under which a reaction is performed at an appropriate annealing temperature ranging from about 54°C to 60°C using a general buffer such as 50 mM KCl, 10 mM Tris-HCl (pH8.3-9.0), and 1.5 mM MgCl₂. Also, in the case of Northern hybridization, for example, the term refers to conditions under which a reaction is performed using a general

hybridization solution such as 5 × SSPE, 50% formamide, 5 × Denhardt's solution, and 0.1%SDS-0.5%SDS, or 0.1-5 × SSC and 0.1-0.5% SDS at an appropriate hybridization temperature ranging from about 42°C to 65°C. Furthermore, after hybridization, washing is performed with 0.1-0.2 x SSC and 0.1% SDS, for example. However, appropriate annealing temperatures or hybridization temperatures are not limited to the above examples, and are determined based on Tm

- value for a polynucleotide for cancer detection, which is used as a primer or a probe, and the empirical rule of experimenters. Persons skilled in the art can easily determine such temperature range.
 [0069] The expression "does not substantially hybridize to" as used herein refers to that a subject does not really hybridize to a target partial region or a subject hybridizes to a target partial region in a significantly low amount; that is, in a relatively negligibly-small amount, even when it hybridizes to the target partial region. An example of a polynucleotide
- ¹⁰ specifically hybridizing under such conditions is a polynucleotide having sequence identity at a level or more with the nucleotide sequence of a target partial region. A specific example of such polynucleotide has 70% or more, preferably 80% or more, 85% or more, more preferably 90% or more, further preferably 93% or more, further preferably 95% or more, and further more preferably 98% or more sequence identity. Most preferably, the polynucleotide has a nucleotide sequence of a target partial region. Sequence identity is defined in the same manner
- ¹⁵ as that for the sequence identity of the above amino acid sequence. Even if a terminus of a polynucleotide for cancer detection contains a region not hybridizing to a subject, in the case of a probe, it can be used for detection as long as a hybridizing region occupies as much as about a half or more of the entire probe. Also, in the case of a primer, it can be used for detection as long as a hybridizing region occupies as much as about a half or more of the entire probe. Also, in the case of a primer, it can be used for detection as long as a hybridizing region occupies as much as about a half or more of the entire primer and is located on the 3' terminal side, since normal annealing and extension reaction can take place. As described above,
- when a terminus of a polynucleotide for cancer detection contains a non-hybridizing region, sequence identity with a target nucleotide sequence is calculated focusing on only a hybridizing region without taking non-hybridizing region into consideration.

[0070] The term "partial sequence" in the present invention refers to a partial sequence in the nucleotide sequences shown in the odd-numbered SEQ ID NOS: 1-29, specifically the partial sequence having a sequence of continuous 15

- or more nucleotides, preferably continuous 18 or more nucleotides, more preferably continuous 20 or more nucleotides or 25 or more nucleotides, and further preferably continuous 30, 40, or 50 or more nucleotides. The expression "the nucleotide sequence shown in SEQ ID NO: 5" as used herein refers to, in addition to the nucleotide sequence actually shown in SEQ ID NO: 5, a sequence complementary to the sequence. Therefore, for example, the expression "a poly-nucleotide having the nucleotide sequence shown in SEQ ID NO: 5" refers to a single-stranded polynucleotide having
- 30 the nucleotide sequence actually shown in SEQ ID NO: 5, a single-stranded polynucleotide having a nucleotide sequence complementary to that shown in SEQ ID NO: 5, and a double-stranded polynucleotide comprising them. When a polynucleotide encoding a polypeptide to be used in the present invention is prepared, any one nucleotide sequence is appropriately selected and this selection can be easily performed by persons skilled in the art.
- [0071] The number of nucleotides in a polynucleotide for cancer detection is preferably 18 or more nucleotides in view of ensuring specificity. When used as a probe, the size of the polynucleotide is preferably 18 or more nucleotides, is further preferably 20 or more nucleotides and the full-length or less of the coding region. When used as a primer, the size of the polynucleotide is preferably 18 or more nucleotides and 50 or less nucleotides. A preferred example of the polynucleotide for cancer detection is a polynucleotide comprising continuous 18 or more nucleotides in a nucleotide sequence shown in any of the odd-numbered SEQ ID NOS: 1-29.
- 40 [0072] It is obvious for persons skilled in the art who refer to this Description that: a polynucleotide specifically hybridizing to a partial region in SEQ ID NO: 5, 7, 9, 11, or 13 is used for measurement of the amount of mRNA encoding the canine CAPRIN-1 of SEQ ID NO: 6, 8, 10, 12, or 14, respectively; and a polynucleotide specifically hybridizing to a partial region in SEQ ID NO: 1 or 3 is used for measurement of the amount of mRNA encoding the human CAPRIN-1 of SEQ ID NO: 2 or 4, respectively. However, a protein from a mammal and a homolog thereof from another mammal generally share
- ⁴⁵ high sequence identity even at the nucleotide sequence level. Thus, the sequence identity among the sequences of the odd-numbered SEQ ID NOS: 1-13 also is as very high as 94% to 100%. Accordingly, a polynucleotide specifically hybridizing to a partial region of the sequence of SEQ ID NO: 5 can also specifically hybridize to a partial region corresponding to the relevant partial region of any of the odd-numbered SEQ ID NOs: 1-29.
- [0073] Actually as described in Examples below, a pair of primers having the nucleotide sequences shown in SEQ ID NO: 33 and 34, respectively, specifically hybridizes to both a partial region of any of the sequences of the odd-numbered SEQ ID NOS: 1-29 and a partial region of the sequence of SEQ ID NO: 5, so that both mRNA encoding the canine CAPRIN-1 of SEQ ID NO: 6 and mRNA encoding a homolog thereof can be measured, for example. Accordingly, for example, with the use of a polynucleotide specifically hybridizing to a partial region of the sequence of SEQ ID NO: 5, not only mRNA encoding the canine CAPRIN-1 of SEQ ID NO: 6, but also mRNA encoding the human CAPRIN-1 of SEQ ID NO: 6, but also mRNA encoding the back and back and
- ⁵⁵ SEQ ID NO: 2 or 4 can be measured. Similarly, a mRNA encoding CAPRIN-1 of another mammal such as a cat can also be measured. When a polynucleotide for cancer detection is designed, it is desirable to select partial regions having a specifically high sequence identity between the SEQ ID numbers (odd-numbered SEQ ID NOS: 1-29) (preferably, the nucleotide sequences are the same). If a partial region having particularly high sequence identity between a dog and a

human is present, a region having very high sequence identity with the region is expected to be present in a homologous gene of another animal species. Through selection of such partial regions, accuracy for measuring mRNA encoding CAPRIN-1 of an animal species other than dogs and humans can be increased.

- [0074] A method itself for measuring a test nucleic acid using a polynucleotide specifically hybridizing to a partial region of the test nucleic acid as a primer or a probe for a nucleic acid amplification method such as PCR is well-known. Examples of such method include, in addition to RT-PCR that is specifically described in Examples below, Northern blot and In situ hybridization. When the amount of mRNA is measured, all of these known measuring methods can be employed.
- [0075] A nucleic acid amplification method itself such as PCR is well-known in the art and thus reagent kits and apparatuses therefor are commercially available, so that the method can be easily performed. Specifically, for example, denaturation, annealing, and extension steps are each performed using a test nucleic acid (e.g., the cDNA of a gene encoding a protein having an amino acid sequence shown in any of the even-numbered SEQ ID NOS: 2-30) as a template and a pair of polynucleotides (primers) for cancer detection in a known buffer in the presence of thermostable DNA polymerase such as Taq polymerase or Pfu polymerase and dNTP (here, N = A, T, C, or G) by varying the temperature
- of the reaction solution. In general, the denaturation step is performed at 90°C-95°C, the annealing step is performed at or near the Tm of the template and the primers (preferably within ±4°C), and the extension step is performed at 72°C which is an optimum temperature for thermostable DNA polymerase such as Taq polymerase or Pfu polymerase or a temperature near the optimum temperature. Each step is performed for about 30 seconds to 2 minutes, as appropriately selected. This heating cycle is repeated about 25 to 40 times, for example, so that the template nucleic acid region
- flanked by a primer pair is amplified. A nucleic acid amplification method is not limited to PCR and any other nucleic acid amplification methods known in the art can be employed herein. As described above, when a nucleic acid amplification method is performed using a pair of polynucleotides for cancer detection as primers and a test nucleic acid as a template, the test nucleic acid is amplified. However, if no test nucleic acid is contained in a sample, amplification does not take place. Hence, through detection of amplification products, the presence or the absence of the test nucleic acid in a
- ²⁵ sample can be confirmed. An amplification product can be detected by a method that involves subjecting a reaction solution after amplification to electrophoresis, and then staining the band with ethidium bromide or the like or a method that involves immobilizing an amplification product after said electrophoresis onto a solid phase such as a nylon membrane, performing hybridization with a labeling probe that specifically hybridizes to a test nucleic acid, washing, and then detecting the label. Also, namely real-time detection PCR is performed using a guencher fluorescent dye and a reporter
- ³⁰ fluorescent dye, and thereby the amount of a test nucleic acid in a specimen can be quantitatively determined. Since kits for real-time detection PCR are commercially available, real-time detection PCR can be easily performed. Furthermore, semi-quantitative determination of a test nucleic acid is also possible based on electrophoresis band intensity. A test nucleic acid may be either mRNA or cDNA resulting from mRNA via reverse transcription. When mRNA is amplified as a test nucleic acid, a NASBA method (3SR method or TMA method) using the above primer pair can also be employed.
- The NASBA method itself is well-known and kits for the method are also commercially available, so that the method can be easily performed using the above primer pair.
 [0076] As a probe, a labeled probe that is prepared by labeling a polynucleotide for cancer detection with a fluorescent label, a radiolabel, a biotin label, or the like can be used. A method for labeling a polynucleotide itself is well-known. The
- presence or the absence of a test nucleic acid in a sample can be examined by immobilizing a test nucleic acid or an amplification product thereof, performing hybridization with a labeled probe, washing, and then measuring the label bound to the solid phase. Alternatively, a polynucleotide for cancer detection is immobilized, a test nucleic acid is hybridized thereto, and then the test nucleic acid bound to the solid phase can be detected using the labeled probe or the like. In such a case, a polynucleotide for cancer detection bound to a solid phase is also referred to as a probe. A method for measuring a test nucleic acid using a polynucleotide probe is also known in the art. The method can be
- ⁴⁵ performed by causing, in a buffer, a polynucleotide probe to come into contact with a test nucleic acid at Tm or near Tm (preferably, within ±4°C) for hybridization, washing, and then measuring the labeled probe that has hybridized or the template nucleic acid bound to the solid-phase probe. Examples of such method include well-known methods such as Northern blot, in situ hybridization, and Southern blot methods. Any well-known method is applicable.
 [0077] It is determined by the detection method of the present invention whether or not a subject animal has cancer
- ⁵⁰ based on the expression level of CAPRIN-1 measured as described above. Cancer can be detected only by measuring CAPRIN-1 expression in a subject animal. However, it is preferable in view of enhancing detection accuracy to examine the expression levels (antibody level), of CAPRIN-1 in one or a plurality of samples of healthy subjects so as to obtain a standard value of healthy subjects and then to compare the measured value of a subject animal with the standard value obtained from healthy subjects. To further enhance detection accuracy, CAPRIN-1 expression levels are examined.
- ⁵⁵ for samples obtained from many patients found to have cancer so as to obtain a standard value of cancer patients and then the measured value of a subject animal may be compared with both the standard value of healthy subjects and the standard value of cancer patients. The above standard values can be determined by quantifying the CAPRIN-1 expression level in each sample and then calculating the mean value thereof, for example. A standard value of healthy subjects

and the same of cancer patients can be determined in advance by examining CAPRIN-1 expression levels in many healthy subjects and cancer patients. Therefore, when comparison with a standard value is performed in the method of the present invention, a standard value determined in advance may be used.

- [0078] In the detection method of the present invention, diagnosis based on other cancer antigens or cancer markers may be used in combination. Accordingly, cancer detection accuracy can be further increased. For example, when an antibody specifically existing in cancer patients is measured by the method of the present invention, another polypeptide that is often expressed in a cancer tissue can be used in combination as an antigen in a manner similar to that for polypeptides above. Also, the method of the present invention and diagnosis using a previously known cancer marker may be performed in combination.
- ¹⁰ **[0079]** Cancer can be detected *in vivo* according to the detection method of the present invention. Particularly, as described in Examples below, even a small-size tumor, which is invisible to the naked eye, or a tumor in a deep part *in vivo* can be detected according to the method of the present invention. Thus, the method of the present invention is useful for early cancer detection. Also, through application of the detected early if a cancer recurrence has taken place.
- ¹⁵ **[0080]** Also, in a cancer-bearing living organism, as the number of cancer cells expressing CAPRIN-1 measured in the present invention increases, the amounts of the protein and its mRNA accumulated in the living organism increase and the production amount of the antibody against CAPRIN-1 in serum increases. Meanwhile, as the number of cancer cells decreases, the amounts of the protein and its mRNA accumulated *in vivo* decrease and the amount of the antibody against CAPRIN-1 in serum loce of CAPRIN-1 is higher than that of a
- 20 control, it can be determined that a tumor increase or a cancer metastasis is occurring; that is, the extent of cancer is advanced. Actually, as specifically described in the Examples below, an increase in the above serum antibody level in a cancer-bearing living organism was observed in association with cancer progression (malignant) such as tumor increase and metastasis. As described above, the extent of cancer can also be detected by the method of the present invention. [0081] Also, as described in Examples below, among tumors of the same type, the above antibody levels in malignant
- type tumors were significantly higher than those in benign type tumors. Accordingly, when the expression level of CAPRIN-1 is high, it can be determined that cancer malignancy is higher. Specifically, cancer malignancy can also be detected by the method of the present invention.

[0082] Cancer to be subjected to the method for detecting cancer of the present invention is cancer expressing CAPRIN-1. Examples of such cancer include, but are not limited to, brain tumor, squamous cell carcinoma of the head, neck,

- ³⁰ lung, uterus or esophagus, melanoma, adenocarcinoma of the lung or uterus, renal cancer, malignant mixed tumor, hepatocellular carcinoma, basal cell carcinoma, acanthoma-like gingival tumor, tumor of the oral cavity, perianal adenocarcinoma, anal sac tumor, anal sac apocrine adenocarcinoma, sertoli cell carcinoma, cancer of the vaginal vestibule, sebaceous adenocarcinoma, sebaceous epithelioma, sebaceous adenoma, sweat gland carcinoma, intranasal adenocarcinoma, nasal adenocarcinoma, thyroid cancer, large-bowel cancer, bronchial adenocarcinoma, adenocarcinoma,
- ³⁵ ductal carcinoma, breast adenocarcinoma, composite type breast adenocarcinoma, malignant mammary mixed tumor, intraductal papillary adenocarcinoma, fibrosarcoma, hemangiopericytoma, osteosarcoma, chondrosarcoma, soft tissue sarcoma, histiocytic sarcoma, myxosarcoma, undifferentiated sarcoma, lung cancer, mastocytoma, cutaneous leiomyoma, intraperitoneal leiomyoma, leiomyoma, chronic lymphocytic leukemia, lymphoma, gastrointestinal lymphoma, digestive lymphoma, small-cell-to-medium-cell lymphoma, adrenomedullary tumor, granulosa cell tumor, and pheochro-
- 40 mocytoma. Also, a living organism to be subjected to the method of the present invention is a mammal and is preferably a human, a dog, or a cat.
 [0083] Examples of a sample to be subjected to the method of the present invention include body fluids such as blood,

[0083] Examples of a sample to be subjected to the method of the present invention include body fluids such as blood, serum, blood plasma, ascites, and pleural effusion, tissues, and cells. In particular, in the 1st method and the 2nd method above, serum, blood plasma, ascites, and pleural effusion can be preferably used and in the 3rd method above for measurement of mRNA, tissue samples and cell samples are preferable.

[0084] The above polypeptides to be used as antigens for immunoassay in the 1st method (that is, the canine CAPRIN-1 of SEQ ID NO: 2 and a homolog thereof, a specifically reactive partial polypeptide, a specifically reactive modified polypeptide, and a specifically reactive addition polypeptide) can be provided as reagents for cancer detection. The reagent may consist of only the above polypeptide or may contain various additives or the like, for example, useful for stabilization of the polypeptide. Also, the reagent can be provided in a form immobilized onto a solid phase such a plate

- a stabilization of the polypeptide. Also, the reagent can be provided in a form immobilized onto a solid phase such a plate or a membrane. Preferable examples of the polypeptide are as described above.
 [0085] An antibody that undergoes an antigen-antibody reaction with CAPRIN-1 or an antigen-binding fragment thereof, which is used for immunoassay of CAPRIN-1 itself in the 2nd method, can also be provided as a reagent for cancer detection. The reagent for cancer detection in this case may also consist of only the above antibody or an antigen-binding
- ⁵⁵ fragment thereof or may contain various additives or the like useful for stabilization and the like of the antibody or an antigen-binding fragment thereof. Also, the antibody or an antigen-binding fragment thereof may be in a form binding to a metal such as manganese or iron. When such metal-bound antibody or antigen-binding fragment thereof is administered to the body of a living organism, the metal-bound antibody or antigen-binding fragment thereof is accumulated at an

increased level at a site where the antigen protein is present at a higher level. Therefore, the metal is measured by MRI or the like, and thereby the presence of cancer cells producing the antigen protein can be detected.

[0086] Furthermore, the above polynucleotide for cancer detection to be used for mRNA measurement in the 3rd method can also be provided as a reagent for cancer detection. The reagent for cancer detection in this case may also consist of only the polynucleotide or may contain various additives and the like useful for stabilization and the like of the polynucleotide. The polynucleotide for cancer detection contained in the reagent is preferably a primer or a probe. Conditions and preferable examples of the polynucleotide for cancer detection are as described above.

EXAMPLES

10

[0087] The present invention will be described in more detail with reference to the examples set forth below; however, the technical scope of the present invention is not limited to the examples.

Example 1: Obtainment of new cancer antigen protein by SEREX method

15

(1) Construction of cDNA library

[0088] Total RNA was extracted from a testis tissue of a healthy dog by an Acid guanidium-Phenol-Chloroform method and then a polyA RNA was purified using Oligotex-dT30 mRNA purification Kit (Takara Shuzo Co., Ltd.) according to protocols included with the kit.

[0089] A canine testis cDNA phage library was synthesized using the thus obtained mRNA (5 μ g). The cDNA phage library was constructed using a cDNA Synthesis Kit, a ZAP-cDNA Synthesis Kit, and a ZAP-cDNA GigapackIII Gold Cloning Kit (STRATAGENE) according to protocols included with the kits. The size of the thus constructed cDNA phage library was 7.73 \times 10⁵ pfu/ml.

25

20

(2) Screening of cDNA library using serum

[0090] Immunoscreening was performed using the above constructed canine testis cDNA phage library. Specifically, host *Escherichia coli* (XL1-Blue MRF') was infected with the phage on an NZY agarose plate (Φ90×15mm) so as to obtain 2210 clones. *E. coli* cells were cultured at 42°C for 3 to 4 hours to form plaques. The plate was covered with a nitrocellulose membrane (Hybond C Extra: GE Healthcare Bio-Science) impregnated with IPTG (isopropyl-β-D-thiogalactoside) at 37°C for 4 hours, so that the protein was induced, expressed, and then transferred to the membrane. Subsequently, the membrane was collected and then immersed in TBS (10 mM Tris-HCl, 150 mM NaCl, and pH 7.5) containing 0.5% powdered skim milk, followed by overnight shaking at 4°C, thereby suppressing nonspecific reaction.
 35 The filter was reacted with a 500-fold diluted serum of a canine patient at room temperature for 2 to 3 hours.

[0091] As the above serum of a canine patient, a serum collected from a canine patient with breast cancer was used. These sera were stored at -80°C and then subjected to pre-treatment immediately before use. A method for pretreatment of serum is as follows. Specifically, host *Escherichia coli* (XL1-Blue MRF') was infected with a λ ZAP Express phage in which no foreign gene had been inserted and then cultured overnight on a NZY plate medium at 37°C. Subsequently,

⁴⁰ buffer (0.2 M NaHCO₃ and pH 8.3) containing 0.5 M NaCl was added to the plate, the plate was left to stand at 4°C for 15 hours, and then a supernatant was collected as an *Escherichia coli*/phage extract. Next, the thus collected *Escherichia coli*/phage extract was applied to an NHS-column (GE Healthcare Bio-Science), so that an *Escherichia coli*-phagederived protein was immobilized. The serum of a canine patient was applied to the protein-immobilized column for reaction and then *Escherichia coli* and an antibody adsorbed to the phage were removed from the serum. The serum

⁴⁵ fraction that had passed through the column was diluted 500-fold with TBS containing 0.5% powdered skim milk. The resultant was used as an immunoscreening material.
[0092] A membrane onto which the treated serum and the above fusion protein had been blotted was washed 4 times with TBS-T (0.05% Tween20/TBS) and then caused to react with goat anti-canine IgG (Goat anti-Dog IgG-h+I HRP conjugated (BETHYL Laboratories)) diluted 5000-fold with TBS containing 0.5% powdered skim milk as a secondary

- antibody for 1 hour at room temperature. Detection was performed via an enzyme coloring reaction using an NBT/BCIP reaction solution (Roche). Colonies that matched sites positive for a coloring reaction were collected from the NZY agarose plate (Φ 90 × 15 mm) and then suspended in 500 µl of an SM buffer (100 mM NaCl, 10 mM MgClSO₄, 50 mM Tris-HCl, 0.01% gelatin, and pH 7.5). Until colonies positive for coloring reaction were unified, secondary screening and tertiary screening were repeated by a method similar to the above, so that 30,940 phage clones reacting with serum
- ⁵⁵ IgG were screened. Thus, 5 positive clones were isolated.

(3) Homology search for isolated antigen gene

[0093] For nucleotide sequence analysis of the 5 positive clones isolated by the above method, a procedure for conversion from phage vectors to plasmid vectors was performed. Specifically, 200 μ l of a solution was prepared to contain host *Escherichia coli* (XL1-Blue MRF') so that absorbance OD₆₀₀ was 1.0. The solution was mixed with 250 μ l of a purified phage solution and then with 1 μ l of an ExAssist helper phage (STRATAGENE), followed by 15 minutes of reaction at 37°C. Three mililiters of LB medium was added and then culture was performed at 37°C for 2.5 to 3 hours. Immediately after culture, the temperature of the solution was kept at 70°C by water bath for 20 minutes, centrifugation was performed at 4°C and 1000 × g for 15 minutes, and then the supernatant was collected as a phagemid solution.

- Subsequently, 200 μl of a solution was prepared to contain phagemid host *Escherichia coli* (SOLR) so that absorbance OD₆₀₀ was 1.0. The solution was mixed with 10 μl of a purified phage solution, followed by 15 minutes of reaction at 37°C. The solution (50 μl) was seeded on LB agar medium containing ampicillin (to a final concentration of 50 μg/ml) and then cultured overnight at 37°C. Transformed SOLR single colonies were collected and then cultured in LB medium containing ampicillin (final concentration: 50 μg/ml) at 37°C. A plasmid DNA containing an insert of interest was purified using a OIAGEN plasmid Miniprep Kit (OIAGEN).
- ¹⁵ using a QIAGEN plasmid Miniprep Kit (QIAGEN). [0094] The purified plasmid was subjected to analysis of the full-length sequence by a primer walking method using the T3 primer according to SEQ ID NO: 31 and the T7 primer according to SEQ ID NO: 32. As a result of sequence analysis, the gene sequences according to SEQ ID NOS: 5, 7, 9, 11, and 13 were obtained. A homology search program, BLAST search (http://www.ncbi. NIm. Nih. gov/BLAST/), was performed using the nucleotide sequences of the genes
- and amino acid sequences (SEQ ID NOS: 6, 8, 10, 12, and 14) of the proteins encorded by the genes. As a result of this homology search with known genes, it was revealed that all of the 5 obtained genes encoded CAPRIN-1. Regarding regions to be translated to proteins, the sequence identity among the 5 genes was 100% in terms of nucleotide sequence and 99% in terms of amino acid sequence. Also, regarding regions to be translated to proteins, the sequence identity between the genes and genes encoding human homolog thereof was 94% in terms of nucleotide sequence and 98%
- ²⁵ in terms of amino acid sequence. The nucleotide sequences of the human homolog are shown in SEQ ID NOS: 1 and 3 and the amino acid sequences of the same are shown in SEQ ID NOS: 2 and 4. Also, regarding regions to be translated to proteins, the sequence identity between the obtained canine genes and a gene encoding a cattle homolog was 94% in terms of nucleotide sequence and 97% in terms of amino acid sequence. The nucleotide sequence of the cattle homolog is shown in SEQ ID NO: 15 and the amino acid sequence of the same is shown in SEQ ID NO: 16. Regarding
- 30 regions to be translated to proteins, the sequence identity between the genes encoding the human homolog and the gene encoding the cattle homolog was 94% in terms of nucleotide sequence and ranged from 93% to 97% in terms of amino acid sequence. Also, regarding regions to be translated to proteins, the sequence identity between the obtained canine genes and a gene encoding an equine homolog was 93% in terms of nucleotide sequence and 97% in terms of amino acid sequence. The nucleotide sequence of the equine homolog is shown in SEQ ID NO: 17 and the amino acid
- ³⁵ sequence of the same is shown in SEQ ID NO: 18. Regarding regions to be translated to proteins, the sequence identity between the genes encoding the human homolog and the gene encoding the equine homolog was 93% in terms of nucleotide sequence and 96% in terms of amino acid sequence. Also, regarding regions to be translated to proteins, the sequence identity between the obtained canine genes and genes encoding mouse homolog ranged from 87% to 89% in terms of nucleotide sequence and ranged from 95% to 97% in terms of amino acid sequence. The nucleotide
- 40 sequences of the mouse homolog are shown in SEQ ID NOS: 19, 21, 23, 25, and 27 and the amino acid sequences of the same are shown in SEQ ID NOS: 20, 22, 24, 26, and 28. Regarding regions to be translated to proteins, the sequence identity between the genes encoding the human homolog and the genes encoding the mouse homolog ranged from 89% to 91% in terms of nucleotide sequence and ranged from 95% to 96% in terms of amino acid sequence. Also, regarding regions to be translated to proteins, the sequence identity between the obtained canine genes and a gene
- ⁴⁵ encoding a chicken homolog was 82% in terms of nucleotide sequence and 87% in terms of amino acid sequence. The nucleotide sequence of the chicken homolog is shown in SEQ ID NO: 29 and the amino acid sequence of the same is shown in SEQ ID NO: 30. Regarding regions to be translated to proteins, the sequence identity between the genes encoding the human homolog and the gene encoding the chicken homolog ranged from 81% to 82% in terms of nucleotide sequence.
- 50

(4) Gene expression analysis in each tissue

55

[0095] Expression of the genes obtained by the above method in canine and human normal tissues and various cell lines was examined by an RT-PCR (Reverse Transcription-PCR) method. A reverse transcription reaction was performed as follows. Specifically, total RNA was extracted from each tissue (50 mg to 100 mg) and each cell line (5 to 10×10^6 cells) using a TRIZOL reagent (Invitrogen Corporation) according to protocols included therewith. cDNA was synthesized using the total RNA and Superscript First-Strand Synthesis System for RT-PCR (Invitrogen Corporation) according to protocols included therewith. PCR was performed as follows using primers specific to the obtained genes (according to

SEQ ID NOS: 33 and 34). Specifically, PCR was performed by preparing a reaction solution adjusted to a total amount of 25 μ l through addition of each reagent and an included buffer (0.25 μ l of a sample prepared by reverse transcription reaction, the above primers (2 μ M each), dNTP (0.2 mM each), and 0.65 U of ExTaq polymerase (Takara-baio Co., Ltd.)) and then by reacting the solution through repeating 30 times a cycle of 94°C/30 seconds, 60°C/30 seconds, and

- ⁵ 72°C/30 seconds using a Thermal Cycler (BIO RAD). The gene-specific primers mentioned above were used to amplify the region between nucleotide 206 and nucleotide 632 in the nucleotide sequence of SEQ ID NO: 5 (canine CAPRIN-1 gene) and the region between nucleotide 698 and nucleotide 1124 in the nucleotide sequence of SEQ ID NO: 1 (human CAPRIN-1 gene). For control, GAPDH-specific primers (according to SEQ ID NOS: 35 and 36) were used at the same time. As a result, as shown in Fig. 1, strong expression was observed in testis in the case of healthy canine tissues,
- 10 while expression was observed in canine breast cancer and adenocarcinoma tissues. Furthermore, expression of the human homolog of the obtained genes was also confirmed. As a result, similarly to the case of canine CAPRIN-1 genes, expression could be confirmed only in the testis in the case of normal tissues. However, in the case of cancer cells, expression was detected in many types of cancer cell line, such as cell lines of breast cancer, brain tumor, leukemia, lung cancer, and esophageal cancer. Expression was confirmed in a particularly large number of breast cancer cell
- ¹⁵ lines. Based on the results, it was confirmed that CAPRIN-1 expression was not observed in normal tissues other than those of the testis, while CAPRIN-1 was expressed in many cancer cells and particularly in breast cancer cell lines. [0096] In addition, in Fig. 1, Reference No. 1 along the longitudinal axis indicates the expression pattern of each of the above-identified genes and Reference No. 2 along the same indicates the expression pattern of the GAPDH gene for control.
- 20

(5) Immunohistochemical staining

(5)-1 CAPRIN-1 expression in normal mouse and canine tissues

- ²⁵ [0097] Mice (Balb/c, female) and dogs (beagle dogs, female) were exsanguinated under ether anesthesia and ketamine/isoflurane anesthesia. After laparotomy, organs (stomach, liver, eyeball, thymus gland, muscle, bone marrow, uterus, small intestine, esophagus, heart, kidney, salivary gland, large intestine, mammary gland, brain, lung, skin, adrenal gland, ovary, pancreas, spleen, and bladder) were each transferred to a 10cm dish containing PBS. Each organ was cut open in PBS and then fixed by perfusion overnight with 0.1 M phosphate buffer (pH 7.4) containing 4% para-
- formaldehyde (PFA). The perfusate was discarded, the tissue surface of each organ was rinsed with PBS, and then a PBS solution containing 10% sucrose was added to a 50ml centrifugal tube. Each tissue was then placed in each tube and then shaken using a rotor at 4°C for 2 hours. Each solution was substituted with a PBS solution containing 20% sucrose and then left to stand at 4°C until tissues precipitated. Each solution was substituted with a PBS solution containing 30% sucrose and then left to stand at 4°C until tissues precipitated. Each tissue was removed and a necessary
- ³⁵ portion was excised with a surgical scalpel. Next, an OCT compound (Tissue Tek) was applied and spread over each tissue surface, and then the tissues were placed on Cryomold. Cryomold was placed on dry ice for rapid freezing. Tissues were sliced into pieces 10 to 20 μm long using a cryostat (LEICA) and then the sliced tissue pieces were air-dried on glass slides for 30 minutes using a hair dryer, so that glass slides onto which sliced tissue pieces had been applied were prepared. Next, each glass slide was placed in a staining bottle filled with PBS-T (saline containing 0.05% Tween20),
- so that a procedure involving exchange with PBS-T every 5 minutes was performed 3 instances. Excess water around each specimen was removed using Kimwipes and then each section was encircled using DAKOPEN (DAKO). As blocking solutions, a MOM mouse Ig blocking reagent (VECTASTAIN) was applied onto mouse tissue and PBS-T solution containing a 10% fetal calf serum was applied onto canine tissue. The resultants were left to stand in a moist chamber at room temperature for 1 hour. Next, a solution prepared with the blocking solution to a 10 µg/ml anti-CAPRIN-1 monoclonal
- ⁴⁵ antibody (monoclonal antibody, #8) having the heavy chain variable region of SEQ ID NO: 55 and the light chain variable region of SEQ ID NO: 56, which reacts with the cancer cell surfaces prepared in Example 3, was applied onto each slide glass and then left to stand within a moist chamber at 4°C overnight. After 3 instances of 10 minutes of washing with PBS-T, a MOM biotin-labeled anti-IgG antibody (VECTASTAIN) diluted 250-fold with the blocking solution was applied onto each glass slide and then left to stand within a moist chamber at room temperature for 1 hour. After 3 instances of
- 50 10 minutes of washing with PBS-T, an avidin-biotin ABC reagent (VECTASTAIN) was applied and then left to stand within a moist chamber at room temperature for 5 minutes. After 3 instances of 10 minutes of washing with PBS-T, a DAB staining solution (DAB 10 mg + 30% H₂O₂ 10 μl/0.05 M Tris-HCl (pH 7.6) 50 ml) was applied and then the glass slides were left to stand within a moist chamber at room temperature for 30 minutes. Glass slides were rinsed with distilled water and then a hematoxylin reagent (DAKO) was applied. After being left to stand at room temperature for 1
- ⁵⁵ minute, the glass slides were rinsed with distilled water. The glass slides were immersed in 70%, 80%, 90%, 95%, and 100% ethanol solutions in such order for 1 minute each and then left to stand in xylene overnight. The glass slides were removed, coverslipped with Glycergel Mounting Medium (DAKO), and then observed. As a result, CAPRIN-1 expression was observed to a slight degree within cells in all salivary gland, kidney, colon, and stomach tissues, but CAPRIN-1

expression was never observed on cell surfaces. Also, absolutely no CAPRIN-1 expression was observed in tissues from other organs.

- (5)-2 CAPRIN-1 expression in canine breast cancer tissue
- 5

10

[0098] With the use of 108 frozen canine breast cancer tissue specimens from dogs diagnosed by pathological diagnosis as having malignant breast cancer, frozen section slides were prepared by a method similar to the above and immunohistochemical staining was performed using the monoclonal antibody #8 prepared in Example 3. As a result, CAPRIN-1 expression was confirmed in 100 out of the 108 specimens (92.5%). CAPRIN-1 was particularly strongly expressed on the surfaces of highly atypical cancer cells.

(5)-3 CAPRIN-1 expression in human breast cancer tissue

- [0099] Immunohistochemical staining was performed using 188 breast cancer tissue specimens of a paraffin-embedded human breast cancer tissue array (BIOMAX). After 3 hours of treatment at 60°C, the human breast cancer tissue array was immersed into a staining bottle filled with xylene and then xylene replacement every 5 minutes was performed 3 instances. Next, a similar procedure was performed using ethanol and PBS-T instead of xylene. The human breast cancer tissue array was immersed into a staining bottle filled with 10 mM citrate buffer (pH6.0) containing 0.05% Tween20, treated for 5 minutes at 125°C, and then left to stand at room temperature for 40 minutes or more. Excess water around
- ²⁰ each specimen was removed from the array using Kimwipes, each section was encircled using DAKOPEN (DAKO), and then an appropriate amount of Peroxidase Block (DAKO) was added dropwise onto the array. The the array was left to stand at room temperature for 5 minutes and then immersed into a staining bottle filled with PBS-T. PBS-T replacement every 5 minutes was performed 3 instances. As a blocking solution, a PBS-T solution containing 10% FBS was applied onto the array and then the array was left to stand within a moist chamber at room temperature for 1 hour.
- Next, the monoclonal antibody #8 prepared in Example 3 adjusted to 10 µg/ml using a PBS-T solution containing 5% FBS was applied and then the array was left to stand overnight within a moist chamber at 4°C. After 3 instances of 10 minutes of washing with PBS-T, an appropriate amount of Peroxidase Labeled Polymer Conjugated (DAKO) was added dropwise onto the array, and then the array was left to stand at room temperature for 30 minutes within a moist chamber. After 3 instances of 10 minutes of washing with PBS-T, a DAB staining solution (DAKO) was applied onto the array and
- then the array was left to stand at room temperature for 10 minutes. The DAB staining solution was discarded from the array and then 10 minutes of washing was performed with PBS-T for 3 instances. The array was rinsed with distilled water and then immersed in 70%, 80%, 90%, 95%, and 100% ethanol solutions in order for 1 minute each and then left to stand in xylene overnight. The array was removed, coverslipped with Glycergel Mounting Medium (DAKO), and then observed. As a result, strong CAPRIN-1 expression was observed for 138 (73%) out of the total 188 breast cancer tissue specimens. (5)-4 CAPRIN-1 expression in human malignant brain tumor
- 35 specimens. (5)-4 CAPRIN-1 expression in human malignant brain tumor [0100] With the use of 247 malignant brain tumor tissue specimens of paraffin-embedded human malignant brain tumor tissue arrays (BIOMAX), immunohistochemical staining was performed by a method similar to that in (5)-3 above using the monoclonal antibody #8 prepared in Example 3. As a result, strong CAPRIN-1 expression was observed in 227 (92%) out of the total 247 malignant brain tumor tissue specimens,
- 40

(5)-5 CAPRIN-1 expression in human breast cancer metastatic lymph node

[0101] With the use of 150 tissue specimens of human breast cancer metastatic lymph nodes of paraffin-embedded human breast cancer metastatic lymph node tissue arrays (BIOMAX), immunohistochemical staining was performed by a method similar to that in (5)-3 above using the monoclonal antibody #8 prepared in Example 3. As a result, strong CAPRIN-1 expression was observed in 136 (90%) out of the total 150 tissue specimens of human breast cancer metastatic lymph nodes. Specifically, it was revealed that CAPRIN-1 is also strongly expressed in a cancer tissue that has metastasized from breast cancer.

50 Example 2: Preparation of new canine and human cancer antigen proteins

(1) Preparation of recombinant protein

[0102] A recombinant protein was prepared by the following method based on the gene of SEQ ID NO: 5 obtained in Example 1. PCR was performed by preparing a reaction solution adjusted to a total amount of 50 μl through addition of each reagent and an included buffer (1 μl of a vector prepared from the phagemid solution obtained in Example 1 and then subjected to sequence analysis, 2 types of primer (0.4 μM each; according to SEQ ID NOS: 37 and 38) containing *Nde* I and *Kpn* I restriction enzyme cleavage sequences, 0.2 mM dNTP, 1.25 U PrimeSTAR HS polymerase (Takara-

baio Co., Ltd.)) and then by reacting the solution through repeating 30 times a cycle of 98°C/10 seconds and 68°C/1.5 minutes using a Thermal Cycler (BIO RAD). The above 2 types of primer were used to amplify the region encoding the full-length amino acid sequence of SEQ ID NO: 6 (P47). After PCR, the thus amplified DNA was subjected to 1% agarose gel electrophoresis and then a DNA fragment of about 1.4 kbp was purified from the gel using a QIAquick Gel Extraction kit (QIACEN).

- Kit (QIAGEN).
 [0103] The purified DNA fragment was ligated to a pCR-Blunt cloning vector (Invitrogen Corporation). The vector was transformed into *Escherichia coli* and then the plasmid was collected. It was confirmed based on the sequence that the amplified gene fragment matched the target sequence. The plasmid that matched the sequence of interest was treated with *Nde* I and *Kpn* I restriction enzymes and then the resultant was purified using a QIAquick Gel Extraction Kit. Then
- ¹⁰ the gene sequence of interest was inserted into a pET30b expression vector (Novagen) for *Escherichia coli* treated with *Nde* I and *Kpn* I restriction enzymes. A His tag-fused recombinant protein can be produced using the vector. The plasmid was transformed into *Escherichia coli* BL21 (DE3) for expression and then expression induction was performed using 1 mM IPTG, so that the target protein was expressed within *Escherichia coli*.
- [0104] Also, the recombinant protein of a canine homologous gene was prepared by the following method based on the gene of SEQ ID NO: 7. PCR was performed by preparing a reaction solution adjusted to a total amount of 50 μl through addition of each reagent and an included buffer (1 μl of cDNA from among cDNAs of various tissues and/or cells constructed in Example 1, for which the expression could be confirmed by an RT-PCR method, 2 types of primer (0.4 μM each; according to SEQ ID NOS: 39 and 40) containing *Nde* I and *Kpn* I restriction enzyme cleavage sequences, 0.2 mM dNTP, 1.25 U PrimeSTAR HS polymerase (Takara-baio Co., Ltd.)) and then by reacting the solution through
- 20 repeating 30 times a cycle of 98°C/10 seconds and 68°C/2.5 minutes using a Thermal Cycler (BIO RAD). The above 2 types of primer were used to amplify the region encoding the full-length amino acid sequence of SEQ ID NO: 8. After PCR, the thus amplified DNA was fractionated with 1% agarose gel electrophoresis and then a DNA fragment of about 2.2 kbp was purified using a QIAquick Gel Extraction Kit (QIAGEN).
- [0105] The purified DNA fragment was ligated to pCR-Blunt cloning vector (Invitrogen Corporation). The vector was transformed into *Escherichia coli*, and then the plasmid was collected. It was then confirmed based on the sequence that the amplified gene fragment matched the sequence of interest. The plasmid that matched the sequence of interest was treated with *Nde* I and *Kpn* I restriction enzymes and then the resultant was purified using a QIAquick Gel Extraction Kit. Then the gene sequence of interest was inserted into a pET30b expression vector (Novagen) for *Escherichia coli* treated with *Nde* I and *Kpn* I restriction enzymes. A His tag-fused recombinant protein can be produced using the vector.
- The plasmid was transformed into *Escherichia coli* BL21 (DE3) for expression and then expression induction was performed using 1 mM IPTG, so that the protein of interest was expressed within *Escherichia coli*.
 [0106] Also, the recombinant protein of a human homologous gene was prepared by the following method based on the gene of SEQ ID NO: 1. PCR was performed by preparing a reaction solution adjusted to a total amount of 50 μl through addition of each reagent and an included buffer (cDNA (1 μl) from among cDNAs of various tissues and/or cells
- ³⁵ constructed in Example 1, for which the expression could be confirmed by an RT-PCR method, 2 types of primer (0.4 μM each; according to SEQ ID NOS: 41 and 42) containing *Sac* I and *Xho* I restriction enzyme cleavage sequences, 0.2 mM dNTP, 1.25 U PrimeSTAR HS polymerase (Takara-baio Co., Ltd.)) and then by reacting the solution through repeating 30 times a cycle of 98°C/10 seconds and 68°C/2.5 minutes using a Thermal Cycler (BIO RAD). The above 2 types of primer were used to amplify the region encoding the full-length amino acid sequence of SEQ ID NO: 2. After
- PCR, the thus amplified DNA was subjected to 1% agarose gel electrophoresis and then a DNA fragment of about 2.1 kbp was purified using a QIAquick Gel Extraction Kit (QIAGEN).
 [0107] The purified DNA fragment was ligated to a cloning vector pCR-Blunt (Invitrogen Corporation). The vector was transformed into *Escherichia coli*, and then the plasmid was collected. It was then confirmed based on the sequence that the amplified gene fragment matched the sequence of interest. The plasmid that matched the sequence of interest.
- ⁴⁵ was treated with Sac I and Xho I restriction enzymes and then the resultant was purified using a QIAquick Gel Extraction Kit. Then the gene sequence of interest was inserted into a pET30a expression vector (Novagen) for *Escherichia coli* treated with Sac I and Xho I restriction enzymes. A His tag-fused recombinant protein can be produced using the vector. The plasmid was transformed into *Escherichia coli* BL21 (DE3) for expression and then expression induction was performed using 1 mM IPTG, so that the protein of interest was expressed within *Escherichia coli*.
- 50

(2) Purification of recombinant protein

55

[0108] The above-obtained recombinant *Escherichia coli* expressing SEQ ID NO: 1, 5, or 7 was cultured at 37° C in LB medium containing 30μ g/ml kanamycin until the absorbance at 600 nm reached around 0.7. Then isopropyl- β -D-1-thiogalactopyranoside was added to a final concentration of 1 mM, followed by 4 hours of culture at 37° C. Subsequently, cells were collected by 10 minutes of centrifugation at 4800 rpm. The cell pellet was suspended in phosphate buffered saline and then centrifuged at 4800 rpm for 10 minutes for washing cells.

[0109] The cells were suspended in phosphate buffered saline and then subjected to ultrasonication on ice. The thus

ultrasonicated *Escherichia coli* solution was centrifuged at 6000 rpm for 20 minutes. The thus obtained supernatant was used as a soluble fraction and the thus obtained precipitate was used as an insoluble fraction.

[0110] The soluble fraction was added to a nickel chelate column (carrier: Chelating Sepharose (TradeMark) Fast Flow (GE Healthcare), column capacity: 5 mL, 50 mM hydrochloric acid buffer (pH 8.0) as equilibrated buffer)) prepared

- ⁵ according to a conventional method. The unbinded fraction was washed with 50 mM hydrochloric acid buffer (pH 8.0) in an amount 10 times the capacity of the column and 20 mM phosphate buffer (pH8.0) containing 20 mM imidazole. Immediately after washing, 6 beds were eluted with 20 mM phosphate buffer (pH8.0) containing 100 mM imidazole. After the elution of the protein of interest had been confirmed by Coomassie staining, an elution fraction of 20 mM phosphate buffer (pH8.0) containing 100 mM imidazole was added to a strong anion exchange column (carrier: Q
- Sepharose (TradeMark) Fast Flow (GE Healthcare), column capacity: 5 mL, and 20 mM phosphate buffer (pH8.0) as equilibrated buffer). The unbinded fraction was washed with 20 mM phosphate buffer (pH7.0) in an amount 10 times the column capacity and 20 mM phosphate buffer (pH7.0) containing 200 mM sodium chloride. Immediately after washing, 5 beds were eluted using 20 mM phosphate buffer (pH7.0) containing 400 mM sodium chloride. Thus, purified fractions of proteins each having the amino acid sequence shown in SEQ ID NO: 2, 6, or 8 were obtained. These purified fractions
- ¹⁵ were then used as materials for an administration test. Fig. 2 shows the result of the protein of SEQ ID NO: 2 fractionated by electrophoresis and detected by Coomassie staining.
 [0111] 200 μl of each purified preparation obtained by the above method was dispensed into 1 ml of reaction buffer (20 mM Tris-HCI, 50 mM NaCl, 2 mM CaCl₂ pH7.4) and then 2 μl of enterokinase (Novagen) was added. The preparation
- was left to stand at room temperature overnight for reaction, His tag was cleaved, and then purification was performed according to included protocols using an Enterokinase Cleavage Capture Kit (Novagen). Next, 1.2 ml of each purified preparation obtained by the above method was substituted with physiological phosphate buffer (Nissui Pharmaceutical Co., Ltd.) using ultrafiltration NANOSEP 10K OMEGA (PALL). Sterilized filtration was performed using 0.22 µm HT Tuffryn Acrodisc (PALL) and then the resultants were used for the following experiments.
- ²⁵ Example 3: Preparation of antibody against CAPRIN-1

(1) Preparation of polyclonal antibody against CAPRIN-1-derived peptide

- [0112] To obtain an antibody binding to CAPRIN-1, CAPRIN-1-derived peptide (Arg-Asn-Leu-Glu-Lys-Lys-Gly-Lys-Leu-Asp-Asp-Tyr-Gln (SEQ ID NO: 43)) was synthesized. One miligram of the peptide as an antigen was mixed with an incomplete Freund's adjuvant (IFA) solution in an amount equivalent to the peptide. The mixture was subcutaneously administered to a rabbit 4 times every 2 weeks. Subsequently, blood was collected, so that an antiserum containing a polyclonal antibody was obtained. Furthermore, the antiserum was purified using a protein G carrier (GE Healthcare Bio-Sciences) and then a polyclonal antibody against the CAPRIN-1-derived peptide was obtained. Next,
- the reactivity of the obtained polyclonal antibody to the breast cancer cell surface was examined. Specifically, 10⁶ cells of the MDA-MB-231V human breast cancer cell line were subjected to centrifugation in a 1.5 ml microcentrifugal tube. A PBS solution supplemented with 0.1% fetal calf serum (FBS) containing the polyclonal antibody was added to the tube. The solution was left to stand on ice for 1 hour. After washing with PBS, an FITC-labeled goat anti-mouse IgG antibody (Invitrogen Corporation) diluted 500-fold with PBS containing 0.1% FBS was added to the solution, and then
- 40 the solution was left to stand on ice for 1 hour. After washing with PBS, fluorescence intensity was measured using a FACS Calibur (Becton, Dickinson and Company). Meanwhile, a procedure similar to the above was performed so that a control was prepared by adding PBS containing 0.1% FBS instead of the polyclonal antibody. As a result, it was revealed that fluorescence intensity was found to be stronger in cells treated with the polyclonal antibody than that in control cells. Therefore, it was demonstrated that the obtained polyclonal antibody binds to the breast cancer cell surface.
- 45

50

(2) Preparation of monoclonal antibody against CAPRIN-1 protein

[0113] The antigen protein (human CAPRIN-1) (100 μg) shown in SEQ ID NO: 2 prepared in Example 2 was mixed with a MPL+TDM adjuvant (Sigma) in an amount equivalent to that of the antigen protein. The mixture was used as an antigen solution per mouse. The antigen solution was administered intraperitoneally to a 6-week-old Balb/c mouse (Japan SLC Inc.) and then further administered 3 instances every week. Spleen was removed on day 3 after the final immunization and then ground in between two sterilized glass slides. The resultant was washed with PBS (-) (Nissui) and then centrifuged at 1500 rpm for 10 minutes, so that a procedure to remove supernatants was repeated 3 instances. Thus, spleen cells were obtained. The thus obtained spleen cells were mixed with mouse myeloma cells SP2/0 (purchased

⁵⁵ from ATCC) at a ratio of 10 : 1. The PEG solution prepared by mixing 200 μl of RPMI1640 medium containing 10% FBS heated at 37°C and 800 μl of PEG1500 (Boehringer) was added to the cells. The solution was left to stand for 5 minutes for cell fusion. Centrifugation was performed at 1700 rpm for 5 minutes to remove supernatants. Cells were suspended in 150 ml of RPMI1640 medium (HAT selective medium) containing 15% FBS, to which 2% equivalent of HAT solution

(Gibco) had been added and then seeded onto fifteen 96-well plates (Nunc) at 100 μ l per well. Cells were cultured for 7 days under conditions of 37°C and 5% CO₂, so that hybridomas resulting from fusion of spleen cells to myeloma cells were obtained.

[0114] Hybridomas were selected using as an index the binding affinity of the antibody produced by the thus prepared

- ⁵ hybridomas for the CAPRIN-1 protein. The CAPRIN-1 protein solution (1 μg/ml) prepared in Example 2 was added at 100 μl per well of 96-well plates and then left to stand at 4°C for 18 hours. Each well was washed 3 instances with PBS-T, and then 0.5% Bovine Serum Albumin (BSA) solution (Sigma) was added at 400 μl per well, and then the plates were left to stand at room temperature for 3 hours. The solution was removed and then each well was washed 3 instances with 400 μl of PBS-T. Each culture supernatant of the hybridomas obtained above was added at 100 μl per well and
- ¹⁰ then left to stand at room temperature for 2 hours. Each well was washed 3 instances with PBS-T, an HRP-labeled antimouse IgG (H+L) antibody (Invitrogen Corporation) diluted 5000-fold with PBS was added at 100 μl per well and then left to stand at room temperature for 1 hour. Each well was washed 3 instances with PBS-T A TMB substrate solution (Thermo) was added at 100 μl per well and then left to stand for 15-30 minutes, so that a color reaction was performed. After color development, 1N sulfuric acid was added at 100 μl per well to stop the reaction. Absorbance was measured
- at 450 nm and 595 nm using an absorption spectrometer. As a result, a plurality of hybridomas producing antibodies with high absorbances were selected.
 [0115] The thus selected hybridomas were added at 0.5 hybridomas per well of 96-well plates and then cultured. After

1 week, hybridomas forming single colonies in wells were observed. Cells in these wells were further cultured. Hybridomas were selected using as an index the binding affinity of the antibody produced by cloned hybridomas for the CAPRIN-1

- ²⁰ protein. The CAPRIN-1 protein solution (1 µg/ml) prepared in Example 2 was added at 100 µl per well of 96-well plates and then left to stand at 4°C for 18 hours. Each well was washed 3 instances with PBS-T. A 0.5% BSA solution was added at 400 µl per well, and then left to stand at room temperature for 3 hours. The solution was removed and then each well was washed 3 instances with 400 µl of PBS-T. Each culture supernatant of the hybridomas obtained above was added at 100 µl per well and then left to stand at room temperature for 2 hours. Each well was washed 3 instances
- with PBS-T. An HRP-labeled anti-mouse IgG (H+L) antibody (Invitrogen Corporation) diluted 5000-fold with PBS was added at 100 µl per well and then left to stand at room temperature for 1 hour. Each well was washed 3 instances with PBS-T, a TMB substrate solution (Thermo) was added at 100 µl per well and then left to stand for 15-30 minutes, so that a color reaction was performed. After color development, 1N sulfuric acid was added at 100µl per well to stop the reaction. Absorbance was measured at 450 nm and 595 nm using an absorption spectrometer. As a result, a plurality
- ³⁰ of hybridoma cell lines producing monoclonal antibodies exerting reactivity to the CAPRIN-1 protein were obtained. Culture supernatants of hybridomas were purified using a protein G carrier, so that 150 monoclonal antibodies binding to the CAPRIN-1 protein were obtained.

