(19) **日本国特許庁(JP)**

(12) 公 開 特 許 公 報(A)

(11)特許出願公開番号

特**開2017-90216** (P2017-90216A)

(43) 公開日 平成29年5月25日(2017.5.25)

(51) Int.Cl.

GO 1 N 33/53 (2006.01) GO 1 N 33/543 (2006.01) F I GO 1 N 33/53 T GO 1 N 33/543 5 4 1 A テーマコード (参考)

審査請求 未請求 請求項の数 12 OL (全 28 頁)

(21) 出願番号 特願2015-219814 (P2015-219814) (22) 出願日 平成27年11月9日 (2015.11.9) (71) 出願人 000005186

株式会社フジクラ

東京都江東区木場1丁目5番1号

(74)代理人 100064908

弁理士 志賀 正武

(74)代理人 100106909

弁理士 棚井 澄雄

(74)代理人 100126882

弁理士 五十嵐 光永

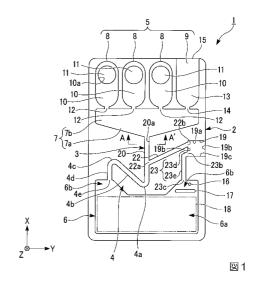
(74)代理人 100160093

弁理士 小室 敏雄

(74)代理人 100169764

弁理士 清水 雄一郎

最終頁に続く


(54) 【発明の名称】検査デバイス、検査方法及び検査装置

(57)【要約】

【課題】検査の精度を高めることができる検査デバイス を提供する。

【解決手段】一の方向に延長された主流路20を含む流路部3と、流路部3の一端側から液体を注入するための液注入部5と、流路部3の他端側から流出した液体を回収するための液回収部6と、主流路20と液回収部6との間で流路部3の一部が少なくとも前記他端側から前記一端側に向かう方向へと折り返された流路トラップ部4と、主流路20が傾いたときに主流路20内の液体の少なくとも一部が流入する液貯留部19と、を備え、液貯留部19は、液体が流通可能な中継流路22を介して主流路20に連通され、かつ、液体が流通可能な連絡流路23を介して液回収部6と連通されている。

【選択図】図1

【特許請求の範囲】

【請求項1】

一の方向に延長された主流路を含む流路部と、

前記流路部の一端側から液体を注入するための液注入部と、

前記流路部の他端側から流出した液体を回収するための液回収部と、

前記主流路と前記液回収部との間で前記流路部の一部が少なくとも前記他端側から前記

一端側に向かう方向へと折り返された流路トラップ部と、

前記主流路が傾いたときに前記主流路内の液体の少なくとも一部が流入する液貯留部と、が設けられたカートリッジ本体を備え、

前記液貯留部は、前記液体が流通可能な中継流路を介して前記主流路に連通され、かつ、前記液体が流通可能な連絡流路を介して前記液回収部と連通されている検査デバイス。

【請求項2】

前記流路トラップ部は、前記主流路の幅方向の一方側に折り返された折り返し流路を有し、

前記中継流路は、前記主流路と接続された基端において、前記主流路の幅方向の他方側の内面に開口されていることを特徴とする請求項1に記載の検査デバイス。

【請求項3】

前記主流路は、前記一の方向の一端側から前記液体が導入されるように形成され、

前記中継流路は、少なくとも前記基端を含む部分が、前記主流路の幅方向の他方側に向かうにつれ前記一の方向の一端側に近づくように傾斜されていることを特徴とする請求項1又は2に記載の検査デバイス。

【請求項4】

前記中継流路は、前記基端における開口面積が、前記基端における前記主流路の断面積より大きいことを特徴とする請求項2に記載の検査デバイス。

【請求項5】

前記中継流路は、前記基端から、前記液貯留部との接続端にかけて、断面積が徐々に小さくなることを特徴とする請求項2に記載の検査デバイス。

【請求項6】

前記連絡流路は、少なくとも前記液貯留部に接続された一端を含む部分が、前記一の方向に対して傾斜していることを特徴とする請求項1~5の何れか一項に記載の検査デバイス。

【請求項7】

請求項1~6の何れか一項に記載の検査デバイスを用いて、試料中に含まれる特定物質の有無を検査する検査方法であって、

前記特定物質と特異的に結合する高分子により表面が修飾された磁気ビーズを含む液体を前記流路部の一端側から前記流路トラップ部へと注入し、

前記流路トラップ部内に前記磁気ビーズを滞留させることによって、前記流路トラップ 部を免疫測定の反応場として用い、

前記流路トラップ部に磁力を印加することによって、前記流路トラップ部の壁面に前記磁気ビーズを引き寄せた状態で、前記流路トラップ部内に前記磁気ビーズを滞留させたまま、前記流路トラップ部に対する送液操作を行うことを特徴とする検査方法。

【請求項8】

前記送液操作において、前記流路部の一端側から前記流路トラップ部へと液体を流入させるときは、前記主流路の延長方向が重力に沿った方向となるように、前記検査デバイスを保持し、

前記流路トラップ部から前記流路部の他端側へと液体を流出させるときは、前記流路トラップ部内の液体が前記流路部の他端側から流出される方向に前記検査デバイスを傾けることを特徴とする請求項7に記載の検査方法。

【請求項9】

前記免疫測定を行う際に、検査対象となる検体を含む液体を送液する工程を含むことを

10

20

30

40

特徴とする請求項7又は8の何れか一項に記載の検査方法。

【請求項10】

請求項1~6の何れか一項に記載の検査デバイスを用いて、試料中に含まれる特定物質の有無を検査する検査装置であって、

前記検査デバイスを保持するためのデバイス保持部と、

前記検査デバイスを回動操作するためのデバイス駆動部と、

前記流路トラップ部に対して磁力を印加するための磁力印加部と、を備え、

前記デバイス駆動部は、前記主流路の延長方向が重力に沿った方向となるように、前記検査デバイスを保持する位置と、前記流路トラップ部内の液体が前記流路部の他端側から流出される方向に前記検査デバイスを傾ける位置との間で、前記検査デバイスを回動操作し、

前記磁力印加部は、前記流路トラップ部に磁力を印加することによって、前記流路トラップ部の壁面に磁気ビーズを引き寄せた状態で、前記流路トラップ部内に前記磁気ビーズを滞留させることを特徴とする検査装置。

【請求項11】

前記検査デバイスを検査するためのデバイス検査部を備えることを特徴とする請求項 1 0 に記載の検査装置。

【請求項12】

前記液注入部からの液体の注入を操作するための注入駆動部を備えることを特徴とする請求項10又は11に記載の検査装置。

【発明の詳細な説明】

【技術分野】

[00001]

本発明は、検査デバイス、検査方法及び検査装置に関する。

【背景技術】

[0002]

抗体は、抗原となる特定のタンパク質や病原菌などの物質と特異的に結合する性質がある(抗原抗体反応という。)。免疫測定(イムノアッセイ)は、このような抗原抗体反応を利用したものであり、測定対象となる抗原と特異的に結合する抗体を用いて、例えば血液や尿などの試料(検体)に含まれる特定の抗原を検出する手法である。免疫測定は、例えばインフルエンザや肝炎、妊娠などの様々な検査・診断などに用いられている。

[0003]

代表的な免疫測定法としては、イムノクロマトグラフィ法がある。この方法は、クロマトグラフィの一種であり、標識抗体、捕捉抗体、金属コロイドなどが固定されたメンブレン上に、抗原を含んだ検体を滴下する手法である。この手法の場合、捕捉抗体上に特定の抗原が捕捉され、標識抗体に付着した金属コロイドを観察することで、特定の抗原の有無を検出できる。この方法は、検査時間が数分~十数分程度と比較的短く、検査手法も比較的簡便である。この方法は、例えば妊娠検査薬などの個人で使用する検査キットや、病院でのインフルエンザ等の迅速な診断などに広く利用されている。

[0004]

また、上述した抗原の有無だけでなく、検体に含まれる抗原の量や濃度などを定量的に検出する手法の一つとして、酵素免疫測定(ELISA: Enzyme-Linked ImmunoSorbent Assay)法がある。この方法は、先ず、反応場となるウェルなどに抗原を固定した後、抗原に特異的に吸着する一次抗体を吸着し、次に、酵素で標識した二次抗体を一次抗体に吸着させ、最後に、酵素と反応して発色又は発光する試薬(基質)を加える手法である。この手法の場合、発色・発光の強度を測定することで、検体中に含まれる抗原の量や濃度などを定量的に検出できる。この方法は、食品に含まれるアレルギー物質の検査や、微量のウィルスの検査などに利用されている。

[0005]

ELISA法や、EIA(Enzyme Immnoassay)法などの免疫測定法は、水洗などによ

10

20

30

40

り、抗体と結合した抗原と、抗体と結合していない抗原とを分離(B/F分離)しているため、先に示したイムノクロマト法よりも、濃度測定などにおいて、高い定量性が得られることが知られている。

[0006]

また、ELISA法は、イムノクロマトグラフィ法よりも少ない検体での検査が可能である。一方、検査に非常に多くの時間を要するため、迅速な診断に用いることが難しい。そこで、検査時間を短縮できるELISA法として、表面に抗原や抗体を固相した磁性微粒子を用いた化学発光免疫測定装置が提案されている(特許文献1を参照。)。

[0007]

この免疫測定装置では、免疫測定に必要な試薬等を収容し、所定の反応処理を行わせるカートリッジ(検査デバイス)が用いられている。また、カートリッジの反応場に試薬等を送液する手段としては、例えば機械制御による流量ポンプが用いられている。なお、流量ポンプの一例としては、Waters社製の加圧型固相抽出用流量ポンプ(Sep-PakコンセントレーターUni)が挙げられる。

【先行技術文献】

【特許文献】

[0008]

【特許文献1】特許第3839349号公報

【発明の概要】

【発明が解決しようとする課題】

[0009]

従来の化学発光免疫測定装置では、検査の精度のさらなる向上が求められていた。

本発明の一つの態様は、このような従来の事情に鑑みて提案されたものであり、検査の精度を高めることができる検査デバイス、並びに、そのような検査デバイスを用いた検査方法及び検査装置を提供することを目的の一つとする。

