(19) **日本国特許庁(JP)**

(12) 公 開 特 許 公 報(A)

(11)特許出願公開番号

特開2006-160750 (P2006-160750A)

最終頁に続く

(43) 公開日 平成18年6月22日(2006.6.22)

(51) Int.C1.	F 1			テーマコード	(参考)
CO7K 14/82	(2006.01) CO7K	14/82 Z	ZNA	4BO24	
C 1 2 N 15/09	(2006.01) C 1 2 N	15/00	A	4B063	
CO7K 16/32	(2006.01) CO7K	16/32		4BO64	
CO7K 19/00	(2006.01) CO7K	19/00		4HO45	
C 1 2 Q 1/68	(2006.01) C 1 2 Q	1/68	A		
	審査請求	7 有 請求項	の数 11 O L	(全 52 頁)	最終頁に続く
(21) 出願番号	特願2006-11809 (P2006-11809)	(71) 出願人	596168317		
(22) 出願日	平成18年1月20日 (2006.1.20)		ジェネンテック	・インコーポレ	ーテッド
(62) 分割の表示	特願2002-137013 (P2002-137013)		GENENTE	CH, INC.	
	の分割		アメリカ合衆国	カリフオルニア	.9408
原出願日	平成11年3月8日 (1999.3.8)		0 - 4990.	サウス・サン・	フランシス
(31) 優先権主張番号	60/077, 450		コ・ディーエヌ	エー・ウェイ・	1
(32) 優先日	平成10年3月10日 (1998.3.10)	(74)代理人	100109726		
(33) 優先権主張国	米国 (US)		弁理士 園田	吉隆	
(31) 優先権主張番号	60/077, 632	(74)代理人	100101199		
(32) 優先日	平成10年3月11日 (1998.3.11)		弁理士 小林	義教	
(33) 優先権主張国	米国 (US)	(72) 発明者	ウッド,ウィリ	アム アイ.	
(31) 優先権主張番号	60/077, 641		アメリカ合衆国	カリフォルニ	ア 940
(32) 優先日	平成10年3月11日 (1998.3.11)		10. ヒルス	ボロー. サウ	スダウン

(54) 【発明の名称】新規なポリペプチド及びそれをコードする核酸

(57)【要約】 (修正有)

(33) 優先権主張国 米国(US)

【課題】新規なDNAの同定及び単離、及び該DNAによりコードされる新規なポリペプチドの組換え生産と該ポリペプチドの用途を提供する。

コート 35

【解決手段】新規に単離された、特定のアミノ酸配列を有するポリペプチド(超長鎖アシル・CoA合成酵素と相同性を有するポリペプチド)をコードする特定の核酸配列、該核酸配列を含むベクター、及び該ベクターを発現する宿主細胞、さらに免疫グロブリンのような異種ポリペプチド配列に融合した該ポリペプチドを含むキメラポリペプチド分子、該ポリペプチドに結合する抗体。癌の治療と診断に使用することができる。

【選択図】なし

【特許請求の範囲】

【請求項1】

以下の(a)又は(b)の単離された天然配列ポリペプチド。

(a) 配列番号: 1 0 2 に示すアミノ酸配列を有する天然配列ポリペプチド。

(b)(a)において定められるアミノ酸配列において、1若しくは数個のアミノ酸が 欠失、置換若しくは付加されたタンパク質に由来するポリペプチドであって、かつ、ヒト 腫瘍又は結腸腫瘍細胞中において正常細胞よりも多く存在する天然配列ポリペプチド。

【請求項2】

異種アミノ酸配列と融合した請求項1に記載のポリペプチドを含んでなるキメラ分子。

前 記 異 種 ア ミ ノ 酸 配 列 が エ ピ ト ー プ タ ッ グ 配 列 で あ る 、 請 求 項 2 に 記 載 の キ メ ラ 分 子 。

【請求項4】

前 記 異 種 ア ミ ノ 酸 配 列 が 免 疫 グ ロ ブ リ ン の F c 領 域 で あ る 、 請 求 項 3 に 記 載 の キ メ ラ 分 子。

【請求項5】

請求項1に記載のポリペプチドと特異的に結合する抗体。

【請求項6】

前記抗体がヒト化抗体である、請求項5に記載の抗体。

【請求項7】

前記抗体がモノクローナル抗体である、請求項5に記載の抗体。

【請求項8】

前記抗体がキメラ抗体である、請求項7に記載の抗体。

【請求項9】

哺乳動物から得た生物学的試験試料中の配列番号: 1 0 2 を有するポリペプチドをコー ドする核酸のレベルを、対応する正常な生物学的試料中の該核酸のレベルとの対比により 測定することを含んでなる該ポリペプチドの検出方法であって、該試験試料中における該 核酸のレベルの増加が、該生物学的試験試料が癌性細胞を含んでいることを示す前記検出 方法。

【請求項10】

配列番号:102のアミノ酸配列を有するポリペプチドをコードする核酸の増幅、及び / 又は、該アミノ酸配列を有するポリペプチドの過剰発現に関して組織試料をアッセイす る工程を有し、該増幅及び/又過剰発現が、該試料が癌性組織由来であることを示す、癌 性組織を検出する方法。

【請求項11】

試料がヒト肺又はヒト結腸由来である、請求項9又は10に記載の方法。

【発明の詳細な説明】

【技術分野】

[0001]

(発明の分野)

本発明は、一般的に、新規なDNAの同定及び単離、及び該DNAによりコードされる 40 新規なポリペプチドの組換え生産に関する。

[00002]

(発明の背景)

細胞外タンパク質は、多細胞生物の形成、分化及び維持において重要な役割を担ってい る。多くの個々の細胞の運命、例えば増殖、遊走、分化又は他の細胞との相互作用は、典 型的には、他の細胞及び/又は直接の環境から受け取る情報に支配される。この情報は、 しばしば分泌ポリペプチド(例えば、分裂促進因子、生存因子、細胞障害性因子、分化因 子、 神 経 ペ プ チ ド 、 及 び ホ ル モ ン) に よ り 伝 達 さ れ 、 こ れ が 、 次 に 多 様 な 細 胞 レ セ プ タ ー 又は膜結合タンパク質により受け取られ解釈される。これらの分泌ポリペプチド又はシグ ナル分子は、通常は細胞分泌経路を通過して、細胞外環境におけるその作用部位に到達す 10

20

る。

分泌タンパク質は、製薬、診断、バイオセンサー及びバイオリアクターを含む、様々な産業上の利用性を有している。血栓溶解剤、インターフェロン、インターロイキン、エリスロポエチン、コロニー刺激因子、及び種々の他のサイトカインのような、現在入手可能な大抵のタンパク質薬物は分泌タンパク質である。新規な未変性分泌タンパク質を同定する努力が産業界及び学術界の両方によってなされている。多くの努力が新規な分泌タンパク質のコード配列を同定するために哺乳類組換えDNAライブラリーのスクリーニングに注がれている。スクリーニング方法及び技術の例は文献に記載されている[例えば、Klein等、Proc. Natl. Acad. Sci. 93;7108-7113(1996);米国特許第5,536,637号を参照されたい]。

[0003]

膜結合タンパク質及びレセプターは、多細胞生物の形成、分化及び維持において重要な役割を担っている。多くの個々の細胞の運命、例えば増殖、遊走、分化又は他の細胞との相互作用は、典型的には他の細胞及び/又は直接の環境から受け取られる情報に支配される。この情報は、しばしば分泌ポリペプチド(例えば、分裂促進因子、生存因子、細胞障害性因子、分化因子、神経ペプチド、及びホルモン)により伝達され、これが次に多様な細胞レセプター又は膜結合タンパク質により受け取られ解釈される。このような膜結合タンパク質及び細胞レセプターは、これらに限定されるものではないが、サイトカインレプター、レセプターは、これらに限定されるものではないが、サイトカインレプター、レセプターは、レセプターボスファターゼ、細胞-細胞間相互作用に関与するレセプター、及びセレクチン及びインテグリンのような細胞接着分子を含む。例えば、細胞の増殖及び分化を調節するシグナルの伝達は、様々な細胞タンパク質のリン酸化により部分的に調節される。そのプロセスを触媒する酵素であるプロテインチロシンキナーゼはまた成長因子レセプターが含まれる。具体例には、繊維芽細胞増殖因子及び神経成長因子レセプターが含まれる。

膜結合タンパク質及びレセプター分子は、製薬及び診断薬を含む、様々な産業上の利用性を有している。例えば、レセプターイムノアドヘシンはレセプター - リガンド間相互作用を阻止する治療薬として使用することができる。膜結合タンパク質はまた、関連するレセプター / リガンド間相互作用の可能性のあるペプチド又は小分子インヒビターをスクリーニングするために使用することもできる。新規な未変性レセプタータンパク質を同定するための努力が産業界と学術界の双方によってなされている。多くの努力が、新規なレセプタータンパク質のコード配列を同定するために、哺乳類の組換えDNAライブラリーのスクリーニングに注がれている。

ここで我々は、新規の分泌及び膜貫通ポリペプチド、及びこれらポリペプチドをコード する新規な核酸の同定及び特徴づけを記述する。

[0004]

PRO703

超長鎖アシル - CoA合成酵素(「VLCAS」)は、長鎖及び超長鎖脂肪酸の細胞輸送において活性な長鎖脂肪酸輸送タンパク質である。 [例えば、Uchida等,J. Biochem (Tokyo) 119 (3):565-571 (1996)及びUchiyama等,J. Biol. Chem 271 (48):30360-30365 (1996)]。脂肪酸の輸送メカニズムの生物学的な重要性が分かったために、現在、脂肪酸輸送に関与する新規な未変性タンパク質を同定するための努力がなされている。我々は、ここで PRO703 と命名した、VLCASに対して相同性を有する新規なポリペプチドの同定についてここに記載する。

[0005]

(発明の概要)

PRO703

出願人は、本出願において「PRO703」と命名した、VLCASと相同性を有する新規なポリペプチドをコードするcDNAクローンを同定した。

一実施態様では、本発明はPRO703ポリペプチドをコードするDNAを含んでなる 単離された核酸分子を提供する。一側面では、単離された核酸は、図2(配列番号102) 10

20

30

40

のアミノ酸残基1~730を持つPRO703ポリペプチドをコードするDNAを含んでなるか、そのようなコード核酸配列に相補的であり、少なくとも中程度の条件下、場合によっては高度にストリンジェントな条件下でそれに安定して結合する。他の側面では、単離された核酸は、図2(配列番号102)の約43~730のアミノ酸残基を持つPRO703ポリペプチドをコードするDNAを含んでなるか、そのようなコード核酸配列に相補的であり、少なくとも中程度の条件下、場合によっては高度にストリンジェントな条件下でそれに安定して結合する。単離された核酸配列は、PRO703をコードするヌクレオチド配列を含むATCC209716として1998年3月31日に寄託されたDNA50913-1287ベクターのcDNA挿入断片を含みうる。

他の実施態様では、本発明は単離されたPRO703ポリペプチドを提供する。特に、本発明は単離された未変性配列PRO703ポリペプチドを提供し、該ポリペプチドは一実施態様では図2(配列番号102)の残基1~730を含んでなるアミノ酸を含む。他の実施態様では、本発明は図2(配列番号102)の約43~730の残基を含んでなるアミノ酸を含む、シグナル配列を欠いた単離されたPRO703ポリペプチドを提供する。場合によっては、PRO703ポリペプチドは、ATCC209716として1998年3月31日に寄託されたDNA50913-1287ベクターのcDNA挿入断片によりコードされるポリペプチドを発現させることにより得られるか得られうる。

[0006]

更なる実施態様

本発明の他の実施態様では、本発明は上述したあるいは後記するポリペプチドの任意のものをコードする DNA を含んでなるベクターを提供する。そのようなベクターを含んでなる宿主細胞もまた提供される。例を挙げると、宿主細胞は CHO細胞、大腸菌、又は酵母である。上述したあるいは後記するポリペプチドの任意のものを製造する方法が更に提供され、これは、所望のポリペプチドの発現に適した条件下で宿主細胞を培養し、細胞培養から所望のポリペプチドを回収することを含んでなる。

他の実施態様では、本発明は、異種性ポリペプチド又はアミノ酸配列に融合した上述したあるいは後記するポリペプチドの任意のものを含んでなるキメラ分子を提供する。そのようなキメラ分子の例としては、免疫グロブリンの Fc 領域又はエピトープタグ配列に融合した上述したあるいは後記するポリペプチドの任意のものが含まれる。

他の実施態様では、本発明は上述したあるいは後記するポリペプチドの任意のものに特異的に結合する抗体を提供する。場合によっては、抗体はモノクローナル抗体である。

また他の実施態様では、本発明はゲノム及び c D N A ヌクレオチド配列を単離するのに有用なオリゴヌクレオチドプローブを提供し、これらプローブは上述したあるいは後記するヌクレオチド配列の任意のものから取り出されうる。

[0007]

(好適な実施態様の詳細な説明)

I . 定義

ここで使用される際の「PROポリペプチド」及び「PRO」という用語は、直後に数値符号がある場合に種々のポリペプチドを指し、完全な符号(例えば、PRO/数字)は、ここに記載する特定のポリペプチド配列を意味する。ここで使用される「PRO/数字ポリペプチド」及び「PRO/数字」は、天然配列ポリペプチド及び変異体(ここで更に詳細に定義する)を含む。ここに記載されるPROポリペプチドは、ヒト組織型又は他の供給源といった種々の供給源から単離してもよく、組換え又は合成方法によって調製してもよい。

[0008]

「天然配列 P R O ポリペプチド」は、天然由来の対応する P R O ポリペプチドと同一のアミノ酸配列を有するポリペプチドを含んでいる。このような天然配列 P R O ポリペプチドは、自然から単離することもできるし、組換え又は合成手段により生産することもできる。「天然配列 P R O ポリペプチド」という用語には、特に、特定の P R O ポリペプチドの自然に生じる切断又は分泌形態 (例えば、細胞外ドメイン配列)、自然に生じる変異形態

10

20

30

40

20

30

40

50

(例えば、選択的にスプライシングされた形態)及びそのポリペプチドの自然に生じる対立遺伝子変異体が含まれる。本発明の種々の実施態様において、天然配列 PRO 7 0 3 ポリペプチドは、図 2 (配列番号: 1 0 2)のアミノ酸 1 ~ 7 3 0 を含有する成熟又は全長天然配列 PRO 7 0 3 ポリペプチドである。

[0009]

PROポリペプチド「細胞外ドメイン」又は「ECD」は、膜貫通及び細胞質ドメインを実質的に有しないPROポリペプチドの形態を意味する。通常、PROポリペプチドECDは、それらの膜貫通及び/又は細胞質ドメインを1%未満、好ましくはそのようなドメインを0.5%未満しか持たない。本発明のPROポリペプチドについて同定された任意の膜貫通ドメインは、疎水性ドメインのその型を同定するために当該分野において日常的に使用される基準に従い同定されることが理解されるであろう。膜貫通ドメインの厳密な境界は変わり得るが、最初に同定されたドメインのいずれかの末端から約5アミノ酸を越えない可能性が高い。従って、PROポリペプチド細胞外ドメインは、場合によっては、最初に同定された膜貫通ドメインのいずれかの末端から約5を越えないアミノ酸を含みうる。

[0010]

「PROポリペプチド変異体」とは、上記又は下記に定義されるように、ここに開示有える全長天然配列PROポリペプチドと少なくとも約80%のアミノ酸配列同には、の話性PROポリペプチドを意味する。このようなPROポリペプチド変異体には、一又は夜数のアミノ酸配列のN-又はC-末端において一又は複数のアミノ酸発基が付異には、全長天然アミノ酸配列のN-又はC-末端において、通常、PROポリペプチドが含まれる。通常、PROポリペプチドが含まれる。通常、PROポリペプチドが含まれる。近常、PROポリペプチドが含まれる。近常、PROポリペプチドが含まれる。近常、PROポリペプチドが含まれる。近常、PROポリペプチドが含まれる。近常のアミノ酸配列同一性、より好ましくは少なくとも約91%のアミノ酸配列同一性、とも約91%のアミノ酸配列同一性、とも約91%のアミノにより好ましくは少なくとも約91%のアミノにより好ましくは少なくとも約95%のアミノにより好ましくは少なくとも約95%のアミノにより好ましくは少なくとも約95%のアミノにより好ましくは少なくとも約95%のアミノにより好ましくは少なくとも約95%のアミノにより好ましくは少なくとも約95%のアミノにより好ましくは少なくとも約95%のアミノにより好ましくは少なくとも約99%のアミノ酸配列同一性、ちにより好ましくは少なくとも約95%のアミノ酸配列同一性、ちにくとも約98%のアミノ酸配列同一性、ちによりである。

[0011]

PROアミノ酸配列に対してここで同定されている「パーセント(%)アミノ酸配列同一 性」は、配列を整列させ、最大のパーセント配列同一性を得るために必要ならば間隙を導 入し、如何なる保存的置換も配列同一性の一部と考えないとした、PROポリペプチドの アミノ酸残基と同一である候補配列中のアミノ酸残基のパーセントとして定義される。パ ーセントアミノ酸配列同一性を決定する目的のためのアラインメントは、当業者の技量の 範 囲 に あ る 種 々 の 方 法 、 例 え ば BLAST、 BLAST-2、 ALIGN又 は Megalign (DNASTAR) ソ フ ト ウ エ アのような公に入手可能なコンピュータソフトウエアを使用することにより達成可能であ る。 好ま し N ソフトウェアアラインメントプログラムはBLASTである。 当業者であれば、 比較される配列の全長に対して最大のアラインメントを達成するために必要な任意のアル ゴリズムを含む、アラインメントを測定するための適切なパラメータを決定することがで きる。ここで使用される%同一性は、WU-BLAST-2コンピュータプログラム(Altschul等, Methods in Enzymology 266: 460-480 (1996); http://blast.wustl/edu/blast/README.h tml)を用いて計算される。殆どのWU-BLAST-2検索パラメータは初期値に設定される。調 節 可 能 な パ ラ メ ー タ は 以 下 の 値 に 設 定 す る : オ ー バ ー ラ ッ プ ス パ ン = 1 、 オ ー バ ー ラ ッ プ フラクション = 0 . 1 2 5 、ワード閾値(T) = 1 1 、及びスコアリングマトリクス = BL OSUM62。BLAST-2で使用される動的値であるHSP S及びHSP S2パラメータは、対象とする配 列の組成及び配列が検索されるデータベースの組成によりプログラム自身によって確立さ れる。しかしながら、感度をあげるように値を調節してもよい。%配列同一性は、整列さ

30

40

50

せた領域内の残基の総数で一致する同一の残基を除した商によって決定される。

[0012]

ここで同定される PROコード化配列に対する「パーセント(%)核酸配列同一性」は、配列を整列させ、最大のパーセント配列同一性を得るために必要ならば間隙を導入し、 PRO配列のヌクレオチドと同一である候補配列中のヌクレオチドのパーセントとして定義される。パーセント核酸配列同一性を決定する目的のためのアラインメントは、 当業者の知る範囲にある種々の方法、例えばBLAST、BLAST-2、ALIGN又はMegalign (DNASTAR)ソフトウエアのような公に入手可能なコンピュータソフトウエアを使用することにより達成可能である。 当業者であれば、比較される配列の全長に対して最大のアラインメントを達成するために必要な任意のアルゴリズムを含む、アラインメントを測定するための適切なパラメータを決定することができる。ここで使用される同一性の値は、オーバーラップスパン及びオーバーラップフラクションを各々1及び0.125に設定し、初期値に設定したWU-BLAST-2のBLASTNモジュールによって計算される。

[0013]

「陽性(ポジティブ)」という用語は、上記のように実施された配列比較の中で、比較された配列において同一ではないが類似の特性を有している残基(例えば、保存的置換の結果として)を含む。陽性の%値は、BLOSUM62マトリクス内でポジティブな値が付けられた残基を上記の整列領域内の残基の総数で除した商によって決定される。

[0014]

「エピトープタグ」なる用語は、ここで用いられるときは、「タグポリペプチド」に融合したPROポリペプチド、又はそれらのドメイン配列を含んでなるキメラポリペプチドを指す。タグポリペプチドは、その抗体が産生され得るエピトープ、又は幾つかの他の試薬によって同定できるエピトープを提供するに十分な数の残基を有しているが、その長さは対象とするPROポリペプチドの活性を阻害しないよう充分に短い。また、タグポリペプチドは、好ましくは、抗体が他のエピトープと実質的に交差反応をしないようにかなり独特である。適切なタグポリペプチドは、一般に、少なくとも6のアミノ酸残基、通常は約8~約50のアミノ酸残基(好ましくは約10~約20の残基)を有する。

[0015]

「単離された」とは、ここで開示された種々のポリペプチドを記述するために使用するときは、その自然環境の成分から同定され分離され及び / 又は回収されたポリペプチドを意味する。その自然環境の汚染成分とは、そのポリペプチドの診断又は治療への使用を典型的には妨害する物質であり、酵素、ホルモン、及び他のタンパク質様又は非タンパク質様溶質が含まれる。好ましい実施態様において、ポリペプチドは、(1)スピニングカップシークエネーターを使用することにより、少なくとも15残基のN末端あるいは内部アミノ酸配列を得るのに充分なほど、あるいは、(2)クーマシーブルーあるいは好ましくは銀染色を用いた非還元あるいは還元条件下でのSDS-PAGEによる均一性まで精製される。単離されたポリペプチドには、PROポリペプチドの自然環境の少なくとも1つの成分が存在しないため、組換え細胞内のインサイツのタンパク質が含まれる。しかしながら、通常は、単離されたポリペプチドは少なくとも1つの精製工程により調製される。

[0016]

「単離された」PROポリペプチドをコードする核酸分子は、同定され、PROポリペプチドをコードする核酸の天然源に通常付随している少なくとも1つの汚染核酸分子から分離された核酸分子である。単離されたPROポリペプチドコード化核酸分子は、天然に見出される形態あるいは設定以外のものである。ゆえに、単離されたPROポリペプチドコード化核酸分子は、天然の細胞中に存在するPROポリペプチドコード化核酸分子とは区別される。しかし、単離されたPROポリペプチドコード化核酸分子は、例えば、核酸分子が天然細胞のものとは異なった染色体位置にあるPROポリペプチドを通常発現する細胞に含まれるPROポリペプチド核酸分子を含む。

[0017]

「コントロール配列」という表現は、特定の宿主生物において作用可能に結合したコー

30

50

ド配列を発現するために必要なDNA配列を指す。例えば原核生物に好適なコントロール配列は、プロモーター、場合によってはオペレータ配列、及びリボソーム結合部位を含む。真核生物の細胞は、プロモーター、ポリアデニル化シグナル及びエンハンサーを利用することが知られている。

[0018]

核酸は、他の核酸配列と機能的な関係にあるときに「作用可能に結合し」でいる。例えば、プレ配列あるいは分泌リーダーのDNAは、ポリペプチドの分泌に参画するプレタンパク質として発現されているなら、そのポリペプチドのDNAに作用可能に結合している;プロモーター又はエンハンサーは、配列の転写に影響を及ぼすならば、コード配列に作用可能に結合している。一般的に、「作用可能に結合している」とは、「作用可能に結合している。一般的に、「作用可能に結合している」とは、結合したDNA配列が近接しており、分泌リーダーの場合には近接していて読みフェーズにあることを意味する。しかし、エンハンサーは必ずしも近接していて読みフェーズにあることを意味する。しかし、エンハンサーは必ずしも近接していて読みて、結合は簡便な制限部位でのライゲーションにより達成される。そのような部位が存在しない場合は、従来の手法に従って、合成オリゴヌクレオチドアダプターあるいはリンカーが使用される。

[0019]

「抗体」という用語は最も広い意味において使用され、特に抗-PROポリペプチドモノクローナル抗体(アゴニスト、アンタゴニスト、及び中和抗体を含む)、及び多エピトープ特異性を持つ抗-PRO抗体組成物を包含している。ここで使用される「モノクローナル抗体」という用語は、実質的に均一な抗体の集団、すなわち、構成する個々の抗体が、少量存在しうる自然に生じる可能性のある突然変異を除いて同一である集団から得られる抗体を称する。

ここで意図している「活性な」及び「活性」とは、天然又は天然発生 PROポリペプチドの生物学的及び / 又は免疫学的活性を保持する PROの形態を意味する。

[0020]

ここで使用される「治療」又は「治療する」とは、治癒的療法、予防的療法及び防止的療法を称する。治療が必要なものとは、既に疾患に罹っているもの、並びに疾患が防止されているもののなかで疾患に罹りやすいものを含む。

治療の対象のための「哺乳動物」は、ヒト、家庭及び農業用動物、動物園、スポーツ、 又はペット動物、例えばヒツジ、イヌ、ウマ、ネコ、ウシなどを含む哺乳類に分類される 任意の動物を意味する。好ましくは、ここでの哺乳動物はヒトである。

ここで用いられる「担体」は、製薬的に許容されうる担体、賦形剤、又は安定化剤を含み、用いられる用量及び濃度でそれらに暴露される細胞又は哺乳動物に対して非毒性である。生理学的に許容されうる担体は、水性pH緩衝溶液であることが多い。生理学的に許容されうる担体の例は、リン酸塩、クエン酸塩、及び他の有機酸塩のバッファー;アスコルビン酸を含む酸化防止剤;低分子量(約10残基未満)ポリペプチド;タンパク質、例えば血清アルブミン、ゼラチン、又は免疫グロブリン;疎水性ポリマー、例えばポリビニルピロリドン;アミノ酸、例えばグリシン、グルタミン、アスパラギン、アルギニン又はリシン;グルコース、マンノース又はデキストランを含む単糖類、二糖類、及び他の炭水化物;EDTA等のキレート剤;マンニトール又はソルビトール等の糖アルコール;ナトリウム等の塩形成対イオン;及び/又は非イオン性界面活性剤、例えばTWEEN(商品名)、ポリエチレングリコール(PEG)、及びPLURONICS(商品名)を含む。

