(19) **日本国特許庁(JP)**

(12) 公 開 特 許 公 報(A)

(11)特許出願公開番号

特開2004-201673 (P2004-201673A)

(43) 公開日 平成16年7月22日(2004.7.22)

(51) Int.C1. ⁷		F I	テーマコード (参考)
C12N	15/09	C 1 2 N 15/00 Z N A A	2G045
CO7K	14/47	C O 7 K 14/47	4BO24
CO7K	16/18	C O 7 K 16/18	4BO5O
C12N	1/15	C 1 2 N 1/15	4B063
C12N	1/19	C 1 2 N 1/19	4BO64
		審査請求 未請求 請求項の数 24 OL	(全 52 頁) 最終頁に続く
(21) 出願番号		特願2003-207500 (P2003-207500) (71) 出願人 000000217	

(21) 出願番号 特願2003-207500 (P2003-207500) (22) 出願日 平成15年8月13日 (2003.8.13) (31) 優先権主張番号 特願2002-319521 (P2002-319521) (32) 優先日 平成14年11月1日 (2002.11.1) (33) 優先権主張国 日本国 (JP)

特許法第30条第1項適用申請有り 平成14年8月2 5日 社団法人日本生化学会発行の「生化学 第74巻 第8号」に発表 エーザイ株式会社

東京都文京区小石川4丁目6番10号

(74) 代理人 100100549

弁理士 川口 嘉之

(74) 代理人 100090516

弁理士 松倉 秀実

(74) 代理人 100089244

弁理士 遠山 勉

(72) 発明者 竹内 勝一

京都市下京区西七条石井町33-17 シ

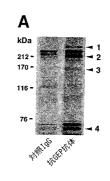
ャローム33 202号

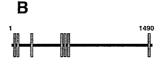
(72) 発明者 高井 義美

兵庫県神戸市西区学園東町2丁目5番地の

73

最終頁に続く


(54) 【発明の名称】 ラブコネクチン 3 結合蛋白質


(57)【要約】

【課題】 Ca^{2} * 依存性エキソサイトーシス、特にはRab3Aの活性化および不活性化の制御機構の解明に有用な蛋白質、ならびに、この蛋白質を用いる、 Ca^{2} * 依存性エキソサイトーシス、特にはRab3Aの活性化および不活性化の制御に有用な物質のスクリーニング方法を提供する。

【解決手段】抗Rab3 GEP抗体を用いる共免疫沈降により、Rab3Aの活性化および不活性化の制御に関与する蛋白質を特定した。この蛋白質は、ラブコネクチン3およびGDP/GTP交換反応促進蛋白質に結合するので、この結合を増加または減少させる物質のスクリーニングに使用できる。

【選択図】 図1

【特許請求の範囲】

【請求項1】

下記(a)または(b)の蛋白質。

- (a)配列番号2に示すアミノ酸配列を有する蛋白質。
- (b)配列番号 2 に示すアミノ酸配列において 1 もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列を有し、かつラブコネクチン 3 および G D P / G T P 交換反応促進蛋白質に結合する活性を有する蛋白質。

【請求項2】

配列番号2に示すアミノ酸配列を有する請求項1記載の蛋白質。

【 請 求 項 3 】

請求項1または2記載の蛋白質をコードするポリヌクレオチド。

【請求項4】

配列番号 1 に示す塩基配列の塩基番号 1 ~ 4 4 7 0 の塩基配列を有する請求項 3 記載のポリヌクレオチド。

【請求項5】

下記(a)または(b)のポリヌクレオチド。

- (a)配列番号1に示す塩基配列の塩基番号1~4470の塩基配列を有するポリヌクレオチド。
- (b)配列番号1に示す塩基配列の塩基番号1~4470の塩基配列に相補的な塩基配列を有するポリヌクレオチドとストリンジェントな条件でハイブリダイズし、かつラブコネクチン3およびGDP/GTP交換反応促進蛋白質に結合する活性を有する蛋白質をコードするポリヌクレオチド。

【請求項6】

下記(a)または(b)のポリヌクレオチド。

- (a)配列番号1に示す塩基配列の塩基番号1~4470の塩基配列を有するポリヌクレオチド。
- (b)配列番号1に示す塩基配列の塩基番号1~4470の塩基配列と相同性が80%以上の塩基配列を有し、かつラブコネクチン3およびGDP/GTP交換反応促進蛋白質に結合する活性を有する蛋白質をコードするポリヌクレオチド。

【請求項7】

請求項3~6のいずれか1項に記載のポリヌクレオチドを含む組換えベクター。

【請求項8】

請求項3~6のいずれか1項に記載のポリヌクレオチドにより宿主を形質転換して得られる形質転換体。

【請求項9】

請求項8記載の形質転換体を培養し、該形質転換体が発現した、ラブコネクチン3およびGDP/GTP交換反応促進蛋白質に結合する活性を有する蛋白質を培養物から採取することを含む、ラブコネクチン3およびGDP/GTP交換反応促進蛋白質に結合する活性を有する蛋白質の製造法。

【請求項10】

請求項3~6のいずれか1項に記載のポリヌクレオチドを検出するための、請求項3~6のいずれか1項に記載のポリヌクレオチドに相補的な少なくとも15ヌクレオチドを有するポリヌクレオチドからなるプローブまたはプライマーの使用。

【請求項11】

請求項3~6のいずれか1項に記載のポリヌクレオチドに相補的な少なくとも15ヌクレオチドを有するポリヌクレオチドからなるプローブまたはプライマーを被検ポリヌクレオチドとハイブリダイズさせることを特徴とする請求項3~6のいずれか1項に記載のポリヌクレオチドの解析方法。