[0116] Next, from among these monoclonal antibodies, monoclonal antibodies exerting reactivity to the surfaces of breast cancer cells expressing CAPRIN-1 were selected. Specifically, 10⁶ cells of the MDA-MB-231V human breast

- 35 cancer cell line were subjected to centrifugation with a 1.5 ml microcentrifugal tube. The supernatant (100 μl) of each hybridoma above was added and then left to stand on ice for 1 hour. After washing with PBS, an FITC-labeled goat antimouse IgG antibody (Invitrogen Corporation) diluted 500-fold with PBS containing 0.1% fetal calf serum was added and then left to stand on ice for 1 hour. After washing with PBS, fluorescence intensity was measured using FACS Calibur (Becton, Dickinson and Company). Meanwhile, a procedure similar to the above was performed so that a control sup-
- 40 plemented with a medium instead of the antibody was prepared. As a result, 10 monoclonal antibodies (#1-#10) having fluorescence intensity stronger than that of the control; that is, reacting with the surfaces of breast cancer cells were selected. The heavy chain variable regions and the light chain variable regions of these monoclonal antibodies were shown in SEQ ID NOS: 44-60. The above monoclonal antibody #1 comprises the heavy chain variable region of SEQ ID NO: 44 and the light chain variable region of SEQ ID NO: 45, the monoclonal antibody #2 comprises the heavy chain
- ⁴⁵ variable region of SEQ ID NO: 44 and the light chain variable region of SEQ ID NO: 46, the monoclonal antibody #3 comprises the heavy chain variable region of SEQ ID NO: 44 and the light chain variable region of SEQ ID NO: 47, the monoclonal antibody #4 comprises the heavy chain variable region of SEQ ID NO: 44 and the light chain variable region of SEQ ID NO: 48, the monoclonal antibody #5 comprises the heavy chain variable region of SEQ ID NO: 49 and the light chain variable region of SEQ ID NO: 48, the monoclonal antibody #5 comprises the heavy chain variable region of SEQ ID NO: 49 and the light chain variable region of SEQ ID NO: 50, the monoclonal antibody #6 comprises the heavy chain variable region of SEQ ID NO: 50, the monoclonal antibody #6 comprises the heavy chain variable region of SEQ ID NO: 50, the monoclonal antibody #6 comprises the heavy chain variable region of SEQ ID NO: 50, the monoclonal antibody #6 comprises the heavy chain variable region of SEQ ID NO: 50, the monoclonal antibody #6 comprises the heavy chain variable region of SEQ ID NO: 50, the monoclonal antibody #6 comprises the heavy chain variable region of SEQ ID NO: 50, the monoclonal antibody #6 comprises the heavy chain variable region of SEQ ID NO: 50, the monoclonal antibody #6 comprises the heavy chain variable region of SEQ ID NO: 50, the monoclonal antibody #6 comprises the heavy chain variable region of SEQ ID NO: 50, the monoclonal antibody #6 comprises the heavy chain variable region of SEQ ID NO: 50, the monoclonal antibody #6 comprises the heavy chain variable region of SEQ ID NO: 50, the monoclonal antibody #6 comprises the heavy chain variable region of SEQ ID NO: 50, the monoclonal antibody #6 comprises the heavy chain variable region of SEQ ID NO: 50, the monoclonal antibody #6 comprises the heavy chain variable region of SEQ ID NO: 50, the monoclonal antibody #6 comprises the heavy chain variable region of SEQ ID NO: 50, the monoclonal antibody #6 comprises the heavy chain variable region of SEQ ID NO: 50,
- 50 SEQ ID NO: 51 and the light chain variable region of SEQ ID NO: 52, the monoclonal antibody #7 comprises the heavy chain variable region of SEQ ID NO: 53 and the light chain variable region of SEQ ID NO: 54, the monoclonal antibody #8 comprises the heavy chain variable region of SEQ ID NO: 55 and the light chain variable region of SEQ ID NO: 56, the monoclonal antibody #9 comprises the heavy chain variable region of SEQ ID NO: 57 and the light chain variable region of SEQ ID NO: 57 and the light chain variable region of SEQ ID NO: 58, and the monoclonal antibody #10 comprises the heavy chain variable region of SEQ ID NO: 58, and the monoclonal antibody #10 comprises the heavy chain variable region of SEQ ID NO: 58, and the monoclonal antibody #10 comprises the heavy chain variable region of SEQ ID NO: 58, and the monoclonal antibody #10 comprises the heavy chain variable region of SEQ ID NO: 58, and the monoclonal antibody #10 comprises the heavy chain variable region of SEQ ID NO: 58, and the monoclonal antibody #10 comprises the heavy chain variable region of SEQ ID NO: 58, and the monoclonal antibody #10 comprises the heavy chain variable region of SEQ ID NO: 58, and the monoclonal antibody #10 comprises the heavy chain variable region of SEQ ID NO: 58, and the monoclonal antibody #10 comprises the heavy chain variable region of SEQ ID NO: 58, and the monoclonal antibody #10 comprises the heavy chain variable region of SEQ ID NO: 58, and the monoclonal antibody #10 comprises the heavy chain variable region of SEQ ID NO: 58, and the monoclonal antibody #10 comprises the heavy chain variable region of SEQ ID NO: 58, and the monoclonal antibody #10 comprises the heavy chain variable region of SEQ ID NO: 58, and the monoclonal antibody #10 comprises the heavy chain variable region of SEQ ID NO: 50, and the monoclonal antibody #10 comprises the heavy chain variable region of SEQ ID NO: 50, and the monoclonal antibody #10 comprises the heavy chain variable region of SEQ ID NO: 50, and the monoclonal antibody

⁵⁵ 59 and the light chain variable region of SEQ ID NO: 60.

(3) Identification of a peptide in CAPRIN-1 protein, to which an antibody against CAPRIN-1 reacting to cancer cell surface binds

[0117] With the use of monoclonal antibodies #1-#10 against CAPRIN-1, reacting with the surfaces of cancer cells obtained above, partial sequences in the CAPRIN-1 protein to be recognized by these monoclonal antibodies were identified.

[0118] First, DTT (Fluka) was added to 100 μ l of a recombinant CAPRIN-1 protein solution adjusted to contain the protein at a concentration of 1 μ g/ μ l with PBS to a final concentration of 10 mM, followed by 5 minutes of reaction at 95°C, so that reduction of disulfide bonds within the CAPRIN-1 protein was performed. Next, iodoacetamide (Wako Pure

- ¹⁰ Chemical Industries, Ltd.) with a final concentration of 20 mM was added and then an alkylation reaction was performed for thiol groups at 37°C for 30 minutes under shading conditions. Fifty microgram each of monoclonal antibodies #1-#10 against CAPRIN-1 was added to 40 µg of the thus obtained reduced-alkylated CAPRIN-1 protein. The volume of the mixture was adjusted to 1 mL of 20 mM phosphate buffer (pH7.0), and then the mixture was left to react overnight at 4°C while stirring and mixing each mixture.
- ¹⁵ [0119] Next, trypsin (Promega) was added to a final concentration of 0.2 μg. After 1 hour, 2 hours, 4 hours, and then 12 hours of reaction at 37°C, the resultants were mixed with protein A-glass beads (GE) subjected in advance to blocking with PBS containing 1% BSA (Sigma) and washing with PBS in 1 mM calcium carbonate and NP-40 buffer (20 mM phosphate buffer (pH7.4), 5 mM EDTA, 150 mM NaCl, and 1% NP-40), followed by 30 minutes of reaction.
- [0120] The reaction solutions were each washed with 25 mM ammonium carbonate buffer (pH8.0) and then antigenantibody complexes were eluted using 100 μl of 0.1% formic acid. LC-MS analysis was conducted for eluates using Q-TOF Premier (Waters-MicroMass) according to protocols included with the instrument.

[0121] As a result, the polypeptide of SEQ ID NO: 61 was identified as a partial sequence of CAPRIN-1, which was recognized by all of the monoclonal antibodies #1-#10 against CAPRIN-1. Furthermore, the peptide of SEQ ID NO: 62 was identified as a partial sequence in the polypeptide of SEQ ID NO: 61 above, which was recognized by the monoclonal

²⁵ antibodies #1-#4, #5-#7, and #9. It was further revealed that the monoclonal antibodies #1-#4 recognized the peptide of SEQ ID NO: 63 that was a partial sequence peptide thereof.

Example 4: Cancer diagnosis using CAPRIN-1 polypeptide

³⁰ (1) Canine cancer diagnosis

35

[0122] Blood was collected from 342 canine patients confirmed to have malignant or benign tumors and 6 healthy dogs, and serum was separated. With the use of the canine CAPRIN-1 polypeptide (SEQ ID NO: 8) and the anti-canine IgG antibody prepared in Example 2, the titer of the serum IgG antibody specifically reacting with the polypeptide was measured by an ELISA method.

[0123] Immobilization of the thus prepared polypeptide was performed by adding a recombinant protein solution diluted to 5 μ g/mL with phosphate buffered saline to 96-well immobilizer amino plates (Nunc) at 100 μ l/well and then leaving the plates to stand at 4°C overnight. Blocking was performed by adding a 50 mM sodium bicarbonate buffer solution (pH 8.4) (hereinafter, blocking solution) containing 0.5% BSA (bovine serum albumin) (Sigma Aldrich Japan) at 100

- 40 μl/well and then shaking the solution at room temperature for 1 hour. Serum diluted 1000-fold with the blocking solution was added at 100 μl/well and then the mixture was shaken at room temperature for 3 hours for reaction. The reaction solutions were washed 3 instances with phosphate buffered saline (hereinafter, PBS-T) containing 0.05% Tween20 (Wako Pure Chemical Industries, Ltd.). An HRP modified canine IgG antibody (Goat anti-Dog IgG-h+I HRP conjugated: BETHYL Laboratories) diluted 3000-fold with the blocking solution was added at 100 μl/well, followed by 1 hour of
- ⁴⁵ reaction at room temperature while shaking the solution. After 3 instances of washing with PBS-T, HRP substrate TMB (1-Step Turbo TMB (tetramethylbenzidine), PIERCE) was added at 100 µl/well and then an enzyme-substrate reaction was conducted at room temperature for 30 minutes. Subsequently, a 0.5 M sulfuric acid solution (Sigma Aldrich Japan) was added at 100 µl/well to stop the reaction. Absorbance at 450 nm was measured using a microplate reader. As controls, a specimen in connection with which no recombinant protein prepared had been immobilized and a specimen
- ⁵⁰ in connection with which a reaction with the serum of a cancer-bearing dog had not been conducted were similarly subjected to the above treatment and comparison.
 [0124] As a result of pathologic diagnosis using excised tumor tissue, definitive diagnosis was made indicating that 215 out of the total 342 specimens used for the cancer diagnosis were malignant.
 [0125] Specifically, specimens were diagnosed as having cancer such as malignant melanoma, malignant mixed
- 55 tumor, hepatocellular carcinoma, basal cell carcinoma, acanthoma-like gingival tumor, tumor of oral cavity, perianal adenocarcinoma, anal sac tumor, anal sac apocrine adenocarcinoma, Sertoli cell carcinoma, cancer of vaginal vestibule, sebaceous adenocarcinoma, nasal adenocarcinoma, thyroid cancer, large-bowel cancer, bronchial adenocarcinoma, adenocarcinoma,

ductal carcinoma, breast adenocarcinoma, composite type breast adenocarcinoma, malignant mammary mixed tumor, intraductal papillary adenocarcinoma, fibrosarcoma, hemangiopericytoma, osteosarcoma, chondrosarcoma, soft tissue sarcoma, histiocytic sarcoma, myxosarcoma, undifferentiated sarcoma, lung cancer, mastocytoma, cutaneous leiomyoma, intraperitoneal leiomyoma, leiomyoma, squamous cell carcinoma, chronic lymphocytic leukemia, lymphoma, gas-

- ⁵ trointestinal lymphoma, digestive lymphoma, small-cell-to-medium-cell lymphoma, adrenomedullary tumor, granulosa cell tumor, and pheochromocytoma.
 [0126] The sera from the living bodies of these cancer-bearing dogs were found to have significantly high antibody titers against the recombinant protein as shown in Fig. 3. When the reference value as malignant cancer regarding the diagnostic method was determined to be twice or more the average value for healthy dogs, it was demonstrated that
- ¹⁰ malignancy could be diagnosed for 108 specimens, which accounted for accounting for 50.2% of all the specimens. The cancer types of these 108 specimens are as follows. Although development of a plurality of types of cancer had indicated for some specimens, the following numerical values are cumulative total values for each cancer type:
- 6 cases of malignant melanoma, 11 cases of lymphoma, 1 case of suppurative inflammation, 1 case of granulosa
 cell tumor, 4 cases of hepatocellular carcinoma, 3 cases of malignant testicular tumor, 3 cases of tumor of oral cavity, 7 cases of perianal adenocarcinoma, 12 cases of sarcoma, 35 cases of breast adenocarcinoma, 1 case of lung cancer, 6 cases of ductal carcinoma, 2 cases of sebaceous adenocarcinoma, 5 cases of mastocytoma, 1 case of smooth muscle sarcoma, 3 cases of squamous cell carcinoma, 2 cases of malignant mixed tumor, 1 case of hemangiopericytoma, 1 case of transitional epithelial cancer, 1 case of hemangiopericytoma, 1 case of hemangi opericytoma, and 1 case of sebaceous epithelioma.
 - **[0127]** As a result of similar diagnosis using pleural effusions and ascites collected from canine patients with terminal cancer, values similar to the results obtained by the diagnostic method using serum could be detected and cancer diagnosis could be made.
- ²⁵ **[0128]** Also, it was demonstrated that the use of the diagnostic method enables diagnosis of cancer in a location invisible to the naked eye, the extent of cancer, malignancy or postoperative course of cancer, recurrence, metastasis, and the like. Several specific examples of detailed diagnosis shown in Fig. 4 are as described below.
 - (2)-1 Cancer diagnosis for tumor invisible to the naked eye

30

40

55

[0129] On June 7, 2007, no tumor mass was confirmed for canine patient 1 (flat coated retriever). However, about 20 days later, on June 24, 2007, a peduncular tumor mass with a diameter of 2 mm was found in the gum at the root of the maxillary left cuspid tooth of canine patient 1. On the day when the mass was found, the peduncular portion was ligated and excised. Absorbance at 450 nm was found to be 0.06 before the tumor mass could be visually confirmed, and this

³⁵ figure was almost the same as 0.04, which was determined when the tumor was found. It was also demonstrated by the result that diagnosis of cancer in a location invisible to the naked eye, such as intraperitoneal cancer, is possible with the use of this technique.

[0130] In addition, it can be said that a warning sign of tumor development was successfully detected, since a rise in the aforementioned level could be confirmed before the tumor could be confirmed with the naked eye. Hence, it was confirmed that the technique is also useful for health examinations such as routine health checkups.

(2)-2 Diagnosis of the extent of cancer

[0131] The extent of cancer is determined based on tumor size, tumor depth, how the tumor affects the peripheral tissue, and the presence or the absence of metastasis. It was revealed that a higher value was detected when metastasis had occurred or cancer had progressed.

(2)-3 Diagnosis of cancer malignancy

⁵⁰ **[0132]** Basal cell tumors include malignant basal cell tumors and benign basal cell tumors. In recent year, malignant basal cell tumors have tended to be classified as examples of basal cell carcinoma and benign basal cell tumors tend to be classified as examples of trichoblastoma according to the new WHO.

[0133] Canine patient 2 (Beagle) diagnosed as having basal cell carcinoma (malignant) was subjected to serodiagnosis upon surgery, so that the absorbance at 450 nm was found to be 0.04. Meanwhile, canine patient 3 (mongrel) diagnosed as having trichoblastoma (benign) was subjected to serodiagnosis upon surgery, so that the absorbance at 450 nm was

found to be 0, indicating no detection. Therefore, it was demonstrated that different types of basal cell tumor, i.e., malignant basal cell carcinoma and benign trichoblastoma, can be diagnosed, even if they are classified as basal cell tumors.

[0134] Next, examples of mammary gland tumors are as follows. Mammary gland tumors are classified as malignant tumors such as breast adenocarcinoma and malignant mammary mixed tumor and benign mammary gland tumors exhibiting no malignant findings.

[0135] Canine patient 4 (Shetland Sheepdog) underwent extirpative surgery on July 17, 2007, for breast adenocarci-

- ⁵ noma. Canine patient 4 had 3 tumors. Pathologic diagnosis using isolated tissue resulted in the same diagnosis. Strongly atypical and invasive mammary gland tissue experienced somewhat widespread papillary-adenoid growth, and vascular invasion was also confirmed for the specimens. Thus, canine patient 4 was diagnosed as having highly malignant breast cancer. As a result of serodiagnosis using blood collected upon surgery, absorbance at 450 nm was found to be 0.41. [0136] Meanwhile, canine patient 5 (toy poodle) had extirpative surgery on October 9, 2007, for a mammary gland
- ¹⁰ tumor. Pathologic diagnosis using isolated tissues at this time revealed that: whereas tumors were formed in which mammary gland epithelial cells and myoepithelial cells grew, myoepithelial cell components were uniform spindle cells and no malignancy was detected; and the mammary gland epithelial cell component exhibited a slight difference in size and dyskaryosis as observed. Hence, canine patient 5 was diagnosed as having a benign mammary gland tumor for which no malignancy was detected. As a result of blood collection and serodiagnosis upon surgery thereof, absorbance
- at 450 nm was found to be 0.

[0137] The above results for the 2 specimens revealed that the malignancy of a highly malignant tumor is greater than that of a benign low-malignant tumor.

[0138] Also, distribution of the diagnoses for 54 malignant tumor (breast cancer) specimens, such as breast adenocarcinoma or malignant mammary mixed tumor specimens and 21 benign mammary gland tumor specimens exhibiting

20 no malignancy, were examined. Whereas benign mammary gland tumor specimens showed a distribution similar to that in the case of healthy dogs, breast cancer specimens showed a distribution of high values.

(2)-4 Diagnosis of postoperative course

- [0139] Canine patient 6 (mongrel) visited the hospital because of mastocytoma and had extirpative surgery on May 23, 2005. As a result of serodiagnosis made at this time, absorbance at 450 nm was found to be 0.10. Mastocytoma is a tumor that repeatedly undergoes recurrence or metastasis when resected incompletely. Hence, whether or not complete tumor resection can be achieved by surgery is important. At the follow-up on December 19, 2006, absorbance at 450 nm was found to be 0.05, so that a decreased antibody titer was confirmed. At this time, no recurrence was confirmed.
- Hence, in the case of canine patient 6, it can be said that since the tumor could be completely resected, the serodiagnosis results were lower than those upon surgery.
 [0140] Canine patient 7 (Beagle) had extirpative surgery on February 14, 2008, for mastocytoma. As a result of serodiagnosis performed at this time, absorbance at 450 nm was found to be 0.17. As a result of histopathological
- diagnosis using excised tissues, invasive hyperplasia was observed and Canine patient 7 was diagnosed as having mastocytoma corresponding to the moderately differentiated type (Patnaik II type). Canine patient 7 visited again for follow-up on March 10, 2008 and was subjected to serodiagnosis again. As a result, absorbance at 450 nm was found to be 0.07. At this time, neither metastasis nor recurrence was confirmed. Thus, in the case of canine patient 7, it can be said that the serodiagnosis results were lower than those upon surgery since the tumor could be completely resected.
- 40 (2)-5 Recurrence diagnosis

45

[0141] Canine patient 8 (Husky) had extirpative surgery on May 8, 2007, for breast adenocarcinoma. As a result of serodiagnosis performed at this time, absorbance at 450 nm was found to be 0.05. As a result of pathologic diagnosis using excised tissue, strongly atypical epithelial cells grew mainly forming a tubular structure. Thus, canine patient 8 was diagnosed as having adenocarcinoma from the primary mammary gland. At this time, the presence of many cancer cells in lymph ducts had already been confirmed, indicating a high risk of metastasis to or recurrence at the lymph nodes

- or distant sites. On June 28, 2007, (about 1 and a half months after surgery), recurrence was confirmed at the same site. The result of serodiagnosis at this time was 0.09, and thus an increased value was confirmed. In the case of canine patient 8, it was revealed that because of incomplete tumor resection or recurrence thereof, the diagnostic results were higher in late June than in early May.

(2)-6 Diagnosis of metastasis

[0142] Canine patient 9 (Scottish terrier) experienced multiple metastases and recurrences, including a mammary gland tumor in February 2003, intraoral malignant melanoma in August 2003, labial malignant melanoma in January 2005, and intraoral melanoma on April 13, 2005. All of these tumors had been resected by surgery. Canine patient 9 revisited the hospital on December 17, 2006, for follow-up after the recurrence of intraoral melanoma on April 2005 and was subjected to serodiagnosis. As a result, absorbance at 450 nm was found to be 0.09. Half a year later, canine patient

9 revisited the hospital on June 20, 2007 because of cervical lymphoid and popliteal lymphoid hyperplasia. In the case of lymphoma, the lymph nodes swell up systemically. Canine patient 9 had swelling lymph nodes at only two sites. Hence, canine patient 9 was clinically diagnosed as likely to have lymphoma due to metastasis. Diagnosis made by this technique also revealed that absorbance at 450 nm was increased to 0.10, indicating that the lymphoma was caused

- ⁵ by metastasis from the previous tumor. [0143] Canine patient 10 (Shiba inu) underwent tumorectomy on March 11, 2006, because of intraoral malignant melanoma of the right lip. Canine patient 10 had a history of treatment with an anticancer agent (cyclophosphamide) from June 10, 2006, to September 26, 2006, and had been under medication with BIREMO S having organic germanium as a major ingredient since May 23, 2006. Serodiagnosis was made on March 20, 2007, upon the removal of a tumor
- thought to have resulted from metastasis of the previous tumor, so that the absorbance at 450 nm was found to be almost 0.03, indicating almost no detection. Pathologic diagnosis was made for the tissue excised at this time so that the disease was diagnosed as metastatic malignant melanoma. However, metastasis occurred again on June 27, 2007, 3 months after surgery for metastatic melanoma. A tumor developed at the right portion of the cervix on March 20, 2007, and further tumor development occurred on the side opposite to such portion on June 27, 2007. The tumors formed
- ¹⁵ black masses analogous to those of the previous findings. Tumor size was $3.1 \times 3.2 \times 0.8$ cm, and the tumors were clinically diagnosed as metastatic tumors. As a result of serodiagnosis at this time, absorbance at 450 nm was confirmed to have increased to 0.23, suggesting that the tumors resulted from metastasis of previous tumors.
 - (2)-7 Cancer diagnosis using human CAPRIN-1-derived polypeptide
- 20

35

[0144] With the use of the polypeptide (SEQ ID NO: 2) of human CAPRIN-1 prepared in Example 2, the titer of canine serum IgG antibody reacting with the polypeptide was measured in a manner similar to that used above. As a result of examination using serum of a healthy dog, almost no absorbance was detected at 450 nm, similarly to the case above. **[0145]** Meanwhile, canine patient 11 (Shih tzu) had extirpative surgery for breast adenocarcinoma on June 21, 2007.

- As a result of pathologic diagnosis using excised tissues, canine patient 11 was diagnosed as having breast adenocarcinoma of moderate malignancy, wherein strongly atypical and invasive mammary gland tissues underwent adenoidtubular-papillary growth so as to form large and small masses, in addition to the presence of somewhat diffuse hyperplasia of fibrillar connective tissues. The absorbance at 450 nm for canine patient 11 was found to be 0.26.
- 30 (3) Feline cancer diagnosis

[0146] Next, cancer-bearing cats and healthy cats were diagnosed. With the use of the polypeptide of canine CAPRIN-1 (used above) and an anti-feline IgG antibody, the titer of feline serum IgG antibody specifically reacting with the polypeptide was measured, in a manner similar to the above. As a secondary antibody, an HRP modified anti-feline IgG antibody (PEROXIDASE-CONJUGATED GOAT IgG FRACTION TO CAT IgG (WHOLE MOLECULE): CAPPEL RE-

SERCH REAGENTS) was diluted 8000-fold with a blocking solution and then used.
[0147] Feline patient 1 (mongrel) had tumor extirpative surgery for breast adenocarcinoma on May 8, 2007. The absorbance at 450 nm for feline patient 1 was found to be 0.21. Also, in the case of feline patient 2 (Himalayans) that had extirpative surgery for ductal carcinoma on October 17, 2006, the absorbance at 450 nm was found to be 0.18. On the other hand, no absorbance was detected in the case of healthy cats.

- 40 the other hand, no absorbance was detected in the case of healthy cats. [0148] Also, with the use of the polypeptide (SEQ ID NO: 2) of human CAPRIN-1 prepared in Example 2, the titer of feline serum IgG antibody reacting with the polypeptide was measured in a manner similar to the above. As a result, in the case of healthy cats, almost no absorbance was detected at 450 nm when the polypeptide had been immobilized. Meanwhile, feline patient 3 (American Shorthair) had extirpative surgery for breast adenocarcinoma on April 15, 2008.
- ⁴⁵ As a result of pathologic diagnosis using excised tissues, feline patient 3 was diagnosed as having highly malignant breast adenocarcinoma associated with large and small dead tissues, wherein strongly atypical and invasive mammary gland tissues underwent sheet-like growth into large and small masses. Also in the case of feline patient 3, the absorbance at 450 nm was found to be 0.12.
- [0149] Therefore, it was demonstrated that cancer diagnosis is also possible for cats by this technique, similarly to dogs, since values were detected for specimens from cats with cancer, but none was detected for specimens from healthy cats.

(4) Human cancer diagnosis

⁵⁵ **[0150]** With the use of the polypeptide (SEQ ID NO: 2) of human CAPRIN-1 prepared in Example 2 and an anti-human IgG antibody, the titer of a healthy human serum IgG antibody specifically reacting with the polypeptide was measured. Immobilization of the prepared polypeptide was performed by adding a recombinant protein solution diluted to 100 μg/mL with phosphate buffered saline to 96-well immobilizer amino plates (Nunc) at 100 μl/well and then leaving the plates to

stand overnight at 4°C. Blocking was performed as follows. Four gram of Block Ace powder (DS PHARMA BIOMEDICAL Co., Ltd.) was dissolved in 100 ml of purified water and then the solution was diluted 4-fold with purified water. Then the solution (hereinafter, blocking solution) was added at 100 μ l/well and then shaken at room temperature for 1 hour. Serum diluted 1000-fold with the blocking solution was added at 100 μ l/well and then shaken at room temperature for 3 hours

- ⁵ for reaction. After washing 3 instances with phosphate buffered saline (hereinafter, PBS-T) containing 0.05% Tween20 (Wako Pure Chemical Industries, Ltd.), an HRP-modified anti-human IgG antibody (HRP-Goat Anti-Human IgG (H+L) Conjugate: Zymed Laboratories) diluted 10000-fold with the blocking solution was added at 100 μl/well and then shaken at room temperature for 1 hour for reaction. After 3 instances of washing with PBS-T, HRP substrate TMB (1-Step Turbo TMB (tetramethylbenzidine), PIERCE) was added at 100 μl/well and then an enzyme-substrate reaction was performed
- ¹⁰ at room temperature for 30 minutes. Subsequently, a 0.5 M sulfuric acid solution (Sigma Aldrich Japan) was added at 100 μ l/well to stop the reaction and then absorbance at 450 nm was measured using a microplate reader. An ovalbumin antigen adjusted to 50 μ g/ml with phosphate buffered saline was immobilized and then used as a positive control. As a result, absorbance at 450 nm was found to be as high as 0.45 on average as the results for 7 healthy subjects in the case of the ovalbumin antigen, but no absorbance (0) was detected in the case of the above polypeptide.
- ¹⁵ **[0151]** In a manner similar to the above, 17 serum specimens (purchased from ProMedDx) from patients with malignant breast cancer were further subjected to measurement of the titer of serum IgG antibody specifically reacting with the human-derived cancer antigen protein (the amino acid sequence of SEQ ID NO: 3). As a result, absorbance at 450 nm was found to be as high as 0.48 in the case of the above polypeptide, on average as the results for 17 breast cancer patients.
- ²⁰ **[0152]** Also, with the use of the polypeptide (SEQ ID NO: 8) of canine CAPRIN-1 prepared in Example 2 and an antihuman IgG antibody, the titer of human serum IgG antibody specifically reacting with the polypeptide was measured in a manner similar to that above. As a result, whereas the average of the results for 7 healthy subjects was 0.04, the average of the results for 17 breast cancer patients was as high as 0.55.
 - [0153] Based on the above results, it was demonstrated that cancer in humans can also be detected by this technique.

25

Example 5: Cancer diagnosis through measurement of antigen polypeptide

[0154] With the use of the polyclonal antibody against CAPRIN-1-derived peptide (SEQ ID NO: 43) obtained in Example 3 (1) and each monoclonal antibody against the CAPRIN-1 protein obtained in Example 3 (2) in combination, the antigen polypeptide itself contained in specimens (cancer-bearing living organism-derived serum) reacted positive upon cancer diagnosis using the polypeptide of CAPRIN-1 in Example 4 (1)-(3) was detected by Sandwich ELISA. The polyclonal antibody was used as a primary antibody and each monoclonal antibody was used as a secondary antibody. The serum protein level of the protein specifically reacting with each of the above antibodies was measured.

- [0155] The primary antibody was immobilized by adding the polyclonal antibody diluted to a concentration of 5 μg/ml with phosphate buffered saline to 96-well immobilizer amino plates (Nunc) at 100 μl/well and then shaking the plates at room temperature for 2 hours. Blocking was performed by adding a 50 mM sodium bicarbonate buffer solution (pH 8.4) (hereinafter, blocking solution) containing 0.5% BSA (bovine serum albumin, Sigma Aldrich Japan) at 100 μl/well and then shaking at room temperature for 1 hour. Subsequently, a cancer-bearing living organism-derived serum diluted using the blocking solution was added at 100 μl/well and then the resultants were shaken at room temperature for 3
- ⁴⁰ hours for reaction. The dilution rate at this time was adjusted with 10-fold (10-1000-fold) dilution series. After 3 instances of washing with phosphate buffered saline (hereinafter, PBS-T) containing 0.05% Tween20 (Wako Pure Chemical Industries, Ltd.), each monoclonal antibody as a secondary antibody diluted to a concentration of 1 µg/ml with the blocking solution was added at 100 µl/well and then the resultants were shaken at room temperature for 1 hour for reaction. After 3 instances of washing with PBS-T, an HRP-labeled anti-mouse IgG (H+L) antibody (Invitrogen Corporation) as a tertiary
- ⁴⁵ antibody diluted 5000-fold with the blocking solution was added at 100 μl per well and then left to stand at room temperature for 1 hour. After 3 instances of washing of wells with PBS-T, a TMB substrate solution (Thermo) was added at 100 μl per well and then left to stand for 15-30 minutes for color reaction. After color development, 1 N sulfuric acid was added at 100 μl per well to stop the reaction and then absorbance at 450 nm was measured using an absorption spectrometer. [0156] As a result, when the #1-#10 monoclonal antibodies reacting with the surfaces of cancer cells were used as
- 50 secondary antibodies, absorbance values (polypeptide levels) of 0.3 or higher were detected for all specimens from cancer-bearing dogs and cancer-bearing cats with breast cancer, malignant melanoma, and the like, but no absorbance was detected for healthy dogs and healthy cats. On the other hand, when monoclonal antibodies reacting with the CAPRIN-1 protein itself but not reacting with the surfaces of cancer cells were used as secondary antibodies, polypeptide levels were detected for all specimens, but absorbance values were all 0.05 or less, which were lower than the results
- ⁵⁵ for combinations of antibodies reacting with the surfaces of cancer cells.
 [0157] Therefore, cancer can also be diagnosed by this technique that involves detection of antigen polypeptides using antibodies against CAPRIN-1.

INDUSTRIAL APPLICABILITY

[0158] The present invention is industrially useful for diagnosis or detection of cancer.

5 SEQUENCE LISTING FREE TEXT

[0159] SEQ ID NOS: 31-42: primers

SEQUENCE LISTING

```
10
```

[0160]

<110> TORAY INDUSTRIES, INC.

¹⁵ <120> Polypeptides and Methods for Diagnosis of Cancers

<130> PH-4052-PCT

<150> JP 2008-202320

<151> 2008-08-05

<160> 63

<210> 1

<400> 1

<170> PatentIn version 3.1

25

20

<211> 5562

<212> DNA <213> Homo sapiens

```
30
```

<220> <221> CDS <222> (190)..(2319) <223>

35

40

45

.0

50

	cagagggetg etggetgget aagteeetee egeteeegge tetegeetea etaggagegg	60
	ctctcggtgc agcgggacag ggcgaagcgg cctgcgccca cggagcgcgc gacactgccc	120
5	ggaagggacc gccaccettg ecceetcage tgeceaeteg tgatttecag eggeeteege	180
40	gcgcgcacg atg ccc tcg gcc acc agc cac agc ggg agc ggc agc a	231
10	tcc gga ccg cca ccg ccg tcg ggt tcc tcc ggg agt gag gcg gcc gcg Ser Gly Pro Pro Pro Pro Ser Gly Ser Ser Gly Ser Glu Ala Ala Ala 15 20 25 30	279
15	gga gcc ggg gcc gcc gcg ccg gct tct cag cac ccc gca acc ggc acc Gly Ala Gly Ala Ala Ala Pro Ala Ser Gln His Pro Ala Thr Gly Thr 35 40 45	327
20	ggc gct gtc cag acc gag gcc atg aag cag att ctc ggg gtg atc gac Gly Ala Val Gln Thr Glu Ala Met Lys Gln Ile Leu Gly Val Ile Asp 50 55 60	375
	aag aaa ctt cgg aac ctg gag aag aaa aag ggt aag ctt gat gat tac Lys Lys Leu Arg Asn Leu Glu Lys Lys Lys Gly Lys Leu Asp Asp Tyr 65 70 75	423
25	cag gaa cga atg aac aaa ggg gaa agg ctt aat caa gat cag ctg gat Gln Glu Arg Met Asn Lys Gly Glu Arg Leu Asn Gln Asp Gln Leu Asp 80 85 90	471
30	gcc gtt tct aag tac cag gaa gtc aca aat aat ttg gag ttt gca aaa Ala Val Ser Lys Tyr Gln Glu Val Thr Asn Asn Leu Glu Phe Ala Lys 95 100 105 110	519
35	gaa tta cag agg agt ttc atg gca cta agt caa gat att cag aaa aca Glu Leu Gln Arg Ser Phe Met Ala Leu Ser Gln Asp Ile Gln Lys Thr 115 120 125	567
	ata aag aag aca gca cgt cgg gag cag ctt atg aga gaa gaa gct gaa	615

	Ile	Lys	Lys	Thr 130		Arg	Arg	Glu	Gln 135		Met	Arg	Glu	Glu 140		Glu	
5																aaa Lys	663
10																gga Gly	711
		Pro														tat Tyr 190	759
15																cag Gln	807
20		gaa Glu															855
		cct Pro															903
25		gtt Val 240															951
30		ctg Leu															999
		gta Val															1047
35	-	gaa Glu	-	-					-		-	-		-	-	-	1095
40		cag Gln															1143
		acg Thr 320	-			-					_			-			1191
45		cct Pro															1239
50	-	ccc Pro			-	-	-	-	-		-		-	-		-	1287
		ggt Gly	Pro														1335
55	-	aca Thr		-		-		-		-	-		-				1383

->

			385					390					395				
5		aac Asn 400														gaa Glu	1431
		aga Arg															1479
10		gtt Val															1527
15		ttg Leu		-				-				-		-	-	-	1575
		att Ile															1623
20		gca Ala 480															1671
25		GJÀ dàà															1719
30		cca Pro															1767
30		cct Pro															1815
35	-	agt Ser			-	-			-	-				-	-		1863
40		gag Glu 560															1911
		tcc Ser															1959
45		cag Gln	-						-	-		-					2007
50		cgt Arg															2055
		gga Gly			-		-				=				-		2103
55		cgc Arg 640									-				-		2151

	cag ttc agt gct ccc cgg gat tac tct ggc tat caa cgg gat gga tat Gln Phe Ser Ala Pro Arg Asp Tyr Ser Gly Tyr Gln Arg Asp Gly Tyr 655 660 665 670	2199
5	cag cag aat ttc aag cga ggc tct ggg cag agt gga cca cgg gga gcc Gln Gln Asn Phe Lys Arg Gly Ser Gly Gln Ser Gly Pro Arg Gly Ala 675 680 685	2247
10	cca cga ggt cgt gga ggg ccc cca aga ccc aac aga ggg atg ccg caa Pro Arg Gly Arg Gly Gly Pro Pro Arg Pro Asn Arg Gly Met Pro Gln 690 695 700	2295
	atg aac act cag caa gtg aat taa tctgattcac aggattatgt ttaatcgcca Met Asn Thr Gln Gln Val Asn 705	2349
15	aaaacacact ggccagtgta ccataatatg ttaccagaag agttattatc tatttgttct	2409
	ccetttcagg aaacttattg taaagggact gttttcatcc cataaagaca ggactacaat	2469
20	tgtcagcttt ctattacctg gatatggaag gaaactattt ttactctgca tgttctgtcc	2529
20	taagcgtcat cttgagcett geacatgata eteagattee teaceettge ttaggagtaa	2589
	aacaatatac tttacagggt gataataatc tccatagtta tttgaagtgg cttgaaaaag	2649
25	gcaagattga cttttatgac attggataaa atctacaaat cagccctcga gttattcaat	270 <u>9</u>
	gataactgac aaactaaatt atttccctag aaaggaagat gaaaggagtg gagtgtggtt	2769
	tggcagaaca actgcatttc acagcttttc cagttaaatt ggagcactga acgttcagat	2829
30	gcataccaaa ttatgcatgg gtcctaatca cacatataag gctggctacc agctttgaca	2889
	cagcactgtt catctggcca aacaactgtg gttaaaaaca catgtaaaat gcttttaac	2949
	agetgataet gtataagaea aageeaagat geaaaattag getttgattg geaetttttg	3009
35	aaaaatatgc aacaaatatg ggatgtaatc cggatggccg cttctgtact taatgtgaaa	3069
	tatttagata cctttttgaa cacttaacag tttctttgag acaatgactt ttgtaaggat	3129
	tggtactatc tatcattcct tatgacatgt acattgtctg tcactaatcc ttggattttg	3189
40	ctgtattgtc acctaaattg gtacaggtac tgatgaaaat ctctagtgga taatcataac	3249
	acteteggte acatgttttt cetteagett gaaagetttt ttttaaaagg aaaagataee	3309
	aaatgeetge tgetaceace etttteaatt getatetttt gaaaggeace agtatgtgtt	3369
45	ttagattgat ttccctgttt cagggaaatc acggacagta gtttcagttc tgatggtata	3429
	agcaaaacaa ataaaacgtt tataaaagtt gtatcttgaa acactggtgt tcaacagcta	348 9
50	gcagettatg tgatteacce catgecaegt tagtgteaca aattttatgg tttateteea	3549
	gcaacatttc tctagtactt gcacttatta tcttttgtct aatttaacct taactgaatt	3609
	ctccgtttct cctggaggca tttatattca gtgataattc cttcccttag atgcataggg	3669
55	agagteteta aatttgatgg aaatggacae ttgagtagtg aettageett atgtaetetg	3729
	ttggaatttg tgctagcagt ttgagcacta gttctgtgtg cctaggaagt taatgctgct	378 9

	tattgtctca	ttctgacttc	atggagaatt	aatcccacct	ttaagcaaag	gctactaagt	3849
	taatggtatt	ttctgtgcag	aaattaaatt	ttattttcag	catttagccc	aggaattett	3909
5	ccagtaggtg	ctcagctatt	taaaaacaaa	actattctca	aacattcatc	attagacaac	3969
	tggagttttt	gctggttttg	taacctacca	aaatggatag	gctgttgaac	attccacatt	4029
10	caaaagtttt	gtagggtggt	gggaaatggg	ggatcttcaa	tgtttatttt	aaaataaaat	4089
10	aaaataagtt	cttgactttt	ctcatgtgtg	gttgtggtac	atcatattgg	aagggttaac	4149
	ctgttacttt	ggcaaatgag	tattttttg	ctagcacctc	cccttgcgtg	ctttaaatga	4209
15	catctgcctg	ggatgtacca	caaccatatg	ttacctgtat	cttaggggaa	tggataaaat	4269
	atttgtggtt	tactgggtaa	tccctagatg	atgtatgctt	gcagtcctat	ataaaactaa	4329
	atttgctatc	tgtgtagaaa	ataatttcat	gacatttaca	atcaggactg	aagtaagttc	4389
20	ttcacacagt	gacctctgaa	tcagtttcag	agaagggatg	ggggagaaaa	tgccttctag	4449
	gttttgaact	tctatgcatt	agtgcagatg	ttgtgaatgt	gtaaaggtgt	tcatagtttg	4509
	actgtttcta	tgtatgtttt	ttcaaagaat	tgttcctttt	tttgaactat	aatttttctt	4569
25	tttttggtta	ttttaccatc	acagtttaaa	tgtatatctt	ttatgtctct	actcagacca	4629
	tattttaaa	ggggtgcctc	attatgggggc	agagaacttt	tcaataagtc	tcattaagat	4689
30	ctgaatcttg	gttctaagca	ttctgtataa	tatgtgattg	cttgtcctag	ctgcagaagg	4749
	ccttttgttt	ggtcaaatgc	atattttagc	agagtttcaa	ggaaatgatt	gtcacacatg	4809
	tcactgtagc	ctcttggtgt	agcaagctca	catacaaaat	acttttgtat	atgcataata	4869
35	taaatcatct	catgtggata	tgaaacttct	ttttaaaac	ttaaaaaggt	agaatgttat	4929
	tgattacctt	gattagggca	gttttatttc	cagatcctaa	taattcctaa	aaaatatgga	4989
	aaagtttttt	ttcaatcatt	gtaccttgat	attaaaacaa	atatccttta	agtatttcta	5049
40	atcagttagc	ttctacagtt	cttttgtctc	cttttatatg	cagetettae	gtgggagact	5109
	tttccactta	aaggagacat	agaatgtgtg	cttattctca	gaaggttcat	taactgaggt	5169
45	gatgagttaa	caactagttg	agcagtcagc	ttcctaagtg	ttttaggaca	tttgttcatt	5229
	atattttccg	tcatataact	agaggaagtg	gaatgcagat	aagtgccgaa	ttcaaaccct	5289
	tcattttatg	tttaagctcc	tgaatctgca	ttccacttgg	gttgtttta	agcattctaa	5349
50				gaatcagtat			5409
				aggaaaacga			5469
				caaaaatact	gcaaaagact	agtgaatgtt	5529
55	taaaattaca	ctagattaaa	taatatgaaa	gtc			5562

<210> 2 <211> 709

<212> PRT <213> Homo sapiens

<400> 2

10			
15			
10			

20			

25			

30			

```
35
```

```
40
```

```
45
```

```
50
```

55			

	Met 1	Pro	Ser	Ala	Thr 5	Ser	His	Ser	Gly	Ser 10	Gly	Ser	Lys	Ser	Ser 15	Gly
5	Pro	Pro	Pro	Pro 20	Ser	Gly	Ser	Ser	Gly 25	Ser	Glu	Ala	Ala	Ala 30	Gly	Ala
10	Gly	Ala	Ala 35	Ala	Pro	Ala	Ser	Gln 40	His	Pro	Ala	Thr	Gly 45	Thr	Gly	Ala
	Val	Gln 50	Thr	Glu	Ala	Met	Lys 55	Gln	Ile	Leu	Gly	Val 60	Ile	Asp	Lys	Lys
15	Leu 65	Arg	Asn	Leu	Glu	Lys 70	Lys	Lys	Gly	Lys	Leu 75	Asp	Asp	Tyr	Gln	Glu 80
20	Arg	Met	Asn	Lys	Gly 85	Glu	Arg	Leu	Asn	Gln 90	Asp	Gln	Leu	Asp	Ala 95	Val
25	Ser	Lys	Tyr	Gln 100	Glu	Val	Thr	Asn	Asn 105	Leu	Glu	Phe	Ala	Lys 110	Glu	Leu
	Gln	Arg	Ser 115	Phe	Met	Ala	Leu	Ser 120	Gln	Asp	Ile	Gln	Lys 125	Thr	Ile	Lys
30	Lys	Thr 130	Ala	Arg	Arg	Glu	Gln 135	Leu	Met	Arg	Glu	Glu 140	Ala	Glu	Gln	Lys
35	Arg 145	Leu	Lys	Thr	Val	Leu 150	Glu	Leu	Gln	Tyr	Val 155	Leu	Asp	Lys	Leu	Gly 160
10	Asp	Asp	Glu	Val	Arg 165	Thr	Asp	Leu	Lys	Gln 170	Gly	Leu	Asn	Gly	Val 175	Pro
40	Ile	Leu	Ser	Glu 180	Glu	Glu	Leu	Ser	Leu 185	Leu	Asp	Glu	Phe	Tyr 190	Lys	Leu
45	Val	Asp	Pro 195	Glu	Arg	Asp	Met	Ser 200	Leu	Arg	Leu	Asn	Glu 205	Gln	Tyr	Glu
50	His	Ala 210	Ser	Ile	His	Leu	Trp 215	Asp	Leu	Leu	Glu	Gly 220	Lys	Glu	Lys	Pro
	Val 225	Ċys	Gly	Thr	Thr	Tyr 230	Lys	Val	Leu	Lys	Glu 235	Ile	Val	Glu	Arg	Val 240
55	Phe	Gln	Ser		Tyr 245	Phe	Asp	Ser	Thr	His 250	Asn	His	Gln	Asn	Gly 255	Leu

	Суз	Glu	Glu	Glu 260	Glu	Ala	Ala	Ser	Ala 265	Pro	Ala	Val	Glu	Asp 270	Gln	Val
5	Pro	Glu	Ala 275	Glu	Pro	Glu	Pro	Ala 280	Glu	Glu	Tyr	Thr	Glu 285		Ser	Glu
10	Val	Glu 290	Ser	Thr	Glu	Tyr	Val 295	Asn	Arg	Gln	Phe	Met 300	Ala	Glu	Thr	Gln
	Phe 305	Thr	Ser	Gly	Glu	Lys 310	Glu	Gln	Val	Asp	Glu 315	Trp	Thr	Val	Glu	Thr 320
15	Val	Glu	Val	Val	Asn 325	Ser	Leu	Gln	Gln	Gln 330	Pro	Gln	Ala	Ala	Ser 335	Pro
20	Ser	Val	Pro	Glu 340	Pro	His	Ser	Leu	Thr 345	Pro	Val	Ala	Gln	Ala 350	Asp	Pro
25	Leu	Val	Arg 355	Arg	Gln	Arg	Val	Gln 360	Asp	Leu	Met	Ala	Gln 365	Met	Gln	Gly
	Pro	Tyr 370	Asn	Phe	Ilė	Gln	Asp 375	Ser	Met	Leu	Asp	Phe 380	Glu	Asn	Gln	Thr
30	Leu 385	Asp	Pro	Ala	Ile	Val 390	Ser	Ala	Gln	Pro	Met 395	Asn	Pro	Thr	Gln	Asn 400
35	Met	Asp	Met	Pro	Gln 405	Leu	Val	Суз	Pro	Pro 410	Val	His	Ser	Glu	Ser 415	Arg
	Leu	Ala	Gln	Pro 420	Asn	Gln	Val	Pro	Val 425	Gln	Pro	Glu	Ala	Thr 430	Gln	Val
40	Pro	Leu	Val 435	Ser	Ser	Thr	Ser	Glu 440	Gly	Tyr	Thr	Ala	Ser 445	Gln	Pro	Leu
45	Tyr	Gln 450	Pro	Ser	His	Ala	Thr 455	Glu	Gln	Arg	Pro	Gln 460	Lys	Glu	Pro	Ile
50	Asp 465	Gln	Ile	Gln	Ala	Thr 470	Ile	Ser	Leu	Asn	Thr 475	Asp	Gln	Thr	Thr	Ala 480
	Ser	Ser	Ser		Pro 485	Ala	Ala	Ser	Gln	Pro 490	Gln	Val	Phe		Ala 495	Gly
55	Thr	Ser		Pro 500	Leu	His	Ser		Gly 505	Ile	Asn	Val	Asn	Ala 510	Alá	Pro

	Ph	e Gln	Ser 515	Met	Gln	Thr	Val	Ph e 520	Asn	Met	Asn	Ala	Pro 525	Val	Pro	Pro
5	Va	L Asn 530		Pro	Glu	Thr	Leu 535	Lys	Gln	Gln	Asn	Gln 540	Tyr	Gln	Ala	Ser
10	Ty : 54	r Asn 5	Gln	Ser	Phe	Ser 550	Ser	Gln	Pro	His	Gln 555	Val	Glu	Gln	Thr	Glu 560
15	Le	ı Gln	Gln	Glu	Gln 565	Leu	Gln	Thr	Val	Val 570	Gly	Thr	Tyr	His	Gly 575	Ser
	Pro	o Asp	Gln	Ser 580	His	Gln	Val	Thr	Gly 585	Asn	His	Gln	Gln	Pro 590	Pro	Gln
20	Gl	n Asn	Thr 595	Gly	Phe	Pro	Arg	Ser 600	Asn	Gln	Pro	Tyr	Tyr 605	Asn	Ser	Arg
25	Gl	7 Val 610		Arg	Gly	Gly	Ser 615	Arg	Gly	Ala	Arg	Gly 620	Leu	Met	Asn	Gly
30	Ty: 62!	c Arg	Gly	Pro	Ala	Asn 630	Gly	Phe	Arg	Gly	Gly 635	Tyr	Asp	Gly	Tyr	Arg 640
	Pro) Ser	Phe	Ser	Asn 645	Thr	Pro	Asn	Ser	Gly 650	Tyr	Thr	Gln	Ser	Gln 655	Phe
35	Se	r Ala	Pro	Arg 660	Asp	Tyr	Ser	Gly	Tyr 665	Gln	Arg	Asp	Gly	Tyr 670	Gln	Gln
40	Ası	h Phe	Lys 675	Arg	Gly	Ser	Gly	Gln 680	Ser	Gly	Pro	Arg	Gly 685	Ala	Pro	Arg
45	Gly	Arg 690	Gly	Gly	Pro	Pro	Arg 695	Pro	Asn	Arg	Gly	Met 700	Pro	Gln	Met	Asn
40	Th: 70!	r Gln	Gln	Val	Asn											
50	<210> 3 <211> 3553 <212> DNA <213> Hom		ens													
55	<220> <221> CDS <222> (190 <223>		ł)													

<400> 3

F	cagagggctg	ctggctggct	aagtccctcc	cgetecegge	tctcgcctca	ctaggagcgg	60
5							
10							
15							
20							
25							
30							
35							
55							
40							
45							
50							
55							

	ctctcgg	tgc ageg	iggacag g	gegaageg	ig cctgcg	recca ego	lagegege ga	cactoccc	120
	ggaaggg	acc gcca	cccttg c	ccctcag	rc tgccca	ctcg tga	atttccag co	gcctccgc	180
5	gcgcgca					er Gly S	ngc ggc ago Ser Gly Ser .0		231
10	tcc gga Ser Gly 15	ccg cca Pro Pro	ccg ccg Pro Pro 20	tcg ggt Ser Gly	tcc tcc Ser Ser	ggg agt Gly Ser 25	: gag gcg g : Glu Ala A	cc gcg la Ala 30	279
							gca acc g Ala Thr G 4		327
15							ggg gtg a Gly Val I 60		375
20							ctt gat g Leu Asp A 75		423
25							gat cag c Asp Gln L		471
							gag ttt g Glu Phe A		519
30							att cag a Ile Gln L 1		567
35							gaa gaa g Glu Glu A 140		615
							gtt ttg ga Val Leu A 155		663
40							ggt ttg a Gly Leu A		711
45							gat gaa ti Asp Glu Pl		759
50							ttg aat ga Leu Asn G 20		807
							gaa ggg aa Glu Gly Ly 220		855
55	Lys Pro						gaa att gt Glu Ile Va 235		903

		gtt Val 240		-					-	-					_		951
5		ctg Leu															999
10		gta Val															1047
		gaa Glu															1095
15		cag Gln			-		-	-		-	-	-				-	1143
20		acg Thr 320															1191
		cct Pro															1239
25		CCC Pro															1287
30		ggt Gly															1335
35		aca Thr															1383
		aac Asn 400	_	-	-		-	-	-				-			-	1431
40		aga Arg															1479
45		gtt Val															1527
		ttg Leu															1575
50		att Ile															1623
55		gca Ala 480						-			-			-		-	1671
	gct	ggg	aca	agc	aaa	cct	tta	cat	agc	agt	gga	atc	aat	gta	aat	gca	1719