[0021]

「アゴニスト」なる用語は、本発明の天然PROポリペプチド(ここで、天然PROポリペプチドは、プロ-PROポリペプチド、プレ-PROポリペプチド、プレプロ-PROポリペプチド、プレプロ-PROポリペプチド、又は成熟PROポリペプチドを意味する)のペプチド又は非ペプチド類似物及びそのような天然PROポリペプチドに特異的に結合する抗体を意味し、それらは天然PROポリペプチドの少なくとも1つの生物学的活性を保持している。好ましくは、本発明のアゴニストは、天然PROポリペプチドの定量的結合認識特性及びレセプター活性

30

40

50

化特性を保持している。

「アンタゴニスト」は、本発明の天然PROポリペプチドの生物学的活性を阻害する分子を指し、ここで、天然PROポリペプチドは、プロ-PROポリペプチド、プレ-PROポリペプチドを意味する。好ましくは、ここでのアンタゴニストは、本発明の天然PROポリペプチドの結合パートナーへの結合を阻害する。PROポリペプチド「アンタゴニスト」は、PROアンゴニストエフェクター機能を防止又は妨害する分子(例えば、PROポリペプチドにあるPROポリペプチドレセプターの結合及び/又は活性化を防止又は妨害する分子)である。このような分子は、例えば、アンタゴニスト分子有無における天然PROポリペプチドにののような分子は、例えば、アンタゴニスト分子有無における天然PROポリペプチドに阻害する能力をスクリーニングすることができる。また本発明のアンタゴニストは、PROポリペプチドも含み、そのアンチセンスポリヌクレオチドも含み、そのアンチセンスポリヌクレオチドは、PROポリペプチドの転写又は翻訳を阻止し、それによりその発現及び生物学的活性を阻害する。

[0022]

ハイブリダイゼーション反応の「ストリンジェンシー」は、当業者によって容易に決定され、一般的にプローブ長、洗浄温度、及び塩濃度に依存する経験的な計算である。一般に、プローブが長くなると適切なアニーリングのための温度が高くなり、プローブが短くなると温度は低くなる。ハイブリダイゼーションは、一般的に、相補的鎖がその融点に近いがそれより低い環境に存在する場合における変性DNAの再アニールする能力に依存する。プローブとハイブリダイゼーション可能な配列との間の所望の相同性の程度が高くなると、使用できる相対温度が高くなる。その結果、より高い相対温度は、反応条件をよりストリンジェンシーにするが、低い温度はストリンジェンシーを低下させる。さらに、ストリンジェンシーは塩濃度に逆比例する。ハイブリダイゼーション反応のストリンジェンシーの更なる詳細及び説明は、Ausubel等、Current Protocols in Molecular Biology、Wiley Interscience Publishers、(1995)を参照のこと。

ここで定義される「ストリンジェントな条件下」は、(1)洗浄のために低イオン強度及び高温度、例えば、50 において0.015Mの塩化ナトリウム/0.0015Mのクエン酸ナトリウム/0.1%のドデシル硫酸ナトリウム;又は(2)ハイブリッド形成中にホルムアミド等の変性剤、例えば、42 において50%(vol/vol)ホルムアミドと0.1%ウシ血清アルブミン/0.1%フィコール/0.1%のポリビニルピロリドン/50nMのp H 6.5のリン酸ナトリウムバッファーと750mMの塩化ナトリウム、75mMクエン酸ナトリウムを用いることを意味する。その他の例は、42 の50%ホルムアミド、5×SSC(0.75MのNaC1、0.075Mのクエン酸ナトリウム、5×ボルムアミド、5×SSC(0.75MのNaC1、0.075Mのクエン酸ナトリウム、5×デンハード液、超音波処理サケ精子DNA(50μg/m1)、0.1%SDSで洗浄することである。更にその他の実施例は、55 で10%のデキストラン硫酸を用いて、42 で0.2×SSC及び0.1%SDSで洗浄することである。でにその他の実施例は、55 で10%のデキストラン硫酸、2×SSC(塩化ナトリウム/クエン酸ナトリウム)及び50%ホルムアルデヒドを用いてハイブリッド形成を行い、続いて55 でEDTAを含む0.1×SSCから構成される高度にストリンジェントな洗浄液を用いることである。

「中程度のストリンジェントな条件下」とは、Sambrook等,上掲に記載されており、上記より低度のストリンジェントな洗浄溶液及びハイブリダイゼーションの条件(例えば、温度、イオン強度及び%SDS)の使用を含む。中程度のストリンジェントな条件下とは、20%ホルムアミド、5×SSC(150mMのNaCl、15mMのクエン酸三ナトリウム)、50mMリン酸ナトリウム(pH7.6)、5×デンハード液、10%デキストラン硫酸、及び20mg/mLの変性剪断サケ精子DNAを含む溶液中の37での終夜インキュベーション、次いで1×SSC中37・50でのフィルターの洗浄といった条件である。当業者であれば、プローブ長などの因子に適合させる必要に応じて、どのようにして温度、イオン強度等を調節するかを認識するであろう。

30

40

50

[0023]

「サザン分析」又は「サザンブロット」は、DNA又はDNA含有組成物の制限エンドヌクレアーゼ消化におけるDNA配列の存在が、知られた標識オリゴヌクレオチド又はDNA断片へのハイブリッド形成により確認される方法である。サザン分析は、典型的には、Sambrook等,Molecular Cloning: A Laboratory Manual (New York: Cold Spring Harbor Laboratory Press, 1989)のsections 7.39-7.52に記載されているように、アガロースゲル上のDNA消化物の電気泳動分離、電気泳動後のDNAの変性、及び放射性標識、ビオチニル化、又は酵素標識プローブでの分析のためのDNAの二トロセルロース、ナイロン、又は他の適した膜支持体上への移行を含む。

「ノーザン分析」又は「ノーザンブロット」は、オリゴヌクレオチド、DNA断片、CDNA又はその断片、又はRNA断片などの公知のプローブにハイブリッド形成するRNA配列を同定するために用いられる方法である。プローブは、³² P等の放射性同位体、又はビオチニル化、又は酵素で標識される。分析されるRNAは、通常はアガロース又はポリアクリルアミドゲル上で電気泳動により分離され、ニトロセルロース、ナイロン、又は他の適した膜に移され、Sambrook等のsections 7.39-7.52に記載されたもののような当該分野で知られた標準的技術を用いてプローブとハイブリッド形成する。

[0 0 2 4]

ここで用いられる「イムノアドヘシン」なる用語は、異種タンパク質(「アドヘシン」)の結合特異性と免疫グロブリン定常ドメインとを結合した抗体様分子を指す。構造的には、イムノアドヘシンは、所望の結合特異性を持ち、抗体の抗原認識及び結合部位以外である(即ち「異種の」)アミノ酸配列と、免疫グロブリン定常ドメイン配列との融合物を含む。イムノアドヘシン分子のアドヘシン部分は、典型的には少なくともレセプター又はリガンドの結合部位を含む隣接アミノ酸配列である。イムノアドヘシンの免疫グロブリン定常ドメイン配列は、IgG-1、IgG-2、IgG-3又はIgG-4サブタイプ、IgA(IgA-1及びIgA-2を含む)、IgE、IgD又はIgMなどの任意の免疫グロブリンから得ることができる。

「慢性」投与とは、急性様式とは異なり連続的な様式での薬剤を投与し、初期の治療効果(活性)を長時間に渡って維持することを意味する。「間欠」投与とは、中断無く連続的になされるのではなく、むしろ本質的に周期的になされる処理である。

- 又は複数の治療薬と「組み合わせた」投与とは、同時(同時期)及び任意の順序での連続した投与を含む。

[0025]

「発現ベクター」という用語は、PROポリペプチドをコードする核酸が適切な宿主細胞 におけるその発現に影響を与えうるコントロール配列に作用可能に結合したベクターを定 義 す る の に 用 い ら れ る 。 べ ク タ ー は 通 常 複 製 部 位 を 有 す る (但 し 、 こ れ は 染 色 体 組 込 み が 起こる場合は必要ない)。また発現ベクターは、形質転換細胞においてフェノタイプ選択 を 提 供 で き る マ ー カ ー 配 列 も 含 む 。 例 え ば 、 大 腸 菌 は 典 型 的 に 、 大 腸 菌 種 か ら 誘 導 さ れ る プラスミドであるpBR322を用いて形質転換される(Bolivar等, Gene 2: 95 [1977])。 p B R 3 2 2 はアンピシリン及びテトラサイクリン耐性の遺伝子を含み、よってクロ ーニング又は発現のいずれの目的でも、形質転換細胞を同定する容易な手段を提供する。 また発現ベクターは、最適には転写及び翻訳の制御に有用な配列、例えば、プロモーター 及 び シ ャ イ ン - ダ ル ガ ー 丿 配 列 (原 核 生 物 に つ い て) 又 は プ ロ モ ー タ ー 及 び エ ン ハ ン サ ー (哺乳動物について)を含む。プロモーターは、そうである必要はないが誘発性であり; 哺乳動物宿主のためのCMVプロモーターなどの強力な構成プロモーターさえもが宿主細 胞毒性無しにLHRを製造することがわかった。発現ベクターは、任意の発現制御、複製 可能配列又は選択遺伝子を含む必要はないと考えられるが、それらが無いことにより、ハ イブリッド形質転換体の同定及び高レベルのハイブリッド免疫グロブリン発現の達成が妨 害される可能性がある。

[0026]

「リポ多糖」又は「LPS」は、ここで「エンドトキシン」の同義語として用いられる

20

30

50

。リポ多糖(LPS)は、グラム陰性菌、例えば大腸菌の外膜の特徴的成分である。それらは多糖部分と脂質 A と呼ばれる脂肪部分とからなる。一細菌種から他に変化する多糖は、〇-特異的鎖(3~8糖の繰り返し単位から構成される)及び2部コアからなる。脂質 A は実際に、リン酸及び種々の数の脂肪酸で修飾された2つのグルコサミン糖を常に含む。さらなる情報については、例えば、Rietschel及びBrade, Scientific American August 1992, 54-61を参照のこと。

[0027]

「敗血性ショック」は、ここでは最も広い意味で用いられ、Bone, Ann. Intern Med. 1 14, 332-333 (1991)に記載された全ての定義を含む。特に、敗血性ショックは、感染に対する全身性反応で始まる、敗血症と呼ばれる症候群である。この症候群は低血圧及び器官不全をもたらし、それは敗血性ショックと呼ばれる。敗血性ショックは、グラム陽性生物及び真菌、並びにエンドトキシン含有グラム陰性生物によって開始されうる。従って、この定義は「エンドトキシンショック」に限定されない。

[0028]

「遺伝子増幅」及び「遺伝子複製」なる語句は交換可能に用いられ、遺伝子又は遺伝子断片の複数のコピーが特定の細胞又は細胞系で生成されるプロセスを意味する。複製された領域(増幅されたDNAの伸展)は、しばしば「単位複製配列」と呼ばれる。通常は、生成されるメッセンジャーRNA(mRNA)の量、即ち遺伝子発現レベルも、発現された特定遺伝子の作成されたコピー数に比例して増加する。

[0029]

ここで用いられる「腫瘍」は、悪性又は良性に関わらず、全ての腫瘍形成細胞成長及び増殖、及び全ての前癌性及び癌性細胞及び組織を意味する。「癌」及び「癌性」という用語は、典型的には調節されない細胞成長を特徴とする、哺乳動物における生理学的状態を指すか記述する。癌の例には、これらに限定されるものではないが、腺癌、リンパ腫、芽細胞腫、肉腫、及び白血病が含まれる。このような癌のより特定の例には、乳癌、前立腺癌、大腸癌、扁平上皮細胞癌、小細胞肺癌、非小細胞肺癌、胃腸癌、膵臓癌、神経膠芽細胞腫、子宮頸管癌、卵巣癌、肝臓癌、膀胱癌、肝細胞腫、結腸直腸癌、子宮体癌、唾液腺癌、腎臓癌、産卵口癌、甲状腺癌、肝癌及び様々な種類の頭部及び頸部の癌が含まれる。【0030】

ここで用いられる「細胞毒性薬」という用語は、細胞の機能を阻害又は阻止し及び/又は細胞破壊を生ずる物質を指す。この用語は、放射性同位体(例えば、I131、I125、Y90及びRe186)、化学治療薬、及び細菌、真菌、植物又は動物起源の酵素活性毒素等の毒素、又はそれらの断片を含むことを意図する。

「化学治療薬」は、癌の治療に有用な化学化合物である。化学治療薬の例には、アドリアマイシン、ドキソルビシン、エピルビシン、5-フルオロウラシル、シトシンアラビノシド(「Ara-С」)、シクロホスファミド、チオテパ、ブスルファン、サイトキシン、タキソイド、例えばパクリタキセル(タキソール、Bristol-Myers Squibb Oncology、Princeton、NJ)、及びドキセタキセル(タキソテア、Rhone-Poulenc Rorer、Antony、France)、トキソテア、メトトレキセート、シスプラチン、メルファラン、ビンブラスチン、ブレオマイシン、エトポシド、イフォスファミド、マイトマイシンC、ミトキサントン、ビンクリスチン、ビノレルビン、カルボプラチン、テニポシド、ダウノマイシン、カルミノマイシン、アミノプテリン、ダクチノマイシン、マイトマイシン、エスペラマイシン(米国特許第4,675,187号参照)、メルファラン及び関連するナイトロジェンマスタードを含む。また、タモキシフェン及びオナプリストン等の腫瘍に対するホルモン作用を調節又は阻害するように機能するホルモン薬もこの定義に含まれる。

「成長阻害薬」は、ここで用いられる場合、インビトロ又はインビボで、細胞、特にここに定義される遺伝子を過剰発現している癌細胞の成長を阻害する化合物又は組成物を意味する。即ち、成長阻害薬は、S期においてそのような遺伝子を過剰発現している細胞の割合を有意に減少させるものである。成長阻害薬の例は、細胞周期の進行を(S期以外の位置で)阻止する薬剤、例えば、G1停止及びM期停止を誘発する薬剤を含む。古典的な

M期ブロッカーは、ビンカス(ビンクリスチン及びビンブラスチン)、タキソール、及びトポII阻害剤、例えばドキソルビシン、エピルビシン、ダウノルビシン、エトポシド、及びプレオマイシンを含む。G1停止させるこれらの薬剤は、S期停止にも波及し、例えば、DNAアルキル化剤、例えばタモキシフェン、プレドニソン、ダカルバジン、メクロレタミン、シスプラチン、メトトレキセート、5-フルオロウラシル及びAra-Cである。さらなる情報は、The Molecular Basis of Cancer, Mendelsohn及びIsrael,編集, Chapter 1, Murakamiによる表題「Cell cycle regulation, oncogens, and antineoplastic drugs」(WB Saunders: Philadelphia, 1995)、特に13頁に見出される。

「ドキソルビシン」は、アントラサイクリン抗生物質である。

[0031]

用語「サイトカイン」は、一の細胞集団により放出され、他の細胞に細胞間メディエータとして作用するタンパク質のための一般的用語である。このようなサイトカインの例は、リンカイン、モノカイン、及び伝統的ポリペプチドホルモンである。サイトカインに含まれるのは、成長ホルモン、例えばヒト成長ホルモン、N-メチオニルヒト成長ホルモン、及びウシ成長ホルモン;甲状腺ホルモン;チロキシン;インシュリン;プロインシュリン;リラキシン;プロリラキシン;等である。ここで用いられるように、用語サイトカインは天然供給源から又は組換え細胞培地からのタンパク質及び天然配列サイトカインの生物学的等価物を含む。

[0032]

「天然抗体」及び「天然免疫グロブリン」は、通常は2つの同一の軽(L)鎖及び2つの同一の重(H)鎖からなる約150,000ダルトンの異種四量体糖タンパク質である。各軽鎖は重鎖にジスルフィド結合で結合しているが、ジスルフィド鎖の数は異なる免疫グロブリンアイソタイプの重鎖間で変化する。また、各重鎖及び軽鎖は規則的に離間した鎖間ジスルフィド架橋を有する。各重鎖は一端に可変ドメイン(VH)を持ち、それに続いて多数の定常ドメインがある。各軽鎖は一端に可変ドメイン(VL)及び他端に定常ドメインを持ち;軽鎖の定常ドメインは重鎖の第1の定常ドメインと並び、軽鎖可変ドメインは重鎖可変ドメインと並んでいる。特定のアミノ酸残基が軽鎖及び重鎖の可変ドメインの間の界面を形成すると考えられている。

用語「可変」は、可変ドメインの或る部分が抗体中で大きく異なり、各特定の抗体のその特定の抗原に対する結合及び特異性に用いられるという事実を意味する。しかしながら、可変性、抗体の可変ドメイン全体に渡って均一に分布してはいない。それは、軽鎖及び重鎖の可変領域の両方において、相補性決定領域(CDR)又は高頻度可変領域と呼ばれる3つのセグメントに集中している。可変ドメインのより高度に保存される部分はフレームワーク(FR)と呼ばれる。天然重鎖及び軽鎖の可変ドメインは各々4つの領域を含んでおり、大きくは -シート配置をとり、3つのCDRに接続し、それは -シート構造を接続する、或る場合にはその一部を構成するループを形成する。各鎖のCDRは、FR領域の直近に保持され、他の鎖のCDRとともに抗体の抗原結合部位の形成の寄与している(Kabat等、NIH Publ. No.91-3242、Vol. I、647-669頁(1991))。定常ドメインは抗体の抗原への結合に直接含まれないが、抗体の抗体依存性細胞毒性への参加といった種々のエフェクター機能を示す。

[0 0 3 3]

「抗体断片」は、無傷の抗体の一部、好ましくは無傷の抗体の抗原結合又は可変領域を含む。抗体断片の例は、Fab、Fab、、F(ab')2、及びFv断片;ダイアボディ(disbodies);直鎖状抗体(Zapata等, Protein Eng. 8(10): 1057-1062 [1995]);一本鎖抗体分子;及び抗体断片から形成された多重特異性抗体を含む。

抗体のパパイン消化は、「Fab」断片と呼ばれる2つの同一の抗体結合断片を生成し、その各々は単一の抗原結合部位を持ち、残りは容易に結晶化する能力を反映して「Fc」断片と命名される。ペプシン処理はF(ab')2断片を生じ、それは2つの抗原結合部位を持ち、抗原を交差結合することができる。

「Fv」は、完全な抗原認識及び結合部位を含む最小の抗体断片である。この領域は、

10

20

30

20

30

40

50

密接に非共有結合した1本の重鎖と1本の軽鎖の可変領域の二量体からなる。この配置において各ドメインの3つのCDRが相互作用してVH-VLに量体の表面に抗原結合部位を決定する。しかしながら、単一の可変ドメイン(又は抗原に特異的な3つのCDRのみを含んでなるFVの半分)でさえ、結合部位全体よりは低い親和性であるが、抗原を認識し結合する能力を持つ。

[0034]

またFab断片は、軽鎖の定常ドメイン及び重鎖の第1の定常ドメイン(CH1)も含む。Fab断片は、抗体ヒンジ領域からの一又は複数のシステインを含む重鎖CH1ドメインのカルボキシ末端に幾つかの残基が付加されていることによりFab断片と相違する。ここで、Fab'-SHは、定常ドメインのシステイン残基が遊離のチオール基を持つFab'を表す。F(ab')2抗体断片は、最初はFab'断片の対として生成され、それらの間にヒンジシステインを有する。抗体断片の他の化学的結合も知られている。

任意の脊椎動物種からの抗体(免疫グロブリン)の「軽鎖」は、それらの定常ドメインのアミノ酸配列に基づいて、カッパ及びラムダと呼ばれる二つの明らかに異なる型の一方に分類される。

それらの重鎖の定常ドメインのアミノ酸配列に依存して、免疫グロブリンは異なるクラスに分類できる。免疫グロブリンの五つの主要なクラス:IgA、IgD、IgE、IgG及びIgMがあり、それらの幾つかは更にサブクラス(アイソタイプ)、例えばIgG1、IgG2、IgG3,IgG4、IgA及びIgA2に分類される。

「一本鎖Fv」又は「sFv」抗体断片は、抗体のVH及びVLドメインを含む抗体断片を含み、これらのドメインは単一のポリペプチド鎖に存在する。好ましくは、FvポリペプチドはVH及びVLドメイン間にポリペプチドリンカーを更に含み、それはsFVが抗原結合に望まれる構造を形成するのを可能にする。scFvの概説については、The Pharmacology of Monoclonal Antibodies, vol. 113, Rosenburg及びMoore編, Springer-Verlag, New York, pp. 269-315 (1994)のPluckthunを参照のこと。

[0035]

用語「ダイアボディ (diabodies)」は、二つの抗原結合部位を持つ小型の抗体断片を指し、その断片は同じポリペプチド鎖(VH‐VL)内で軽鎖可変ドメイン(VL)に結合した重鎖可変ドメイン(VH)を含む。同じ鎖の二つのドメイン間に対形成するには短すぎるリンカーを用いることにより、ドメインは強制的に他の鎖の相補的ドメインと対形成して二つの抗原結合部位を生成する。ダイアボディは、例えば、EP 404,097; WO 93/11161; 及びHollinger等,Proc. Natl. Acad. Sci. USA, 90: 6444-6448 (1993)により十分に記載されている。

「単離された」抗体は、その自然環境の成分から同定され分離及び / 又は回収されたものである。その自然環境の汚染成分とは、その抗体の診断又は治療への使用を妨害する物質であり、酵素、ホルモン、及び他のタンパク質様又は非タンパク質様溶質が含まれる。好ましい実施態様において、抗体は、(1)ローリ法 (Lowry method)で測定した場合95%を越える抗体、最も好ましくは99重量%を越えるまで、(2)スピニングカップシークエネーターを使用することにより、少なくとも15残基のN末端あるいは内部アミノ酸配列を得るのに充分なほど、あるいは、(3)クーマシーブルーあるいは好ましくは銀染色を用いた非還元あるいは還元条件下でのSDS-PAGEによる均一性まで精製される。単離された抗体には、抗体の自然環境の少なくとも1つの成分が存在しないため、組換え細胞内のインサイツの抗体が含まれる。しかしながら、通常は、単離された抗体は少なくとも1つの精製工程により調製される。

[0036]

「標識」なる語は、ここで用いられる場合、抗体に直接又は間接的に抱合して「標識」抗体を生成する検出可能な化合物又は組成物を意味する。標識は、それ自身検出可能でもよく(例えば、放射性標識又は蛍光標識)、又は酵素標識の場合、検出可能な基質化合物又は組成物の化学変換を触媒してもよい。

「固相」とは、本発明の抗体がそれに付着することのできる非水性マトリクスを意味す

る。ここに意図する固相の例は、部分的又は全体的に、ガラス(例えば、孔制御ガラス)、多糖類(例えばアガロース)、ポリアクリルアミド、ポリスチレン、ポリビニルアルコール及びシリコーンから形成されたものを含む。或る種の実施態様では、内容に応じて、固相はアッセイプレートのウェルを構成することができ;その他では精製カラム(例えばアフィニティクロマトグラフィーカラム)とすることもできる。また、この用語は、米国特許第4,275,149号に記載されたような、別個の粒子の不連続な固相も包含する。

「リポソーム」は、種々の型の脂質、リン脂質及び/又は界面活性剤からなる小型の小胞であり、哺乳動物への薬物の輸送に有用である。リポソームの成分は、通常は生体膜の脂質配列に類似する二層形式に配列させる。

[0037]

II. 本発明の組成物と方法

全長PRO703ポリペプチド

本発明は、本出願においてPRO703と称されるポリペプチドをコードする、新規に 同定され単離された核酸配列を提供する。特に本出願人は、以下の実施例で更に詳細に開 示するような、PRO703ポリペプチドをコードするcDNAを同定し単離した。BL AST及びFastA配列アラインメントプログラムを用いた全長PRO703ポリペプ チドのアミノ酸配列の分析は、 P R O 7 O 3 ポリペプチドの種々の部分が V L C A S タン パク質と有意な配列類似性を持つことを示唆し、それによりPRO703が新規なVLS A C タンパク質であることを示している。より詳細には、Dayhoffデータベース(version 33.45 SwissProt 35)の分析は、PRO703アミノ酸配列と以下のDayhoff配列;超長 鎖アシル - CoAに対するヒトmRNA、(「D88308」)、 超長鎖アシル - CoAシ ンセターゼに対するラットmRNA、(「D85100」)、マウス脂肪酸輸送タンパク 質、(「MMU15976」)、ヒト超長鎖アシル-CoAシンターゼ、(「D8830 1」)、マウス超長鎖アシル-CoAシンターゼ、(「AF033031_1」)、 超 長 鎖 ア シ ル - C o A シ ン タ ー ゼ - R a t t u s 、(「 D 8 5 1 0 0 _ 1 」)、 ラ ッ ト 長 鎖脂肪酸輸送タンパク質、(「FATP_RAT」)、マウス長鎖脂肪酸輸送タンパク質 (「FATP_MOUSE」)、可能な長鎖脂肪酸輸送タンパク質、(「FAT1<u>_</u>Y EAST」)、及び脂肪酸輸送タンパク質、(「CHY15839_2」)、との間の有 意な配列類似性を実証し、それによりPRO703が新規なVLCASであることを示し ている。従って、現在では、本出願で開示されるPRO703ポリペプチドがVLCAS フ ァ ミ リ ー の 新 た に 同 定 さ れ た メ ン バ ー で あ り 、 V L C A S フ ァ ミ リ ー に 典 型 的 な 長 鎖 及 び超長鎖脂肪酸の細胞輸送を促進する能力を有していると考えられている。