【請求項12】

被 検 ポ リ ヌ ク レ オ チ ド が 被 検 組 織 ま た は 被 検 細 胞 中 に 存 在 す る こ と を 特 徴 と す る 請 求 項 1

10

20

30

40

1に記載の解析方法。

【請求項13】

請求項3~6のいずれか1項に記載のポリヌクレオチドに相補的な少なくとも15ヌクレオチドを有するポリヌクレオチドからなるプローブまたはプライマーを被検ポリヌクレオチドとハイブリダイズさせることを特徴とする請求項1または2に記載の蛋白質をコードする遺伝子の解析方法。

【請求項14】

被検ポリヌクレオチドが被検組織または被検細胞中に存在することを特徴とする請求項 1 2 に記載の遺伝子解析方法。

【請求項15】

請求項3~6のいずれか1項に記載のポリヌクレオチドに相補的な少なくとも15ヌクレオチドを有するポリヌクレオチドからなるプライマーを用いて、被検組織または被検細胞中のmRNAをRT-PCR法によって増幅させ、請求項3~6のいずれか1項に記載のポリヌクレオチドを測定することを特徴とする遺伝子解析方法。

【請求項16】

請求項 1 または 2 に記載の蛋白質をコードする m R N A にハイブリダイズするアンチセンスポリヌクレオチド。

【請求項17】

請求項1または2に記載の蛋白質をコードするmRNAを切断するリボザイム。

【請求項18】

請求項1または2に記載の蛋白質をコードするmRNAをRNA干渉により切断する二本鎖RNA。

【請求項19】

請求項1または2に記載の蛋白質に対する抗体。

【請求項20】

請求項19に記載の抗体を用いることを特徴とする請求項1または2に記載の蛋白質の免疫組織学的な解析方法。

【請求項21】

蛋白質の局在を解析する方法である請求項20記載の解析方法。

【請求項22】

蛋白質の発現量を解析する方法である請求項20記載の解析方法。

【請求項23】

請求項1または2に記載の蛋白質またはその異種相同蛋白質であるラブコネクチン3結合蛋白質と、ラブコネクチン3との結合を促進する物質または阻害する物質の候補物質のスクリーニング方法であって、ラブコネクチン3結合蛋白質と、ラブコネクチン3とを前記候補物質の存在下および非存在下で反応させ、前記結合を増加または減少させる前記候補物質を選択することを含む前記方法。

【請求項24】

請求項1または2に記載の蛋白質またはその異種相同蛋白質であるRab3 GDP/GTP交換反応促進蛋白質結合蛋白質と、Rab3 GDP/GTP交換反応促進蛋白質との結合を促進する物質または阻害する物質の候補物質のスクリーニング方法であって、Rab3 GDP/GTP交換反応促進蛋白質結合蛋白質とRab3 GDP/GTP交換反応促進蛋白質とを前記候補物質の存在下および非存在下で反応させ、前記結合を増加または減少させる前記候補物質を選択することを含む前記方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、ラブコネクチン3(rabconnectin-3)およびGDP/GTP交換反応促進蛋白質に結合する蛋白質およびそれをコードするポリヌクレオチドに関する。

[0002]

20

30

10

40

30

40

50

【従来の技術】

Rab3Aは、Rab3A,-3B,-3C,-3Dの4つからなるRab3ファミリーのひとつで、神経伝達物質のCa² + 依存性エキソサイトーシスの制御に重要な役割を果たすことが知られている。神経伝達物質のCa² + 依存性エキソサイトーシスのプロセスは、(1)プレシナプス貯溜プールから、Ca² + チャンネルが存在する原形質膜の活性帯へのシナプス小胞の移動、(2)小胞の活性帯へのドッキング、(3)すでに放出可能な状態にあるプールでの、小胞のドッキングからプライミングへの推移、および、(4)Ca² + 流入により誘導された小胞と膜の融合のステップを含む。

[00003]

Rab3A遺伝子ノックアウトマウス解析により、(1)シナプス小胞のプレシナプス原形質膜への移動とドッキングを促進し、(2)Ca² + により誘導された、小胞と原形質膜との融合を阻害するというRab3Aの二つの働きが明らかになっている。しかし、神経伝達物質のCa² + 依存性エキソサイトーシスにおける、これらRab3Aの働きの分子メカニズムは知られていない。

[0004]

Rab 3 ファミリーメンバーは、GDP解離抑制蛋白質(Rab GDI)、GDP/G T P 交換反応促進蛋白質(Rab3 G E P)およびG T P a s e 活性促進蛋白質(Ra b 3 GAP)の三つの制御因子により制御されることが知られている。Rab3 GE PとRab 3 GAPはRab 3ファミリーメンバーに特異であるが、Rab GDIは 全てのRabファミリーメンバーに対して活性である。これらの制御因子の働きによるR ab3Aの循環的な活性化と不活性化が、神経伝達物質の C a² + 依存性エキソサイトー シスにおけるRab3Aの働きに必須である。これら制御因子の働きに関する、現在のモ デルの一つは以下の通りである。 GDP-Rab3AがRab GDIとの複合体として 細胞質中に貯留される。Rab5、-7、-9に対してはGDI置換因子(GDF)、ま たはYpt1と-7に対してはRabリサイクリング因子(RRF)の様に、他の未同定 分子の助けを受け、Rab3 GEPの働きによりGDP-Rab3AがGTP-Rab 3Aに活性化される部位であるシナプス小胞に、この複合体が動員される。GDFとRR Fは同定されていない。GTP-Rab3Aは、その下流の二つのエフェクター、すなわ ち、小胞と活性帯にそれぞれ存在するラブフィリン3(rabphilin-3)とRi m - 3 に結合する。融合段階の前または後に、エフェクターと複合体を形成するGTP-Rab 3 A は、Rab 3 G A P の働きにより G D P - Rab 3 A に非活性化される。 G DP-Rab3AはRab GDIによりトラップされ、小胞から細胞質に移動する。そ れゆえ、Rab3 GEPとRab3 GAPはおそらくそれらが機能するとき、小胞へ 動員されると考えられるが、それらのメカニズムは依然不明である。