	Ala Gly Th 495	-	ro Leu His 00	Ser Ser Gly 505	Ile Asn Val Asn	Ala 510
5					atg aat gcc cca Met Asn Ala Pro 525	
10	-	-	-	-	caa aat cag tac Gln Asn Gln Tyr 540	-
		Asn Gln S			cac caa gta gaa His Gln Val Glu 555	
15					gtt ggc act tac Val Gly Thr Tyr 570	
20		Asp Gln S			aac cac cag cag Asn His Gln Gln	
					cag ccc tat tac Gln Pro Tyr Tyr 605	
25					gct aga ggc ttg Ala Arg Gly Leu 620	-
30		Arg Gly P			gga gga tat gat Gly Gly Tyr Asp 635	
					ggt tat aca cag Gly Tyr Thr Gln 650	
35		Ala Pro A			caa cgg gat gga Gln Arg Asp Gly	
40					gga cca cgg gga Gly Pro Arg Gly 685	
	cca cga ggt Pro Arg Gly			tga teetage	tcc taagtggagc	2294
45	ttctgttctg	gccttggaag	agctgttaat	agtctgcatg	ttaggaatac attta	tcctt 2354
	tccagacttg	ttgctaggga	ttaaatgaaa	a tgctctgttt	ctaaaactta atctt	ggacc 2414
50				-	atataaactg tcttg	
	-				gaaaattatt tttca	
	-	-		-	atttttgtaa gacat tcatttttt gaaac	-
55		-			agccatagtt aacat	2

	gaaccattta	gaagtgatag	aactaatgga	atttgcaatg	ccttttggac	ctctattagt	2774
	gatataaata	tcaagttatt	tctgactttt	aaacaaaact	cccaaattcc	taacttattg	2834
5	agctatactt	aaaaaaatt	acaggtttag	agagtttttt	gtttttcttt	tactgttgga	2894
	aaactacttc	ccattttggc	aggaagttaa	cctatttaac	aattagagct	agcatttcat	2954
10	gtagtctgaa	attctaaatg	gttctctgat	ttgagggagg	ttaaacatca	aacaggtttc	3014
10	ctctattggc	cataacatgt	ataaaatgtg	tgttaaggag	gaattacaac	gtactttgat	3074
	ttgaatacta	gtagaaactg	gccaggaaaa	aggtacattt	ttctaaaaat	taatggatca	3134
15	cttgggaatt	actgacttga	ctagaagtat	caaaggatgt	ttgcatgtga	atgtgggtta	3194
	tgttctttcc	caccttgtag	catattcgat	gaaagttgag	ttaactgata	gctaaaaatc	3254
	tgttttaaca	gcatgtaaaa	agttatttta	tctgttaaaa	gtcattatac	agttttgaat	3314
20	gttatgtagt	ttcttttaa	cagtttaggt	aataaggtct	gttttcattc	tggtgctttt	3374
	attaattttg	atagtatgat	gttacttact	actgaaatgt	aagctagagt	gtacactaga	3434
	atgtaagete	catgagagca	ggtaccttgt	ctgtcttctc	tgctgtatct	attcccaacg	3494
25	cttgatgatg	gtgcctggca	catagtaggc	actcaataaa	tatttgttga	atgaatgaa	3553

<210> 4 <211> 694 30 <212> PRT <213> Homo sapiens

<400> 4

35

40

45

50

	Met 1	Pro	Ser	Ala	Thr 5	Ser	His	Ser	Gly	Ser 10	Gly	Ser	Lys	Ser	Ser 15	Gly
5	Pro	Pro	Pro	Pro 20	Ser	Gly	Ser	Ser	Gly 25	Ser	Glu	Ala	Ala	Ala 30	Gly	Ala
10	Gly	Ala	Ala 35	Ala	Pro	Ala	Ser	Gln 40	His	Pro	Ala	Thr	Gly 45	Thr	Gly	Ala
	Val	Gln 50	Thr	Glu	Ala	Met	Lys 55	Gln	Ile	Leu	Gly	Val 60	Ile	Asp	Lys	Lys
15	Leu 65	Arg	Asn	Leu	Glu	Lys 70	Lys	Lys	Gly	Lys	Leu 75	Asp	Asp	Tyr	Gln	Glu 80
20	Arg	Met	Asn	Lys	Gly 85	Glu	Arg	Leu	Asn	Gln 90	Asp	Gln	Leu	Asp	Ala 95	Val
25	Ser	Lys	Tyr	Gln 100	Glu	Val	Thr	Asn	Asn 105	Leu	Glu	Phe	Ala	Lys 110	Glu	Leu
	Gln	Arg	Ser	Phe	Met	Ala	Leu	Ser	Gln	Asp	Ile	Gln	Lys	Thr	Ile	Lys
30																
35																
40																
45																
50																
55																
55																

		115	5				120					125			
5		hr Ala 30	l Arg	Arg	Glu	Gln 135	Leu	Met	Arg	Glu	Glu 140	Ala	Glu	Gln	Lys
	Arg L 145	eu Lys	i Thr	Val	Leu 150	Glu	Leu	Gln	Tyr	Val 155	Leu	Asp	Lys	Leu	G ly 160
10	Asp A	sp Glu	ı Val	Arg 165	Thr	Asp	Leu	Lys	Gln 170	Gly	Leu	Asn	Gly	Val 175	Pro
15	Ile L	eu Ser	Glu 180	Glu	Glu	Leu	Ser	Leu 185	Leu	Asp	Glu	Phe	Tyr 190	Lys	Leu
20	Val A	sp Pro 195		Arg	Asp	Met	Ser 200	Leu	Arg	Leu	Asn	Glu 205	Gln	Tyr	Glu
		la Ser 10	Ile	His	Leu	Trp 215	Asp	Leu	Leu	Glu	Gly 220	Lys	Glu	Lys	Pro
25	Val C 225	ys Gly	Thr	Thr	Tyr 230	Lys	Val	Leu	Lys	Glu 235	Ile	Val	Glu	Arg	Val 240
30	Phe G	ln Ser	Asn	Tyr 245	Phe	Asp	Ser	Thr	His 250	Asn	His	Gln	Asn	Gly 255	Leu
	Cys G	lu Glu	Glu 260	Glu	Ala	Ala	Ser	Ala 265	Pro	Ala	Val	Glu	Asp 270	Gln	Val
35	Pro G	lu Ala 275		Pro	Glu	Pro	Ala 280	Glu	Glu	Tyr	Thr	Glu 285	Gln	Ser	Glu
40		lu Ser 90	Thr	Glu	Tyr	Val 295	Asn	Arg	Gln	Phe	Met 300	Ala	Glu	Thr	Gln
	Phe T 305	hr Ser	Gly	Glu	Lys 310	Glu	Gln	Val	Asp	Glu 315	Trp	Thr	Val	Glu	Thr 320
45	Val G	lu Val	Val	Asn 325	Ser	Leu	Gln	Gln	Gln 330	Pro	Gln	Ala	Ala	Ser 335	Pro
50	Ser V	al Pro	Glu 340	Pro	His	Ser	Leu	Thr 345	Pro	Val	Ala	Gln	Ala 350	Asp	Pro
	Leu V	al Arg 355	-	Gln	Arg	Val	Gln 360	Asp	Leu	Met	Ala	Gln 365	Met	Gln	Gly
55		yr Asn 70	Phe	Ile	Gln	Asp 375	Ser	Met	Leu	Asp	Phe 380	Glu	Asn	Gln	Thr

	Leu 385	Asp	Pro	Ala	Ile	Val 390	Ser	Ala	Gln	Pro	Met 395	Asn	Pro	Thr	Gln	Asn 400
5	Met	Asp	Met	Pro	Gln 405	Leu	Val	Суз	Pro	Pro 410	Val	His	Ser	Glu	Ser 415	Arg
10	Leu	Ala	Gln	Pro 420	Asn	Gln	Val	Pro	Val 425	Gln	Pro	Glu	Ala	Thr 430	Gln	Val
	Pro	Leu	Val 435	Ser	Ser	Thr	Ser	Glu 440	Gly	Tyr	Thr	Ala	Ser 445	Gln	Pro	Leu
15	Tyr	Gln 450	Pro	Ser	His	Ala	Thr 455	Glu	Gln	Arg	Pro	Gln 460	Lys	Glu	Pro	Ile
20	Asp 465	Gln	Ile	Gln	Ala	Thr 470	Ile	Ser	Leu	Asn	Thr 475	Asp	Gln	Thr	Thr	Ala 480
25	Ser	Ser	Ser	Leu	Pro 485	Ala	Ala	Ser	Gln	Pro 490	Gln	Val	Phe	Gln	Ala 495	Gly
20	Thr	Ser	Lys	Pro 500	Leu	His	Ser	Ser	Gly 505	Ile	Asn	Val	Asn	Ala 510	Ala	Pro
30	Phe	Gln	Ser 515	Met	Gln	Thr	Val	Phe 520	Asn	Met	Asn	Ala	Pro 525	Val	Pro	Pro
35	Val	Asn 530	Glu	Pro	Glu	Thr	Leu 535	Lys	Gln	Gln	Asn	Gln 540	Tyr	Gln	Ala	Ser
	Tyr 545	Asn	Gln	Ser		Ser 550		Gln	Pro		Gln 555		Glu	Gln	Thr	Glu 560
40	Leu	Gln	Gln	Glu	Gln 565	Leu	Gln	Thr	Val	Val 570	Gly	Thr	Tyr	His	Gly 575	Ser
45	Pro	Asp	Gln	Ser 580	His	Gln	Val	Thr	Gly 585	Asn	His	Gln	Gln	Pro 590	Pro	Gln
50	Gln	Asn	Thr 595	Gly	Phe	Pro	Arg	Ser 600	Asn	Gln	Pro	Tyr	Tyr 605	Asn	Ser	Arg
	Gly	Val 610	Ser	Arg	Gly	Gly	Ser 615	Arg	Gly	Ala	Arg	Gly 620	Leu	Met	Asn	Gly
55	Tyr 625	Arg _.	Gly	Pro	Ala	As n 630	Gly	Phe	Arg	Gly	Gly 635	Tyr	Asp	Gly	Tyr	Arg 640

		Pro	Ser	Phe	Ser	Asn 645	Thr	Pro	Asn	Ser	Gly 650	Tyr	Thr	Gln	Ser	Gln 655	Phe
5		Ser	Ala	Pro	Arg 660	Asp	Tyr	Ser	Gly	Tyr 665	Gln	Arg	Asp	Gly	Tyr 670	Gln	Gln
10		Asn	Phe	Lys 675	Arg	Gly	Ser	Gly	Gln 680	Ser	Gly	Pro	Arg	Gly 685	Ala	Pro	Arg
15		Gly	A sn 690	Ile	Leu	Trp	Trp										
	<210> <211> <212>	1605 DNA	fomilio	rio													
20	<213> <220> <221>	CDS		ns													
25	<222> <223> <400>		1392)														
30																	
35																	
40																	
45																	
50																	
55																	

gtcacaaata acttggagtt tgcaaaagaa ttacagagga gtttc atg gca tta agt 57 Met Ala Leu Ser

5		gat Asp															105
10		aga Arg															153
15	-	tat Tyr	-	-	-		-		-	-	-		-		-	-	201
		caa Gln															24 9
20		ttg Leu 70															297
25	-	agg Arg	-			-		-		-				-		-	345
30		ctg Leu															393
30		aag Lys	-		-		_	-		-					-	-	441
35	act	cac	aac	cac	cag	aat	ggg	cta	tgt	gag	gaa	gaa	gag	gca	gcc	tca	489

	Thr	His	Asn 135	His	Gln	Asn	Gly	Leu 140	Суз	Glu	Glu	Glu	Glu 145	Ala	Ala	Ser	
5	gca Ala	cct Pro 150	aca Thr	gtt Val	gaa Glu	gac Asp	cag Gln 155	gta Val	gct Ala	gaa Glu	gct Ala	gag Glu 160	cct Pro	gag Glu	cca Pro	gca Ala	537
10		gaa Glu															585
		caa Gln															633
15	gta Val	gat Asp	gag Glu	tgg Trp 200	acg Thr	gtc Val	gaa Glu	aca Thr	gtg Val 205	g ag Glu	gtg Val	gtg Val	aat Asn	tca Ser 210	ctc Leu	cag Gln	681
20		caa Gln															729
		ccg Pro 230															777
25		ctt Leu															825
30		ctg Leu															873
	-	cct Pro	-		-				-	-	-		-	-	-	-	921
35		cca Pro	-			-		-		-					-		969
40		caa Gln 310															1017
		tat T yr		-				-		-				-			1065
45		cga Arg															1113
50		aat Asn		-	-								-	-	-		1161
		cct Pro															1209
55		atc Ile		-		-	-					-		-			1257

	390 395 400	
5	aat atg aat gcc cca gtt cct cct gtt aat gaa cca gaa act ttg aaa Asn Met Asn Ala Pro Val Pro Pro Val Asn Glu Pro Glu Thr Leu Lys 405 410 415 420	1305
10	caa caa aat cag tac cag gcc agt tat aac cag agc ttt tct agt cag Gln Gln Asn Gln Tyr Gln Ala Ser Tyr Asn Gln Ser Phe Ser Ser Gln 425 430 435	135 <u>3</u>
	cct cac caa gta gaa caa aca gag gga tgc cgc aaa tga acactcagca Pro His Gln Val Glu Gln Thr Glu Gly Cys Arg Lys 440 445	1402
15	agtgaattaa tetgatteac aggattatgt ttaaaegeea aaaaeaeaet ggeeagtgta	1462
	ccataatatg ttaccagaag agttattatc tatttgttct ccctttcagg aaacttattg	1522
	taaagggact gttttcatcc cataaagaca ggactacaat tgtcagcttt atattacctg	1582
20	gaaaaaaaaa aaaaaaaaa aaa	1605
25	<210> 6 <211> 448 <212> PRT <213> Canis familiaris <400> 6	
30		
35		
40		
45		
50		

	Met 1	Ala	Leu	Ser	Gln 5	Asp	Ile	Gln	Lys	Thr 10	Ile	Lys	Lys	Thr	Ala 15	Arg
5	Arg	Glu	Gln	Leu 20	Met	Arg	Glu	Glu	Ala 25	Glu	Gln	Lys	Arg	Leu 30	Lys	Thr
10	Val	Leu	Glu 35	Leu	Gln	Tyr	Val	Leu 40	Asp	Lys	Leu	Gly	Asp 45	Asp	Glu	Val
15	Arg	Thr 50	Asp	Leu	Lys	Gln	Gly 55	Leu	Asn	Gly	Val	Pro 60	Ile	Leu	Ser	Glu
	Glu 65	Glu	Leu	Ser	Leu	Leu 70	Asp	Glu	Phe	Tyr	Lys 75	Leu	Ala	Asp	Pro	Glu 80
20	Arg	Asp	Met	Ser	Leu 85	Arg	Leu	Asn	Glu	Gln 90	Tyr	Glu	His	Ala	Ser 95	Ile
25	His	Leu	Trp	Asp 100	Leu	Leu	Glu	Gly	Lys 105	Glu	Lys	Ser	Val	C ys 110	Gly	Thr
	Thr	Tyr	Lys 115	Ala	Leu	Lys	Glu	Ile 120	Val	Glu	Arg	Val	Phe 125	Gln	Ser	Asn
30	Tyr	Phe 130	Asp	Ser	Thr	His	Asn 135	His	Gln	Asn	Gly	Leu 140	Cys	Glu	Glu	Glu
35																
40																
45																
τυ																
50																

	Glu 145	Ala	Ala	Ser	Ala	Pro 150	Thr	Val	Glu	Asp	Gln 155	Val	Ala	Glu	Ala	Glu 160
5	Pro	Glu	Pro	Ala	Glu 165	Glu	Tyr	Thr	Glu	Gln 170	Ser	Glu	Val	Glu	Ser 175	Thr
10	Glu	Tyr	Val	Asn 180	Arg	Gln	Phe	Met	Ala 185	Glu	Thr	Gln	Phe	Ser 190	Ser	Gly
	Glu	Lys	Glu 195	Gln	Val	Asp	Glu	Trp 200	Thr	Val	Glu	Thr	Val 205	Glu	Val	Val
15	Asn	Ser 210	Leu	Gln	Gln	Gln	Pro 215	Gln	Ala	Ala	Ser	Pro 220	Ser	Val	Pro	Glu
20	Pro 225	His	Ser	Leu	Thr	Pro 230	Val	Ala	Gln	Ala	Asp 235	Pro	Leu	Val	Arg	Arg 240
25	Gln	Arg	Val	Gln	Asp 245	Leu	Met	Ala	Gln	Met 250	Gln	Gly	Pro	Tyr	Asn 255	Phe
	Ile	Gln	Asp	Ser 260	Met	Leu	Asp	Phe	Glu 265	Asn	Gln	Thr	Leu	Asp 270	Pro	Ala
30	Ile	Val	Ser 275	Ala	Gln	Pro	Met	Asn 280	Pro	Thr	Gln	Asn	Met 285	Asp	Met	Pro
35	Gln	Leu 290	Val	Суз	Pro	Pro	Val 295	His	Ser	Glu	Ser	Arg 300	Leu	Ala	Gln	Pro
	Asn 305	Gln	Val	Pro	Val	Gln 310	Pro	Glu	Ala	Thr	Gln 315	Val	Pro	Leu	Val	Ser 320
40	Ser	Thr	Ser	Glu	Gly 325	Tyr	Thr	Ala	Ser	Gln 330	Pro	Leu	Tyr	Gln	Pro 335	Ser
45	His	Ala	Thr	Glu 340	Gln	Arg	Pro	Gln	Lys 345	Glu	Pro	Ile	Asp	Gln 350	Ile	Gln
50	Ala	Thr	Ile 355	Ser	Leu	Asn	Thr	Asp 360	Gln	Thr	Thr	Ala	Ser 365	Ser	Ser	Leu
	Pro	Ala 370	Ala	Ser	Gln	Pro	Gln 375	Val	Phe	Gln	Ala	Gly 380	Thr	Ser	Lys	Pro
55	Leu 385	His	Ser	Ser	Gly	Ile 390	Asn	Val	Asn	Ala	Ala 395	Pro	Phe	Gln	Ser	Met 400

		Gln	Thr	Val	Phe	Asn 405	Met	Asn	Ala	Pro	Val 410	Pro	Pro	Val	Asn	Glu 415	Pro
5		Glu	Thr	Leu	Lys 420	Gln	Gln	Asn	Gln	Tyr 425	Gln	Ala	Ser	Tyr	Asn 430	Gln	Ser
10		Phe	Ser	Ser 435	Gln	Pro	His	Gln	Val 440	Glu.	Gln	Thr	Glu	Gly 445	Суз	Arg	Lys
15	<210> <211> <212> <213>	4154 DNA	familia	ris													
20	<220> <221> <222> <223>	CDS (1) (2	2154)														
25	<400>	7															
30																	
35																	
40																	
45																	
50																	
55																	

	ccg Pro								48
5	ccg Pro								96
10	gcg Ala								144
15	ccc Pro 50								192
	ctc Leu								240
20	aag Lys								288
25	caa Gln								336
20	ttg Leu								384
30	gat Asp 130								432
35	aga Arg								480
10	tat Tyr								528

			165					170					175		
5	aag caa Lys Glr	Gly L													576
	ttg ttg Leu Leu														624
10	ttg agg Leu Arg 210	Leu As													672
15	ttg ctg Leu Leu 225		-	-	-		-	-						-	720
	cta aaq Leu Lys			Glu											768
20	act cac Thr His		s Gln												816
25	gca cct Ala Pro														864
30	gaa gaa Glu Glu 290	Tyr Th													912
50	aga caa Arg Gln 305			-		-		-	-		-	-		-	960
35	gta gat Val Asp														1008
40	cag caa Gln Gln		n Ala												1056
	act ccg Thr Pro														1104
45	gac ctt Asp Leu 370	Met Al		-	-							-	-		1152
50	atg ctg Met Leu 385	-	-		-			-		-		_		-	1200
	cag cct Gln Pro	-	-				-	-	-			-	-	-	1248
55	cct cca Pro Pro		s Ser												1296

																gag Glu	1344
5																gag Glu	1392
10					aag Lys												1440
15					cag Gln 485												1488
					ttc Phe												1536
20	Ğİy	Ile	Asn 515	Val	aat Aşn	Ala	Ala	Pro 520	Phe	Gln	Ser	Met	Gln 525	Thr	Val	Phe	1584
25	Asn	Met 530	Asn	Āla	cca Pro	Val	Pro 535	Pro	Val	Asn	Ğlu	Pro 540	Glu	Thr	Leu	Lys	1632
	Gln 545	Gln	Asn	Gln	tac Tyr	Gln 550	Ala	Ser	Tyr	Asn	Gln 555	Ser	Phe	Ser	Ser	Gln 560	1680
30	Pro	His	Gln	Val	gaa Glu 565	Gln	Thr	Asp	Leu	Gln 570	Gln	Glu	Gln	Leu	Gln 575	Thr	1728
35	Val	Val	Ġĺy	Thr 580	tac Tyr	His	Gly	Ser	Gln 585	Asp	Gln	Pro	His	Gln 590	Val	Thr	1776
40	Gly	Asn	His 595	Gln	cag Gln	Pro	Pro	Gln 600	Gln	Asn	Thr	Gly	Phe 605	Pro	Arg	Ser	1824
	Ser	Gln 610	Pro	Tyr	tac Tyr	Asn	Ser 615	Arg	Gly	Val	Ser	Arg 620	Gly	Gly	Ser	Arg	1872
45	Gly 625	Ala	Arg	Ğİy	tta Leu	Met 630	Asn	Ğİy	Tyr	Arg	Gly 635	Pro	Āla	Asn	ĞÎy	Phe 640	1920
50	Arg	Gly	Gly	Tyr	gat Asp 645	Gly	Tyr	Arg	Pro	Ser 650	Phe	Ser	Asn	Thr	Pro 655	Asn	1968
	Ser	Ğİy	Tyr	Thr 660	cag Gln	Ser	Gln	Phe	Ser 665	Ala	Pro	Arg	Asp	Tyr 670	Ser	Gly	2016
55	tat Tyr				gga Gly												2064

	agt gga cca cgg gga gcc cca cga ggt cgt gga ggg ccc cca aga ccc Ser Gly Pro Arg Gly Ala Pro Arg Gly Arg Gly Gly Pro Pro Arg Pro 690 695 700	2112
5	aac aga ggg atg ccg caa atg aac act cag caa gtg aat taa Asn Arg Gly Met Pro Gln Met Asn Thr Gln Gln Val Asn 705 710 715	2154
	tctgattcac aggattatgt ttaaacgcca aaaacacact ggccagtgta ccataatatg	2214
10	ttaccagaag agttattatc tatttgttct ccctttcagg aaacttattg taaagggact	2274
	gttttcatcc cataaagaca ggactacaat tgtcagcttt atattacctg gatatggaag	2334
	gaaactattt ttattetgea tgttetteet aagegteate ttgageettg cacatgatae	2394
15	tcagatteet caccettget taggagtaaa acataataca etttacaggg tgatatetee	2454
	atagttattt gaagtggctt ggaaaaagca agattaactt ctgacattgg ataaaaatca	2514
	acaaatcagc cctagagtta ttcaaatggt aattgacaaa aactaaaata tttcccttcg	2574
20	agaaggagtg gaatgtggtt tggcagaaca actgcatttc acagcttttc cggttaaatt	2634
	ggagcactaa acgtttagat gcataccaaa ttatgcatgg gcccttaata taaaaggctg	2694
	gctaccagct ttgacacagc actattcatc ctctggccaa acaactgtgg ttaaacaaca	2754
25	catgtaaatt getttttaac agetgataet ataataagae aaageeaaaa tgeaaaaatt	2814
	gggetttgat tggcaetttt tgaaaaatat geaacaaata tgggatgtaa tetggatgge	2874
00	cgcttctgta cttaatgtga agtatttaga tacctttttg aacacttaac agtttcttct	2934
30	gacaatgact tttgtaagga ttggtactat ctatcattcc ttataatgta cattgtctgt	2994
	cactaatcet cagatettge tgtattgtea eetaaattgg tacaggtaet gatgaaaata	3054
35	tctaatggat aatcataaca ctcttggtca catgtttttc ctgcagcctg aaggttttta	3114
	aaagaaaaag atatcaaatg cctgctgcta ccaccctttt aaattgctat cttttgaaaa	3174
	gcaccagtat gtgttttaga ttgatttccc tattttaggg aaatgacaga cagtagtttc	3234
40	agttetgatg gtataageaa aacaaataaa acatgtttat aaaagttgta tettgaaaca	3294
	ctggtgttca acagctagca gcttatgtgg ttcaccccat gcattgttag tgtttcagat	3354
	tttatggtta tetecageag etgtttetgt agtaettgea tttatetttt gtetaaceet	3414
45	aatattetea eggaggeatt tatatteaaa gtggtgatee etteaettag aegeataggg	3474
	agagtcacaa gtttgatgaa gaggacagtg tagtaattta tatgctgttg gaatttgtgc	3534
	tagcagtttg agcactagtt ctgtgtgcct atgaacttaa tgctgcttgt catattccac	3594
50	tttgacttca tggagaatta atcccatcta ctcagcaaag gctatactaa tactaagtta	3654
	atggtatttt ctgtgcagaa attgaatttt gttttattag catttagcta aggaattttt	3714
	ccagtaggtg ctcagctact aaagaaaaac aaaaacaaga cacaaaacta ttctcaaaca	3774
55	ttcattgtta gacaactgga gtttttgctg gttttgtaac ctactaaaat ggataggctg	3834
	ttgaacattc cacattcaaa agttttttgt agggtggtgg ggaaggggggg gtgtcttcaa	3894

	tgtttatttt	aaaataaaat	aagttcttga	cttttctcat	gtgtggttgt	ggtacatcat	3954
	attggaaggg	ttatctgttt	acttttgcaa	atgagtattt	ctcttgctag	cacctcccgt	4014
5	tgtgcgcttt	aaatgacatc	tgcctgggat	gtaccacaac	catatgttag	ctgtatttta	4074
	tggggaatag	ataaaatatt	cgtggtttat	tgggtaatcc	ctagatgtgt	atgcttacaa	4134
	tcctatatat	aaaactaaat					4154
10	<210> 8 <211> 717 <212> PRT <213> Canis famil	liaris					
15	<400> 8						
20	X4002 0						
25							
30							
35							
40							
45							

	Met 1	Pro	Ser	Ala	Thr 5	Ser	Leu	Ser	Gly	Ser 10	Gly	Ser	Lys	Ser	Ser 15	Gly
5	Pro	Pro	Pro	Pro 20	Ser	Gly	Ser	Ser	Gly 25	Ser	Glu	Ala	Ala	Ala 30	Ala	Ala
10	Gly	Ala	Ala 35	Gly	Ala	Ala	Gly	Ala 40	Gly	Ala	Ala	Ala	Pro 45	Ala	Ser	Gln
15	His	Pro 50	Ala	Thr	Gly	Thr	Gly 55	Ala	Val	Gln	Thr	Glu 60	Ala	Met	Lys	Gln
15	Ile 65	Leu	Gly	Val	Ile	Asp 70	Lys	Lys	Leu	Arg	Asn 75	Leu	Glu	Lys	Lys	Lys 80
20	Gly	Lys	Leu	Asp	Asp 85	Tyr	Gln	Glu	Arg	Met 90	Asn	Lys	Gly	Glu	Arg 95	Leu
25	Asn	Gln	Asp	Gln 100	Leu	Asp	Ala	Val	Ser 105	Lys	Tyr	Gln	Glu	Val 110	Thr	Asn
	Asn	Leu	Glu 115	Phe	Ala	Lys	Glu	Leu 120	Gln	Arg	Ser	Phe	Met 125	Ala	Leu	Ser
30	Gln	Asp 130	Ile	Gln	Lys	Thr	Ile 135	Lys	Lys	Thr	Ala	Arg 140	Arg	Glu	Gln	Leu
35	Met 145	Arg	Glu	Glu	Ala	Glu 150	Gln	Lys	Arg	Leu	Lys 155	Thr	Val	Leu	Glu	Leu 160
40	Gln	Tyr	Val	Leu	Asp 165	Lys	Leu	Gly	Asp	Asp 170	Glu	Val	Arg	Thr	Asp 175	Leu
	Lys	Gln	Gly	Leu 180	Asn	Gly	Val	Pro	Ile 185	Leu	Ser	Glu	Glu	Glu 190	Leu	Ser
45																

	Leu	Leu	Asp 195	Glu	Phe	Tyr	Lys	Leu 200	Ala	Asp	Pro	Glu	Arg 205	Asp	Met	Ser
5	Leu	Arg 210	Leu	Asn	Glu	Gln	Tyr 215	Glu	His	Ala	Ser	Ile 220	His	Leu	Trp	Asp
10	Leu 225	Leu	Glu	Gly	Lys	Glu 230	Lys	Ser	Val	Cys	Gly 235	Thr	Thr	Tyr	Lys	Ala 240
	Leu	Lys	Glu	Ile	Val 245		Arg	Val	Phe	Gln 250	Ser	Asn	Tyr	Phe	Asp 255	Ser
15	Thr	His	Asn	His 260	Gln	Asn	Gly	Leu	Cys 265	Glu	Glu	Glu	Glu	Ala 270	Ala	Ser
20	Ala	Pro	Thr 275	Val	Glu	Asp	Gln	Val 280	Ala	Glu	Ala	Glu	Pro 285	Glu	Pro	Ala
25	Glu	Glu 290	Tyr	Thr	Glu	Gln	Ser 295	Glu	Val	Glu	Ser	Thr 300	Glu	Tyr	Val	Asn
	Arg 305	Gln	Phe	Met	Ala	Glu 310	Thr	Gln	Phe	Ser	Ser 315	Gly	Glu	Lys	Glu	Gln 320
30	Val	Asp	Glu	Trp	Thr 325	Val	Glu	Thr	Val	Glu 330	Val	Val	Asn	Ser	Leu 335	Gln
35	Gln	Gln	Pro	Gln 340	Ala	Ala	Ser	Pro	Ser 345	Val	Pro	Glu	Pro	His 350	Ser	Leu
	Thr	Pro	Val 355	Ala	Gln	Ala	Asp	Pro 360	Leu	Val	Arg	Arg	Gln 365	Arg	Val	Gln
40	Asp	Leu 370	Met	Ala	Gln	Met	Gln 375	Gly	Pro	Tyr	Asn	Phe 380	Ile	Gln	Asp	Ser
45	Met 385	Leu	Asp	Phe	Glu	Asn 390	Gln	Thr	Leu	Asp	Pro 395	Ala	Ile	Val	Ser	Ala 400
50	Gln	Pro	Met	Asn	Pro 405	Thr	Gln	Asn	Met	Asp 410	Met	Pro	Gln	Leu	Val 415	Суз
	Pro	Pro	Val	His 420	Ser	Glu	Ser	Arg	Leu 425	Ala	Gln	Pro	Asn	Gln 430	Val	Pro
55	Val	Gln	Pro 435	Glu	Ala	Thr	Gln	Val 440	Pro	Leu	Val	Ser	Ser 445	Thr	Ser	Glu

	Gly	Tyr 450	Thr	Ala	Ser	Gln	Pro 455	Leu	Tyr	Gln	Pro	Ser 460	His	Ala	Thr	Glu
5	Gln 465	Arg	Pro	Gln	Lys	Glu 470	Pro	Ile	Asp	Gln	Ile 475	Gln	Ala	Thr	Ile	Ser 480
10	Leu	Asn	Thr	Asp	Gln 485	Thr	Thr	Ala	Ser	Ser 490	Ser	Leu	Pro	Ala	Ala 495	Ser
	Gln	Pro	Gln	Val 500	Phe	Gln	Ala	Gly	Thr 505	Ser	Lys	Pro	Leu	His 510	Ser	Ser
15	Gly	Ile	Asn 515	Val	Asn	Ala	Ala	Pro 520	Phe	Gln	Ser	Met	Gln 525	Thr	Val	Phe
20	Asn	Met 530	Asn	Ala	Pro	Val	Pro 535	Pro	Val	Asn	Glu	Pro 540	Glu	Thr	Leu	Lys
25	Gln 545	Gln	Asn	Gln	Tyr	Gln 550	Ala	Ser	Tyr	Asn	Gln 555	Ser	Phe	Ser	Ser	Gln 560
	Pro	His	Gln	Val	Glu 565	Gln	Thr	Asp	Leu	Gln 570	Gln	Glu	Gln	Leu	Gln 575	Thr
30	Val	Val	Gly	Thr 580	Tyr	His	Gly	Ser	Gln 585	Asp	Gln	Pro	His	Gln 590	Val	Thr
35	Gly	Asn	His 595	Gln	Gln	Pro	Pro	Gln 600	Gln	Asn	Thr	Gly	Phe 605	Pro	Arg	Ser
	Ser	Gln 610	Pro	Tyr	Tyr	Asn	Ser 615	Arg	Gly	Val	Ser	Arg 620	Gly	Gly	Ser	Arg
40	Gly 625	Ala	Arg	Gly	Leu	Met 630	Asn	Gly	Tyr	Arg	Gly 635	Pro	Ala	Asn	Gly	Phe 640
45	Arg	Gly	Gly	Tyr	Asp 645	Gly	Tyr	Arg	Pro	Ser 650	Phe	Ser	Asn	Thr	Pro 655	Asn
50	Ser	Gly	Tyr	Thr 660	Gln	Ser	Gln	Phe	Ser 665	Ala	Pro	Arg	Asp	Tyr 670	Ser	Gly
	Tyr	Gln	Arg 675	Asp	Gly	Tyr	Gln	Gln 680	Asn	Phe	Lys '	Arg	Gly 685	Ser	Gly	Gln
55	Ser	Gly 690	Pro	Arg	Gly	Ala	Pro 695	Arg	Gly	Arg	Gly	Gly 700	Pro	Pro	Arg	Pro

Asn Arg	Gly	Met	Pro	Gln	Met	Asn	Thr	Gln	Gln	Val	Asn
705			•	710					715		

- 5 <210> 9 <211> 4939 <212> DNA <213> Canis familiaris
- 10 <220> <221> CDS <222> (1) .. (2109) <223>
- 15 <400> 9
- 20

- 25

- 30
- 35
- 40

- 45

- 50
- 55

			acc Thr 5							48
5			tcg Ser							96
10			gcg Ala							144
15			ggc Gly							192
			atc Ile							240
20			gat Asp 85							288
25		 _	ctg Leu	-	 -		_	 -		336
30			gca Ala							384
			aaa Lys							432
35			gcg Ala							480
40			gac Asp 165							528
45			aat Asn							576
45			ttc Phe							624

			195					200					205				
5					gag Glu												672
	-	_	-		aag Lys	-	_		-	-						-	720
10		-	-		gtt Val 245		-	-		-					-	-	768
15					cag Gln				-		-	-		-	-		816
					gaa Glu												864
20					gaa Glu												912
25	-			-	gca Ala	-		-		-	-		-	-		-	960
30					acg Thr 325												1008
				-	gct Ala					-						-	1056
35					cag Gln												1104
40		-			cag Gln			_	-	_	-				-	-	1152
	-	-	-		gaa Glu		-			-		-		-		-	1200
45	~		-		ccg Pro 405								-		-	-	1248
50					tct Ser												1296
	-			-	gct Ala		-	-		-	-				_		1344
55				-	tct Ser			-		-				-			1392

												cag Gln					1440
5				-	-							ctt Leu	-	-	-		1488
10												cca Pro					1536
45												atg Met					1584
												cca Pro 540					1632
20												agc Ser					1680
25												gaa Glu					1728
												ccc Pro					1776
30												gga Gly					1824
35	-	-					-	-				cgt Arg 620				-	1872
					Leu		Asn		Tyr		Gly	cct Pro			Ğly		1920
40												tct Ser					1968
45	-				-		-		-	-		cgg Arg	-				2016
50		-		-			-	-			-	cga Arg				-	2064
	-					-		-				ttg Leu 700			tga		2109
55	tcct	agct	cc t	aagt	ggag	rc tt	ctgt	tctg	gcc	ttgg	aag	agct	gtto	ca t	agto	tgcat	2169
	gtag	gtta	ica t	gtta	Iggaa	it ac	attt	atca	tta	ccag	act	tgtt	gcta	.gg g	atta	aatga	22 29