[0038]

P R O ポリペプチド変異体

ここに記載した全長天然配列PROポリペプチドに加えて、PRO変異体も調製できると考えられる。PRO変異体は、PROポリペプチドDNAに適当なヌクレオチド変化を導入することにより、あるいは所望のPROポリペプチドを合成することにより調製できる。当業者は、グリコシル化部位の数又は位置の変化あるいは膜固着特性の変化などのアミノ酸変化がPROポリペプチドの翻訳後プロセスを変えうることを理解するであろう。

天然全長配列 P R O 又はここに記載した P R O ポリペプチドの種々のドメインにおける変異は、例えば、米国特許第5,364,934号に記載されている保存的及び非保存的変異についての任意の技術及び指針を用いてなすことができる。変異は、結果として天然配列 P R O と比較して P R O ポリペプチドのアミノ酸配列が変化する P R O ポリペプチドをコードする一又は複数のコドンの置換、欠失又は挿入であってよい。場合によっては、変異は少なくとも 1 つのアミノ酸の P R O ポリペプチドの一又は複数のドメインの任意の他のアミノ酸による置換である。いずれのアミノ酸残基が所望の活性に悪影響を与えることなりである。いずれのアミノ酸残基が所望の活性に悪影響を与えることなり、置換又は欠失されるかの指針は、P R O ポリペプチドの配列を相同性の知られたタンパク質分子の配列と比較し、相同性の高い領域内でなされるアミノ酸配列変化を最小にすることによって見出される。アミノ酸置換は、一のアミノ酸の類似した構造及び/又は化学特性を持つ他のアミノ酸での置換、例えばロイシンのセリンでの置換、即ち保存的アミ

10

20

30

40

ノ酸置換の結果とすることができる。挿入及び欠失は、場合によっては 1 から 5 のアミノ酸の範囲内とすることができる。許容される変異は、配列においてアミノ酸の挿入、欠失又は置換を系統的に作成し、得られた変異体を下記の実施例に記載するインビトロアッセイの任意のもので活性について試験することにより決定される。

[0039]

特別の実施態様では、対象とする保存的置換を、好ましい置換を先頭にして表 1 に示す。このような置換が生物学的活性の変化をもたらす場合、表 1 に例示的置換と名前を付けた又は以下にアミノ酸分類でさらに記載するように、より置換的な変化が導入され生成物がスクリーニングされる。

[0040]

表 1

元の残基	例 示 的 置 換	好ましい置換	
Ala(A)	val; Leu; ile	val	
Arg(R)	lys; gln; asn	lys	
Asn(N)	gln; his; lys; arg	gln	
Asp(D)	glu	glu	
Cys(C)	ser	ser	
GIn(Q)	asn	asn	
Glu(E)	asp	asp	
Gly(G)	pro; ala	ala	20
His(H)	asn; gln; lys; arg	arg	
lle(l)	leu; val; met; ala; phe;		
	ノルロイシン	leu	
Leu(L)	ノルロイシン; ile; val;		
	met; ala; phe	ile	
Lys(K)	arg; gln; asn	arg	
Met(M)	leu; phe; ile	leu	
Phe(F)	leu; val; ile; ala; tyr	leu	
Pro(P)	ala	ala	
Ser(S)	t h r	thr	30
Thr(T)	ser	ser	
Trp(W)	tyr; phe	t y r	
Tyr(Y)	trp; phe; thr; ser	phe	
Val(V)	ile; leu; met; phe;		
	ala; ノルロイシン	leu	

[0041]

PROポリペプチドの機能及び免疫学的同一性の置換修飾は、(a)置換領域のポリペプチド骨格の構造、例えばシート又は螺旋配置、(b)標的部位の電荷又は疎水性、又は(c)側鎖の嵩を維持しながら、それらの効果において実質的に異なる置換基を選択することにより達成される。天然発生残基は共通の側鎖特性に基づいてグループに分けることができる:

- (1)疎水性: ノルロイシン, met, ala, val, leu, ile;
- (2) 中性の親水性: cys, ser, thr;
- (3)酸性:asp,glu;
- (4)塩基性:asn, gln, his, lys, arg;
- (5)鎖配向に影響する残基:gly, pro; 及び
- (6) 芳香族: trp, tyr, phe。

非保存的置換は、これらの分類の一つのメンバーを他の分類に交換することを必要とするであろう。また、そのように置換された残基は、保存的置換部位、好ましくは残された (非保存)部位に導入されうる。

50

40

20

30

40

50

変異は、オリゴヌクレオチド媒介(部位特異的)突然変異誘発、アラニンスキャンニング、及びPCR突然変異誘発 [Carter等, Nucl. Acids Res., 13: 4331 (1986); Zoller 等, Nucl. Acids Res., 10: 6487 (1987)]、カセット突然変異誘発 [Wells等, Gene, 34: 315 (1985)]、制限的選択突然変異誘発 [Wells等, Philos. Trans. R. Soc. London SerA, 317: 415 (1986)]等のこの分野で知られた方法を用いてなすことができ、又は他の知られた技術をクローニングしたDNAに実施してPROポリペプチド変異体DNAを作成することもできる。

また、隣接配列に沿って一又は複数のアミノ酸を同定するのにスキャンニングアミノ酸分析を用いることができる。好ましいスキャンニングアミノ酸は比較的小さく、中性のアミノ酸である。そのようなアミノ酸は、アラニン、グリシン、セリン、及びシステインを含む。アラニンは、ベータ炭素を越える側鎖を排除し変異体の主鎖構造を変化させにくいので、この群の中で典型的に好ましいスキャンニングアミノ酸である。また、アラニンは最もありふれたアミノ酸であるため典型的には好ましい。さらに、それは埋もれた及び露出した位置の両方に見られることが多い[Creighton, The Proteins, (W.H. Freeman & Co., N.Y.); Chothia, J. Mol. Biol., 150: 1 (1976)]。アラニン置換が十分な量の変異体を生じない場合は、アイソテリック(isoteric)アミノ酸を用いることができる。

[0042]

PROポリペプチドの修飾

PROポリペプチドの共有結合的修飾は本発明の範囲内に含まれる。共有結合的修飾の一型は、PROポリペプチドの標的とするアミノ酸残基を、PROポリペプチドの選択された側鎖又はN又はC末端残基と反応できる有機誘導体化試薬と反応させることである。二官能性試薬での誘導体化が、例えばPROポリペプチドを水不溶性支持体マトリクスあるいは抗-PROポリペプチド抗体の精製方法又はその逆で用いるための表面に架橋させるのに有用である。通常用いられる架橋剤は、例えば、1,1-ビス(ジアゾアセチル)-2-フェニルエタン、グルタルアルデヒド、N-ヒドロキシスクシンイミドエステル、例えば4-アジドサリチル酸、3,3'-ジチオビス(スクシンイミジルプロピオネート)等のジスクシンイミジルエステルを含むホモ二官能性イミドエステル、ビス-N-マレイミド-1,8-オクタン等の二官能性マレイミド、及びメチル-3-[(p-アジドフェニル)-ジチオ]プロピオイミダート等の試薬を含む。

他の修飾は、グルタミニル及びアスパラギニル残基の各々対応するグルタミル及びアスパルチルへの脱アミノ化、プロリン及びリシンのヒドロキシル化、セリル又はトレオニル残基のヒドロキシル基のリン酸化、リシン、アルギニン、及びヒスチジン側鎖の -アミノ基のメチル化[T.E. Creighton, Proteins: Structure and Molecular Properties, W.H. Freeman & Co., San Francisco, pp.79-86 (1983)]、N末端アミンのアセチル化、及び任意のC末端カルボキシル基のアミド化を含む。

[0043]

本発明の範囲内に含まれる PROポリペプチドの共有結合的修飾の他の型は、ポリペプチドの天然グリコシル化パターンの変更を含む。「天然グリコシル化パターンの変更」とは、ここで意図されるのは、天然配列 PROポリペプチドに見られる 1 又は複数の炭水化物部分の欠失、及び / 又は天然配列 PROポリペプチドに存在しない 1 又は複数のグリコシル化部位の付加及び / 又はグリコシル化部位に結合した糖残基の比率及び / 又は組成の変更を意味する。

PROポリペプチドへのグリコシル化部位の付加は、アミノ酸配列の変更を伴う。この変更は、例えば、1又は複数のセリン又はトレオニン残基の天然配列PROポリペプチド(O-結合グリコシル化部位)への付加、又は置換によってなされてもよい。PROポリペプチドアミノ酸配列は、場合によっては、DNAレベルでの変化、特に、PROポリペプチドをコードするDNAを予め選択された塩基において変異させ、所望のアミノ酸に翻訳されるコドンを生成させることを通して変更されてもよい。

[0044]

PROポリペプチド上に炭水化物部分の数を増加させる他の手段は、グリコシドのポリ

20

30

40

50

ペプチドへの化学的又は酵素的結合による。このような方法は、この技術分野において、例えば、1987年9月11日に発行されたWO 87/05330、及びAplin及びWriston, CRC Crit. Rev. Biochem., pp. 259-306 (1981)に記載されている。

PROポリペプチド上に存在する炭水化物部分の除去は、化学的又は酵素的に、あるいはグルコシル化の標的として提示されたアミノ酸残基をコードするコドンの変異的置換によってなすことができる。化学的脱グリコシル化技術は、この分野で知られており、例えば、Hakimuddin等、Arch. Biochem. Biophys., 259:52 (1987)により、及びEdge等、Anal. Biochem., 118: 131 (1981)により記載されている。ポリペプチド上の炭水化物部分の酵素的切断は、Thotakura等、Meth. Enzymol. 138:350 (1987)に記載されているように、種々のエンド及びエキソグリコシダーゼを用いることにより達成される。

本発明のPROポリペプチドの共有結合的修飾の他の型は、PROポリペプチドの、種々の非タンパク質様ポリマー、例えばポリエチレングリコール、ポリプロピレングリコール、又はポリオキシアルキレンの一つへの、米国特許第4,640,835号;第4,496,689号;第4,301,144号;第4,670,417号;第4,791,192号又は第4,179,337号に記載された方法での結合を含む。

[0045]

また、本発明のPROポリペプチドは、他の異種ポリペプチド又はアミノ酸配列に融合したPROポリペプチドを含むキメラ分子を形成する方法で修飾してもよい。一実施態様では、このようなキメラ分子は、抗タグ抗体が選択的に結合できるエピトープを提供するタグポリペプチドとPROポリペプチドとの融合を含む。エピトープタグは、一般的にはPROポリペプチドのアミノ又はカルボキシル末端に位置する。このようなPROポリペプチドのエピトープタグ形態の存在は、タグポリペプチドに対する抗体を用いて検出することができる。また、エピトープタグの提供は、抗タグ抗体又はエピトープタグに結合する他の型の親和性マトリクスを用いたアフィニティ精製によってPROポリペプチドの免疫グロブリンスを見にする。もう一つの実施態様において、キメラ分子はPROポリペプチドの免疫グロブリン又は免疫グロブリンの特定領域との融合体を含む。キメラ分子の二価の形態には、このような融合はIgG分子のFc領域であり得る。

種々のタグポリペプチド及びそれら各々の抗体はこの分野で良く知られている。例としては、ポリ・ヒスチジン(poly-his)又はポリ・ヒスチジン・グリシン(poly-his-gly)タグ; flu HAタグポリペプチド及びその抗体 1 2 C A 5 [Field等,Mol. Cell. Biol.,8:2159-2165 (1988)]; c-mycタグ及びそれに対する 8 F 9 、 3 C 7 、 6 E 1 0 、 G 4 、 B 7 及び 9 E 1 0 抗体 [Evan等,Molecular and Cellular Biology,5:3610-3616 (1985)]; 及び単純ヘルペスウイルス糖タンパク質 D (gD) タグ及びその抗体 [Paborsky等,Protein Engineering,3(6):547-553 (1990)]を含む。他のタグポリペプチドは、フラッグペプチド [Hopp等,BioTechnology,6:1204-1210 (1988)]; K T 3 エピトープペプチド [Martin等,Science,255:192-194 (1992)]; -チューブリンエピトープペプチド [Skinner等,J. Biol. Chem.,266:15163-15166 (1991)]; 及び T 7 遺伝子 1 0 タンパク質ペプチドタグ [Lutz-Freyermuth等,Proc. Natl. Acad. Sci. USA,87:6393-6397 (1990)]を含む。

[0046]

PROポリペプチドの調製

以下の説明は、主として、所望のPROポリペプチド核酸を含むベクターで形質転換又は形質移入された細胞を培養することによりPROを生産する方法に関する。もちろん、当該分野においてよく知られている他の方法を用いてPROポリペプチドを調製することができると考えられる。例えば、PROポリペプチド配列、又はその一部は、固相技術を用いた直接ペプチド合成によって生産してもよい[例えば、Stewart等, Solid-Phase Peptide Synthesis, W.H. Freeman Co., San Francisco, CA (1969); Merrifield, J. Am. Chem. Soc., 85:2149-2154 (1963)参照]。手動技術又は自動によるインビトロタンパク質合成を行ってもよい。自動合成は、例えば、アプライド・バイオシステムズ・ペプチド合成機 (Foster City, CA)を用いて、製造者の指示により実施してもよい。所望のPRO

ポリペプチドの種々の部分は、別々に化学的に合成され、化学的又は酵素的方法を用いて 結合させて全長PROポリペプチドを生産してもよい。

[0047]

A . PROポリペプチドをコードするDNAの単離

PROポリペプチドをコードするDNAは、所望のPROポリペプチドmRNAを保有していてそれを検出可能なレベルで発現すると考えられる組織から調製された cDNAライブラリから得ることができる。従って、ヒトPROポリペプチドDNAは、実施例に記載されるように、ヒトの組織から調製された cDNAライブラリから簡便に得ることができる。またPROポリペプチドコード化遺伝子は、ゲノムライブラリから又はオリゴヌクレオチド合成により得ることもできる。

ライブラリは、対象となる遺伝子あるいはその遺伝子によりコードされるタンパク質を同定するために設計された(PROポリペプチドに対する抗体又は少なくとも約20-80塩基のオリゴヌクレオチド等の)プローブによってスクリーニングできる。選択されたプローブによる cDNA又はゲノムライブラリのスクリーニングは、例えばSambrook等,Molecular Cloning: A Laboratory Manual (New York: Cold Spring Harbor Laboratory Press, 1989)に記載されている標準的な手順を使用して実施することができる。所望のPROポリペプチドをコードする遺伝子を単離する他の方法はPCR法を使用するものである[Sambrook等,上掲;Dieffenbach等, PCR Primer: A Laboratory Manual (Cold Spring Harbor Laboratory Press, 1995)]。

[0048]

下記の実施例には、 c D N A ライブラリのスクリーニング技術を記載している。プローブとして選択されたオリゴヌクレオチド配列は、充分な長さで、疑陽性が最小化されるよう充分に明瞭でなければならない。オリゴヌクレオチドは、スクリーニングされるライブラリ内の D N A とのハイブリッド形成時に検出可能であるように標識されていることが好ましい。標識化の方法は当該分野において良く知られており、 3 2 P 標識された A T P のような放射線標識、ビオチン化あるいは酵素標識の使用が含まれる。中程度の厳密性及び高度の厳密性を含むハイブリッド形成条件は、上掲の Samb rook等に与えられている。

このようなライブラリースクリーニング法において同定された配列は、Genbank等の公共データベース又は個人の配列データベースに寄託され公衆に利用可能とされている周知の配列と比較及びアラインメントすることができる。分子の決定された領域内又は全長に渡っての(アミノ酸又は核酸レベルのいずれかでの)配列同一性は、BLAST、ALIGN、DNAStar、及びINHERIT等のコンピュータソフトウェアプログラムを用いた配列アラインメントを通して決定することができる。

タンパク質コード化配列を有する核酸は、初めてここで開示された推定アミノ酸配列を使用し、また必要ならば、 c D N A に逆転写されなかった m R N A の生成中間体及び先駆物質を検出する上掲のSambrook等に記述されているような従来のプライマー伸展法を使用し、選択された c D N A 又はゲノムライブラリをスクリーニングすることにより得られる

[0049]

B.宿主細胞の選択及び形質転換

宿主細胞を、ここに記載したPROポリペプチド生産のための発現又はクローニングベクターで形質移入又は形質転換し、プロモーターを誘導し、形質転換体を選択し、又は所望の配列をコードする遺伝子を増幅するために適当に変性された常套的栄養培地で培養する。培養条件、例えば培地、温度、pH等々は、過度の実験をすることなく当業者が選ぶことができる。 一般に、細胞培養の生産性を最大にするための原理、プロトコール、及び実用技術は、Mammalian Cell Biotechnology: a Practical Approach, M.Butler編 (IR L Press, 1991)及びSambrook等,上掲に見出すことができる。

[0050]

形質移入の方法、例えば、CaPO₄及びエレクトロポレーションは当業者に知られている。用いられる宿主細胞に応じて、その細胞に対して適した標準的な方法を用いて形質

10

20

30

40

30

40

50

転換はなされる。前掲のSambrook等に記載された塩化カルシウムを用いるカルシウム処理又はエレクトロポレーションが、原核生物又は実質的な細胞壁障壁を含む他の細胞に対して用いられる。アグロバクテリウム・トゥメファシエンスによる感染が、Shaw等,Gene,23:315 (1983)及び1989年6月29日公開のWO 89/05859に記載されているように、或る種の植物細胞の形質転換に用いられる。このような細胞壁のない哺乳動物の細胞に対しては、Graham及びvan der Eb, Virology,52:456-457 (1978)のリン酸カルシウム沈降法が好ましい。哺乳動物細胞の宿主系形質転換の一般的な態様は米国特許第4,399,216号に記載されている。酵母菌中への形質転換は、典型的には、Van Solingen等,J. Bact.,130:946 (1977)及びHsiao等,Proc. Natl. Acad. Sci. USA,76:3829 (1979)の方法に従って実施される。しかしながら、DNAを細胞中に導入する他の方法、例えば、核マイクロインジェクション、エレクトロポレーション、無傷の細胞、又はポリカチオン、例えばポリプレン、ポリオルニチン等を用いる細菌プロトプラスト融合もまた用いることもできる。哺乳動物細胞を形質転換するための種々の技術については、Keown等,Methods in Enzymology,185:527-537 (1990)及び Mansour等,Nature,336:348-352 (1988)を参照のこと。

[0051]

ここに記載のベクターにDNAをクローニングあるいは発現するために適切な宿主細胞 は、原核生物、酵母菌、又は高等真核生物細胞である。適切な原核生物は、限定するもの ではないが、真正細菌、例えばグラム陰性又はグラム陽性生物体、例えば大腸菌のような 腸内細菌科を含む。種々の大腸菌株が公衆に利用可能であり、例えば、大腸菌K12株M M 2 9 4 (ATCC31,446); 大腸菌X 1 7 7 6 (ATCC31,537); 大腸菌株W 3 1 1 0 (ATCC 27,325)及びK5772(ATCC53,635)である。他の好ましい原核動物宿主細胞は、大腸 菌、例えば、E. coli、エンテロバクター、エルビニア(Erwinia)、クレブシエラ(Klebsie IIa)、プロテウス (Proteus)、サルモネラ、例えば、ネズミチフス菌、セラチア、例えば 、セラチアマルセサンス(Serratia marcescans)、及び赤痢菌、並びに桿菌、例えばバチ ルススブチリス(B. subtilis)及びバチルスリチェニフォルミス(B. licheniformis)(例 えば、1989年4月12日発行のDD 266,710に記載されたバチルスリチェニフォルミス41P)、シュードモナス、例えば緑膿菌及びストレプトマイセスなどの腸内細菌科を含む。種 々の大腸菌株が公衆に利用可能であり、例えば、大腸菌 K 1 2 株 M M 2 9 4 (ATCC31,446) ; 大腸菌X 1 7 7 6 (ATCC31,537) ; 大腸菌株W 3 1 1 0 (ATCC27,325)及びK 5 7 7 2 (ATCC53,635)である。これらの例は例示であり限定ではない。株W3110は、組換 え D N A 生 産 物 の た め の 共 通 の 宿 主 株 で あ る の で 一 つ の 特 に 好 ま し い 宿 主 又 は 親 宿 主 で あ る。好ましくは、最小量のタンパク質加水分解酵素を分泌する。例えば、株W3110は 、細胞に外来のタンパク質をコードする遺伝子における遺伝子変異をするように修飾して もよく、そのような宿主の例としては、完全な遺伝子型tonAを有する大腸菌W311 0株1A2;完全な遺伝子型tonA ptr3を有する大腸菌W3110株9E4;完 全な遺伝子型 tonA ptr3 phoA E15 (argF-lac)169 de g P ompTkan「を有する大腸菌W3110株27C7(ATCC55,244);完全な 遺伝子型tonA ptr3 phoA E15 (argF-lac)169 degP ompT rbs7ilvGkan「を有する大腸菌W3110株37D6;非カナマ イシン耐性 d e g P 欠 失 変 異 を 持 つ 3 7 D 6 株 で あ る 大 腸 菌 W 3 1 1 0 株 4 0 B 4 ; 及 び 1990年8月7日発行の米国特許第4,946,783号に開示された変異周辺質プロテアーゼを有す る大腸菌株を含む。あるいは、クローニングのインビトロ法、例えばPCR又は他の核酸 ポリメラーゼ反応が好ましい。

[0052]

原核生物に加えて、糸状菌又は酵母菌のような真核微生物は、PROポリペプチドコード化ベクターのための適切なクローニング又は発現宿主である。サッカロミセス・セレヴィシアは、通常用いられる下等真核生物宿主微生物である。他に、シゾサッカロミセスプロンブ(Schizosaccharomyces prombe)(Beach及びNurse, Nature, 290: 140 [1981]; 1985年5月2日発行のEP 139,383); クルベロミセスホスツ(Kluyveromyces hosts)(米国特許第4,943,529号; Fleer等, Bio/Technology, 9: 968-975 (1991))、例えばケーラクチス(

20

30

40

50

K. lactis) (MW98-8C, CBS683, CBS4574; Louvencourt等, J. Bacteriol. 737 [1983]) 、ケーフラギリス(K. fragilis)(ATCC 12,424)、ケーブルガリクス(K. bulgaricus)(A TCC 16,045)、ケーウィケラミイ(K. wickeramii)(ATCC 24,178)、ケーワルチイ(K. wa ltii)(ATCC 56,500)、ケードロソフィラルム(K. drosophilarum)(ATCC 36,906; Van d en Berg等, Bio/Technology, 8: 135 (1990))、ケーテモトレランス(K. themotolerans) 及びケーマルキシアナス(K. marxianus);ヤロウィア(yarrowia)(EP 402,226);ピッチ ャパストリス(Pichia pastoris) (EP 183,070; Sreekrishna等, J. Basic Microbiol, 28 : 265-278 [1988]) ; カンジダ ; トリコデルマレーシア(reesia)(EP 244,234) ; アカパ ンカビ (Case等, Proc. Natl. Acad. Sci. USA, 76: 5259-5263 [1979]) ; シュワニオマ イセス(schwanniomyces)、例えばシュワニオマイセスオクシデンタリス(occidentalis)(1990年10月31日発行のEP 394,538);及び糸状真菌、例えば、ニューロスポラ、ペニシリ ウム、トリポクラジウム(Tolypocladium)(1991年1月10日発行のW0 91/00357);及びア スペルギルス宿主、例えばアスペルギルスニダランス(Ballance等, Biochem. Biophys. Res. Commun., 112: 284-289 [1983]; Tilburn等, Gene, 26: 205-221 [1983]; Yelton等 , Proc. Natl. Acad. Sci. USA, 81: 1470-1474 [1984])及びアスペルギルスニガー (Ke Ily及びHynes, EMBO J., 4: 475-479 [1985])が含まれる。ここで好ましいメチロトロピ ック (methylotropic)酵母は、これらに限られないが、ハンセヌラ (Hansenula)、カンジダ 、クロエケラ(Kloeckera)、ピチア(Pichia)、サッカロミセス、トルロプシス(Torulopsis)、 及 び ロ ド ト ル ラ (Rhodotorula)か ら な る 属 か ら 選 択 さ れ る メ タ ノ ー ル で 成 長 可 能 な 酵 母 を含む。この酵母の分類の例示である特定の種のリストは、C. Anthony, The Biochemist ry of Methylotrophs, 269 (1982)に記載されている。

[0053]

グリコシル化 P R O ポリペプチドの発現に適切な宿主細胞は、多細胞生物から誘導される。無脊椎動物細胞の例としては、ショウジョウバエS 2 及びスポドスペラS f 9 等の昆虫細胞並びに植物細胞が含まれる。有用な哺乳動物宿主株化細胞の例は、チャイニーズハムスター卵巣(C H O) 及び C O S 細胞を含む。より詳細な例は、S V 4 0 によって形質転換されたサル腎臓 C V 1 株 (COS-7, ATCC CRL 1651);ヒト胚腎臓株(293又は懸濁培養での増殖のためにサブクローン化された293細胞、Graham等,J. Gen Virol., 36:59 (1977));チャイニーズハムスター卵巣細胞 / - D H F R (CHO, Urlaub及びChasin, Proc. Natl. Acad. Sci. USA, 77:4216 (1980));マウスのセルトリ細胞(TM4, Mather, Biol. Reprod., 23:243-251 (1980))ヒト肺細胞 (W138, ATCC CCL 75); ヒト肝細胞 (Hep G2, HB 8065);及びマウス乳房腫瘍細胞 (MMT 060562, ATTC CCL51)を含む。適切な宿主細胞の選択は、この分野の技術常識内にある。