【課題を解決するための手段】

[0 0 1 0]

上記目的を達成するために、本発明の一つの態様に係る検査デバイスは、一の方向に延長された主流路を含む流路部と、前記流路部の一端側から液体を注入するための液注入部と、前記流路部の他端側から流出した液体を回収するための液回収部と、前記主流路と前記液回収部との間で前記流路部の一部が少なくとも前記他端側から前記一端側に向かう方向へと折り返された流路トラップ部と、前記主流路が傾いたときに前記主流路内の液体の少なくとも一部が流入する液貯留部と、が設けられたカートリッジ本体を備え、前記液貯留部は、前記液体が流通可能な中継流路を介して前記主流路に連通され、かつ、前記液体が流通可能な連絡流路を介して前記液回収部と連通されている。

[0011]

前記検査デバイスでは、前記流路トラップ部は、前記主流路の幅方向の一方側に折り返された折り返し流路を有し、前記中継流路は、前記主流路と接続された基端において、前記主流路の幅方向の他方側の内面に開口されている構成としてもよい。

[0012]

前記検査デバイスでは、前記主流路は、前記一の方向の一端側から前記液体が導入されるように形成され、前記中継流路は、少なくとも前記基端を含む部分が、前記主流路の幅方向の他方側に向かうにつれ前記一の方向の一端側に近づくように傾斜されている構成としてもよい。

[0 0 1 3]

前記検査デバイスでは、前記中継流路は、前記基端における開口面積が、前記基端における前記主流路の断面積より大きい構成としてもよい。

[0014]

前記検査デバイスでは、前記中継流路は、前記基端から、前記液貯留部との接続端にかけて、断面積が徐々に小さくなる構成としてもよい。

10

20

30

40

[0015]

前記検査デバイスでは、前記連絡流路は、少なくとも前記液貯留部に接続された一端を含む部分が、前記一の方向に対して傾斜している構成としてもよい。

[0016]

本発明の一つの態様に係る検査方法は、前記何れかの検査デバイスを用いて、試料中に含まれる特定物質の有無を検査する検査方法であって、前記特定物質と特異的に結合する高分子により表面が修飾された磁気ビーズを含む液体を前記流路部の一端側から前記流路トラップ部へと注入し、前記流路トラップ部内に前記磁気ビーズを滞留させることによって、前記流路トラップ部を免疫測定の反応場として用い、

前記流路トラップ部に磁力を印加することによって、前記流路トラップ部の壁面に前記磁気ビーズを引き寄せた状態で、前記流路トラップ部内に前記磁気ビーズを滞留させたまま、前記流路トラップ部に対する送液操作を行うことを特徴とする。

[0017]

前記検査方法は、前記送液操作において、前記流路部の一端側から前記流路トラップ部へと液体を流入させるときは、前記主流路の延長方向が重力に沿った方向となるように、前記検査デバイスを保持し、前記流路トラップ部から前記流路部の他端側へと液体を流出させるときは、前記流路トラップ部内の液体が前記流路部の他端側から流出される方向に前記検査デバイスを傾ける方法としてもよい。

[0018]

前記検査方法は、前記免疫測定を行う際に、検査対象となる検体を含む液体を送液する工程を含む方法としてもよい。

[0019]

本発明の一つの態様に係る検査装置は、前記何れかの検査デバイスを用いて、試料中に含まれる特定物質の有無を検査する検査装置であって、前記検査デバイスを保持するためのデバイス保持部と、前記検査デバイスを回動操作するためのデバイス駆動部と、前記流路トラップ部に対して磁力を印加するための磁力印加部と、を備え、前記デバイス駆動部は、前記主流路の延長方向が重力に沿った方向となるように、前記検査デバイスを保持する位置と、前記流路トラップ部内の液体が前記流路部の他端側から流出される方向に前記検査デバイスを傾ける位置との間で、前記検査デバイスを回動操作し、前記磁力印加部は、前記流路トラップ部に磁力を印加することによって、前記流路トラップ部の壁面に前記磁気ビーズを引き寄せた状態で、前記流路トラップ部内に前記磁気ビーズを滞留させることを特徴とする。

[0020]

前記検査装置は、前記検査デバイスを検査するためのデバイス検査部を備える構成としてもよい。

[0021]

前記検査装置は、前記液注入部からの液体の注入を操作するための注入駆動部を備える構成としてもよい。

【発明の効果】

[0022]

本発明の一つの態様によれば、ノイズの原因物質を磁石によって引き寄せた状態で検査デバイスを傾けることによって、前記原因物質の含有量が少ない液体を液貯留部に流入させることができる。そのため、液体に含まれる検出対象(抗原など)を液貯留部内で検出することで、ノイズが少ない検出結果を得ることができる。よって、検出精度を高めることができる。

本発明の一つの態様は、連絡流路を有するため、検査終了後には、液貯留部内の液体を、連絡流路を通して液回収部に導入することができる。よって、液貯留部内の液体を容易な操作で回収することができる。また、液体を液貯留部に導入する際には、液貯留部の内部の空気を、連絡流路を通して排出することができるため、液体をスムーズに液貯留部に導入することができる。

10

20

30

【図面の簡単な説明】

- [0023]
- 【図1】本発明の第1実施形態に係る検査デバイスの一構成例を示す平面図である。
- 【図2】図1中に示す線分A-A′による検査デバイスの断面図である。
- 【図3】図1に示す検査デバイスの送液操作を説明するための平面図である。
- 【図4】図1に示す検査デバイスの送液操作を説明するための平面図である。
- 【図5】図1に示す検査デバイスの送液操作を説明するための平面図である。
- 【図6】図1に示す検査デバイスの変形例を示す平面図である。
- 【 図 7 】 図 1 に 示 す 検 査 デ バ イ ス を 用 い た 免 疫 測 定 の 各 工 程 を 順 に 説 明 す る た め の 平 面 図 で あ る 。
- 【図8】図1に示す検査デバイスを用いた免疫測定の各工程を順に説明するための平面図である。
- 【図9】図1に示す検査デバイスを用いた免疫測定の各工程を順に説明するための平面図である。
- 【図10】図1に示す検査デバイスを用いた免疫測定の各工程を順に説明するための平面図である。
- 【図11】図1に示す検査デバイスを用いた免疫測定の各工程を順に説明するための平面図である。
- 【図12】図1に示す検査デバイスを用いた免疫測定の各工程を順に説明するための平面図である。
- 【図13】図1に示す検査デバイスを用いた免疫測定の各工程を順に説明するための平面図である。
- 【図14】図1に示す検査デバイスを用いた免疫測定の各工程を順に説明するための平面図である。
- 【 図 1 5 】図 1 に示す検査デバイスを用いた免疫測定の各工程を順に説明するための平面 図である。
- 【図16】本発明の第2実施形態に係る検査デバイスの一構成例を示す平面図である。
- 【図17】図16に示す検査デバイスの変形例を示す平面図である。
- 【図18】図16に示す検査デバイスを用いた免疫測定の工程を順に説明するための平面図である。
- 【図19】図16に示す検査デバイスを用いた免疫測定の工程を順に説明するための平面図である。
- 【図20】本発明の一実施形態に係る検査装置の一構成例を示すブロック図である。
- 【図21】本発明の一実施形態に係る検査装置の別の構成例を示すブロック図である。
- 【図22】デバイス検査部を構成する検出光学系の一例を示す断面図である。
- 【発明を実施するための形態】
- [0024]
 - 以下、本発明の実施の形態について、図面を参照して詳細に説明する。

なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。また、以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに必ずしも限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。

[0 0 2 5]

(検査デバイス)

先ず、本発明の第1実施形態として、例えば図1及び図2に示す検査デバイス1について説明する。なお、図1は、検査デバイス1の構成を示す平面図である。図2は、図1中に示す線分A-A'による検査デバイス1の断面図である。また、以下の説明では、XYZ直交座標系を設定し、X軸方向を検査デバイス1の長さ方向(上下方向)、Y軸方向を検査デバイス1の幅方向(左右方向)、Z軸方向を検査デバイス1の厚み方向(前後方向

10

20

30

30

40

)として、各部の位置関係について説明するものとする。検査デバイス1の幅方向の一方側(図1中の左側、- Y方向)を第1方向といい、幅方向の他方側(図1中の右側、+ Y方向、すなわち第1方向とは反対の方向)を第2方向という。第1方向は主流路20の幅方向の一方であり、第2方向は主流路20の幅方向の他方である。

[0026]

検査デバイス1は、図1及び図2に示すように、カートリッジ本体2を備えている。カートリッジ本体2は、本体部(第1の基材)2aと、本体部2aの前面を覆うパネル部(第2の基材)2bとを有している。

[0 0 2 7]

本体部2aは、例えば、ポリエチレンテレフタレート(PET)樹脂や、ポリスチレン(PS)樹脂、ポリメチルメタクリレート(PMMA)樹脂、アクリロニトリルスチレン樹(AS)樹脂などの耐薬品性を有し且つ透明な樹脂材料又はガラス材料等を用いて、所定の厚みで略矩形平板状に形成されている。パネル部2bは、本体部2aと同様の樹脂材料又はガラス材料等からなる基板を用いて、本体部2aと略一致した外形形状を有して形成されている。カートリッジ本体2は、本体部2aの前面にパネル部2bを突き合わせた状態で接合一体化されている。

[0028]

カートリッジ本体 2 は、流路部 3 と、流路部 3 の上端(一端)側から液体を注入する液注入部 5 と、流路部 3 の下端(他端)側から流出した液体を回収する液回収部 6 とを備えている。

流路部3は、主流路20と、流路トラップ部4と、流路拡大部7とを含む。

[0029]

流路部3は、カートリッジ本体2の内部で液体を流入又は流出させるための流通空間を構成している。具体的に、この流路部3は、本体部2aの前面に形成された凹部とパネル部2bとの間で、断面矩形状の流通空間を構成している。なお、流路部3の断面形状については、上述した矩形状に限らず、円形状や楕円状などとしてもよい。

[0030]

主流路20は、一の方向となるカートリッジ本体2の長さ方向に直線状に延長して設けられている。また、主流路20の流路断面積(長さ方向に直交する断面の面積)は、延長方向において一定となっている。