[0005]

最近、ラット脳の粗シナプス小胞(CSV)画分から、Rab3 GEPまたはRab3 GAPを用いた共免疫沈降により新規蛋白質が単離され、ラブコネクチン3と命名されている(非特許文献1参照)。ヒトラブコネクチン3は3,036アミノ酸からなり、計算上の分子量は339,753である。ラブコネクチン3は12個のWDドメインを持つ。ラブコネクチン3は、シナプス小胞と関連する脳に豊富に発現している。また、さらにふたつの蛋白質がラット脳のCSV画分からRab3 GEPを用いて共免疫沈降されることが見出されている(非特許文献1参照)。

[0006]

【非特許文献1】

「ザ・ジャーナル・オブ・バイオロジカル・ケミストリー(The Journal of Biological Chemistry)」、2002年、第277巻、第12号、第9629-9632頁

[0007]

【発明が解決しようとする課題】

本発明の課題は、 C a ^{2 +} 依存性エキソサイトーシス、特には R a b 3 A の活性化および

20

30

40

50

不活性化の制御機構の解明に有用な蛋白質を提供すること、ならびに、この蛋白質を用いる、 Ca² * 依存性エキソサイトーシス、特には Rab3Aの活性化および不活性化の制御に有用な物質のスクリーニング方法を提供することである。

[0008]

【課題を解決するための手段】

本発明者らは、GDP/GTP交換反応促進蛋白質に直接結合するラブコネクチン3結合蛋白質を得ることに成功し、本発明を完成した。

すなわち、本発明は以下のものを提供する。

[0009]

- (1)下記(a)または(b)の蛋白質。
- (a)配列番号2に示すアミノ酸配列を有する蛋白質。
- (b)配列番号2に示すアミノ酸配列において1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列を有し、かつラブコネクチン3およびGDP/GTP交換反応促進蛋白質に結合する活性を有する蛋白質。
- [0010]
- (2)配列番号2に示すアミノ酸配列を有する(1)記載の蛋白質。
- [0011]
- (3)(1)または(2)の蛋白質をコードするポリヌクレオチド。
- [0 0 1 2]
- (4)配列番号1に示す塩基配列の塩基番号1~4470の塩基配列を有する(3)のポリヌクレオチド。
- [0 0 1 3]
- (5)下記(a)または(b)のポリヌクレオチド。
- (a)配列番号1に示す塩基配列の塩基番号1~4470の塩基配列を有するポリヌクレオチド。
- (b)配列番号1に示す塩基配列の塩基番号1~4470の塩基配列に相補的な塩基配列を有するポリヌクレオチドとストリンジェントな条件でハイブリダイズし、かつラブコネクチン3およびGDP/GTP交換反応促進蛋白質に結合する活性を有する蛋白質をコードするポリヌクレオチド。
- [0 0 1 4]
- (6) 下記(a) または(b) のポリヌクレオチド。
- (a)配列番号1に示す塩基配列の塩基番号1~4470の塩基配列を有するポリヌクレオチド。
- (b) 配列番号 1 に示す塩基配列の塩基番号 1 ~ 4 4 7 0 の塩基配列と相同性が 8 0 %以上の塩基配列を有し、かつラブコネクチン 3 および G D P / G T P 交換反応促進蛋白質に結合する活性を有する蛋白質をコードするポリヌクレオチド。
- [0015]
- (7) (3) ~ (6) のいずれか 1 項のポリヌクレオチドを含む組換えベクター。
- [0016]
- (8)(3)~(6)のいずれか1項のポリヌクレオチドにより宿主を形質転換して得られる形質転換体。
- [0017]
- (9)(8)の形質転換体を培養し、該形質転換体が発現した、ラブコネクチン3およびGDP/GTP交換反応促進蛋白質に結合する活性を有する蛋白質を培養物から採取することを含む、ラブコネクチン3およびGDP/GTP交換反応促進蛋白質に結合する活性を有する蛋白質の製造法。
- [0018]
- (10)(3)~(6)のいずれか1項に記載のポリヌクレオチドを検出するための、3)~(6)のいずれか1項に記載のポリヌクレオチドに相補的な少なくとも15ヌクレオチドを有するポリヌクレオチドからなるプローブまたはプライマーの使用。

30

40

50

[0019]

(11)(3)~(6)のいずれか1項に記載のポリヌクレオチドに相補的な少なくとも15ヌクレオチドを有するポリヌクレオチドからなるプローブまたはプライマーを被検ポリヌクレオチドとハイブリダイズさせることを特徴とする(3)~(6)のいずれか1項に記載のポリヌクレオチドの解析方法。

[0020]

(12)被検ポリヌクレオチドが被検組織または被検細胞中に存在することを特徴とする (11)に記載の解析方法。

[0021]

(13)(3)~(6)のいずれか1項に記載のポリヌクレオチドに相補的な少なくとも 15ヌクレオチドを有するポリヌクレオチドからなるプローブまたはプライマーを被検ポ リヌクレオチドとハイブリダイズさせることを特徴とする(1)または(2)に記載の蛋 白質をコードする遺伝子の解析方法。

[0 0 2 2]

(14)被検ポリヌクレオチドが被検組織または被検細胞中に存在することを特徴とする (12)に記載の遺伝子解析方法。

[0 0 2 3]

(15)(3)~(6)のいずれか1項に記載のポリヌクレオチドに相補的な少なくとも15ヌクレオチドを有するポリヌクレオチドからなるプライマーを用いて、被検組織または被検細胞中のmRNAをRT-PCR法によって増幅させ、(3)~(6)のいずれか1項に記載のポリヌクレオチドを測定することを特徴とする遺伝子解析方法。