[0054]

C. 複製可能なベクターの選択及び使用

所望のPROポリペプチドをコードする核酸 (例えば、 c DNA又はゲノムDNA) は、クローニング (DNAの増幅) 又は発現のために複製可能なベクター内に挿入される。様々なベクターが公的に入手可能である。ベクターは、例えば、プラスミド、コスミド、ウイルス粒子、又はファージの形態とすることができる。適切な核酸配列が、種々の手法によってベクターに挿入される。一般に、DNAはこの分野で周知の技術を用いて適当な制限エンドヌクレアーゼ部位に挿入される。ベクター成分としては、一般に、これらに制限されるものではないが、一又は複数のシグナル配列、複製開始点、一又は複数のマーカー遺伝子、エンハンサーエレメント、プロモーター、及び転写終結配列を含む。これらの成分の一又は複数を含む適当なベクターの作成には、当業者に知られた標準的なライゲーション技術を用いる。

対象とする P R O ポリペプチドは直接的に組換え手法によって生産されるだけではなく、シグナル配列あるいは成熟タンパク質あるいはポリペプチドの N - 末端に特異的切断部位を有する他のポリペプチドである異種性ポリペプチドとの融合ペプチドとしても生産される。一般に、シグナル配列はベクターの成分であるか、ベクターに挿入される P R O ポリペプチド D N A の一部である。シグナル配列は、例えばアルカリホスファターゼ、ペニ

20

30

40

50

シリナーゼ、1ppあるいは熱安定性エンテロトキシンIIリーダーの群から選択される原核生物シグナル配列であってよい。酵母の分泌に関しては、シグナル配列は、酵母インベルターゼリーダー、アルファ因子リーダー(酵母菌属(Saccharomyces)及びクルイベロマイシス(Kluyveromyces) 因子リーダーを含み、後者は米国特許第5,010,182号に記載されている)、又は酸ホスフォターゼリーダー、カンジダアルビカンス(C.albicans)グルコアミラーゼリーダー(1990年4月4日発行のEP362179)、又は1990年11月15日に公開されたW0 90/13646に記載されているシグナルであり得る。哺乳動物細胞の発現においては、哺乳動物シグナル配列は、同一あるいは関連ある種の分泌ポリペプチド由来のシグナル配列並びにウイルス分泌リーダーのようなタンパク質の直接分泌に使用してもよい。

[0055]

発現及びクローニングベクターは共に一又は複数の選択された宿主細胞においてベクターの複製を可能にする核酸配列を含む。そのような配列は多くの細菌、酵母及びウイルスに対してよく知られている。プラスミド p B R 3 2 2 に由来する複製開始点は大部分のグラム陰性細菌に好適であり、 2 μ プラスミド開始点は酵母に適しており、様々なウイルス開始点(S V 4 0 、ポリオーマ、アデノウイルス、 V S V 又は B P V)は哺乳動物細胞におけるクローニングベクターに有用である。

発現及びクローニングベクターは、典型的には、選べるマーカーとも称される選択遺伝子を含む。典型的な選択遺伝子は、(a)アンピシリン、ネオマイシン、メトトレキセートあるいはテトラサイクリンのような抗生物質あるいは他の毒素に耐性を与え、(b)栄養要求性欠陥を補い、又は(c)例えばバシリのための遺伝子コード D-アラニンラセマーゼのような、複合培地から得られない重要な栄養素を供給するタンパク質をコードする。

哺乳動物細胞に適切な選べるマーカーの他の例は、DHFRあるいはチミジンキナーゼのように、PROポリペプチド核酸を取り込むことのできる細胞成分を同定することのできるものである。野生型DHFRを用いた場合の好適な宿主細胞は、Urlaub 等により、Proc. Natl. Acad. Sci. USA、77:4216 (1980)に記載されているようにして調製され増殖されたDHFR活性に欠陥のあるCHO株化細胞である。酵母菌中での使用に好適な選択遺伝子は酵母プラスミドYRp7に存在するtrp1遺伝子である[Stinchcomb等、Nature、282:39(1979);Kingsman等、Gene、7:141(1979);Tschemper等、Gene、10:157(1980)]。trp1遺伝子は、例えば、ATCC番号 4 4 0 7 6 あるいはPEP 4 - 1 のようなトリプトファン内で成長する能力を欠く酵母菌の突然変異株に対する選択マーカーを提供する[Jones、Genetics、85:12 (1977)]。

[0056]

発現及びクローニングベクターは、通常、PROポリペプチド核酸配列に作用可能に結合し、mRNA合成を制御するプロモーターを含む。種々の可能な宿主細胞により認識される好適なプロモーターが知られている。原核生物宿主での使用に好適なプロモーターは-ラクタマーゼ及びラクトースプロモーター系[Chang等, Nature, 275:615 (1978); Goeddel等, Nature, 281:544 (1979)]、アルカリホスファターゼ、トリプトファン(trp)プロモーター系[Goeddel, Nucleic Acids Res., 8:4057 (1980); EP 36,776]、及びハイブリッドプロモーター、例えばtacプロモーター[deBoer 等, Proc. Natl. Acad. Sci. USA, 80:21-25 (1983)]を含む。細菌系で使用するプロモータもまたPROポリペプチドをコードするDNAと作用可能に結合したシャイン・ダルガーノ(S.D.)配列を有する

酵母宿主と共に用いて好適なプロモーター配列の例としては、3-ホスホグリセラートキナーゼ [Hitzeman 等, J. Biol. Chem., 255:2073 (1980)] 又は他の糖分解酵素 [Hess 等, J. Adv. Enzyme Reg., 7:149 (1968); Holland, Biochemistry, 17:4900(1978)] 、例えばエノラーゼ、グリセルアルデヒド-3-リン酸デヒドロゲナーゼ、ヘキソキナーゼ、ピルビン酸デカルボキシラーゼ、ホスホフルクトキナーゼ、グルコース-6-リン酸イソメラーゼ、3-ホスホグリセレートムターゼ、ピルビン酸キナーゼ、トリオセリン酸イソメラーゼ、ホスホグルコースイソメラーゼ、及びグルコキナーゼが含まれる。

他の酵母プロモーターとしては、成長条件によって転写が制御される付加的効果を有す

20

30

50

る誘発的プロモーターであり、アルコールデヒドロゲナーゼ2、イソチトクロムC、酸ホスファターゼ、窒素代謝と関連する分解性酵素、メタロチオネイン、グリセルアルデヒド-3-リン酸デヒドロゲナーゼ、及びマルトース及びガラクトースの利用を支配する酵素のプロモーター領域がある。酵母菌での発現に好適に用いられるベクターとプロモータはEP73,657に更に記載されている。

[0057]

哺乳動物の宿主細胞におけるベクターからのPROポリペプチド転写は、例えば、ポリオーマウィルス、伝染性上皮腫ウィルス (1989年7月5日公開のUK 2,211,504)、アデノウィルス (例えばアデノウィルス 2)、ウシ乳頭腫ウィルス、トリ肉腫ウィルス、サイトメガロウィルス、レトロウィルス、B型肝炎ウィルス及びサルウィルス 4 0 (SV40)のようなウィルスのゲノムから得られるプロモーター、異種性哺乳動物プロモーター、例えばアクチンプロモーター又は免疫グロブリンプロモーター、及び熱衝撃プロモーターから得られるプロモーターによって、このようなプロモーターが宿主細胞系に適合し得る限り制御される

より高等の真核生物による所望のPROポリペプチドをコードするDNAの転写は、ベクター中にエンハンサー配列を挿入することによって増強され得る。エンハンサーは、通常は約10から300塩基対で、プロモーターに作用してその転写を増強するDNAのシス作動要素である。哺乳動物遺伝子由来の多くのエンハンサー配列が現在知られている(グロビン、エラスターゼ、アルブミン、 -フェトプロテイン及びインスリン)。しかしながら、典型的には、真核細胞ウィルス由来のエンハンサーが用いられるであろう。例としては、複製起点の後期側のSV40エンハンサー(100 - 270塩基対)、サイトメガロウィルス初期プロモーターエンハンサー、複製起点の後期側のポリオーマエンハンサー及びアデノウィルスエンハンサーが含まれる。エンハンサーは、PROポリペプチドコード化配列の5′又は3′位でベクター中にスプライシングされ得るが、好ましくはプロモーターから5′位に位置している。

また真核生物宿主細胞(酵母、真菌、昆虫、植物、動物、ヒト、又は他の多細胞生物由来の有核細胞)に用いられる発現ベクターは、転写の終結及びmRNAの安定化に必要な配列も含む。このような配列は、真核生物又はウィルスのDNA又はcDNAの通常は5、時には3′の非翻訳領域から取得できる。これらの領域は、PROポリペプチドをコードするmRNAの非翻訳部分にポリアデニル化断片として転写されるヌクレオチドセグメントを含む。

組換え脊椎動物細胞培養でのPROポリペプチドの合成に適応化するのに適切な他の方法、ベクター及び宿主細胞は、Gething等, Nature, 293:620-625 (1981); Mantei等, Nature, 281:40-46 (1979); EP 117,060; 及びEP 117,058に記載されている。

[0058]

D.遺伝子増幅/発現の検出

遺伝子の増幅及び/又は発現は、ここで提供された配列に基づき、適切に標識されたプローブを用い、例えば、従来よりのサザンブロット法、mRNAの転写を定量化するノーザンブロット法 [Thomas, Proc. Natl. Acad. Sci. USA,77:5201-5205 (1980)]、ドットブロット法 (DNA分析)、又はインサイツハイブリッド形成法によって、直接的に試料中で測定することができる。あるいは、DNA二本鎖、RNA二本鎖及びDNA-RNAハイブリッド二本鎖又はDNA-タンパク二本鎖を含む、特異的二本鎖を認識することができる抗体を用いることもできる。次いで、抗体を標識し、アッセイを実施することができる、ここで二本鎖は表面に結合しており、その結果二本鎖の表面での形成の時点でその二本鎖に結合した抗体の存在を検出することができる。

あるいは、遺伝子の発現は、遺伝子産物の発現を直接的に定量する免疫学的な方法、例えば細胞又は組織切片の免疫組織化学的染色及び細胞培養又は体液のアッセイによって、測定することもできる。試料液の免疫組織化学的染色及び / 又はアッセイに有用な抗体は、モノクローナルでもポリクローナルでもよく、任意の哺乳動物で調製することができる。簡便には、抗体は、天然配列 P R O ポリペプチドに対して、又はここで提供される D N

30

50

A配列をベースとした合成ペプチドに対して、又はPROポリペプチドDNAに融合し特異的抗体エピトープをコードする外因性配列に対して調製され得る。

[0059]

E . ポリペプチドの精製

PROポリペプチドの形態は、培地又は宿主細胞の溶菌液から回収することができる。膜結合性であるならば、適切な洗浄液 (例えばトリトン - X 1 0 0)又は酵素的切断を用いて膜から引き離すことができる。PROポリペプチドの発現に用いられる細胞は、凍結融解サイクル、超音波処理、機械的破壊、又は細胞溶解剤などの種々の化学的又は物理的手段によって破壊することができる。

PROポリペプチドを、組換え細胞タンパク又はポリペプチドから精製することが望ましい。適切な精製手順の例である次の手順により精製される:すなわち、イオン交換カラムでの分画;エタノール沈殿;逆相HPLC;シリカ又はカチオン交換樹脂、例えばDEAEによるクロマトグラフィー;クロマトフォーカシング;SDS-PAGE;硫酸アンモニウム沈殿;例えばセファデックスG-75を用いるゲル濾過;IgGのような汚染物を除くプロテインAセファロースカラム;及びPROポリペプチドのエピトープタグ形態を結合させる金属キレート化カラムである。この分野で知られ、例えば、Deutscher、Methodes in Enzymology,182(1990);Scopes,Protein Purification:Principles and Practice,Springer-Verlag,New York(1982)に記載された多くのタンパク質精製方法を用いることができる。選ばれる精製過程は、例えば、用いられる生産方法及び特に生産されるPROポリペプチドの性質に依存する。

[0060]

PROポリペプチドの用途

本発明のPROポリペプチドをコードする核酸配列(又はそれらの補体)は、ハイブリッド形成プローブとしての使用を含む分子生物学の分野において、染色体及び遺伝子マッピングにおいて、及びアンチセンスRNA及びDNAの生成において種々の用途を有している。また、PROポリペプチドコード化核酸も、ここに記載される組換え技術によるPROポリペプチドの調製に有用であろう。

全長天然配列PROポリペプチドコード化核酸又はその一部は、全長PROポリペプチ ド遺伝子の単離又はPROポリペプチド核酸配列に対して所望の配列同一性を持つ更に他 の遺伝子(例えば、PROポリペプチドの天然発生変異体又は他の種からのPROポリペ プチドをコードするもの)の単離のためのcDNAライブラリ用のハイブリッド形成プロ ーブとして使用できる。場合によっては、プローブの長さは約20~約50塩基である。 ハイブリッド形成プローブは、ここに開示した任意のDNA分子の核酸配列から、又は天 然 配 列 PROコード化 DNAのプロモーター、エンハンサー成 分及 びイントロンを含むゲ ノム配列から誘導され得る。例えば、スクリーニング法は、 PROポリペプチド遺伝子の コード化領域を周知のDNA配列を用いて単離して約40塩基の選択されたプローブを合 成することを含む。ハイブリッド形成プローブは、³²P又は³⁵S等の放射性ヌクレオ チド、又はアビディン/ビオチン結合系を介してプローブに結合したアルカリホスファタ ーゼ等の酵素標識を含む種々の標識で標識されうる。本発明のPROポリペプチド遺伝子 に相補的な配列を有する標識されたプローブは、ヒトcDNA、ゲノムDNA又はmRN A のライブラリーをスクリーニングし、そのライブラリーの何れのメンバーがプローブに ハイブッド形成するかを決定するのに使用できる。ハイブリッド形成技術は、以下の実施 例において更に詳細に記載する。

[0061]

本出願で開示するESTsはプローブと同様に、ここに記載した方法で用いることができる。

また、プローブは、PCR技術に用いて、密接に関連したPRO配列の同定のための配列のプールを作成することができる。

また、PROポリペプチドをコードする核酸配列は、そのPROポリペプチドをコードする遺伝子のマッピングのため、及び遺伝子疾患を持つ個体の遺伝子分析のためのハイブ

20

30

40

50

リッド形成プローブの作成にも用いることができる。ここに提供される核酸配列は、インサイツハイブリッド形成、既知の染色体マーカーに対する結合分析、及びライブラリーでのハイブリッド形成スクリーニング等の周知の技術を用いて、染色体及び染色体の特定領域にマッピングすることができる。

[0062]

PROポリペプチドのコード化配列が他のタンパク質に結合するタンパク質をコードする場合、PROポリペプチドは、そのリガンドを同定するアッセイに用いることができる。同様にして、レセプター/リガンド結合性相互作用の阻害剤を同定することができる。このような結合性相互作用に含まれるタンパク質も、ペプチド又は小分子阻害剤又は結合性相互作用のアゴニストのスクリーニングに用いることができる。スクリーニングアッセイは、天然PROポリペプチド又はPROポリペプチドのリガンドの生物学的活性に似たリード化合物の発見のために設計される。このようなスクリーニングアッセイは、化学的ライブラリーの高スループットスクリーニングにも用いられ、小分子候補薬剤の同定に特に適したものとする。考慮される小分子は、合成有機又は無機化合物を含む。アッセイは、この分野で良く知られ特徴付けられているタンパク質・タンパク質結合アッセイ、生物学的スクリーニングアッセイ、免疫検定及び細胞ベースのアッセイを含む種々の型式で実施される。

[0063]

また、PROポリペプチド又はその任意の修飾型をコードする核酸は、トランスジェニ ック動物又は「ノックアウト」動物を産生するのにも使用でき、これらは治療的に有用な 試 薬 の 開 発 や ス ク リ ー ニ ン グ に 有 用 で あ る 。 ト ラ ン ス ジ ェ ニ ッ ク 動 物 (例 え ば マ ウ ス 又 は ラット)とは、出生前、例えば胚段階で、その動物又はその動物の祖先に導入された導入 遺伝子を含む細胞を有する動物である。導入遺伝子とは、トランスジェニック動物が発生 する細胞のゲノムに組み込まれたDNAである。一実施形態では、対象とするPROポリ ペプチドをコードするcDNAは、確立された技術によりPROポリペプチドをコードす るゲノムDNAをクローン化するために使用することができ、ゲノム配列を、PROポリ ペ プ チ ド を コ ー ド す る D N A を 発 現 す る 細 胞 を 有 す る ト ラ ン ス ジ ェ ニ ッ ク 動 物 を 産 生 す る た め に 使 用 す る こ と が で き る 。 ト ラ ン ス ジ ェ ニ ッ ク 動 物 、 特 に マ ウ ス 又 は ラ ッ ト 等 の 特 定 の動物を産生する方法は当該分野において常套的になっており、例えば米国特許第4,736, 866号や第4,870,009号に記述されている。典型的には、特定の細胞を組織特異的エンハン サ ー で の P R O ポ リ ペ プ チ ド 導 入 遺 伝 子 の 導 入 の 標 的 に す る 。 胚 段 階 で 動 物 の 生 殖 系 列 に 導入されたPROポリペプチドコード化導入遺伝子のコピーを含むトランスジェニック動 物はPROポリペプチドをコードするDNAの増大した発現の影響を調べるために使用で きる。このような動物は、例えばその過剰発現を伴う病理学的状態に対して保護をもたら すと思われる試薬のテスター動物として使用できる。本発明のこの態様においては、動物 を試薬で治療し、導入遺伝子を有する未治療の動物に比べ病理学的状態の発症率が低けれ ば、病理学的状態に対する治療的処置の可能性が示される。

[0064]

あるいは、PROポリペプチドの非ヒト相同体は、動物の胚性細胞に導入されたPROポリペプチドをコードする変更ゲノムDNAと、PROポリペプチドをコードする欠陥又は変更遺伝子との間の相同的組換えによって、PROポリペプチドをコードする欠陥又は変更遺伝子を有するPROポリペプチド「ノックアウト」動物を作成するために使用できる。例えば、PROポリペプチドをコードする cDNAは、確立された技術に従い、PROポリペプチドをコードするがノムDNAのクローニングに使用できる。PROポリペプチドをコードするガノムDNAの一部を欠失したり、組み込みを監視するために使用する選択でコードする遺伝子等の他の遺伝子で置換することができる。典型的にしてはマーカーをコードする遺伝子等の他の遺伝子で置換することができる。典型的に「例えば、中国的組換えべクターについてはThomas及びCapecchi、Cell、51:503(1987)を参照のこと」。ベクターは胚性幹細胞に(例えばエレクトロポレーションによって)導入し、導入されたDNAが内在性DNAと相同的に組換えられた細胞が選択される[例えば、Li等

20

30

40

50

、Cell、69:915(1992)参照]。選択された細胞は次に動物 (例えばマウス又はラット)の胚盤胞内に注入されて集合キメラを形成する [例えば、Bradley、Teratocarcinomas and Embryonic Stem Cells: A Practical Approach、E. J. Robertson、ed. (IRL、0xford、1987)、pp. 113-152参照]。その後、キメラ性胚を適切な偽妊娠の雌性乳母に移植し、期間をおいて「ノックアウト」動物をつくり出す。胚細胞に相同的に組換えられたDNAを有する子孫は標準的な技術により同定され、それらを利用して動物の全細胞が相同的に組換えられたDNAを含む動物を繁殖させることができる。ノックアウト動物は、PROポリペプチドが不在であることによるある種の病理的状態及びその病理的状態の進行に対する防御能力によって特徴付けられる。

[0065]

PROポリペプチドのインビボ投与が用いられる場合、正常な投与量は、投与経路に応じて、哺乳動物の体重当たり1日に約10ng/kgから100mg/kgまで、好ましくは約1μg/kg/日から10mg/kg/日である。特定の用量及び輸送方法の指針は文献に与えられている;例えば、米国特許第4,657,760号、第5,206,344号、又は第5,225,212号参照。異なる製剤が異なる治療用化合物及び異なる疾患に有効であること、例えば一つの器官又な組織を標的とする投与には他の器官又は組織とは異なる方式で輸送することは必要であることが予想される。

PROポリペプチドの投与を必要とする任意の疾患又は疾病の治療に適した放出特性を持つ製剤でPROポリペプチドの持続放出が望まれる場合、PROポリペプチドのマイクロカプセル化が考えられる。持続放出のための組換えタンパク質のマイクロカプセル化は、ヒト成長ホルモン(rhGH)、インターフェロン(rhIFN)、インターロイキン-2、及びMNrgp120で成功裏に実施されている。Johnson等, Nat. Med., 2: 795-799 (1996); Yasuda, Biomed. Ther., 27: 1221-1223 (1993); Hora等, Bio/Technology, 8: 755-758 (1990); Cleland, 「Design and Production of Single Immunization Vaccines Using Polyactide Polyglycolide Microsphere Systems」Vaccine Design: The Subunit and Adjuvant Approach, Powell 及び Newman編, (Plenum Press: New York, 1995), p. 439-462; WO 97/03692, WO 96/40072, WO 96/07399; 及び米国特許第5,654,010号。

これらのタンパク質の持続放出製剤は、ポリ-乳酸-コグリコール酸(PLGA)ポリマーを用い、その生体適合性及び広範囲の生分解特性に基づいて開発された。PLGAの分解生成物である乳酸及びグリコール酸は、ヒト身体内で即座にクリアされる。さらに、このポリマーの分解性は、分子量及び組成に依存して数ヶ月から数年まで調節できる。Lewis,「Controlled release of bioactive agents from lactide/glycolide polymer」: M. Chasin及び R. Langer (編), Biodegradable Polymers as Drug Delivery Systems (Marcel Dekker: New York, 1990), pp. 1-41。

例えば約85kgの最大体重を持つ哺乳動物に約80g/kg/日の用量を与える製剤について、最大用量は1日当たり約6.8mgのPROポリペプチドであろう。この用量レベルに達するためには、最大の可能なタンパク質負荷(15-20%w/wPROポリペプチド)及び最小の起こりうる初期破裂(<20%)を持つ持続放出製剤が必要である。1-2週間に渡るマイクロカプセルからのPROポリペプチドの連続(ゼロ・オーダー)放出も望ましい。さらに、放出されるカプセル化タンパク質は、所望の放出時間に渡ってその一体性及び安定性を維持しなければならない。

[0067]

[0066]

本発明のPRO703ポリペプチドは、VLCASタンパク質に関連する生物学的活性を有し、インビボ治療用途及びインビトロの両方に用いられる。当業者は本発明のPRO703ポリペプチドをそのような用途に用いる方法を良く知っている。

PROポリペプチド703及びその一部は、VLCASに相同性を持ち、インビボ治療用途並びに種々の他の応用に有用である。新規なVLCASタンパク質及び関連分子の同定は多数のヒト疾患に関連する。即ち、新たなVLCASタンパク質及びVLCASタンパク質様分子の同定は、それらのタンパク質が種々の異なるヒト疾患の潜在的治療をもた

らしうることにおいて特に重要である。このようなポリペプチドは、生物工学的及び医学的研究において並びに種々の工業的応用においても重要な役割を果たす。結果として、 P R O 7 0 3 などの新規な分子には、特に科学的及び医学的興味がある。

[0068]

本発明の化合物は、製薬的に有用な組成物を調製するための周知の方法に従って処方でき、それにより PROポリペプチドが製薬的に許容可能な担体媒体との混合物に混合される。好適な担体媒体及びその処方は、他のヒトタンパク質、例えばヒト血清アルブミンを含むが、例えば、Remington's Pharmaceutical Sciences, 16th ed., 1980, Mack Publishing Co., Oslo等編集に記載されており、その開示は参考としてここに取り入れる。

[0069]

本発明の製薬組成物の用量及び望ましい薬剤濃度は、特に意図される用途に応じて変化する。例えば、静脈深部の血栓症又は末梢血管疾患の治療においては、「ボーラス」投与が典型的には好ましく、それに続く投与は、およそ一定な血液レベル、好ましくは約3 μg/mlのオーダーに維持するように与えられる。

しかしながら、吸入能力は一般に利用できない救急医療ケア設備に関連する用途では、 横たわる疾患(例えば塞栓症、亀裂骨折)の一般的な緊急性のために、幾分多めの初期投 与量、例えば静脈内ボーラスを与えるのが一般的に望ましい。

[0070]

抗 - P R O ポリペプチド抗体

本発明は、さらに抗 - P R O ポリペプチド抗体を提供するものである。抗体の例としては、ポリクローナル、モノクローナル、ヒト化、二重特異性及びヘテロ抱合体抗体が含まれる。