[0031]

流路トラップ部4は、主流路20の下端側に連続して、流路部3の一部がカートリッジ本体2の下端側から上端側に向かう方向と、カートリッジ本体2の上端側から下端側に向かう方向とに順に折り返された形状を有している。具体的に、この流路トラップ部4は、流路部3の一端(上端)側から他端(下端)側に向かって、第1の曲げ流路4aと、上向流路4b(第1折り返し流路)と、第2の曲げ流路4cと、下向流路4d(第2折り返し流路)とを順に有している。

[0032]

第1の曲げ流路4aは、主流路20の下端部から斜め上方に向けて屈曲して設けられている。上向流路4bは、第1の曲げ流路4aから斜め上方に向けて延長して設けられている。図1では、上向流路4bは、第1の曲げ流路4aからカートリッジ本体2の幅方向の第1方向側(図1中の左側)に向かうにつれ上昇する方向に傾斜されて形成されている。上向流路4bは、第1方向側に折り返された流路である。

第2の曲げ流路4cは、上向流路4bの上端部からカートリッジ本体2の下方に向けて屈曲して設けられている。下向流路4dは、第2の曲げ流路4cから下方に向けて延長して設けられている。

[0033]

カートリッジ本体 2 には、液体 L を貯留可能な空間である液貯留部 1 9 が形成されている。液貯留部 1 9 は、主流路 2 0 よりもカートリッジ本体 2 の幅方向の第 2 方向側(図 1 中の右側)の位置に、主流路 2 0 から離れて形成されている。

10

20

30

40

液貯留部19は、例えば、流路部3と同様に、本体部2aに形成された凹部とパネル部2bとの間に形成された空間である(図2参照)。

[0034]

液貯留部19の形状は、特に限定されないが、例えば、上面19aと側面19bと底面19cとを有する平面視矩形とすることができる。上面19aは、カートリッジ本体2の幅方向に沿って形成されている。側面19bは、上面19aの両端から、カートリッジ本体2の長さ方向に沿って垂下する。底面19cはカートリッジ本体2の幅方向に沿って形成されている。

[0035]

なお、底面19cは、第1方向側(図1中の左側)に向かって下降するように傾斜して 形成してもよい。底面19cが傾斜していると、液貯留部19内の液体を回収する際に、 液貯留部19に液体が残留しにくくなる。

液貯留部19の平面視形状は特に限定されず、台形、三角形などの多角形であってもよいし、円形であってもよい。

[0036]

液貯留部19は、中継流路22を介して主流路20と連通されている。

中継流路22は、主流路20と接続された基端22a(一端)において、主流路20の第2方向側(図1中の右側、+ Y方向側)の内面20aに開口している。中継流路22は、液貯留部19と接続された先端22b(他端)において、液貯留部19の第1方向側(図1中の左側、- Y方向側)の側面19bに開口している。中継流路22の主流路20側の開口は、第1の曲げ流路4aより高い位置(一の方向の一端寄りの位置。図1中の+ X方向寄りの位置)にあることが好ましい。中継流路22の主流路20側の開口は、下向流路4dの接続部4eよりも高い位置(一の方向の一端寄りの位置、すなわち、接続部4eよりも+ X方向側)にあることがより好ましい。先端22bは、液貯留部19との接続端である。

[0037]

中継流路22は、主流路20から液貯留部29に向かって、カートリッジ本体2の幅方向の第2方向側(図1中の右側)に向かうにつれ上昇するように傾斜されている。すなわち、中継流路22は、第2方向側に向かうにつれカートリッジ本体2の長さ方向の一端(図1中の上端、+X方向の端)に近づくように傾斜されている。そのため、主流路20が重力方向に向いた状態で、流路部3の上端側から流入した他の液体が液貯留部29に流入するのを防ぎ、検出精度を高めることができる。

[0038]

図1では、中継流路22は全長にわたって斜め上方向に傾斜されているが、中継流路2 2は、少なくとも基端22aを含む長さ方向の一部が第2方向側に向かうにつれ上昇するように傾斜されていれば、他の液体の流入を防いで検出精度を高める効果が得られる。

中継流路22の液貯留部19側の開口は、底面19cより高い位置、例えば側面19bの上部にあることが好ましい。

中継流路22の幅および流路断面積は、長さ方向に一定とすることができる。

[0039]

液貯留部19は、連絡流路23を介して液回収部6と連通されている。

連絡流路23は、液貯留部19と接続された上端23b(一端)において、液貯留部19の第1方向側(図1中の左側、・Y方向側)の側面19bに開口している。上端23bは、側面19bの下端を含む位置に接続されていることが好ましい。連絡流路23は、液回収部6と接続された下端23c(他端)において、液回収部6の上面に開口している。

[0040]

連絡流路 2 3 は、上端 2 3 b から下端 2 3 c にかけて、第 1 および第 2 流路 2 3 d 、 2 3 e をこの順に有する。

第1流路23d(下向傾斜流路)は、上端23bから第1方向側(図1中の左側、・Y方向側)に向かうにつれ下降する方向に傾斜されている。すなわち、第1流路23dは、

10

20

30

40

第 1 方向側に向かうにつれカートリッジ本体 2 の長さ方向の一端(上端、 + X 方向の端)から離れる方向に傾斜されている。

上端23 b は、中継流路22 の先端22 b よりも低い位置(先端22 b よりも - X 方向側)にある。

第2流路23 e は、第1流路23 d の下端から下方(- X 方向)に延出し、下端23 c において液回収部6に接続されている。

[0041]

連絡流路23は、斜め下方に延出された第1流路23dと、下方に延出された第2流路23eとを有する屈曲形状とされているため、ストレート形状の場合に比べて、上端23bを含む部分の傾斜角度(X方向に対する傾斜角度)を十分に大きくすることができる。そのため、中継流路22から液貯留部19に流入する液体が連絡流路23に流入しにくくなる。したがって、液貯留部19に必要な量の液体を溜めておく事がより実現しやすくなる為、後述する免疫測定時において測定精度がより一層向上する。

[0042]

なお、連絡流路は、屈曲形状に限らず、ストレート形状(直線状)であってもよい。ストレート形状の場合は、連絡流路は、第1方向側(図1中の左側)に向かうにつれ下降するように傾斜されることが好ましい。

[0043]

連絡流路23の幅および流路断面積は、長さ方向に一定とすることができる。

中継流路22および連絡流路23は、例えば、本体部2aに形成された凹部とパネル部2bとの間に形成された空間である(図2参照)。

[0044]

流路拡大部7は、液注入部5と主流路20とにそれぞれ連通されて、これら液注入部5と主流路20との間の流路部3の一部の流路断面積を拡大したバッファ空間を構成している。すなわち、この流路拡大部7は、流路部3内のバッファ空間として、例えば、液注入部5から流路部3内に注入された液体の逆流を防止したり、流路部3内を流通する液体に空気(気泡)が噛むことを防止したりする機能を有する。

[0045]

具体的に、この流路拡大部7は、主流路20の上端から上方に向かって幅方向の流路断面積が連続的に大きくなる第1のバッファ空間7aと、第1のバッファ空間7aから上方に向かって幅方向の流路断面積が連続的に一定となる第2のバッファ空間7bとを有している。

[0046]

液注入部 5 は、予めカートリッジ本体 2 の内部に収容された液体を流路拡大部 7 の上端側から注入するための注入源 8 と、カートリッジ本体 2 の外部から液体を流路拡大部 7 の上端側から注入するための注入口 9 との何れか 1 つ以上を含む。本実施形態では、液注入部 5 として、3 つの注入源 8 と、1 つの注入口 9 とを含み、これら 3 つの注入源 8 及び 1 つの注入口 9 は、流路拡大部 7 の上方に位置して、カートリッジ本体 2 の幅方向に並んで設けられている。

[0047]

注入源 8 は、液体を収容する液収容部 1 0 と、液収容部 1 0 に収容された液体を流路拡大部 7 へと圧送するための液送部 1 1 とを有している。また、液収容部 1 0 の下端側には、出口流路 1 2 が設けられている。出口流路 1 2 は、液収容部 1 0 と流路拡大部 7 との間を連結している。液送部 1 1 は、ダイヤフラム弁からなり、液収容部 1 0 の前面(パネル部 2 b)に設けられた孔部 1 0 a を閉塞するように取り付けられている。

[0048]

注入源8では、この液送部(ダイヤフラム弁)11を押圧操作することによって、液収容部10に収容された液体を圧送しながら、出口流路12から流路拡大部7へと液体を注入することができる。

[0049]

20

10

30

なお、注入源8は、上述した構成に必ずしも限定されるものではなく、例えば、液収容部10を包装し、液送部11に外力を加えることによって、包装のシールの一部を開放し、液収容部10から出口流路12へと液体が流出される構成としてもよい。また、包装のシールの一部を開放する方法としては、包装を圧迫する、包装の蓋となるフィルムを引っ張ることで、包装の蓋を剥がすなどの方法を用いることができる。

[0050]

注入口9は、液体が一旦収容される液収容部13を有している。また、液収容部13の下端側には、出口流路14が設けられている。出口流路14は、液収容部13と流路拡大部7との間を連結している。一方、液収容部13の上端側には、開口部15が設けられている。

[0051]

注入口 9 では、この開口部 1 5 を通してカートリッジ本体 2 の外部から液収容部 1 3 へと液体を注入することで、液収容部 1 3 に一旦収容された液体を出口流路 1 4 から流路拡大部 7 へと注入することができる。

[0052]

液回収部 6 は、カートリッジ本体 2 の内部で、長さ方向及び幅方向に拡大された下部空間 6 a を有している。また、液回収部 6 は、下部空間 6 a の幅方向の両側に、それぞれ下部空間 6 a よりも上方に位置する上部空間 6 b を有している。下向流路 4 d は、一方(図 1 中の左側)の上部空間 6 b と連通されている。

[0 0 5 3]

液回収部 6 は、他方(図 1 中の右側)の上部空間 6 b を構成する位置に、空気孔 1 6 と、防護壁 1 7 とを有している。空気孔 1 6 は、カートリッジ本体 2 を貫通して設けられている。検査デバイス 1 では、この空気孔 1 6 を通して液回収部 6 内の空気を外部へと脱気することができる。