[0024]

(16)(1)または(2)に記載の蛋白質をコードするmRNAにハイブリダイズする アンチセンスポリヌクレオチド。

[0025]

(1 7) (1) または (2) に記載の蛋白質をコードするm R N A を切断するリボザイム

[0026]

(1 8) (1) または (2) に記載の蛋白質をコードする m R N A を R N A 干渉により切断する 二本鎖 R N A。

[0027]

(19)(1)または(2)に記載の蛋白質に対する抗体。

[0028]

(20)(19)に記載の抗体を用いることを特徴とする(1)または(2)記載の蛋白質の免疫組織学的な解析方法。

[0029]

(21)蛋白質の局在を解析する方法である(20)に記載の解析方法。

[0030]

(22)蛋白質の発現量を解析する方法である(20)に記載の解析方法。

[0031]

(23)(1)または(2)の蛋白質またはその異種相同蛋白質であるラブコネクチン3結合蛋白質と、ラブコネクチン3との結合を促進する物質または阻害する物質の候補物質のスクリーニング方法であって、ラブコネクチン3結合蛋白質と、ラブコネクチン3とを前記候補物質の存在下および非存在下で反応させ、前記結合を増加または減少させる前記候補物質を選択することを含む前記方法。

[0032]

(24)(1)または(2)の蛋白質またはその異種相同蛋白質であるRab3 GDP/GTP交換反応促進蛋白質結合蛋白質と、Rab3 GDP/GTP交換反応促進蛋白質との結合を促進する物質または阻害する物質の候補物質のスクリーニング方法であって、Rab3 GDP/GTP

30

50

交換反応促進蛋白質とを前記候補物質の存在下および非存在下で反応させ、前記結合を増加または減少させる前記候補物質を選択することを含む前記方法。

[0033]

【発明の実施の形態】

< 本発明の蛋白質等 >

本発明の蛋白質は、ラブコネクチン3およびRab3 GEPに直接結合する蛋白質である。本発明の蛋白質はラブコネクチン3と複合体を形成することから、以下、本発明蛋白質をラブコネクチン3 とも呼ぶ。

[0034]

本発明の蛋白質のうち、配列番号 2 に示すアミノ酸配列を有する蛋白質は、後述の実施例に記載したように、ヒトのラブコネクチン 3 として特定された蛋白質である。蛋白質には、同一の機能を有する変異体の存在が予測され、また、蛋白質のアミノ酸配列を、例えば保存的置換のように適宜改変することによって、同一の機能を有する変異体を得ることができる。従って、配列番号 2 に示すアミノ酸配列において 1 もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列を有し、かつラブコネクチン 3 および G D P / G T P 交換反応促進蛋白質に結合する活性を有する蛋白質も本発明の蛋白質に包含される。

[0035]

蛋白質のアミノ酸配列の改変は、部位特異的変異誘発法などの周知の手段により蛋白質をコードするポリヌクレオチドの塩基配列を改変し、塩基配列が改変されたポリヌクレオチドを発現させることによって行うことができる。また、ラブコネクチン3およびGDP/GTP交換反応促進蛋白質に結合する活性は、生理的な条件でこれらに結合することを意味し、この活性は公知の蛋白質相互間の結合を測定する方法に従って測定できる(例えば、後記実施例、または、「タンパク実験プロトコール 機能解析編」、秀潤社(1997)、第9章 免疫沈降、親和性レジンを用いた相互作用解析、第151~161頁参照)。従って、同一の機能を有するか否かを決定することは当業者であれば容易である。

[0 0 3 6]

[0037]

本発明の蛋白質を構成するアミノ酸残基は天然に存在するものでも、また修飾されたもの であっても良い。アミノ酸残基の修飾としては、アシル化、アセチル化、アミド化、アル ギニル化、GPIアンカー形成、架橋、 - カルボキシル化、環化、共有架橋の形成、グ リ コ シ ル 化 、 酸 化 、 脂 質 ま た は 脂 肪 誘 導 体 の 共 有 結 合 化 、 ジ ス ル フ ィ ド 結 合 の 形 成 、 セ レ ノイル化、脱メチル化、蛋白質の分解処理、ヌクレオチドまたはヌクレオチド誘導体の共 有結合化、ヒドロキシル化、ピログルタメーピログルタメートの形成、フラビンの共有結 合化、プレニル化、ヘム部分の共有結合化、ホスファチジルイノシトールの共有結合化、 ホルミル化、ミリストイル化、メチル化、ユビキチン化、ヨウ素化、ラセミ化、ADP-リボシル化、硫酸化、リン酸化等が例示される。さらに、本発明の蛋白質にはシグナルペ プ チ ド 部 分 が つ い た 前 駆 体 、 シ グ ナ ル ペ プ チ ド 部 分 を 欠 く 成 熟 蛋 白 質 、 及 び そ の 他 の ペ プ チド配列により修飾された融合蛋白質を含む。本発明の蛋白質に付加するペプチド配列と しては、インフルエンザ凝集素(HA)、グルタチオンSトランスフェラーゼ(GST) 、 サ ブ ス タ ン ス P 、 多 重 ヒ ス チ ジ ン タ グ (6 × H i s 、 1 0 × H i s 等) 、 プ ロ テ イ ン C 断片、マルトース結合蛋白質(MBP)、免疫グロブリン定常領域、 - チューブリン断 - ガラクトシダーゼ、B-タグ、c-myc断片、E-タグ(モノクローナルファ ージ上のエピトープ)、FLAG(Hopp et al. (1988) Bio/T ehcnol. 6: 1204-10)、lckタグ、p18 HIV断片、HSV-タグ(ヒト単純ヘルペスウイルス糖蛋白質)、SV40T抗原断片、T7-タグ(T7 gene10蛋白質)、VSV-GP断片(Vesicular stomatitis ウイルス糖蛋白質)等の蛋白質の精製を容易にする配列(例えば、pcDNA3.1/M y c - His(Invitrogen)のようなベクターを利用できる)、組換え技術に より蛋白質を生産する際に安定性を付与する配列等を選択することができる。