gttactata aattgtctt gaaaactaga actttctc tcccagaaa aagtgtttt2349sccaactgcaa attattttc aggtoctaaa acctgctaa tgttttagg aggactatta2409tgaacatt ttgtaagaca ttttggaat gagattgaac atttatata atttattat2409attoctctt cattttgaa catgcatatt atatttagg gtcagaaatc cttaatage2529caaataagce atagttacat ttagagaac atttagag gtaagaacta actgaaatt2589caatgcctt ggatatta tagggattgaa catttata aattacagg ttaaggget2709ttctggttt ttttccta ccataggaa actgttoct gtttggccag gagtcaace2769ttgtgaataa ttagagag gaatcaag tccataggaa actgttoct gtttggccag gagtcaace2769gtgtgcattt atttaat tagggtat catttag gttccat gagaactg tcaaaggt dcctagg289927tattaggag gaatcaag tactttgat tcaatgget atgaaactg acggcaaag2899ggtgcattt attttaat tagggtac atttgget catagagt gagaactg aggtacaag2009ggtgcattt attttaat tagggtac acttggat catggagt actga aggtacag2019ggtgcattt tcattctgg gttatgtc tttatacag tttgaagtacag aggaag2019ggtcattt catctagg ggtagaa aattgtgg gttatgtc tttatacag ttagaagtag aggaaga2019ggtcgttt tcattctgg gttatgt gtagttat gtagttat ttatacag3009ggtcdttt tcattctgg gttatgt gagtagt gagaggag acctggagaa3019ggtcdttt tcattctgg gttttata atttgaag gagagagag acctggagaa3019aatgaaga ttggagga atgaagaa gaggaagg gagaggag acctggagaa3019ggtcgtttt tcattctgg gttggagaa atgggagg gagaaggagg gagagggag3019ggtcdttt tcattcgg gagagga atggaagg gagaaggagg gagagggag3019ggtcdttt gttgaagga atggaagga atggaagga gagagagga gagaggaga3019ggtcgtttt tcattcgg gagagga atggaagga aggaagga agggaagg gagaggagg3019		aatgctctgt	ttctaaaact	tctcttgaac	ccaaatttaa	tttttgaat	gactttccct	2289
tyaaacatt ttytaagaca tttttgaat gagattgaac atttatata atttattatt2469attoctott cattttgaa catgcatat atatttagg gtcagaaaca cttaatggc252910caaataagcc atagttacat ttagagaaca attttagaagt gatagaacta actgaaatt258912caatgcottt ggatcatta tagogata aatttcaaat tytttotga tttaaataa2649aacatccaaa atoctaacta actocdgaa ctatttaa aaattacagg tttaaggagt270914tttdggttt tttototta coataggaaa actgttoct gttggcoag gagataacc276915ttdggttt tttototta coataggaaa actgttoct gttggcoag gagataacc276916ttdggttt tttototta coataggaa actgttoct gttggcoag gagataacc276917tataaggag gaataacaag tactttgat tcaatggc ctaaactgt ataaaatgta289920tataaggag gaataacaag tactttgat tcaatggc caaacagt ccagcaaaa294917ggtgcattt attttaaa taatggatca cttggagatt actgactg ccagcaaaa300917gatattigaa tggaagtg ggttagtte tttccact tgtagcatat totatgaag300918ggtcgtttt toattogg gcttatta gtagttoct tttaacagt taggaacaa318920tagaagtag tagagtga catagaagt gagtgag aggacggt accttgotg318921tacaagtag tagagtga catagaagt gagtgag gagaggag ccttgotgt330922aataaatact tgtgaaga atgaatgaa gagtcocg gagacaaca gtaggcagg336933aataaatact tgtgaaga ctagagcaa attggcgaa atgactag agaggaga catagacga348934tgactcaga gtagaccat dtaaccag atgacgaa atgactga gaaaaccaa369935catcatgaag atgacga ctagaggaa atgattga gagacaga catagtcaaca349936aataatact tgttgaatga tgatgaacga agaagaacaa tatttgaag gaaaaccaa369936catcatgaag atgactgt ct		gttactatat	aaattgtctt	gaaaactaga	acatttctcc	tcctcagaaa	aagtgttttt	2349
atteetetti eattittaa eatgeatatt atattitagg gicagaaate etttaatgge252910caaataagee atagtiseat ttagggaace atttagaagt gatagaacta actgaaatt258913eaatgeett ggateata tagegaata aatteeaat tgitteegae tttaatgagg270914tteeggttt ttteeteta eeaaggaaa actgiteee guagaagta aatgegaagta270915tteeggttt ttteeteta eeaaggaaa actgiteee guagagtee gaageagee276915tteeggttt ttteeteta eeaaggaaa actgiteee guagagtee geageagee288920tattaaggag gaataeaag taettgat gatedgaatge cataaaggt ataaatgaa288921tattaaggag gaataeaag taettgat teaatgeta gagaaactge cogaaaaa294922ggtgeattt atttiaaat taatggate ettggaat eedgaactge cogaaaaa294923ggtgeattt atttiaaat taatggate ettggaat eedgaaatge cogaaaaa300924gaatgtage tggaaggag taataegg tettee tteeacgeag taaaaagta tettateegg302925ttagaagtag eggtageaa aateggate guagaagta eedgaaggag318930ggteettt teateegg ogtteetta gtagattee tteacageag taaggaaga eggaagaa318931aaatgaage tagatga eeagaagt aggeeteg aggaaggage eesgaaggaag318932aaatgaage tagatgaa eeagaaga gageeeagage eeggaaggaa gaagagaa etggaagaa eeggaagaa etggaagaa eagaagaa etggaagaaga eeggaagaa eiggaagaag aaaaecaaa360933aatgaactee gaaggagaa etggaagga eedgttee eeaaggag gaagaegga agaaaaceaa36934tgaetteega tgaaateg eedgaaggag eeedgeeeea gaaggaagaa eeaaggaag atageeeea gaaggaaga eedgaagaa eeagaagga eeeagaagga agaaaaceaa360935tgaetteega tgaaaateg eetgeaeada aatagegaga eeeagaagga agaagaacaa372936tgaetteega gaagaaga eeeagaagga	5	ccaactgcaa	attattttc	aggtcctaaa	acctgctaaa	tgtttttagg	aagtacttac	2409
10caaataagcc atagttacat ttagagaacc atttagaagt gatagaacta actgaattt258913caatgccttt ggatcattaa tagcgatata aatttcaaat tgtttctgac ttttaaataa264914aacatccaaa atcctaacta acttcctgaa ctatattaa aaattacagg tttaaggagt270915ttctggtttt ttttctctta ccataggaaa actgttcct gttggccag gaagtcaacc276915tgtgtaataa ttagaagtag cattcatat gatctgaagt ctaaatggt tcctgatt288920tattaaggag gaatcaaag tacttgatt ccatagtat tcaaatggt ccttgaat 289321ggtgcattt attttaat taatggatca cttgggaatt acgaactgg ccagcaaaa294922ggtgcattt attttaat taatggatca cttgggaatt actgactga agtatcaaag300923ggtgcattt attttaat taatggatca cttgggaatt actgactga agtatcaaag301930ggtcgtttt tcattctgg ggttagtta gtagatgt gtaggaacta agtaggaagt338930ggtcgtttt tcattctgg ggtttatt gagaaggag catagaggaa catagaaga aggaagta aggaagta agaaggag aggaagta aggaagga		tgaaacattt	ttgtaagaca	tttttggaat	gagattgaac	atttatataa	atttattatt	2469
 caatgocttt ggatattaa tagogatata aatttoaaat tgtttotgac ttttaastaa 2649 aacatocaaa atoctaacta acttootgaa otatatttaa aaattacagg tttaaggagt tiotggtttt ttttototta ocataggaaa actgttoot gtttggocag gaagtoasoo tiotggttt ttttototta coataggaaa actgttoot gtttggocag gaagtoasoo tiotggttt attttaaat tagaagtag cattoatat gatotgaagt totaaatggt tototgatt ggtgoagtt aaattgaat ggttooto agttattgo atgaaactgg coagoaaaa ggtgocattt attttaaat taatggatca ottgggaatt actgactga agtatcaaag tigagttgac tggaatgtg ggttatgtto tttotocaot tgtagoatat totagaag tigagttgac tggtagotaa aaatotgttt taacagcatg taaaaagtta ttttatotg tigagttgac tggtagotaa aaatotgtt taacaggatg cagagagaa catggagata ggtocgtttt toattotggt gotttatta attttgatag tatgatgta ottactactg ggtocgttt toattotggt gotttata atttggaag gagagaact aaatgtaago tagagtgtac actagaatga aggtactggt ggaatactoc attagotca aaatgtaago tagagtgaa catgaagaa gagtactggt ggaatactoc attagotca aaaatgtaag tgaaatdy ottgaaggaa aggaagta aggaagtag caagotgoco acatgottot aaaatgtaag tgaaatdy ottgaaggaa aaggaagaa aggaagtaa tagaatgaa gagcaaataa tattgaaag aaaaaccaaa tigagttoogaa tgaaaatot ottgaagga aggaagta cacagaagta atgatgaa aggaagta acaaggag gatgococaa tigagtoogaa tgaaagtga ttaatotga toacaataa gaaggaacaa tigagtacact agaagtgaa taatgaatg aaggaagtat attatatat tigaaag aaaaccaaa tigagtacact agaagtgaa taagatgaa taccaagaat attitgaaag aaaaccaaa tigagtacact agaagtgaa tatatotga toacaataa gaaggaggaacaaa tigagtacact agaagtgaa taccaaga toaccaataa gaaggaggaacaaaagaaggaa tigagtacact aggagagaa catgagagaa tatttooca		attcctcttt	catttttgaa	catgcatatt	atattttagg	gtcagaaatc	ctttaatggc	2529
15aacatccaaa atoctaacta acttocotgaa ctatattaa aaattacagg tttaaggagt270915ttotggttt ttttototta coataggaaa actgttoot gttggocag gaagtoaco276916tgtgtaataa ttagaagtag catttoata gatotgaagt totaaatgt tototgatt282920aagggaagt aaattgaat ggttootot agttattgo cataacatgt ataaaatgta289920tattaaggag gaatacaaag tacttgatt caatggtag tagaaactgg coagoaaaa294921ggtgcattt attttaat taatggatoa cttgggaatt actgactga agtatcaaag300922ggtgcattt attttaat taatggatoa cttgggaatt actgactga agtatcaag300923ggtgtgtgac tgtgaatgg ggttatgtto tttoccact tgtagcatat totatgaag300924tataagga gagtgtaa aaattggtag ggttatgtto tttoccact tgtagcatat totatgaag318930ggtotgttt toattotgg gotttatat gtagttoot tttaacagtt taggtaacaa318931aaatgtaag tagagtgtaa actagaatga aggtacagtg ctgaacaaa gtaggoact336932aaatgtaag tagagtgtaa actgaagaa gagtacagtg ctgaacaata gtaggoact336933aaatgtaag tgaaatga atgaatgaat gagtactgg ggaatactoc attagctca342934tgacttoaga tgaaaatct gttgaaga catgagcaa tttgogcat acaacttoca ggacaggta348935cttotttt agtagaaa catgagga actgagcaa tttgocgaa caactagag gatgcogcaa36936tgacttoaga tgacaatcg tottgaagg caagoagga ccaacagagg gatgcogcaa36936tgacttoaga tgacaatcg tottgaagga actgagcaa tttgocgaat actattgaa gaaaaccaa360936tgacttoaga tgacaatg tottgaagg caagaggaat acatgtgaag gaagaccaa37937tgacttoaga tgacaatg tattoaca gaaggagtat tatotattg totcocataa37938ccttgact gtgacaatag ggtg	10	caaataagcc	atagttacat	ttagagaacc	atttagaagt	gatagaacta	actgaaattt	2589
15ttctggtttt ttttctctta ccataggaa actgttcct gtttggccag gagtcaacc2769tgtgtaataa ttagaagtag catttcatat gatctgaagt tctaaatggt tctcagatt2829aagggaagtt aaattgaata ggtttcctct agttattgge cataacatgt ataaaatgta289920tattaaggag gatacaaag tacttgatt tcaatgctag tagaaactgg ccagcaaaa2949ggtgcattt attttaaat taatggatca cttgggaatt actgacttga agtatcaaag300925ttgagttgac tggtagtag ggttatgtte tttccacct tgtagcatat tctagaag318926ttgagttgac tggtagtaa aaatctgtt taacagcatg taaaaagtta ttttactgt312927tacaagtcat tatacaattt tgaatgttat gtagttcett tttaacagtt taggtaacaa318930aaatgtaage tagagtgtac actagaatgt agtagatg tagatgata cattagetag3169310aaatgtaage tagagtgtac actagaatgt aggeccatg gagagagaaga catggagaaga attgacget gagatactag gagagaagaagaagaagaagaagaagaagaagaagaa		caatgccttt	ggatcattaa	tagcgatata	aatttcaaat	tgtttctgac	ttttaaataa	2649
10010010010020tdtgdataa ttagaagtag catttcata gatctgaagt tctaaatggt tctcagatt282920tattaaggag gatacaaag tacttgatt tcaatgctag tagaaactgg ccagcaaaa29499gdtgcattt attttaaat taatggatca cttgggaatt actgacttga agtacaaag30099gatatttgca tgtgaatgtg ggttatgttc tttctccact tgtagcaatt cctagaaag306925ttgagttgac tggtagctaa aaatctgtt taacagcatg taaaaagtta tttactqt318990gdtcdttt tcattcdgg cfttatta atttgaatg tagtagtag tagagaacaa318991aaatgtaag tagagtgtac actagaatgt agaccaag tagagagaga ccttgctgt330992cttcactgct gtatcattt ccaacgcctg agagcaggta ccttgctgt3309930aaatgtaag tagagtgtac actagaatgt aggcacgtg ctgacacaa gtaggcagta3189930aaatgtaag tagagtgtac actagaatgt aggcacgtg cgacacaa gtaggcagta3169931aaatgtaag tagagtgtac actagaatga aggcacggt ctgacacat gtaggcact3369932cttcactgct gtatctatt ccaacgcctg aggacagtg cgacagta gtaggacagt3169933aataaatact gttggaatga atgaatgaat gagtactggt ggaatactcc attagctca3169934aataatact ggtgaagaa catgagcaa tttgcgcatg acaacttcca ggacagtga3169935ctcttcttt agctagaga catgagcaa ttggccaa acttgcga gaaaaccaa3609936tgacatttg ottgtaagag gacgtgga cacccaaga ccaacagag gatgccgcaa369936tgacattg ottgtaagag catgagga attatctga tcacagag gaagagaga agaaaccaa3729937cactggaga ttacccaa tagtgtag cgaggaaca tttgccgaa agaggaga agaagagaga attagacgaa agaagagag agaggaggaca caacgagag agagagag		aacatccaaa	atcctaacta	acttcctgaa	ctatatttaa	aaattacagg	tttaaggagt	2709
 aagggaagtt aaattgaata ggtttoctot agttattggo cataacatgt ataaaatgta 2889 tattaaggag gaatacaaag taotttgatt tootagtag tagaaactgg coogaaaaa 2949 ggtgootttt attttaaat taatggatoa ottgggaatt actgoottga agtatcaaag 3009 gatatttgoo tggtagotaa aaatotgtt toottootoottgagootaa tootagaagg 3069 ttgagttgoo tggtagotaa aaatotgtt taacagootg taaaaagtta ttttactgt 3129 tacaagtoot toottgg gotttatta attttgatag tatgatgatt actgoottga agtaccaag ggtootttt toottootgg gotttatta attttgatag tatgatgta ottaacaag ggtootttt toottootgg gottatgtoo tttootoot gagoogga oottgootgg aaatgtaago tagagtgaa actagaatgt aggoottgootag agagoogga oottgootgg aataatact tgttgaatga agaatagaa gagtactgg ggaatactoo attagoota ataaatact tgttgaagaa catgagooga aagoottgoo agaaggg gatgoogaa tgoottottt goottotag tootagaagg accoccaaga gaaggagg gatgoogaa tgoottottt goottotag togtagoog aagoogga coccaaggg gatgooccaa tgoottottt goottotag togtagoog aagoogga coccaagag gaaggag gatgoogaa tgoottottt goottotag togtagoog aagoogga coccaagag gaaggag gatgoogaa tgoottottt goottotag togtagoog aagoogat actattt tootootto gooaaaaca tgoottottt goottotag togtagoog gootgootto cocaagag gaaggag gatgoogaa tgoottottt goottotag togtgagga coccaagac cocaacagagg gatgoogaa tgoottottt goottotag togtgagga coccaaaga cocaacagagg gatgoogaa tagaacacta agooggaa tatactogaa tatattat tootootaaa gacaggacta caattgoog cactgooog tgtaccata tatgtaacag gaagaact attttatto tgootgoogaaaacaa cactgooog tgtaccata tatgtaacag tootcoocot tgoottagag taaaacataa cactgooog tgtaccata tatgtaaga toococ tgoottagaa agooagata cocatgoog cacttagac ottgoocag attaccoocot tgoottagaa agooagata agoogaata cacttagac ottgoocag attaccoocot tgoottagaa agooagata agooagata cacttagac ottgoocag attaccoocot tgoottagaa agooagata ag	15	ttctggtttt	ttttctctta	ccataggaaa	actgtttcct	gtttggccag	gaagtcaacc	2769
 tattaaggag gaatacaaag tactttgatt tcaatgctag tagaactgg ccagcaaaaa 2949 gqtgcattt attttaaat taatggatca cttgggaatt actgacttga agtatcaaag 3009 gatatttgca tgtgaatgtg ggttatgttc tttctcacct tgtagcatat tctatgaaag 3069 ttgagttgac tggtagctaa aaatctgtt taacagcatg taaaaagtta ttttatotgt 3129 tacaagtcat tatacaattt tgaatgtta gtagttctt tttaacagtt taggtaacaa 3189 gqtctgttt tcattctggt gctttatta attttgatag tatgatgta cttaactactg 3249 aaatgtaagc tagagtgtac actagaatgt aagctccatg agagcaggta ccttgtctgt 3309 cttcactgct gtatcattt ccaacgcctg atgacagtg ctgacacata gtaggcactc 3369 aataatact tgttgaatga atgacgacaa tttgcgcatg cagacagtga 3489 acactgaaga attgacctct taaacctaat aatgtggtga caagctgcca caatgctct 3549 tgoactttt gcttctagg tcgtggggg cccccaagac ccaacgagg gatgccgcaa 3669 tgoactttt gttaaagg agtggaagt taactcga tagacagta atgatgaag 3489 cactggcoag tgtaccata tatgttacca gaaggattat tatctattg ttccccttt 3789 cactggcoag tgtaccata tatgtaccg gaaggata tatgttaat tatctattg ttcccctt 3789 cactggacg tgtaccata tatgtaagg tactcgat toctaacaggat aggagaact adaggagaact attgtaagg aacacggaa 3499 cactggcoag tgtaccata tatgtaacg gaaggagtat tatctattg ttccccttt 3789 cactggcoag tgtaccata tatgtaacg tccccaaga gacaggata caattgccg 3849 cattatat cctggatag gaaggaaact atttttattc tgcatgttct tcctaagcgt 3909 catcttgag cttgacatg atccaagt tattgaag gatggaggaagaagagta 4029 actttgag cttgacatg atccaaga tcaacacaa cagccctag agtagaagagagagagagaacaaacaaa 3669 catcttgag cttgacatag ataccaaga tcacagaagagaacaa agcaagaata 4029 actttgaca ttggataaa atcaacaaat cagccctag gttattcaaa gacaagata 4029 acttctgaca ttggataaa atcaacaaat cagccctag agttatgaagaa agcaagatta 4029 acacttaa aatattcc ttcgagaaga agtggaagg gttggtggaaacaacacaac		tgtgtaataa	ttagaagtag	catttcatat	gatctgaagt	tctaaatggt	tctctgattt	2829
121121121121121121121121123gqtgcattt attttaat taatggatca cttgggaatt actgacttga agtatcaaag3009124gatatttgca tgtgaatgtg ggttagttc tttctcacct tgtagcatat tctatgaaag3069125ttgagttgac tggtagctaa aaatctgtt taacaagcatg taaaaagtta ttttatctgt3129130gqtcgttt tcattctggt gctttatta gtagttctt ttaacagcatg taaaaagtta ttttatctgt324930aaatgtaagc tagagtgtac actagaatgt aggctcag aggcaggta ccttgtctgt3309310cttcactgct gtatctatt ccaacgcotg atgacagtgc ctgacacata gtaggcactc3369325cttcactgct gtatctatt ccaacgcotg atgacagtgc ctgacacata gtaggcactc3429326aataaatact tgttgaatga atgaatgaat gagtactggt ggaatactcc attagctcta3429326ctctctttt agctaggaa catgagcaaa tttgcgcatg acaacttcca ggacaggtga3489326aataaatact tgttgaatga tgaatgaat gagtactggt ggaatactcc attagctcta3429327tgactcaga tgaaatctg cttgaaggca aagcaaata tattgaaag aaaaaccaaa3609328tgacttcaga tgaaatctg cttgaaggc aagcagata ccaacgagg gatgcogcaa3669329tgccatttt gtcttctagg tcgtggaggg cccccaagac ccaacagagg gatgcogcaa3669349cactggccag tgtaccataa tatgttacca gaagagttat tatctatttg ttctcccttt3789329cactggccag tgtaccatg atcacagat tccccataaa gacaggacta caattgcag3849340tgcactttag catggaagg gactgtttc atcccataaa gacaggagt acaattgcaa3609340tgcacttcag tgcacgtag tagagtgaact gagaggagt acaacttag 3609369340tgcactttag tgcacgtag tagaggaggaggaggaggagggaggagggaggagggag		aagggaagtt	aaattgaata	ggtttcctct	agttattggc	cataacatgt	ataaaatgta	2889
25gatattışca tıştışaatıştış gıştatıştık titkete ceki tıştışışda tıkışaaşışı 306926tişaştışac tıştışaatıştış gıştıtıştık titkete ceki tıştışaşışı taşaştıştı taştıştıştık titkete tişaştıştık tişaştıştıştık titkete tişaştıştık titkete tişaştıştık titkete tişaştıştık tişaştıştıştık tişaştıştıştıştık tişaştıştıştık titkete tişaştıştık titkete tişaştıştık titkete tişaştıştık titkete tişaştıştık titkete tişaştıştık titkete tişaştıştıştık titkete tişaştıştık titkete tişaştıştıştık titkete tişaştıştık titkete tişaştıştıştıştıktıştık titkete tişaştıştıştıştıktıştıktıştıktıştıştıştıştıştıştıştıştıştıştıştıştışt	20	tattaaggag	gaatacaaag	tactttgatt	tcaatgctag	tagaaactgg	ccagcaaaaa	2949
 ttgagttgac tggtagctaa aaatctgttt taacagcatg taaaagtta ttttatctgt 3129 ttgagttgac tggtagctaa aaatctgttt taacagcatg taaaagtta ttttatctgt 3189 ggtctgttt tcattctggt gotttatta attttgatag tatgatgta ctaactactg 3249 aaatgtaagc tagagtgtac actagaatgt aagctccatg agagcaggta ccttgtctgt 3309 cttcactgct gtatctattt ccaacgcctg atgacagtgc ctgacacata gtaggcactc 3369 aataaatact tgttgaatga atgaatgaat gagtactggt ggaatactcc attagctcta 3429 ctcttcttt agctagaga attgacctct taaacctaat aatgtggtga caagctgccc acatgcttct 3549 tgacttcaga tgaaatctg ctggaggg cccccaagac ccaacagagg gatgccgcaa 3669 tgacattt gtcttctag tcgtggagg cccccaagac ccaacagagg gatgccgcaa 3729 cactggccag tgtaccata tatgttacca gaaggatta tatctattg ttctcccttt 3789 cactggacag tgtaccata tatgtacag tcccatag agacagacta caattgtcag 3849 cacttgagc cttgcacag ataccga atccagaat tcccaacaga gacagagta caattgtcag 3849 cacttgagc cttgcacag ataccaga tcccacaca agacagata 3969 cacttgagc cttgcacag ataccaga tcccatagt tcctcaccct tgcttaggag taaaacataa 3969 cacttgagc cttgcacag ataccaga tcccaacat cagcagtga agcagagta 4029 cacttgagc cttgcacag ataccaga tcccaaga gttattcaaa tggtaattga 4029 cactttac agggtgata ctccatagt tattgaagg gctggaga agcagagta 4029 cactttac agggtgata tcccatagt tattgaagg gctggaaa agcaagatta 4029 actctgaca ttggataaaa atcaacaaat cagccctaga gttatcaaa tggtaattga 4029 caaaactta aattttcc ttcgagaag gatggaagg atggaagg atggaagg atggaagg accactga 4029 		ggtgcatttt	attttaaat	taatggatca	cttgggaatt	actgacttga	agtatcaaag	300 9
111212121212121312121214141414141314141414141414141415141414141416141414141417141414141418141414141419141414141410141414141410141414141410141414141410141414141410141414141410141414141410141414141410141414141410141414141410141414141410141414141414141414141415141414141416141414141417141414141416141414141416141414141416141414		gatatttgca	tgtgaatgtg	ggttatgttc	tttctcacct	tgtagcatat	tctatgaaag	3069
30ggtctgtttt toattotggt gottttatta attttgatag tatgatgtta ottactactg324933aaatgtaago tagagtgtao actagaatgt aagotocatg agagoaggta oottgotott330935aataaataot tgttgaatga atgaatgaa gagtaotggt ggaataotoo attagotota342936ctottotttt agotaggaga catgagoaa tttgoogoatg acaagotgoo oacaatgtot349940tgaottoaga tgaaaatotg ottgaagga caagotagoo oacaagagg gatgoogoa360942tgaottoaga tgaaaatotg ottgaagga caagotagoo caaagotgoo acaagotgoo acaagotgoo369943tgaottoaga tgaaaatotg ottgaaggo oococaaga caagagag gatgoogoa360943tgaottoaga tgaaaatotg ottgaaggo oococaagao cocaacagagg gatgoogoa369944tgoottoaga tgaaaatotg ottgaaggo oococaagao cocaacagagg gatgoogoa369945cactggooag tgtacoataa tatgttacca gaagagttat tatotatttg ttotcocttt372946cactggooag tgtacoatag gaaggaacat attttatto tgoatgttot tootaagotg390950catottgago ottgoacatg atactoagat tootcaacot tgottaggag taaaacataa396950cacttgago ottgoacatg atactoagat tattgaagg gottgttot atttgaagg gottgtataa agocagata402951caaaactaa atggataaa atcaacaaat cagocctag gttattoaaa tggaaaataga306952caaaactaa atggataa taccaagat tootcoacot tgottaggag taaaacataa396953catottgag ottgoacatg atactoagat tootcoacot tgottagga taaaacataa396954caacttaa agggtgata toccaagat atttgaagg gottgoaaa agcaagata306955caaaacta aatttoo ttogagaagg agtgogaag gtgoocaaa agcaagatg gotagaaaaaacaaa396956caaaactaa aggataaaa atcaacaaat cagocctaga gttatcaaa tggtaattga4089	25	ttgagttgac	tggtagctaa	aaatctgttt	taacagcatg	taaaaagtta	ttttatctgt	3129
30aaatgtaagc tagagtgtac actagaatgt aagctccatg agagcaggta cottgtotgt3309 citcactgct gtatotatti ocaacgootg atgacagtgo otgacacata gtaggcacto3309 citcactgot gtatotatti ocaacgootg atgacagtgo otgacacata gtaggcacto3369 aataaatact tgttgaatga atgaatgaat gagtactggt ggaatactoc attagotota3429 ototagagaa attagootot aaacotaa atgiggtga caagotgoo otgacaggtga3489 aacactgaaga attgacoot taaacotaat aatgiggtga caagotgoo acatgottot35440tgacttcaga tgaaaatotg ottgaaggca aagcaaataa tattgaaag aaaaaccaaa3609 tgocatttt gtottotagg togtggaggg occoccaagac ocaacagagg gatgoogcaa3669 atgaacacto agcaagtgaa ttaatotgat toacaggatt atgtttaaac gocaaaaaca372945cactggocag tgtaccataa tatgtaacg gaaggatat tatotatttg ttotcoottt3789 caggaaactt attgtaaagg gactgtttto atcocacaaa gacaggacta caattgtcag384950catottgago ottgoacaatg atactoagat tootcacoot tgottaggag taaaacataa3969 tacacttaa agggtgatat otcocacoot tgottaggag taaaacataa3969 atgacacta aggagtgatat attgaagt goottgoaaa agcaagatta4029 acttotgaca ttggataaa atcaacaaat cagcootaga gtatatcaaa tggtaattga4029 acttotgaca ttggataaa atcaacaaat cagcootaga gtatatcaaa tggtagata		tacaagtcat	tatacaattt	tgaatgttat	gtagtttctt	tttaacagtt	taggtaacaa	3189
aaatgtaage tagagtgtae actagaatgt aageteedag agageaggta eettgetetgt 3309 etteactget gtatetattt eeaaegeetg atgaeagtge etgaeaeata gtaggeaete 3369 aataaataet tgttgaatga atgaatgaat gagtaetggt ggaataetee attageteta 3429 etettettt agetagagaa eatgageaaa tttgegeetg ggaataetee aggeeaggtga 3489 acaeetgaaga attgaeetee taaaeetaa aatgtggtga eaageetgeee acaeggeega 3669 tgeeatttt gtettetagg tegtggaggg eeeeeaagag gatgeegeaa 3669 atgaaeaete ageaagtgaa ttaateega teaeegagat atgettaaae geeaaaaee 3729 eeeegaagee gaeggeega taatgaeega gaeggeeta eageaggeeta eaatgeege 3729 eeeegaaeett attgtaaagg gaeeggettee teeeseagagg gaeggeegea 3669 atgaaeaete ageaagtgaa ttaateega teeeseagagetta tateetattg teeteeett 3789 eeeegaaaeett attgtaaagg gaeeggttee ateeteette 3789 eeeeggaaaeett attgtaaagg gaeegtteet ateeteetaa gaeaggeeta eaatgeegg 3849 eetttaatta eeeggatag gaaggaaaet atttttatte tgeeatgteet teetaageegt 3909 so eateetgaee ettgeaeatg ateeteeagat teeteeeet tgeetaggag taaaaeetaa 3969 taeeettae agggtgatat eteetaagt attgaagg geetggtagaa aageeagatta 4029 aetteegaea ttggataaaa ateeaeaaat cageeetaga gettggeaga aacaaetgee 4009 so eateetgaea ttggataaaa ateeaeaaat cageeetaga gettggeeag aacaaetgee 4009		ggtctgtttt	tcattctggt	gcttttatta	attttgatag	tatgatgtta	cttactactg	3249
35aataaatact tgttgaatga atgaatgaat gagtactggt ggaatactcc attagctcta342935ctcttcttt agctagagaa catgagcaaa tttgcgcatg acaacttcca ggacaggtga3489acactgaaga attgacctct taaacctaat aatgtggtga caagctgccc acatgcttct354940tgacttcaga tgaaaatctg cttgaaggca aagcaaataa tattgaaag aaaaaccaaa360940tgccatttt gtcttctagg tcgtggaggg cccccaagac ccaacagagg gatgccgcaa367942atgaacactc agcaagtgaa ttaatctgat tcacaggatt atgtttaaac gccaaaaaca372943cactggccag tgtaccataa tatgttacca gaagagttat tatctattg ttctcccttt378945cactggccag tgtaccataa tatgttacca gaagagttat tatctattg ttctcccttt390950catcttgagc cttgcacatg atactcagat tcctcaccct tgcttaggag taaaacataa396950cactctgaca ttggataaa atcaacaaat cagccctaga gttattcaaa ggcaagatta402950cactttga aggtggatat ctcccatagt attgaagg gttggaaaa atcaacaaat396951caaaaactaa aatatttccc ttcgagaagg agtggaatgt ggttggcag aacaactgaa408952caaaaactaa aatatttccc ttcgagaagg agtggaatgt ggtttggcag aacaactgca4089	30	aaatgtaagc	tagagtgtac	actagaatgt	aagctccatg	agagcaggta	ccttgtctgt	3309
35ctottottt agotagaga catgagcaa tttgogcatg acaacttoca ggacagtga3489acactgaaga attgacctot taaacotaat aatgtggtga caagotgoco acatgottot354940tgacttoaga tgaaaatotg ottgaaggoa aagocaaataa tattgaaag aaaaacoaa3609tgocatttt gtottotagg togtggagg occoccaagac ocaacagagg gatgoogoa3669atgaacacto agcaagtgaa ttaatotgat tcacaggatt atgttaaac gocaaaaaca372945cactggocag tgtaccataa tatgttacca gaagagttat tatotattg ttotcocttt378960cattatat octggatag gactgttto atcocataa gacaggacta caattgtoag390950catottgago ottgoacatg atactcagat toccacaga gtatatacaa396961acacttgaca ttggataaa atcaacaaat cagococtaga gtattocaa agoagatta402962catottgago ottgoacatg atactcagat toccacaga gtattocaa agoagatta402963caaaaactaa atatttoco ttogagaag agtggaatgt ggttggoag aacaactgoa408965caaaaactaa atatttoco ttogagaag agtggaatgt ggttggoag aacaactgoa4149		cttcactgct	gtatctattt	ccaacgcctg	atgacagtgc	ctgacacata	gtaggcactc	3369
40acactgaaga attgacctot taaacctaat aatgtggtga caagctgccc acatgcttot354940tgacttcaga tgaaaatctg cttgaaggca aagcaaataa tattgaaag aaaaaccaaa360940tgccatttt gtcttctagg tcgtggaggg cccccaagac ccaacagagg gatgccgcaa3669atgaacactc agcaagtgaa ttaatctgat tcacaggatt atgtttaaac gccaaaaaca372945cactggccag tgtaccataa tatgttacca gaagagttat tatctattg ttctcccttt384960cactggccag tgtaccataa tatgttacca gaagagttat tatctattg ttctcccttt378945cactggccag tgtaccataa tatgttacca gaagagttat tatctattg ttctcccttt384960catcttgagc cttgcacatg gaaggaaact atttttattc tgcatgttct tcctaagcgt384960catcttgagc cttgcacatg atactcagat tcctcaccct tgcttaggag taaaacataa390960catcttgagc cttgcacatg atactcagat tcctcaccct tgcttaggag taaaacataa396960catcttgagc cttgcacatg atactcagat attgaagtg gcttggaaaa agcaagatta402960catcttgagc cttgcacatg atactcagat cagccctaga gttattcaaa tggtaattga408961caaaaactaa aatattccc ttcgagaagg agtggaatgt ggtttggcag aacaactgca4149	25	aataaatact	tgttgaatga	atgaatgaat	gagtactggt	ggaatactcc	attagctcta	3429
40tigacttcaga tgaaaatctg cttgaaggca aagcaaataa tatttgaaag aaaaaccaaa360940tgccatttt gtcttctagg tcgtggaggg cccccaagac ccaacagagg gatgccgcaa366942atgaacactc agcaagtgaa ttaatctgat tcacaggatt atgttaaac gccaaaaaca372943cactggccag tgtaccataa tatgttacca gaagagttat tatotatttg ttctcccttt378944caggaaactt attgtaaagg gactgttttc atcccataaa gacaggacta caattgtcag384950catcttgagc cttgcacatg atactcagat tcctcaccct tgcttaggag taaaacataa396950catcttgagc cttgcacatg atactcagat tcctcaccct tgcttaggag taaaacataa396950catcttgaca ttggataaa atcaacaaat cagccctaga gttattcaaa tggtaattga402951caaaaactaa aatatttccc ttcgagaagg agtggaatgt ggtttggcag aacaactgca4149	35	ctcttcttt	agctagagaa	catgagcaaa	tttgcgcatg	acaacttcca	ggacaggtga	3489
40tgccatttt gtcttctagg tcgtggaggg cccccaagac ccaacagagg gatgccgcaa3669atgaacactc agcaagtgaa ttaatctgat tcacaggatt atgtttaaac gccaaaaaca372945cactggccag tgtaccataa tatgttacca gaagagttat tatctatttg ttctcccttt378945caggaaactt attgtaaagg gactgttttc atcccataaa gacaggacta caattgtcag384950catcttgagc cttgcacatg atactcagat tcctcaccct tgcttaggag taaaacataa396950catcttgagc cttgcacatg atactcagat tccccataga gttattcaaa agcaagatta402950catcttgaca ttggataaa atcaacaaat cagccctaga gttattcaaa tggtaattga402951caaaaactaa aatatttccc ttcgagaagg agtggaatgt ggtttggcag aacaactgca4149		acactgaaga	attgacctct	taaacctaat	aatgtggtga	caagctgccc	acatgettet	3549
tgccatttt gtcttctagg tcgtggagg cccccaagac ccaacagagg gatgccgcaa3669atgaacactc agcaagtgaa ttaatctgat tcacaggatt atgtttaaac gccaaaaaca372945cactggccag tgtaccataa tatgttacca gaagagttat tatctatttg ttctcccttt3789caggaaactt attgtaaagg gactgttttc atcccataaa gacaggacta caattgtcag384950catcttgagc cttgcacatg atactcagat tcctcaccct tgcttaggag taaaacataa396950catcttgagc cttgcacatg atactcagat tcctcaccct tgcttaggag taaaacataa396950catcttgagc cttgcacatg atactcagat tcctcaccct tgcttaggag taaaacataa396951caaaactaa agggtgatat ctccgagag gttggaagg gttggaaaa agcaagatta402955caaaaactaa aatatttccc ttcgagaagg agtggaatgt ggtttggcag aacaactgca4149	40	tgacttcaga	tgaaaatctg	cttgaaggca	aagcaaataa	tatttgaaag	aaaaaccaaa	3609
 ⁴⁵ ⁴⁵ ⁴⁵ ⁴⁵ ⁴⁵ ⁴⁵ ⁴⁵ ⁴⁵ ⁴⁵ ⁴⁵ ⁴⁶ ⁴⁷ ⁴⁷ ⁴⁷ ⁴⁷ ⁴⁸ ⁴⁹ ⁴⁹ ⁴⁹ ⁴⁹ ⁴⁹ ⁴⁹ ⁴⁹ ⁴⁹ ⁴¹ ⁴¹ ⁴¹ ⁴¹ ⁴² ⁴⁴ ⁴⁵ ⁴⁶ ⁴¹⁴⁹ ⁴⁵ ⁴⁶ ⁴¹⁴⁹ ⁴⁵ ⁴¹⁴⁹ ⁴⁵ 		tgccattttt	gtcttctagg	tcgtggaggg	cccccaagac	ccaacagagg	gatgccgcaa	3669
 ⁴⁵ caggaaactt attgtaaagg gactgtttte ateecataaa gacaggaeta caattgteag 3849 ctttatatta eetggatatg gaaggaaact attttatte tgeatgttet teetaagegt 3909 ⁵⁰ catettgage ettgeacatg ataeteagat teeteaeeet tgettaggag taaaacataa 3969 taeaettae agggtgatat eteetaagtt atttgaagtg gettggaaaa ageaagatta 4029 acttetgaea ttggataaaa ateaacaaat cageeetaga gttatteaaa tggtaattga 4089 caaaaaetaa aatattteee tteggagagg agtggaatgt ggtttggeag aacaaetgea 4149 		atgaacactc	agcaagtgaa	ttaatctgat	tcacaggatt	atgtttaaac	gccaaaaaca	3729
50ctttatatta cctggatatg gaaggaaact attttattc tgcatgttct tcctaagcgt390950catcttgagc cttgcacatg atactcagat tcctcaccct tgcttaggag taaaacataa396950tacactttac agggtgatat ctccatagtt atttgaagtg gcttggaaaa agcaagatta4029acttctgaca ttggataaaa atcaacaaat cagccctaga gttattcaaa tggtaattga408955caaaaactaa aatatttccc ttcgagaagg agtggaatgt ggtttggcag aacaactgca4149	45	cactggccag	tgtaccataa	tatgttacca	gaagagttat	tatctatttg	ttctcccttt	3789
50catcttgagc cttgcacatg atactcagat tcctcaccct tgcttaggag taaaacataa396950tacactttac agggtgatat ctccatagtt atttgaagtg gcttggaaaa agcaagatta4029acttctgaca ttggataaaa atcaacaaat cagccctaga gttattcaaa tggtaattga408955caaaaactaa aatatttccc ttcgagaagg agtggaatgt ggtttggcag aacaactgca4149		caggaaactt	attgtaaagg	gactgttttc	atcccataaa	gacaggacta	caattgtcag	38 49
50 tacactttac agggtgatat ctccatagtt atttgaagtg gcttggaaaa agcaagatta 4029 acttctgaca ttggataaaa atcaacaaat cagccctaga gttattcaaa tggtaattga 4089 55 caaaaactaa aatatttccc ttcgagaagg agtggaatgt ggtttggcag aacaactgca 4149		ctttatatta	cctggatatg	gaaggaaact	atttttattc	tgcatgttct	tcctaagcgt	3909
acttetgaca ttggataaaa ateaacaaat cageeetaga gttatteaaa tggtaattga 4089 caaaaactaa aatattteee ttegagaagg agtggaatgt ggtttggeag aacaactgea 4149	50	catcttgagc	cttgcacatg	atactcagat	tcctcaccct	tgcttaggag	taaaacataa	3969
55 caaaaactaa aatattteee ttegagaagg agtggaatgt ggtttggeag aacaactgea 4149		tacactttac	agggtgatat	ctccatagtt	atttgaagtg	gcttggaaaa	agcaagatta	4029
		acttctgaca	ttggataaaa	atcaacaaat	cagccctaga	gttattcaaa	tggtaattga	4089
tttcacaget tttccggtta aattggagea etaaaegttt agatgeatae caaattatge 4209	55	caaaaactaa	aatatttccc	ttcgagaagg	agtggaatgt	ggtttggcag	aacaactgca	4149
		tttcacagct	tttccggtta	aattggagca	ctaaacgttt	agatgcatac	caaattatgc	4209

	atgggccctt	aatataaaag	gctggctacc	agctttgaca	cagcactatt	catcctctgg	4269
	ccaaacaact	gtggttaaac	aacacatgta	aattgetttt	taacagctga	tactataata	4329
5	agacaaagcc	aaaatgcaaa	aattgggctt	tgattggcac	ttttgaaaa	atatgcaaca	4389
	aatatgggat	gtaatctgga	tggccgcttc	tgtacttaat	gtgaagtatt	tagatacctt	4449
10	tttgaacact	taacagtttc	ttctgacaat	gacttttgta	aggattggta	ctatctatca	4509
10	ttccttataa	tgtacattgt	ctgtcactaa	tcctcagatc	ttgctgtatt	gtcacctaaa	4569
	ttggtacagg	tactgatgaa	aatatctaat	ggataatcat	aacactcttg	gtcacatgtt	4629
15	tttcctgcag	cctgaaggtt	tttaaaagaa	aaagatatca	aatgcctgct	gctaccaccc	4689
	ttttaaattg	ctatcttttg	aaaagcacca	gtatgtgttt	tagattgatt	tccctatttt	4749
	agggaaatga	cagacagtag	tttcagttct	gatggtataa	gcaaaacaaa	taaaacatgt	4809
20	ttataaaagt	tgtatcttga	aacactggtg	ttcaacagct	agcagcttat	gtggttcacc	4869
	ccatgcattg	ttagtgtttc	agattttatg	gttatctcca	gcagctgttt	ctgtagtact	4929
	tgcatttatc						493 9
25	.0.4.0: 4.0						
	<210> 10						
	<211> 702						
	<212> PRT <213> Canis fami	iliarie					
		mano					

<400> 10

	Met 1	Pro	Ser	Ala	Thr 5	Ser	Leu	Ser	Gly	Ser 10	Gly	Ser	Lys	Ser	Ser 15	Gly
5	Pro	Pro	Pro	Pro 20	Ser	Gly	Ser	Ser	Gly 25	Ser	Glu	Ala	Ala	Ala 30	Ala	Ala
10	Gly	Ala	Ala 35	Gly	Ala	Ala	Gly	Ala 40	Gly	Ala	Ala	Ala	Pro 45	Ala	Ser	Gln
	His	Pro 50	Ala	Thr	Gly	Thr	Gly 55	Ala	Val	Gln	Thr	Glu 60	Ala	Met	Lys	Gln
15	Ile 65	Leu	Gly	Val	Ile	Asp 70	Lys	rya	Leu	Arg	Asn 75	Leu	Glu	Lys	Lys	Lys 80
20	Gly	Lys	Leu	Asp	Asp 85	Tyr	Gln	Glu	Arg	Met 90	Asn	Lys	Gly	Glu	Arg 95	Leu
25	Asn	Gln	Asp	Gln 100	Leu	Asp	Ala	Val	Ser 105	Lys	Tyr	Gln	Glu	Val 110	Thr	Asn
	Asn	Leu	Glu 115	Phe	Ala	Lys	Glu	Leu 120	Gln	Arg	Ser	Phe	Met 125	Ala	Leu	Ser
30																
35																
40																
45																
50																
55																

	Gln	Asp 130	Ile	Gln	Lys	Thr	Ile 135	Lys	Lys	Thr	Ala	Arg 140	Arg	Glu	Gln	Leu
5	Met 145	Arg	Glu	Glu	Ala	Glu 150	Gln	Lys	Arg	Leu	Lys 155	Thr	Val	Leu	Glu	Leu 160
10	Gln	Tyr	Val	Leu	Asp 165	Lys	Leu	Gly	Asp	Asp 170	Glu	Val	Arg	Thr	Asp 175	Leu
	Lys	Gln	Gly	Leu 180	Asn	Gly	Val	Pro	Ile 185	Leu	Ser	Glu	Glu	Glu 190	Leu	Ser
15	Leu	Leu	Asp 195	Glu	Phe	Tyr	Lys	Leu 200	Ala	Asp	Pro	Glu	Arg 205	Asp	Met	Ser
20	Leu	Arg 210	Leu	Asn	Glu	Gln	Tyr 215	Glu	His	Ala	Ser	Ile 220	His	Leu	Trp	Asp
25	Leu 225	Leu	Glu	Gly	Lys	Glu 230	Lys	Ser	Val	Суз	Gly 235	Thr	Thr	Tyr	Lys	Ala 240
	Leu	Lys	Glu	Ile	Val 245	Glu	Arg	Val	Phe	Gln 250	Ser	Asn	Tyr	Phe	Asp 255	Ser
30	Thr	His	Asn	His 260	Gln	Asn	Gly	Leu	Cys 265	Glu	Glu	Glu	Glu	Ala 270	Ala	Ser
35	Ala	Pro	Thr 275	Val	Glu	Asp	Gln	Val 280	Ala	Glu	Ala	Glu	Pro 285	Glu	Pro	Ala
	Glu	Glu 290	Tyr	Thr	Glu	Gln	Ser 295	Glu	Val	Glu	Ser	Thr 300	Glu	Tyr	Val	Asn
40	Arg 305	Gln	Phe	Met	Ala	Glu 310	Thr	Gln	Phe	Ser	Ser 315	Gly	Glu	Lys	Glu	Gln 320
45	Val	Asp	Glu	Trp	Thr 325	Val	Glu	Thr	Val	Glu 330	Val	Val	Asn	Ser	Leu 335	Gln
50	Gln	Gln	Pro	Gln. 340	Ala	Ala	Ser	Pro	Ser 345	Val	Pro	Glu	Pro	H is 350	Ser	Leu
	Thr	Pro	Val 355	Ala	Gln	Ala	Asp	Pro 360	Leu	Val	Arg	Arg	Gln 365	Arg	Val	Gln
55	Asp	Leu 370	Met	Ala	Gln	Met	Gln 375	Glý	Pro	Tyr	Asn	Phe 380	Ile	Gln	Asp	Ser

	Met 385		Asp	Phe	Glu	Asn 390	Gln	Thr	Leu	Asp	Pro 395	Ala	Ile	Val	Ser	Ala 400
5	Gln	Pro	Met	Asn	Pro 405	Thr	Gln	Asn	Met	Asp 410	Met	Pro	Gln	Leu	Val 415	Суз
10	Pro	Pro	Val	His 420	Ser	Glu	Ser	Arg	Leu 425	Ala	Gln	Pro	Asn	Gln 430	Val	Pro
	Val	Gln	Pro 435	Glu	Ala	Thr	Gln	Val 440	Pro	Leu	Val	Ser	Ser 445	Thr	Ser	Glu
15	Gly	Tyr 450	Thr	Ala	Ser	Gln	Pro 455	Leu	Tyr	Gln	Pro	Ser 460	His	Ala	Thr	Glu
20	Gln 465	Arg	Pro	Gln	Lys	Glu 470	Pro	Ile	Asp	Gln	Ile 475	Gln	Ala	Thr	Ile	Ser 480
25	Leu	Asn	Thr	Asp	Gln 485	Thr	Thr	Ala	Ser	Ser 490	Ser	Leu	Pro	Ala	Ala 495	Ser
	Gln	Pro	Gln	Val 500	Phe	Gln	Ala	Gly	Thr 505	Ser	Lys	Pro	Leu	His 510	Ser	Ser
30	Gly	Ile	Asn 515	Val	Asn	Ala	Ala	Pro 520	Phe	Gln	Ser	Met	Gln 525	Thr	Val	Phe
35	Asn	Met 530	Asn	Ala	Pro	Val	Pro 535	Pro	Val	Asn	Glu	Pro 540	Glu	Thr	Leu	Lys
	Gln 545	Gln	Asn	Gln	Tyr	Gln 550	Ala	Ser	Tyr	Asn	Gln 555	Ser	Phe	Ser	Ser	Gln 560
40	Pro	His	Gln	Val	Glu 565	Gln	Thr	Asp	Leu	Gln 570	Gln	Glu	Gln	Leu	Gln 575	Thr
45	Val	Val	Gly	Thr 580	Tyr	His	Gly	Ser	Gln 585	Asp	Gln	Pro	His	Gln 590	Val	Thr
50	Gly	Asn	His 595	Gln	Gln	Pro	Pro	Gln 600	Gln	Asn	Thr	Gly	Phe 605	Pro	Arg	Ser
	Ser	Gln 610	Pro	Tyr	Tyr	Asn	Ser 615	Arg	Gly	Val	Ser	Arg 6 <u>2</u> 0	Gly	Gly	Ser	Arg
55	Gly 625	Ala	Arg	Gly	Leu	Met 630	Asn	Gly	Tyr	Arg	Gly 635	Pro	Ala	Asn	Gly	Phe 640

		Arg	Gly	Gly	Tyr	Asp 645	Gly	Tyr	Arg	Pro	Ser 650	Phe	Ser	Asn	Thr	Pro 655	Asn
5		Ser	Gly	Tyr	Thr 660	Gln	Ser	Gln	Phe	Ser 665	Ala	Pro	Arg	Asp	Tyr 670	Ser	Gly
10		Tyr	Gln	Arg 675	Asp	Gly	Tyr	Gln	Gln 680	Asn	Phe	Lys	Arg	Gly 685	Ser	Gly	Gln
15		Ser	Gly 690	Pro	Arg	Gly	Ala	Pro 695	Arg	Gly	Asn	Ile	Leu 700	Trp	Trp		
	<210> <211> <212>	3306 DNA	familia	rio													
20	<213> <220> <221>	CDS		ins													
25	<222> <223> <400>		J4U)														
30																	
35																	
40																	
45																	
50																	
55																	

	ccg Pro								48
5	ccg Pro								96
10	gcg Ala								144
15	ccc Pro 50								192
	ctc Leu								240
20	aag Lys								288
25	caa Gln								336
30	ttg Leu								384
	gat Asp 130								432
35	aga Arg								480

	145					150					155					160	
5												gtg Val					528
												gaa Glu					576
10												gaa Glu					624
15			-			-		-		-		att Ile 220		-		-	672
												aca Thr					720
20												aat Asn					768
25												gaa Glu					816
30												gag Glu					864
30												aca Thr 300					912
35	-			-	-	-		-		-	-	ggt Gly	-	-		-	960
40		_	_	_			~ *			~ *		gtg Val	-	-	-	~-	1008
												gag Glu					1056
45												aga Arg					1104
50												ttc Phe 380					1152
												gcc Ala					1200
55	-		-		-				-	-	-	ccc Pro	-	-	-	-	1248

				tct Ser												1 296
5				gct Ala												1344
10				tct Ser												1392
15				aag Lys												1440
				cag Gln 485												1488
20				ttc Phe												1536
25			-	aat Asn	-	-					_		-			1584
		-	-	cca Pro	-			-		-		-		-		1632
30				tac Tyr												1680
35			-	gaa Glu 565			-		_		-	-				1728
40				tac Tyr												1776
40				cag Gln			-	-						-	-	1824
45	-	-		tac Tyr		-	-				-				-	1872
50				tta Leu												1920
	-			gat Asp 645			-									1968
55				cag Gln												2016

tat cag cgg gga tgc cgc aaa tga acactcagca agtgaattaa tctgattcac 2070 Tyr Gln Arg Gly Cys Arg Lys 675

5	aggattatgt	ttaaacgcca	aaaacacact	ggccagtgta	ccataatatg	ttaccagaag	2130
	agttattatc	tatttgttct	ccctttcagg	aaacttattg	taaagggact	gttttcatcc	2190
10	cataaagaca	ggactacaat	tgtcagcttt	atattacctg	gatatggaag	gaaactattt	2250
10	ttattctgca	tgttcttcct	aagcgtcatc	ttgagccttg	cacatgatac	tcagattcct	2310
	cacccttgct	taggagtaaa	acataataca	ctttacaggg	tgatatctcc	atagttattt	2370
15	gaagtggctt	ggaaaaagca	agattaactt	ctgacattgg	ataaaaatca	acaaatcagc	2430
	cctagagtta	ttcaaatggt	aattgacaaa	aactaaaata	tttcccttcg	agaaggagtg	2490
	gaatgtggtt	tggcagaaca	actgcatttc	acagetttte	cggttaaatt	ggagcactaa	2550
20	acgtttagat	gcataccaaa	ttatgcatgg	gcccttaata	taaaaggctg	gctaccagct	2610
	ttgacacage	actattcatc	ctctggccaa	acaactgtgg	ttaaacaaca	catgtaaatt	2670
	gctttttaac	agctgatact	ataataagac	aaagccaaaa	tgcaaaaatt	gggctttgat	2730
25	tggcactttt	tgaaaaatat	gcaacaaata	tgggatgtaa	tctggatggc	cgcttctgta	2790
	cttaatgtga	agtatttaga	tacctttttg	aacacttaac	agtttcttct	gacaatgact	2850
30	tttgtaagga	ttggtactat	ctatcattcc	ttataatgta	cattgtctgt	cactaatcct	2910
	cagatettge	tgtattgtca	cctaaattgg	tacaggtact	gatgaaaata	tctaatggat	2970
	aatcataaca	ctcttggtca	catgtttttc	ctgcagcctg	aaggttttta	aaagaaaaag	3030
35	atatcaaatg	cctgctgcta	ccaccctttt	aaattgctat	cttttgaaaa	gcaccagtat	3090
	gtgttttaga	ttgatttccc	tattttaggg	aaatgacaga	cagtagtttc	agttctgatg	3150
	gtataagcaa	aacaaataaa	acatgtttat	aaaagttgta	tcttgaaaca	ctggtgttca	3210
40	acagctagca	gcttatgtgg	ttcaccccat	gcattgttag	tgtttcagat	tttatggtta	3270
	tctccagcag	ctgtttctgt	agtacttgca	tttatc			3306

<210> 12 45 <211> 679 <212> PRT <213> Canis familiaris

<400> 12

50

	Met 1	Pro	Ser	Ala	Thr 5	Ser	Leu	Ser	Gly	Ser 10	Gly	Ser	Lys	Ser	Ser 15	Gly
5	Pro	Pro	Pro	Pro 20	Ser	Gly	Ser	Ser	Gly 25	Ser	Glu	Ala	Ala	Ala 30	Ala	Ala
10	Gly	Ala	Ala 35	Gly	Ala	Ala	Gly	Ala 40	Gly	Ala	Ala	Ala	Pro 45	Ala	Ser	Gln
15																
20																
25																
30																
35																
40																
45																
50																
55																

	His	Pro 50	Ala	Thr	Gly	Thr	Gly 55	Ala	Val	Gln	Thr	Glu 60	Ala	Met	Lys	Gln
5	Ile 65	Leu	Gly	Val	Ile	Asp 70	Lys	Lys	Leu	Arg	Asn 75	Leu	Glu	Lys	Lys	Lys 80
10	Gly	Lys	Leu	Asp	Asp 85	Tyr	Gln	Glu	Arg	Met 90	Asn	Lys	Gly	Glu	Arg 95	Leu
	Asn	Gln	Asp	Gln 100	Leu	Asp	Ala	Val	Ser 105	Lys	Tyr	Gln	Glu	Val 110	Thr	Asn
15	Asn 	Leu	Glu 115	Phe	Ala	Lys	Glu	Leu 120	Gln	Arg	Ser	Phe	Met 125	Ala	Leu	Ser
20	Gln	Asp 130	Ile	Gln	Lys	Thr	Ile 135	Lys	Lys	Thr	Ala	Arg 140	Arg	Glu	Gln	Leu
25	Met 145	Arg	Glu	Glu	Ala	Glu 150	Gln	Lys	Arg	Leu	Lys 155	Thr	Val	Leu	Glu	Leu 160
	Gln	Tyr	Val	Leu	Asp 165	Lys	Leu	Gly	Asp	Asp 170	Glu	Val	Arg	Thr	Asp 175	Leu
30	Lys	Gln	Gly	Leu 180	Asn	Gly	Val	Pro	Ile 185	Leu	Ser	Glu	Glu	Glu 190	Leu	Ser
35	Leu	Leu	Asp 195	Glu	Phe	Tyr	Lys	Leu 200	Ala	Asp	Pro	Glu	Arg 205	Asp	Met	Ser
40	Ļeu	Arg 210	Leu	Asn	Glu	Gln	Tyr 215	Glu	His	Ala	Ser	Ile 220	His	Leu	Trp	Asp
	Leu 225	Leu	Glu	Gly	Lys	Glu 230	Lys	Ser	Val	Суз	Gly 235	Thr	Thr	Tyr	Lys	Ala 240
45	Leu	Lys	Glu	Ile	Val 245	Glu	Arg	Val	Phe	Gln 250	Ser	Asn	Tyr	Phe	Asp 255	Ser
50	Thr	His	Asn	His 260	Gln	Asn	Gly	Leu	Cys 265	Glu	Glu	Glu	Glu	Ala 270	Ala	Ser
	Ala	Pro	Thr 275	Val	Glu	Asp		Val 280	Ala	Glu	Ala	Glu	Pro 285	Glu	Pro	Ala
55	Glu	Glu 290	Tyr	Thr	Glu	Gln	Ser 295	Glu .	Val	Glu	Ser	Thr 300	Glu	Tyr	Val	Asn

	Arg 305	Gln	Phe	Met	Ala	Glu 310	Thr	Gln	Phe	Ser	Ser 315	Gly	Glu	Lys	Glu	Gln 320
5	Val	Asp	Glu	Trp	Thr 325	Val	Glu	Thr	Val	Glu 330	Val	Val	Asn	Ser	Leu 335	Gln
10	Gln	Gln	Pro	Gln 340	Ala	Ala	Ser	Pro	Ser 345	Val	Pro	Glu	Pro	His 350	Ser	Leu
	Thr	Pro	Val 355	Ala	Gln	Ala	Asp	Pro 360	Leu	Val	Arg	Arg	Gln 365	Arg	Val	Gln
15	Asp	Leu 370	Met	Ala	Gln	Met	Gln 375	Gly	Pro	Tyr	Asn	Phe 380	Ile	Gln	Asp	Ser
20	Met 385	Leu	Asp	Phe	Glu	Asn 390	Gln	Thr	Leu	Asp	Pro 395	Ala	Ile	Val	Ser	Ala 400
	Gln	Pro	Met	Asn	Pro 405	Thr	Gln	Asn	Met	Asp 410	Met	Prò	Glุn	Leu	Val 415	Суз
25	Pro	Pro	Val	His 420	Ser	Glu	Ser	Arg	Leu 425	Ala	Gln	Pro	Asn	Gln 430	Val	Pro
30	Val	Gln	Pro 435	Glu	Ala	Thr	Gln	Val 440	Pro	Leu	Val	Ser	Ser 445	Thr	Ser	Glu
25	Gly	Tyr 450	Thr	Ala	Ser	Gln	Pro 455	Leu	Tyr	Gln	Pro	Ser 460	His	Ala	Thr	Glu
35	Gln 465	Arg	Pro	Gln	Lys	Glu 470	Pro	Ile	Asp	Gln	Ile 475	Gln	Ala	Thr	Ile	Ser 480
40	Leu	Asn	Thr	Asp	Gln 485	Thr	Thr	Ala	Ser	Ser 490	Ser	Leu	Pro	Ala	Ala 495	Ser
45	Gln	Pro	Gln	Val 500	Phe	Gln	Ala	Gly	Thr 505	Ser	Lys	Pro	Leu	His 510	Ser	Ser
	Gly	Ile	Asn 515	Val	Asn	Ala	Ala	Pro 520	Phe	Gln	Ser	Met	Gln 525	Thr	Val	Phe
50	Asn	Met 530	Asn	Ala	Pro	Val	Pro 535	Pro	Val	Asn	Glu	Pro 540	Glu	Thr	Leu	Lys
55	Gln 545	Gln	Asn	Gln	Tyr	Gln 550	Ala	Ser	Tyr	Asn	Gln 555	Ser	Phe	Ser	Ser	Gln 560
	Pro	His	Gln	Val	Glu	Gln	Thr	Asp	Leu	Gln	Gln	Glu	Gln	Leu	Gln	Thr

					565					570					575	
5	Val	Val	Gly	Thr 580	Tyr	His	Gly	Ser	Gln 585	Asp	Gln	Pro	His	Gln 590	Val	Thr
10	Gly	Asn	His 595	Gln	Gln	Pro	Pro	Gln 600	Gln	Asn	Thr	Gly	Phe 605	Pro	Arg	Ser
	Ser	Gln 610	Pro	Tyr	Tyr	Asn	Ser 615	Arg	Gly	Val	Ser	Arg 620	Gly	Gly	Ser	Arg
15	Gly 625	Ala	Arg	Gly	Leu	Met 630	Asn	Gly	Tyr	Arg	Gly 635	Pro	Ala	Asn	Gly	Phe 640
20	Arg	Gly	Gly	Tyr	Asp 645	Gly	Tyr	Arg	Pro	Ser 650	Phe	Ser	Asn	Thr	Pro 655	Asn
	Ser	Gly	Tyr	Thr 660	Gln	Ser	Gln	Phe	Ser 665	Ala	Pro	Arg	Asp	Tyr 670	Ser	Gly
25	Tyr	Gln	Arg 675	Gly	Суз	Arg	Lys									
30	<210> 13 <211> 2281 <212> DNA <213> Cani		liaris													
35	<220> <221> CDS <222> (1)(<223>															
40	<400> 13															
45																
50																

						ggc Gly				48
5						gag Glu				96
10	 					gct Ala				144
15						acc Thr				192
		 	-	-		 aac Asn 75	 	-	-	240
20						aac Asn				288

			gat Asp											aat Asn	336
5			gag Glu 115												384
10			att Ile												432
15			gag Glu												480
15			gtt Val												528
20			ggt Gly	_					-		-	-	_	-	576
25			gat Asp 195												624
			ttg Leu												672
30	-	-	gaa Glu		-	-	_	-	-					-	720
35			gaa Glu												768
40			aac Asn												816
40			aca Thr 275												864
45			tac Tyr												912
50			ttt Phe												960
			gag Glu												1008
55	-		cct Pro	-	-				-		Pro			-	1056

																cag Gln	1104
5					cag Gln												1152
10	-	-	-		gaa Glu		-			-		-		-		-	1200
					ccg Pro 405												1248
15			-		tct Ser	-		-		-							1296
20					gct Ala												1344
25	222			-	tct Ser					-				-			1392
25		-			aag Lys	-			-	-		-	-				1440
30				-	cag Gln 485								-	-	-		1488
35					ttc Phe												1536
					aat Asn												1584
40		-		-	cca Pro	-			-		-		-		-		1632
45				-	tac Tyr	-	-	-			-	-			-	-	1680
					gaa Glu 565												1728
50		-			tac Tyr				_	-	-						1776
55					cag Gln												1824
	agt	cag	CCC	tat	tac	aat	agt	cgt	ggt	gtg	tct	cgt	ggt	ggt	tcc	cgt	1872

	Ser	Gln 610	Pro	Tyr	Tyr	Asn	Ser 615	Arg	Gly	Val	Ser	Arg 620	Gly	Gly	Ser	Arg	
5		gct Ala															1920
10		gga Gly															1968
	_	ggt Gly			-		-		-	_			-				2016
15		cag Gln							Asn								2064
20		gga Gly 690															2112
25		aga Arg		-	-		-			-	-			taa			2154
	tct	gatto	cac a	nggat	tato	nt tt	aaac	egcca	aaa	acac	act	ggco	agtg	ta c	cata	atatg	2214
	tta	ccaga	ag a	agtta	ittat	c ta	itttg	gact	gtt	ttca	tcc	cata	aaga	.ca g	gact	acaat	2274
30	tgt	cagc															2281
	<210> <211> <212>	717 PRT		·													
35	<213>	Canis	tamili	aris													

<400> 14

	Met 1	Pro	Ser	Ala	Thr 5	Ser	Leu	Ser	Gly	Ser 10	Gly	Ser	Lys	Ser	Ser 15	Gly
5	Pro	Pro	Pro	Pro 20	Ser	Gly	Ser	Ser	Gly 25	Ser	Glu	Ala	Ala	Ala 30	Ala	Ala
10	Gly	Ala	Ala 35	Gly	Ala	Ala	Gly	Ala 40	Gly	Ala	Ala	Ala	Pro 45	Ala	Ser	Gln
15	His	Pro 50	Ala	Thr	Gly	Thr	Gly 55	Ala	Val.	Gln	Thr	Glu 60	Ala	Met	Lys	Gln
	Ile 65	Leu	Gly	Val	Ile	Asp 70	Lys	Lys	Leu	Arg	Asn 75	Leu	Glu	Lys	Lys	Lys 80
20	Gly	Lys	Leu	Asp	Asp 85	Tyr	Gln	Glu	Arg	Met 90	Asn	Lys	Gly	Glu	Arg 95	Leu
25																
30																
35																
40																
45																
50																
55																

	Asn	Gln	Asp	Gln 100	Leu	Asp	Ala	Val	Ser 105	Lys	Tyr	Gln	Glu	Val 110	Thr	Asn
5	Asn	Leu	Glu 115	Phe	Ala	Lys	Glu	Leu 120	Gln	Arg	Ser	Phe	<u>Met</u> 125	Ala	Leu	Ser
10	Gln	Asp 130	Ile	Gln	Lys	Thr	Ile 135	Lys	Lys	Thr	Ala	Arg 140	Arg	Glu	Gln	Leu
	Met 145	Arg	Glu	Glu	Ala	Glu 150	Gln	Lys	Arg	Leu	Lys 155	Thr	Val	Leu	Glu	Leu 160
15	Gln	Tyr	Val	Leu	Asp 165	Lys	Leu	Gly	Asp	Asp 170	Glu	Val	Arg		Asp 175	Leu
20	Lys	Gln	Gly	Leu 180	Asn	Gly	Val	Pro	Ile 185	Leu	Ser	Glu	Glu	Glu 190	Leu	Ser
	Leu	Leu	Asp 195	Glu	Phe	Tyr	Lys	Leu 200	Ala	Asp	Pro	Glu	Arg 205	Asp	Met	Ser
25	Leu	Arg 210	Leu	Asn	Glu	Gln	Tyr 215	Glu	His	Ala	Ser	Ile 220	His	Leu	Trp	Asp
30	Leu 225	Leu	Glu	Gly	Lys	Glu 230	Lys	Ser	Val	Суз	Gly 235	Thr	Thr	Tyr	Lys	Ala 240
25	Leu	Lys	Glu	Ile	Val 245	Glu	Arg	Val	Phe	Gln 250	Ser	Asn	Tyr	Phe	Asp 255	Ser
35	Thr	His	Asn	His 260	Gln	Asn	Gly	Leu	Cys 265	Glu	Glu	Glu	Glu	Ala 270	Ala	Ser
40	Ala	Pro	Thr 275	Val	Glu	Asp	Gln	Val 280	Ala	Glu	Ala	Glu	Pro 285	Glu	Pro	Ala
45	Glu	Glu 290	Tyr	Thr	Glu	Gln	Ser 295	Glu	Val	Glu	Ser	Thr 300	Glu	Tyr	Val	Asn
	Arg 305	Gln	Phe	Met	Ala	Glu 310	Thr	Gln	Phe	Ser	Ser 315	Gly	Glu	Lys	Glu	Gln 320
50	Val	Asp	Glu	Trp	Thr 325	Val	Glu	Thr	Val	Glu 330	Val	Val	Asn	Ser	Leu 335	Gln
55	Gln	Gln	Pro	Gln 340	Ala	Ala	Ser	Pro	Ser 345	Val	Pro	Glu	Pro	His 350	Ser	Leu
	Thr	Pro	Val	Ala	Gln	Ala	Asp	Pro	Leu	Val	Arg	Arg	Gln	Arg	Val	Gln