[0 0 5 4]

防護壁17は、空気孔16の下方に位置して上部空間6bの一部を上下に仕切るように設けられている。検査デバイス1では、この防護壁17によって空気孔16から液体が漏れ出し難くなっている。なお、空気孔16及び防護壁17については、本体部2aとパネル部2bとの何れか一方に設けた構成とすればよい。

[0055]

液回収部6の内部には、液体を吸収する吸収材18が設けられていてもよい。吸収材18には、例えばスポンジや繊維、ポリマーなどを用いることができる。本実施形態では、吸収材18が下部空間6aのほぼ全域に亘って配置されている。

[0056]

検査デバイス1では、この吸収材18が液体を吸収することで、流路部3(下向流路4d)の下端から流出した液体を液回収部6内に安定的に保持することができる。したがって、この検査デバイス1を傾けたりした場合でも、液回収部6内の液体が流路部3を逆流したり、空気孔16から漏れ出したりすることを防ぐことができる。

[0057]

以上のような構成を有する検査デバイス1では、流路トラップ部4を免疫測定の反応場として用いることができる。具体的に、流路トラップ部4を免疫測定の反応場として用いる場合の検査デバイス1の送液操作について、図3、図4及び図5を用いて説明する。

[0058]

なお、図3は、流路トラップ部4に磁気ビーズBを含む液体Lを流入させたときの検査デバイス1の状態を示す平面図である。図4は、流路トラップ部4に磁力を印加したときの検査デバイス1の状態を示す平面図である。図5は、流路トラップ部4から液体Lを流出させたときの検査デバイス1の状態を示す平面図である。

[0059]

流路トラップ部4を免疫測定の反応場として用いる場合は、先ず、図3及び図4に示すように、特定物質と特異的に結合する高分子により表面が修飾された磁気ビーズBを流路

10

20

30

40

(11)

トラップ部4内に滞留させる。

[0060]

磁気ビーズBについては、従来より公知のものを適宜選択して用いることができる。例えば、磁気ビーズBとしては、磁性体粒子を内包した高分子材料からなるものを用いることができる。磁性体粒子としては、例えばマグネタイトやパーマロイなどの磁力に比較的引き寄せられ易い材料からなるものを用いることができる。高分子材料としては、例えば、ポリスチレン、PMMA、ポリ塩化ビニル(PVC)、シリコーン、水溶性コラーゲン、熱可塑性エラストマーなどの生体適合性があるものを用いることができる。また、磁気ビーズBの表面を修飾する高分子の種類としては、例えば、抗体、ペプチド、DNAアプタマー、RNAアプタマー、糖鎖などを挙げることができる。

[0061]

磁気ビーズBの粒径については、10nm~500μmの範囲が好ましい。磁気ビーズBの粒径が大き過ぎると、反応に関わる表面積が小さくなってしまうため、測定に時間がかかることになる。一方、磁気ビーズBの粒径が小さ過ぎると、磁力が弱くなるため、後述する磁石Mで引き寄せることが困難となる。

[0062]

本実施形態の検査デバイス1では、磁気ビーズBを流路トラップ部4内に滞留させるため、先ず、図3に示すように、磁気ビーズBを含む液体Lを主流路20の上端側から注入する。このとき、主流路20の延長方向(カートリッジ本体2の長さ方向)が重力に沿った方向となるように、検査デバイス1を保持する。これにより、重力を利用して主流路20の上端側から流路トラップ部4へと液体Lを流入させることができる。

[0063]

ここで、重力に沿った方向に検査デバイス1を保持するとは、重力によって主流路20の上端側から下端側へと液体Lが自然に流れ落ちる方向に、検査デバイス1を保持することを言う。したがって、本実施形態では、主流路20の延長方向(カートリッジ本体2の長さ方向)と重力方向とが一致するように検査デバイス1を保持する場合に限らず、重力を利用して主流路20の上端側から下端側へと液体Lを流すことができれば、重力方向に対して主流路20が傾斜するように検査デバイス1を保持することも可能である。

[0064]

また、重力に沿った方向に検査デバイス1を保持した場合、流路トラップ部4内の液体 Lは、サイフォンの原理によって、流入側の液面と流出側の液面とが同じ水平高さとなる 。この状態で磁気ビーズBを流路トラップ部4内に滞留させることができる。なお、厳密 には液体 L が液回収部6側に流出する際に加わる液体 L の張力によって、流入側の液面は 流出側の液面よりやや高くなる。

[0065]

次に、本実施形態の検査デバイス1では、図4に示すように、磁力印加手段となる磁石Mを流路トラップ部4に接近させることによって、流路トラップ部4に磁力を印加する。 これにより、流路トラップ部4の壁面に磁気ビーズBが引き寄せられた状態となる。

[0066]

磁石Mについては、永久磁石や電磁石を用いることができる。また、永久磁石としては、例えばフェライト磁石、ネオジム磁石、サマリウムコバルト磁石などの強磁性体を挙げることができる。また、磁力印加手段としては、上述した磁石Mを流路トラップ部4に接近させた電磁石(磁気コイル)に電流を流すことによって、流路トラップ部4に磁力を印加するようにしてもよい。

[0067]

次に、本実施形態の検査デバイス1では、図5に示すように、流路トラップ部4に磁力を印加した状態のまま、流路トラップ部4内の液体Lが流路部3(下向流路4d)の下端側から流出される方向に検査デバイス1を傾ける。本実施形態では、重力に沿った方向に対して検査デバイス1を一方側(図中の左側)に傾ける。これにより、流路トラップ部4内に磁気ビーズBを滞留させたまま、この流路トラップ部4内の液体Lを流路部3(下向

10

20

30

40

流路4d)の下端側から液回収部6へと流出させることができる。

[0068]

その後、検査デバイス1を重力に沿った方向に保持する。これにより、磁気ビーズBを 流路トラップ部4内に滞留させた状態で、上述した流路トラップ部4に対する送液操作を 繰り返し行うことができる。

[0069]

以上のように、本実施形態の検査デバイス1では、上述した重力を利用した送液操作によって、ポンプを用いることなく、流路トラップ部4に対する送液操作を行うことが可能である。これにより、後述する免疫測定をより簡単に行うことが可能である。

[0070]

また、本実施形態の検査デバイス1では、上述した流路トラップ部4の下向流路4dが液回収部6の上部空間6bに対して下向きに接続されているため、重力を利用した送液操作の際に、下向流路4dから上部空間6bに流出された液体Lが上部空間6bを構成する液回収部6の側面に比較的伝わりにくくなっている。これにより、上部空間6bにおける液体Lによる汚染を防止することが可能である。

[0071]

なお、本発明は、上記検査デバイス1の構成に必ずしも限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。

[0072]

[変形例]

上記検査デバイス1の変形例として、図6に示す検査デバイス1Aの構成について説明する。なお、図6は、検査デバイス1Aの構成を示す平面図である。なお、以下の説明では、上記検査デバイス1と同等の部位については、説明を省略すると共に、図面において同じ符号を付すものとする。

[0073]

図 6 に示す検査デバイス 1 A は、上記流路トラップ部 4 の代わりに、流路トラップ部 4 A を備えている。流路トラップ部 4 A は、流路部 3 の一部をカートリッジ本体 2 の下端側から上端側に向かう方向に折り返した形状を有している。

[0074]

具体的に、この流路トラップ部4Aは、流路部3の一端(上端)側から他端(下端)側に向かって、第1の曲げ流路4aと、上向流路4bとを順に有している。そして、上向流路4bは、一方(図6中の左側)の上部空間6bと連通されている。このため、一方の上部空間6bは、図1に示す上部空間6bよりも上方に延長された形状を有している。それ以外は、上記検査デバイス1と基本的に同じ構成である。

[0075]

図 6 に示す検査デバイス 1 A では、上記検査デバイス 1 と同様に、流路トラップ部 4 A を免疫測定の反応場として用いることができる。また、流路トラップ部 4 A を免疫測定の反応場として用いる場合は、上記検査デバイス 1 の場合と同様に、磁気ビーズ B を流路トラップ部 4 A 内に滞留させた状態で、流路トラップ部 4 A に対する送液操作を行うことが可能である。

[0076]

以上のように、図6に示す検査デバイス1Aでは、上記検査デバイス1と同様に、上述した重力を利用した送液操作によって、ポンプを用いることなく、流路トラップ部4Aに対する送液操作を行うことが可能である。これにより、後述する免疫測定をより簡単に行うことが可能である。

[0077]

(検査方法)

次に、本発明の一実施形態に係る検査方法について説明する。なお、本実施形態の検査方法では、上記検査デバイス1を用いた検査方法を例示するが、本発明を適用した検査デバイス、例えば、上記検査デバイス1A、後述する検査デバイス21,21A,も同様に

10

20

30

40

用いることが可能である。

[0078]

上記検査デバイス1を用いた検査方法では、上述した磁気ビーズBを流路トラップ部4内に滞留させることによって、流路トラップ部4を免疫測定の反応場として用いる。また、流路トラップ部4を免疫測定の反応場として用いる場合は、磁気ビーズBを流路トラップ部4内に滞留させた状態で、上述した流路トラップ部4に対する送液操作を行う。

[0079]

これにより、本実施形態の検査方法では、ポンプを用いることなく、重力を利用した流路トラップ部 4 に対する送液操作を行うことが可能である。また、後述する免疫測定をより簡単に行うことが可能である。

[080]

「免疫測定]

次に、上記検査デバイス1を用いた免疫測定の一例について、図7~図15を参照して 説明する。なお、図7~図15は、上記検査デバイス1を用いた免疫測定の各工程を順に 説明するための平面図である。

[0081]

上記検査デバイス1を用いた免疫測定では、先ず、図7に示すように、磁気ビーズBを含む液体L1を主流路20の上端側から注入する。このとき、重力に沿った方向に検査デバイス1を保持する。これにより、重力を利用して主流路20の上端側から流路トラップ部4へと液体Lを流入させることができる。また、磁気ビーズBの表面は、図7中の囲み部分に拡大して示すように、捕捉抗体Ab1で予め修飾されている。