30

40

50

本発明の蛋白質は公知の遺伝子組換え技術により、また化学的な合成法により製造することができる。遺伝子組換え技術により本発明の蛋白質を製造する場合、製造される蛋白質は、選択する宿主の種類によってグリコシル化を受ける場合と受けない場合、さらに分子量、等電点等が異なる場合がある。通常、大腸菌等の原核細胞を宿主として蛋白質を発現させた場合、得られる蛋白質は本来蛋白質が有していたN・末端にメチオニン残基が付加された形で産生される。このような宿主の違いにより、構造の異なる蛋白質も本発明の蛋白質に含まれる。

[0038]

<蛋白質の製造>

In vitroで蛋白質を製造する場合、in vitroトランスレーション(Dasso and Jackson (1989) Nucleic Acids Res. 17: 3129-44)等の方法に従って、細胞を含まない試験管内の系で蛋白質を製造することができる。それに対して、細胞を用いて蛋白質を製造する場合、まず、適当な宿主細胞を選択し、目的とするDNAによる形質転換を行う。続いて形質転換された細胞を培養することにより所望の蛋白質を得ることができる。培養は、選択した細胞に適した公知の方法により行う。例えば、動物細胞を選択した場合には、DMEM(Virology 8: 396 (1959)、MEM(Science 122: 501(1952))、RPMI1640(J. Am. Med. Assoc. 199: 519 (1957))、199(Proc. Soc. Biol. Med. 73: 1 (1950))、IMDM等の培地を用い、必要に応じウシ胎児血清(FCS)等の血清を添加し、pH約6~8、30~40 において15~200時間前後の培養を行うことができる。その他、必要に応じ途中で培地の交換を行ったり、通気及び攪拌を行ったりすることができる。

[0039]

一方、in vivoにおける蛋白質の生産系を確立するためには、動物または植物へ目的とするDNAを導入し、生体内において蛋白質を産生させる。ヤギ、ブタ、ヒツジ、マウス、ウシ等の哺乳動物、カイコ等の昆虫(Susumu (1985) Nature 315: 592-4)等の動物系が公知である(Lubon (1998) Biotechnol. Annu. Rev. 4: 1-54)。また、哺乳動物系においてトランスジェニック動物を用いることもできる。

[0040]

例えば、所望の蛋白質をヤギの乳汁中に分泌させることを目的とする場合、該蛋白質をコードする DNAを カゼイン等の乳汁中に特異的分泌される蛋白質をコードする DNAと結合し、目的蛋白質を融合蛋白質として発現させるようにする。次に、融合蛋白質をコードする DNAをヤギの胚へ導入する。 DNAを導入した胚を雌ヤギの子宮へ移植する。 このヤギから生まれるトランスジェニックヤギ、またはその子孫は乳汁中に所望の蛋白質を分泌する。必要に応じ、乳汁量を増やすため、ホルモンを投与することもできる(Ebertetal. (1994) Bio/Technology 12: 699-702)。

[0041]

タバコ等の植物を用いたトランスジェニック植物の蛋白質産生系が公知である。まず、所望の蛋白質コードDNAをpMON530等の植物発現に適したベクターに組み込み、Agrobacterium tumefaciens等の細菌に導入する。DNAの導入された細菌をNicotina tabacum等の植物に感染させ、植物を再生させることにより、所望の蛋白質を得られたトランスジェニック植物の葉より単離することができる(Julian et al. (1994) Eur. J. Immunol. 24: 131-8)。その他の方法としては、PEGを用いプロトプラストへDNAを導入して植物体を再生する方法(Gene Transfer to Plants,Potrykus and Spangenberg ed. (1995) pp.66-74;インド型イネ品種に適する)、電気パルスによりプロトプラストへDNA

30

40

50

を導入して植物体を再生する方法(Toki et al. (1992) Plant Physiol. 100: 1503-7;日本型イネに適する)、パーティクルガン法で植物細胞に直接 DNAを導入し植物体を再生する方法(Christou etal. (1991) Bio/Technology 9: 957-62)、アグロバクテリウムを介し細胞に DNAを導入し植物体を再生する方法(Hiei et al. (1994) Plant J. 6:271-82)等が確立されている。植物を再生する方法については、Toki et al. (1995) Plant Physiol. 100: 1503-7を参照することができる。

[0042]

トランスジェニック植物が一度得られた後は、さらに該植物の種子、果実、塊茎、塊根、株、切穂、カルス、プロトプラスト等を材料として同じように本発明の蛋白質を産生する植物宿主を繁殖させ得ることができる。

[0043]

[0044]

また、天然由来の蛋白質を精製して取得してもよい。例えば、後述の本発明の蛋白質に対する抗体を利用して、アフィニティークロマトグラフィーにより精製することもできる(Current Protocols in Molecular Biology,John Wiley & Sons (1987) Section 16.1-16.19)。また、GSTとの融合蛋白質とした場合にはグルタチオンカラムを、ヒスチジンタグを付加した融合蛋白質とした場合にはニッケルカラムを用いた精製法も利用できる。本発明の蛋白質を融合蛋白質として製造した場合には、必要に応じて精製後にトロンビンまたはファクターXa等を使用して不要な部分を切断することもできる。さらに、必要に応じキモトリプシン、グルコシダーゼ、トリプシン、プロテインキナーゼ、リシルエンドペプチダーゼ等の酵素を用い得られたポリペプチドを修飾することも可能である。