A . ポリクローナル抗体

抗 - PROポリペプチド抗体はポリクローナル抗体を含む。ポリクローナル抗体の調製方法は当業者に知られている。哺乳動物においてポリクローナル抗体は、例えば免疫化剤、及び所望するのであればアジュバントを、一又は複数回注射することで発生させることができる。典型的には、免疫化剤及び / 又はアジュバントを複数回皮下又は腹腔内注射により、哺乳動物に注射する。免疫化剤は、PROポリペプチド又はその融合タンパク質を含みうる。免疫化剤を免疫化された哺乳動物において免疫原性が知られているタンパク質に抱合させるのが有用である。このような免疫原タンパク質の例は、これらに限られないが、キーホールリンペットへモシアニン、血清アルブミン、ウシサイログロブリン及び大豆トリプシンインヒビターが含まれる。使用され得るアジュバントの例には、フロイント完全アジュバント及びMPL-TDMアジュバント(モノホスホリル脂質 A、合成トレハロースジコリノミコラート)が含まれる。免疫化プロトコールは、過度の実験なく当業者により選択されるであろう。

[0071]

B . モノクローナル抗体

あるいは、抗-PROポリペプチド抗体はモノクローナル抗体であってもよい。モノクローナル抗体は、Kohler及びMilstein、Nature、256:495 (1975)に記載されているようなハイブリドーマ法を使用することで調製することができる。ハイブリドーマ法では、マウス、ハムスター又は他の適切な宿主動物を典型的には免疫化剤により免疫化することで、免疫化剤に特異的に結合する抗体を生成するかあるいは生成可能なリンパ球を誘発する。また、リンパ球をインビトロで免疫化することもできる。

免疫化剤は、典型的には対象とするPROポリペプチド又はその融合タンパク質を含む。一般にヒト由来の細胞が望まれる場合には末梢血リンパ球(「PBL」)が使用され、あるいは非ヒト哺乳動物源が望まれている場合は、脾臓細胞又はリンパ節細胞が使用される。次いで、ポリエチレングリコール等の適当な融合剤を用いてリンパ球を不死化株化細胞と融合させ、ハイブリドーマ細胞を形成する[Goding, Monoclonal Antibodies: Principles and Practice, Academic Press, (1986) pp. 59-103]。不死化株化細胞は、通常は、形質転換した哺乳動物細胞、特に齧歯動物、ウシ、及びヒト由来の骨髄腫細胞である。

10

20

30

40

20

30

40

50

通常、ラット又はマウスの骨髄腫株化細胞が使用される。ハイブリドーマ細胞は、好ましくは、未融合の不死化細胞の生存又は成長を阻害する一又は複数の物質を含有する適切な培地で培養される。例えば、親細胞が、酵素のヒポキサンチングアニンホスホリボシルトランスフェラーゼ(HGPRT又はHPRT)を欠いていると、ハイブリドーマの培地は、典型的には、ヒポキサチン、アミノプチリン及びチミジンを含み(「HAT培地」)、この物質がHGPRT欠乏性細胞の増殖を阻止する。

[0072]

好ましい不死化株化細胞は、効率的に融合し、選択された抗体生成細胞による安定した高レベルの抗体発現を支援し、HAT培地のような培地に対して感受性である。より好ましい不死化株化細胞はマウス骨髄腫株であり、これは例えばカリフォルニア州サンディエゴのSalk Institute Cell Distribution Centerやメリーランド州ロックビルのアメリカン・タイプ・カルチャー・コレクションより入手可能である。ヒトモノクローナル抗体を生成するためのヒト骨髄腫及びマウス-ヒト異種骨髄腫株化細胞も開示されている[Kozbor, J. Immunol., 133:3001 (1984)、Brodeur等,Monoclonal Antibody Production Techniques and Applications, Marcel Dekker, Inc., New York, (1987) pp. 51-63]。

次いでハイブリドーマ細胞が培養される培養培地を、PROポリペプチドに対するモノクローナル抗体の存在について検定する。好ましくは、ハイブリドーマ細胞によって生成されたモノクローナル抗体の結合特異性は免疫沈降又はラジオイムノアッセイ(RIA)や酵素結合免疫測定法(ELISA)等のインビトロ結合検定法によって測定する。このような技術及びアッセイは、当該分野において公知である。モノクローナル抗体の結合親和性は、例えばMunson及びPollard、Anal、Biochem、、107:220 (1980)によるスキャッチャード分析法によって測定することができる。

[0073]

所望のハイブリドーマ細胞が同定された後、クローンを制限希釈工程によりサブクローニングし、標準的な方法で成長させることができる[Goding,上掲]。この目的のための適当な培地には、例えば、ダルベッコの改変イーグル培地及びRPMI-1640倍地が含まれる。あるいは、ハイブリドーマ細胞は哺乳動物においてインビボで腹水として成長させることもできる。

サブクローンによって分泌されたモノクローナル抗体は、例えばプロテインA・セファロース法、ヒドロキシルアパタイトクロマトグラフィー法、ゲル電気泳動法、透析法又はアフィニティークロマトグラフィー等の従来の免疫グロブリン精製方法によって培養培地又は腹水液から単離又は精製される。

[0074]

また、モノクローナル抗体は、組換えDNA法、例えば米国特許第4,816,567号に記載された方法により作成することができる。本発明のモノクローナル抗体をコードするDNAは、常套的な方法を用いて(例えば、マウス抗体の重鎖及び軽鎖をコードする遺伝子に特異的に結合可能なオリゴヌクレオチドプローブを使用して)、容易に単離し配列決定することができる。本発明のハイブリドーマ細胞はそのようなDNAの好ましい供給源主は胞、例えばサルCOS細胞、チャイニーズハムスター卵巣(CHO)細胞、あるいは免疫でロブリンタンパク質を生成等しない骨髄腫細胞内に形質移入され、組換え宿主細胞内でモノクローナル抗体の合成をすることができる。また、DNAは、例えば相同マウス配列に換えてヒト重鎖及び軽鎖定常ドメインのコード配列を置換することにより[米国特第4,816,567号; Morrison等,上掲]、又は免疫グロブリンコード配列に非免疫グロブリンポリペプチドのコード配列の一部又は全部を共有結合することにより修飾することができる。このような非免疫グロブリンポリペプチドは、本発明の抗体の定常ドメインに置換でき、あるいは本発明の抗体の1つの抗原結合部位の可変ドメインに置換でき、キメラ性ニ価抗体を生成する。

抗体は一価抗体であってもよい。一価抗体の調製方法は当該分野においてよく知られてる。例えば、一つの方法は免疫グロブリン軽鎖と修飾重鎖の組換え発現を含む。重鎖は一

20

30

40

50

般的に、重鎖の架橋を防止するようにFc領域の任意の点で切断される。あるいは、関連 するシステイン残基を他のアミノ酸残基で置換するか欠失させて架橋を防止する。

ー価抗体の調製にはインビトロ法がまた適している。抗体の消化による、その断片、特にFab断片の生成は、当該分野において知られている慣用的技術を使用して達成できる

[0075]

C . ヒト化抗体

本発明の抗-PROポリペプチド抗体は、さらにヒト化抗体又はヒト抗体を含む。非ヒ ト (例えばマウス)抗体のヒト化形とは、キメラ免疫グロブリン、免疫グロブリン鎖あるい はその断片(例えばFv、Fab、Fab'、F(ab')₂ あるいは抗体の他の抗原結合サ ブ配列)であって、非ヒト免疫グロブリンに由来する最小配列を含むものである。ヒト化 抗 体 は レ シ ピ エ ン ト の 相 補 性 決 定 領 域 (C D R) の 残 基 が 、 マ ウ ス 、 ラ ッ ト 又 は ウ サ ギ の よ う な 所 望 の 特 異 性 、 親 和 性 及 び 能 力 を 有 す る 非 ヒ ト 種 (ド ナ ー 抗 体) の C D R の 残 基 に よ っ て 置 換 さ れ た ヒ ト 免 疫 グ ロ ブ リ ン (レ シ ピ エ ン ト 抗 体) を 含 む 。 幾 つ か の 例 で は 、 ヒ ト 免 疫 グロブリンのFvフレームワーク残基は、対応する非ヒト残基によって置換されている。 また、ヒト化抗体は、レシピエント抗体にも、移入されたCDRもしくはフレームワーク 配列にも見出されない残基を含んでいてもよい。一般に、ヒト化抗体は、全てあるいはほ とんど全てのCDR領域が非ヒト免疫グロブリンのものに対応し、全てあるいはほとんど 全てのFR領域がヒト免疫グロブリンコンセンサス配列のものである、少なくとも1つ、 典型的には 2 つの可変ドメインの実質的に全てを含む。ヒト化抗体は、最適には免疫グロ ブリン 定 常 領 域 (F c)、 典 型 的 に は ヒ ト の 免 疫 グ ロ ブ リ ン の 定 常 領 域 の 少 な く と も 一 部 を 含んでなる [Jones等, Nature, 321:522-525 (1986); Riechmann等, Nature, 332:323-32 9 (1988); 及びPresta, Curr. Op Struct. Biol., 2:593-596 (1992)]。

[0076]

非ヒト抗体をヒト化する方法はこの分野でよく知られている。一般的に、ヒト化抗体には非ヒト由来の一又は複数のアミノ酸残基が導入される。これら非ヒトアミノ酸残基は、しばしば、典型的には「移入」可変ドメインから得られる「移入」残基と称される。ヒト化は基本的に齧歯動物のCDR又はCDR配列でヒト抗体の該当する配列を置換することによりウィンター(Winter)及び共同研究者[Jones等, Nature, 321:522-525 (1986); Rie chmann等, Nature, 332:323-327 (1988); Verhoeyen等, Science, 239:1534-1536 (1988)]の方法に従って、齧歯類CDR又はCDR配列をヒト抗体の対応する配列に置換することにより実施される。よって、このような「ヒト化」抗体は、無傷のヒト可変ドメインより実質的に少ない分が非ヒト種由来の対応する配列で置換されたキメラ抗体(米国特許第4,816,567号)である。実際には、ヒト化抗体は典型的には幾つかのCDR残基及び場合によっては幾つかのFR残基が齧歯類抗体の類似する部位からの残基によって置換されたヒト抗体である。

また、ヒト抗体は、ファージ表示ライブラリ [Hoogenboom及びWinter, J. Mol. Biol., 227:381 (1991); Marks等, J. Mol. Biol., 222:581 (1991)]を含むこの分野で知られた種々の方法を用いて作成することもできる。また、Cole等及びBoerner等の方法も、ヒトモノクローナル抗体の調製に利用することができる [Cole等, Monoclonal Antibodies and Cancer Therapy, Alan R. Liss. p.77(1985)及びBoerner等, J. Immunol., 147(1):86-95(1991)]。

[0077]

D . 二重特異性抗体

二重特異性抗体は、少なくとも2つの異なる抗原に対して結合特異性を有するモノクローナル抗体、好ましくはヒトもしくはヒト化抗体である。本発明の場合において、結合特異性の一方はPROポリペプチドに対してであり、他方は任意の他の抗原、好ましくは細胞表面タンパク質又はレセプター又はレセプターサブユニットに対してである。

二重特異性抗体を作成する方法は当該技術分野において周知である。伝統的には、二重 特異性抗体の組換え生産は、二つの重鎖が異なる特異性を持つ二つの免疫グロブリン重鎖 / 軽鎖対の同時発現に基づく [Milstein及び Cuello, Nature, 305:537-539 (1983)]。免疫グロブリンの重鎖と軽鎖を無作為に取り揃えるため、これらハイブリドーマ(クアドローマ)は10種の異なる抗体分子の潜在的混合物を生成し、その内一種のみが正しい二重特異性構造を有する。正しい分子の精製は、アフィニティークロマトグラフィー工程によって通常達成される。同様の手順が1993年5月13日公開のWO 93/08829、及び Traunecker等, EMBO J.,10:3655-3659 (1991)に開示されている。

所望の結合特異性(抗体-抗原結合部位)を有する抗体可変ドメインを免疫グロブリン定常ドメイン配列に融合できる。融合は、好ましくは少なくともヒンジ部、CH2及びCH3領域の一部を含む免疫グロブリン重鎖定常ドメインとのものである。少なくとも一つの融合には軽鎖結合に必要な部位を含む第一の重鎖定常領域(CH1)が存在することが望ましい。免疫グロブリン重鎖融合をコードするDNA、及び望むのであれば免疫グロブリン軽鎖を、別々の発現ベクターに挿入し、適当な宿主生物に同時形質移入する。二重特異性抗体を作成するための更なる詳細については、例えばSuresh等,Methods in Enzymology,121:210(1986)を参照されたい。

[0078]

E . ヘテロ抱合体抗体

ヘテロ抱合抗体もまた本発明の範囲に入る。ヘテロ抱合抗体は、2つの共有結合した抗体からなる。このような抗体は、例えば、免疫系細胞を不要な細胞に対してターゲティングさせるため[米国特許第4,676,980号]及びHIV感染の治療のために[W0 91/00360;W0 92/200373;EP 03089]提案されている。この抗体は、架橋剤に関連したものを含む合成タンパク化学における既知の方法を使用して、インビトロで調製することができると考えられる。例えば、ジスルフィド交換反応を使用するか又はチオエーテル結合を形成することにより、免疫毒素を作成することができる。この目的に対して好適な試薬の例には、イミノチオレート及びメチル・4・メルカプトブチリミデート、及び例えば米国特許第4,676,980号に開示されているものが含まれる。

[0079]

抗-PROポリペプチド抗体の用途

本発明の抗 - PROポリペプチド抗体は様々な有用性を有している。例えば、抗 - PROポリペプチド抗体は、PROポリペプチドの診断アッセイ、例えばその特定細胞、組織、又は血清での発現の検出に用いられる。競合的結合アッセイ、直接又は間接サンドウィッチアッセイ及び不均一又は均一相で行われる免疫沈降アッセイ [Zola, Monoclonal Antibodies: A Manual of Techniques, CRC Press, Inc. (1987) pp. 147-158] 等のこの分野で知られた種々の診断アッセイ技術が使用される。診断アッセイで用いられる抗体は、検出可能な部位で標識される。検出可能な部位は、直接又は間接に検出可能なシグナルを発生しなければならない。例えば、検出可能な部位は、 3 H、 1 C、 3 P、 3 S 又は 1 2 5 I 等の放射性同位体、フルオレセインイソチオシアネート、ローダミン又はルシフェリン等の蛍光又は化学発光化合物、あるいはアルカリホスファターゼ、ベータ - ガラクトシダーゼ又はセイヨウワサビペルオキシダーゼ等の酵素であってよい。Hunter等 Nature, 144:945 (1962); David等,Biochemistry, 13: 1014 (1974); Pain等,J. Immunol. Meth., 40:219 (1981); 及びNygren,J. Histochem. and Cytochem.,30:407 (1982)に記載された方法を含む、抗体を検出可能な部位に抱合するためにこの分野で知られた任意の方法が用いられる。

また、抗 - P R O ポリペプチド抗体は、組換え細胞培養又は天然供給源からの P R O ポリペプチドのアフィニティー精製にも有用である。この方法においては、 P R O ポリペプチドに対する抗体を、当該分野でよく知られている方法を使用して、セファデックス樹脂や濾過紙のような適当な支持体に固定化する。次に、固定化された抗体を、精製する P R O ポリペプチドを含有する試料と接触させた後、固定された抗体に結合した P R O ポリペプチド以外の試料中の物質を実質的に全て除去する適当な溶媒で支持体を洗浄する。最後に、 P R O ポリペプチドを抗体から離脱させる他の適当な溶媒で支持体を洗浄する。

[080]

10

20

30

以下の実施例は例示するためにのみ提供されるものであって、本発明の範囲を決して限 定することを意図するものではない。

本明細書で引用した全ての特許及び参考文献の全体を、出典明示によりここに取り込む

(実施例)

実施例で言及されている全ての市販試薬は、特に示さない限りは製造者の使用説明に従い使用した。ATCC登録番号により以下の実施例及び明細書全体を通して特定されている細胞の供給源はアメリカン・タイプ・カルチャー・コレクション、ロックビル、メリーランドである。

[0081]

実施例1:新規なポリペプチド及びそれをコードする c D N A を同定するための細胞外ド メイン相同性スクリーニング

Swiss-Prot公的データベースからの約950の公知の分泌タンパク質からの細胞外ドメイン(ECD)配列(必要ならば、分泌シグナル配列を含む)を、ESTデータベースの検索に使用した。ESTデータベースは、公的データベース(例えば、Dayhoff、GenBank)及び独自に開発したデータベース(例えば、LIFESEQ(商品名)、Incyte Pharmaceutic als、Palo Alto、CA)を含む。検索は、コンピュータプログラムBLAST又はBLAST2(Altschul及びGish,Methods in Enzymology 266: 460-480 (1996))を用いて、ECDタンパク質配列のEST配列の6フレーム翻訳との比較として実施した。公知のタンパク質をコードせず、Blastスコア70(90の場合もある)又はそれ以上を持つ比較は、プログラム「phrap」(Phil Green,University of Washington,Seattle,WA; http://bozeman.mbt.washington.edu/phrap.docs/phrap.html)でクラスター形成してコンセンサスDNA配列に構築した。

この細胞外ドメイン相同性スクリーニングを用いて、phrapを用いて他の同定された EST配列に対してコンセンサス DNA配列を構築した。さらに、得られたコンセンサス DNA配列を、しばしば(全てではない) BLAST及びphrapの繰り返しサイクルを用いて伸長し、コンセンサス配列を上で議論した EST配列の供給源を用いて可能な限り伸長させた。

上記のように得られたコンセンサス配列に基づいて、次いでオリゴヌクレオチドを合成し、PCRにより対象とする配列を含む cDNAライブラリを同定するため、及びPROポリペプチドの全長コード化配列のクローンを単離スルプローブとして用いるために使用した。正方向(.f)及び逆方向(.r)PCRプライマーは一般的に20から30ヌクレオチドの範囲であり、しばしば約100-100bp長のPCR産物を与えるために設計される。プローブ(.p)配列は、典型的に40-55bp長である。或る場合には、コンセンサス配列が約1-1.5kbpより大きいときに付加的なオリゴヌクレオチドが合成される。全長クローンについて幾つかのライブラリをスクリーニングするために、ライブラリからのDNAを、Ausubel等、Current Protocols in Molecular Biology、のように、PCRプライマー対でのPCRによりスクリーニングした。ポジティブライブラリを、次いで、プローブオリゴヌクレオチド及びプライマー対の一方を用いて対象とする遺伝子をコードするクローンの単離するのに使用した。

cDNAクローンの単離に用いた cDNAライブラリは、Invitrogen, San Diego, CAからのもの等の市販試薬を用いて標準的な方法によって作成した。 cDNAは、NotI部位を含むオリゴ d T でプライムし、平滑末端でSalIへミキナーゼアダプターに結合させ、NotIで切断し、ゲル電気泳動でおよそのサイズ分類し、そして適切なクローニングベクター(<math>pRKB 又はpRKD 等; pRK5 B は SfiI 部位を含まないpRK5 D の前駆体である; Holmes等, Science, 253: 1278-1280 (1991)参照)に、独特の SKD に SKD の SKD に SKD の SED に SED の SED の SED の SED に SED の SED の SED に SED に SED に SED の SED に SED

[0082]

実施例 2 : アミラーゼスクリーニングによる c D N A クローンの単離 1 . オリゴ d T プライム c D N A ライブラリの調製 10

20

30

30

40

50

mRNAを対象とするヒト組織からInvitrogen, San Diego, CAからの試薬及びプロトコールを用いて単離した (Fast Track 2)。このRNAを、Life Technologies, Gaither sburg, MD (Super Script Plasmid System)からの試薬及びプロトコールを用いるベクター pRK5 Dにおけるオリゴ d T プライムした c DNAの生成に使用した。この方法において、日本産 c DNAは1000 b pを越えるサイズ分類し、SalI/NotI結合 c DNAをXhoI/NotI切断ベクターにクローニングした。 pRK5 Dを、sp6 転写開始部位、それに続くSfiI制限酵素部位、さらにXhoI/NotIcDNAクローニング部位を持つベクターにクローニングした。

2 . ランダムプライム c D N A ライブラリの調製

一次 c D N A クローンの 5 ⁿ 末端を好ましく表現するために二次 c D N A ライブラリを作成した。 S p 6 R N A を (上記の)一次ライブラリから生成し、この R N A を、ベクター p S S T - A M Y . 0 におけるLife Technologies (上で参照したSuper Script Plasmid System)からの試薬及びプロ値コールを用いたランダムプライムした c D N A ライブラリの生成に使用した。この方法において、二本鎖 c D N A を 5 0 0 - 1 0 0 0 b p にサイズ分類し、平滑末端で N o t I アダプターに結合させ、S f i I 部位で切断し、そして S f i I / N o t I 切断ベクターにクローニングした。 p S S T - A M Y . 0 は、 c D N A クローニング部位の前に酵母アルコールデヒドロゲナーゼプロモータ、 及びクローニング部位の後にマウスアミラーゼ配列(分泌シグナルを持たない成熟配列)に次いでアルコールデヒドロゲナーゼ転写終結区を有するクローニングベクターである。即ち、アミラーゼ配列でフレームに融合するこのベクターにクローニングされた c D N A は、適当に形質移入された酵母コロニーからのアミラーゼの分泌を導くであろう。

[0083]

3. 形質転換及び検出

上記2パラグラフに記載したライブラリからのDNAを氷上で冷却し、それにエレクトロコンピテントDH10B細菌(Life Technologies、20ml)を添加した。細菌及びベクターの混合物は、次いで製造者に推奨されているように電気穿孔した。次いで、SOC培地(Life Technologies、1ml)を添加し、この号物を37 で30分間インキュベートした。形質転換体は、次いでアンピシリンを含む20標準150mmLBプレートに蒔き、16時間インキュベートした(37)。ポジティブコロニーをプレートから廃棄し、細菌ペレットから標準的な方法、例えばCSCl-勾配を用いてDNAを単離した。精製DNAは、次いで以下の酵母プロトコールにのせた。

酵母方法は3つの範疇に分けられる: (1)酵母のプラスミド/cDNA結合ベクターでの形質転換; (2)アミラーゼを分泌する酵母クローンの検出及び単離;及び(3)酵母コロニーから直接的な挿入物のPCR増幅及び配列決定及びさらなる分析のためのDNAの精製。

用いた酵母菌株はHD56-5A(ATCC-90785)であった。この株は以下の遺伝子型:MATアルファ、ura3-52、leu2-3、leu2-112、his3-11、his3-15、MAL $^+$ 、SUC $^+$ 、GAL $^+$ を有する。好ましくは、不完全な翻訳後経路を持つ酵母変異体を用いることができる。このような変異体は、sec71、sec72、sec62に転位不全対立遺伝子を持つが、切断されたsec71が最も好ましい。あるいは、これらの遺伝子の正常な操作を阻害するアンタゴニスト(アンチセンスヌクレオチド及び/又はリガンドを含む)、この翻訳後経路に含まれる他のタンパク質(例えば、SEC61p、SEC62p、SEC63p、TDJ1p、SSA1p-4p)又はこれらのタンパク質の複合体形成も、アミラーゼ発現酵母と組み合わせて好ましく用いられる。

[0084]

形質転換は、Gietz等, Nucl. Acid. Res., 20: 1425 (1992)に概略が記されたプロトコールに基づいて実施された。形質転換細胞は、次いで寒天からYEPD複合培地ブロス(100ml)に播種し、30 で終夜成長させた。YEPDブロスは、Kaiser等, Methods in Yeast Genetics, Cold Spring Harbor Press, Cold Spring Harbor, NY, p. 207 (1

994)に記載されているように調製した。終夜培地は、次いで新鮮なYEPDプロス(500ml)中におよそ2×10 6 細胞/ml(約OD $_6$ $_0$ $_0$ = 0.1)に希釈し、1×10 7 細胞/ml(約OD $_6$ $_0$ $_0$ = 0.4-0.5)まで再成長させた。

次いで細胞を収穫し、5,000 rpmで5分間のSorval GS3 ローターのGS 3 ローターボトルに移し、上清を捨て、次いで無菌水に再懸濁することにより形質転換のために調製し、そして50 m 1 のファルコン管内で、Beckman GS-6KR遠心機において3,500 rpmで再度遠心分離した。上清を捨て、細胞をLiAc/TE(10ml, 10mMのトリス-HCI, 1mMのEDTA p H7.5, 100mMのLi $_2$ OOCCH $_3$)で続けて洗浄し、LiAc/TE(2.5ml)中に再懸濁させた。

[0085]

あるいは、複数の少量反応ではなく、形質転換を 1 回の大規模反応で実施したが、試薬の量はしかるべくスケールアップした。

用いた選択培地は、Kaiser等, Methods in Yeast Genetics, Cold Spring Harbor Press, Cold Spring Harbor, NY, p. 208-210 (1994)に記載されているように調製したウラシルを欠く合成完全デキストロース寒天(SCD-Ura)であった。形質転換体は30で2-3日成長させた。

アミラーゼを分泌するコロニーの検出は、選択成長培地における赤色デンプンの包含により実施した。Biely等, Anal. Biochem., 172: 176-179 (1988)に記載された方法に従って、デンプンを赤色染料(反応性 Red-120, Sigma)に結合させた。結合したデンプンをSCD-Ura寒天プレートに最終濃度0.15%(w/v)で導入し、リン酸カリウムでpH7.0に緩衝した(最終濃度50-100mM)。

ポジティブコロニーを拾って新鮮な選択培地(150mmプレート)に画線し、良好に単離され同定可能な単一コロニーを得た。アミラーゼ分泌についてポジティブな良好に単離されたコロニーは、緩衝SCD-Ura寒天への赤色団分の直接導入により検出した。ポジティブコロニーは、デンプンを分解して、ポジティブコロニーの周囲に直接目視できる暈を形成する能力により決定した。