[0082]

次に、図8に示すように、流路トラップ部4に磁石Mを接近させることによって、流路トラップ部4に磁力を印加する。これにより、流路トラップ部4の壁面に磁気ビーズBが引き寄せられた状態となる。この状態で、流路トラップ部4内の液体L1が流路部3(下向流路4d)の下端側から流出される方向に検査デバイス1を傾ける。検査デバイス1を傾けることによって、流路部3も傾く。検査デバイス1の傾き方向は、カートリッジ本体2の幅方向の第1方向側(図8中の左側)の方向である。この状態では、水平面に対する上向流路4bの傾斜角度が小さくなる。したがって、上向流路4bが水平又は左斜め下向きとなるまで検査デバイス1を傾けることが好ましい。これにより、流路トラップ部4内に磁気ビーズBを滞留させたまま、この流路トラップ部4内の液体L1を流路部3(下向流路4d)の下端側から流出させることができる。

[0083]

なお、上記液体 L 1 を送液する前には、上記液体 L 1 と同様の送液操作によって、例えばスキムミルクやアルブミンなどのブロッキング剤を含む液体を送液し、流路トラップ部 4 の壁面にブロッキング剤を固定するブロッキング工程などを設けてもよい。また、上記液体 L 1 を送液した後には、上記液体 L 1 と同様の送液操作によって、水などの洗浄液を送液し、流路部 3 内を洗浄する洗浄工程などを設けてもよい。

[0084]

また、洗浄液の送液操作については、磁石Mにより流路トラップ部4に磁力を印加した状態で、流路部3の上端側から下端側へと洗浄液を流し込んだ後、流路トラップ部4内の液体が流路部3(下向流路4d)の下端側から流出される方向に検査デバイス1を傾けることによって、流路部3の上端側から下端側へと洗浄液を流通させる方法を用いてもよい。また、例えば、磁石Mにより流路トラップ部4に磁力を印加し、流路トラップ部4内の液体が流路部3(下向流路4d)の下端側から流出される方向に検査デバイス1を傾けた状態で、流路部3の上端側から下端側へと洗浄液を連続的に流通させる方法を用いてもよい。

[0085]

さらに、洗浄工程については、流路トラップ部 4 に先に流入させた液体と、流路トラップ部 4 に後から流入させる液体との間に、上述した洗浄液を流通させる工程を設ける場合

10

20

30

40

に限らず、後から流入させる液体によって洗浄を行ってもよい。なお、以下の工程で行われる洗浄工程においても、同様の送液操作を行うことが可能である。

[0086]

次に、図9に示すように、磁石Mにより流路トラップ部4に磁力を印加した状態で、検査対象となる検体を含む液体 L 2 を主流路 2 0 の上端側から注入する。このとき、重力に沿った方向に検査デバイス1を保持する。これにより、流路トラップ部4内に磁気ビーズ B を滞留させたまま、重力を利用して主流路 2 0 の上端側から流路トラップ部4へと液体 L 2 を流入させることができる。液体 L 2 を流入させた後は、磁石 M を流路トラップ部4 から離間させることによって、流路トラップ部4 に磁力を印加した状態を解除する。これにより、磁気ビーズ B は、液体 L 2 中で局所的に偏ることなく、少なくとも流路トラップ部4内にある液体 L 2 中の全体に亘ってより均一に分散していく。

[0087]

また、流路トラップ部 4 では、図 9 中の囲み部分に拡大して示すように、捕捉抗体 A b 1 と特異的に結合する抗原 A g が検体に含まれている場合、抗原 A g が抗原抗体反応より捕捉抗体 A b 1 と結合することによって、磁気ビーズ B に捕捉される。

[0088]

次に、図10に示すように、流路トラップ部4に磁石Mを接近させることによって、流路トラップ部4に磁力を印加する。これにより、流路トラップ部4の壁面に磁気ビーズBが引き寄せられた状態となる。この状態で、流路トラップ部4内の液体L2が流路部3(下向流路4d)の下端側から流出される方向に検査デバイス1を傾ける。検査デバイス1の傾き方向は、カートリッジ本体2の幅方向の第1方向側(図10中の左側)の方向である。

これにより、流路トラップ部4内に磁気ビーズBを滞留させたまま、この流路トラップ部4内の液体 L2を流路部3(下向流路4d)の下端側から流出させることができる。その後、洗浄工程として、流路トラップ部4に磁石Mを接近させた状態で水などの洗浄液を送液する。これにより、捕捉抗体Ab1と反応しなかった余分な抗原Agを洗い流す(B/F分離という。)。

[0089]

次に、図11に示すように、磁石Mにより流路トラップ部4に磁力を印加した状態で、酵素 Enで標識された標識抗体Ab2を含む液体L3を主流路20の上端側から注入する。このとき、重力に沿った方向に検査デバイス1を保持する。これにより、流路トラップ部4内に磁気ビーズBを滞留させたまま、重力を利用して主流路20の上端側から流路トラップ部4へと液体L3を流入させることができる。液体L3を流入させた後は、磁石Mを流路トラップ部4から離間させることによって、流路トラップ部4に磁力を印加した状態を解除する。これにより、磁気ビーズBは、液体L3中で局所的に偏ることなく、少なくとも流路トラップ部4内にある液体L3中の全体に亘ってより均一に分散していく。

[0090]

また、流路トラップ部 4 では、図11中の囲み部分に拡大して示すように、液体L3に含まれる標識抗体Ab2が抗原抗体反応より抗原Agと結合することによって、磁気ビーズBに捕捉される。

[0091]

次に、図12に示すように、流路トラップ部4に磁石Mを接近させることによって、流路トラップ部4に磁力を印加する。これにより、流路トラップ部4の壁面に磁気ビーズBが引き寄せられた状態となる。この状態で、流路トラップ部4内の液体L3が流路部3(下向流路4d)の下端側から流出される方向に検査デバイス1を傾ける。検査デバイス1の傾き方向は、カートリッジ本体2の幅方向の第1方向側(図12中の左側)の方向である。

これにより、流路トラップ部4内に磁気ビーズBを滞留させたまま、この流路トラップ部4内の液体L3を流路部3(下向流路4d)の下端側から流出させることができる。その後、洗浄工程として、流路トラップ部4に磁石Mを接近させた状態で水などの洗浄液を

10

20

30

40

送液する。これにより、抗原 A g と反応しなかった余分な標識抗体 A b 2 を洗い流す (B / F 分離という。)。

[0092]

次に、図13に示すように、磁石Mにより流路トラップ部4に磁力を印加した状態で、標識抗体Ab2の酵素Enと反応して発色又は発光する基質(標識基質)Sを含む液体L4を主流路20の上端側から注入する。このとき、重力に沿った方向に検査デバイス1を保持する。これにより、流路トラップ部4内に磁気ビーズBを滞留させたまま、重力を利用して主流路20の上端側から流路トラップ部4へと液体L4を流入させることができる。液体L4を流入させた後は、磁石Mを流路トラップ部4から離間させることによって、流路トラップ部4に磁力を印加した状態を解除する。これにより、磁気ビーズBは、液体L4中で局所的に偏ることなく、少なくとも流路トラップ部4内にある液体L4中の全体に亘ってより均一に分散していく。

[0093]

また、流路トラップ部 4 では、図 1 3 中の囲み部分に拡大して示すように、液体 L 4 に含まれる標識基質 S が酵素 E n と反応として標識生成物 S n を生成する。なお、本実施形態では、標識基質 S として蛍光発光基質を用いることによって、標識生成物 S n として、励起光の照射により発光可能な蛍光生成物が生成される場合を例示している。

[0094]

この状態で、例えば、流路部3内の液体L4に対して励起光を照射すると、標識生成物(蛍光生成物)Snが蛍光を発することになる。したがって、上記検査デバイス1を用いた免疫測定では、液体L4に励起光を照射したときの標識生成物Snの発光強度を測定することで、検体に含まれる抗原Agの量や濃度などを定量的に検出することが可能である

[0095]

ここで、標識生成物Snの発光強度を測定する際は、図14に示すように、磁石Mにより流路トラップ部4に磁力を印加し、流路トラップ部4内で磁気ビーズBを滞留させたまま、液体L4中に発光基質Sを分散させた状態で、流路トラップ部4内の液体L4が流路部3(下向流路4d)の他端側から流出される方向とは反対側に検査デバイス1を傾ける

[0096]

検査デバイス1の傾き方向は、カートリッジ本体2の幅方向の第2方向側(図14中の右側)の方向である。この際、検査デバイス1は、流路部3(主流路20)内の液体L4の少なくとも一部が中継流路22を通って液貯留部19に流入するまで傾ける。検査デバイス1の傾き方向は、上向流路4bとは反対側である第2方向側(図14中の右側)であるため、液体L4が流路トラップ部4を通って流路部3から流出することはない。

[0097]

中継流路22は、第2方向側(図14中の右側)の内面20aに開口しているため、液体L4の少なくとも一部は中継流路22を通って液貯留部19にスムーズに流入する。

液貯留部19には連絡流路23が形成されているため、液体L4を液貯留部19に導入する際には、液貯留部19の内部の空気を、連絡流路23を通して排出することができる。そのため、液体L4をスムーズに液貯留部19に導入することができる。

[0098]

この状態で、液貯留部 1 9 内の液体 L 4 に対して励起光を照射することが好ましい。励起光は、磁石 M の領域を外れた領域で液体 L 4 に照射することが好ましい。この場合、流路トラップ部 4 内に磁気ビーズ B を滞留させたままとすることで、液貯留部 1 9 内の標識生成物 S n の発光が磁気ビーズ B の存在によって阻害されにくくなる。

なお、標識生成物Snにおける発光強度の測定としては、上述した方法に限られず、例えば、磁力を印加しない状態で検査デバイス1を傾けずに測定してもよい。

[0099]

これにより、各々の標識生成物Snによる検出光の阻害を低減することができ、検出感

10

20

30

40

10

20

30

40

50

度及び定量性を向上させることが可能である。また、流路トラップ部 4 に滞留する液体 L 4 はほぼ定量であるため、定量性の高い測定を容易に行うことが可能である。

[0100]