[0045]

<ポリヌクレオチド>

本発明のポリヌクレオチドは、本発明の蛋白質をコードするポリヌクレオチドである。このポリヌクレオチドは、本発明の蛋白質を遺伝子工学的に発現させる際に使用することができる。また、本発明のポリヌクレオチドは、ラブコネクチン 3 結合蛋白質遺伝子の検出試薬として用いることができる。つまり、本発明の蛋白質をコードするポリヌクレオチド、またはその一部の特異的断片を使用して、分子生物学的解析方法を行うことができ、ポリヌクレオチドを検出する方法、ポリヌクレオチドの発現量を解析する方法を提供する。例えば、サザンブロット法、ノーザンブロット法、PCR法、RT-PCR法、定量的RT-PCR法、in situ ハイブリダイゼーション法等があげられる。

[0046]

本発明において、ラブコネクチン 3 結合蛋白質がシナプスに局在することが確認されたことから、ラブコネクチン 3 結合蛋白質をシナプスのマーカーとして使用することができる

20

30

40

50

。すなわち、本発明の蛋白質をコードするポリヌクレオチド、またはその一部の特異的断片を使用して、ラブコネクチン3結合蛋白質遺伝子の発現を検出することによりシナプスを検出することができる。従って、本発明のポリヌクレオチドは、シナプス検出試薬として用いることができる。また、本発明の蛋白質は、ラブコネクチン3およびGDP/GTP交換反応促進蛋白質に結合することが確認されたことから、本発明のポリヌクレオチドは、これらの検出にも用いることができる。

[0047]

ここで、「ポリヌクレオチド」とは、複数のデオキシリボ核酸(DNA)またはリボ核酸 (R N A) 等の塩基または塩基対からなる重合体を指し、 c D N A 、ゲノム D N A 、化学 合成DNA及びRNAを含む。また、天然以外の塩基、例えば、4-アセチルシチジン、 5 - (カルボキシヒドロキシメチル)ウリジン、2 ' - O - メチルシチジン、5 - カルボ キシメチルアミノメチル・2・チオウリジン、5・カルボキシメチルアミノメチルウリジ ン、ジヒドロウリジン、2'-O-メチルプソイドウリジン、 -D-ガラクトシルキュ ェオシン、 2 ′ - O - メチルグアノシン、イノシン、 N 6 - イソペンテニルアデノシン、 1 - メチルアデノシン、1 - メチルプソイドウリジン、1 - メチルグアノシン、1 - メチ ルイノシン、 2 , 2 - ジメチルグアノシン、 2 - メチルアデノシン、 2 - メチルグアノシ ン、 3 - メチルシチジン、 5 - メチルシチジン、 N 6 - メチルアデノシン、 7 - メチルグ アノシン、 5 - メチルアミノメチルウリジン、 5 - メトキシアミノメチル - 2 - チオウリ - D - マンノシルキュェオシン、 5 - メトキシカルボニルメチル - 2 - チオウリ ジン、 5 - メトキシカルボニルメチルウリジン、 5 - メトキシウリジン、 2 - メチルチオ - N 6 - イソペンテニルアデノシン、N - ((9 - - D - リボフラノシル - 2 - メチル ルプリン‐6‐イル)N‐メチルカルバモイル)トレオニン、ウリジン‐5‐オキシ酢酸 - メチルエステル、ウリジン - 5 オキシ酢酸、ワイブトキソシン、プソイドウリジン、キ ュェオシン、 2 - チオシチジン、 5 - メチル - 2 - チオウリジン、 2 - チオウリジン、 4 - チオウリジン、5 - メチルウリジン、N - ((9 - D - リボフラノシルプリン - 6 - イル)カルバモイル)トレオニン、 2 ` - O - メチル - 5 - メチルウリジン、 2 ` - O - メチルウリジン、ワイブトシン、3 - (3 - アミノ - 3 - カルボキシプロピル)ウリジ ン等を必要に応じて含むポリヌクレオチドも包含する。

[0048]

本発明のポリヌクレオチドとしては、配列番号1に示す塩基配列の塩基番号1~4470の塩基配列を有するポリヌクレオチドが挙げられる。このポリヌクレオチドは、後述の実施例において、塩基配列が決定されたポリヌクレオチドである。さらに、本発明のポリヌクレオチドは、ラブコネクチン3 蛋白質をコードする、配列番号2記載のアミノ酸配列をコードする核酸配列、または該核酸配列に相補的な配列を含む。このようなアミノ酸配列をコードする核酸配列は、配列番号1に記載された核酸配列に加えて、遺伝子暗号の縮重により配列番号1記載の配列とは異なる核酸配列を含むものである。本発明のポリヌクレオチドを遺伝子工学的な手法によりポリペプチドを発現させるのに用いる場合、使用する宿主のコドン使用頻度を考慮して、発現効率の高いヌクレオチド配列を選択し、設計することができる(Grantham et al. (1981) Nucleic Acids Res. 9: r43-74)。

[0049]

本発明のポリヌクレオチドは、ラブコネクチン3 蛋白質、またはその抗原性断片をコードする、配列番号2のアミノ酸配列において1若しくは複数個のアミノ酸が欠失、挿入、置換または付加されたアミノ酸配列をコードする核酸配列、または該核酸配列に相補的な配列を含む。1若しくは複数個のアミノ酸が欠失、挿入、置換または付加されたアミノ酸配列からなる変異ポリペプチドで、元のポリペプチドと同じ生物学的活性が維持されることは公知である(Mark et al. (1984) Proc. Natl. Acad. Sci. USA 81: 5662-6; Zoller and Smith (1982) Nucleic Acids Res. 10: 6487-50