[0086]

4 . P C R 増幅による D N A の単離

ポジティブコロニーが単離された場合、その一部を楊枝で拾い、96 ウェルプレートにおいて無菌水(30μ I)に希釈した。この時点で、ポジティブコロニーは凍結して次の分析のために保存するか、即座に増幅するかのいずれかである。細胞のアリコート(5μ I)を、 0.5μ IのKlentaq(Clontech, Palo Alto, CA); 4.0μ Iの10mM dNTP(Perkin Elmer-Cetus); 2.5μ IのKentaqバッファー(Clontech); 0.25μ Iの正方向オリゴ 1; 0.25μ Iの逆方向オリゴ 2; 12.5μ Iの蒸留水を含有する 25μ I容量における P C R 反応のテンプレートとして使用した。正方向オリゴヌクレオチド 1 の配列は:

5'- TGTAAAACGACGGCCAGTTAAATAGACCTGCAATTATTAA TCT -3'

(配列番号:324)であった。

逆方向オリゴヌクレオチド2の配列は:

5'-CAGGAAACAGCTATGACCACCTGCACACCTGCAAATCCATT-3'

(配列番号:325)であった。

20

40

30

(32)

次いで、PCRは以下の通り実施した:

92 、5分間 変 性 b.次の3サイクル 変 性 92 、30秒間 アニール 59 、30秒間 72 、60秒間 伸長 c . 次の3サイクル 変 性 92 、30秒間 アニール 57 、30秒間 伸長 72 、60秒間 、30秒間 d . 次の25サイクル 変 性 92 アニール 55 、30秒間 伸長 72 、60秒間 е. 保 持

10

20

30

40

50

下線を施した領域は、各々ADHプロモーター領域及びアミラーゼ領域にアニーリングされ、挿入物が存在しない場合はベクターpSST-AMY.0からの307bp領域を増幅する。典型的には、これらのオリゴヌクレオチドの5′末端の最初の18ヌクレオチドは、配列プライマーのアニーリング部位を含んでいた。即ち、空のベクターからのPCR反応の全生成物は343bpであった。しかしながら、シグナル配列融合cDNAは、かなり長いヌクレオチド配列をもたらした。

PCRに続いて、反応のアリコート(5μ I)を、上掲のSambrook等に記載されたように 1%アガロースゲル中でトリス -ボレーと - EDTA(TBE)緩衝系を用いたアガローススゲル電気泳動により試験した。 400 p より大きな単一で強い PCR 産物をもたらすクローンを、96 Qiaquick PCR 清浄化カラム(Qiagen Inc., Chatsworth, CA)での精製の後に DNA配列によりさらに分析した。

[0087]

実施例 1 7: ヒトPRO 7 0 3 をコードする c DNAクローンの単離

上記実施例1に記載したように種々のEST配列に対してコンセンサス配列が得られ、得られたコンセンサス配列は、ここにDNA43047と命名される。DNA43047 コンセンサス配列に基づいて、1)PCRにより対象とする配列を含むcDNAライブラリを同定するため、及び2)PRO703の全長コード化配列のクローンを単離するプローブとして使用するために、オリゴヌクレオチドを合成した。

PCRプライマーの対(正方向及び逆方向)を合成した:

正方向 P C R プライマー 5'-GAGAGCCATGGGGCTCCACCTG-3'(配列番号:103)

逆方向 P C R プライマー 1 5'-GGAGAATGTGGCCACAAC-3'(配列番号: 104)

逆方向 P C R プライマー 2 5'-GCCCTGGCACAGTGACTCCATAGACG-3'

(配列番号:105)

逆方向 P C R プライマー 3 5'-ATCCACTTCAGCGGACAC-3'(配列番号: 106)

さらに、合成オリゴヌクレオチドハイブリッド形成プローブは、以下の核酸配列を持つコンセンサスDNA40654配列から作成した。

ハイブリッド形成プローブ

5'-CCAGTGCCAGGATACCTCTCTCCCCCCAGAGCATAACAGACACG-3'(配列番号:107)

全長クローンの供給源について幾つかのライブラリをスクリーニングするために、ライブラリからのDNAを上で同定したPCRプライマー対でPCR増幅した。次いで、ポジティブライブラリを、プローブオリゴヌクレオチド及びPCRプライマー対の一方を用いてPRO703遺伝子をコードするクローンを単離するのに使用した。cDNAライブラリー作成のためのRNAは、ヒト胎児腎臓組織(LIB227)から単離した。

上記のように単離したクローンのDNA配列は、PRO703の全長DNA配列[ここで、UNQ367(DNA50913-1287)と命名される](配列番号:101) 及びPRO703の誘導タンパク質配列を与えた。

UNQ367(DNA50913-1287)の全核酸配列を図1(配列番号:101)に示す。クローンUNQ367(DNA50913-1287)は、単一のオープンリ

ーディングフレームリーディングフレームを含み、ヌクレオチド位置 1 1 5 - 1 1 7 に見かけの翻訳開始部位を持ち、そしてヌクレオチド位置 2 3 0 5 - 2 3 0 7 の停止コドンで終端する(図 1)。予測されるポリペプチド前駆体は 7 3 0 アミノ酸長である(図 2)。図 2 に示した全長 P R O 7 0 3 タンパク質は、約 7 8 , 6 4 4 ダルトンの見積もり分子量及び約 7 . 6 5 の p I を有する。 P R O 7 0 3 アミノ酸配列の重要な領域は、シグナル配列、 c A M P - 及び c G M P - 依存性タンパク質キナーゼリン酸化部位、 C U B ドメインタンパク質モチーフ、 N - グリコシル化部位及び推定 A M P - 結合ドメインシグネーチャーを含む。クローン U N Q 3 6 7 (D N A 5 0 9 1 3 - 1 2 8 7) は A T C C に寄託され、 A T C C 寄託番号 2 0 9 7 1 6 が付与されている。

[0088]

実施例99:ハイブリッド形成プローブとしてのPROポリペプチドコード化核酸の使用以下の方法は、PROをコードする核酸配列のハイブリッド形成プローブとしての使用を記載する。

ここに開示する対象とするPROポリペプチドのコード化配列を含むDNAは、ヒト組織 cDNAライブラリ又はヒト組織ゲノムライブラリにおける同種DNA類(PROポリペプチドの天然発生変異体をコードするものなど)のスクリーニングのためのプローブとして又はそれからプローブを調製する塩基として用いられる。

いずれかのライブラリDNAを含むフィルターのハイブリッド形成及び洗浄は、以下の高い緊縮条件で実施した。放射性標識PROポリペプチドコード化核酸誘導プローブのフィルターへのハイブリッド形成は、50%ホルムアミド、5×SSC、0.1%SDS、0.1%ピロリン酸ナトリウム、50mMリン酸ナトリウム、pH6.8、2×デンハード液、及び10%デキストラン硫酸の溶液中で、42 において20時間行った。フィルターの洗浄は、0.1×SSC及び0.1%SDSの水溶液中、42 で行った。

次いで、全長天然配列 P R O ポリペプチドをコードする D N A と所望の配列同一性を有する D N A は、この分野で知られた標準的な方法を用いて同定できる。

[0089]

実施例100:大腸菌におけるPROポリペプチドの発現

この実施例は、大腸菌における組み換え発現による所望の PROポリペプチドの非グリコシル化形態の調製を例示する。

所望のPROポリペプチドをコードするDNA配列は、選択されたPCRプライマーを用いて最初に増幅した。プライマーは、選択された発現ベクターの制限酵素部位に対応する制限酵素部位を持たなければならない。種々の発現ベクターが用いられる。好適なベクターの例は、pBR322(大腸菌から誘導されたもの;Bolivar等,Gene,2:95(1977)参照)であり、アンピシリン及びテトラサイクリン耐性についての遺伝子を含む。ベクターは、制限酵素で消化され、脱リン酸される。PCR増幅した配列は、次いで、ベクターに結合させる。ベクターは、好ましくは抗生物質耐性遺伝子、trpプロモーター、polyhisリーダー(最初の6つのSTIIコドン、polyhis配列、及びエンテロキナーゼ切断部位を含む)、特定のPROポリペプチドコード領域、ラムダ転写終結区、及びargU遺伝子を含む。

ライゲーション混合物は、次いで、Sambrook等,上掲に記載された方法を用いた選択した大腸菌の形質転換に使用される。形質転換体は、それらのLBプレートで成長する能力により同定され、次いで抗生物質耐性クローンが選択される。プラスミドDNAが単離され、制限分析及びDNA配列分析で確認される。

選択されたクローンは、抗生物質を添加したLBブロスなどの液体培地で終夜成長させることができる。終夜培地は、続いて大規模培地の播種に用いられる。次に細胞を最適密度で成長させ、その間に発現プロモーターが作動する。

更に数時間の培養の後、細胞を採集して遠心分離できる。遠心分離で得られた細胞ペレットは、この分野で知られた種々の試薬を用いて可溶化され、可溶化PROポリペプチドを金属キレート化カラムを用いてポリペプチドを緊密に結合させる条件下で精製した。

[0090]

10

20

30

EP出願番号99912321.9では、PROポリペプチドは、以下の手法を用い て、大腸菌においてポリHisタグ形態で発現させた。PROポリペプチドをコードする DNAを選択したPCRプライマーを用いて最初に増幅した。プライマーは、選択された 発 現 ベ ク タ ー の 制 限 酵 素 部 位 に 対 応 す る 制 限 酵 素 部 位 、 及 び 効 率 的 で 信 頼 性 の あ る 翻 訳 開 始、 金属 キ レート カ ラ ム で の 迅 速 な 精 製 、 及 び エ ン テ ロ キ ナ ー ゼ で の タ ン パ ク 質 分 解 的 除 去を与える他の有用な配列を含む。次いでPCR増幅された、ポリ-Hisタグ配列を発 現ベクターに結合させ、それを株 5 2 (W3110 fuhA(tonA) lon galE rpoHts(htpRts) clp P(laclq))に基づく大腸菌宿主の形質転換に使用した。形質転換体は、最初に50mg/mlの カルベニシリンを含有するLB中、30 で振盪しながら3-5のO.D.600に達す るまで成長させた。ついで培地をCRAP培地(3.57gの(NH₄)2 SO4、0.71gのク エン酸ナトリウム・2H20、1.07gの K C l 、5.36gのDifco酵母抽出物、500mL水中の5.36g のSheffield hycase SF、並びに110mMのMPOS、pH7.3、0.55%(w/v)のグルコー ス及び7mMのMgS0₄の混合で調製)中に50-100倍希釈し、30 で振盪させながら 約20-30時間成長させた。試料を取り出してSDS-PAGEにより発現を確認し、バルク 培地を遠心分離して細胞のペレットとした。細胞ペレットを精製及び再折りたたみまで凍 結させた。

0.5から1Lの発酵(6-10gペレット)からの大腸菌ペーストを、7Mのグアニジン、20mMのトリス、pH8 バッファー中で10容量(w/v)で再懸濁させた。固体硫酸ナトリウム及びテトラチオン酸ナトリウムを添加して最終濃度を各々0.1M及び0.02Mとし、溶液を4 で終夜撹拌した。この工程により、亜硫酸によりブロックされたシステイン残基を持つ変性タンパク質がもたらされた。溶液をBeckman UI tracent i fuge中で40,000 rpmで30分間濃縮した。上清を金属キレートカラムバッファー(6Mのグアニジン、20mMのトリス、pH7.4)の3-5容量で希釈し、0.22ミクロンフィルターを通して濾過して透明化した。透明化抽出物を、金属キレートカラムバッファーで平衡化させた5mIのQiagen Ni-NTA金属キレートカラムに負荷した。カラムを50mMのイミダゾール(Calbiochem,Utrol grade)を含む添加バッファー、pH7.4で洗浄した。タンパク質を250mMのイミダゾールを含有するバッファーで溶離した。所望のタンパク質を含有する画分をプールし、4 で保存した。タンパク質濃度は、そのアミノ酸配列に基づいて計算した吸光係数を用いて2800mにおけるその吸収により見積もった。

試料を、20mMのトリス、pH8.6、0.3MのNaC1、2.5Mの尿素、5 m M のシステイン、2 0mMのグリシン及び1mMのEDTAからなる新たに調製した再折りたたみバッファー中に徐々に希釈することによりタンパク質を再折りたたみさせた。リフォールディング容量は、最終的なタンパク質濃度が50~100マイクログラム/mIとなるように選択した。リフォールディング溶液を4 で12-36時間ゆっくり撹拌した。リフォールディング反応はTFAを採取濃度0.4%(約3のpH)で添加することにより停止させた。タンパク質をさらに精製する前に、溶液を0.22ミクロンフィルターを通して濾過し、アセトニトリルを最終濃度2-10%で添加した。再折りたたみされたタンパク質を、Poros R1/H逆相カラムで、0.1%TFAの移動バッファーと10~80%のアセトニトリル勾配での溶離を用いてクロマトグラフにかけた。A280吸収を持つ画分のアリコートを

SDSポリアクリルアミドゲルで分析し、相同な再折りたたみされたタンパク質を含有する画分をプールした。一般的に、殆どのタンパク質の正しく再折りたたみされた種は、これらの種が最もコンパクトであり、その疎水性内面が逆相樹脂との相互作用から遮蔽されているので、アセトニトリルの最低濃度で溶離される。凝集した種は通常、より高いアセトニトリル濃度で溶離される。タンパク質の誤って折りたたまれた形態を所望の形態から除くのに加えて、逆相工程は試料からエンドトキシンも除去する。

所望の折りたたまれたPROタンパク質を含有する画分をプールし、溶液に向けた窒素の弱い気流を用いてアセトニトリルを除去した。タンパク質を、透析又は調製バッファーで平衡化したG25 Superfine (Pharmacia) 樹脂でのゲル濾過及び滅菌濾過により、0.14Mの塩化ナトリウム及び4%のマンニトールを含む20mMのHEPES、pH6.8に調製した。

[0091]

10

20

30

20

40

50

実施例101:哺乳動物細胞におけるPROポリペプチドの発現

この実施例は、哺乳動物細胞における組み換え発現によるPROポリペプチドの調製を例示する。

発現ベクターとして p R K 5 (1989年3月15日発行の EP 307,247参照)を用いた。場合によっては、 P R O コード化 D N A を選択した制限酵素を持つ p R K 5 に結合させ、 Samb rook等,上掲に記載されたような結合方法を用いて P R O ポリペプチド D N A を挿入させる。得られたベクターは、 p R K 5 - P R O と呼ばれる。

一実施態様では、選択された宿主細胞は 2 9 3 細胞とすることができる。ヒト 2 9 3 細胞(ATCC ССL 1 5 7 3)は、ウシ胎児血清及び場合によっては滋養成分及び / 又は抗生物質を添加した D M E M などの媒質中で組織培養プレートにおいて成長させて集密化した。約10 μ g の p R K 5 - P R O ポリペプチド D N A を約 1 μ g の V A R N A 遺伝子コード化 D N A [Thimmappaya等,Cell,31:543 (1982))]と混合し、5 0 0 μ l の 1 m M トリス - H C l 、 0 . 1 m M E D T A 、 0 . 2 2 7 M C a C l $_2$ に溶解させた。この混合物に、滴状の、5 0 0 μ l の5 0 m M H E P E S (p H 7 . 3 5)、2 8 0 m M の N a C l 、1 . 5 m M の N a P O $_4$ を添加し、2 5 で 1 0 分間析出物を形成させた。析出物を懸濁し、2 9 3 細胞に加えて 3 7 で約 4 時間定着させた。培養培地を吸引し、2 m l の P B S 中 2 0 % グリセロールを 3 0 分間添加した。 2 9 3 細胞は、次いで無血清培地で洗浄し、新鮮な培地を添加し、細胞を約 5 日間インキュベートした。

形質移入の約24時間後、培養培地を除去し、培養培地(のみ)又は200μСi/m 1 ³ 5 S - システイン及び200μСi/m 1 ³ 5 S - メチオニンを含む培養培地で置換した。12時間のインキュベーションの後、条件培地を回収し、スピンフィルターで濃縮し、15%SDSゲルに添加した。処理したゲルを乾燥させ、PROポリペプチドの存在を現す選択された時間にわたってフィルムにさらした。形質転換した細胞を含む培地は、更なるインキュベーションを施し(無血清培地で)、培地を選択されたバイオアッセイで試験した

これに換わる技術において、 PROポリペプチドは、Somparyrac等,Proc. Natl. Acad. Sci., 12:7575 (1981)に記載されたデキストラン硫酸法を用いて293細胞に一過的に導入される。293細胞は、スピナーフラスコ内で最大密度まで成長させ、700μgのPRK5-PROポリペプチドDNAを添加する。細胞は、まずスピナーフラスコから遠心分離によって濃縮し、PBSで洗浄した。DNA-デキストラン沈殿物を細胞ペレット上で4時間インキュベートした。細胞を20%グリセロールで90秒間処理し、組織培養培地で洗浄し、組織培養培地、5μg/mlウシインシュリン及び0.1μg/mlウシトランスフェリンを含むスピナーフラスコに再度導入した。約4日後に、条件培地を遠心分離して濾過し、細胞及び細胞片を除去した。次いで発現されたPROポリペプチドを含む試料を濃縮し、透析及び/又はカラムクロマトグラフィー等の選択した方法によって精製した。

他の実施態様では、PROポリペプチドをCHO細胞で発現させることができる。PRK5-PROポリペプチドは、CaPO4 又はDEAE-デキストランなどの公知の試薬を用いてCHO細胞に形質移入することができる。上記したように、細胞培地をインキュベートし、培地を培養培地(のみ)又は³⁵S-メチオニン等の放射性標識を含む培地に置換することができる。PROポリペプチドの存在を同定した後、培養培地を無血清培地に置換してもよい。好ましくは、培地を約6日間インキュベートし、次いで条件培地を収集する。次いで、発現されたPROポリペプチドを含む培地を濃縮して、選択した方法にとって精製することができる。

また、エピトープタグPROポリペプチドは、宿主CHO細胞において発現させてもよい。PROポリペプチドはpRK5ベクターからサブクローニングした。サブクローン挿入物は、次いで、PCRを施してバキュロウイルス発現ベクター中のポリ-hisタグ等の選択されたエピトープタグを持つ枠に融合できる。ポリ-hisタグPROポリペプチド挿入物は、次いで、安定なクローンの選択のためのDHFR等の選択マーカーを含むSV40誘導ベクターにサブクローニングできる。最後に、CHO細胞をSV40誘導ベク

30

40

50

ターで(上記のように)形質移入した。発現を確認するために、上記のように標識化を行ってもよい。発現されたポリ-his タグ PROポリペプチドを含む培養培地は、次いで濃縮し、Ni² + - キレートアフィニティクロマトグラフィー等の選択された方法により精製できる。

[0092]

CHO細胞における安定な発現は以下の方法を用いて実施された。タンパク質は、それは対応するタンパク質の可溶化形態及び / 又はポリ-His タグ形態のコード化配列(例えば、細胞外ドメイン)がIgG1のヒンジ、CH2及びCH2ドメインを含む定常領域配列に融合したIgG作成物(イムノアドへシン)として発現された。

PCR増幅に続いて、対応するDNAを、Ausubel等,Current Protocols of Molecula r Biology, Unit 3.16, John Wiley and Sons (1997)に記載されたような標準的技術を用いてCHO発現ベクターにサブクローニングした。CHO発現ベクターは、対象とするDNAの5′及び3′に適合する制限部位を有し、CDNAの便利なシャトル化ができるように作成される。ベクターは、Lucas等,Nucl. Acids res. 24: 9, 1774-1779 (1996)に記載されたようにCHO細胞での発現を用い、対象とするCDNA及びジヒドロフォレートレダクターゼ(DHFR)の発現の制御にSV40初期プロモーター/エンハンサーを用いる。DHFR発現は、形質移入に続くプラスミドの安定な維持のための選択を可能にする。

所望のプラスミド D N A の 1 2 マイクログラムを、市販の形質移入試薬Superfect (登録商標) (Quiagen), Dosper (登録商標) 及びFugene (登録商標) (Boehringer Mannheim) 約一千万の C H O 細胞に導入した。細胞は、上掲のLucas等に記載されているように成長させた。約 3 \times 1 0 $^{-7}$ 細胞を、下記のような更なる成長及び生産のためにアンプル中で凍結させた。

プラスミドDNAを含むアンプルを水槽に配して解凍し、ボルテックスにより混合した 。 内 容 物 を 10mLの 媒 質 を 含 む 遠 心 管 に ピ ペ ッ ト し て 、 1000 rpmで 5 分 間 遠 心 分 離 し た 。 上 清を吸引して細胞を10mLの選択培地(0.2μm濾過PS20、5%の0.2μm透析濾過ウシ胎児 血清を添加)中に懸濁させた。次いで細胞を90mLの選択培地を含む100mlスピナーに分け た。1-2日後、細胞を150mLの選択培地を満たした250mLスピナーに移し、37 キュベートした。さらに2-3日後、250mL、500mL及び2000mLのスピナーを3×10⁵ 細 胞 /mLで播種した。細胞培地を遠心分離により新鮮培地に交換し、生産培地に再懸濁させ た。 任 意 の 適 切 な C H O 培 地 を 用 い て も よ い が 、 実 際 に は 1992年 6月 16日 に 発 行 の 米 国 特 許 第 5 , 122 , 469号 に 記 載 さ れ た 生 産 培 地 を 使 用 し た 。 3Lの 生 産 ス ピ ナ ー を 1 . 2 x 1 0 ° 細胞/mLで播種した。0日目に、細胞数とpHを測定した。1日目に、スピナーをサンプ ルし、濾過空気での散布を実施した。 2 日目に、スピナーをサンプルし、温度を 3 3 に 変え、 500g/Lのグルコース及び0.6mLの10%消泡剤(例えば35%ポリジメチルシロキサンエ マルション、Dow Corning 365 Medical Grade Emulsion)の30mLとした。生産を通して、 p H は7.2近傍に調節し維持した。 1 0 日後、又は生存率が70%を下回るまで、細胞培地を 遠心分離で回収して0.22 µ mフィルターを通して濾過した。濾過物は、4 で貯蔵するか 、 即 座 に 精 製 用 カ ラ ム に 負 荷 し た 。

[0093]

ポリ-His タグ作成物について、タンパク質はNi-NTAカラム (Qiagen)を用いて精製した。精製の前に、イミダゾールを条件培地に 5 m M の濃度まで添加した。条件培地を、0.3MのNaCl及び5mMイミダゾールを含む20mMのHepes, pH7.4バッファーで平衡化した6mlのNi-NTAカラムに4-5ml/分の流速で 4 においてポンプ供給した。負荷後、カラムをさらに平衡バッファーで洗浄し、タンパク質を0.25Mイミダゾールを含む平衡バッファーで溶離した。高度に精製されたタンパク質は、続いて10mMのHepes、0.14MのNaCl及び4%のマンニトール、pH6.8を含む貯蔵バッファー中で25mlのG25 Superfine (Pharmacia)を用いて脱塩し、-80 で貯蔵した。

イムノアドへシン(Fc含有)作成物を以下のようにして条件培地から精製した。条件培地を、20mMのリン酸ナトリウムバッファー、pH6.8で平衡化した5mlのプロテインAカラ

30

40

50

ム(Pharmacia)に負荷した。負荷後、カラムを平衡バッファーで強く洗浄した後、100mMのクエン酸、pH3.5で溶離した。溶離したタンパク質は、1mIの画分を275μIの1Mトリスバッファー、pH9を含む管に回収することにより即座に中性化した。高度に精製されたタンパク質は、続いてポリ-Hisタグタンパク質について上記した貯蔵バッファー中で脱塩した。均一性はSDSポリアクリルアミドゲルで試験し、エドマン(Edman)分解によりN-末端アミノ酸配列決定した。

[0094]

実施例102:酵母菌でのPROポリペプチドの発現

以下の方法は、酵母菌中でのPROポリペプチドの組換え発現を記載する。

第1に、ADH2/GAPDHプロモーターからのPROポリペプチドの細胞内生産又は分泌のための酵母菌発現ベクターを作成する。所望のPROポリペプチドをコードするDNA、選択されたシグナルペプチド及びプロモーターを選択したプラスミドの適当な制限酵素部位に挿入してPROポリペプチドの細胞内発現を指示する。分泌のために、PROポリペプチドをコードするDNAを選択したプラスミドに、ADH2/GAPDHプロモーターをコードするDNA、酵母菌アルファ因子分泌シグナル/リーダー配列、及び(必要ならば)PROポリペプチドの発現のためのリンカー配列とともにクローニングすることができる。

酵母菌株 A B 1 1 0 等の酵母菌は、次いで上記の発現プラスミドで形質転換し、選択された発酵培地中で培養できる。形質転換した酵母菌上清は、10%トリクロロ酢酸での沈降及び S D S - P A G E による分離で分析し、次いでクマシーブルー染色でゲルの染色をすることができる。

続いて組換えPROポリペプチドは、発酵培地から遠心分離により酵母菌細胞を除去し、次いで選択されたカートリッジフィルターを用いて培地を濃縮することによって単離及び精製できる。PROポリペプチドを含む濃縮物は、選択されたカラムクロマトグラフィー樹脂を用いてさらに精製してもよい。

[0095]

実施例103:バキュロウイルス感染昆虫細胞でのPROポリペプチドの発現 以下の方法は、バキュロウイルス感染昆虫細胞中におけるPROポリペプチドの組換え 発現を記載する。