		355		360	365
5	Asp Leu 370		Gln Met Gli 37		Phe Ile Gln Asp Ser 380
10	Met Leu 385	Asp Phe	Glu Asn Gli 390	h Thr Leu Asp Pro 395	Ala Ile Val Ser Ala 400
	Gln Pro	Met Asn	Pro Thr Glu 405	a Asn Met Asp Met 410	Pro Gln Leu Val Cys 415
15	Pro Pro	Val His 420		Arg Leu Ala Glr 425	Pro Asn Gln Val Pro 430
20	Val Gln	Pro Glu 435	Ala Thr Gl	Val Pro Leu Val 440	Ser Ser Thr Ser Glu 445
	Gly Tyr 450		Ser Gln Pro 455		Ser His Ala Thr Glu 460
25	Gln Arg 465	Pro Gln	Lys Glu Pro 470	D Ile Asp Gln Ile 475	Gln Ala Thr Ile Ser 480
30	Leu Asn	Thr Asp	Gln Thr Th 485	Ala Ser Ser Ser 490	Leu Pro Ala Ala Ser 495
	Gln Pro	Gln Val 500	Phe Gln Ala	Gly Thr Ser Lys 505	Pro Leu His Ser Ser 510
35	Gly Ile	Asn Val 515	Asn Ala Ala	Pro Phe Gln Ser 520	Met Gln Thr Val Phe 525
40	Asn Met 530	Asn Ala	Pro Val Pro 535		Pro Glu Thr Leu Lys 540
	Gln Gln 545	Asn Glņ	Tyr Gln Ala 550	Ser Tyr Asn Gln 555	Ser Phe Ser Ser Gln 560
45	Pro His	Gln Val	Glu Gln Th 565	Asp Leu Gln Gln 570	Glu Gln Leu Gln Thr 575
50	Val Val	Gly Thr 580	Tyr His Gly	9 Ser Gln Asp Gln 585	Pro His Gln Val Thr 590
55	Gly Asn	His Gln 595	Gln Pro Pro	Gln Gln Asn Thr 600	Gly Phe Pro Arg Ser 605
55	Ser Gln 610	Pro Tyr	Tyr Asn Ser 615		Arg Gly Gly Ser Arg 620

	Gly 625	Ala	Arg	Gly	Leu	Met 630	Asn	Gly	Tyr	Arg	Gly 635	Pro	Ala	Asn	Gly	Phe 640
5	Arg	Gly	Gly	Tyr	Asp 645	Gly	Tyr	Arg	Pro	Ser 650	Phe	Ser	Asn	Thr	Pro 655	Asn
10	Ser	Gly	Tyr	Thr 660	Gln	Ser	Gln	Phe	Ser 665	Ala	Pro	Arg	Asp	Tyr 670	Ser	Gly
15	Tyr	Gln	Arg 675	Asp	Gly	Tyr	Gln	Gln 680	Asn	Phe	Lys	Arg	Gly 685	Ser	Gly	Gln
	Ser	Gly 690	Pro	Arg	Gly	Ala	Pro 695	Arg	Gly	Arg	Gly	Gly 700	Pro	Pro	Arg	Pro
20	Asn 705	Arg	Gly	Met	Pro	Gln 710	Met	Asn	Thr	Gln	Gln 715	Val	Asn			
25	<210> 1 <211> 3 <212> [<213> [<213> [386 DNA	irus													
30	<220> <221> (<222> (<223>		208)													
35	<400> 1	5														
40																
45																
50																

•

	cgco	gtcto	cgc (cccgt	ccad	cc ga	attga	actco	g cco	gctci	ttgt	ccti	tcct	cca e	gctc	ttctt	60
5	cte	tecco	stt a	acggt	ttca	aa g	_		_	-		-	cac His			-	111
10		agc Ser															159
		gcg Ala															207
15		acc Thr															255
20		gac Asp 60						-		-							303
		tat Tyr	_	-	-	-											351
25		gat Asp															399

				95					100					105			
5	gca aa Ala Ly															447	7
	aaa a Lys Ti															495	3
10	gct ga Ala Gl 14	-		-				-			-	-		-	-	543	3
15	gac aa Asp Ly 155															591	-
	aat go Asn Gl				-		-			-		-		-		639	,
20	ttc ta Phe Ty															687	,
25	gag ca Glu Gl		-						-		•	-	-	-		735	•
30	aag ga Lys Gl 22	u Lys		-	-						_		-	-		783	;
-	gtt ga Val Gl 235		-		-					-	-					831	
35	cag aa Gln As															879	
40	gaa ga Glu As															927	
	gaa ca Glu Gl	.n Asn 285	Glu	Val	Glu	Ser	Thr 290	Glu	Tyr	Val	Asn	Arg 295	Gln	Phe	Met	975	
45	gca ga Ala Gl 30	u Thr														1023	
50	aca gt Thr Va 315	t gaa 1 Glu	aca Thr	gtt Val	g ag Glu 320	gtg Val	gta Val	aat Asn	tca Ser	ctc Leu 325	cag Gln	cag Gln	caa Gln	cct Pro	cag Gln 330	1071	
	gct gc Ala Al		Pro													1119	
55	caa go Gln Al															1167	

																ttt Phe	1215
5					ctt Leu			Ala								aat Asn	1263
10					atg Met												1311
15		-		-	ctt Leu 415	-					-		-	-		gaa Glu	1359
15					cct Pro												1407
20					tac Tyr												1455
25		-	-		gat Asp	_		_	-								1503
					tca Ser												1551
30					aca Thr 495												1599
35					ttc Phe												1647
					gtt Val												1695
40					tac Tyr												1743
45					ctt Leu												1791
50					cag Gln 575												1839
					cag Gln												1887
55	tac Tyr	aac Asn	agt Ser 605	cgt Arg	ggt Gly	gtg Val	tct Ser	cgt Arg 610	gga Gly	ggt Gly	tcc Ser	Arg	ggt Gly 615	gct Ala	aga Arg	ggc Gly	1935

	ttg atg aat gga tac aga gga cct gct aat gga ttc aga gga gga tat Leu Met Asn Gly Tyr Arg Gly Pro Ala Asn Gly Phe Arg Gly Gly Tyr 620 625 630	1983
5	gat ggt tac cgc cct tca ttc tct act aac act cca aac agt ggt tat Asp Gly Tyr Arg Pro Ser Phe Ser Thr Asn Thr Pro Asn Ser Gly Tyr 635 640 645 650	2031
10	aca caa tct caa ttc agt gct ccc cgg gac tac tct ggc tat cag cgg Thr Gln Ser Gln Phe Ser Ala Pro Arg Asp Tyr Ser Gly Tyr Gln Arg 655 660 665	2079
	gat gga tat cag cag aat ttc aag cga ggc tct ggg cag agt gga cca Asp Gly Tyr Gln Gln Asn Phe Lys Arg Gly Ser Gly Gln Ser Gly Pro 670 675 680	2127
15	cgg gga gcc cca cga ggt cgt gga ggg ccc cca aga ccc aac aga ggg Arg Gly Ala Pro Arg Gly Arg Gly Gly Pro Pro Arg Pro Asn Arg Gly 685 690 695	2175
20	atg ccg caa atg aac act cag caa gtg aat taa tctgattcac aggattatgt Met Pro Gln Met Asn Thr Gln Gln Val Asn 700 705	2228
	ttaatcgcca aaaacacact ggccagtgta ccataatatg ttaccagaag agttattatc	2288
25	tatttgttct ccctttcagg aaacttattg taaagggact gttttcatcc cataaagaca	2348
	ggactacaat tgtcagcttt atattacctg gatatggaag gaaactattt ttactctgca	2408
	tgttctgtcc taagcgtcat cttgagcctt gcacatgata ctcagattcc tcacccttgc	2468
30	ttaggagtaa aacataatat actttaatgg ggtgatatct ccatagttat ttgaagtggc	2528
	ttggataaag caagactgac ttctgacatt ggataaaatc tacaaatcag ccctagagtc	2588
	attcagtggt aactgacaaa actaaaatat ttcccttgaa aggaagatgg aaggagtgga	2648
35	gtgtggtttg gcagaacaac tgcatttcac agcttttcca cttaaattgg agcactgaac	2708
	atttagatgc ataccgaatt atgcatgggc cctaatcaca cagacaaggc tggtgccagc	2768
	cttaggcttg acacggcagt gttcaccctc tggccagacg actgtggttc aagacacatg	2828
40	taaattgett tttaacaget gataetgtat aagacaaage caaaatgeaa aattaggett	2888
	tgattggcac ttttcgaaaa atatgcaaca attaagggat ataatctgga tggccgcttc	2948
45	tgtacttaat gtgaaatatt tagatacett teaaacaett aacagtttet ttgacaatga	3008
40	gttttgtaag gattggtagt aaatatcatt ccttatgacg tacattgtct gtcactaatc	3068
	cttggatett getgtattgt cacctaaatt ggtacaggta etgatgaaaa tetaatggat	3128
50	aatcataaca ctcttggtta catgtttttc ctgcagcctg aaagttitta taagaaaaag	3188
	acatcaaatg cctgctgctg ccaccctttt aaattgctat cttttgaaaa gcaccagtat	3248
	gtgttttaga ttgatttccc tattttaggg aaatgacagt cagtagtttc acttctgatg	3308
55	gtataagcaa acaaataaaa catgtttata aaaaaaaaaa	3368
	aaaaaaaa aaaaaaaa	3386

	<210> 16 <211> 708 <212> PRT <213> Bos taurus
5	<400> 16
10	
15	
20	
25	
30	
35	
40	
45	
50	
55	

	Met 1	Pro	Ser	Ala	Thr 5	Ser	His	Ser	Gly	Ser 10	Gly	Ser	Lys	Ser	Ser 15	Gly	
5	Pro	Pro	Pro	Pro 20	Ser	Gly	Ser	Ser	Gly 25	Asn	Glu	Ala	Gly	Ala 30	Gly	Ala	
10	Ala	Ala	Pro 35	Ala	Ser	Gln	His	Pro 40	Met	Thr	Gly	Thr	Gly 45	Ala	Val	Gln	
15	Thr	Glu 50	Ala	Met	Lys	Gln	Ile 55	Leu	Gly	Val	Ile	Asp 60	Lys	Lys	Leu	Arg	
	Asn 65	Leu	Glu	Lys	Lys	Lys 70	Gly	Lys	Leu	Asp	Asp 75	Tyr	Gln	Glu	Arg	Met 80	
20	Asn	Lys	Gly	Glu	Arg 85	Leu	Asn	Gln	Asp	Gln 90	Leu	Asp	Ala	Val	Ser 95	Lys	
25	Tyr	Gln	Glu	Val 100	Thr	Asn	Asn	Leu	Glu 105	Phe	Ala	Lys	Glu	Leu 110	Gln	Arg	
20	Ser	Phe	Met 115	Ala	Leu	Ser	Gln	Asp 120	Ile	Gln	Lys	Thr	Ile 125	Lys	Lys	Thr	
30	Ala	Arg 130	Arg	Glu	Gln	Leu	Met 135	Arg	Glu	Glu	Ala	Glu 140	Gln	Lys	Arg	Leu	
35	Lys 145	Thr	Val	Leu	Glu	Leu 150	Gln	Tyr	Val	Leu	Asp 155	Lys	Leu	Gly	Asp	Asp 160	
40	Glu	Val	Arg	Thr	Asp 165	Leu	Lys	Gln	Gly	Leu 170	Asn	Gly	Val	Pro	Ile 175	Leu	
	Ser	Glu	Glu	Gl u 180	Leu	Ser	Leu	Leu	Asp 185	Glu	Phe	Tyr	Lys	Leu 190	Ala	Asp	
45	Pro	Glu	Arg 195	Asp	Met	Ser	Leu	Arg 200	Leu	Asn	Glu	Gln	Tyr 205	Glu	His	Ala	
50	Ser	Ile 210	His	Leu	Trp	Asp	Leu 215	Leu	Glu	Gly	Lys	Glu 220	Lys	Pro	Val	Суз	
55	Gly 225	Thr	Thr	Tyr	Lys	Ala 230	Leu	Lys	Glu	Ile	Val 235	Glu	Arg	Val	Phe	Gln 240	

	Ser	Asn	Tyr	Phe	Asp 245	Ser	Thr	His	Asn	His 250	Gln	Asn	Gly	Leu	Cys 255	Glu
5	Glu	Glu	Glu	Ala 260	Ala	Ser	Ala	Pro	Thr 265	Val	Glu	Asp	Gln	Ala 270	Ala	Glu
10	Ala	Glu	Pro 275	Glu	Pro	Val	Glu	Glu 280	Tyr	Thr	Glu	Gln	Asn 285	Glu	Val	Glu
	Ser	Thr 290	Glu	Tyr	Val	Asn	Arg 295	Gln	Phe	Met	Ala	Glu 300	Thr	Gln	Phe	Ser
15	Ser 305	Gly	Glu	Lys	Glu	Gln 310	Val	Asp	Asp	Trp	Thr 315	Val	Glu	Thr	Val	Glu 320
20	Val	Val	Asn	Ser	Leu 325	Gln	Gln	Gln	Pro	Gln 330	Ala	Ala	Ser	Pro	Ser 335	Val
25	Pro	Glu	Pro	His 340	Ser	Leu	Thr	Pro	Val 345	Ala	Gln	Ala	Asp	Pro 350	Leu	Val
	Arg	Arg	Gln 355	Arg	Val	Gln	Asp	Leu 360	Met	Ala	Gln	Met	Gln 365	Gly	Pro	Tyr
30	Asn	Phe 370	Ile	Gln	Asp	Ser	Met 375	Leu	Asp	Phe	Glu	As n 380	Gln	Thr	Leu	Asp
35	Pro 385	Ala	Ile	Val	Ser	Ala 390	Gln	Pro	Met	Asn	Pro 395	Ala	Gln	Asn	Met	Asp 400
	Ile	Pro	Gln	Leu	Val 405	Суз	Pro	Pro	Val	His 410	Ser	Glu	Ser	Arg	Leu 415	Ala
40	Gln	Pro	Asn	Gln 420	Val	Ser	Val	Gln	Pro 425	Glu	Ala	Thr	Gln	Val 430	Pro	Leu
45	Val	Ser	Ser 435	Thr	Ser	Glu	Gly	Tyr 440	Thr	Ala	Ser	Gln	Pro 445	Leu	Tyr	Gln
50	Pro	Ser 450	His	Ala	Thr	Asp	Gln 455	Arg	Pro	Gln	Lys	Glu 460	Pro	Ile	Asp	Gln
	Ile 465	Gln	Ala	Thr	Ile	Ser 470	Leu	Asn	Thr	Asp	Gln 475	Thr	Thr	Ala	Ser	Ser 480
55	Ser	Leu	Pro	Ala	Ala 485	Ser	Gln	Pro	Gln	Val 490	Phe	Gln	Ala	Gly	Thr 495	Ser

	Lys	Pro	Leu	His 500	Ser	Ser	Gly	Ile	Asn 505	Val	Asn	Ala	Ala	Pro 510	Phe	Gln
5	Ser	Met	Gln 515	Thr	Val	Phe	Asn	Met 520	Asn	Ala	Pro	Val	Pro 525	Pro	Val	Asn
10	Glu	Pro 530	Glu	Thr	Leu	Lys	Gln 535	Gln	Asn	Gln	Tyr	Gln 540	Ala	Ser	Tyr	Asn
15	Gln 545	Ser	Phe	Ser	Ser	Gln 550	Pro	His	Gln	Val	Glu 555	Gln	Thr	Glu	Leu	Gln 560
	Gln	Glu	Gln	Leu	Gln 565	Thr	Val	Val	Gly	Thr 570	Tyr	His	Gly	Ser	Gln 575	Asp
20	Gln	Pro	His	Gln 580	Val	Thr	Gly	Asn	His 585	Gln	Gln	Pro	Pro	Gln 590	Gln	Asn
25	Thr	Gly	Phe 595	Pro	Arg	Ser	Asn	Gln 600	Pro	Tyr	Tyr	Asn	Ser 605	Arg	Gly	Val
30	Ser	Arg 610	Gly	Gly	Ser	Arg	Gly 615	Ala	Arg	Gly	Leu	Met 620	Asn	Gly	Tyr	Arg
	Gly 625	Pro	Ala	Asn	Gly	Phe 630	Arg	Gly	Gly	Tyr	Asp 635	Gly	Tyr	Arg	Pro	Ser 640
35	Phe	Ser	Thr	Asn	Thr 645	Pro	Asn	Ser	Gly	Tyr 650	Thr	Gln	Ser	Gln	Phe 655	Ser
40	Ala	Pro	Arg	Asp 660	Tyr	Ser	Gly	Tyr	Gln 665	Arg	Asp	Gly	Tyr	Gln 670	Gln	Asn
	Phe	Lys	Arg 675	Gly	Ser	Gly	Gln	Ser 680	Gly	Pro	Arg	Gly	Ala 685	Pro	Arg	Gly
45	Arg	Gly 690	Gly	Pro	Pro	Arg	Pro 695	Asn	Arg	Gly	Met	Pro 700	Gln	Met	Asn	Thr
50	Gln 705 <210> 17	Gln	Val	Asn								·				
55	<210> 17 <211> 315(<212> DNA <213> Equi		allus													
	<220> <221> CDS	;														

<222> (1) (1917)
<223>	

<400> 17

																gaa Glu	48
5								gat Asp								gtc Val	96
10																gcg Ala	144
15								aca Thr									192
								gaa Glu									240
20	Ğlu	Leu	Gln	Tyr	Val 85	Leu	Asp	aaa Lys	Leu	Gly 90	Asp	Glu	Glu	Val	Arg 95	Thr	288
25	Asp	Leu	Lys	Gln 100	Ğİy	Leu	Asn	gga Gly	Val 105	Pro	Ile	Leu	Ser	Glu 110	Glu	Glu	336
30	Leu	Ser	Leu 115	Leu	Āsp	Glu	Phe	tac Tyr 120	Lys	Leu	Āla	Asp	Pro 125	Val	Arg	Asp	384
30	Met	Ser 130	Leu	Arg	Leu	Asn	Glu 135	cag Gln	Tyr	Glu	His	Ala 140	Ser	Ile	His	Leu	432
35	Trp 145	Asp	Leu	Leu	Glu	Gly 150	Lys	gaa Glu	Lys	Ser	Val 155	Суз	Gly	Thr	Thr	Tyr 160	480
40	Lys	Ala	Leu	Arg	Glu 165	Ile	Val	gag Glu	Arg	Val 170	Phe	Gln	Ser	Asn	Tyr 175	Phe	528
	Asp	Ser	Thr	His 180	Asn	His	Gln	aat Asn	Gly 185	Leu	Cys	Glu	Glu	Glu 190	Glu	Ala	576
45	Thr	Ser	Ala 195	Pro	Thr	Ala	Ğlu	gac Asp 200	Gln	Gly	Ala	Ğlu	Ala 205	Ğlu	Pro	Glu	624
50	Pro	Ala 210	Ğlu	Glu	Tyr	Thr	Glu 215	caa Gln	Ser	Glu	V al	Glu 220	Ser	Thr	Ğlu	Tyr	672
55	Val 225	Asn	Arg	Gln	Phe	Met 230	Ala	gaa Glu	Ala	Gln	Phe 235	Ser	Gly	Glu	Lys	Glu 240	720
00								gag Glu									768

		245	250	255
5	cag cag caa cct Gln Gln Gln Pro 260	Gln Ala Ala Ser P	cct tca gta ccg gag ccc Pro Ser Val Pro Glu Pro 265 270	cac tct 816 His Ser
	ttg act cca gtg Leu Thr Pro Val 275	gct cag gca gat c Ala Gln Ala Asp P 280	cc ctt gtg aga aga cag Pro Leu Val Arg Arg Gln 285	cga gta 864 Arg Val
10			gg ccc tat aat ttc ata Sly Pro Tyr Asn Phe Ile 300	
15	5		ca ctt gat cct gcc att Chr Leu Asp Pro Ala Ile 315	-
			at atg gac atg ccc cag Asn Met Asp Met Pro Gln 330	
20		. His Ala Glu Ser A	nga ctt gct caa cct aat Arg Leu Ala Gln Pro Asn 145 350	
25			tt cct ttg gtt tca tcc Val Pro Leu Val Ser Ser 365	
30			tg tac cag cct tct cat eu Tyr Gln Pro Ser His 380	
50			ct gac cag atc cag gca hr Asp Gln Ile Gln Ala 395	
35			ca tca tca tcc ctt cct la Ser Ser Ser Leu Pro 410	
40		Val Phe Gln Ala G	ngg aca agc aaa cct tta Aly Thr Ser Lys Pro Leu 25 430	
			ca ttc cag tcc atg caa ro Phe Gln Ser Met Gln 445	
45	ttc aac atg aat Phe Asn Met Asn 450	gcc ccg gtt cct c Ala Pro Val Pro P 455	ct gtt aat gaa cca gaa ro Val Asn Glu Pro Glu 460	act tta 1392 Thr Leu
50			gc tat aac cag agc ttt er Tyr Asn Gln Ser Phe 475	
			ag ctt ccg caa gag cag lu Leu Pro Gln Glu Gln 490	
55	acg gtg gtt ggt Thr Val Val Gly 500	Thr Tyr His Ala S	cc caa gac cag ccc cat er Gln Asp Gln Pro His 05 510	caa gtg 1536 Gln Val

		ggt Gly															1584
5		agt Ser 530															1632
10		ggt Gly															1680
45		aga Arg															1728
15		agc Ser															1776
20		tat Tyr															1824
25		agt Ser 610															1872
		aac Asn													taa		1917
30	tctç	gatto	ac a	aggat	tato	t tt	aato	egcca	aaa	caca	ctg	gcca	gtgt	ac c	ataa	tatgt	1977
	taco	agaa	iga ç	gttat	tato	t at	ttgt	tete	cct	ttca	lgga	aact	tatt	gt a	aagg	gactg	2037
	tttt	cato	200 a	ataaa	Igaca	.g ga	ctac	agtt	gto	agct	tta	tatt	acct	gg a	tatg	gaagg	2097
35	aaac	tatt	tt t	acto	tgca	t gt	tctg	rtcct	aag	cgtc	atc	ttga	gcct	tg c	acat	gatac	2157
	tcaç	atto	ct t	teec	ttgc	t ta	ggag	rtaaa	aca	taat	ata	cttt	atgg	gg t	gata	atatc	2217
10	tcca	tagt	ta t	ttga	agtg	g ct	tgga	laaaa	gca	agat	tga	cttt	tgac	at t	ggat	aaaat	2277
40																gaaag	2337
																cctat	2397
45																acaca	2457
					•											gttaa	2517
		_	-		-								_			gcaaa	2577
50				_	-		_			-				-		tggat	2637
																tttct	2697
																tgtct gaaaa	2757 2817
55						_	_	_							-	gtttt	2817
			-					-		-			-				

,

	taaaaggaaa	agatatcaaa	tgcctgctgc	taccaccctt	ttaaattgct	atcttttgaa	2937
	aagcaccagt	atgtgttttt	agattgattt	ccctatttta	gggaaatgac	agtcagtagt	2997
5	ttcagttctg	atggtataag	caaagcaaat	aaaacgtgtt	tataaaagtt	gtatcttgaa	3057
	acactggtgt	tcaacagcta	gcagcttctg	tggttcaccc	cctgccttgt	tagtgttacc	3117
	catttatggt	tatctccagc	agcaatttct	cta			3150
10							
	<210> 18						
	<211> 638						
	<212> PRT						
	<213> Equus cab	allus					
15							
	<400> 18						

	Met 1	Glu	Gly	Lys	Leu 5	Asp	Asp	Tyr	Gln	Glu 10	Arg	Met	Asn	Lys	Gly 15	Glu
5	Arg	Leu	Asn	Gln 20	Asp	Gln	Leu	Asp	Ala 25	Val	Ser	Lys	Tyr	Gln 30	Glu	Val
10	Thr	Asn	Asn 35	Leu	Glu	Phe	Ala	Lys 40	Glu	Leu	Gln	Arg	Ser 45	Phe	Met	Ala
15	Leu	Ser 50	Gln	Asp	Ile	Gln	Lys 55	Thr	Ile	Lys	Lys	Thr 60	Ala	Arg	Arg	Glu
	Gln 65	Leu	Met	Arg	Glu	Glu 70	Ala	Glu	Gln	Lys	Arg 75	Leu	Lys	Thr	Val	Leu 80
20	Glu	Leu	Gln	Tyr	Val 85	Leu	Asp	Lys	Leu	Gly 90	Asp	Glu	Glu	Val	Arg 95	Thr
25	Asp	Leu	Lys	Gln 100	Gly	Leu	Asn	_	Val 105	Pro	Ile	Leu	Ser	Glu 110	Glu	Glu
	Leu	Ser	Leu 115	Leu	Asp	Glu	Phe	Tyr 120	Lys	Leu	Ala	Asp	Pro 125	Val	Arg	Asp
30	Met	Ser 130	Leu	Arg	Leu	Asn	Glu 135	Gln	Tyr	Glu	His	Ala 140	Ser	Ile	His	Leu
35	Trp 145	Asp	Leu	Leu	Glu	Gly 150	Lys	Glu	Lys	Ser	Val 155	Суз	Gly	Thr	Thr	Tyr 160
40	Lys	Ala	Leu	Arg	Glu 165	Ile	Val	Glu	Arg	Val 170	Phe	Gln	Ser	Asn	Tyr 175	Phe
	Asp	Ser	Thr	His 180	Asn-	Hïs	Gln	Asn	Gly 185	Leu	Суз	Glu	Glu	Glu 190	Glu	Ala
45																

	Thr S		Ala 195	Pro	Thr	Ala	Glu	Asp 200	Gln	Gly	Ala	Glu	Ala 205	Glu	Pro	Glu
5	Pro J	Ala (210	Glu	Glu	Tyr	Thr	Glu 215	Gln	Ser	Glu	Val	Glu 220	Ser	Thr	Glu	Tyr
10	Val 4 225	Asn i	Arg	Gln	Phe	Met 230	Ala	Glu	Ala	Gln	Phe 235	Ser	Gly	Glu	Lys	Glu 240
	Gln N	Val i	Asp	Glu	Trp 245	Thr	Val	Glu	Thr	Val 250	Glu	Val	Val	Asn	Ser 255	Leu
15	Gln (Gln (Pro 260	Gln	Ala	Ala	Ser	Pro 265	Ser	Val	Pro	Glu	Pro 270	His	Ser
20	Leu 1		Pro 275	Val	Ala	Gln	Ala	Asp 280	Pro	Leu	Val	Arg	Arg 285	Gln	Arg	Val
25	Gln # 2	Asp 1 290	Leu 🤅	Met	Ala	Gln	Met 295	Gln	Gly	Pro	Tyr	Asn 300	Phe	Ile	Gln	Asp
	Ser N 305	let]	Leu .	Asp	Phe	Glu 310	Asn	Gln	Thr	Leu	Asp 315	Pro	Ala	Ile	Val	Ser 320
30	Ala G	3ln H	Pro 1		Asn 325	Pro	Ala	Gln	Asn	Met 330	Asp	Met	Pro	Gln	Leu 335	Val
35	Cys F	ro I		Val 340	His	Ala	Glu	Ser	Arg 345	Leu	Ala	Gln	Pro	As n 350	Gln	Val
	Pro V		355	Pro	Glu		Thr			Pro	Leu		Ser 365	Ser	Thr	Ser
40	Glu G	3 ly 1 370	fyr (Thr	Ala	Ser	Gln 375	Pro	Leu	Tyr	Gln	Pro 380	Ser	His	Ala	Thr
45	Glu G 385	31n <i>7</i>	Arg)	Pro	Gln	Lys 390	Glu	Pro	Thr	Asp	Gln 395	Ile	Gln	Ala		Ile 400
50	Ser I	Leu I	Asn '		Asp 405		Thr .	Thr		Ser 410	Ser	Ser	Leu	Pro	Ala 415	Ala
	Ser G	31n E		Gln 420	Val	Phe	Gln		Gly 425	Thr	Ser	Lys		Leu 430	His	Ser
55	Ser G	-	[le 2 435	Asn	Val	Asn		Ala 440	Pro	Phe	Gln		Met 445	Gln	Thr	Val

۲.

	Phe	Asn 450	Met	Asn	Ala	Pro	Val 455	Pro	Pro	Val	Asn	Glu 460	Pro	Glu	Thr	Leu
5	Lys 465	Gln	Gln	Asn	Gln	Tyr 470	Gln	Ala	Ser	Tyr	As n 475	Gln	Ser	Phe	Ser	Ser 480
10	Pro	Pro	His	Gln	Val 485	Glu	Gln	Thr	Glu	Leu 490	Pro	Gln	Glu	Gln	Leu 495	Gln
15	Thr	Val	Val	Gly 500	Thr	Tyr	His	Ala	Ser 505	Gln	Asp	Gln	Pro	His 510	Gln	Val
	Thr	Gly	Asn 515	His	Gln	Gln	Pro	Pro 520	Gln	Gln	Asn	Thr	Gly 525	Phe	Pro	Arg
20	Ser	Ser 530	Gln	Pro	Tyr	Tyr	Asn 535	Ser	Arg	Gly	Val	Ser 540	Arg	Gly	Gly	Ser
25	Arg 545	Gly	Ala	Arg	Gly	Leu 550	Met	Asn	Gly	Tyr	Arg 555	Gly	Pro	Ala	Asn	Gly 560
	Phe	Arg	Gly	Gly	Tyr 565	Asp	Gly	Tyr	Arg	Pro 570	Ser	Phe	Ser	Asn	Thr 575	Pro
30	Asn	Ser	Gly	Tyr 580	Thr	Gln	Ser	Gln	Phe 585	Ser	Ala	Pro	Arg	Asp 590	Tyr	Ser
35	Gly	Tyr	Gln 595	Arg	Asp	Gly	Tyr	Gln 600	Gln	Asn	Phe	Lys	Arg 605	Gly	Ser	Gly
40	Gln	Ser 610	Gly	Pro	Arg	Gly	Ala 615	Pro	Arg	Gly	Arg	Gly 620	Gly	Pro	Pro	Arg
	Pro 625	Asn	Arg	Gly	Met	Pro 630	Gln	Met	Asn	Thr	Gln 635	Gln	Val	Asn		
45	<210> 1 <211> 6 <212> [<213> N	5181 DNA	usculu	IS												
50	<220> <221> (<222> (<223>		. (2302	2)												
55	<400> 1	9														

	gctggctggc	taagtccctc	ccgcgccggc	tcttgtccca	ctaggagcag	ctcagagccg	60
	cggggacagg	gcgaagcggc	ctgcgcccac	ggagcgcacg	tctctgttct	caacgcagca	120 ⁻
5	ccacccttgc	cccctcggc	tgcccactcc	agacgtccag	cggctccgcg	cgcgcacg	178
10							
15							
20							
20							
25							
30							
35							
40							
45							

			_	-		-		-				-		-	-	gga Gly	226
5					tcc Ser												274
10					tct Ser												322
					aag Lys												370
15		-		-	aaa Lys	-				-	-		-	-	-	-	418
20				-	agg Arg 85				-	_	-	-	-	-		-	466
25					aca Thr												514
25	-		-	-	tta Leu	-		-		-				-	-		562
30					cag Gln												610
35					gag Glu												658
	-		-		gat Asp 165	-				-	_					-	706
40					ttg Leu												754
45			-	-	atg Met	-						-		-		-	802
				-	tgg Trp	-	-	-	-			-	-			-	850
50					aaa Lys												898
55					gat Asp 245	-								-	-		946
	gag	gaa	gag	gcg	gct	tca	gcg	ccc	aca	gtg	gag	gac	cag	gta	gct	gaa	994

	Glu	Glu	Glu	Ala 260	Ala	Ser	Ala	Pro	Thr 265	Val	Glu	Asp	Gln	V al 270	Ala	Glu	
5					cca Pro												1042
10					gtc Val												1090
					gag Glu												1138
15					ctc Leu 325												1186
20					tct Ser												1234
					gta Val												1282
25					gat Asp												1330
30					tcc Ser												1378
					gtt Val 405												1426
35		Ser	Asn	Gln 420	val	Pro	Val	Gln	Pro 425	Ğlu	Åla	Thr	Gln	v al 430	Pro	Leu	1474
40					agt Ser												1522
					acg Thr												1570
45		-	-		ata Ile		-			-	-			-			1618
50				-	gct Ala 485		-					-	-			-	1666
55			-		agc Ser	-				-		-	-			-	1714
55		-			gtg Val			-		-		-			-		1762

		515		520	525	
5	-			Gln Ser Gli	g tac cag gcc a n Tyr Gln Ala T 540	
					g gaa caa aca g L Glu Gln Thr G 555	
10	-	Gln Leu			t tac cat gga to r Tyr His Gly So)	
15					g caa ccc cca ca h Gln Pro Pro G 5	In Gln Asn
				-	t tac aac agt co r Tyr Asn Ser An 605	
20	-			Ala Arg Gly	c ttg atg aat go y Leu Met Asn Gi 620	
25		-			: gat ggt tac co : Asp Gly Tyr An 635	
30	-	Asn Thr	-		a cag tct cag tt : Gln Ser Gln Ph)	
50					: gga tat cag ca o Gly Tyr Gln Gl 67	n Asn Phe
35					y gga gcc cca co y Gly Ala Pro Ar 685	
40				Arg Gly Met	g ccg caa atg aa : Pro Gln Met As 700	
	caa gtg Gln Val 705		tgtgatacac	aggattatgt t	taatcgcca aaaac	acact 2342
45	ggccagt	gta ccata	atatg ttacc	agaag agttat	tatc tatttgttct	ccctttcagg 2402
					igaca ggactgcaat	
					tgca tgttctgtcc	
50		-			ittga agtggcttgg	
	caagatt	gaa ttttt	gacct tggat	aaaat ctacaa	tcag ccctagaact	attcagtggt 2702
55	aattgac	aaa gttaa	agcat tttct	ttgaa aggaag	atgg aaggagtgga	gtgtggttta 2762
	gcaaaac	tgc atttc	atagc tttcc	catta aattgg	agca ccgacagatt	aaaagcatac 2822

	caaattatgc	atgggtcctt	actcacacaa	gtgaggctgg	ctaccagect	tgacatagca	2882
	ctcactagtc	ttctggccaa	acgactgtga	ttaaaacaca	tgtaaattgc	tctttagtag	2942
5	tggatactgt	gtaagacaaa	gccaaattgc	aaatcaggct	ttgattggct	cttctggaaa	3002
	atatgcatca	aatatggggg	ataatctgga	tgggctgctg	ctgtgctcaa	tgtgaactat	3062
	ttagatacct	ttggaacact	taacagtttc	tctgaacaat	gacttacatg	gggattggtc	3122
10	ctgtttgtca	ttcctcacca	taattgcatt	gtcatcacta	atccttggat	cttgctgtat	3182
	tgttactcaa	attggtaata	ggtactgatg	gaaatcgcta	atggatggat	aatcataaca	3242
	cttttggtca	catgttttct	cctgcagcct	gaaagttctt	aaagaaaaag	atatcaaatg	3302
15	cctgctgcta	ccaccctttt	aaattgctat	ctttagaaaa	gcaccggtat	gtgttttaga	3362
	ttcatttccc	tgttttaggg	aaatgacagg	cagtagtttc	agttctgatg	gcaaaacaaa	3422
20	taaaaacatg	tttctaaaag	ttgtatcttg	aaacactggt	gttcaacagc	tagcagctaa	3482
20	agtaattcaa	cccatgcatt	gctagtgtca	cagcctttgg	ttatgtctag	tagctgtttc	3542
	tgaagtattt	tcatttatct	tttgtcaaat	ttaaccctgt	ttgaattctc	tcctttcctc	3602
25	aaggagacac	ttatgttcaa	agtgttgatt	ctttgcctta	ggtgcataga	gagtagacag	3662
	tttggagatg	gaaaggttag	cagtgactta	gccatatgtt	ctgtgttgga	atttgtgcta	3722
	gcagtttgag	cactagetet	gcgtgcctat	gaactgaatg	ctgcttgtcc	cattccattt	3782
30	tatgtcatgg	agaaataatt	ccacttggta	acacaaaggc	taagttaatg	ttattttctg	3842
	tacagaaatt	aaattttact	tttagccttt	tgtaaacttt	tttttttt	ttccaagccg	3902
	gtatcagcta	ctcaaaacaa	ttctcagata	ttcatcatta	gacaactgga	gtttttgctg	3962
35	gttttgtagc	ctactaaaac	tgctgaggct	gttgaacatt	ccacattcaa	aagttttgta	4022
	gggtggtgga	taatggggaa	gcttcaatgt	ttattttaaa	ataaataaaa	taagttcttg	4082
	acttttctca	tgtgtggtta	tggtacatca	tattggaagg	gttatctgtt	tacttttgcc	4142
40	aagactattt	tgccagcacc	tacacttgtg	tgctttaaaa	gacaactacc	tgggatgtac	4202
	cacaaccata	tgttaattgt	attttattgg	gatggataaa	atgtttgtgg	tttattggat	4262
	aatccctaga	tggtgtgtta	cgtgtgtaga	atataatttt	atgatagtaa	gaaagcaaaa	4322
45	ttgaagaaaa	taagtttagt	attgaatttg	agttctgaag	tgaattcagg	gaatgtctca	4382
	cgtttcgggc	ttctacccaa	agtgtagggc	agaaggtgta	aaagttgttt	gtagtttgac	4442
50	ttgtttattt	tttaagttgc	ttattccttt	caacagcaac	atatcattag	ctgtcattct	4502
	accattgcag	ttctagtgag	ttttaacgtc	tgcattcaag	actgttttaa	aagcaacctc	4562
	actggacaga	gaactgctaa	agtettttee	ttaagatctg	agtctttgtt	actcagtatc	4622
55	ttctataata	tgcaaatgct	tgtctagagg	cagaagacct	tttgtttggt	caagtgtgta	4682
	ttttaccaga	gtacagggaa	ctgatggtcc	tacatgtctc	ttagtgtagt	aagactataa	4742

	aatcttttgt	acatgcacaa	ttcacagtat	gtttagatac	cacgtgtata	atgccccccc	4802
	ctcccccagg	tagcatgcca	ttgatgactt	tttgcttagg	gccattttat	taccagggcc	4862
5	ttaatattcc	taaaaagatg	atttttttc	atcctttctc	ctcttttgat	cattgtatct	4922
	tgatattaaa	aacatgacct	tccaatgatt	gtagtaaatt	aacttctata	gttcttttgt	4982
10	ctctatatgt	attcatatat	atgctattgt	atagagactt	caaggagaca	tggagatgca	5042
10	tgettattet	caggttcatt	cactaaggtg	cttggcagac	aaccagtttc	taagtgcaga	5102
	atgtagttaa	gcagcttcat	atatgtgcca	ggcaatttgt	tttgttaaat	tttcatctac	5162
15	ttaaggaaat	agggtattgt	agcttaggct	gatcataccc	ttcatttcaa	ccttaagctc	5222
	tcaacctgca	tccatccgac	ttgagctatt	aagtacttta	gttttatcga	gtataagtta	5282
	acagaaaaaag	taaattaagc	tttgccttta	ctattttgaa	tttatataca	ttctggaaaa	5342
20	acttagaaac	tgttgtatat	ttcattagat	taaattatat	gaaaatgtga	ttgtttatag	5402
	caaagcctgt	gagttgcata	caccctaagg	aaaactcctt	aagtgctcct	tgaagagaga	5462
	agaaacaatt	ctgggtctgg	tcttttaag	aacaaagcta	gactactgta	tgttagcact	5522
25	gtacattaat	agtctgttgt	gaagcttgag	cagtttcctg	catagccttg	atccttcacc	5582
	gttggcattg	aaaatagcag	tatccctgat	gtacttaaaa	cttaaagtca	ggttttggta	5642
30	tatttatttg	taagtcttaa	tttcctctaa	atactatatc	tctttagcga	gacaacctga	5702
	aatttattag	cacatttggg	tatctcttgc	ttggcattat	ggccagtgtt	aactattcag	57 62
	tggtgaaaaa	attacccctc	aagacactgg	agtgacccca	gatgtgtgta	gtaagtggca	5822
35	tggttcaact	gtgtggttaa	tgataaatat	atgacttagt	cggtatgatc	tggaaagact	5882
	tgattgaaag	ataattcagc	tgacataagg	atgagtgagg	agtggcaaac	tggataaaag	5942
	agtcaagaga	cctgtattcc	agtgactcct	gttttgttta	agcattagca	agatetgtet	6002
40	ggggaaactg	gatagggcag	ttttcttcca	tgtttagttt	ttgtctcaac	atttggaagc	6062
	tattgaaggt	tttaaaatgg	tgtgtattgt	tttttttgg	aaaaaaaata	gccagaatag	6122
45	tgggtcatct	aataaaactg	ccatttaaaa	gatcaaaaaa	aaaaaaaaaa	aaaaaaaa	6181
	<210> 20						

<211> 707 <212> PRT <213> Mus musculus

<400> 20

50

	Met 1	Pro	Ser	Ala	Thr 5	Ser	His	Ser	Gly	Ser 10	Gly	Ser	Lys	Ser	Ser 15	Gly
5	Pro	Pro	Pro	Pro 20	Ser	Gly	Ser	Ser	Gly 25	Ser	Glu	Ala	Ala	Ala 30	Gly	Ala
10	Ala	Ala	Pro	Ala	Ser	Gln	His	Pro	Ala	Thr	Gly	Thr	Gly	Ala	Val	Gln
15																
20																
25																
30																
35																
40																
45																
50																
55																

		35			ı		40					45			
5		Slu Ala 50	. Met	Lys	Gln	Ile 55	Leu	Gly	Val	Ile	Asp 60	Lys	Lys	Leu	Arg
10	Asn I 65	Leu Gli	ı Lys	Lys	Lys 70	Gly	Lys	Leu	Asp	Asp 75	Tyr	Gln	Glu	Arg	Met 80
	Asn L	ys Gly	/ Glu	Arg 85	Leu	Asn	Gln	Asp	Gln 90	Leu	Asp	Ala	Val	Ser 95	Lys
15	Tyr G	ln Glu	Val 100	Thr	Asn	Asn	Leu	Glu 105	Phe	Ala	Lys	Glu	Leu 110	Gln	Arg
20	Ser P	he Met 115		Leu	Ser	Gln	Asp 120	Ile	Gln	Lys	Thr	Ile 125	Lys	Lys	Thr
		rg Arç .30	f Glu	Gln	Leu	Met 135	Arg	Glu	Glu	Ala	Glu 140	Gln	Lys	Arg	Leu
25	Lys T 145	'hr Val	. Leu	Glu	Leu 150	Gln	Tyr	Val	Leu	Asp 155	Lys	Leu	Gly	Asp	Asp 160
30	Asp V	al Arg	Thr	Asp 165	Leu	Lys	Gln	Gly	Leu 170	Ser	Gly	Val	Pro	Ile 175	Leu
	Ser G	lu Glu	Glu 180	Leu	Ser	Leu	Leu	Asp 185	Glu	Phe	Tyr	Lys	Leu 190	Val	Asp
35	Pro G	lu Arg 195	-	Met	Ser		Arg 200	Leu	Asn	Glu	Gln	Tyr 205	Glu	His	Ala
40		le His 10	Leu	Trp	Asp	Leu 215	Leu	Glu	Gly	Lys	Glu 220	Lys	Pro	Val	Суз
	Gly T 225	hr Thr	Tyr	Lys	Ala 230	Leu	Lys	Glu	Ile	Val 235	Glu	Arg	Val	Phe	Gln 240
45	Ser A	sn Tyr	Phe	Asp 245	Ser	Thr	His	Asn	His 250	Gln	Asn	Gly	Leu	Cys 255	Glu
50	Glu G	lu Glu	Ala 260	Ala	Ser	Ala	Pro	Thr 265	Val	Glu	Asp	Gln	Val 270	Ala	Glu
	Ala G	lu Pro 275		Pro	Ala		Glu 280	Tyr	Thr	Glu		Ser 285	Glu	Val	Glu
55		hr Glu 90	Tyr	Val	Asn	Arg 295	Gln	Phe	Met	Ala	Glu 300	Thr	Gln	Phe	Ser

	Ser 305	Gly	Glu	Lys	Glu	Gln 310	Val	Asp	Glu	Trp	Thr 315	Val	Glu	Thr	Val	Glu 320
5	Val	Val	Asn	Ser	Leu 325	Gln	Gln	Gln	Pro	Gln 330	Ala	Ala	Ser	Pro	Ser 335	Val
10	Pro	Glu	Pro	His 340	Ser	Leu	Thr	Pro	Val 345	Ala	Gln	Ser	Asp	Pro 350	Leu	Val
	Arg	Arg	Gln 355	Arg	Val	Gln	Asp	Leu 360	Met	Ala	Gln	Met	Gln 365	Gly	Pro	Tyr
15	Asn	Phe 370	Ile	Gln	Asp	Ser	Met 375	Leu	Asp	Phe	Glu	Asn 380	Gln	Thr	Leu	Asp
20	Pro 385	Ala	Ile	Val	Ser	Ala 390	Gln	Pro	Met	Asn	Pro 395	Thr	Gln	Asn	Met	Asp 400
25	Met	Pro	Gln	Leu	Val 405	Cys	Pro	Gln	Val	His 410	Ser	Glu	Ser	Arg	Leu 415	Ala
	Gln	Ser	Asn	Gln 420	Val	Pro	Val	Gln	Pro 425	Glu	Ala	Thr	Gln	Val 430	Pro	Leu
30	Val	Ser	Ser 435	Thr	Ser	Glu	Gly	Tyr 440	Thr	Ala	Ser	Gln	Pro 445	Leu	Tyr	Gln
35	Pro	Ser 450	His	Ala	Thr	Glu	Gln 455	Arg	Pro	Gln	Lys	Glu 460	Pro	Met	Asp	Gln
	Ile 465	Gln	Ala	Thr	Ile	Ser 470	Leu	Asn	Thr	Asp	Gln 475	Thr	Thr	Ala	Ser	Ser 480
40	Ser	Leu	Pro	Ala	Ala 485	Ser	Gln	Pro	Gln	Val 490	Phe	Gln	Ala	Gly	Thr 495	Ser
45	Lys	Pro	Leu	His 500	Ser	Ser	Gly	Ile	Asn 505	Val	Asn	Ala	Ala	Pro 510	Phe	Gln
50	Ser	Met	Gln 515	Thr	Val	Phe	Asn	Met 520	Asn	Ala	Pro	Val	Pro 525	Pro	Ala	Asn
	Glu	Pro 530	Glu	Thr	Leu	Lys	Gln 535	Gln	Ser	Gln	Tyr	Gln 540	Ala	Thr	Tyr	Asn
55	Gln 545	Ser	Phe	Ser	Ser	Gln 550	Pro	His	Gln	Val	Glu 555	Gln	Thr	Glu	Leu	Gln 560

	Gln	Asp	Gln	Leu	Gln 565	Thr	Val	Val	Gly	Thr 570	Tyr	His	Gly	Ser	Gln 575	Asp
5	Gln	Pro	His	Gln 580	Val	Pro	Gly	Asn	His 585	Gln	Gln	Pro	Pro	Gln 590	Gln	Asn
10	Thr	Gly	Phe 595	Pro	Arg	Ser	Ser	Gln 600		Tyr	Tyr	Asn	Ser 605	Arg	Gly	Val
15	Ser	Arg 610	Gly	Gly	Ser	Arg	Gly 615	Ala	Arg	Gly	Leu	Met 620	Asn	Gly	Tyr	Arg
	Gly 625	Pro	Ala	Asn	Gly	Phe 630	Arg	Gly	Gly	Tyr	Asp 635	Gly	Tyr	Arg	Pro	Ser 640
20	Phe	Ser	Asn	Thr	Pro 645	Asn	Ser	Gly	Tyr	Ser 650	Gln	Ser	Gln	Phe	Thr 655	Ala
25		-	-	660		_	_		665	Asp	-	-		670		
30	-	-	675		-			680		Arg	-		685	_		-
		690		Pro	Arg	Pro	Asn 695	Arg	Gly	Met	Pro	Gln 700	Met	Asn	Thr	Gln
35	GIn 705 <210>	Val 21	Asn													
40	<211> <212> <213>		muscu	llus												
45	<220> <221> <222> <223>	• CDS • (139)	(226)	2)												
	<400>	• 21														
50																

	ccca	accgo	cgc (gegeg	gcgta	ag co	egect	gcco	c gco	ccgco	ccgc	tgcç	gcgti	ttt (gtcc	cgcgtc	60
	tcto	cccc	gtc (cgtct	cct	ga ci	ttgcl	ggto	s ttç	rtcct	tcc	ctc	ccgct	tt (tttc	etctcc	120
5	tcto	ettei	cg (gtcta	aaag						agc Ser						171
10	agc Ser	aaa Lys	tcg Ser	tcg Ser 15	gga Gly	ccg Pro	ccg Pro	ccg Pro	ccg Pro 20	tcc Ser	ggt Gly	tcc Ser	tcc Ser	ggg Gly 25	agt Ser	gag Glu	219
	gcg	gcg	gcc	ggg	gca	gct	gcg	ccg	gct	tct	cag	cat	ccg	gca	acc	ggc	267
15																	
20																	
25																	
30																	
35																	
40																	
45																	
50																	
50																	
55																	

	Ala	Ala	Ala 30	Gly	Ala	Ala	Ala	Pro 35	Ala	Ser	Gln	His	Pro 40	Ala	Thr	Gly	
5																atc Ile	315
10												ggt Gly					363
												aat Asn					411
15												aat Asn					459
20												caa Gln					507
												atg Met 135					555
25	-	-	-	-				-				cag Gln		-	-	-	603
30												aaa Lys					651
												ttg Leu					699
35												tta Leu					747
40												ttg Leu 215					795
												cta Leu					843
45												act Thr					891
50			-	-						-		gcg Ala					939
												gaa Glu					987
55												agg Arg					1035