なお、標識抗体 A b 2 としては、上述した酵素 E n で標識されたものに限らず、酵素 E n の他にも、液体 L 4 中に含まれる標識基質 S と反応して発色又は発光する物質により標識された標識抗体 A b 2 を用いてもよい。このような物質により標識された標識抗体 A b 2 を用いた場合には、液体 L 4 に含まれる標識基質 S と標識抗体 A b 2 の上記物質とが反応することにより、上記物質から標識生成物 S n が生成されると同時に、この標識生成物 S n が標識抗体 A b 2 から脱離する。したがって、この標識生成物 S n を検出することによって、検体に含まれる抗原 A g の量や濃度などを定量的に検出することが可能である。【 0 1 0 1 】

また、標識抗体 A b 2 としては、予め発色又は発光する物質(標識物質)で標識された標識抗体 A b 2 を用いてもよい。この場合、上記図 1 2 に示す工程の後に、上記図 1 3 に示す工程にて基質(標識基質) S を省略することができる。また、抗原 A g に結合した標識抗体 A b 2 の標識物質を検出することによって、検体に含まれる抗原 A g の量や濃度な

どを定量的に検出することが可能である。

[0102]

さらに、上述した酵素 E n や標識物質等で標識された標識抗体 A b 2 を含む液体 L 3 の代わりに、抗原 A g に特異的に結合する一次抗体を含む液体を主流路 2 0 の上端側から流路トラップ部 4 へと流入させることによって、抗原 A g に一次抗体を結合させた後に、一次抗体に特異的に結合し、なお且つ、酵素 E n で標識された二次抗体を含む液体を主流路 2 0 の上端側から流路トラップ部 4 へと流入させることによって、一次抗体に二次抗体を結合させてもよい。

[0103]

この場合、標識基質Sを含む液体L4を主流路20の上端側から流路トラップ部4へと流入させることによって、標識基質Sが二次抗体の酵素Enと反応として標識生成物Snを生成する。

[0104]

また、1つの一次抗体に対しては、複数の二次抗体を結合させることができる。この場合、酵素Enで標識された複数の二次抗体(標識抗体)によって、標識生成物Snを検出する際のシグナルの増幅が可能である。また、二次抗体を用いる場合は、一次抗体を酵素Enで標識する必要がなくなると共に、使用する一次抗体に適した二次抗体(標識抗体)の選択の幅を広げることが可能である。

[0105]

なお、標識基質Sとしては、例えば、ルシフェリン、ルミノール、アクリジニウム、シュウ酸エステルなどの化学発光基質や、フルオレセインイソチオシアネート(FITC)、緑色蛍光タンパク質(GFP)などの蛍光物質が挙げられる。一方、酵素としては、例えば、ペルオキシダーゼ、ルシフェラーゼ、イクオリン等が挙げられる。また、酵素の基質としては、例えば、3‐(p‐ハイドロオキシフェノール)プロピオン酸及びその類似体、ルシフェリン及びルシフェリン類似体、セレンテラジン及びセレンテラジン類似体等が挙げられる。また、これらの標識基質Sの中から少なくとも1種又は2種以上を用いることができる。

[0106]

また、非発光性の標識物質としては、例えば、公知のラジオイムノアッセイ法で使用される様な放射性標識物質が挙げられる。なお、標識抗体 A b 2 に標識物質を結合させる方法については、特に限定されず、公知方法が適用可能である。

[0107]

抗原Agの種類については、特に制限されず、生化学検査の目的に応じて適宜選定される。抗原Agの具体例としては、例えば、心筋マーカー、風邪、肝炎、後天的免疫不全等を惹起するウイルス、細菌等の病原体に由来するタンパク質、ペプチド、核酸、脂質、糖

鎖等が挙げられる。

[0108]

捕捉抗体 A b 1 及び標識抗体 A b 2 については、特定の抗原 A g に特異的に結合する検体を予め準備しておく必要があるが、このような抗体については従来より公知の中から適宜選択して用いることが可能である。

[0109]

また、抗原 A g や捕捉抗体 A b 1 、標識抗体 A b 2 等を吸着させたくない箇所が流路内にある場合には、当該箇所の撥水性を高めるコーティング等の表面処理を予め施しておくことにより、不要な吸着を防ぐことができる。

[0110]

以上のように、上記検査デバイス1を用いた免疫測定では、検査対象となる検体内における抗原Agの有無を定性的に検出すること、並びに、検体に含まれる抗原Agの量や濃度などを定量的に検出することが可能である。また、上記検査デバイス1を用いることによって、上述した免疫測定をより簡単に行うことが可能である。

[0111]

検査デバイス 1 では、磁石 M によって磁気ビーズ B を引き寄せた状態で検査デバイス 1 を傾けることによって、磁気ビーズ B の含有量が少ない液体 L 4 を液貯留部 1 9 に流入させることができる。そのため、液体 L 4 に含まれる検出対象(抗原 A g など)を液貯留部 1 9 内で検出することで、磁気ビーズ B を原因とする J イズが少ない検出結果を得ることができる。よって、検出精度を高めることができる。

[0112]

検査デバイス1は、磁石Mを使用せずに、液貯留部19内の液体L4について検出を行ってもよい。その場合、液貯留部19内の液体L4の磁気ビーズBの含有量は多くなるが、磁石Mを用いないため、検出用の機器(例えば光学系)の配置に関する制約が少なくなり、前記機器の設計の自由度を高めることができる。

[0113]

検査デバイス1では、液貯留部19が主流路20から離れているため、磁石Mによって液体Lに磁気を及ぼす箇所と、液体Lを光学的測定に供する箇所(液貯留部19)との間に十分な距離を確保することができる。そのため、検査デバイス1に取り付ける機器の設計の自由度を高めることができる。

[0114]

図 1 5 に示すように、測定終了後は、カートリッジ本体 2 の長さ方向が重力に沿った方向となるように、検査デバイス 1 の姿勢を戻す。

これにより、液貯留部19内の液体L4を、重力を利用して、連絡流路23を通して液回収部6に流入させることができる。よって、液貯留部19内の液体L4を容易な操作で回収することができる。

[0115]

連絡流路23の第1流路23 d は、主流路20に対して傾斜しているため、主流路20が重力方向に向いた状態では、液体L4が第1流路23 d の第2方向側(右側)の内面23 a を伝って流れやすくなる。そのため、連絡流路23が傾斜していない場合と比べて、液体L4を確実かつ効率よく液回収部6に導入することができる。

[0116]

なお、上記検査デバイス1を用いた免疫測定としては、例えば、サンドイッチイムノアッセイ法や、間接抗体イムノアッセイ法、ブリッジングイムノアッセイ法などの公知のイムノアッセイ法を採用することが可能であり、上述した方法に特に限定されるものではない。

[0117]

(検査デバイス)

本発明の第2実施形態として、図16に示す検査デバイス21について説明する。なお 、前出の実施形態の検査デバイスと同等の部位については、説明を省略すると共に、図面 10

20

30

40

において同じ符号を付す。

検査デバイス 2 1 は、中継流路 3 2 以外は図 1 に示す検査デバイス 1 と同様の構成とすることができる。

中継流路32は、主流路20と液貯留部19とを接続する流路であって、主流路20と 液貯留部19とは中継流路32を介して連通されている。

[0118]

中継流路32は、主流路20と接続された基端32c(一端)において、主流路20の第2方向側(図16中の右側、+Y方向側)の内面20aに開口している。中継流路32は、液貯留部19と接続された先端32d(他端)において、液貯留部19の第1方向側(図16中の左側、-Y方向側)の側面19bに開口している。先端32dは、液貯留部19との接続端である。

[0119]

中継流路32は、基端32cにおける開口面積が、基端32cにおける主流路20の流路断面積(主流路20に直交する断面の面積)より大きくされていることが好ましい。これによって、主流路20内の液体は中継流路32にスムーズに流入する。

[0120]

中継流路32は、基端32cから先端32dにかけて、徐々に流路の幅が狭くなる形状(先細り形状)とされるのが好ましい。中継流路32は、基端32cから先端32dにかけて、流路断面積が徐々に小さくなっている。そのため、基端32cにおける中継流路32の開口面積に比べて大きい。なお、中継流路32の断面積は、中継流路32の幅方向の中央線に直交する断面の面積である。

[0 1 2 1]

中継流路32の上面32 aおよび下面32 bは、カートリッジ本体2の幅方向の第2方向側(図16中の右側)に向かうにつれ上昇するように傾斜されている。すなわち、上面32 aおよび下面32 bは、第2方向側に向かうにつれカートリッジ本体2の長さ方向の一端(図16中の上端、+ X方向の端)に近づくように傾斜されている。そのため、中継流路32の方向(幅方向の中央線の方向)は、第2方向側に向かうにつれカートリッジ本体2の長さ方向の一端(図16中の上端、+ X方向の端)に近づくように傾斜する方向である。

カートリッジ本体 2 の幅方向に対する、上面 3 2 a の傾斜角度は、下面 3 2 b の傾斜角度より小さい。

[0122]

検査デバイス21では、先端32dにおける中継流路32の開口面積が小さいため、液貯留部19内の液体が中継流路32に逆流しにくい。そのため、十分量の液体を液貯留部19内に確保し、抗原Ag等の検出を容易にすることができる。

[0123]

[変形例]

図 1 7 に示す検査デバイス 2 1 A は、上記検査デバイス 2 1 の変形例である。検査デバイス 2 1 A は、流路トラップ部 4 の代わりに、流路トラップ部 4 A を備えている点で、検査デバイス 2 1 と異なる。

[0 1 2 4]

(検査方法)

図18に示すように、検査デバイス21は、例えば前述の免疫測定において、磁石Mによって磁気ビーズBを引き寄せた状態で、カートリッジ本体2の幅方向の第2方向側(図18中の右側)の方向に傾けると、液体L4の少なくとも一部は中継流路32を通って液貯留部19に流入する。

[0125]

検査デバイス 2 1 を第 2 方向側(図 1 8 中の右側)の方向に傾ける際には、その傾斜が大きいほど、液体 L 4 が主流路 2 0 の上端側に向かって流れやすくなるが、基端 3 2 c における中継流路 3 2 の開口面積が十分に大きくされているため、液体 L 4 を確実に中継流