30

40

50

0; Wang et al. (1984) Science 224: 1431-3; Dalbadie-McFarland et al. (1982) Proc. Natl. Acad. Sci. USA 79: 6409-13)。複数個とは、通常には2~30個、好ましくは2~20個、より好ましくは2~10個、特に好ましくは2~5個である。

[0 0 5 0]

ここで、アミノ酸の置換とは、配列中のアミノ酸残基の一つ以上が、異なる種類のアミノ 酸残基に変えられた変異を意味する。このような置換により本発明のポリヌクレオチドに よりコードされるアミノ酸配列を改変する場合、蛋白質の機能を保持することが必要な場 合には、保存的な置換を行うことが好ましい。保存的な置換とは、置換前のアミノ酸と似 た性質のアミノ酸をコードするように配列を変化させることである。アミノ酸の性質は、 例えば、非極性アミノ酸(Ala, Ile, Leu, Met, Phe, Pro , Trp, Val)、非荷電性アミノ酸(Asn, Cys, Gln, Gly, Ser, Thr, Tyr)、酸性アミノ酸(Asp, Glu)、塩基性アミノ酸 (Arg, His, Lys)、中性アミノ酸(Ala, Asn, Cys, n, Gly, Ile, Leu, Met, Phe, Pro, Ser, Tyr, Val)、脂肪族アミノ酸(Ala, Gly)、分枝アミ Trp, ノ酸(Ile, Leu, Val)、ヒドロキシアミノ酸(Ser, Thr)、アミ ド型アミノ酸(Gln, Asn)、含硫アミノ酸(Cys, Met)、芳香族アミノ 酸(His, Phe, Trp, Tyr)、複素環式アミノ酸(His, Trp) 、イミノ酸(Pro, 4Hyp)等に分類することができる。中でも、Ala、Val 、Leu及びIleの間、Ser及びThrの間、Asp及びGluの間、Asn及びG 1 nの間、Lys及びArgの間、Phe及びTyrの間の置換は、蛋白質の性質を保持 する置換として好ましい。変異されるアミノ酸の数及び部位は特に制限されず、該ポリヌ クレオチドによりコードされるアミノ酸がラブコネクチン3 蛋白質の抗原性を有してい れば良い。

[0 0 5 1]

このような配列番号 2 のアミノ酸配列において 1 若しくは複数個のアミノ酸が欠失、挿入、置換または付加されたアミノ酸配列をコードするポリヌクレオチドは、『Molecular Cloning, A Laboratory Manual 2 nd ed.』(Cold Spring Harbor Press (1989))、『Current Protocols in Molecular Biology』(John Wiley & Sons (1987-1997);特にSection8.1-8.5)、Hashimoto-Goto-et-al. (1995) Gene152: 271-5、Kunkel (1985) Proc. Natl. Acad. Sci. USA 82: 488-92、Kramerand Fritz (1987) Method. Enzymol. 350-67、Kunkel (1987) Method. Enzymol. 85: 2763-6等に記載の部位特異的変異誘発法等の方法に従って調製することができる。

[0052]

さらに、本発明のポリヌクレオチドは、ラブコネクチン3 蛋白質、またはその抗原性断片をコードする、配列番号1の核酸配列または該核酸配列に相補的な配列に対してストリンジェントな条件下でハイブリダイズする核酸配列、を含むポリヌクレオチドである。このようなポリヌクレオチドとしては、アイソフォーム、アルタナティブアイソフォーム、及びアレリック変異体が考えられ、本発明のポリヌクレオチドに含まれる。このようなポリヌクレオチドは、配列番号1を含む核酸配列からなるポリヌクレオチド、またはその断片をプローブとして、コロニーハイブリダイゼーション、プラークハイブリダイゼーション、ト、マウス、ラットン、サザンブロット等の公知のハイブリダイゼーション法により、ヒト、マウス、ラット、ウサギ、ハムスター、ニワトリ、ブタ、ウシ、ヤギ、ヒツジ等の動物のcDNAライブラリー及びゲノムライブラリーから得ることができる。cDNAライブラリーの作成方法

については、『M ole cular Cloning, A Laboratory M anual 2^{n-d} ed.』(Cold Spring Harbor Press (1989))を参照することができる。また、市販の c D N A ライブラリー及びゲノムライブラリーを用いてもよい。

[0053]

より具体的に、cDNAライブラリーの作製においては、まず、本発明のポリヌクレオチ ドを発現する細胞、臓器、組織等からグアニジン超遠心法(Chirwin et al . (1979) Biochemistry 18: 5294-9)、AGPC法(Chomczynski and Sacchi (1987) Anal. Bioc hem. 1 6 2 : 1 5 6 - 9) 等の公知の手法により全RNAを調製し、mRNA Purification Kit(Pharmacia)等を用いてmRNAを精製す る。QuickPrep mRNA Purification Kit(Pharma c i a) のような、直接 m R N A を調製するためのキットを利用してもよい。次に得られ たmRNAから逆転写酵素を用いてcDNAを合成する。AMV Reverse Tr anscriptase First-strand cDNA Synthesis Kit(生化学工業)のようなcDNA合成のためのキットも市販されている。その他の 方法として、cDNAはPCRを利用した5'-RACE法(Frohman et a 1. (1988) Proc. Natl. Acad. Sci. USA 85: 8998-9002; Belyavsky et al. (1989) Nucl eic Acids Res. 17: 2919-32)により合成、及び増幅させて もよい。また、全長率の高い c D N A ライブラリーを作製するために、オリゴキャップ法 (Maruyama and Sugano (1994) Gene 138: 17 1-4; Suzuki (1997) Gene 200: 149-56)等の公知 の手法を採用することもできる。上述のようにして得られたcDNAは、適当なベクター 中に組み込む。

[0054]