		285					290					295					
5												gtg Val				aca Thr 315	1083
	-	-		-		-	-				-	cag Gln			-	-	1131
10					-						-	act Thr			-	-	1179
15												gat Asp					1227
												atg Met 375					1275
20			-		-						-	cag Gln		_			1323
25	acc Thr	cag Gln	aac Asn	atg Met	gat Asp 400	atg Met	cct Pro	cag Gln	ctg Leu	gtt Val 405	tgc Cys	cct Pro	cag Gln	gtt Val	cat His 410	tct Ser	1371
30	-		-		-					-		gta Val				-	1419
50												gja ggg					1467
35												cag Gln 455					1515
40					-			_	-	-		ttg Leu			-		1563
												cag Gln					1611
45	-	-			-			-		-	-	gga Gly			-		1659
50												aat Asn					1707
	-			-		Glu		-	-			caa Gln 535	-	-	-		1755
55										Ser		cct Pro			Val		1803

	caa aca gag ctt caa caa gac caa ctg caa acg gtg gtt ggc act tac 18. Gln Thr Glu Leu Gln Gln Asp Gln Leu Gln Thr Val Val Gly Thr Tyr 560 565 570	51
5	cat gga tee cag gae cag eet cat caa gtg eet ggt aac eac cag caa 18 His Gly Ser Gln Asp Gln Pro His Gln Val Pro Gly Asn His Gln Gln 575 580 585	99
10	ccc cca cag cag aac act ggc ttt cca cgt agc agt cag cct tat tac 194 Pro Pro Gln Gln Asn Thr Gly Phe Pro Arg Ser Ser Gln Pro Tyr Tyr 590 595 600	47
45	aac agt cgt ggg gta tct cga gga ggg tct cgt ggt gcc aga ggc ttg 199 Asn Ser Arg Gly Val Ser Arg Gly Gly Ser Arg Gly Ala Arg Gly Leu 605 610 615	₹5
15	atg aat gga tac agg ggc cct gcc aat gga ttt aga gga gga tat gat 204 Met Asn Gly Tyr Arg Gly Pro Ala Asn Gly Phe Arg Gly Gly Tyr Asp 620 625 630 635	43
20	ggt tac cgc cct tca ttc tcg aac act cca aac agt ggt tat tca cag 209 Gly Tyr Arg Pro Ser Phe Ser Asn Thr Pro Asn Ser Gly Tyr Ser Gln 640 645 650	}1
25	tct cag ttc act gct ccc cgg gac tac tct ggt tac cag cgg gat gga 213 Ser Gln Phe Thr Ala Pro Arg Asp Tyr Ser Gly Tyr Gln Arg Asp Gly 655 660 665	39
	tat cag cag aat ttc aag cga ggc tct ggg cag agt gga cca cgg gga 218 Tyr Gln Gln Asn Phe Lys Arg Gly Ser Gly Gln Ser Gly Pro Arg Gly 670 675 680	37
30	gcc cca cga ggt cgt gga ggg ccc cca aga ccc aac aga ggg atg ccg 223 Ala Pro Arg Gly Arg Gly Gly Pro Pro Arg Pro Asn Arg Gly Met Pro 685 690 695	35
35	caa atg aac act cag caa gtg aat taa tgtgatacac aggattatgt 228 Gln Met Asn Thr Gln Gln Val Asn 700 705	32
	ttaatcgcca aaaacacact ggccagtgta ccataatatg ttaccagaag agttattatc 234	12
10	tatttgttct ccctttcagg aaacttattg taaagggact gttttcatcc cataaagaca 240	12
40	ggactgcaat tgtcagcttt acattacctg gatatggaag gaaactattt ttattctgca 246	
	tgttctgtcc taagcgtcat cttgagcctt gcacacaata caatactcag attcctcacc 252	
45	cttgcttagg agtaaaacat tatatactta tggggtgata atatctccat agttagttga 258 agtggcttgg aaaaaaaatg caagattgaa tttttgacct tggataaaat ctacaatcag 264	
	ccctagaact attcagtggt aattgacaaa gttaaagcat tttctttgaa aggaagatgg 270	
	aaggagtgga gtgtggttta gcaaaactgc atttcatagc tttcccatta aattggagca 276	52
50	ccgacagatt aaaagcatac caaattatgc atgggtcctt actcacacaa gtgaggctgg 282	:2
	ctaccageet tgacatagea etcaetagte ttetggeeaa acgaetgtga ttaaaacaea 288	2
55	tgtaaattgc tctttagtag tggatactgt gtaagacaaa gccaaattgc aaatcaggct 294	2
	ttgattggct cttctggaaa atatgcatca aatatggggg ataatctgga tgggctgctg 300	2

gacttacatg gggattggtc ctgtttgta ttoctococ taattgoatt gtoctococ3122satocttggat ottgotgta tgttactoca attggtaata ggtactgatg gaastcgoca3182atggatggat astcataca ottttggtca catgttttct octgocagoot gaasgttott3242aaagaaaag atacaaag ottgootgoca cococttt aaattgotat otttagaaaa3302(0gcaccogtat gtgtttaga ttoattoco tgtttagg aaatgacag ocgtagttto362agttotgatg gcaaaacaa taaaacatg ttotaaaag tgtactgga acagottg aaagotag3422gtocaacago tagcagota agtaattoca occatgott gotagtgoo cagoottgg348216ttagtotag tagcagota agtaattoca occatgott gotagtgoo cagoottgg348220ggtgocatag agagaagata ttagagaac ttagtoca aggtagtat cuttgoota362220ggtgocatag ggtgacag ttggagagaa ttagtag gaaggtag cagtagttt362220ctggttgga atttggota gcagttag gaagatat coactaggt gaacaaag372221ttagttag ttatttocg tacgagaaca ttagtagaa catgacag tiggaagag 3722378222ctgdttgga atttggota gcagttag gaagatat coactgga acacaaagg372223taagttadg ttatttocg tacgagaat aaatttac ttagoota gaacaaag378224taagtaag attggota gcagagaa tagtaga attaggaga gottcaatgt tagaacat390225ccacatcaa agttttga ggtgggag gataagag cotcaaaaa toccaagaa gotgagagag378226gacaactgg gtttgotg gtttgga gatagaga gottcaaga ttagaaaa390227taagtaag ttagga gatagaga taggagaa taggaga gottcaaga tagaaaa390228taagtaag taggtag aggtgga aaagttag cotaaaaa toccaaga gotgaaa392229gacaactoga gtttgotg gtttgag gatagaga gottcaaaaaaaa taggtttga gotgaga gagagaga gotgaaaaaaaaaa		ctgtgctcaa	tgtgaactat	ttagatacct	ttggaacact	taacagtttc	tctgaacaat	3062
atqgatgqat aatcatasca cttttggtca catgttttct cctgcagoct gaaagttctt3242 342 342 342 342 342 3444 3444 <th></th> <th>gacttacatg</th> <th>gggattggtc</th> <th>ctgtttgtca</th> <th>ttcctcacca</th> <th>taattgcatt</th> <th>gtcatcacta</th> <th>3122</th>		gacttacatg	gggattggtc	ctgtttgtca	ttcctcacca	taattgcatt	gtcatcacta	3122
 aaagaaaag atatcaaatg cctqctqcta ccaccctttt aaattqctat ctttagaaaa gcaccqgtat qtqtttaga ttcatttccc tqttttaggg aaatgacagg cagtagttc agttctgatg qcaacaaa taaaacatg tttctaaaag ttgtatcttg aacacctgg ttatqtctag tagcagtat agtaattcaa cccatgcatt gctagtgtca cagcctttg ttatgtctag tagcagtat tgagagtatt tcatttatct tttgtcaaat ttaaccotg ttatgttgg atttgtgta qcagtagacag tttggagatg gaaggttag cagtagttt digtagt ctggtgcataga gagtagacag tttggagatg gaaggttag cagtgctat gccatatgt ctggttgga atttgtgct qcagttgag cactagctc gogtgcctat gaaccaaggc ctggttgga atttgtgct gcagttag cactagctc gogtgcctat gaaccaaggc ctggttgtgg atttgtgtg gtacggatg cactagctc gogtgcctat gaaccaaggc ctggttgtgg atttgtgtg gtacggatg cactagctc tggtggatg acaaaggcg ctggttgtgg atttgtgtg gtacggatg cactagctc tggtggatg acaaaggcg ctggttgtgg atttgtgtg gtacggatg cactagctc tggtggatg acaaaggcg ctggttgtgg attttgtg gttttgtgg gtacggatg cactagct ttggaacatt gaccactgga gttttgtg gttttgtg gttttgtgg cacacaag tggtggatg acaaagggg gtgaacag ttttttttt ttccaaggog gtatttgag gtgtggga ggtggag ggtgggg gtgaacat gacaactga ggtggatga cagttttg ggtgggga ggtggag ggtggag gtgaagat gacaactga ggtggg ggtgg gaaggtgg ggggggg ggaggggg ggaggggg ggaggggg ggagggg ggaggggg ggaagggggg	5	atccttggat	cttgctgtat	tgttactcaa	attggtaata	ggtactgatg	gaaatcgcta	3182
10gcaccggtat gtgttttaga ttcatttcoc tgttttagg aaatgacag cagtagttb3362 3422 342211aqttctgatg gcaaacaa taaaacatg tttctaaag ttgtatctig aaacactgg3422 3422115ttatgtctag tagctgttb tgagtatta cattatch ttgtcaaat taaaccotg3522 		atggatggat	aatcataaca	cttttggtca	catgttttct	cctgcagcct	gaaagttctt	3242
agttctgatg gcaaacaa taaaacatg tttctaaag ttgtatcttg aaccatgg3422gttcaacagc tagcagctaa agtaattcaa cccatgcatt gctagtgtoa cagoctttg3462175ttatgtctag tagctgttc tgaagtatt tcattatct tttgtcaaa ttaaccatg3562gttcaacagc tagcagctaa agtaattcaa cccatgcatt gctagtgtat ctttgctat3602ggtgcataga gagtagacag tttggaagtg gaaaggttag cagtgacts gccatagt3622ctgttgtgga atttgtot gcagtttag cactagctat gcogtoct gaacagaag3722ctgcttgtcc cattccatt tatgtcatg gaaaagatt ccactggta accacaagc3722ctgcttgtcc cattccatt tatgtcatg agaaaaatt ccacttggt accacaagag3722gacaactgga gttttgtag gtttgtag ctatagata atttact tttagccatt tgtaacatt3902gacaactgg gttttgtag gtttgtag ctataagaag9022gacaactga gttttgtag ggtggtgga taatgggga gcttcaagt ttatttaa402230ataaataaa taagttctg acttttcca tgtgtggta tggacaac tattggaagg408231gacaactac tgggagta ccacaacaa tgttagg gatgaataa4222gacaactac tgggagta aacccata tgttaattg atttattg gatggaaa42232ttgaattcag ttatgtota cacaacaa tgtaggg agaggtag ataaatt42233gacaactac tgggagtac cacaacaa tgttagt attgaattg agatgaag42234gacaactac tgggagtac cacaacaa tgttaggg agaggt ga agaggtag42233tagattagg gaatgacc tagtgaga gatgacg tttaacgg agaggtag432234gacaactac tgggagta accatgag tgtggg tgtgaa ctagatgg gaaggtga42234gacaactac tgggagtaa atcccaag tgtgtggg tttatgg gaggaga attaattt42235tgaattagg tgtagga gaaggagaa tgaaggag gaaggtgga gaaggtgaa432236tgaattagg gaaggacaa ttgaagaaa taggtgggg gaaggtgaa atga		aaagaaaaag	atatcaaatg	cctgctgcta	ccaccctttt	aaattgctat	ctttagaaaa	3302
gitcaacage tageagetaa agtaatteaa eccatgeatt getagtgtea cageetttg348215ttatgtetag tageegttte tgaagtatt teattatet tttgteaat ttaaceetg354220ggtgeataga gagtagaeag tttggaagatg gaaaggttag cagtgaett geestaga366220etgtgttgga atttgteta geagtttgg gaaaggttag cagtgaett geestaga372221etgettgtee catteett tatgteatg gaaaggtag cagtgaett geestagaet378225ttatttttt tteeaageeg gatageeg gtateageet aaatttaet tttageett tgtaaaett384230gacaaetgga gitttgta ggtggtgga taatgggga getteaage tggatgaeaa402230ataaataaa taagttetg aggtggtgga taatgggga getteaatg ttatttaa402230ataaataaa taagttetg aggtggtgga taatgggga getteaatg ttatttaaa402231gacaaetgg gatgtee cacaaeeta tgtegggea getteaagat408232gacaaetee tgggagtae cacaaeeta tgtegggea gettgaaaatt402233ataaataaa taagttetg aggtggtgga taatgggga getteaatg ttatttaaa402234gacaaetee tgggagtae cacaaeeta tgtegggea gettgaa ataattt426234atgatgtag gaaggaage ttggagaaa taggttgg tatgaagga gaaggtga 4322432234atgattggg tttatgge ttgttgge ttetaee aggtggga gaaggtga 4322432235tgaatteag gaagtgeet cacatee aggtegge ttetaeet aggaagge agaggee 4422432236atgtttgtee ttettee aceatgeeg ttetageet ageettee teesagaeet 4422432236atgtttgteet teesattee aceatgeeg ttetageeg teesaggee agaggee 4422432236atgtttgteet gaagteetea ageetgeege teesageeetee ageetgee 4422432237tagtetgeegeetee ageetgee teesageetee ageetgeeetee ageetgeetee ageetgeetee ageetgeetee a	10	gcaccggtat	gtgttttaga	ttcatttccc	tgttttaggg	aaatgacagg	cagtagtttc	3362
15ttatgtctag tagctgtttc tgaagtattt toatttatct tttgtcaaat ttaaccttgt354220gtgaataga gagtagacag tttggagatg gaaaggtag cagtggacta gocatatgt366220ctgtgttgga attgtgcta gocagttgg gaaaggtag cagtggacta gocatatgt362220ctgtgttgg attgtgcta gocagttgg gaaaggtag cagtggocta gaactgaag372221ctgtgttgg attgtgcta gocagttgg gaaaggtag cagtggocta gaactgaag372222ctgtgttgg attgtgcta gocagttgg gaaaggtag cactagotct gocgtgoctat gaactgaag372223taagtaatg ttatttctg tacagaaatt aaattttact tttagocttt tgtaaactt384224ttttttttt ttocaagoog gtatcagota ctoaaaacaa ttocaagata ttoatoatta390230gacaactgga gttttgctg gttttgtag ctatgggga gottcaatgt ttatttaa402230ataaataaa taagttttg aggtggtgg taatggggaa gottcaatgt ttatttaa402231gacaactacc tgggatga cacaaccata tgttaattgt attgtagtg gatggataa420232ataataaaa taagttttg a cacaaccata tgttaattg agtgtaga ataaattt422233ataataaaa taagtttgg a atocctaga tggtggtata cgtgtgga aataattt426234atgataga gaaggacaaa ttgaagaaa taagttag agtgagaag agaaggtga432234aagttgtg gtagttgac cgtgtgg ttotaccaa agtgtagg agaaggtga432234aagttgtt gtagtttgac tigttatt ttaaggt ttaaggag agaaggac44234aagttgtt gtagtttgac tigttaga ttaaggag gaaggtga agaaggacc462235aagttgttg dagttgac tactatga ggaaggact tacacagag gaaggagg gaactgaa agatgaggagagacc462236aagttgtg tgagttgac tactatga ggaaggagga gaaggaggaggaggaggaggaggagg		agttctgatg	gcaaaacaaa	taaaaacatg	tttctaaaag	ttgtatcttg	aaacactggt	3422
InterseInterseInterse10ttgaattete tecttteete aaggagaee ttagtteaa agtgttgatt etttegetta360220etggtgeataga gagtagaeag tttggagatg gaaaggttag eagtggeetta geestagtag372211etggtttgga atttgtgeta geagtttag eastagetet gegtgeetta geestagtag372212etggttaga attgtgeta geagtttgag eastagetet gegtgeetta gaaetgaatg372213etagttaatg ttatttetg tacagaaatt aaattttaet tttageett tgaaaeatt384225ttttttttt tteeaageeg gtateaget eteaaaee tgetgaget gttgaaeatt3902130gaeaaetgga gttttgetg gttttgtage etaetaaee tgetgagget gttgaaeatt3962360ataaataaaa taagttettg aggtggtgga taatggggaa getteaatgt ttatttaa4022373ataaataaaa taagttettg actattee aggetggtga tagtgggaa getteaattaggagg4082374gaeaaetee tgggagatga eastagtt ggtggtga tagtggataa4142375gaeaaetee tgggagaeaa ttgaagaaaa tagtttagt attgaattg ggtggtaga4142376aagttagtg gaaageaaa ttgaagaaa tagtttagt attgaattg agttetgag4322376aagttagg gaaggatae cacaaceaa tggtaggt tadgggga gaagggtaa4202376aagttgtgg ttattggat aateeetag tggtgtgta eggtggaga aataattt4262377aagttagtg gaagaaaa tagtttagt attgaattg agttetgag4322378taateetag gaagaacae ttgaagaaaa taagttagt attgaattg agtegaaa4322379aagttagt gtagttigae tigttage ttetaeeaa agtettige ttatteeaagae4322370aagttagg gaagaataa tagacaaa tagttagg attgaage aaagagggagae4322373ttgattegg gaagaataa tagateggaaatagttagagaaa4202374gaeaataag gaagaa		gttcaacagc	tagcagctaa	agtaattcaa	cccatgcatt	gctagtgtca	cagcctttgg	3482
20ggtgcataga gagtagacag titggagatg gaaaggttag cagtgactta gocatatgit366220ctgtgtgga attggcata gcagttgga cactagctct gcgtgcctat gaactgaatg3722ctgctgtcc cattccatt tatgtcatgg agaaataatt ccacttggta accacaaggc378221taagtaatg ttatttctg tacagaaatt aaattttact titagcctt tgtaaactt384222tttttttt ticcaagccg gtatcagcta ctcaaaaca ticccagata ticatcata390230gacaactgga gttttgtag ggtggtgga taatggggaa gcttcaatgi ttatttaaa402230ataaataaa taagtictig acgtggtgga taatggggaa gcttcaatgi tiattitaaa402231gacaactacc tgggagtgac cacaaccata tgttagggaa gcttcaatgi tiattgaagg408232gacaactacc tgggatgtac cacaaccata tgttagtgita tggtacatca tattggaagg408233ataataaa taagtictig a attccag tgtgggta taggataaa420234atactig ggatgtac cacaaccata tgttaattgi atttatigg gatggataaa420235atgtitggg titattgga aatccctaga tggtgtgta cgtggtgag a ataattit426236atgatagtaa gaaagcaaa tigaagaaa taagtttag atttaattgi agtictgaag432236aagtitggg titattgga tatccacgi tggtggta cgtgggga gaagggtga432236aaagtigtt gtagttigac tigttaatti titaagtig titaacgic tgcatcaag432237aaagtigtt gtagttigac tigttaatti titaagtig attacagic gaagaggaa432237aaagtigtt gaagtigac tactagga gaactgcaa agtigagg agaagacci452238aaagtigtti gtagttigac tictataata tgcaaagatg attacagga gaagacci452239aaagtigtti gaagtigac tictataata tgcaaagag gaactgcaa agtigtaga agaagacci452239actigtttag aagactataa aatcittig acatgcaaag ticaagaga ctgatggic t	15	ttatgtctag	tagctgtttc	tgaagtattt	tcatttatct	tttgtcaaat	ttaaccctgt	3542
 ²⁰ ctgtgttgga atttgtgcta gcagtttgag cactagctct gcgtgcctat gaactgatg 3722 ctgcttgtcc cattccattt tatgtcatgg agaataatt ccacttggta acacaaaggc 3782 taagttaatg ttatttctg tacagaaatt aaattttact tttagccttt tgtaaacttt 3842 ²⁵ ttttttttt ttccaagcog gtatcagcta ctcaaaacaa ttccagata ttcatcatta 3902 gacaactgga gttttgctg gttttgtagc ctactaaaac tgctgaggct gttgaacatt 3962 ccacattcaa aagttttgt gggtgggga taatggggaa gctcaatgt ttatttaaa 4022 ataaataaaa taagttcttg acttttcca tgtgtgggta tgggacatca tattggaagg 4082 gttatctgt tacttttgcc aagactatt tgccagcac tacacttgg tgctttaaaa 4142 gacaactacc tgggatgtac cacaaccata tgttaattgt atttattg ggtggatgaa 4202 atgatagtaa gaagcaaaa ttgaagaaa taagtttagt acgtgtgtag aatatattt 4262 atgattcagg gaatgtcca cgttcgggc ttctaccaa agtgtaggg agaaggtgta 4382 aagttadtg ctgtcattct accattgcag ttctagtgg tttaacgt tgcattcaag 4502 atacattag ctgtcattct accattgcag tactagtgg ttatacgt tgcattcaag 4502 atacattag ctgtcattct accattgcag tactagtgg ttatacgt tgcattcaag 4502 atttttttt aagacacct actggacaga gaactgctaa agtcttttc ttaagatctg 4562 attacattag ctgtcattct accattgcag tactagtag tttaacgtc tgcattcaag 4502 atttgttgg caagtgtgta tttaccaga gaactgctaa agtctttcc ttaagaacct 4622 tttgtttgt accagtatc ttctaataa tgcaaatgct tgctagag cagaaggcct 4622 tttgtttgt aagactataa aatctttgt acatgacca ttcacagtat gtttagtatc 4742 cacgtgtata agcccccc ctcccccag tagcagtag tatttttc atcctttcc 4662 gccatttat taccagggc ttaatatc tgatattag aacagtag ttttatc ttcacagtat gttagtag ttagtgtagt aagccatta aacttttg tactttct taaaaagatg atttttttc atcctttcc 462 actgtttgt cattgtatct tgatattaa aacagagca ttcacagtag ttttagtagt ftagtaata 472 		ttgaattctc	tcctttcctc	aaggagacac	ttatgttcaa	agtgttgatt	ctttgcctta	3602
ctgcttgtgattgtgtgtgaggttgggagattgg3722ctgcttgtcccattccattttatgtcatgggagaataattccacttggtacacaaaggc25tttttttttttcccaagccggatcagcaataaattgactt3962gacaactggagttttgctggtttgtagcctactaaaactgctgaggcgttgaacatt30ataaataaataagttctgggtgggggagatcacatggggggttattttaa402230ataaataaataagttctgggtgggggagatcacatggggggttattttaa402231gacaactggggtgtgggggggggggaggtggggggggtggaggggggtggaggggggggggggggggggggggggggggggg		ggtgcataga	gagtagacag	tttggagatg	gaaaggttag	cagtgactta	gccatatgtt	3662
 taagttaatg ttatttetg tacagaaatt aaattttaet tttageettt tgtaaaettt 3842 tttttttt ttecaageeg gtateageta eteaaaaea tteetagata tteateatta 3902 gacaaetgga gttttgetg gttttgaeg etaetagaaea tteetaaae tgetgagget gttgaaeatt 3962 ceaeatteaa aagttetga gggggggga taatggggaa getteaatgt ttatttaaa 4022 ataaataaaa taagttettg acttteeta tgetgggaa getteaatgt ttatttaaa 4142 gacaaetage gttategga aageetaatt tgeeageee taeeatgt ggatggataaa 4202 atgattegg ttategga aaceeta tgttaattgt atttattg ggtggatgaa atataattt 4262 atgattegg gaatgteee egteeggee tteateaeaa aggtgggg agaaggeg aaggggga gaaggtgta 4332 tgaatteagg gaatgteee egteeggee tteateeeaa aggetgggg ttaaeagggee agaaggeg aaggtgta 4332 tgaatteag ggaageee egteeggee tteateeeaa aggetggee egaaggeee 4442 atgettgtt aeeeagaae ttgaaeagaag gaaeeggaa etgeatggee egaagaeee 4442 ataetaataa aageaaeee aeeggaeaga gaaeeggaa etgeatgge eagaaggeee 4562 actgettgt aeeeagaae tteegaaagge gaaeeggee teaaaeeggee eagaageeee 4662 tteggtagt aagaeeaea attetteg aeeagggaa etgeatggee eagaagaeee 4622 tteggtagt aagaeeaeae atteeggaegg agaeeggaa etgeatggee eacaagteee 4622 actgettegt aeeggaegte ttetaeeag gtaeeaggaa etgeatggee eacaagteee 4622 tteggtagt aagaeeaeae atteggaegga gaeedgeea ageetgee taeeatgeee 4622 ttegttegg eaagtgigta ttetaeeag gtaeeaggaa etgeatggee taeeatgeee 4622 ttegttegg aageeetaaa aateettteg aeeatgeee tteeaaaagatg dittegatae 4742 caeegtgitaa aageeeeee eteeceeggee taaatatee taeaaaggatg atttttee ateecetteeg 4862 ttagtgtag aageeetaaa aateetteg ageeatgeeea ttegatgaet ttegetaagge 4862 ttagtgtag aageeetaaa aateetteg aeeaggaa etgatgeee taeeatgeee 472 caeegtgitaa aageeeeee eteeceeggeeeeeeeeeeeeeeeeeeeeeee	20	ctgtgttgga	atttgtgcta	gcagtttgag	cactagetet	gcgtgcctat	gaactgaatg	3722
 ²⁵ tttttttt ttccaagoog gtatcagota ctcaaaacaa ttccaqata ttcatcatta 3902 gacaactgga gttttgotg gtttgatg ctactaaaac tgctgagget gttgaacatt 3962 cccacttcaa aagttttgta gggtggtgga taatggggaa gcttcaatgt ttatttaaa 4022 ataaataaaa taagttottg actttctca tgtgtggtta tggtacatca tattggaagg 4082 gttatctgtt tacttttgoc aagactatt tgccagcacc tacacttgtg tgcttaaaa 4142 gacaactacc tgggatgtac cacaaccata tgttaattgt atttattg gatggtaaaa 4202 atgtttgtg tttattgat aatcoctaga tggtgtgtta cgtgtgtaga atataattt 4262 atgattagg gaatgtctca cgtttcggg ttctaccaa agtgtagga gatggtga 4382 tgaattcagg gaatgtctca cgtttcggg ttctatcgt attgaagg agaggtgta 4382 aaagttgtt gtagtttgac ttgttatt tttaagttgc ttattoctt caacagcaac 4442 aatgtttgtt accagtacc tactggaagg gaactgctaa agtotttcc ttaagatctg 4502 actgtttga caagtgtgta ttttaccag gtacagggaa ctgatggc caaagacct 4622 tttgtttgt caagtgtgta ttttaccag gtacagggaa ctgatggt ctacadgtct 4682 ttagtgtagt aagaccataa aatctttg acatgcaca ttcacagtat gtttagatac 4742 cacgtgtata atgcccccc ctccccagg tagcagca ttgatgactt tttgcttagg 4802 gccatttat taccagggcc ttaatatcc taaaaagtg attttttc atcctttcc 4862 ttagtgtagt cattgtact tgatattaa aacatgacc ttocadgat gttagatac 4742 		ctgcttgtcc	cattccattt	tatgtcatgg	agaaataatt	ccacttggta	acacaaaggc	3782
10100030gacaactgga gttttgctg gttttgtagc ctactaaaaca tgctggggct gttgaacatt30ataaataaaa taagttcttg aggtggtgga taatggggaa gcttcaatgt ttatttaaa30ataaataaaa taagttcttg acttttctca tgtgtggtta tggtacatca tattggaagg30ataaataaaa taagttcttg acttttctca tgtgtggtta tggtacatca tattggaagg30ggcaactacc tgggatgtac cacaaccata tgttaattgt attttattgg gatggataaa31gacaactacc tgggatgtac cacaaccata tgttaattgt attttattgg gatggataaa32gacaactacc tgggatgtac cacaaccata tgttaattgt attgattg ggtggataa32atgtttgtgg tttattggat aatccctaga tggtgtgtta cgtgtggag atataatttt324033atgatagtaa gaagcaaaa ttgaagaaa taagtttagt attgaattg agttctgaag40atgattcagg gaatgtctca cgtttcgggc ttctaccaaa agtgtagggc agaaggtgta43240atatcattag ctgtcattct accattgcag ttctagtgag ttttaacgtc tgcattcaag414424343453445345045504550505152525353545555565656565758585858595950505050515253535354555555<		taagttaatg	ttattttctg	tacagaaatt	aaattttact	tttagccttt	tgtaaacttt	3842
30ccacattcaa aagttttgta gggtggtgga taatggggaa gcttcaatgt ttatttaa4022ataaataaaa taagttottg acttttctca tgtgtggtta tggtacatca tattggaagg4082gttatctgtt tacttttgcc aagactatt tgccagcacc tacacttgtg tgctttaaaa414236gacaactacc tgggatgtac cacaaccata tgttaattgt attttattgg gatggataa4202atgtttgtgg tttattggat aatcoctaga tggtgtgtta cgtgtgtaga atataattt4262atgatagtaa gaaagcaaaa ttgaagaaaa taagttagt attgaattg agttctgaag438240tgaattcagg gaatgtctca cgtttcgggc ttctacccaa agtgtagggc agaaggtgta4382410aagttgttt gtagtttgac ttgttatt tttaagttge ttattccttt caacagcaac4442atacattag ctgtcattct accattgcag ttctagtgag ttttaacgtc tgcattcaag450245actgtttgt actcagtatc ttctataata tgcaaatgct tgtctagagg cagaagacct462246ttagtgtagt aagactataa aatctttgt acatgcacaa ttcacagtat gtttagatac468250ttagtgtagt aagactataa aatctttgt acatgcacaa ttcacagtat gtttagatac480250ccacgtgtata taccagggc ttaatatcc taaaaagtg attttttc atcottctc482250ccacgtgtata atgcccccc ctcccccagg tagcatgca ttgatgact tttgctagg480250ccacgtgtata atgcccccc ctcccccagg tagcatgca ttgatgact tttgcttagg480250ccacgtgtata taccagggc ttaatatcc taaaaagtg attttttc atccttctc482250ccctttgat cattgtact tgatattaa aacatgacct tccaatgat gtagatac480250ccctttgat cattgtact tgatattaa aacatgacca ttccaatgat gtagataa480250ccctttgat cattgtact tgatattaa aacatgacca tccaatgat gtagataata480250ccctttgat cattgtact tgatattaa aacatgacca tacaagatg atttttttc atccttctc4802<	25	tttttttt	ttccaagccg	gtatcagcta	ctcaaaacaa	ttctcagata	ttcatcatta	3902
 ³⁰ ataaataaaa taagttottg acttttotoa tgtgtggtta tggtacatca tattggaagg 4082 gttatotgtt taottttgoc aagactattt tgocagcacc tacacttgtg tgotttaaaa 4142 gacaactacc tgggatgtac cacaaccata tgttaattgt atttattgg gatggataaa 4202 atgtttgtgg tttattggat aatocotaga tggtgtgtta cgtgtgtaga atataattt 4262 atgatagtaa gaaagcaaaa ttgaagaaaa taagtttagt attgaattg agttotgaag 4382 tgaattcagg gaatgtotca cgtttcgggc ttotaccoaa agtgtagggc agaaggtgta 4382 aaagttgttt gtagtttgac ttgttattt tttaagttgc ttattoctt caacagcaac 4442 atatoattag ctgtcattot accattgcag tacagtgag ttttaacgtc tgoattcaag 4502 actgtttgt actcagtatc ttotataata tgcaaatgct tgtctagagg cagaagacct 4562 agtottgtg caagtgigta ttttaccaga gtacagggaa ctgatggtoc tacatgtotc 4682 ttagtgtagt aagactataa aatottttgt acatgcacaa ttcacagtat gtttagatac 4742 cacgtgtata atgcocccc ctoccoccagg tagcatgca ttgatgact ttttgottagg 4802 gocatttat taccagggce ttaatattoc taaaaagatg atttttttc atcotttotc 4862 ctottttgat cattgtact tgatattaa aacatgacct tccaatgatt gtagtaaatt 4922 		gacaactgga	gtttttgctg	gttttgtagc	ctactaaaac	tgctgaggct	gttgaacatt	3962
ataataaaa taagttettg acttttete tgtgtggtta tggtacatea tattggaagg4082gttatetgtt taettttgee aagaetattt tgeeageaee taeaettgtg tgetttaaaa4142gacaactaee tgggatgtae caeaaeeata tgttaattgt atttattgg gatggataaa4202atgtttgtgg tttattggat aateeetaga tggtgtgtta eggtgtgag atataatttt4262atgatagtaa gaaageaaaa ttgaagaaaa taagtttagt attgaattg agttetgaag432240tgaatteegg gaatgtee egtteegge ttetaeeeaa agtgtaggge agaaggtgta432240aaagttgttt gtagtttgee ttgttattt tttaagttee ttatteett eaaeageae4442atateattag etgteettee aceatteegg ttetagtgag ttttaaegte tgeatteeag450245actgtttgt acteeggtee teetaeaaagee agaeetgeta ageetgee taetaegge eagaagaeet462250ttagtgtagt aageetataa aatetttgt acatgeeaa ttegateggee attagatae474250ttagtgtagt aageetataa aatetttgt acatgeeaa ttegatgee ttatteeet ttegetagate474250ttagtgtagt aagaetataa aatetttgt acatgeeaa ttegatgee taetaeggee dagaagaeet462250ttagtgtagt aagaetataa aatetttgt acatgeeaa ttegatgeet ttegetagg480250eeegtgtata atgeeeeee cteeeeee cteeeee ttegatgeee ttaatattee taeaaagatg atttttee ateettee480250eeegtgtata atgeeeeee cteeeee ttegataae aaeetteee taaaaagatg attttttee ateettee480250eeegtgtata atgeeeee cteeeee ttegataae aaeetgeee ttegataeet ttegetagaee480250eeegtgtata atgeeeeee cteeeeeeeeeeeeeeeeeeeeeeeeeeeee		ccacattcaa	aagttttgta	gggtggtgga	taatggggaa	gcttcaatgt	ttattttaaa	4022
35gacaactacc tgggatgtac cacaaccata tgttaattgt atttattgg gatggataaa420235atgtttgtgg tttattggat aatccctaga tggtgtgtta cgtgtgtaga atataatttt4262atgatagtaa gaaagcaaaa ttgaagaaaa taagtttagt attgaatttg agttctgaag432240tgaattcagg gaatgtctca cgtttcgggc ttctacccaa agtgtagggc agaaggtgta438240aaagttgttt gtagtttgac ttgtttatt tttaagttgc ttattccttt caacagcaac4442atatcattag ctgtcattct accattgcag ttctagtgg tttaacgtc tgcattcaag450245actgttttaa aagcaacctc actggacaga gaactgctaa agtctttcc ttaagatctg452250ttagtgtagt aagactataa aatcttttgt acatgcacaa ttcacagtat gtttagtata474250cacgtgtata atgcccccc ctcccccagg tagcagag atttttttc atcctttcc486250cttttgat cattgtatct tgatattac tagaagaag attttttttt tagctagg480251cacgtgtata atgcccccc ctcccccagg tagcagag atttttttc atcctttct480252cttttgat cattgtatct tgatattaa aacatgacct tccaatgatt gtagtaaatt492253sttttgat cattgtatct tgatattaa aacatgacct tccaatgatt gtagtaaatt4922	30	ataaataaaa	taagttettg	acttttctca	tgtgtggtta	tggtacatca	tattggaagg	4082
 ³⁵ atgtttgtgg tttattggat aatcoctaga tggtgtgtta cgtgtgtaga atataatttt 4262 atgatagtaa gaaagcaaaa ttgaagaaaa taagtttagt attgaatttg agttotgaag 4322 ⁴⁰ tgaattcagg gaatgtotca cgtttogggo ttotacccaa agtgtagggo agaaggtgta 4382 aaagttgttt gtagtttgac ttgtttattt tttaagttgo ttattoottt caacagcaac 4442 atatcattag otgtoattot accattgoag gaactgotaa agtotttoo ttaagatotg 4502 actgtttgat actoagtato ttotataata tgcaaatgot tgtotagagg cagaagagcot 4562 agtottgtt ocaagtgtgta ttttaccaga gtacagggaa ctgatggtoo tacatgotoo 4682 ttagtgtagt aagactataa aatottttgt acatgcacaa ttoacagtat gtttagatac 4742 cacgtgtata atgoccocco ctococcagg tagcatgoca ttgatgactt tttgottagg 4802 gocatttat taccagggco ttaatattoo taaaaagatg attttttto atcotttoto 4862 ttottgat cattgtatot tgatattaa aacatgacot tocaatgatt gtagtaaatt 4922 		gttatctgtt	tacttttgcc	aagactattt	tgccagcacc	tacacttgtg	tgctttaaaa	4142
atgtttgtgg tttattggat aatcoctaga tggtgtgtta ogtgtgtaga atataatttt4262atgatagtaa gaaagcaaaa ttgaagaaaa taagtttagt attgaatttg agttotgaag432240tgaattcagg gaatgtotca ogtttoggo ttotacccaa agtgtaggo agaaggtgta4382aaagttgttt gtagtttgac ttgtttatt tttaagttge ttattoottt caacagcaac4442atatcattag otgtcattot accattgeag ttotagtgag ttotaacgte tgeatteag450245actgtttaa aagcaacote actggacaga gaactgetaa agtotttee ttaagatet4562agtotttgtt acteagtate ttotataata tgeaaatget tgtetagag cagaagacet462250ttagtgtagt aagactataa aatetttgt acatgeacaa tteacagtat gtttagatae474250cacgtgtata atgececcee cteecccagg tageatgeca ttgatgaett tttgettagg480250cacgtgtata atgececcee cteecccagg tageatgea atttttte atcotttee486250cacgtgtata taccaggee ttaatattee taaaaagatg atttttte atcotttee486250ctetttgat cattgtatet tgatattaa aacatgacet tceaatgatt gtagtaaat480250ctetttgat cattgtatet tgatattaa aacatgacet teeaatgatt gtagtaaat480250ctetttgat cattgtatet tgatattaa aacatgacet teeaatgatt gtagtaaat480250stagtgtag aagactataa aatetttg acatgeacaa tteacagtat gttagatae480250stagtgtag cattgtate taccagge taaaaagatg atttttte ateettee486250stagtgtag cattgtate taccagge taaaaagatg atttttte ateettee486250stagtgtag cattgtate taccagge taaaaagatg atttttte ateettee486250stagtgtag cattgtate tactgtate taaaaagatg atttttte ateettee486251stagtgtag cattgtate tagtatet tgatataa aacatgacet teeaatgate tacaatgate tacatgtaaat4922 </th <th>25</th> <th>gacaactacc</th> <th>tgggatgtac</th> <th>cacaaccata</th> <th>tgttaattgt</th> <th>attttattgg</th> <th>gatggataaa</th> <th>4202</th>	25	gacaactacc	tgggatgtac	cacaaccata	tgttaattgt	attttattgg	gatggataaa	4202
40tgaattcagg gaatgtctca cgtttcgggc ttctacccaa agtgtagggc agaaggtgta438240aaagttgttt gtagtttgac ttgtttattt tttaagttgc ttattccttt caacagcaac444241atatcattag ctgtcattct accattgcag ttctagtgag ttttaacgtc tgcattcaag450245actgttttaa aagcaacctc actggacaga gaactgctaa agtcttttcc ttaagatctg452245agtctttgt actcagtatc ttctataata tgcaaatgct tgtctagagg cagaagacct462250ttagtgtagt aagactataa aatctttgt acatgcacaa ttcacagtat gtttagatac474250cacgtgtata atgcccccc ctcccccagg tagcatgca ttgatgactt tttgcttagg480250cacgtgtata atgcccccc ctcccccagg tagcatgca tgatgactt tttgcttagg480250cacgtgtata atgcccccc ctcccccagg tagcatgca tgatgactt tttgcttagg480250ctctttgat cattgtatct tgatattaa aacatgacct tccaatgatt gtagtaaatt474251cacgtgtata atgcccccc ctcccccagg tagcatgcaa ttgatgactt tttgcttagg480252ctcttttgat cattgtatct tgatattaa aacatgacct tccaatgatt gtagtaaatt4922	30	atgtttgtgg	tttattggat	aatccctaga	tggtgtgtta	cgtgtgtaga	atataatttt	4262
40aaagttgttt gtagtttgac ttgtttattt tttaagttgc ttattccttt caacagcaac4442atatcattag ctgtcattet accattgcag ttetagtgag ttttaacgte tgeatteaag450245actgttttaa aageaacete aetggacaga gaaetgetaa agtetttee ttaagatetg456245agtetttgtt aeteagtate ttetataata tgeaaatget tgtetagagg cagaagaeet462250ttagtgtagt aagaetataa aatettttgt acatgeacaa tteacagtat gtttagatae474250caegtgtata atgeeecee cteeceegg tageatgeea ttgatgaett tttgettagg480250caegtgtata atgeeecee cteecee agaagatg attttttte ateetttee486250caegtgtata atgeeecee cteecee agaagatg attttttte ateetttee486250caegtgtata atgeeecee cteecee agaagatg attttttee ateetttee480255ctetttgat cattgtatet tgatattaa aacatgaeet tceaatgatt gtagtaaatt4922		atgatagtaa	gaaagcaaaa	ttgaagaaaa	taagtttagt	attgaatttg	agttctgaag	4322
aaagttgttt gtagtttgac ttgtttattt tttaagttge ttatteettt caacageaae4442atateattag etgteattet aceattgeag ttetaagtagg ttttaaegte tgeatteaag450245actgtttaa aageaacete actggaeaga gaaetgetaa agtetttee ttaagatetg4562agtetttgtt acteagtate ttetataata tgeaaatget tgtetagagg cagaagaeee468250ttagtgtagt aagaetataa aatettttgt acatgeeaa ttegatgaeet tttgettaggt480250caegtgtata atgeeeeee cteeeeee cteeeee cteeeeeeeeeeee	40	tgaattcagg	gaatgtctca	cgtttcgggc	ttctacccaa	agtgtagggc	agaaggtgta	4382
 actgttttaa aagcaacete actggacaga gaaetgetaa agtettttee ttaagatetg 4562 agtetttgtt acteagtate ttetataata tgeaaatget tgtetagagg cagaagaeet 4622 tttgtttggt caagtgtgta ttttaecaga gtacagggaa etgatggtee taeatgtete 4682 ttagtgtagt aagaetataa aatettttgt acatgeaeaa tteaeagtat gtttagatae 4742 caegtgtata atgeeeeee eteaatattee taaaaagatg attttttte ateettee 4862 ceettttgat eatgtatet tgatattaa aacatgaeet teeaatgatt gtagtaaatt 4862 		aaagttgttt	gtagtttgac	ttgtttattt	tttaagttgc	ttattccttt	caacagcaac	4442
 ⁴⁵ agtetttgtt acteagtate ttetataata tgeaaatget tgtetagagg cagaagaeet 4622 tttgtttggt caagtgtgta ttttaceaga gtacagggaa etgatggtee taeatgtete 4682 ⁵⁰ ttagtgtagt aagaetataa aatettttgt acatgeaeaa tteaeagtat gtttagatae 4742 caegtgtata atgeeeeee eteee etee etee etee		atatcattag	ctgtcattct	accattgcag	ttctagtgag	ttttaacgtc	tgcattcaag	4502
50tttgtttggt caagtgtgta ttttaccaga gtacagggaa ctgatggtcc tacatgtctc468250ttagtgtagt aagactataa aatcttttgt acatgcacaa ttcacagtat gtttagatac47426cacgtgtata atgccccccc ctcccccagg tagcatgcca ttgatgactt tttgcttagg48026gccattttat taccagggcc ttaatattcc taaaaagatg atttttttc atcctttctc486255ctctttgat cattgtatct tgatattaa aacatgacct tccaatgatt gtagtaaatt4922	45	actgttttaa	aagcaacctc	actggacaga	gaactgctaa	agtetttee	ttaagatctg	4562
50ttagtgtagt aagactataa aatcttttgt acatgcacaa ttcacagtat gtttagatac474250cacgtgtata atgccccccc ctcccccagg tagcatgcca ttgatgactt tttgcttagg4802gccattttat taccagggcc ttaatattcc taaaaagatg attttttttc atcctttctc486255ctcttttgat cattgtatct tgatattaaa aacatgacct tccaatgatt gtagtaaatt4922		agtctttgtt	actcagtatc	ttctataata	tgcaaatgct	tgtctagagg	cagaagacct	4622
50 cacgtgtata atgccccccc ctcccccagg tagcatgcca ttgatgactt tttgcttagg 4802 gccattttat taccagggcc ttaatattcc taaaaagatg attttttttc atcctttctc 4862 55 ctcttttgat cattgtatct tgatattaaa aacatgacct tccaatgatt gtagtaaatt 4922		tttgtttggt	caagtgtgta	ttttaccaga	gtacagggaa	ctgatggtcc	tacatgtctc	4682
gccattttat taccagggcc ttaatattcc taaaaagatg atttttttc atcctttctc 4862 ctcttttgat cattgtatct tgatattaaa aacatgacct tccaatgatt gtagtaaatt 4922	50	ttagtgtagt	aagactataa	aatcttttgt	acatgcacaa	ttcacagtat	gtttagatac	4742
55 ctcttttgat cattgtatct tgatattaaa aacatgacct tccaatgatt gtagtaaatt 4922		cacgtgtata	atgececce	ctccccagg	tagcatgcca	ttgatgactt	tttgcttagg	4802
55 5 5 5		gccattttat	taccagggcc	ttaatattcc	taaaaagatg	atttttttc	atcctttctc	4862
aacttetata gttettttgt etetatatgt atteatatat atgetattgt atagagaett 4982	55	ctcttttgat	cattgtatct	tgatattaaa	aacatgacct	tccaatgatt	gtagtaaatt	4922
		aacttctata	gttcttttgt	ctctatatgt	attcatatat	atgctattgt	atagagactt	4982

	caaggagaca	tggagatgca	tgcttattct	caggttcatt	cactaaggtg	cttggcagac	5042
	aaccagtttc	taagtgcaga	atgtagttaa	gcagcttcat	atatgtgcca	ggcaatttgt	5102
5	tttgttaaat	tttcatctac	ttaaggaaat	agggtattgt	agcttaggct	gatcataccc	5162
	ttcatttcaa	ccttaagctc	tcaacctgca	tccatccgac	ttgagctatt	aagtacttta	5222
10	gttttatcga	gtataagtta	acagaaaaag	taaattaagc	tttgccttta	ctattttgaa	52 82
	tttatataca	ttctggaaaa	acttagaaac	tgttgtatat	ttcattagat	taaattatat	5342
	gaaaatgtga	ttgtttatag	caaagcctgt	gagttgcata	caccctaagg	aaaactcctt	5402
15	aagtgctcct	tgaagagaga	agaaacaatt	ctgggtctgg	tcttttaag	aacaaagcta	5462
	gactactgta	tgttagcact	gtacattaat	agtctgttgt	gaagcttgag	cagtttcctg	5522
	catagccttg	atccttcacc	gttggcattg	aaaatagcag	tatccctgat	gtacttaaaa	5582
20	cttaaagtca	ggttttggta	tatttatttg	taagtettaa	tttcctctaa	atactatatc	5642
	tctttagcga	gacaacctga	aatttattag	cacatttggg	tatctcttgc	ttggcattat	5702
25	ggccagtgtt	aactattcag	tggtgaaaaa	attacccctc	aagacactgg	agtgacccca	5762
25	gatgtgtgta	gtaagtggca	tggttcaact	gtgtggttaa	tgataaatat	atgacttagt	5822
	cggtatgatc	tggaaagact	tgattgaaag	ataattcagc	tgacataagg	atgagtgagg	5882
30	agtggcaaac	tggataaaag	agtcaagaga	cctgtattcc	agtgactcct	gttttgttta	5942
	agcattagca	agatctgtct	ggggaaactg	gatagggcag	ttttcttcca	tgtttagttt	6002
	ttgtctcaac	atttggaagc	tattgaaggt	tttaaaatgg	tgtgtattgt	tttttttgg	6062
35	ggggggggtg	gccagaatag	tgggtcatct	aataaaactg	ccatttaaaa	gatcaaaaaa	6122
	aaaaaaaaaa	aaaaaaaa					6141

<210> 22
40 <211> 707
<212> PRT
<213> Mus musculus

<400> 22

45

50

	Met 1	Pro	Ser	Ala	Thr 5	Ser	His	Ser	Gly	Ser 10	Gly	Ser	Lys	Ser	Ser 15	Gly
5	Pro	Pro	Pro	Pro 20	Ser	Gly	Ser	Ser	Gly 25	Ser	Glu	Ala	Ala	Ala 30	Gly	Ala
10	Ala	Ala	Pro 35	Ala	Ser	Gln	His	Pro 40	Ala	Thr	Gly	Thr	Gly 45	Ala	Val	Gln
15	Thr	Glu 50	Ala	Met	Lys	Gln	Ile 55	Leu	Gly	Val	Ile	Asp 60	Lys	Lys	Leu	Arg
20																
25																
30																
35																
40																
45																
50																
55																

•

	Asn 65	Leu	Glu	Lys	Lys	Lys 70	Gly	Lys	Leu	Asp	As p 75	Tyr	Gln	Glu	Arg	Met 80
5	Asn	Lys	Gly	Glu	Arg 85	Leu	Asn	Gln	Asp	Gln 90	Leu	Asp	Ala	Val	Ser 95	Lys
10	Tyr	Gln	Glu	Val 100	Thr	Asn	Asn	Leu	Glu 105	Phe	Ala	Lys	Glu	Leu 110	Gln	Arg
	Ser	Phe	Met 115	Ala	Leu	Ser	Gln	Asp 120	Ile	Gln	Lys	Thr	Ile 125	Lys	Lys	Thr
15	Ala	Arg 130	Arg	Glu	Gln	Leu	Met 135	Arg	Glu	Glu	Ala	Glu 140	Gln	Lys	Arg	Leu
20	Lys 145	Thr	Val	Leu	Glu	Leu 150	Gln	Tyr	Val	Leu	Asp 155	Lys	Leu	Gly	-	Asp 160
25	Asp	Val	Arg	Thr	Asp 165	Leu	Lys	Gln	Gly	Leu 170	Ser	Gly	Val	Pro	Ile 175	Leu
25	Ser	Glu	Glu	Glu 180	Leu	Ser	Leu	Leu	Asp 185	Glu	Phe	Tyr	Lys	Leu 190	Val	Asp
30	Pro	Glu	Arg 195	Asp	Met	Ser	Leu	Arg 200	Leu	Asn	Glu	Gln	Tyr 205	Glu	His	Ala
35	Ser	Ile 210	His	Leu	Trp	Asp	Leu 215	Leu	Glu	Gly	Lys	Glu 220	Lys	Pro	Val	Суз
	Gly 225	Thr	Thr	Tyr	Lys	Ala 230	Leu	Lys	Glu	Ile	Val 235	Glu	Arg	Val	Phe	Gln 240
40	Ser	Asn	Tyr	Phe	Asp 245	Ser	Thr	His	Asn	His 250	Gln	Asn	Gly	Leu	C ys 255	Glu
45	Glu	Glu	Glu	Ala 260	Ala	Ser	Ala	Pro	Thr 265	Val	Glu	Asp	Gln	Val 270	Ala	Glu
	Ala	Glu	Pro 275	Glu	Pro	Ala	Glu	Glu 280	Tyr	Thr	Glu	Gln	Ser 285	Glu	Val	Glu
50	Ser	Thr 290	Glu	Tyr	Val	Asn	Arg 295	Gln	Phe	Met	Ala	Glu 300	Thr	Gln	Phe	Ser
55	Ser 305	Gly	Glu	Lys	Glu _.	Gln 310	Val	Asp	Glu	Trp	Thr 315	Val	Glu	Thr	Val	Glu 320
	Val	Val	Asn	Ser	Leu	Gln	Gln	Gln	Pro	Gln	Ala	Ala	Ser	Pro	Ser	Val

				325					330					335	
5	Pro Gl	u Pro	His 340	Ser	Leu	Thr	Pro	Val 345	Ala	Gln	Ser	Asp	Pro 350	Leu	Val
	Arg Ar	g Gln 355	-	Val	Gln	Asp	Leu 360	Met	Ala	Gln	Met	Gln 365	Gly	Pro	Tyr
10	Asn Ph 37		Gln	Asp	Ser	Met 375	Leu	Asp	Phe	Glu	Asn 380	Gln	Thr	Leu	Asp
15	Pro Al 385	a Ile	Val	Ser	Ala 390	Gln	Pro	Met	Asn	Pro 395	Thr	Gln	Asn	Met	Asp 400
20	Met Pr	o Gln	Leu	Val 405	Суз	Pro	Gln	Val	His 410	Ser	Glu	Ser	Arg	Leu 415	Ala
	Gln Se	r Asn	Gln 420	Val	Pro	Val	Gln	Pro 425	Glu	Ala	Thr	Gln	Val 430	Pro	Leu
25	Val Se	r Ser 435	Thr	Ser	Glu	Gly	Tyr 440	Thr	Ala	Ser	Gln	Pro 445	Leu	Tyr	Gln
30	Pro Se 45		Ala	Thr	Glu	Gln 455	Arg	Pro	Gln	Lys	Glu 460	Pro	Met	Asp	Gln
	Ile G1: 465	n Ala	Thr	Ile	Ser 470	Leu	Asn	Thr	Asp	Gln 475	Thr	Thr	Ala	Ser	Ser 480
35	Ser Le	1 Pro	Ala	Ala 485	Ser	Gln	Pro	Gln	Val 490	Phe	Gln	Ala	Gly	Thr 495	Ser
40	Lys Pr	o Leu	His 500	Ser	Ser	Gly	Ile	Asn 505	Val	Asn	Ala	Ala	Pro 510	Phe	Gln
	Ser Me	- Gln 515	Thr	Val	Phe	Asn	Met 520	Asn	Ala	Pro	Val	Pro 525	Pro	Ala	Asn
45	Glu Pro 53		Thr	Leu	Lys	Gln 535	Gln	Ser	Gln	Tyr	Gln 540	Ala	Thr	Tyr	Asn
50	Gln Se 545	r Phe	Ser	Ser	Gln 550	Pro	His	Gln	Val	Glu 555	Gln	Thr	Glu	Leu	Gln 560
<i></i>	Gln Asj	9 Gİn	Leu	Gln 565	Thr	Val	Val	Gly	Thr 570	Tyr	His	Gly	Ser	Gln 575	Asp
55	Gln Pro) His	Gln 580	Val	Pro	Gl y	Asn	His 585	Gln	Gln	Pro	Pro	Gln 590	Gln	Asn

	Thr	Gly	Phe 595	Pro	Arg	Ser	Ser	Gln 600	Pro	Tyr	Tyr	Asn	Ser 605	Arg	Gly	Val
5	Ser	Arg 610	Gly	Gly	Ser	Arg	Gly 615	Ala	Arg	Gl y	Leu	Met 620	Asn	Gly	Tyr	Arg
10	Gly 625	Pro	Ala	Asn	Gly	Phe 630	Arg	Gly	Gly	Tyr	Asp 635	Gl y	Tyr	Arg	Pro	Ser 640
15	Phe	Ser	Asn	Thr	Pro 645	Asn	Ser	Gly	Tyr	Ser 650	Gln	Ser	Gln	Phe	Thr 655	Ala
15	Pro	Arg	Asp	Tyr 660	Ser	Gly	Tyr	Gln	Arg 665	Asp	Gly	Tyr	Gln	Gln 670	Asn	Phe
20	Lys	Arg	Gly 675	Ser	Gly	Gln	Ser	Gly 680	Pro	Arg	Gly	Ala	Pro 685	Arg	Gly	Arg
25	Gly	Gly 690	Pro	Pro	Arg	Pro	Asn 695	Arg	Gly	Met	Pro	Gln 700	Met	Asn	Thr	Gln
	Gln 705	Val	Asn		·											
30	<2 <2	10> 23 11> 61 12> DI 13> M	14 NA	sculus	i											
35	<2: <2:	20> 21> Cl 22> (1 23>		(2235)												
40	<4	00> 23	3													
45																

	ccca	accgo	ege g	acacó	gcgta	ag co	cgccl	tgeed	e geo	cegeo	ccgc	tgcç	gcgti	ttt q	gtcco	cgcgtc	60
	tcto	cccq	gtc d	cgtct	ccctq	ya ci	tgci	tggta	: ttç	rtcct	tcc	ctco	ccgct	tt 1	ttc	ctctcc	120
5	tcto	ettei	teg g	ytcta	aag			tcg Ser									171
10								ccg Pro									219
15	gcg Ala	gcg Ala	gcc Ala 30	ggg Gly	gca Ala	gct Ala	gcg Ala	ccg Pro 35	gct Ala	tct Ser	cag Gln	cat His	ccg Pro 40	gca Ala	acc Thr	ggc Gly	267
								gcc Ala									315
20																	
25																	
30																	
35																	
40																	
45																	
50																	
55																	

	_	aag Lys					-		-		-				-	-	363
5		cag Gln															411
10		gcc Ala															459
		gaa Glu															507
15		ata Ile 125															555
20		cag Gln															603
25		ctg Leu															651
25		gtg Val															699
30		aag Lys															747
35		tat Tyr 205															795
		aag Lys			-						-						843
40		cgt Arg															891
45		ggg Gly															939
		cag Gln															987
50		agt Ser 285															1035
55		aca Thr															1083
	gtt	gaa	aca	gtt	gag	gtt	gta	aac	tca	ctc	cag	cag	caa	cct	cag	gct	1131

.