10

20

30

40

路32に導き、効率よく液貯留部19に導入することができる。

[0126]

検査デバイス21では、磁石Mによって磁気ビーズBを引き寄せた状態で検査デバイス 21を傾けることによって、磁気ビーズBの含有量が少ない液体L4を液貯留部19に流 入させることができる。

よって、液体 L 4 に含まれる検出対象(抗原 A g など)を液貯留部 1 9 内で検出することで、磁気ビーズ B を原因とするノイズが少ない検出結果を得ることができ、検出精度を高めることができる。

[0127]

検査デバイス21では、検査デバイス1と同様に、液貯留部19が主流路20から離れているため、磁石Mによって液体Lに磁気を及ぼす箇所と、液体Lを光学的測定に供する箇所(液貯留部19)との間に十分な距離を確保することができる。そのため、検査デバイス1に取り付ける機器の設計の自由度を高めることができる。

[0128]

図 1 9 に示すように、測定終了後は、カートリッジ本体 2 の長さ方向が重力に沿った方向となるように、検査デバイス 2 1 の姿勢を戻す。

これにより、液貯留部 1 9 内の液体 L 4 を、連絡流路 2 3 を通して液回収部 6 に流入させることができるため、液貯留部 1 9 内の液体 L 4 を容易な操作で回収することができる。さらに、流路トラップ部 4 内の液体 L 4 が流路部 3 (下向流路 4 d)の下端側から流出される方向に検査デバイス 1 を傾けることで、流路トラップ部 4 内の液体 L 4 を流路部 3 (下向流路 4 d)の下端側から流出させることができる。

[0129]

(検査装置)

次に、本発明の一実施形態として、例えば図20及び図21に示す上記検査デバイス1を用いた検査装置100A,100Bについて説明する。なお、図20は、検査装置100Aの構成を示すブロック図である。図21は、検査装置100Bの構成を示すブロック図である。

[0130]

なお、本実施形態では、上記検査デバイス1を用いた検査装置100A,100Bを例示するが、本発明を適用した検査デバイスであれば、上記検査デバイス1に限らず、上記検査デバイス1A,21,21Aも同様に用いることが可能である。

[0131]

本実施形態の検査装置100A,100Bは、図20及び図21に示すような検査デバイス1を保持するデバイス保持部101と、検査デバイス1を検査するデバイス検査部102とを備えている。また、検査装置100Aは、図20に示すように、デバイス検査部102として、発光部103及び受光部104を備えている。一方、検査装置100Bは、図21に示すように、デバイス検査部102として、受光部104を備えている。

[0132]

デバイス保持部101は、重力に沿った方向に検査デバイス1を保持する。なお、検査 デバイス1を保持する機構については、特に限定されるものではなく、従来より公知の機 構を用いることができる。

[0 1 3 3]

本実施形態の検査装置100A,100Bでは、この状態で、ポンプを用いることなく、上述した重力を利用した流路トラップ部4に対する送液操作を行うことが可能である。また、この状態で、上述した検査デバイス1を用いた免疫測定を行うことが可能である。したがって、本実施形態の検査装置100A,100Bでは、装置構成を簡略化し、装置全体の小型化、低コスト化、装置構成の簡略化によるメンテナンス性の向上を図ることが可能である。

[0134]

図20に示すデバイス検査部102では、発光部103が発する励起光を検査デバイス

10

20

30

40

1 に照射する。一方、励起光で励起されて発光する発光基質からの光(以下、検出光という。)を受光部 1 0 4 が受光する。これにより、検出光の発光強度から、検体に含まれる抗原の有無を定性的に検出すると共に、抗原の量や濃度などを定量的に検出することが可能である。

[0135]

一方、図21に示すデバイス検査部102では、自己発光する発光基質からの光(以下、検出光という。)を受光部104が受光する。これにより、検出光の発光強度から、検体に含まれる抗原の有無を定性的に検出すると共に、抗原の量や濃度などを定量的に検出することが可能である。

[0136]

本実施形態の検査装置100A,100Bは、検査デバイス1の液注入部5に対して注入操作を自動で行う注入駆動部105を備えている。注入駆動部105は、上述した注入源8の液送部11を押圧操作することによって、液収容部10に収容された液体を出口流路12へと圧送する役割を果たしている。

[0137]

なお、液送部11を押圧操作する機構については、特に限定されるものではなく、従来より公知の機構を用いることができる。また、液収容部10を包装した構成では、包装のシールの一部を開放する操作を行う構成としてもよい。

[0138]

また、注入駆動部105は、注入源8の数に合わせて複数の操作機構を設けた構成に限らず、1つの操作機構で位置を変更しながら、複数の注入源8を選択的に操作する構成としてもよい。なお、各注入源8を操作するタイミングについては、時間差を設ける必要がある。

[0139]

さらに、検査デバイス1の液注入部5に対して液体の注入操作を手動で行う場合は、注入駆動部105を省略することも可能である。

[0140]

本実施形態の検査装置100A,100Bは、検査デバイス1を回動操作するためのデバイス駆動部106と、流路トラップ部4に対して磁力を印加するための磁力印加部10 7とを備えている。

[0141]

デバイス駆動部106は、検査デバイス1を保持するデバイス保持部101を回動操作する。これにより、重力に沿った方向に対して検査デバイス1を一方側(反時計回り)に傾けたり、重力に沿った方向に対して検査デバイス1を他方側(時計回り)に傾けたりすることができる。

[0142]

磁力印加部107は、検査デバイス1のパネル部2b側の面に沿って、磁石Mが流路トラップ部4と重なる位置と、磁石Mが流路トラップ部4と重ならない位置との間で、磁石Mをスライド操作する。これにより、流路トラップ部4に対して磁石Mを近づけたり、磁石Mを遠ざけたりすることができる。また、磁力印加部107では、上述したスライド操作に限らず、流路トラップ部4に対して磁石Mを近づけたり、遠ざけたりする方向に直接操作するようにしてもよい。さらに、磁力印加部107では、上述した磁力印加手段として、流路トラップ部4に接近させた電磁石(磁気コイル)に電流を流すことによって、流路トラップ部4に磁力を印加するようにしてもよい。

[0 1 4 3]

なお、デバイス保持部101を回動操作する機構や、磁石 M をスライド操作する機構に ついては、特に限定されるものでなく、従来より公知の機構を用いることができる。

[0144]

本実施形態の検査装置100A,100Bでは、上記の構成以外にも、例えば、各部の駆動を制御する制御部や、電力を供給する電源供給部、デバイス検査部102が検出した

10

20

30

40

結果に基づいて演算を行う演算部、演算部が演算した結果を信号として出力する出力部などを備えている。

[0145]

[検出光学系]

次に、上記図20及び図21に示すデバイス検査部102を構成する検出光学系の一例について、図22を参照して説明する。なお、図22は、検出光学系の構成を示す断面図である。

[0146]

図22に示す検出光学系では、デバイス保持部101に保持された検査デバイス1を挟んで発光部103と受光部104とが配置されている。発光部103には、検査デバイス1に接近する方向に向かって、発光素子108と、コリメートレンズ109とが、光軸AX1上に順に並んで配置されている。受光部104には、検査デバイス1から離間する方向に向かって、コリメートレンズ110と、光学フィルタ111と、集光レンズ112と、受光素子113とが、光軸AX2上に順に並んで配置されている。

[0147]

発光部103側の光軸AX1は、検査デバイス1の主面に対して傾斜した角度を有している。一方、受光部104側の光軸AX2は、検査デバイス1の主面に対して垂直な角度を有している。すなわち、光軸AX1と光軸AX2とは、発光部103が発する励起光の光路と、受光部104が受光する検出光の光路とが一致しないように、検査デバイス1の検出位置Dにおいて互いに交差している。

[0148]

発光素子108は、例えば半導体レーザー等からなり、励起光を検査デバイス1の検出位置 D に向けて照射する。コリメートレンズ109は、励起光を検査デバイス1の検出位置 D に向けて平行化(コリメート)する。コリメートレンズ110は、検出光を受光素子113に向けて平行化(コリメート)する。また、コリメートレンズ110の代わりに、検出光を受光素子113に向けて集光するレンズを用いてもよい。光学フィルタ111は、検出光以外の光(励起光や外部からの光)をカットし、受光素子113に入射する検出光のS/N比を向上させる。集光レンズ112は、検出光を受光素子113に向けて集光する。受光素子113は、例えば、光電子増倍管や、固体撮像素子(CCD)、アバランシェフォトダイオード、フォトダイオードなどからなり、検出光を受光する。

[0149]

検査デバイス1を挟んだ発光部103側には、発光素子108と検査デバイス1との間の光路を遮光する遮光路115が設けられている。これにより、励起光が外部に漏れ出さないように、また、外部の光が検査デバイス1に入射しないように遮光することができる

[0150]

また、検査デバイス1を挟んだ発光部103とは反対側には、光軸AX1の延長上の光路を遮光する遮光路116が設けられている。これにより、励起光が受光部104側に入射しないように遮光することができる。

[0151]

検査デバイス1を挟んだ受光部104側には、検査デバイス1と受光素子113との間の光路を遮光する遮光路117が設けられている。これにより、検出光が外部に漏れ出さないように、また、外部の光が受光素子113に入射しないように遮光することができる

[0152]

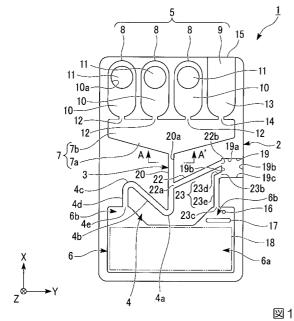
デバイス保持部101には、励起光が通過する発光部103側の開口部101aと、検出光が通過する受光部104側の開口部101bとが設けられている。また、受光部104側の開口部101bは、絞りとして機能を有している。これにより、受光素子113で受光される検出光のスポットサイズを一定とし、受光部104で受光される検出光を定量化することができる。