所望のPROポリペプチドを、バキュロウイルス発現ベクターに含まれるエピトープタグの上流に融合させた。このようなエピトープタグは、ポリ-hisタグ及び免疫グロブリンタグ(IgGのFc領域など)を含む。pVL1393(Novagen)などの市販されているプラスミドから誘導されるプラスミドを含む種々のプラスミドを用いることができる。簡単には、PROポリペプチド又はPROポリペプチドの所定部分(膜貫通タンパク質の細胞外ドメインをコードする配列など)が、5′及び3′領域に相補的なプライマーでのPCRにより増幅される。5′プライマーは、隣接する(選択された)制限酵素部位を包含していてもよい。生産物は、次いで、選択された制限酵素で消化され、発現ベクターにサブクローニングされる。

組換えバキュロウイルスは、上記のプラスミド及びBaculoGold(商品名)ウイルスDNA(Pharmingen)を、Spodoptera frugiperda(「Sf9」)細胞(ATCC CRL 1711)中にリポフェクチン(GIBCO-BRLから市販)を用いて同時形質移入することにより作成される。28 で4から5日インキュベートした後、放出されたウイルスを回収し、更なる増幅に用いた。ウイルス感染及びタンパク質発現は、0'Reilley等, Baculovirus expression vectors: A laboratory Manual, Oxford: Oxford University Press (1994)に記載されているように実施した。

次に、発現されたポリ-his タグ PROポリペプチドは、例えば Ni 2 * - キレートアフィニティクロマトグラフィーにより次のように精製される。抽出は、Rupert等,Nature, 362:175-179 (1993)に記載されているように、ウイルス感染した組み換え Sf9細胞から調製した。簡単には、Sf9細胞を洗浄し、超音波処理用バッファー(25mLのHepes、pH7.9;12.5mMのMgCl $_2$;0.1mM EDTA;10%グリ

30

40

50

あるいは、IgGタグ(又はFcタグ)PROポリペプチドの精製は、例えば、プロテインA又はプロテインGカラムクロマトグラフィーを含む公知のクロマトグラフィー技術を用いて実施できる。

[0096]

EP出願番号99912321.8では、PROポリペプチドは、バキュロウイルス感染Sf9昆虫細胞で成功裏に発現された。発現は、実際には0.5-2Lスケールで実施したが、より大きな(例えば8L)での調製に容易にスケールアップできる。タンパク質は、対応するタンパク質の可溶化形態及び/又はポリ-Hisタグ形態のコード化配列(例えば、細胞外ドメイン)がIgG1のヒンジ、CH2及びCH3ドメインを含む定常領域配列に融合したIgG作成物(イムノアドヘシン)として発現された。

バキュロウイルス感染Sf9細胞での発現のために、PCR増幅に続いて、対応するコ ード化配列をバキュロウイルス発現ベクター(IgG融合物に対するpb.PH.IgG 及びポリHisタグに対するPH.His.c)にサブクローニングし、そのベクター及 びBaculogold(登録商標)バキュロウイルスDNA(Pharmingen)を105スポドプテラグ ルヒペルダ (Spodoptera frugiperda) (「Sf9」) 細胞 (ATCC CRL 1711) にリポフェ クチン(Gibco BRL)を用いて同時形質移入した。pb.PH.IgG及びPH.His は、市販のバキュロウイルス発現ベクター p V L 1 3 9 3 (Pharmingen) の修飾物であり 、His又はFcタグ配列を含むように修飾されたポリリンカー領域を持つ。細胞を、10 %のFBS(Hyclone)を添加したHinkのTNM-FM培地で成長させた。細胞は、28 で 5 日間インキュベートした。上清を回収し、続いて10% F B S を添加したHinkのTNM-F H 培 地 に お け る S f 9 細 胞 感 染 に よ る 約 1 0 の 感 染 効 率 (M O I) で の 最 初 の ウ イ ル ス 増幅に用いた。細胞を28 で3日間インキュベートした。上清を回収し、バキュロウイ ル ス 発 現 ベ ク タ ー に お け る 作 成 物 の 発 現 を 、 1m l の 上 清 の 25mLの ヒ ス チ ジ ン タ グ タ ン パ ク 質用の N i - N T A ビーズ (Q I A G E N) 又は I g G タグタンパク質用のプロテイン A セファ ロースCL-4Bビーズ(Pharmacia)へのバッチ結合、次いでクマシーブルー染色により周知 の濃度のタンパク質標準と比較するSDS-PAGE分析により測定した。

第 1 の増幅上清を E S F - 9 2 1 培地 (Expression System LLC) で成長させた S f 9 細胞のスピナー培地 (500ml) の約 0 . 1 の M O I での感染に使用した。細胞は 2 8 で 3 日間インキュベートした。上清を回収して濾過した。バッチ結合及び S D S - P A G E を、スピナー培地の発現が確認されるまで、必要に応じて繰り返した。

形質移入細胞からの条件培地(0.5~3L)を、遠心分離により細胞を除去し0.22ミクロンフィルターを通して濾過することにより回収した。ポリ-Hisタグ作成物については、タンパク質作成物をNi-NTAカラム(Qiagen)を用いて精製した。精製前に、イミダゾールを条件培地に5mMの濃度まで添加した。条件培地を、0.3MのNaCl及び5mMイミダゾールを含む20mMのHepes,pH7.4バッファーで平衡化した6mIのNi-NTAカラムに4-5mI/分の流速で4 においてポンプ供給した。負荷後、カラムをさらに平衡バッファーで

20

30

40

50

洗浄し、タンパク質を0.25Mイミダゾールを含む平衡バッファーで溶離した。高度に精製されたタンパク質は、続いて10mMの H e p e s 、0.14Mの N a C l 及び4%のマンニトールを含む貯蔵バッファー,pH6.8中で25mIのG25 Superfine (Pharmacia)を用いて脱塩し、- 8 0 で貯蔵した。

タンパク質のイムノアドへシン(Fc含有)作成物を以下のようにして条件培地から精製した。条件培地を、20mMのリン酸ナトリウムバッファー、pH6.8で平衡化した5mlのプロテインAカラム(Pharmacia)に負荷した。負荷後、カラムを平衡バッファーで強く洗浄した後、100mMのクエン酸、pH3.5で溶離した。溶離したタンパク質は、1mlの画分を275mLの1Mトリスバッファー、pH9を含む管に回収することにより即座に中性化した。高度に精製されたタンパク質は、続いてポリ-Hisタグタンパク質について上記した貯蔵バッファー中で脱塩した。均一性はSDSポリアクリルアミドゲル(PEG)電気泳動で試験し、エドマン(Edman)分解によりN-末端アミノ酸配列決定した。

EP出願番号 9 9 1 2 3 2 1 . 8 では、PROポリペプチドは、バキュロウイルス感染 H i 5 昆虫細胞において成功裏に発現された。発現は、実際には0.5-2Lスケールで実施したが、より大きな(例えば8L)での調製に容易にスケールアップできる。

[0097]

バキュロウイルス感染Hi5細胞における発現について、PROポリペプチドコード化DNAは、Pfu(Stratagene)等の適当な系で増幅されても、又はバキュロウイルス発現ベクターの含まれるエピトープタグの上流(5'-)に融合させてもよい。このようなエピトープタグは、ポリ-Hisタグ及び免疫グロブリンタグ(IgGのFc領域等)を含む。種々のプラスミドを用いることができ、pVL1393(Novagen)等の市販のプラスミドから誘導されたプラスミドを含む。簡単には、PROポリペプチド又はPROポリペプチドの所望の部分(膜貫通タンパク質の細胞外ドメインをコードする配列など)を、5′及び3′領域に相補的なプライマーでのPCRにより増幅する。5′プライマーは隣接する(選択された)制限酵素部位を導入してもよい。生成物は、次いで、選択された制限酵素で消化して発現ベクターにサブクローニングされる。例えば、pVL1393の誘導体はヒトIgG(pb.PH.IgG)のFc領域又はNAME配列の8ヒスチジン(pb.PH.His)タグ下流(3'-)を含むことができる。

Hi5細胞は、27、CO2無し、ペン/ストレプト無しの条件下で50%の集密度まで成長させた。150mmプレート各々について、30 μ gの PROポリペプチドを含む PIEベースベクターを1mlのEx-細胞培地(媒質:Ex-細胞401+1/100のL-Glu JRH Biosciences #14401-78P(注:この媒質は軽感受性))と混合し、別の管において、100 μ Iのセルフェクチン(CellFECTIN(Gibco BRL #10362-010)(ボルテックスで混合))を1mlのEx-細胞培地と混合した。2つの溶液を混合し、室温で15分間インキュベーションした。8mlのEx-細胞培地を2mlのDNA/セルフェクチン混合物に添加し、Ex-細胞培地で1回洗浄したHi5細胞上に層形成させた。次いでプレートを暗中室温でインキュベートした。次いでDNA/セルフェクチン混合物を吸引し、細胞をEx-細胞で1回洗浄して過剰のセルフェクチンを除去した。30mlの新鮮なEx-細胞培地を添加し、細胞を28 で3日間インキュベートした。上清を回収して、バキュロウイルス感染ベクターでのPROポリペプチドの発現を、1mlの上清の25mLのヒスチジンタグタンパク質用のNi-NTAビーズ(QIAGEN)又はIgGタグタンパク質用のプロテインAセファロースCL-4Bビーズ(Pharmacia)へのバッチ結合、次いでクマシーブルー染色により周知の濃度のタンパク質標準と比較するSDS-PAGE分析により測定した。

形質移入細胞からの条件培地(0.5~3L)を、遠心分離により細胞を除去し0.22ミクロンフィルターを通して濾過することにより回収した。ポリ-Hisタグ作成物については、タンパク質作成物をNi-NTAカラム(Qiagen)を用いて精製した。精製前に、イミダゾールを条件培地に5mMの濃度まで添加した。条件培地を、0.3MのNaCl及び5mMイミダゾールを含む20mMのHepes,pH7.4バッファーで平衡化した6mIのNi-NTAカラムに4-5mI/分の流速で4 においてポンプ供給した。負荷後、カラムをさらに平衡バッファーで洗浄し、タンパク質を0.25Mイミダゾールを含む平衡バッファーで溶離した。高度に精製

20

30

40

50

されたタンパク質は、続いて10mMのHepes、0.14MのNaC1及び4%のマンニトールを含む貯蔵バッファー, pH6.8中で25mlのG25 Superfine (Pharmacia)を用いて脱塩し、-80 で貯蔵した。

タンパク質のイムノアドへシン(Fc含有)作成物を以下のようにして条件培地から精製した。条件培地を、20mMのリン酸ナトリウムバッファー、pH6.8で平衡化した5mIのプロテイン A カラム(Pharmacia)に負荷した。負荷後、カラムを平衡バッファーで強く洗浄した後、100mMのクエン酸、pH3.5で溶離した。溶離したタンパク質は、1mIの画分を275mLの1Mトリスバッファー、pH9を含む管に回収することにより即座に中性化した。高度に精製されたタンパク質は、続いてポリ-Hisタグタンパク質について上記した貯蔵バッファー中で脱塩した。PROポリペプチドの均一性はSDSポリアクリルアミドゲル及びエドマン(Edman)分解によるN-末端アミノ酸配列決定及び所望又は必要に応じて他の分析手法により評価できる。

[0098]

実施例104:PROポリペプチドに結合する抗体の調製

この実施例は、PROポリペプチドに特異的に結合できるモノクローナル抗体の調製を 例示する。

モノクローナル抗体の生産のための技術は、この分野で知られており、例えば、Goding ,上掲に記載されている。用いられ得る免疫原は、精製 PROポリペプチド、PROポリペプチドを含む融合タンパク質、細胞表面に組換え PROポリペプチドを発現する細胞を含む。免疫原の選択は、当業者が過度の実験をすることなくなすことができる。

Balb/c等のマウスを、完全フロイントアジュバントに乳化して皮下又は腹腔内に1・100マイクログラムで注入したPROポリペプチド免疫原で免疫化する。あるいは、免疫原をMPL・TDMアジュバント(Ribi Immunochemical Researh, Hamilton, MT)に乳化し、動物の後足蹠に注入してもよい。免疫化したマウスは、次いで10から12日後に、選択したアジュバント中に乳化した付加的免疫源で追加免疫する。その後、数週間、マウスをさらなる免疫化注射で追加免疫する。抗-PROポリペプチド抗体の検出のためのELISAアッセイで試験するために、レトロオービタル出血からの血清試料をマウスから周期的に採取してもよい。

適当な抗体力価が検出された後、抗体に「陽性」な動物に、PROポリペプチド静脈内注射の最後の注入をすることができる。3から4日後、マウスを屠殺し、脾臓を取り出した。次いで脾臓細胞を(35%ポリエチレングリコールを用いて)、ATCCから番号CRL1597で入手可能なP3X63AgU.1等の選択されたマウス骨髄腫株化細胞に融合させた。融合によりハイブリドーマ細胞が生成され、次いで、HAT(ヒポキサンチン、アミノプテリン、及びチミジン)培地を含む96ウェル組織培養プレートに蒔き、非融合細胞、骨髄腫ハイブリッド、及び脾臓細胞ハイブリッドの増殖を阻害した。

ハイブリドーマ細胞は、PROポリペプチドに対する反応性についてのELISAでスクリーニングされる。PROポリペプチドに対するモノクローナル抗体を分泌する「陽性」ハイブリドーマ細胞の決定は、技術常識の範囲内である。

陽性ハイブリドーマ細胞を同系のBalb/cマウスに腹腔内注入し、抗-PROポリペプチドモノクローナル抗体を含む腹水を生成させる。あるいは、ハイブリドーマ細胞を、組織培養フラスコ又はローラーボトルで成長させることもできる。腹水中に生成されたモノクローナル抗体の精製は、硫酸アンモニウム沈降、それに続くゲル排除クロマトグラフィ・を用いて行うことができる。あるいは、抗体のプロテインA又はプロテインGへの親和性に基づくアフィニティクロマトグラフィーを用いることもできる。

[0099]

実施例105:キメラPROポリペプチド

PROポリペプチドは、タンパク質精製を促進するための一又は複数の付加的ポリペプチドドメインを持つキメラタンパク質として発現させてもよい。このような精製促進ドメインは、これらに限られないが、固定化金属での精製を可能にするヒスチジン-トリプトファンモジュール等の金属キレート形成ペプチド、固定化免疫グロブリンでの精製を可能

にするプロテイン A ドメイン、及び F L A G S (商品名)伸展 / 親和性精製系 (Immunex Corp., Seattle, Wash.)で利用されるドメインを含む。精製ドメイン及び P R O ポリペプチド配列の間に因子 X A 又はエンテロキナーゼ (Invitrogen, San Diego Calif.)等の切断可能なリンカー配列を含むことは、 P R O ポリペプチドをコードする D N A の発現促進に有用であろう。

[0100]

実施例106:特異的抗体を用いたPROポリペプチドの精製

天然又は組換え P R O ポリペプチドは、この分野の種々の標準的なタンパク質精製方法によって精製できる。例えば、プロ P R O ポリペプチド、成熟ポリペプチド、又はプレ P R O ポリペプチドは、対象とする P R O ポリペプチドに特異的な抗体を用いた免疫親和性クロマトグラフィーによって精製される。一般に、免疫親和性カラムは抗 - P R O ポリペプチド抗体を活性化クロマトグラフィー樹脂に共有結合させて作成される。

ポリクローナル免疫グロブリンは、硫酸アンモニウムでの沈殿又は固定化プロテイン A (Pharmacia LKB Biotechnology, Piscataway, N.J.) での精製のいずれかにより免疫血清から調製される。同様に、モノクローナル抗体は、硫酸アンモニウム沈殿又は固定化プロテイン A でのクロマトグラフィーによりマウス腹水液から調製される。部分的に精製された免疫グロブリンは、C n B r -活性化セファロース(商品名)(Pharmacia LKB Biote chnology)等のクロマトグラフィー樹脂に共有結合される。抗体が樹脂に結合され、樹脂がブロックされ、誘導体樹脂は製造者の指示に従って洗浄される。

このような免疫親和性カラムは、可溶化形態のPROポリペプチドを含有する細胞からの画分を調製することによるPROポリペプチドの精製において利用される。この調製物は、洗浄剤の添加又はこの分野で公知の方法により微分遠心分離を介して得られる全細胞又は細胞成分画分の可溶化により誘導される。あるいは、シグナル配列を含む可溶化PROポリペプチドは、細胞が成長する培地中に油様な量で分泌される。

可溶化 P R O ポリペプチド含有調製物は、免疫親和性カラムを通され、カラムは P R O ポリペプチドの好ましい吸着をさせる条件下(例えば、洗浄剤存在下の高イオン強度バッファー)で洗浄される。次いで、カラムは、抗体 / P R O ポリペプチド結合を分解する条件下(例えば、約2-3といった低 p H、高濃度の尿素又はチオシアン酸イオン等のカオトロープ)で溶離され、 P R O ポリペプチドが回収される。

[0101]

実施例107:薬剤スクリーニング

本発明は、PROポリペプチド又はその結合断片を種々の薬剤スクリーニング技術において使用することによる化合物のスクリーニングに特に有用である。そのような試験に用いられるPROポリペプチド又は断片は、溶液中の自由状態でも、固体支持体に固定されても、細胞表面に位置しても、細胞内に局在化していてもよい。薬剤スクリーニングの1つの方法は、PROポリペプチド又は断片を発現する組換え核酸で安定に形質移入される真核生物又は原核生物宿主細胞を利用する。薬剤は、そのような形質移入細胞に対して、競合的結合アッセイにおいてスクリーニングされる。そのような細胞は、生存可能又は固定化形態のいずれかにおいて、標準的な結合アッセイに使用できる。例えば、PROポリペプチド又は断片と試験される試薬の間での複合体形成を測定してよい。あるいは、試験する試薬によって生ずるPROポリペプチドとその標的細胞との間の複合体形成における減少を試験する事もできる

即ち本発明は、PROポリペプチド関連疾患又は障害に影響を与えうる薬剤又は任意の他の試薬のスクリーニング方法を提供する。これらの方法は、その試薬をPROポリペプチド又は断片に接触させ、(I)試薬とPROポリペプチド又は断片との間の複合体の存在について、又は(ii)PROポリペプチド又は断片と細胞との間の複合体の存在について検定することを含む。これらの競合結合アッセイでは、PROポリペプチド又は断片が典型的には標識される。適切なインキュベーションの後、フリーのPROポリペプチド又は断片を結合形態のものから分離し、フリー又は未複合の標識の量が、特定の試薬がPROポリペプチドに結合する又はPROポリペプチド/細胞複合体を阻害する能力の尺度となる

10

20

30

40

50

薬剤スクリーニングのための他の技術は、ポリペプチドに対して適当な結合親和性を持つ化合物についての高スループットスクリーニングを提供し、1984年9月13日に発行されたWO 84/03564に詳細に記載されている。簡単に述べれば、多数の異なる小型ペプチド試験化合物が、プラスチックピン等の固体支持体又は幾つかの他の表面上で合成される。PROポリペプチドに適用すると、ペプチド試験化合物はPROポリペプチドと反応して洗浄される。結合したPROポリペプチドはこの分野で良く知られた方法により検出される。精製したPROポリペプチドは、上記の薬剤スクリーニング技術に使用するためにプレート上に直接被覆することもできる。さらに、非中和抗体は、ペプチドを捕捉し、それを固体支持体上に固定化するのに使用できる。

10

また、本発明は、PROポリペプチドに結合可能な中和抗体が、PROポリペプチド又はその断片について試験化合物と特異的に競合する競合薬剤スクリーニングアッセイも考慮する。この方法において、抗体は、PROポリペプチドで、一又は複数の抗原決定基を持つ任意のペプチドの存在を検出するのに使用できる。

[0102]

実施例108:合理的薬剤設計

合理的薬剤設計の目的は、対象とする生物学的活性ポリペプチド(例えば、PROポリペプチド)又はそれらが相互作用する小分子、例えばアゴニスト、アンタゴニスト、又はインヒビターの構造的類似物を製造することである。これらの例は、PROポリペプチドのより活性で安定な形態又はインビボでPROポリペプチドに機能を促進又は阻害する薬剤の創作に使用できる(参考、Hodgson、Bio/Technology、9: 19-21 (1991))。

20

1つの方法において、PROポリペプチド、又はPRO-インヒビター複合体の三次元構造が、 x 線結晶学により、コンピュータモデル化により、最も典型的には 2 つの方法の組み合わせにより決定する。分子の構造を解明し活性部位を決定するためには、PROポリペプチドの形状及び電荷の両方が確認されなければならない。数は少ないが、PROポリペプチドの構造に関する有用な情報が相同タンパク質の構造に基づいたモデル化によって得られることもある。両方の場合において、関連する構造情報は、類似 PROポリペプチド様分子の設計又は行こうなインヒビターの同定に使用される。合理的な薬剤設計の有用な例は、Braxton及びWells、Biochemistry、31:7796-7801 (1992)に示されているような向上した活性又は安定性を持つ分子、又はAthauda等、J. Biochem.、113:742-746 (1993)に示されているような天然ペプチドのインヒビター、アゴニスト、又はアンタゴニストとして作用する分子を含む。

30

また、上記のような機能アッセイによって選択された標的特異的な抗体を単離しその結晶構造を解明することもできる。この方法は、原理的には、それに続く薬剤設計が基礎をおくことのできるファーマコア (pharmacore)を生成する。機能的な薬理学的に活性な抗体に対する抗 - イディオタイプ抗体 (抗 - ids) を生成することにより、タンパク質結晶学をバイパスすることができる。鏡像の鏡像として、抗 - idsの結合部位は最初のレセプターの類似物であると予測できる。抗 - idsは、次いで、化学的又は生物学的に製造したペプチドのバンクからペプチドを同定及び単離するのに使用できる。単離されたペプチドは、ファーマコアとして機能するであろう。

40

本発明により、十分な量のPROポリペプチドがX線結晶学などの分析実験を実施するために入手可能である。さらに、ここに提供したPROポリペプチドアミノ酸配列の知識は、x線結晶学に換える、又はそれに加えるコンピュータモデル化技術で用いられる知識を提供する。

[0103]

実施例114:遺伝子増幅

この実施例は、種々のPROポリペプチドをコードする遺伝子が或る種のヒト癌のゲノムで増幅されることを示す。増幅は遺伝子産物の過剰発現を伴い、PROポリペプチドが結腸、肺及び他の癌等の或る種の癌において治療的介入の有用な標的であることを示している。治療薬はPROポリペプチドコード化遺伝子のアンタゴニスト、例えばマウス-ヒ

50

30

40

50

トキメラ、PROポリペプチドに対するヒト化又はヒト抗体の形態をとりうる。

スクリーニングの出発物質は種々の癌から単離したゲノムDNAである。DNAは、定量的、例えば蛍光定量的に正確である。ネガティブ対照として、DNAを10の正常健常個体からDNAを単離し、それをプールして健常個体における遺伝子コピーのアッセイ対照として使用した(NorHu)。

5 、ヌクレアーゼアッセイ(例えばTaqMan(商品名))及び実時間定量的PCR(例えば、ABI Prizm 7700 Sequence Detection System(商品名)(Perkin Elmer, Applied Bio systems Division, Foster City, CA))を、或る種の癌で潜在的に増幅される遺伝子の発見に使用した。結果は、PROポリペプチドがスクリーニングした肺及び結腸癌において過剰発現されたか否かの決定に用いた。結果はデルタCT単位で報告した。1単位は1PCRサイクル又は正常に対して約2倍の増幅に相当し、2単位は4倍、3単位は8倍等々に相当する。定量化はプライマー及びPROポリペプチドコード化遺伝子から誘導したTaqMan(商品名)蛍光を用いて得た。最も独特の核酸配列を含むと思われ、スプライシングされたイントロンを最も持たないと思われるPROポリペプチドの領域、例えば3′-非翻訳領域がプライマー誘導に好ましい。

5 ' ヌクレアーゼアッセイ反応は蛍光 P C R ベースの技術であり、実時間での増幅監視のためのTapDNAポリメラーゼ酵素の 5 ' エキソヌクレアーゼ活性を使用する。 P C R 反応に典型的な単位複製配列の生成に 2 つの P C R プライマーの間に位置する・第3のオリゴヌクレオチド、又はプローブは、 2 つの P C R プライマーの間に位置する核酸配列を検出するために設計された。 プローブはTapDNAポリメラーゼ酵素により非伸展性であり、レポーター蛍光染料及び消光剤蛍光染料で標識される。 2 つの染料がらのレーザー誘導発光は消光染料によって消光される。増幅反応の間、プローブはTapDNAポリメラーゼ酵素によりプレート依存的方式で切断される。得られたプローブ断片は溶液中に解離し、放出されたレポーター染料からのシグナルは第2のフルオロホアからの消光効果を受けない。レポーター染料の一分子は、新たに合成された各分子について標識され、非消光レポーター染料の検出がデータの定量的解釈の基礎を提供する。

5 、ヌクレアーゼ法は、ABI Prism 7700TM配列検出などの実時間定量的 P C R 装置で実施される。系は温度サイクル器、レーザー、電荷結合装置(C C D) カメラ及びコンピュータからなる。系は温度サイクル器上で96-ウェルでの試料を増幅させる。増幅中に、レーザー誘導蛍光シグナルは光ファイバーケーブルで 9 6 ウェルに集められ、 C C D で検出される。系は装置の実行及びデータの分析のためのソフトウェアを含む。