	Val	Glu	Thr	Val	Glu 320	Val	Val	Asn	Ser	Leu 325	Gln	Gln	Gln	Pro	Gln 330	Ala	
5		tcc Ser														cag Gln	1179
10		gat Asp				-		-	-	-		-		-	-		1227
10		caa Gln 365															1275
15		gca Ala															1323
20	_	tgc Cys		-	-			-		-		~					1371
	-	cct Pro	-			-	-		-	-		-	-				1419
25	-	gag Glu				-		-		-		-				-	1467
30		gag Glu 445															1515
		tct Ser	_			-	_			-						-	1563
35		tct Ser															1611
40		agt Ser															165 9
		ttc Phe															1707
45		aaa Lys 525		-	-	-			-				-	-			1755
50		cag Gln															1803
		acg Thr		-							-	-	-				1851
55		cct Pro															1899

	575 580 585	
5	cgt agc agt cag cct tat tac aac agt cgt ggg gta tct cga gga ggg Arg Ser Ser Gln Pro Tyr Tyr Asn Ser Arg Gly Val Ser Arg Gly Gly 590 595 600	1947
	tct cgt ggt gcc aga ggc ttg atg aat gga tac agg ggc cct gcc aat Ser Arg Gly Ala Arg Gly Leu Met Asn Gly Tyr Arg Gly Pro Ala Asn 605 610 615	1995
10	gga ttt aga gga gga tat gat ggt tac cgc cct tca ttc tcg aac act Gly Phe Arg Gly Gly Tyr Asp Gly Tyr Arg Pro Ser Phe Ser Asn Thr 620 625 630 635	2043
15	cca aac agt ggt tat tca cag tct cag ttc act gct ccc cgg gac tac Pro Asn Ser Gly Tyr Ser Gln Ser Gln Phe Thr Ala Pro Arg Asp Tyr 640 645 650	2091
	tct ggt tac cag cgg gat gga tat cag cag aat ttc aag cga ggc tct Ser Gly Tyr Gln Arg Asp Gly Tyr Gln Gln Asn Phe Lys Arg Gly Ser 655 660 665	2139
20	ggg cag agt gga cca cgg gga gcc cca cga ggt cgt gga ggg ccc cca Gly Gln Ser Gly Pro Arg Gly Ala Pro Arg Gly Arg Gly Gly Pro Pro 670 675 680	2187
25	aga ccc aac aga ggg atg ccg caa atg aac act cag caa gtg aat taa Arg Pro Asn Arg Gly Met Pro Gln Met Asn Thr Gln Gln Val Asn 685 690 695	2235
	tgtgatacac aggattatgt ttaatcgcca aaaacacact ggccagtgta ccataatatg	2295
30	ttaccagaag agttattatc tatttgttct ccctttcagg aaacttattg taaagggact	2355
00	gttttcatcc cataaagaca ggactgcaat tgtcagcttt acattacctg gatatggaag	2415
	gaaactattt ttattetgea tgttetgtee taagegteat ettgageett geacaeaata	2475
35	caatactcag attectcacc cttgettagg agtaaaacat tatatactta tggggtgata	2535
	atateteeat agttagttga agtggettgg aaaaaaatg caagattgaa tttttgaeet tggataaaat etacaateag eeetagaaet atteagtggt aattgaeaaa gttaaageat	2595 2655
	tttctttgaa aggaagatgg aaggagtgga gtgtggttta gcaaaactgc atttcatagc	2715
40	tttcccatta aattggagca ccgacagatt aaaagcatac caaattatgc atgggtcctt	2775
	actcacacaa gtgaggctgg ctaccagcct tgacatagca ctcactagtc ttctggccaa	2835
45	acgactgtga ttaaaacaca tgtaaattgc tetttagtag tggatactgt gtaagacaaa	2895
45	gccaaattgc aaatcaggct ttgattggct cttctggaaa atatgcatca aatatggggg	2955
	ataatetgga tgggetgetg etgtgeteaa tgtgaactat ttagataeet ttggaacaet	3015
50	taacagtttc tctgaacaat gacttacatg gggattggtc ctgtttgtca ttcctcacca	3075
	taattgcatt gtcatcacta atccttggat cttgctgtat tgttactcaa attggtaata	3135
	ggtactgatg gaaatcgcta atggatggat aatcataaca cttttggtca catgttttct	3195
55	cctgcagcct gaaagttett aaagaaaaag atateaaatg eetgetgeta ceaceettt	3255
	aaattgetat etttagaaaa geaeeggtat gtgttttaga tteattteee tgttttaggg	3315

	aaatgacagg	cagtagtttc	agttctgatg	gcaaaacaaa	taaaaacatg	tttctaaaag	3375
	ttgtatcttg	aaacactggt	gttcaacagc	tagcagctaa	agtaattcaa	cccatgcatt	3435
5	gctagtgtca	cagcctttgg	ttatgtctag	tagctgtttc	tgaagtattt	tcatttatct	3495
	tttgtcaaat	ttaaccctgt	ttgaattctc	tcctttcctc	aaggagacac	ttatgttcaa	3555
	agtgttgatt	ctttgcctta	ggtgcataga	gagtagacag	tttggagatg	gaaaggttag	3615
10	cagtgactta	gccatatgtt	ctgtgttgga	atttgtgcta	gcagtttgag	cactagetet	3675
	gcgtgcctat	gaactgaatg	ctgcttgtcc	cattccattt	tatgtcatgg	agaaataatt	3735
	ccacttggta	acacaaaggc	taagttaatg	ttattttctg	tacagaaatt	aaattttact	3795
15	tttagccttt	tgtaaacttt	tttttttt	ttccaagccg	gtatcagcta	ctcaaaacaa	3855
	ttctcagata	ttcatcatta	gacaactgga	gtttttgctg	gttttgtagc	ctactaaaac	3915
20	tgctgaggct	gttgaacatt	ccacattcaa	aagttttgta	gggtggtgga	taatggggaa	3975
20	gcttcaatgt	ttattttaaa	ataaataaaa	taagttettg	acttttctca	tgtgtggtta	4035
	tggtacatca	tattggaagg	gttatctgtt	tacttttgcc	aagactattt	tgccagcacc	4095
25	tacacttgtg	tgctttaaaa	gacaactacc	tgggatgtac	cacaaccata	tgttaattgt	4155
	attttattgg	gatggataaa	atgtttgtgg	tttattggat	aatccctaga	tggtgtgtta	4215
	cgtgtgtaga	atataatttt	atgatagtaa	gaaagcaaaa	ttgaagaaaa	taagtttagt	4275
30	attgaatttg	agttctgaag	tgaattcagg	gaatgtctca	cgtttcgggc	ttctacccaa	4335
	agtgtagggc	agaaggtgta	aaagttgttt	gtagtttgac	ttgtttattt	tttaagttgc	4395
	ttattccttt	caacagcaac	atatcattag	ctgtcattct	accattgcag	ttctagtgag	4455
35	ttttaacgtc	tgcattcaag	actgttttaa	aagcaacctc	actggacaga	gaactgctaa	4515
	agtcttttcc	ttaagatctg	agtetttgtt	actcagtatc	ttctataata	tgcaaatgct	4575
	tgtctagagg	cagaagacct	tttgtttggt	caagtgtgta	ttttaccaga	gtacagggaa	4635
40	ctgatggtcc	tacatgtctc	ttagtgtagt	aagactataa	aatcttttgt	acatgcacaa	4695
	ttcacagtat	gtttagatac	cacgtgtata	atgccccccc	ctccccagg	tagcatgcca	4755
	ttgatgactt	tttgcttagg	gccattttat	taccagggcc	ttaatattcc	taaaaagatg	4815
45	attttttc	atcetttete	ctcttttgat	cattgtatct	tgatattaaa	aacatgacct	4875
	tccaatgatt	gtagtaaatt	aacttctata	gttcttttgt	ctctatatgt	attcatatat	4935
50	atgctattgt	atagagactt	caaggagaca	tggagatgca	tgcttattct	caggttcatt	4995
50	cactaaggtg	cttggcagac	aaccagtttc	taagtgcaga	atgtagttaa	gcagcttcat	5055
	atatgtgcca	ggcaatttgt	tttgttaaat	tttcatctac	ttaaggaaat	agggtattgt	5115
55	agcttaggct	gatcataccc	ttcatttcaa	ccttaagctc	tcaacctgca	tccatccgac	5175
	ttgagctatt	aagtacttta	gttttatcga	gtataagtta	acagaaaaag	taaattaagc	5235

	tttgccttta	ctattttgaa	tttatataca	ttctggaaaa	acttagaaac	tgttgtatat	5295
	ttcattagat	taaattatat	gaaaatgtga	ttgtttatag	caaagcctgt	gagttgcata	5355
5	caccctaagg	aaaactcctt	aagtgctcct	tgaagagaga	agaaacaatt	ctgggtctgg	5415
	tcttttaag	aacaaagcta	gactactgta	tgttagcact	gtacattaat	agtctgttgt	5475
10	gaagcttgag	cagtttcctg	catagccttg	atccttcacc	gttggcattg	aaaatagcag	5535
	tatccctgat	gtacttaaaa	cttaaagtca	ggttttggta	tatttatttg	taagtettaa	55 95
	tttcctctaa	atactatatc	tctttagcga	gacaacctga	aatttattag	cacatttggg	5655
15	tatctcttgc	ttggcattat	ggccagtgtt	aactattcag	tggtgaaaaa	attacccctc	5715
	aagacactgg	agtgacccca	gatgtgtgta	gtaagtggca	tggttcaact	gtgtggttaa	5775
	tgataaatat	atgacttagt	cggtatgatc	tggaaagact	tgattgaaag	ataattcagc	5835
20	tgacataagg	atgagtgagg	agtggcaaac	tggataaaag	agtcaagaga	cctgtattcc	5895
	agtgactcct	gttttgttta	agcattagca	agatctgtct	ggggaaactg	gatagggcag	5955
25	ttttcttcca	tgtttagttt	ttgtctcaac	atttggaagc	tattgaaggt	tttaaaatgg	6015
25	tgtgtattgt	tttttttgg	gggggggggtg	gccagaatag	tgggtcatct	aataaaactg	6075
	ccatttaaaa	gatcaaaaaa	aaaaaaaaaa	aaaaaaaaa			6114

30 <210> 24 <211> 698 <212> PRT <213> Mus musculus

35 <400> 24

40

45

50

	Met 1	Pro	Ser	Ala	Thr 5	Ser	His	Ser	Gly	Ser 10	Gly	Ser	Lys	Ser	Ser 15	Gly
5	Pro	Pro	Pro	Pro 20	Ser	Gly	Ser	Ser	Gly 25	Ser	Glu	Ala	Ala	Ala 30	Gly	Ala
10	Ala	Ala	Pro 35	Ala	Ser	Gln	His	Pro 40	Ala	Thr	Gly	Thr	Gly 45	Ala	Val	Gln
15	Thr	Glu 50	Ala	Met	Lys	Gln	11e 55	Leu	Gly	Val	Ile	Asp 60	Lys	Lys	Leu	Arg
	Asn 65	Leu	Glu	Lys	Lys	Lys 70	Gly	Lys	Leu	Asp	Asp 75	Tyr	Gln	Glu	Arg	Met 80
20	Asn	Lys	Gly	Glu	Arg 85	Leu	Asn	Gln	Asp	Gln 90	Leu	Asp	Ala	Val	Ser 95	Lys
25	Tyr	Gln	Glu	Val 100	Thr	Asn	Asn	Leu	Glu 105	Phe	Ala	Lys	Glu	Leu 110	Gln	Årg
30																

	Ser	Phe	Met 115	Ala	Leu	Ser	Gln	Asp 120	Ile	Gln	Lys	Thr	Ile 125	Lys	Lys	Thr
5	Ala	Arg 130	Arg	Glu	Gln	Leu	Met 135	Arg	Glu	Glu	Ala	Glu 140	Gln	Lys	Arg	Leu
10	Lys 145	Thr	Val	Leu	Glu	Leu 150	Gln	Tyr	Val	Leu	Asp 155	Lys	Leu	Gly	Asp	Asp 160
	Asp	Val	Arg	Thr	Asp 165	Leu	Lys	Gln	Gly	Leu 170	Ser	Gly	Val	Pro	Ile 175	Leu
15	Ser	Glu	Glu	Glu 180	Leu	Ser	Leu	Leu	Asp 185	Glu	Phe	Tyr	Lys	Leu 190	Val	Asp
20	Pro	Glu	Arg 195	Asp	Met	Ser	Leu	Arg 200	Leu	Asn	Glu	Gln	Tyr 205	Glu	His	Ala
25	Ser	Ile 210	His	Leu	Trp	Asp	Leu 215	Leu	Glu	Gly	Lys	Glu 220	Lys	Pro	Val	Суз
	Gly 225	Thr	Thr	Tyr	Lys	Ala 230	Leu	Lyạ	Glu	Ile	Val 235	Glu	Arg	Val	Phe	Gln 240
30	Ser	Asn	Tyr	Phe	Asp 245	Ser	Thr	His	Asn	His 250	Gln	Asn	Gly	Leu	Cys 255	Glu
35	Glu	Glu	Glu	Ala 260	Ala	Ser	Ala	Pro	Thr 265	Val	Glu	Asp	Gln	Val 270	Ala	Glu
	Ala	Glu	Pro 275	Glu	Pro	Ala	Glu	Glu 280	Tyr	Thr	Glu	Gln	Ser 285	Glu	Val	Glu
40	Ser	Thr 290	Glu	Tyr	Val	Asn	Arg 295	Gln	Phe	Met	Ala	Glu 300	Thr	Gln	Phe	Ser
45	Ser 305	Gly	Glu	Lys	Glu	Gln 310	Val	Asp	Glu	Trp	Thr 315	Val	Glu	Thr	Val	Glu 320
50	Val	Val	Asn	Ser	Leu 325	Gln	Gln	Gln	Pro	Gln 330	Ala	Ala	Ser	Pro	Ser 335	Val
	Pro	Glu	Pro	His 340	Ser	Leu	Thr	Pro	Val 345	Ala	Gln	Ser	Asp	Pro 350	Leu	Val
55	Arg	Arg	Gln 355	Arg	Val	Gln	Asp	Leu 360	Met	Ala	Gln	Met	Gln 365	Gly	Pro	Tyr

	Asn	Phe 370	Ile	Gln	Thr	Leu	Asp 375	Pro	Ala	Ile	Val	Ser 380	Ala	Gln	Pro	Met
5	Asn 385	Pro	Thr	Gln	Asn	Met 390	Asp	Met	Pro	Gln	Leu 395	Val	Суз	Pro	Gln	Val 400
10	His	Ser	Glu	Ser	Arg 405	Leu	Ala	Gln	Ser	Asn 410	Gln	Val	Pro	Val	Gln 415	Pro '
	Glu	Ala	Thr	Gln 420	Val	Pro	Leu	Val	Ser 425	Ser	Thr	Ser	Glu	Gly 430	Tyr	Thr
15	Ala	Ser	Gln 435	Pro	Leu	Tyr	Gln	Pro 440	Ser	His	Ala	Thr	Glu 445	Gln	Arg	Pro
20	Gln	Lys 450	Glu	Pro	Met	Asp	Gln 455	Ile	Gln	Ala	Thr	Ile 460	Ser	Leu	Asn	Thr
	Asp 465	Gln	Thr	Thr	Ala	Ser 470	Ser	Ser	Leu	Pro	Ala 475	Ala	Ser	Gln	Pro	Gln 480
25	Val	Phe	Gln	Ala	Gly 485	Thr	Ser	Lys	Pro	Leu 490	His	Ser	Ser	Gly	Ile 495	Asn
30	Val	Asn	Ala	Ala 500	Pro	Phe	Gln	Ser	Met 505	Gln	Thr	Val	Phe	Asn 510	Met	Asn
	Ala	Pro	Val 515	Pro	Pro	Ala	Asn	Glu 520	Pro	Glu	Thr	Leu	Lys 525	Gln	Gln	Ser
35	Gln	Tyr 530	Gln	Ala	Thr	Tyr	Asn 535	Gln	Ser	Phe	Ser	Ser 540	Gln	Pro	His	Gln
40	Val 545	Glu	Gln	Thr	Glu	Leu 550	Gln	Gln	Asp	Gln	Leu 555	Gln	Thr	Val	Val	G ly 560
45	Thr	Tyr	His	Gly	Ser 565	Gln	Asp	Gln	Pro	His 570	Gln	Val	Pro	Gly	Asn 575	His
	Gln	Gln	Pro	Pro 580	Gln	Gln	Asn	Thr	Gly 585	Phe	Pro	Arg	Ser _.	Ser 590	Gln	Pro
50	Tyr	Tyr	Asn 595	Ser	Arg	Gly	Val	Ser 600	Arg	Gly	Gly	Ser	Arg 605	Gly	Ala	Arg
55	Gly	Leu 610	Met	Asn	Gly	Tyr	Arg 615	Gly	Pro	Ala	Asn	Gly 620	Phe	Arg	Gly	Gly
	Tyr	Asp	Gly	Tyr	Arg	Pro	Ser	Phe	Ser	Asn	Thr	Pro	Asn	Ser	Gly	Tyr

	625					630					635					640
5	Ser	Gln	Ser	Gln	Phe 645	Thr	Ala	Pro	Arg	Asp 650	Tyr	Ser	Gly	Tyr	Gln 655	Arg
10	Asp	Gly	Tyr	Gln 660	Gln	Asn	Phe	Lys	Arg 665	Gly	Ser	Gly	Gln	Ser 670	Gly	Pro
	Arg	Gly	Ala 675	Pro	Arg	Gly	Arg	Gly 680	Gly	Pro	Pro	Arg	Pro 685	Asn	Arg	Gly
15	Met	Pro 690	Gln	Met	Asn	Thr	Gln 695	Gln	Val	Asn						
20	<210> 25 <211> 3548 <212> DNA <213> Mus m	usculu	IS													
25	<220> <221> CDS <222> (179) <223>	(2257)	I													
	<400> 25															
30																
35																
40																
45																
50																
55																

	gct	ggcto	ggc 1	taagi	teeet	ca a	cgcgo	ccggo	c to	tgt	ccca	cta	ggago	cag (ctca	gageeg	60
	cgg	ggaca	agg q	gcgaa	agcgo	ge et	cgcgo	cccad	c gga	agcgo	cacg	tcto	ctgti	tct (caac	gcagca	120
5	cca	cccti	cgc (2222	ctcgq	ge to	gecea	actco	c aga	acgto	ccag	cgg	ctcc	gcg (cgcg	cacg	178
	-	ccc Pro	-	-		-		-		-		-		_	-		226
10	-	ccg Pro	-	-						-				-		-	274
15		gcg Ala															322
20		gag Glu 50	-	-	_	-				-		-	-				370
		ctg Leu															418
25		aaa Lys															466
30		cag Gln															514
	agt	ttc	atg	gca	tta	agt	caa	gat	att	cag	aaa	aca	ata	aag	aag	aca	562

	Ser	Phe	Met 115	Ala	Leu	Ser	Gln	Asp 120	Ile	Gln	Lys	Thr	Ile 125	Lys	Lys	Thr	
5					cag Gln												610
10	aaa Lys 145	act Thr	gta Val	ctt Leu	gag Glu	tta Leu 150	cag Gln	tat Tyr	gta Val	ttg Leu	gat Asp 155	aag Lys	ctg Leu	gga Gly	gat Asp	gat Asp 160	658
					gat Asp 165												706
15	tct Ser	gag Glu	gag Glu	gag Glu 180	ttg Leu	tca Ser	ttg Leu	ctg Leu	gat Asp 185	gag Glu	ttc Phe	tac Tyr	aag Lys	ctc Leu 190	gta Val	gat Asp	754
20					atg Met												802
					tgg Trp												850
25					aaa Lys												898
30					gat Asp 245												946
					gct Ala												994
35	gct Ala	gaa Glu	cct Pro 275	gag Glu	cca Pro	gcg Ala	gaa Glu	gaa Glu 280	tac Tyr	aca Thr	gag Glu	caa Gln	agt Ser 285	gag Glu	gtt Val	gaa Glu	1042
40					gtc Val												1090
					gag Glu												1138
45					ctc Leu 325												1186
50					tct Ser												1234
					gta Val												1282
55				-	gat Asp		-	-			-		-	-		-	1330

		370					375					380					
5	cct Pro 385			gta Val													1378
	atg Met																1426
10	caa Gln				-		-			-	-		-	-		-	1474
15	gtt Val				-							-		-		-	1522
	cca Pro			-	-		-		-	-				-	-	-	1570
20	att Ile 465		-	aca Thr							-			-			1618
25	tcc Ser																1666
30	aaa Lys		-		-	-				-		-	-			-	1714
	tcc Ser																1762
35	gaa Glu		-	-				_	-	-		-	-				1810
40	cag Gln 545	-			-	-					-						1858
	caa Gln																1906
45	cag Gln				-					-				~	-		1954
50	act Thr				-	-	-	-					-	-		-	2002
	tct Ser	-				-		-	-		-	-					2050
55	ggc Gly 625																2098

	ttc tcg aac act cca aac agt ggt tat tca cag tct cag ttc act gct Phe Ser Asn Thr Pro Asn Ser Gly Tyr Ser Gln Ser Gln Phe Thr Ala 645 650 655	2146
5	ccc cgg gac tac tct ggt tac cag cgg gat gga tat cag cag aat ttc Pro Arg Asp Tyr Ser Gly Tyr Gln Arg Asp Gly Tyr Gln Gln Asn Phe 660 665 670	2194
10	aag cga ggc tct ggg cag agt gga cca cgg gga gcc cca cga ggt aat Lys Arg Gly Ser Gly Gln Ser Gly Pro Arg Gly Ala Pro Arg Gly Asn 675 680 685	2242
15	ata ttg tgg tgg tga teetagetee tatgtggage ttetgttetg	2297
	aactgttcat agtccgcatg taggttacat gttaggaata catttatctt ttccagactt	2357
	gttgctaaag attaaatgaa atgctctgtt tctaaaattt catcttgaat ccaaatttta	2417
20	atttttgaat gactttccct gctgttgtct tcaaaatcag aacattttct ctgcctcaga	2477
	aaagcgtttt tccaactgga aatttatttt tcaggtctta aaacctgcta aatgttttta	2537
	ggaagtacct actgaaactt tttgtaagac atttttggaa cgagcttgaa catttatata	2597
25	aatttattac cctctttgat ttttgaaaca tgcatattat atttaggctg agaagccctt	2657
	caaatggcca gataagccac agttttagct agagaaccat ttagaattga cataactaat	2717
30	ctaaacttga acacttttag gaccaatgtt agtgttctaa ataccaacat atttctgatg	2 77 7
30	tttaaacaga tctcccaaat tcttaggacc ttgatgtcat taaaatttag aatgacaagc	2837
	ttaagagget ttagttteat ttgtttttea agtaatgaaa aataatttet tacatgggea	2897
35	gatagttaat ttgttgaaca attacaggta gcatttcatg taatctgatg ttctaaatgg	2957
	ttctcttatt gaaggaggtt aaagaattag gtttcttaca gtttttggct ggccatgaca	3017
	tgtataaaat gtatattaag gaggaattat aaagtacttt aatttgaatg ctagtggcaa	3077
40	ttgatcatta agaaagtact ttaaagcaaa aggttaatgg gtcatctggg aaaaatactg	3137
	aagtatcaaa ggtatttgca tgtgaatgtg ggttatgttc ttctatccca ccttgtagca	3197
	tattctatga aagttgagtt aaatgatagc taaaatatct gtttcaacag catgtaaaaa	3257
45	gttattttaa ctgttacaag tcattataca attttgaatg ttctgtagtt tctttttaac	3317
	agtttaggta caaaggtctg ttttcattct ggtgcttttt attaattttg atagtatgat	3377
50	gtcactteet attgaaatgt aagetagegt gtacettaga atgtgagete catgagagea	3437
	ggtacettgt ttgtetteae tgetgtatet atteceaaeg eeteatgaea gtgeetggea	3497
	catagtaggc actcaataaa tacttgttga atgaatgaaa aaaaaaaaaa	3548
55	<210> 26	

<210> 20
<211> 692
<212> PRT
<213> Mus musculus

	<400> 26	
5		
10		
15		
20		
25		
30		
35		
40		
45		
50		
55		

	Met 1	Pro	Ser	Ala	Thr 5	Ser	His	Ser	Gly	Ser 10	Gly	Ser	Lys	Ser	Ser 15	Gly
5	Pro	Pro	Pro	Pro 20	Ser	Gly	Ser	Ser	Gly 25	Ser	Glu	Ala	Ala	Ala 30	Gly	Ala
10	Ala	Ala	Pro 35	Ala	Ser	Gln	His	Pro 40	Ala	Thr	Gly	Thr	Gly 45	Ala	Val	Gln
	Thr	Glu 50	Ala	Met	Lys	Gln	Ile 55	Leu	Gly	Val	Ile	Asp 60	Lys	Lys	Leu	Arg
15	Asn 65	Leu	Glu	Lys	Lys	Lys 70	Gly	Lys	Leu	Asp	As p 75	Tyr	Gln	Glu	Arg	Met 80
20	Asn	Lys	Gly	Glu	Arg 85	Leu	Asn	Gln	Asp	Gln 90	Leu	Asp	Ala	Val	Ser 95	Lys
25	Tyr	Gln	Glu	Val 100	Thr	Asn	Asn	Leu	Glu 105	Phe	Ala	Lys	Glu	Leu 110	Gln	Arg
	Ser	Phe	Met 115	Ala	Leu	Ser	Gln	Asp 120	Ile	Gln	Lys	Thr	Ile 125	Lys	Lys	Thr
30	Ala	Arg 130	Arg	Glu	Gln	Leu	Met 135	Arg	Glu	Glu	Ala	Glu 140	Gln	Lys	Arg	Leu
35	Lys 145	Thr	Val	Leu	Glu	Leu 150	Gln	Tyr	Val	Leu	Asp 155	Lys	Leu	Gly	Asp	Asp 160
	Asp	Val	Arg	Thr	Asp 165	Leu	Lys	Gln	Gly	Leu 170	Ser	Gly	Val	Pro	Ile 175	Leu
40	Ser	Glu	Glu	Glu 180	Leu	Ser	Leu	Leu	Asp 185	Glu	Phe	Tyr	Lys	Leu 190	Val	Asp
45	Pro	Glu	Arg 195	Asp	Met	Ser	Leu	Arg 200	Leu	Asn	Glu	Gln	Tyr 205	Glu	His	Ala
50	Ser	Ile 210	His	Leu	Trp	Asp	Leu 215	Leu	Glu	Gly	Lys	Glu 220	Lys	Pro	Val	Суз
	Gly 225	Thr	Thr	Tyr _.	Lys	Ala 230	Leu	Lys	Glu	Ile	Val 235	Glu	Arg	Val	Phe	Gln 240
55	Ser	Asn	Tyr	Phe	Asp 245	Ser	Thr	His	Asn	His 250	Gln	Asn	Gly		Cys 255	Glu

	Glu Glu	I Glu Ala 26		Ser	Ala	Pro	Thr 265	Val	Glu	Asp	Gln	Val 270	Ala	Glu
5	Ala Glu	Pro Glu 275	1 Pro	Ala	Glu	Glu 280	Tyr	Thr	Glu	Gln	Ser 285	Glu	Val	Glu
10	Ser Thr 290	Glu Ty:)	Val	Asn	Arg 295	Gln	Phe	Met	Ala	Glu 300	Thr	Gln	Phe	Ser
	Ser Gly 305	Glu Lys	Glu	Gln 310	Val	Asp	Glu	Trp	Thr 315	Val	Glu	Thr	Val	Glu 320
15	Val Val	. Asn Sei	: Leu 325	Gln	Gln	Gln	Pro	Gln 330	Ala	Ala	Ser	Pro	Ser 335	Val
20	Pro Glu	I Pro His 34(Leu	Thr	Pro	Val 345	Ala	Gln	Ser	Asp	Pro 350	Leu	Val
25	Arg Arg	Gln Arc 355	Val	Gln	Asp	Leu 360	Met	Ala	Gln	Met	Gln 365	Gly	Pro	Tyr
25	Asn Phe 370	lle Glr	Asp		Met 375	Leu	Asp	Phe	Glu	Asn 380	Gln	Thr	Leu	Asp
30	Pro Ala 385	lle Val	Ser	Ala 390	Gln	Pro	Met	Asn	Pro 395	Thr	Gln	Asn	Met	Asp 400
35	Met Pro	Gln Leu	Val 405	Суз	Pro	Gln	Val	His 410	Ser	Glu	Ser	Arg	Leu 415	Ala
	Gln Ser	Asn Glr 420		Pro	Val	Gln	Pro 425	Glu	Ala	Thr	Gln	Val 430	Pro	Leu
40	Val Ser	Ser Thr 435	Ser	Glu	Gly	Tyr 440	Thr	Ala	Ser	Gln	Pro 445	Leu	Tyr	Gln
45	Pro Ser 450	His Ala	Thr		Gln 455	Arg	Pro	Gln	Lys	Glu 460	Pro	Met	Asp	Gln
50	Ile Gln 465	Ala Thr	Ile	Ser 470	Leu	Asn	Thr	Asp	Gln 475	Thr	Thr	Ala	Ser	Ser 480
50	Ser Leu	Pro Ala	Ala 485	Ser	Gln	Pro		Val 490	Phe	Gln	Ala	_	Thr 495	Ser
55	Lys Pro	Leu His 500		Ser (Gly		Asn 505	Val	Asn	Ala	Ala	Pro 510	Phe	Gln

.

	Ser	Met	Gln 515	Thr	Val	Phe	Asn	Met 520	Asn	Ala	Pro	Val	Pro 525	Pro	Ala	Asn
5	Glu	Pro 530	Glu	Thr	Leu	Lys	Gln 535	Gln	Ser	Gln	Tyr	Gln 540	Ala	Thr	Tyr	Asn
10	Gln 545	Ser	Phe	Ser	Ser	Gln 550	Pro	His	Gln	Val	Glu 555	Gln	Thr	Glu	Leu	Gln 560
15	Gln	Asp	Gln	Leu	Gln 565	Thr	Val	Val	Gly	Thr 570	Tyr	His	Gly	Ser	Gln 575	Asp
	Gln	Pro	His	Gln 580	Val	Pro	Gly	Asn	His 585	Gln	Gln	Pro	Pro	Gln 590	Gln	Asn
20	Thr	Gly	Phe 595	Pro	Arg	Ser	Ser	Gln 600	Pro	Tyr	Tyr	Asn	Ser 605	Arg	Gly	Val
25	Ser	Arg 610	Gly	Gly	Ser	Arg	Gly 615	Ala	Arg	Gly	Leu	Met 620	Asn	Gly	Tyr	Arg
	Gly 6 <u>2</u> 5	Pro	Ala	Asn	Gly	Phe 630	Arg	Gly	Gly	Tyr	Asp 635	Gly	Tyr	Arg	Pro	Ser 640
30	Phe	Ser	Asn	Thr	Pro 645	Asn	Ser	Gly	Tyr	Ser 650	Gln	Ser	Gln	Phe	Thr 655	Ala
35	Pro	Arg	Asp	Tyr 660	Ser	Gly	Tyr	Gln	Arg 665	Asp	Gly	Tyr	Gln	Gln 670	Asn	Phe
40	Lys	Arg	Gly 675	Ser	Gly	Gln	Ser	Gly 680	Pro	Arg	Gly	Ala	Pro 685	Arg	Gly	Asn
	Ile	Leu 690	Trp	Trp												
45	<210> 27 <211> 35 <212> Di <213> M	508 NA	sculus													
50	<220> <221> Cl <222> (1 <223>		217)													
55	<400> 27	7														

- cccaccgcgc gcgcgcgtag ccgcctgccc gcccgcccgc tgcgcgtttt gtcccgcgtc 60
- teteccegte egteteetga ettgetggte ttgteettee etecegettt ttteetetee 120
- 5 tetetteteg gtetaaag atg eee teg gee ace age ege age gge 171 Met Pro Ser Ala Thr Ser His Ser Gly Ser Gly

						1			5					10		
5					gga Gly											219
			-		gca Ala	-	 -	-		-		-	-			267
10					cag Gln											315
15					cgg Arg											363
		-	-	-	atg Met 80			-					-	-	-	411
20					aag Lys											459
25	-	-		-	ag g Arg	-	-	-		-		-		-		507
30					aca Thr											555
50					tta Leu											603
35					gat Asp 160											651
40					ttg Leu											699
					gat Asp											747
45	-		-		gcc Ala			-		-	-	-	-			795
50					tgt Cys				Lys							843
					cag Gln 240											891
55					gag Glu		Glu									939

	gac Asp	cag Gln	gta Val 270	gct Ala	gaa Glu	gct Ala	gaa Glu	cct Pro 275	gag Glu	cca Pro	gcg Ala	gaa Glu	gaa Glu 280	tac Tyr	aca Thr	gag Glu	987
5																gca Ala	1035
10			cag Gln													aca Thr 315	1083
45			aca Thr														1131
15			cct Pro														1179
20			cca Pro 350														1227
25			GJÀ GJÀ														1275
			acg Thr														1323
30			aac Asn														1371
35			aga Arg														1419
			gtt Val 430														1467
40			ttg Leu														1515
45			atg Met														1563
50			gca Ala														1611
			ggg Gly														1659
55			cca Pro 510														1707

	gtc cct cct gct aat gaa cca gaa acg tta aaa caa cag agt cag tac 1755 Val Pro Pro Ala Asn Glu Pro Glu Thr Leu Lys Gln Gln Ser Gln Tyr 525 530 535	;
5	cag gcc act tat aac cag agt ttt tcc agt cag cct cac caa gtg gaa 1803 Gln Ala Thr Tyr Asn Gln Ser Phe Ser Ser Gln Pro His Gln Val Glu 540 545 550 555	ł
10	caa aca gag ctt caa caa gac caa ctg caa acg gtg gtt ggc act tac 1851 Gln Thr Glu Leu Gln Gln Asp Gln Leu Gln Thr Val Val Gly Thr Tyr 560 565 570	,
	cat gga tee cag gae cag eet cat caa gtg eet ggt aae cae cag caa 1899 His Gly Ser Gln Asp Gln Pro His Gln Val Pro Gly Asn His Gln Gln 575 580 585	1
15	ccc cca cag cag aac act ggc ttt cca cgt agc agt cag cct tat tac 1947 Pro Pro Gln Gln Asn Thr Gly Phe Pro Arg Ser Ser Gln Pro Tyr Tyr 590 595 600	
20	aac agt cgt ggg gta tet ega gga ggg tet egt ggt gee aga gge ttg 1995 Asn Ser Arg Gly Val Ser Arg Gly Gly Ser Arg Gly Ala Arg Gly Leu 605 610 615	
	atg aat gga tac agg ggc cct gcc aat gga ttt aga gga gga tat gat2043Met Asn Gly Tyr Arg Gly Pro Ala Asn Gly Phe Arg Gly Gly Tyr Asp620620625630	
25	ggt tac cgc cct tca ttc tcg aac act cca aac agt ggt tat tca cag 2091 Gly Tyr Arg Pro Ser Phe Ser Asn Thr Pro Asn Ser Gly Tyr Ser Gln 640 645 650	
30	tct cag ttc act gct ccc cgg gac tac tct ggt tac cag cgg gat gga 2139 Ser Gln Phe Thr Ala Pro Arg Asp Tyr Ser Gly Tyr Gln Arg Asp Gly 655 660 665	
35	tat cag cag aat ttc aag cga ggc tct ggg cag agt gga cca cgg gga 2187 Tyr Gln Gln Asn Phe Lys Arg Gly Ser Gly Gln Ser Gly Pro Arg Gly 670 675 680	
	gcc cca cga ggt aat ata ttg tgg tgg tga tcctagctcc tatgtggagc 2237 Ala Pro Arg Gly Asn Ile Leu Trp Trp 685 690	
40	ttctgttctg gccttggaag aactgttcat agtccgcatg taggttacat gttaggaata 2297 catttatctt ttccagactt gttgctaaag attaaatgaa atgctctgtt tctaaaattt 2357	
	catcttgaat ccaaatttta atttttgaat gactttccct gctgttgtct tcaaaatcag 2417	
45	aacattttot etgeeteaga aaagegtttt teeaaetgga aatttatttt teaggtetta 2477	
	aaacctgcta aatgttttta ggaagtacct actgaaactt tttgtaagac atttttggaa 2537	
	cgagettgaa catttatata aatttattae eetetttgat ttttgaaaca tgeatattat 2597 atttaggetg agaageeett caaatggeea gataageeae agttttaget agagaaceat 2657	
50	ttagaattga cataactaat ctaaacttga acacttttag gaccaatgtt agtgttctaa 2717	
	ataccaacat atttctgatg tttaaacaga tctcccaaat tcttaggacc ttgatgtcat 2777	
55	taaaatttag aatgacaagc ttaagaggct ttagtttcat ttgtttttca agtaatgaaa 2837	
	aataatttet tacatgggea gatagttaat ttgttgaaca attacaggta geattteatg 2897	

	taatctgatg	ttctaaatgg	ttctcttatt	gaaggaggtt	aaagaattag	gtttcttaca	2957
	gtttttggct	ggccatgaca	tgtataaaat	gtatattaag	gaggaattat	aaagtacttt	3017
5	aatttgaatg	ctagtggcaa	ttgatcatta	agaaagtact	ttaaagcaaa	aggttaatgg	3077
	gtcatctggg	aaaaatactg	aagtatcaaa	ggtatttgca	tgtgaatgtg	ggttatgttc	3137
	ttctatccca	ccttgtagca	tattctatga	aagttgagtt	aaatgatagc	taaaatatct	3197
10	gtttcaacag	catgtaaaaa	gttattttaa	ctgttacaag	tcattataca	attttgaatg	3257
	ttctgtagtt	tcttttaac	agtttaggta	caaaggtctg	ttttcattct	ggtgctttt	3317
15	attaattttg	atagtatgat	gtcacttcct	attgaaatgt	aagctagcgt	gtaccttaga	3377
	atgtgagete	catgagagca	ggtaccttgt	ttgtcttcac	tgctgtatct	attcccaacg	3437
	cctcatgaca	gtgcctggca	catagtaggc	actcaataaa	tacttgttga	atgaatgaaa	3497
20	aaaaaaaaaa	a					3508
	<210> 28 <211> 692 <212> PRT						

25 <213> Mus musculus

<400> 28

	Met 1	Pro	Ser	Ala	Thr 5	Ser	His	Ser	Gly	Ser 10	Gly	Ser	Lys	Ser	Ser 15	Gly
5	Pro	Pro	Pro	Pro 20	Ser	Gly	Ser	Ser	Gly 25	Ser	Glu	Ala	Ala	Ala 30	Gly	Ala
10	Ala	Ala	Pro 35	Ala	Ser	Gln	His	Pro 40	Ala	Thr	Gly	Thr	Gly 45	Ala	Val	Gln
15	Thr	Glu 50	Ala	Met	Lys	Gln	Ile 55	Leu	Gly	Val	Ile	Asp 60	Lys	Lys	Leu	Arg
15	Asn 65	Leu	Glu	Lys	Lys	Lys 70	Gly	Lys	Leu	Asp	Asp 75	Tyr	Gln	Glu	Arg	Met 80
20	Asn	Lys	Gly	Glu	Arg 85	Leu	Asn	Gln	Asp	<u>G</u> ln 90	Leu	Asp	Ala	Val	Ser 95	Lys
25	Tyr	Gln	Glu	Val 100	Thr	Asn	Asn	Leu	Glu 105	Phe	Ala	Lys	Glu	Leu 110	Glń	Arg
	Ser	Phe	Met 115	Ala	Leu	Ser	Gln	Asp 120	Ile	Gln	Lys	Thr	Ile 125	Lys	Lys	Thr
30	Ala	Arg 130	Arg	Glu	Gln	Leu	Met 135	Arg	Glu	Glu	Ala	Glu 140	Gln	Lys	Arg	Leu
35																
40																
45																
50																

	Lys 145		Val	Leu	Glu	Leu 150	Gln	Tyr	Val	Leu	Asp 155	Lys	Leu	Gly	Asp	Asp 160
5	Asp	Val	Arg	Thr	Asp 165	Leu	Lys	Gln	Gly	Leu 170	Ser	Gly	Val	Pro	Ile 175	Leu
10	Ser	Glu	Glu	Glu 180	Leu	Ser	Leu	Leu	Asp 185	Glu	Phe	Tyr	Lys	Leu 190	Val	Asp
	Pro	Glu	Arg 195	Asp	Met	Ser	Leu	Arg 200	Leu	Asn	Glu	Gln	Tyr 205	Glu	His	Ala
15	Ser	Ile 210	His	Leu	Trp	Asp	Leu 215	Leu	Glu	Gly	Lys	Glu 220	Lys	Pro	Val	Cys
20	Gly 225	Thr	Thr	Tyr	Lys	Ala 230	Leu	Lys	Glu	Ile	Val 235	Glu	Arg	Val	Phe	Gln 240
25	Ser	Asn	Tyr	Phe	Asp 245	Ser	Thr	His	'Asn	His 250	Gln	Asn	Gly	Leu	Cys 255	Glu
	Glu	Glu	Glu	Ala 260	Ala	Ser	Ala	Pro	Thr 265	Val	Glu	Asp	Gln	Val 270	Ala	Glu
30	Ala	Glu	Pro 275	Glu	Pro	Ala	Glu	Glu 280	Tyr	Thr	Glu	Gln	Ser 285	Glu	Val	Glu
35	Ser	Thr 290	Glu	Tyr	Val	Asn	Arg 295	Gln	Phe	Met	Ala	Glu 300	Thr	Gln	Phe	Ser
	Ser 305	Gly	Glu	Lys	Glu	Gln 310	Val	Asp	Glu	Trp	Thr 315	Val	Glu	Thr	Val	Glu 320
40	Val	Val	Asn	Ser	Leu 325	Gln	Gln	Gln	Pro	Gln 330	Ala	Ala	Ser	Pro	Ser 335	Val
45	Pro	Glu	Pro	His 340	Ser	Leu	Thr	Pro	Val 345	Ala	Gln	Ser	Asp	Pro 350	Leu	Val
50	Arg	Arg	Gln 355	Arg	Val	Gln	Asp	Leu 360	Met	Ala	Gln	Met	Gln 365	Gly	Pro	Tyr
	Asn	Phe 370	Ile	Gln	Asp	Ser	Met 375	Leu	Asp	Phe	Glu	As n 380	Gln	Thr	Leu	Asp
55	Pro 385	Ala	Ile	Val	Ser	Ala 390	Gln	Pro	Met	Asn	Pro 395	Thr	Gln	Asn		Asp 400

	Met	Pro	Gln	Leu	Val 405	Суз	Pro	Gln	Val	His 410		Glu	Ser	Arg	Leu 415	Ala
5	Gln	Ser	Asn	Gln 420	Val	Pro	Val	Gln	Pro 425	Glu	Ala	Thr	Gln	Val 430	Pro	Leu
10	Val	Ser	Ser 435	Thr	Ser	Glu	Gly	Tyr 440	Thr	Ala	Ser	Gln	Pro 445	Leu	Tyr	Gln
	Pro	Ser 450	His	Ala	Thr	Glu	Gln 455	Arg	Pro	Gln	Lys	Glu 460	Pro	Met	Asp	Gln
15	Ile 465	Gln	Ala	Thr	Ile	Ser 470	Leu	Asn	Thr	Asp	Gln 475	Thr	Thr	Ala	Ser	Sér 480
20	Ser	Leu	Pro	Ala	Ala 485	Ser	Gln	Pro	Gln	Val 490	Phe	Gln	Ala	Gly	Thr 495	Ser
25	Lys	Pro	Leu	His 500	Ser	Ser	Gly	Ile	Asn 505	Val	Asn	Ala	Ala	Pro 510	Phe	Gln
	Ser	Met	Gln 515	Thr	Val	Phe	Asn	Met 520	Asn	Ala	Pro	Val	Pro 525	Pro	Ala	Asn
30	Glu	Pro 530	Glu	Thr	Leu	Lys	Gln 535	Gln	Ser	Gln	Tyr	Gln 540	Ala	Thr	Tyr	Asn
35	Gln 545	Ser	Phe	Ser	Ser	Gln 550	Pro	His	Gln	Val	Glu 555	Gln	Thr	Glu	Leu	Gln 560
10	Gln	Asp	Gln	Leu	Gln 565	Thr	Val	Val	Gly	Thr 570	Tyr	His	Gly	Ser	Gln 575	Asp
40	Gln	Pro	His	Gln 580	Val	Pro	Gly	Asn	His 585	Gln	Gln	Pro	Pro	Gln 590	Gln	Asn
45	Thr	Gly	Phe 595	Pro	Arg	Ser	Ser	Gln 600	Pro	Tyr	Tyr	Asn	Ser 605	Arg	Gly	Val
50	Ser	Arg 610	Gly	Gly	Ser	Arg	Gly 615	Ala	Arg	Gly	Leu	Met 620	Asn	Gly	Tyr	Arg
	Gly 625	Pro	Ala	Asn	Gly	Phe 630	Arg	Gly	Gly	Tyr	Asp 635	Gly	Tyr	Arg	Pro	Ser 640
55	Phe	Ser	Asn	Thr	Pro 645	Asn	Ser	Gly	Tyr	Ser 650	Gln	Ser	Gln	Phe	Thr 655	Ala

	Pro) Arg	Asp	Tyr 660	Ser	Gly	Tyr	Gln	Ar g 665	Asp	Gly	Tyr	Gln	Gln 670	Asn	Phe
5	Lys	arg	Gly 675	Ser	Gly	Gln	Ser	Gly 680	Pro	Arg	Gly	Ala	Pro 685	Arg	Gly	Asn
10	Ile	e Leu 690	Trp	Trp												
15	<210> 29 <211> 2109 <212> DNA <213> Gallu <220>		5													
20	<221> CDS <222> (1)(2 <223> <400> 29	2109)														
25																
30																
35																
40																
45																
50																
55																

					gcg Ala 10				48
5					gcg Ala				96
10					gtt Val				144
15					ctc Leu				192
10					cga Arg				240
20					tca Ser 90				288
25					cag Gln				336
					aag Lys				384
30					cgt Arg				432
35					gac Asp				480
40					gta Val				528

			165			170		1	75	
5	aca atg Thr Met	ctg gat Leu Asp 180	gaa tti Glu Phe	tac a Tyr I	aag cta Lys Leu 185	gtt tad Val Tyr	c cct gaa c Pro Glu	agg ga Arg As 190	ac atg sp Met	576
				Gln T			a tct gtt a Ser Val 205			624
10							gga aca Gly Thr 220			672
15				. Glu A			act agt Thr Ser			720
							gaa gaa Glu Glu		a Ala	768
20							ı gct gag Ala Glu			816
25				Pro T			tcg act Ser Thr 285			864
30							agt agt Ser Ser 300			912
				Val G			gtt gta Val Val			960
35							cct gaa Pro Glu		s Thr	1008
40							aga aga Arg Arg			1056
				Met G			aac ttc Asn Phe 365			1104
45							cct gcc Pro Ala 380			1152
50				Ala G			atg ccg Met Pro			1200
					ler Arg		cag cct Gln Pro		n Val	1248
55							gtt tca Val Ser			1296

								ccc Pro 440									1344
5								tcc Ser									1392
10		-		-	-	-		ccg Pro								-	1440
								gct Ala									1488
15	-				-		-	gct Ala					-			-	1536
			-		-		-	cct Pro 520		-				-	-		1584
								gcc Ala									1632
	-				-	-		tca Ser	-		-		-	-		-	1680
30								ggt Gly									1728
								CCC Pro									1776
								agt Ser 600									1824
	-			-		-	-	aat Asn						-			1872
45		-				-		tac Tyr								-	1920
								caa Gln									1968
								cag Gln									2016
								cct Pro 680				Gly					2064

	cca Pro	aac Asn 690	Arg	ggg Gly	atg Met	cct Pro	caa Gln 695	atg Met	aac Asn	gct Ala	cag Gln	caa Gln 700	gtg Val	aat Asn	taa	2109
5	<210> <211> <212> <213>	702 PRT	s gallu	s												
10	<400>	30														
15																
20																
25																
30																
35																
40																
45																
50																
55																