10

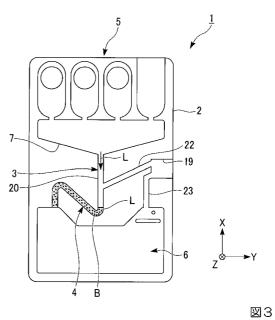
20

30

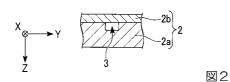
[0153]


なお、上記デバイス検査部102は、上述した検出光学系の構成に必ずしも限定されるものではなく、適宜変更して実施することが可能である。例えば、デバイス保持部101には、検査デバイス1を加温するヒータ(図示せず。)を設けた構成としてもよい。これにより、検査デバイス1を特定の温度に保持することができる。

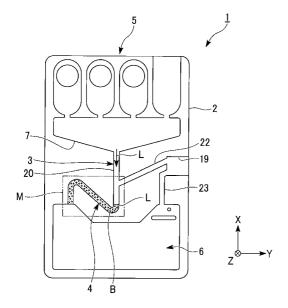
【符号の説明】


[0 1 5 4]

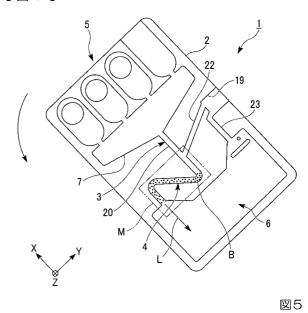
1 , 1 A , 2 1 , 2 1 A ... 検査デバイス 2 ... カートリッジ本体 2 a ... 本体部(第 1 の基材) 2 b ...パネル部(第2の基材) 3 ...流路部 4 a ...第1の曲げ流路 4 b ... 上向流路(折り返し流路) 4c…第2の曲げ流路 4d…下向流路 4,4A…流路ト 5 ... 液注入部 6 ... 液回収部 6 a ... 下部空間 6 b ... 上部空間 ラップ部 大部 8...注入源 9...注入口 10...液収容部 11...液送部 12...出口流路 13 19…液貯留部 20…主流路 20a…主流路の第2方向側の内面 22,32… 中継流路 22a,32c…基端 22b,32c…先端(液貯留部との接続端) ... 連絡流路 2 3 d ... 第 1 流路 2 3 b ... 上端 (一端) 1 0 0 A , 1 0 0 B ... 検査装置 1 0 1 ... デバイス保持部 1 0 2 ... デバイス検査部 1 0 3 ... 発光部 1 0 4 ... 受光部 105…注入駆動部 106…デバイス駆動部 107…磁力印加部 108…発光素 子 109…コリメートレンズ 110…コリメートレンズ 1111…光学フィルタ 1 1 2 ... 集光レンズ 1 1 3 ... 受光素子 1 1 5 , 1 1 6 , 1 1 7 ... 遮光路 B ... 磁気ビー ズ M…磁石 L,L1~L4…液体 Ab1…捕捉抗体 Ab2…標識抗体 Ag…抗 原 En…酵素 S…標識基質 Sn…標識生成物


【図1】

【図3】

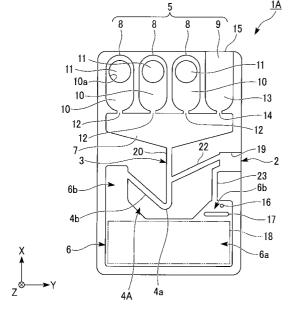


【図2】



10

【図4】



【図5】

図4

【図6】

【図7】

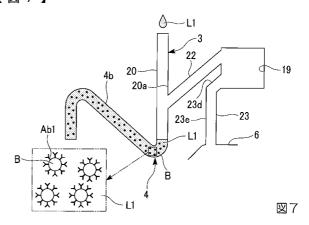
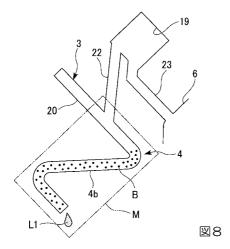
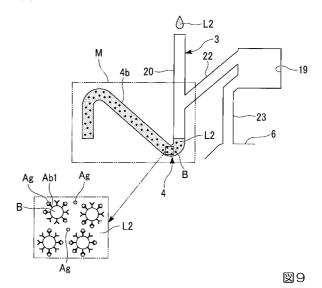
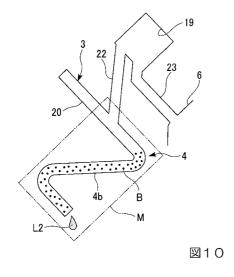
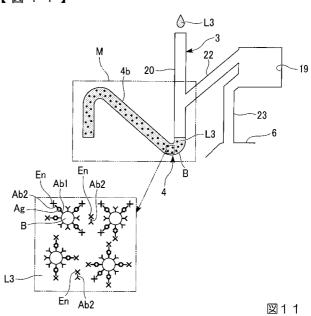
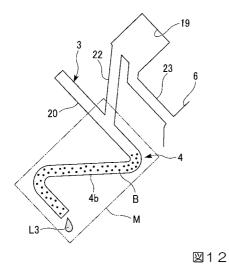
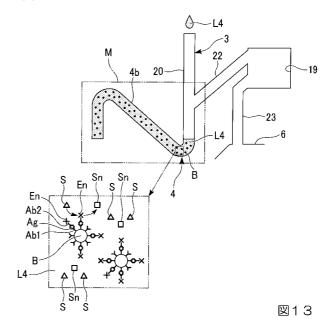




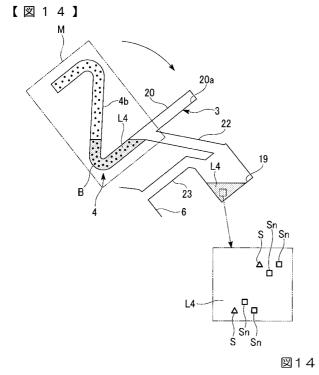
図6


【図8】

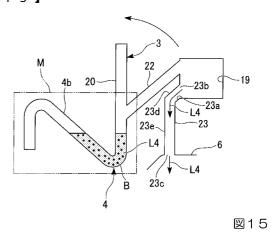

【図9】


【図10】

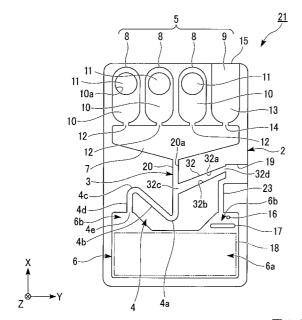

【図11】



【図12】



【図13】



【図15】

【図16】

【図17】

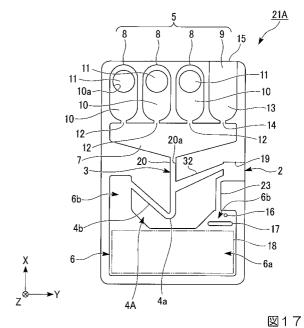
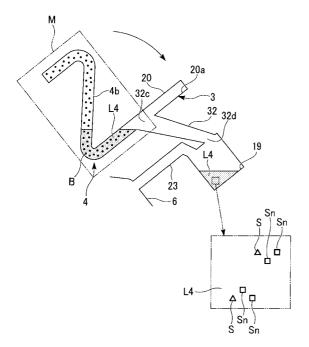



図16

【図18】

【図19】

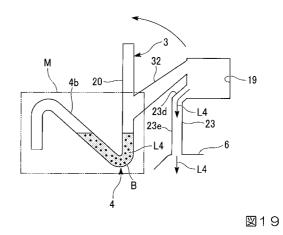
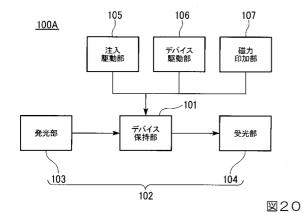
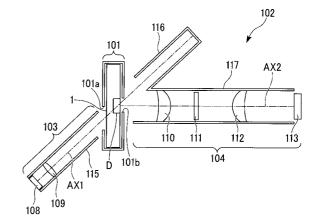




図18

【図20】

【図22】

【図21】

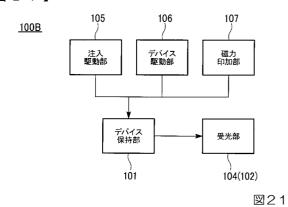


図22

フロントページの続き

(72)発明者 額賀 理

千葉県佐倉市六崎1440番地 株式会社フジクラ 佐倉事業所内

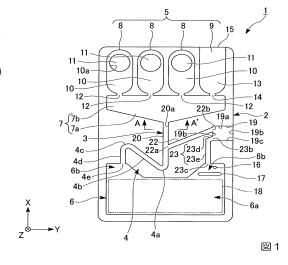
(72)発明者 中村 圭

千葉県佐倉市六崎1440番地 株式会社フジクラ 佐倉事業所内

(72)発明者 日高 伸

千葉県佐倉市六崎1440番地 株式会社フジクラ 佐倉事業所内

(72)発明者 塩入 達也


千葉県佐倉市六崎1440番地 株式会社フジクラ 佐倉事業所内

专利名称(译)	检查装置,检查方法和检查装置			
公开(公告)号	<u>JP2017090216A</u>	公开(公告)日	2017-05-25	
申请号	JP2015219814	申请日	2015-11-09	
[标]申请(专利权)人(译)	株式会社藤仓			
申请(专利权)人(译)	藤仓株式会社			
[标]发明人	額賀理 中村圭 日高伸 塩入達也			
发明人	額賀 理 中村 圭 日高 伸 塩入 達也			
IPC分类号	G01N33/53 G01N33/543			
FI分类号	G01N33/53.T G01N33/543.541.A			
代理人(译)	塔奈澄夫 五十岚光永 小室 敏雄 清水雄一郎			
外部链接	Espacenet			

摘要(译)

要解决的问题:提供能够提高检查准确性的检查设备。 含有A 3 A通道部分已经在一个方向上,所述液体喷射部5从流路部3中,流路部3的另一端的一个端部注入液体延伸的主流路20,流路部3的一部分至少从主流路20 与液回收部6之间的另一端侧折回到一端侧。流动通道捕集部分4,主流动并且,当通道20倾斜时,主通道20中的至少一部分液体流入其中的液体贮存器19中,液体贮存器19连接到主通道20。并且经由液体可以流过的连通流路23与液体回收部分6连通。