5 ' ヌクレアーゼアッセイデータは、最初は C t 又は境界サイクルで表現される。これは、レポーターシグナルが蛍光のバックグラウンドを越えて蓄積されるサイクルとして定義される。 C t 値は核酸試料における特定の標的配列の種発コピー相対数の定量的尺度として使用した。

以下のPROポリペプチドをコードする遺伝子が上記のアッセイで増幅されることが見出された:PRO703。

[0104]

実施例117:インサイツハイブリッド形成

インサイツハイブリッド形成は、細胞又は組織調製物内での核酸配列の検出及び局在化のための強力で多用途の技術である。それは、例えば、遺伝子発現部位の同定、転写物の組織分布の分析、ウイルス感染の同定及び局在化、特定mRNA合成及び染色体マッピングにおける追跡に有用である。

インサイツハイブリッド形成は、Lu及びGillett, Cell Vision 1: 169-176 (1994)のプロトコールの最適な変形に従って、PCR生成 3 P-標識リボプローブを用いて実施される。簡単には、ホルマリン固定、パラフィン包埋ヒト組織を切片化し、脱パラフィンし、プロテイナーゼ K (20g/ml) で 1 5 分間 3 7 で脱タンパクし、さらに上掲のLu及びGillettに記載されたようにインサイツハイブリッド形成する。 [3 3 -P] UTP-標識アンチセンスリボプローブをPCR産物から生成し、5 5 で終夜ハイブリッド形成する。

20

30

40

50

スライドをKodak NTB2核トラックエマルションに浸漬して4週間露出する。

^{3 3} P - リボプローブ合成

 $6.0\,\mu$ I(125mCi)の 3 3 P - U T P(Amersham BF 1002, SA& 2000 Ci/mmol)をスピード真空乾燥させた。乾燥 3 3 P - U T P を含む管に以下の成分を添加した:

- 2.0 µ lの5 x 転写バッファー
- 1.0 μ I の D T T (100 m M)
- 2.0μlのNTP混合物(2.5mM: 10μ; 10mMのGTP, CTP&ATP+10μlのΗ₂ Ο)
- 1.0 μ I の U T P (50 μ M)
- 1.0µIØRnasin
- 1.0μ Iの D N A テンプレート (1μ g)
- 1.0 µ I Ø H 2 O
- 1.0μlのRNAポリメラーゼ(PCR産物についてT3 = AS, T7=S,通常)

管を3.7 で 1 時間インキュベートし、 $1.0\,\mu$ I 0 RQ1 D N a s e を添加し、次いで 3.7 で $1.5\,\beta$ 間インキュベートした。 $90\,\mu$ I の T E ($10\,m$ MトリスpH7.6/ $1\,m$ Mの E D T A pH8.0) を添加し、混合物をDE81紙にピペットした。残りの溶液をMicrocon-50限外濾過ユニットに負荷し、プログラム $1.0\,\mu$ で の $1.0\,\mu$ で $1.0\,\mu$

プローブをTBE/尿素ゲル上で走らせた。1-3μlのプローブ又は5μlのRNA Mr kIIIを3μlの負荷バッファーに添加した。加熱ブロック上で95 に3分間加熱した 後、ゲルを即座に氷上に置いた。ゲルのウェルをフラッシングし、試料を負荷し、180-25 0ボルトで45分間走らせた。ゲルをサランラップでラップし、- 70 冷凍機内で補強ス クリーンを持つXARフィルムに1時間から終夜露出した。

[0105]

^{3 3} P-ハイブリッド形成

A . 凍結切片の前処理

スライドを冷凍機から取り出し、アルミニウムトレイに配置して室温で 5 分間解凍した。トレイを 5 5 のインキュベータに 5 分間配置して凝結を減らした。スライドを蒸気フード内において 4%パラホルムアルデヒド中で 5 分間固定し、 $0.5\times$ S S C で 5 分間室温で洗浄した(25ml $20\times$ SSC + 975ml SQ H $_2$ O)。 0.5μ g/mlのプロテイナーゼ中、 3 7 で 1 0 分間の脱タンパクの後(250mlの予備加熱 R N a s e 無し R N a s e バッファー中の 1 0mg/mlストック 12.5μ l)、切片を $0.5\times$ S S C で 1 0 分間室温で洗浄した。切片を、 70%、 95%、 100%エタノール中、各 2分間脱水した。

B . パラフィン包埋切片の前処理

スライドを脱パラフィンし、SQ H $_2$ O中に配置し、 $2 \times S$ S C で室温において各々 5 分間 2 回リンスした。切片を 20μ g/mlのプロテイナーゼ K (250 m 1 の R N a s e 無し R N a s e バッファー中10 m g/mlを 500μ 1 ; 3 7 、 1 5 分間) - ヒト胚又は 8 \times プロテイナーゼ K (250 m 1 の R N a s e バッファー中 100μ 1 、 3 7 、 3 0 分間) - ホルマリン組織で脱タンパクした。続く $0.5 \times S$ S C でのリンス及び脱水は上記のように実施した。

C . プレハイブリッド化

スライドを B o x バッファー($4 \times S$ S C 、50%ホルムアミド) - 飽和濾紙で列を作ったプラスチックボックスに並べた。組織を 50μ I のハイブリッド形成バッファー(3.75gデキストラン硫酸 + 6m I S Q H <8 UB> 2 </S UB> O)で被覆し、ボルテックスし、キャップを外して 2 分間マイクロ波で加熱した。氷上で冷却した後、18.75m I の $20 \times S$ S C 及び9m I の S Q H $_2$ O を添加し、組織を良くボルテックスし、4 2 で1-4時間インキュベートした。

D.ハイブリッド形成

スライド当たり 1 . 0 \times 1 0 6 c p mのプローブ及び1.0 μ lの t R N A (50mg/mlストック)を 9 5 度で 3 分間加熱した。スライドを氷上で冷却し、スライド当たり48 μ lのハイブリッド形成バッファーを添加した。ボルテックスの後、50 μ lの 3 3 P 混合物をスラ

30

40

イド上のプレハイブリッド50 μ I に添加した。スライドを 5 5 で終夜インキュベートした。

E . 洗净

洗浄は、 2×10 分間、 $2 \times S$ S C 、 E D T A で室温で実施し(400mIの $20 \times SSC + 16m$ Iの0.25M EDTA、 $V_f = 4$ L)、次いでR N a S e A 処理を 3.7 で 3.0 分間行った(250mI R N a S e バッファー中10mg/mIを 500μ $1 = 20 \mu$ g/mI)。スライドを 2×10 分間、E D T A で室温において洗浄した。緊縮性洗浄条件は次の通り:5.5 で 2 時間、 $0.1 \times S$ S C 、 E D T A (20mIの $20 \times SSC + 16m$ IのEDTA、 $V_f = 4$ L)。

F . オリゴヌクレオチド

インサイツ分析を、ここに開示した種々のDNA配列について実施した。この分析に用いたオリゴヌクレオチドは、ここに開示した核酸配列から誘導し、一般的に約40~55 ヌクレオチド長の範囲であった。

[0106]

材料の寄託

次の細胞系をアメリカン・タイプ・カルチャー・コレクション ,12301 パークローンドライブ、ロックビル、メリーランド、米国 (ATCC)に寄託した:

材料

ATCC寄託番号

寄 託 日

DNA50913-1287

ATCC 209716

1998年3 月31日

[0107]

この寄託は、特許手続き上の微生物の寄託の国際的承認に関するブダペスト条約及びその規則(ブダペスト条約)の規定に従って行われた。これは、寄託の日付から30年間、寄託の生存可能な培養が維持されることを保証するものである。寄託物はブダペスト条約の条項に従い、またジェネンテク社とATCCとの間の合意に従い、ATCCから入手することができ、これは、どれが最初であろうとも、関連した米国特許の発行時又は任意の米国又は外国特許出願の公開時に、寄託培養物の後代を永久かつ非制限的に入手可能とすることを保証し、米国特許法第122条及びそれに従う特許庁長官規則(特に参照番号8860G638の37CFR第1.14条を含む)に従って権利を有すると米国特許庁長官が決定した者に子孫を入手可能とすることを保証するものである。

本出願の譲受人は、寄託した培養物が、適切な条件下で培養されていた場合に死亡もしくは損失又は破壊されたならば、材料は通知時に同一の他のものと即座に取り替えることに同意する。寄託物質の入手可能性は、特許法に従いあらゆる政府の権限下で認められた権利に違反して、本発明を実施するライセンスであるとみなされるものではない。

上記の文書による明細書は、当業者に本発明を実施できるようにするために十分であると考えられる。寄託した態様は、本発明のある側面の一つの説明として意図されており、機能的に等価なあらゆる作成物がこの発明の範囲内にあるため、寄託された作成物により、本発明の範囲が限定されるものではない。ここでの物質の寄託は、ここに含まれる文書による説明が、そのベストモードを含む、本発明の任意の側面の実施を可能にするために不十分であることを認めるものではないし、それが表す特定の例証に対して請求の範囲を制限するものと解釈されるものでもない。実際、ここに示し記載したものに加えて、本発明を様々に改変することは、前記の記載から当業者にとっては明らかなものであり、添付の請求の範囲内に入るものである。

【図面の簡単な説明】

[0108]

【図1】天然配列PRO703cDNAの核酸配列(配列番号:101)を示す。配列番号:101は、ここで「UNQ367」及び/又は「DNA50913-1287」と命名されるクローンである。

【図2】図1に示した配列番号:101のコード化配列から誘導されたアミノ酸配列(配列番号:102)を示す。

【図1】

【図2】

>> usr segdb2 sst DNA Dnasegs.min ss.DNA50913 >=#7 22451271, 730 aa. 1671f; >>#W: 78644, pU: 7.65, NX(S T): 2

 ${\tt MGVCQRTRAPWKEKSQLERAALGFRKGGSGMFASGWNQTVPIEEAGSMAALLLLPLLLLPL}$ $\verb|LLLKLHLWPQLRWLPADLAFAVRALCCKRALRARALAAAAADPEGPEGGCSLAWRLAELAQQ|$ RAAHTFLIHGSRRFSYSEAERESNRAARAFLRALGWDWGPDGGDSGEGSAGEGERAAPGAGD ${\tt AAAGSGAEFAGGDGAARGGGAAAPLSPGATVALLLPAGPEFLWLWFGLAKAGLRTAFVPTAL}$ ${\tt RRGPLLHCLRSCGARALVLAPEFLESLEPDLPALRAMGLHLWAAGPGTHPAGISDLLAEVSA}$ ${\tt EVDGPVFGYLSSPQSITDTCLYIFTSGTTGLPKAARISHLKILQCQGFYQLCGVHQEDVIYL}$ ${\tt ALPLYHMSGSLLGIVGCMGIGATVVLKSKFSAGQFWEDCQQHRVTVFQYIGELCRYLVNQPP}$ SKAERGHKVRLAVGSGLRPDTWERFVRRFGPLQVLETYGLTEGNVATINYTGQRGAVGRASW ${\tt LYKHIFPFSLIRYDVTTGEPIRDPQGHCMATSPGEPGLLVAPVSQQSPFLGYAGGPELAQGK}$ $\verb|LLKDVFRPGDVFFNTGDLLVCDDQGFLRFHDRTGDTFRWKGENVATTEVAEVFEALDFLQEV|$ NVYGVTVPGHEGRAGMAALVLRPPHALDLMQLYTHVSENLPPYARPRFLRLQESLATTETFK $\verb"QQKVRMANEGFDPSTLSDPLYVLDQAVGAYLPLTTARYSALLAGNLRI"$

>7' 74\\`7' F}' : aa 1=42 cAMP 及びcGMP依存性外に ク質材 ゼリン酸化部位 aa 136で開始 CUBド メインタンバ ケ管(モチーフ aa 254-261 推定AMP-結合されつうプネーチャー au 332-243 N-51 9396 (行都) 次 aa 37-40 及び483-486

【配列表】

2006160750000001.app

フロントページの続き

(51) Int.CI. F I テーマコード (参考)

C 1 2 Q 1/02 (2006.01) C 1 2 Q 1/02 C 1 2 P 21/08 (2006.01) C 1 2 P 21/08

(31)優先権主張番号 60/077,649

(32)優先日 平成10年3月11日(1998.3.11)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/077,791

(32)優先日 平成10年3月12日(1998.3.12)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/078,004

(32)優先日 平成10年3月13日(1998.3.13)

(33)優先権主張国 米国(US) (31)優先権主張番号 09/040,220

(32)優先日 平成10年3月17日(1998.3.17)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/078,886

(32)優先日 平成10年3月20日(1998.3.20)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/078,910

(32)優先日 平成10年3月20日(1998.3.20)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/078,939

(32)優先日 平成10年3月20日(1998.3.20)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/078,936

(32)優先日 平成10年3月20日(1998.3.20)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/079,294

(32)優先日 平成10年3月25日(1998.3.25)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/079,656

(32)優先日 平成10年3月26日(1998.3.26)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/079,728

(32)優先日 平成10年3月27日(1998.3.27)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/079,786

(32)優先日 平成10年3月27日(1998.3.27)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/079,664

(32)優先日 平成10年3月27日(1998.3.27)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/079,689

(32)優先日 平成10年3月27日(1998.3.27)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/079,663

(32)優先日 平成10年3月27日(1998.3.27)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/079,923

(32)優先日 平成10年3月30日(1998.3.30)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/079,920

(32)優先日 平成10年3月30日(1998.3.30)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/080,105

(32)優先日 平成10年3月31日(1998.3.31)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/080,165

(32)優先日 平成10年3月31日(1998.3.31)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/080,194

(32)優先日 平成10年3月31日(1998.3.31)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/080,107

(32)優先日 平成10年3月31日(1998.3.31)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/080,333

(32)優先日 平成10年4月1日(1998.4.1)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/080,327

(32)優先日 平成10年4月1日(1998.4.1)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/080,334

(32)優先日 平成10年4月1日(1998.4.1)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/080,328

(32)優先日 平成10年4月1日(1998.4.1)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/081,071

(32)優先日 平成10年4月8日(1998.4.8)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/081,070

(32)優先日 平成10年4月8日(1998.4.8)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/081,049

(32)優先日 平成10年4月8日(1998.4.8)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/081,195

(32)優先日 平成10年4月9日(1998.4.9)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/081,203

(32)優先日 平成10年4月9日(1998.4.9)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/081,229

(32)優先日 平成10年4月9日(1998.4.9)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/081,838 (32)優先日 平成10年4月15日(1998.4.15)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/081,955

(32)優先日 平成10年4月15日(1998.4.15)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/081,952

(32)優先日 平成10年4月15日(1998.4.15)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/081,817

(32)優先日 平成10年4月15日(1998.4.15)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/082,569

(32)優先日 平成10年4月21日(1998.4.21)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/082,568

(32)優先日 平成10年4月21日(1998.4.21)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/082,700

(32)優先日 平成10年4月22日(1998.4.22)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/082,804

(32)優先日 平成10年4月22日(1998.4.22)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/082,704

(32)優先日 平成10年4月22日(1998.4.22)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/082,767

(32)優先日 平成10年4月23日(1998.4.23)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/082,796

(32)優先日 平成10年4月23日(1998.4.23)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/083,336

(32)優先日 平成10年4月27日(1998.4.27)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/083,322

(32)優先日 平成10年4月28日(1998.4.28)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/083,392

(32)優先日 平成10年4月29日(1998.4.29)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/083,499

(32)優先日 平成10年4月29日(1998.4.29)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/083,545

(32)優先日 平成10年4月29日(1998.4.29)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/083,554

(32)優先日 平成10年4月29日(1998.4.29)

(33)優先権主張国 米国(US)

(50)

(31)優先権主張番号 60/083,495

(32)優先日 平成10年4月29日(1998.4.29)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/083,558

(32)優先日 平成10年4月29日(1998.4.29)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/083,496

(32)優先日 平成10年4月29日(1998.4.29)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/083,559

(32)優先日 平成10年4月29日(1998.4.29)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/083,500

(32)優先日 平成10年4月29日(1998.4.29)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/083,742

(32)優先日 平成10年4月30日(1998.4.30)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/084,366

(32)優先日 平成10年5月5日(1998.5.5)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/084,441

(32)優先日 平成10年5月6日(1998.5.6)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/084,414

(32)優先日 平成10年5月6日(1998.5.6)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/084,640

(32)優先日 平成10年5月7日(1998.5.7)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/084,639

(32)優先日 平成10年5月7日(1998.5.7)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/084,637

(32)優先日 平成10年5月7日(1998.5.7)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/084,643

(32)優先日 平成10年5月7日(1998.5.7)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/084,598

(32)優先日 平成10年5月7日(1998.5.7)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/084,600

(32)優先日 平成10年5月7日(1998.5.7)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/084,627

(32)優先日 平成10年5月7日(1998.5.7)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/085,339

(32)優先日 平成10年5月13日(1998.5.13)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/085,338

(32)優先日 平成10年5月13日(1998.5.13)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/085,323

(32)優先日 平成10年5月13日(1998.5.13)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/085,573

(32)優先日 平成10年5月15日(1998.5.15)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/085,697

(32)優先日 平成10年5月15日(1998.5.15)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/085,580

(32)優先日 平成10年5月15日(1998.5.15)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/085,579

(32)優先日 平成10年5月15日(1998.5.15)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/085,704

(32)優先日 平成10年5月15日(1998.5.15)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/085,582

(32)優先日 平成10年5月15日(1998.5.15)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/085,689

(32)優先日 平成10年5月15日(1998.5.15)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/085,700

(32)優先日 平成10年5月15日(1998.5.15)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/086,023

(32)優先日 平成10年5月18日(1998.5.18)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/086,486

(32)優先日 平成10年5月22日(1998.5.22)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/086,414

(32)優先日 平成10年5月22日(1998.5.22)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/086,392

(32)優先日 平成10年5月22日(1998.5.22)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/086,430

(32)優先日 平成10年5月22日(1998.5.22)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/087,208

(32)優先日 平成10年5月28日(1998.5.28)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/087,098 (32)優先日 平成10年5月28日(1998.5.28)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/087,106

(32)優先日 平成10年5月28日(1998.5.28)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/094,651

(32)優先日 平成10年7月30日(1998.7.30)

(33)優先権主張国 米国(US) (31)優先権主張番号 60/100,038

(32)優先日 平成10年9月11日(1998.9.11)

(33)優先権主張国 米国(US)

(72)発明者 ゴッダード,オードリー

アメリカ合衆国 カリフォルニア 94131, サン フランシスコ, コンゴ ストリート 110

(72)発明者 ガーニー,オースティン

アメリカ合衆国 カリフォルニア 94002, ベルモント、デビー レーン 1

(72)発明者 ユアン, ジーン

アメリカ合衆国 カリフォルニア 94403, サン マテオ, ウェスト サーティーセブンス アヴェニュー 176

(72)発明者 ベーカー,ケヴィン ピー.

アメリカ合衆国 カリフォルニア 94402, サン マテオ, サウス グラント ストリート 1115

(72)発明者 チェン, ジアン

アメリカ合衆国 ニュージャージー 08540, プリンストン, ヨーク ドライブ 121 Fターム(参考) 4B024 AA01 AA12 BA36 CA04 CA05 CA09 CA11 DA02 DA03 DA06

DA12 HA14 HA17

4B063 QA06 QA13 QA18 QA19 QQ08 QQ42 QQ52 QR32 QR35 QR55

QR62 QR77 QS25 QS34

4B064 AG27 CA20 CC24 DA01

4H045 AA10 AA11 AA30 BA10 BA41 CA40 DA76 DA86 EA28 EA51

FA74 GA22 GA26

专利名称(译)	新型多肽和编码它们的核酸		
公开(公告)号	JP2006160750A	公开(公告)日	2006-06-22
申请号	JP2006011809	申请日	2006-01-20
[标]申请(专利权)人(译)	健泰科生物技术公司		
申请(专利权)人(译)	Genentech公司		
[标]发明人	ウッドウィリアムアイ ゴッダードオードリー ガーニーオースティン ユアンジーン ベーカーケヴィンピー チェンジアン		
发明人	ウッド,ウィリアム アイ. ゴッダード,オードリー ガーニー,オースティン ユアン,ジーン ベーカー,ケヴィン ピー. チェン,ジアン		
IPC分类号	/76 A61K38/00 A61K38/17 A61K39 A61P25/02 A61P25/08 A61P25/14 /705 C07K16/18 C07K16/28 C07K	9/395 A61K45/00 A61K48/00 A6 A61P25/16 A61P25/28 A61P3 16/30 C07K16/40 C07K16/46 C	/02 C12P21/08 A61K31/7088 A61K35 61P7/02 A61P9/00 A61P19/08 5/00 A61P43/00 C07K14/47 C07K14 612N1/19 C12N1/21 C12N5/10 C12N9 1/91 G01N33/50 G01N33/53 G01N33
CPC分类号	A61K38/00 A61P19/08 A61P25/02 A61P25/08 A61P25/14 A61P25/16 A61P25/28 A61P27/02 C07K14 /47		
FI分类号	C07K14/82.ZNA C12N15/00.A C07K16/32 C07K19/00 C12Q1/68.A C12Q1/02 C12P21/08		
F-TERM分类号	4B024/AA01 4B024/AA12 4B024/BA36 4B024/CA04 4B024/CA05 4B024/CA09 4B024/CA11 4B024 /DA02 4B024/DA03 4B024/DA06 4B024/DA12 4B024/HA14 4B024/HA17 4B063/QA06 4B063/QA13 4B063/QA18 4B063/QA19 4B063/QQ08 4B063/QQ42 4B063/QQ52 4B063/QR32 4B063/QR35 4B063 /QR55 4B063/QR62 4B063/QR77 4B063/QS25 4B063/QS34 4B064/AG27 4B064/CA20 4B064/CC24 4B064/DA01 4H045/AA10 4H045/AA11 4H045/AA30 4H045/BA10 4H045/BA41 4H045/CA40 4H045 /DA76 4H045/DA86 4H045/EA28 4H045/EA51 4H045/FA74 4H045/GA22 4H045/GA26		
优先权	60/077450 1998-03-10 US 60/077632 1998-03-11 US 60/077641 1998-03-11 US 60/077791 1998-03-12 US 60/078004 1998-03-13 US 09/040220 1998-03-17 US 60/078886 1998-03-20 US 60/078910 1998-03-20 US 60/078936 1998-03-20 US 60/078936 1998-03-25 US 60/079294 1998-03-25 US 60/079656 1998-03-26 US		

```
60/079728 1998-03-27 US
60/079786 1998-03-27 US
60/079664 1998-03-27 US
60/079689 1998-03-27 US
60/079663 1998-03-27 US
60/079923 1998-03-30 US
60/079920 1998-03-30 US
60/080105 1998-03-31 US
60/080165 1998-03-31 US
60/080194 1998-03-31 US
60/080107 1998-03-31 US
60/080333 1998-04-01 US
60/080327 1998-04-01 US
60/080334 1998-04-01 US
60/080328 1998-04-01 US
60/081071 1998-04-08 US
60/081070 1998-04-08 US
60/081049 1998-04-08 US
60/081195 1998-04-09 US
60/081203 1998-04-09 US
60/081229 1998-04-09 US
60/081838 1998-04-15 US
60/081955 1998-04-15 US
60/081952 1998-04-15 US
60/081817 1998-04-15 US
60/082569 1998-04-21 US
```

60/082568 1998-04-21 US 60/082700 1998-04-22 US 60/082804 1998-04-22 US 60/082704 1998-04-22 US 60/082767 1998-04-23 US 60/082796 1998-04-23 US 60/083336 1998-04-27 US 60/083322 1998-04-28 US 60/083392 1998-04-29 US 60/083499 1998-04-29 US 60/083545 1998-04-29 US 60/083554 1998-04-29 US 60/083495 1998-04-29 US 60/083558 1998-04-29 US 60/083496 1998-04-29 US 60/083559 1998-04-29 US 60/083500 1998-04-29 US 60/083742 1998-04-30 US 60/084366 1998-05-05 US 60/084441 1998-05-06 US 60/084414 1998-05-06 US 60/084640 1998-05-07 US 60/084639 1998-05-07 US 60/084637 1998-05-07 US 60/084643 1998-05-07 US 60/084598 1998-05-07 US 60/084600 1998-05-07 US 60/084627 1998-05-07 US 60/085339 1998-05-13 US 60/085338 1998-05-13 US 60/085323 1998-05-13 US 60/085573 1998-05-15 US 60/085697 1998-05-15 US 60/085580 1998-05-15 US 60/085579 1998-05-15 US 60/085704 1998-05-15 US 60/085582 1998-05-15 US 60/085689 1998-05-15 US 60/085700 1998-05-15 US 60/086023 1998-05-18 US 60/086486 1998-05-22 US 60/086414 1998-05-22 US 60/086392 1998-05-22 US 60/086430 1998-05-22 US 60/087208 1998-05-28 US 60/087098 1998-05-28 US 60/087106 1998-05-28 US 60/094651 1998-07-30 US 60/100038 1998-09-11 US

外部链接

Espacenet

摘要(译)

要解决的问题:为了鉴定和分离新的DNA,重组生产该DNA编码的新多肽,并使用该多肽。 解决方案:编码新分离的具有特定氨基酸序列的多肽(与超长链酰基辅酶A合酶具有同源性的多肽)的特定核酸序列,以及包含该核酸序列的载体。 以及表达该载体的宿主细胞,一种嵌合多肽分子,其包含与异源多肽序列融合的多肽,例如免疫球蛋白,一种与该多肽结合的抗体。 它可以用于癌症的治疗和诊断。 [选择图]无