	Met 1	Pro	Ser	Ala	Thr 5	Asn	Gly	Thr	Met	Ala 10	Ser	Ser	Ser	Gly	Lys 15	Ala
5	Gly	Pro	Gly	Gly 20	Asn	Glu	Gln	Ala	Pro 25	Ala	Ala	Ala	Ala	Ala 30	Ala	Pro
10	Gln	Ala	Ser 35	Gly	Gly	Ser	Ile	Thr 40	Ser	Val	Gln	Thr	Glu 45	Ala	Met	Lys
15	Gln	Ile 50	Leu	Gly	Val	Ile	Asp 55	Lys	Lys	Leu	Arg	Asn 60	Leu	Glu	Lys	Lys
15	Lys 65	Ser	Lys	Leu	Asp	Asp 70	Tyr	Gln	Glu	Arg	Met 75	Asn	Lys	Gly	Glu	Arg 80
20	Leu	Asn	Gln	Asp	Gln 85	Leu	Asp	Ala	Val	Ser 90	Lys	Tyr	Gln	Glu	Val 95	Thr
25	Asn	Asn	Leu	Glu 100	Phe	Ala	Lys	Glu	Leu 105	Gln	Arg	Ser	Phe	Met 110	Ala	Leu
	Ser	Gln	Asp 115	Ile	Gln	Lys	Thr	Ile 120	Lys	Lys	Thr	Ala	Arg 125	Arg	Glu	Gln
30	Leu	Met 130	Arg	Glu	Glu	Ala	Glu 135	Gln	Lys	Arg	Leu	Lys 140	Thr	Val	Leu	Glu
35	Leu 145	Gln	Phe	Ile	Leu	Asp 150	Lys	Leu	Gly	Asp	Asp 155	Glu	Val	Arg	Ser	Asp 160
40	Leu	Lys	Gln	Gly	Ser 165	Asn	Gly	Val	Pro	Val 170	Leu	Thr	Glu	Glu	Glu 175	Leu
	Thr	Met	Leu	Asp 180	Glu	Phe	Tyr	Lys	Leu 185	Val	Tyr	Pro	Glu	Arg 190	Asp	Met
45	Asn	Met	Arg 195	Leu	Asn	Glu	Gln	Tyr 200	Glu	Gln	Ala	Ser	Val 205	His	Leu	Trp
50	Asp	Leu	Leu	Glu	Gly	Lys	Glu	Lys	Pro	Val	Суз	Gly	Thr	Thr	Tyr	Lys

	21	0				215					220				
5	Ala Le 225	u Lys	Glu	Val	Val 230	Glu	Arg	Ile	Leu	Gln 235	Thr	Ser	Tyr	Phe	Asp 240
	Ser Th	r His	Asn	His 245	Gln	Asn	Gly	Leu	С уз 250	Glu	Glu	Glu	Glu	Ala 255	Ala
10	Pro Th	r Pro	Ala 260	Val	Glu	Asp	Thr	Val 265	Ala	Glu	Ala	Glu	Pro 270	Asp	Pro
15	Ala Gl	u Glu 275		Thr	Glu	Pro	Thr 280	Glu	Val	Glu	Ser	Thr 285	Glu	Tyr	Val
20	Asn Ar 29		Phe	Met	Ala	Glu 295	Thr	Gln	Phe	Ser	Ser 300	Ser	Glu	Lys	Glu
-	Gln Va 305	l Asp	Glu	Trp	Thr 310	Val	Glu	Thr	Val	Glu 315	Val	Val	Asn	Ser	Leu 320
25	Gln Gl	n Gln	Thr	Gln 325	Ala	Thr	Ser	Pro	Pro 330	Val	Pro	Glu	Pro	His 335	Thr
30	Leu Th	r Thr	Val 340	Ala	Gln	Ala	Asp	Pro 345	Leu	Val	Arg	Arg	Gln 350	Arg	Val
	Gln As	o Leu 355	Met	Ala	Gln	Met	Gln 360	Gly	Pro	Tyr	Asn	Phe 365	Met	Gln	Asp
35	Ser Me 37		Glu	Phe	Glu	Asn 375	Gln	Thr	Leu	Asp	Pro 380	Ala	Ile	Val	Ser
40	Ala Gl: 385	n Pro	Met	Asn	Pro 390	Ala	Gln	Asn	Leu	Asp 395	Met	Pro	Gln	Met	Val 400
	Cys Pro) Pro	Val	His 405	Thr	Glu	Ser	Arg	Leu 410	Ala	Gln	Pro	Asn	Gln 415	Val
45	Pro Va	l Gln	Pro 420	Glu	Ala	Thr	Gln	Val 425	Pro	Leu	Val	Ser	Ser 430	Thr	Ser
50	Glu Gly	y Tyr 435	Thr	Ala	Ser	Gln	Pro 440	Met	Tyr	Gln	Pro	Ser 445	His	Thr	Thr
	Glu Gla 450		Pro	Gln	Lys	Glu 455	Ser	Ile	Asp	Gln	Ile 460	Gln	Ala	Ser	Met
55	Ser Le 465	ı Asn	Ala	Asp	Gln 470	Thr	Pro	Ser	Ser	Ser 475	Ser	Leu	Pro	Thr	Ala 480

	Ser	Gln	Pro	Gln	Val 485	Phe	Gln	Ala	Gly	Ser 490	Ser	Lys	Pro	Leu	His 495	Ser
5	Ser	Gly	Ile	Asn 500	Val	Asn	Ala	Ala	Pro 505	Phe	Gln	Ser	Met	Gln 510	Thr	Val
10	Phe	Asn	Met 515	Asn	Ala	Pro	Val	Pro 520	Pro	Val	Asn	Glu	Pro 525	Glu	Ala	Leu
	Lys	Gln 530	Gln	Asn	Gln	Tyr	Gln 535	Ala	Ser	Tyr	Asn	Gln 540	Ser	Phe	Ser	Asn
15	Gln 545	Pro	His	Gln	Val	Glu 550	Gln	Ser	Asp	Leu	Gln 555	Gln	Glu	Gln	Leu	Gln 560
20	Thr	Val	Val	Gly	Thr 565	Tyr	His	Gly	Ser	Pro 570	Asp	Gln	Thr	His	Gln 575	Val
25	Ala	Gly	Asn	His 580	Gln	Gln	Pro	Pro	Gln 585	Gln	Asn	Thr	Gly	Phe 590	Pro	Arg
	Asn	Ser	Gln 595	Pro	Tyr	Tyr	Asn	Ser 600	Arg	Gly	Val	Ser	Arg 605	Gly	Gly	Ser
30	Arg	Gly 610	Thr	Arg	Gly	Leu	Met 615	Asn	Gly	Tyr	Arg	Gly 620	Pro	Ala	Asn	Gly
35	Phe 625	Arg	Gly	Gly	Tyr	Asp 630	Gly	Tyr	Arg	Pro	Ser 635	Phe	Ser	Asn	Thr	Pro 640
40	Asn	Ser	Gly	Tyr	Thr 645	Gln	Pro	Gln	Phe	Asn 650	Ala	Pro	Arg	Asp	Tyr 655	Ser
	Asn	Tyr	Gln	Arg 660	Asp	Gly	Tyr	Gln	Gln 665	Asn	Phe	Lys	Arg	Gly 670	Ser	Gly
45	Gln	Ser	Gly 675	Pro	Àrg	Gly	Ala	Pro 680	Arg	Gly	Arg	Gly	Gly 685	Pro	Pro	Arg
50	Pro	Asn 690	Arg	Gly	Met	Pro	Gln 695	Met	Asn	Ala	Gln	Gln 700	Val	Asn		
55	<210> 31 <211> 20 <212> DNA <213> Artifici	al														
	<220> <223> T3 pri	mer														

	<400> 31 aattaaccct cactaaaggg	20
5	<210> 32 <211> 19 <212> DNA <213> Artificial	
10	<220> <223> T7 primer	
	<400> 32 taatacgact cactatagg	19
15	<210> 33 <211> 18 <212> DNA <213> Artificial	
20	<220> <223> primer	
25	<400> 33 aaggtttgaa tggagtgc	18
	<210> 34 <211> 18 <212> DNA	
30	<213> Artificial	
	<220> <223> primer	
35	<400> 34 tgctcctttt caccactg	18
40	<210> 35 <211> 18 <212> DNA <213> Artificial	
40	<220> <223> GAPDH primer	
45	<400> 35 gggctgcttt taactctg	18
50	<210> 36 <211> 18 <212> DNA <213> Artificial	
55	<220> <223> GAPDH primer	
55	<400> 36 ccaggaaatg agcttgac <210> 37	18

	<211> 27 <212> DNA <213> Artificial	
5	<220> <223> primer	
10	<400> 37 catatggcat taagtcaaga tattcag	27
	<210> 38 <211> 23 <212> DNA <213> Artificial	
15	<220> <223> primer	
20	<400> 38 ggtacctttg cggcatccct ctg	23
25	<210> 39 <211> 21 <212> DNA <213> Artificial	
	<220> <223> primer	
30	<400> 39 catatgccgt cggccaccag c	21
35	<210> 40 <211> 22 <212> DNA <213> Artificial	
40	<220> <223> primer <400> 40	
	ggtaccattc acttgctgag tg	22
45	<211> 23 <212> DNA <213> Artificial	
50	<220> <223> primer	
	<400> 41 gagetcatge ceteggecae cag	23
55	<210> 42 <211> 23 <212> DNA <213> Artificial	

	<220> <223> primer
5	<400> 42 ctcgagttaa ttcacttgct gag 23
10	<210> 43 <211> 14 <212> PRT <213> Homo sapiens
	<400> 43
15	<400> 43
	Arg Asn Leu Glu Lys Lys Lys Gly Lys Leu Asp Asp Tyr Gln 1 5 10
20	<210> 44 <211> 148 <212> PRT <213> Mus musculus
25	<400> 44
30	
35	
40	
45	
50	
55	

	Met 1	Glu	Trp	Ser	Gly 5	Val	Phe	Ile	Phe	Leu 10	Leu	Ser	Gly	Thr	Ala 15	Gly
5	Val	Leu	Ser	Glu 20	Val	Ģln	Leu	His	Gln 25	Phe	Gly	Ala	Glu	Leu 30	Val	Lys
10	Pro	Gly	Ala 35	Ser	Val	Lys	Ile	Ser 40	Суз	Lys	Ala	Ser	Gly 45	Tyr	Thr	Phe
	Thr	Asp 50	Tyr	Asn	Met	Asp	Trp 55	Val	Lys	Gln	Ser	His 60	Gly	Lys	Ser	Leu
15	Glu 65	Trp	Ile	Gly	Asp	Ile 70	Asn	Pro	Asn	Tyr	Asp 75	Ser	Thr	Ser	Tyr	Asn 80
20	Gln	Lys	Phe	Lys	Gly 85	Lys	Ala	Thr	Leu	Thr <u>9</u> 0	Val	Asp	Lys	Ser	Ser 95	Ser
25	Thr	Ala	Tyr	Met 100	Glu	Leu	Arg	Ser	Leu 105	Thr	Ser	Glu	Asp	Thr 110	Ala	Val
	Tyr	Tyr	Cys 115	Ala	Arg	Ser	Arg	Ser 120	Tyr	Asp	Tyr	Glu	Gly 125	Phe	Ala	Tyr
30	Trp	Gly 130	Gln	Gly	Thr	Leu	Val 135	Thr	Val	Ser	Ala	Ala 140	Lys	Thr	Thr	Pro
35	Pro 145	Ser	Val	Tyr									•			
40	<210> <211> <212> <213>	132 PRT	muscu	lus												
	<400>	45														
45																

.

50

	Ala 1	Val	Leu	Arg	Cys 5	Ser	Arg	Gly	Leu	Leu 10	Val	Ile	Trp	Ile	Ser 15	Asp
5	Ile	Gln	Leu	Thr 20	Gln	Ser	Pro	Ser	Ser 25	Leu	Ala	Val	Thr	Ala 30	Gly	Glu
10	Lys	Val	Thr 35	Met	Ser	Суз	Lys	Ser 40	Ser	Gln	Ser	Leu	Leu 45	Trp	Ser	Val
15	Asn	Gln 50	Lys	Asn	Tyr	Leu	Ser 55	Trp	Tyr	Gln	Gln	Lys 60	Gln	Arg	Gln	Pro
13	Pro 65	Lys	Leu	Leu	Ile	Tyr 70	Gly	Ala	Ser	Ile	Arg 75	Glu	Ser	Trp	Val	Pro 80
20	Asp	Arg	Phe	Thr	Gly 85	Ser	Gly	Ser	Gly	Thr 90	Asp	Phe	Thr.	Leu	Thr 95	Ile
25	Ser	Asn	Val	His 100	Ala	Glu	Asp	Leu	Ala 105	Val	Tyr	Tyr	Суз	Gln 110	His	Asn
	His	Gly	Ser 115	Phe	Leu	Pro	Ser	Arg 120	Ser	Glu	Gln	Val	Pro 125	Ser	Trp	Arg
30	Ser	Asn 130	Asn	Arg												
35	<210> 46 <211> 117 <212> PR <213> Mu	T	culus													
40	<400> 46															
	Arg 1	Thr	Thr	Ser	His 5	Met	Asp	Ser	Asp	Ile 10	Gln	Leu	Thr	Gln	Ser 15	Pro
45	Ala	Ser	Leu	Ser 20	Ala	Ser	Val	Gly	Glu 25	Thr	Val	Thr	Ile	Thr 30	Суз	Arg
50	Ala	Ser	Gly 35	Asn	Ile	His	Asn	Tyr 40	Leu	Ala	Trp	Tyr	Gln 45	Gln	Lys	Gln
	Gly	Lys 50	Ser	Pro	Gln	Leu	Leu 55	Val	Tyr	Asn	Ala	Lys 60	Thr	Leu	Ala	Asp

		Gly 65	Val	Pro	Ser	Arg	Phe 70	Ser	Gly	Ser	Gly	Ser 75	Gly	Thr	Gln	Tyr	Ser 80
5		Leu	Lys	Ile	Asn	Ser 85	Leu	Gln	Pro	Glu	Asp 90	Phe	Gly	Ser	Tyr	Tyr 95	Суз
10		Gln	His	Phe	Trp 100	Ser	Thr	Leu	Thr	Phe 105	Gly	Gly	Gly	Thr	Lys 110	Leu	Glu
		Ile	Lys	Gln 115	Ser	Asp											
15	<210> 4 <211> 9 <212> 1	94 PRT		10													
20	<213> I <400> 4		uscuit	JS													
25		Ser 1	Gly	Asp	Arg	Val 5	Ser	Leu	Ser	Cys	Arg 10	Ala	Ser	Gln	Ser	Ile 15	Ser
		Asn	Tyr	Leu	His 20	Trp	Tyr	Gln	Gln	Lys 25	Ser	His	Glu	Ser	Pro 30	Arg	Leu
30		Leu	Ile	Lys 35	Tyr	Ala	Ser	Gln	Ser 40	Ile	Ser	Gly	Ile	Pro 45	Ser	Arg	Phe
35		Ser	Gly 50	Ser	Gly	Ser	Gly	Thr 55	Asp	Phe	Thr	Leu	Ser 60	Ile	Asn	Ser	Val
40		Glu 65	Thr	Glu	Asp	Phe	Gly 70	Met	Tyr	Phe	Суз	Gln 75	Gln	Ser	Asn	Ser	Trp 80
		Pro	Tyr	Thr	Phe	Gly 85	Ala	Gly	Thr	Lys	Leu 90	Glu	Ile	Lys	Gln		
45	<210> 4 <211> 7 <212> F <213> F	105 PRT	usculu	JS													

50 <400>48

	Gly Leu 1	Phe	Суз	Ser 5	Val	Glu	Arg	Суз	His 10	Tyr	Gln	Leu	Gln	Ser 15	Ser	
5	Gln Asn	Leu	Leu 20	Ser	Ile	Val	Asn	Arg 25	Tyr	His	Tyr	Met	Ser 30	Gly	Asn	
10	Pro Pro	Lys 35	Leu	Leu	Val	Tyr	Pro 40	Ala	Leu	Leu	Ile	Tyr 45	Glu	Ala	Ser	
15	Ile	Thr 50	Lys	Ser	Суз	Val	Pro 55	Asp	Arg	Phe	Thr	Arg 60	Ser	Gly	Ser	Gly
	Thr 65	Asn	Phe	Thr	Leu	Thr 70	Ile	Asn	Phe	Val	His 75	Ala	Asp	Asp	Leu	Ile 80
20	Phe	Tyr	Tyr	Суз⊦	Gln 85	His	Asn	Arg	Gly	Ser 90	Phe	Leu	Pro	Ser	Ser 95	Ser
25	Val	Gln	Val	Pro 100	Arg	Arg	Arg	Ser	Asn 105							
30	<210> 49 <211> 100 <212> PRT <213> Mus m	usculu	S													
	<400> 49	uooulu														
35	Asp 1	Ile	Leu	Gln	Ala 5	Ser	Gly	Tyr	Ser	Phe 10	Thr	Gly	Tyr	Thr	Met 15	Asn
40	Trp	Val	Lys	Gln 20	Ser	His	Gly	Lys	Asn 25	Leu	Glu	Trp	Ile	Gly 30	Leu	Ile
40	Asn	Pro	Tyr 35	Asn	Gly	Gly	Thr	Ser 40	Tyr	Asn	Gln	Lys	Phe 45	Lys	Gly	Lys
45	Ala	Thr 50	Leu	Thr	Val	Asp	Lys 55	Ser	Ser	Ser	Thr	Ala 60	Tyr	Met	Glu	Leu
50	Leu 65	Ser	Leu	Thr	Ser	Glu 70	Asp	Ser	Ala	Val	Tyr 75	Tyr	Cys	Ala	Arg	Trp 80
	Gly	Val	Trp	Ser	Ala 85	Met	Asp	Tyr	Trp	Gly 90	Gln	Gly	Thr	Thr	Val 95	Thr
55																

_	<210> 50 <211> 90 <212> PRT <213> Mus musculus
5	<400> 50
10	Asp Arg Val Ser Ile Thr Cys Lys Ala Ser Gln Asn Val Arg Thr Ala 1 5 10 15
	Val Ala Trp Tyr Gln Gln Lys Pro Arg Gln Ser Pro Lys Ala Leu Ile
15	20 25 30
	Tyr Leu Ala Ser Asn Arg Asp Thr Gly Leu Pro Asp Arg Phe Pro Gly 35 40 45
20	Arg Gly Ser Gly Thr Asp Phe Thr Leu Asn Ile Thr Asn Val Gln Ser 50 55 60
25	Glu Asp Leu Glu Asp Tyr Phe Cys Leu Gln His Cys Asn Tyr Pro Asn 65 70 75 80
30	Glu Phe Arg Gly Cys Thr Lys Val Pro Ile 85 90
35	<210> 51 <211> 116 <212> PRT <213> Mus musculus <400> 51
40	
45	
50	

	Leu 1	Gln	Glu	Ser	Gly 5	Ala	Glu	Leu	Ala	Arg 10	Pro	Gly	Ala	Ser	Val 15	Lys
5	Leu	Ser	Сув	Lys 20	Ala	Ser	Gly	Tyr	Thr 25	Phe	Thr	Ser	Tyr	Trp 30	Met	Gln
10	Trp	Val	Lys 35	Gln	Arg	Pro	Gly	Gln 40	Gly	Leu	Glu	Trp	Ile 45	Gly	Ala	Ile
	Tyr	Pro 50	Gly	Asp	Gly	Asp	Thr 55	Arg	Tyr	Thr	Gln	Lys 60	Phe	Lys	Gly	Lys
15	Ala 65	Thr	Leu	Thr	Ala	Asp 70	Lys	Ser	Ser	Ser	Thr 75	Ala	Tyr	Met	Gln	Leu 80
20	Ser	Ser	Leu	Ala	Ser 85	Glu	Asp	Ser	Ala	Val 90	Tyr	Tyr	Суз	Ala	Arg 95	Gly
25	Glu	Tyr	Gly	Asn 100	Tyr	Phe	Ala	Tyr	Trp 105	Gly	Gln	Gly	Thr	Thr 110	Val	Thr
	Val	Ser	Ser 115	Asn												
30	<210> 52 <211> 100 <212> PR <213> Mu	Т	culus													
35	<400> 52															
40																
45																
50																

		Thr 1	Ser	Asp	Ala	Ser 5	Leu	Gly	Glu	Arg	Val 10	Thr	Ile	Thr	Суз	Lys 15	Ala
5		Ser	Gln	Asp	Ile 20	Asn	Ser	Tyr	Leu	Ser 25	Trp	Phe	Gln	Gln	Lys 30	Pro	Gly
10		Lys	Ser	Pro 35	Lys	Thr	Leu	Ile	Tyr 40	Arg	Ala	Asn	Arg	Leu 45	Val	Asp	Gly
15		Val	Pro 50	Ser	Arg	Phe	Ser	Gly 55	Ser	Gly	Ser	Gly	Gln 60	Asp	Tyr	Ser	Leu
		Thr 65	Ile	Ser	Ser	Leu	Glu 70	Tyr	Glu	Asp	Met	Gly 75	Ile	Tyr	Tyr	Суз	Leu 80
20		Gln	Tyr	Asp	Glu	Phe 85	Pro	Leu	Thr	Phe	Gly 90	Gly	Gly	Thr	Lys	Leu 95	Glu
25		Ile	Lys	Gln	Lys 100												
30	<210> { <211> { <212> <212>	108 PRT	usculu	ıs													
	<400> {	53															
35		Ala 1	Trp	Leu	Ser	Gln 5	Leu	Ser	Суз	Thr	Al a 10	Ser	Gly	Phe	Asn	Ile 15	Lys
40		Asp	Thr	Tyr	Met 20	His	Trp	Val	Lys	Gln 25	Arg	Pro	Glu	Gln	Gly 30	Leu	Glu
		Trp	Ile	Gly 35	Arg	Ile	Asp	Pro	Ala 40	Asn	Gly	Asn	Thr	Lys 45	Tyr	Asp	Pro
45		Lys	Phe 50	Gln	Gly	Lys	Ala	Thr 55	Ile	Thr	Ala	Asp	Thr 60	Ser	Ser	Asn	Thr
50		Ala 65	Tyr	Leu	Gln	Leu	Ser 70	Ser	Leu	Thr	Ser	Glu 75	Asp	Thr	Ala	Val	Tyr 80
55		Tyr	Суз	Ala	Arg	Pro 85	Ile	His	Tyr	Tyr	Tyr 90	Gly	Ser	Ser	Leu	Ala 95	Tyr
55		Trp	Gly	Gln	Gly 100	Thr	Thr	Val	Thr	Val 105	Ser	Ser	Lys				

<210> 54 <211> 104 <212> PRT <213> Mus musculus

<400> 54

5

10	G] 1	u Ph	e His	Ala	Val 5	Ser	Leu	Gly	Gln	Arg 10	Ala	Thr	Ile	Ser	Суз 15	Arg
15	A	a Se	r Glu	Ser 20	Val	Asp	Ser	Tyr	Gly 25	Asn	Ser	Phe	Met	His 30	Trp	Tyr
10	Gl	n Gl	n Lys 35	Pro	Gly	Gln	Pro	Pro 40	Lys	Leu	Leu	Ile	Tyr 45	Arg	Ala	Ser
20	As	n Le 50	u Glu	Ser	Gly	Ile	Pro 55	Ala	Arg	Phe	Ser	Gly 60	Ser	Gly	Ser	Arg
25	Th 65		p Phe	Thr	Leu	Thr 70	Ile	Asn	Pro	Val	Glu 75	Ala	Asp	Asp	Val	Ala 80
	Th	r Ty	r Tyr	Суз	Gln 85	Gln	Ser	Asn	Glu	Asp 90	Pro	Gly	Arg	Ser	Glu 95	Val
30	Va	l Pr	o Ser	Trp 100	Arg	Ser	Asn	Lys								
35	<210> 55 <211> 109 <212> PR <213> Mus		ulus													
40	<400> 55															

45

50

	Pro 1	Arç	J Al	a Se	r Lei 5	u Gly	y Val	. Ser	Glu	Thr 10	Leu	Leu	Суз	Thr	Ser 15	Gl	Y
5	Phe	Th	: Ph	e Th 20	r Asj	ο Ty	г Туг	Met	Ser 25	Trp	Val	Arg	Gln	Pro 30	Pro	Gl	Y
10	Lys	Ala	1 Le 35		u Trj	p Let	ı Gly	Phe 40	Ile	Arg	Asn	Lys	Ala 45	Asn	Gly	Ty	r
15	Thr	Thr 50	- G1	u Ty	r Sei	r Ala	a Ser 55	Val	Lys	Gly	Arg	Phe 60	Thr	Ile	Ser	Ar	J
	Asp 65	Asr	se Se	r Gl	n Sei	r Ile 70	e Leu	Tyr	Leu	Gln	Met 75	Asn	Thr	Leu	Arg	Al: 80	3
20	Glu	Asp	Se	r Al	a Thi 85	с Туз	r Tyr	суз	Ala	Arg 90	Ala	Asn	Trp	Ala	Phe 95	Asj	>
25	Tyr	Trŗ	9 G1	y Gl	n Gly		r Thr 100	Val	Thr	Val		Ser 05	Lys				
30	<210> 56 <211> 94 <212> PF <213> Mu	RT	sculu	s													
35	<400> 56			_							_	-					_
	s 1		Gly	Asp	Arg	Val 5	Ser]	Leu S	Ser (rg A 0	la S	er G	in S		[1e [5	Ser
40	A	sn !	ſyr.	Leu	His 20	Trp	Tyr (Gln G	-	ys S 5	er H	is G	lu S	-	ro # 0	lrg	Leu
45	I	eu :	[le	Lys 35	Tyr .	Ala	Ser (er I 10	le S	er G	ly I		ro S 5	er A	Arg	Phe
50	S		31y 50	Ser	Gly	Ser (Thr A 55	lap P	he T	hr L	eu S 6	-	le A	sn S	Ser	Val
		lu : 5	fhr	Glu	Asp		Gly N 70	let I	yr P	he C	ys G 7	_	ln S	er A	sn S		Trp 80
55	P	ro (ſyr	Thr	Phe	Gly (85	Gly (Sly T	'hr L	ys L 9		lu I	le L	ys G	ln		

<210> 57

<211> 111 <212> PRT <213> Mus musculus

5	<400> 57															
	Pro 1	Ala	Суз	Leu	Pro 5	Gly	Gly	Ser	Leu	Arg 10	Leu	Ser	Суз	Ala	Thr 15	Ser
10	Gly	Phe	Thr	Phe 20	Thr	Asp	Tyr	Tyr	Met 25	Ser	Trp	Val	Arg	Gln 30	Pro	Pro
15	Gly	Lys	Ala 35	Leu	Glu	Trp	Leu	Gly 40	Phe	Ile	Arg	Asn	Lys 45	Ala	Asn	Gly
20	Tyr	Thr 50	Thr	Glu	Tyr	Ser	Ala 55	Ser	Val	Lys	Gly	Arg 60	Phe	Thr	Ile	Ser
	Arg 65	Asp	Asn	Ser	Gln	Ser 70	Ile	Leu	Tyr	Leu	Gln 75	Met	Asn	Thr	Leu	Arg 80
25	Ala	Glu	Asp	Ser	Ala 85	Thr	Tyr	Tyr	Суз	Ala 90	Arg	Ala	Pro	Leu	Leu 95	Tyr
30	Tyr Al	La Mo		sp T 00	yr T:	rp G	ly G		ly T 05	hr T	hr V	al T		al S 10	er	
35	<210> 58 <211> 102 <212> PRT <213> Mus m	usculı	IS													
	<400> 58		-													

•

40

50

45

	Arc 1	f Leu	Pro	Phe	Tyr 5	Ser	Leu	Glu	Gln	Arg 10	Ala	Thr	Ile	Ser	Tyr 15	Arg
5	Ala	. Ser	Lys	Asn 20	Val	Ser	Thr	Ser	Gly 25	Tyr	Ser	Tyr	Met	His 30	Trp	Asn
10	Glr	Gln	Lys 35	Pro	Gly	Gln	Pro	Pro 40	Lys	Leu	Leu	Ile	Tyr 45	Leu	Val	Ser
15	Ası	Leu 50	<u>G</u> lu	Ser	Gly	Val	Pro 55	Ala	Arg	Phe	Ser	Gly 60	Ser	Gly	Ser	Gly
	Th: 65	Asp	Phe	Thr	Leu	Asn 70	Ile	His	Pro	Val	Glu 75	Glu	Glu	Asp	Ala	Ala 80
20	Thi	Tyr	Tyr	Суз	Gln 85	His	Ile	Arg	Glu	Leu 90	Thr	Arg	Ser	Glu	Leu 95	Val
25	Pro) Ser	Trp	Lys 100	Ser	Asn										
30	<210> 59 <211> 101 <212> PRT <213> Mus	nuscul	us													
	<400> 59															
35	Va: 1	l Ser	Суз	Lys	Ala 5	Ser	Gly	Tyr	Thr	Phe 10	Thr	Ser	Tyr	Trp	Met 15	His
40	Trj	o Val	Lys	Gln 20	Arg	Pro	Gly	Gln	G1y 25	Leu	Glu	Trp	Ile	Gly 30	Met	Ile
	Asj	o Pro	25	Asn	Ser	Glu	Thr	Arg 40	Leu	Asn	Gln	Lys	Phe 45	Lys	Asp	Lys
45	Ala	a Thr 50	Leu	Asn	Val	Asp	Lys 55	Ser	Ser	Asn	Thr	Ala 60	Tyr	Met	Gln	Leu
50	Se: 65	r Ser	Leu	Thr	Ser	Glu 70	Asp	Ser	Ala	Val	Tyr 75	Tyr	Суз	Ala	Arg	Gly 80
	Leu	Arg	His	Tyr	Trp	Tyr	Phe	Asp	Val	Trp	Gly	Gln	Gly	Thr	Thr	Val
55		-		-	85					90					95	

<210> 60 <211> 99 <212> PRT <213> Mus musculus

<400> 60

10	Thr Ile Leu Trp Arg Glu Gly Pro Phe Ser Tyr Arg Ala Ser Lys Ser 1 5 10 15
	Val Ser Thr Ser Gly Tyr Ser Tyr Met His Trp Asn Gln Gln Lys Pro 20 25 30
15	Gly Gln Pro Pro Arg Leu Leu Ile Tyr Leu Val Ser Asn Leu Glu Ser 35 40 45
20	Gly Val Pro Ala Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr 50 55 60
25	Leu Asn Ile His Pro Val Glu Glu Glu Asp Ala Ala Thr Tyr Tyr Cys 65 70 75 80
	Gln His Ile Arg Glu Leu Thr Arg Ser Glu Glu Val Pro Ser Trp Arg 85 90 95
30	Ser Asn Lys
35	<210> 61 <211> 58 <212> PRT <213> Homo sapiens
	<400> 61
40	Val Phe Gln Ser Asn Tyr Phe Asp Ser Thr His Asn His Gln Asn Gly 1 5 10 15
45	Leu Cys Glu Glu Glu Glu Ala Ala Ser Ala Pro Ala Val Glu Asp Gln 20 25 30
50	Val Pro Glu Ala Glu Pro Glu Pro Ala Glu Glu Tyr Thr Glu Gln Ser 35 40 45
	Glu Val Glu Ser Thr Glu Tyr Val Asn Arg 50 55
55	<210> 62 <211> 15 <212> PRT <213> Homo sapiens

<400> 62

5

10

15

TyrThrGluGlnSerGluValGluSerThrGluTyrValAsnArg<210> 63<211> 11<212> PRT<213> Homo sapiens<400> 63Ser Glu Val Glu Ser Thr Glu Tyr Val Asn Arg

5

10

1

Claims

- A method for detecting a cancer, comprising measuring the expression of a polypeptide having a reactivity of binding via an antigen-antibody reaction to an antibody against a CAPRIN-1 protein having any one of the amino acid sequences shown in the even-numbered SEQ ID NOS: 2-30 in the Sequence Listing, in a serum, blood plasma, ascite, or pleural effusion sample separated from a living organism, wherein the expression of the polypeptide is measured by immunoassay of an antibody that can be contained in the serum, blood plasma, ascite, or pleural effusion sample and is induced in vivo against the polypeptide to be measured.
 - 2. The method according to claim 1, wherein the polypeptide to be measured is a CAPRIN-1 protein having any one of the amino acid sequences shown in the even-numbered SEQ ID NOS: 2-30 or a polypeptide having 85% or more sequence identity with the CAPRIN-1 protein.
- 30
- 3. The method according to claim 1 or 2, wherein the living organism is a human, a dog, or a cat.
- 4. The method according to claim 3, wherein the living organism is a dog and the polypeptide to be measured has an amino acid sequence shown in any one of the even-numbered SEQ ID NOS: 2-30.
- 35

- 5. The method according to claim 4, wherein the living organism is a dog and the polypeptide to be measured has the amino acid sequence shown in SEQ ID NO: 6, 8, 10, 12, or 14.
- 6. The method according to claim 3, wherein the living organism is a human and the polypeptide to be measured has the amino acid sequence shown in SEQ ID NO: 2 or 4.
- 7. The method according to any one of claims 1 to 6, wherein the cancer is at least one type of cancer selected from the group consisting of brain tumor, squamous cell carcinoma of the head, neck, lung, uterus or esophagus, melanoma, adenocarcinoma of the lung or uterus, renal cancer, malignant mixed tumor, hepatocellular carcinoma, basal
- cell carcinoma, acanthoma-like gingival tumor, tumor of the oral cavity, perianal adenocarcinoma, anal sac tumor, anal sac apocrine adenocarcinoma, sertoli cell carcinoma, cancer of vaginal vestibule, sebaceous adenocarcinoma, sebaceous epithelioma, sebaceous adenoma, sweat gland carcinoma, intranasal adenocarcinoma, nasal adenocarcinoma, thyroid cancer, large-bowel cancer, bronchial adenocarcinoma, adenocarcinoma, ductal carcinoma, breast adenocarcinoma, composite type breast adenocarcinoma, malignant mammary mixed tumor, intraductal papillary adenocarcinoma, fibrosarcoma, hemangiopericytoma, osteosarcoma, chondrosarcoma, soft tissue sarcoma, histiocytic sarcoma, myxosarcoma, undifferentiated sarcoma, lung cancer, mastocytoma, cutaneous leiomyoma, intraperitoneal leiomyoma, leiomyoma, chronic lymphocytic leukemia, lymphoma, gastrointestinal lymphoma, digestive lymphoma, small-cell-to-medium-cell lymphoma, adrenomedullary tumor, granulosa cell tumor, and pheochromocytoma.
- 55
- 8. The method according to any one of claims 1 to 7, comprising further detecting the malignancy of a cancer based on the fact that the malignancy of cancer is high when the expression level of the polypeptide is higher than that of a control.

- **9.** The method according to any one of claims 1 to 8, comprising further detecting the progression of cancer on the basis of the indicator that the extent of cancer is advanced when the expression level of the polypeptide is higher than that of a control.
- 5

10

Patentansprüche

- 1. Verfahren zur Detektion eines Krebses, welches das Messen der Expression eines Polypeptids, das eine Reaktivität bezüglich Bindung mittels einer Antigen-Anti-körper-Reaktion an einen Antikörper gegen ein CAPRIN-1-Protein aufweist, das eine beliebige Aminosäuresequenz aus den geradzahligen der Seq.-ID Nr. 2-30 des Se-quenzproto-kolls aufweist, in einer Serum-, Blutplasma-, Ascites- oder Pleuraergussprobe umfasst, die aus einem lebenden Organismus stammt, wobei die Expression des Polypeptids durch einen Immunassay eines Antikörpers gemessen wird, der in der Serum-, Blutplasma-, Ascites- oder Pleuraergussprobe enthalten sein kann und in vivo gegen das zu messende Polypeptid induziert wird.
- 15
- Verfahren nach Anspruch 1, wobei das zu messende Polypeptid ein CAPRIN-1-Protein, das eine beliebige Aminosäuresequenz aus den geradzahligen der Seq.-ID Nr. 2-30 aufweist, oder ein Polypeptid mit 85 % oder mehr Sequenzidentität mit dem CAPRIN-1-Protein ist.
- 20 3. Verfahren nach Anspruch 1 oder 2, wobei der lebende Organismus ein Mensch, ein Hund oder eine Katze ist.
 - **4.** Verfahren nach Anspruch 3, wobei der lebende Organismus ein Hund ist und das zu messende Polypeptid eine Aminosäuresequenz aufweist, die in einer beliebigen der geradzahligen Seq.-ID Nr. 2-30 gezeigt ist.
- Verfahren nach Anspruch 4, wobei der lebende Organismus ein Hund ist und das zu messende Polypeptid die in Seq.-ID Nr. 6, 8, 10, 12 oder 14 gezeigte Aminosäuresequenz aufweist.
 - 6. Verfahren nach Anspruch 3, wobei der lebende Organismus ein Mensch ist und das zu messende Polypeptid die in Seq.-ID Nr. 2 oder 4 gezeigte Aminosäuresequenz aufweist.
- 30

7. Verfahren nach einem der Ansprüche 1 bis 6, wobei der Krebs zumindest eine Krebsart ist, die aus der aus Hirntumor, Plattenepithelkarzinom des Kopfes, des Halses, der Lunge, des Uterus oder des Ösophagus, Melanom, Adenokarzinom der Lunge oder des Uterus, Nierenkrebs, malignem Mischtumor, hepatozellulärem Karzinom, Basalzellenkarzinom, akanthomartigem Zahnfleischtumor, Tumor der Mundhöhle, perianalem Adenokarzinom, Analsacktumor,

- ³⁵ apokrinem Analsackadenokarzinom, Sertolizellenkarzinom, Krebs des Scheidenvorhofs, Talgdrüsenadenokarzinom, Talgdrüsenepitheliom, Talgdrüsenadenom, Schweißdrüsenkarzinom, intranasalem Adenokarzinom, nasalem Adenokarzinom, Schilddrüsenkrebs, Dickdarmkrebs, Bronchialadenokarzinom, Adenokarzinom, Milchgangkarzinom, Brustadenokarzinom, Brustadenokarzinom vom Mischtyp, malignem Mammamischtumor, intraduktalem Papillenkarzinom, Fibrosarkom, Hämangioperizytom, Osteosarkom, Chondrosarkom, Weichteilsarkom, histiozytärem
- 40 Sarkom, Myxosarkom, undifferenziertem Sarkom, Lungenkrebs, Mastozytom, Dermatoleiomyom, intraperitonealem Leiomyom, Leiomyom, chronischer lymphatischer Leukämie, Lymphom, Gastrointestinallymphom, Verdauungslymphom, kleinzelligem bis mittelzelligem Lymphom, Nebennierenmarkstumor, Granulosazelltumor und Phäochromozytom bestehenden Gruppe ausgewählt ist.
- 45 8. Verfahren nach einem der Ansprüche 1 bis 7, das weiters das Detektieren der Malignität von Krebs basierend auf der Tatsache umfasst, dass die Malignität des Krebses hoch ist, wenn das Expressionsausmaß des Polypeptids höher als das einer Kontrolle ist.
 - 9. Verfahren nach einem der Ansprüche 1 bis 8, das weiters das Detektieren des Fortschreitens von Krebs basierend auf dem Indikator umfasst, dass das Krebsausmaß fortgeschritten ist, wenn das Expressionsausmaß des Polypeptids höher als das einer Kontrolle ist.

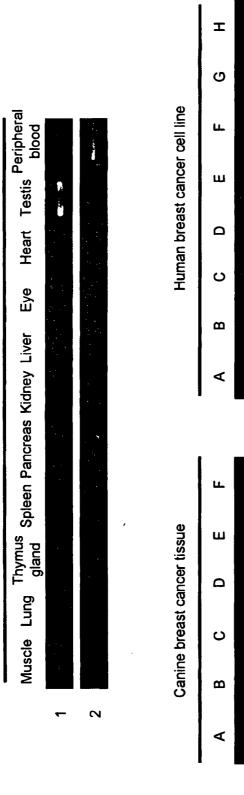
Revendications

55

50

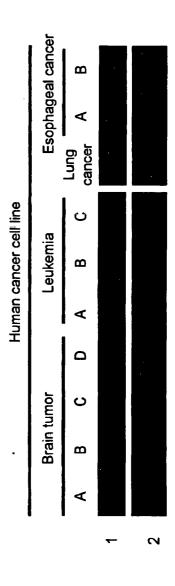
1. Procédé de détection d'un cancer, comprenant la mesure de l'expression d'un polypeptide ayant une réactivité de liaison via une réaction antigène-anticorps à un anticorps contre une protéine CAPRIN-1 ayant n'importe laquelle des séquences d'acides aminés indiquées dans les SEA ID NOS :2-30 des nombres paires dans la Liste des

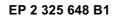
Séquences, dans un sérum, plasma sanguin, ascite ou échantillon d'effusion pleurale séparé d'un organisme vivant, où l'expression du polypeptide est mesurée par un immuno-essai d'un anticorps qui peut se trouver dans le sérum, plasma sanguin, ascite ou échantillon d'effusion pleurale et est induit in vivo contre le polypeptide à mesurer.


- ⁵ 2. Procédé selon la revendication 1, dans lequel le polypeptide à mesurer est une protéine CAPRIN-1 ayant l'une quelconque des séquences d'acides aminés indiquées dans les SEQ ID NOS :2-30 des nombres paires ou un polypeptide ayant 85% ou plus d'identité de séquence avec la protéine CAPRIN-1.
 - 3. Procédé selon la revendication 1 ou 2, dans lequel l'organisme vivant est un être humain, un chien ou un chat.
- 10

4. Procédé selon la revendication 3, où l'organisme vivant est un chien, et le polypeptide à mesurer a une séquence d'acides aminés indiquée dans l'une quelconque des SEQ ID NOS :2-30 de nombres paires.

- Procédé selon la revendication 4, dans lequel l'organisme vivant est un chien, et le polypeptide à mesurer a la séquence d'acides aminés indiquée dans la SEQ ID NO :6, 8, 10, 12 ou 14.
 - 6. Procédé selon la revendication 3, dans lequel l'organisme vivant est un humain, et le polypeptide à mesurer a la séquence d'acides aminés indiquée dans SEQ ID NO : 2 ou 4.
- 7. Procédé selon l'une quelconque des revendications 1 à 6, dans lequel le cancer est au moins un type de cancer sélectionné dans le groupe consistant en tumeur du cerveau, carcinome squameux de la tête, du cou, des poumons, de l'utérus ou de l'oesophage, mélanome, adénocarcinome des poumons ou de l'utérus, cancer des reins, tumeur maligne mixte, carcinome hépatocellulaire, carcinome de cellules basales, tumeur gingivale semblable à l'acanthome, tumeur de la cavité orale, adénocarcinome péri-anal, tumeur du sac anal et adénocarcinome apocrine du sac
- anal, carcinome de cellules sertoli, cancer du vestibule vaginal, adénocarcinome sébacé, épithéliome sébacé, adénome sébacé, carcinome de la glande sudoripare, adénocarcinome intranasal, adénocarcinome nasal, cancer de la thyroïde, cancer du grand intestin, adénocarcinome des bronches, adénocarcinome, carcinome canalaire, adénocarcinome du sein, adénocarcinome du sein du type composite, tumeur mixte mammaire maligne, adénocarcinome papillaire intracanalaire, fibrosarcome, hémangiopéricytome, ostéosarcome, chondrosarcome, sarcome du tique page para biotigentaire muyagerpage para différentié, cancer du page methodateme.
- 30 du tissu mou, sarcome histiocytaire, myxosarcome, sarcome non différentié, cancer du poumon, mastocytome, léiomyome cutané, léiomyome intrapéritonéal, léiomyome, leucémie lymphoïde chronique, lymphome, lymphome gastro-intestinal, lymphome digestif, lymphome des petites cellules aux cellules moyennes, tumeur adréno-médullaire, tumeur des cellules de granulosa et phéochromocytome.
- 35 8. Procédé selon l'une quelconque des revendications 1 à 7, comprenant en outre la détection de la malignité d'un cancer sur la base du fait que la malignité du cancer est élevée lorsque le niveau d'expression du polypeptide est plus élevé que celui d'un contrôle.
- Procédé selon l'une quelconque des revendications 1 à 8, comprenant en outre la détection de la progression du cancer sur la base de l'indicateur que l'étendue du cancer est avancée lorsque le niveau d'expression du polypeptide est plus élevé que celui d'un contrôle.

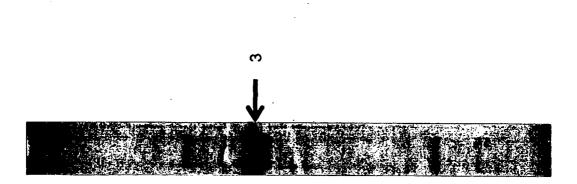

45


50

Canine normal tissue

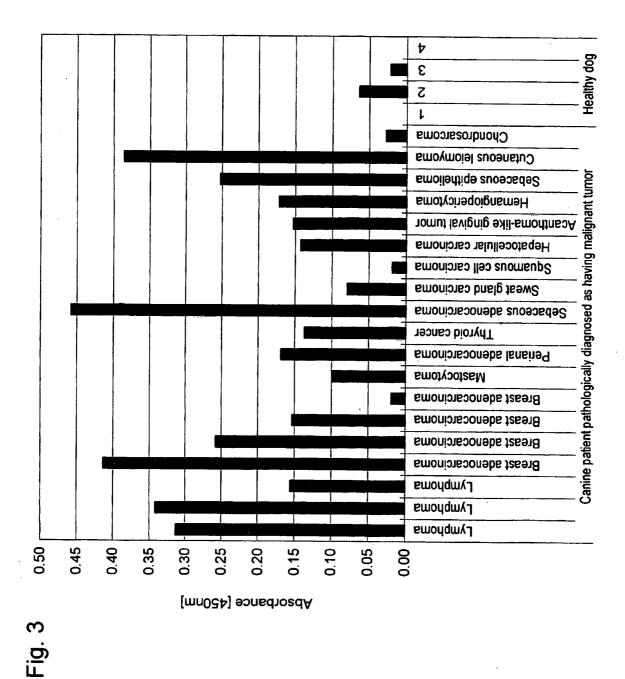
Fig. 1

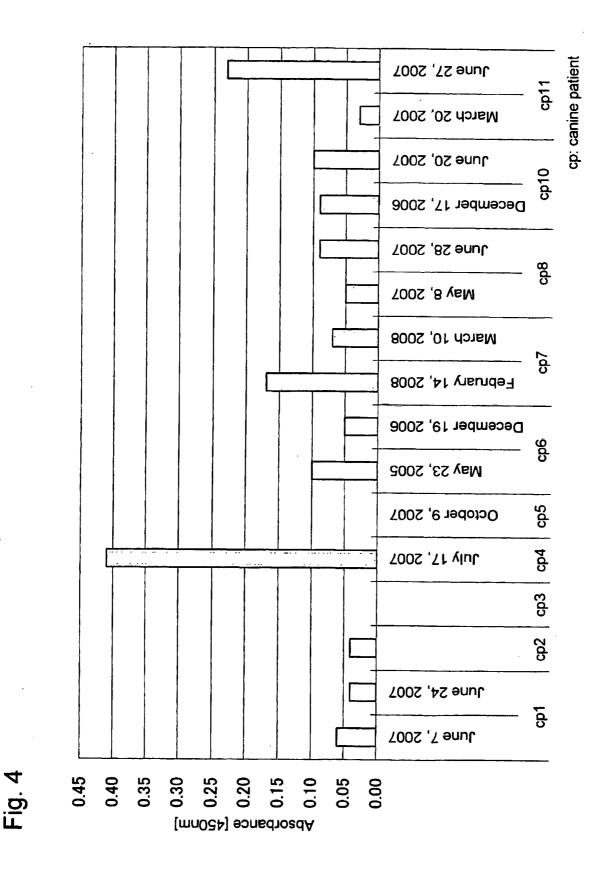
2


1. A 16 -

Ù

2


-


~

.

Fig. 2

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- JP 6700000 B [0010]
- US 17640000 B [0010]
- US 4000000 A [0010]
- JP 1600000 A [0010]
- US 20080075722 A [0017]
- WO 2005100998 A [0017]
- WO 2004076682 A [0018]
- US 2008107668 A [0019]
- US 2003190640 A [0020]
- US 2003130040 A [0020]
 US 2003118599 A [0021]
- WO 2004097051 A [0022]

Non-patent literature cited in the description

- J Biol Chem., 1995, vol. 270, 20717-20723 [0016]
 [0017]
- *J Immunol.,* 2004, vol. 172, 2389-2400 [0016] [0017]
- KARLIN ; ALTSCHUL. Proc. Natl. Acad. Sci. U.S.A., 1993, vol. 87, 2264-2268 [0049]
- ALTSCHUL et al. Nucleic Acids Res., 1997, vol. 25, 3389-3402 [0049]
- The Japanese Biochemical Society, Seikagaku Jikken Koza. 1, Protein Chemistry IV, Chemical Modification and Peptide Synthesis. TOKYO KAGAKU DOZIN CO., LTD, 1981 [0052]

- US 2007154931 A [0023]
- US 2006019256 A [0024]
- US 2006069054 A [0025]
- WO 02092001 A [0026]
- WO 2008031041 A [0027]
- WO 2006002378 A [0028]
- US 6335170 B [0029]
- WO 2005007830 A [0030]
- US 2004029114 A [0031]
- WO 0172295 A [0032]
- JP 2008202320 A [0160]
- Molecular Cloning. SAMBROOK et al. Current Protocols in Molecular Biology. Cold Spring Harbor Laboratory Press, 1989 [0052]
- Short Protocols in Molecular Biology. AUSUBEL et al. A Compendium of Methods from Current Protocols in Molecular Biology. John Wiley & Sons, 1995 [0052]

专利名称(译)	检测癌症的方法		
公开(公告)号	EP2325648B1	公开(公告)日	2014-04-23
申请号	EP2009805010	申请日	2009-08-05
[标]申请(专利权)人(译)	东丽株式会社		
申请(专利权)人(译)	TORAY INDUSTRIES , INC.		
当前申请(专利权)人(译)	TORAY INDUSTRIES , INC.		
[标]发明人	OKANO FUMIYOSHI SUZUKI KANA		
发明人	okano, fumiyoshi Suzuki, kana		
IPC分类号	G01N33/574 C12N15/09 C12Q1/6	8 G01N33/53	
CPC分类号	C12Q1/6886 C12Q2600/112 G01N	133/57407 G01N33/57415 G01	N33/6893 G01N33/53 G01N33/574
优先权	2008202320 2008-08-05 JP		
其他公开文献	EP2325648A1 EP2325648A4		
外部链接	Espacenet		
摘要(译)		cagagggetg etggetgget aa	ptccctcc cgctcccggc tctcgcctca ctaggagcgg 60

摘要(译)

本发明涉及一种检测癌症的方法,包括测量具有与抗CAPRIN-1蛋白抗体 结合的反应性的多肽的表达,所述CAPRIN-1蛋白具有偶数SEQ ID NO 中任一所示的氨基酸序列:序列表中的2-30通过在与生物体分离的样品 中的抗原-抗体反应,以及用于检测包含CAPRIN-1蛋白或其片段的癌症 的试剂,针对CAPRIN-1蛋白的抗体或其片段,或编码CAPRIN-1蛋白或 其片段的多核苷酸。

ctctcggtgc agcgggacag ggcgaagcgg cctgcgccca cggagcgcgc gacactgccc	120
ggaagggacc gccaccottg ccccctcagc tgcccactcg tgatttccag cggcctccgc	180
gcgcgcacg atg ccc tcg gcc acc agc cac agc ggg agc ggc agc a	231
tec gga ceg cea ceg ceg teg ggt tec tec ggg agt gag geg gec geg Sar Gly Pro Pro Pro Pro Sar Gly Sar Glu Ala Ala Ala 15 20 25 30	279
gga gce ggg gce gce gce gce gce tot cag cac cce gca acc gge acc Gly Ala Gly Ala Ala Pro Ala Ser Gln His Pro Ala Thr Gly Thr $35~40~45$	327
ggc gct gtc cag acc gag gcc âtg aag cag att ctc ggg gtg atc gac Gly Ala Val Gln Thr Glu Ala Met Lys Gln Ile Leu Gly Val Ile Asp 50 50	375
aag aaa ctt cgg aac ctg gag aag aaa aag ggt aag ctt gat gat tac Lys Lys Leu Kag Aan Leu Glu Lys Lys Lys Gly Lys Leu Aap Aap Tyr 65	423
cag gaa cga atg aac aaa ggg gaa agg ctt aat caa gat cag ctg gat Gin Giu Arg Met Aan Lya Giy Giu Arg Leu Aan Gin Aap Gin Leu Aap 80 85 90	471
gec gtt tet aag tae cag gaa gte ace aat aat tig gag tit gea aaa Ala Val Ser Lys Tyr Gln Glu Val Thr Asn Aan Leu Glu Phe Ala Lys 95 100 105 110	519
gaa tha cag agg agt the atg gea cha agt caa gat ath cag aaa aca Glu Leu Gln Arg Ser Phe Met Ala Leu Ser Gln App Ile Gln Lys Thr 115 120	567
ata aag aag aca gca cgt cgg gag cag ctt atg aga gaa gaa gct gaa	615