本発明におけるハイブリダイゼーション条件としては、例えば「2×SSC、0.1%S DS、50 」、「2 x S S C、0 . 1 % S D S、4 2 」、「1 x S S C、0 . 1 % S DS、37 」、よりストリンジェントな条件としては、例えば「2×SSC、0.1% SDS、65 」、「0.5×SSC、0.1%SDS、42 」、「0.2×SSC、 0 . 1 % S D S 、 6 5 」等の条件を挙げることができる。より詳細には、R a p i d hyb buffer(Amersham Life Science)を用いた方法と して、68 で30分以上プレハイブリダイゼーションを行った後、プローブを添加して 1 時間以上 6 8 に保ってハイブリッド形成させ、その後、 2 × S S C 、 0 . 1 % S D S 中、室温で20分の洗浄を3回、1×SSC、0.1%SDS中、37 で20分の洗浄 を3回、最後に、1×SSC、0.1%SDS中、50 で20分の洗浄を2回行うこと も考えられる。その他、例えばExpresshyb Hybridization S olution (CLONTECH)中、55 で30分以上プレハイブリダイゼーシ ョンを行い、標識プローブを添加し、37~55 で1時間以上インキュベートし、2× S S C 、 0 . 1 % S D S 中、室温で 2 0 分の洗浄を 3 回、 1 × S S C 、 0 . 1 % S D S 中 、37 で20分の洗浄を1回行うこともできる。ここで、例えば、プレハイブリダイゼ ー シ ョ ン 、 ハ イ ブ リ ダ イ ゼ ー シ ョ ン や 2 度 目 の 洗 浄 の 際 の 温 度 を 上 げ る こ と に よ り 、 よ り ストリンジェントな条件とすることができる。例えば、プレハイブリダイゼーション及び ハイブリダイゼーションの温度を60 、さらにストリンジェントな条件としては68 とすることができる。あるいは、0.1% SDSを含む4xSSC中42 でのハイブ リダイゼーション、次いで 0 . 1 % SDSを含む 2 × SSC中 2 5 (好ましくは、 0 . 1 % SDSを含む 0 . 1 x SSC中 5 0)での 1 時間の洗浄が挙げられる。当業者 であれば、このようなバッファーの塩濃度、温度等の条件に加えて、その他のプローブ濃 度、プローブの長さ、反応時間等の諸条件を適宜設定することができる。

[0055]

20

30

50

ハイブリダイゼーション法の詳細な手順については、『Molecular Cloni ALaboratory Manual 2nd ed.』(Cold Spr ing Harbor Press (1989);特にSection9.47-9. 58) 、『Current Protocols in Molecular Bio logy』(John Wiley & Sons (1987-1997);特にSe ction6.3-6.4)、 DNA Cloning 1: Core Techn iques, A Practical Approach 2nd ed._a(Oxf ord University (1995);条件については特にSection2. 10)等を参照することができる。ハイブリダイズするポリヌクレオチドとしては、配列 番号 1 を含む核酸配列に対して少なくとも 5 0 %以上、好ましくは 7 0 %、さらに好まし くは 8 0 %、より一層好ましくは 9 0 % (例えば、 9 5 % 以上、さらには 9 9 %) の同一 性を有する核酸配列を含むポリヌクレオチドが挙げられる。このような同一性は、BLA STアルゴリズム(Altschul (1990) Proc. Natl. Aca Sci. USA 87: 2264-8; Karlin and Altsc hul (1993) Proc. Natl. Acad. Sci. USA 90 5873-7)によって決定することができる。このアルゴリズムに基づいたプログ ラムとして、アミノ酸配列についての同一性を決定するプログラムとしてはBLASTX 、ヌクレオチド配列についてはBLASTN (Altschul et al. (19 J. Mol. Biol. 215: 403-10)等が開発されており、 本 発 明 の 配 列 に 対 し て 使 用 す る こ と が で き る 。 具 体 的 な 解 析 方 法 に つ い て は 、 例 え ば 、 h ttp://www.ncbi.nlm.nih.gov.等を参照することができる。

[0056]

その他、遺伝子増幅技術(PCR)(Current Protocols in Molecular Biology, John Wiley & Sons (1987) Section 6.1-6.4)により、ラブコネクチン3 のアイソフォームやアレリック変異体等、ラブコネクチン3 と類似した構造及び機能を有する遺伝子を、配列番号1に記載の核酸配列を基にプライマーを設計し、ヒト、マウス、ラット、ウサギ、ハムスター、ニワトリ、ブタ、ウシ、ヤギ、ヒツジ等の動物のcDNAライブラリー及びゲノムライブラリーから得ることができる。

[0 0 5 7]

本発明のポリヌクレオチドの塩基配列の確認は、慣用の方法により配列決定することにより行うことができる。例えば、ジデオキシヌクレオチドチェーンターミネーション法(Sanger et al. (1977) Proc. Natl. Acad. Sci. USA 74: 5463)等により行うことができる。また、適当なDNAシークエンサーを利用して配列を解析することも可能である。

[0058]

< ベクター >

40

50

グナル等が含まれる。このような制御配列は、それに連結されたポリヌクレオチドの発現に必要とされるすべての構成成分を含むものである。また、本発明のベクターは、好ましくは選択可能なマーカーを含む。さらに、細胞内で発現されたポリペプチドを小胞体内腔、グラム陰性菌を宿主とする場合ペリプラズム内、または細胞外へと移行させるために必要とされるシグナルペプチドを目的のポリペプチドに付加するようにして発現ベクターへ組み込むこともできる。さらに、必要に応じリンカーの付加、開始コドン(ATG)、終止コドン(TAA、TAGまたはTGA)の挿入を行ってもよい。

[0059]

本発明のベクターは、好ましくは発現ベクターである。「発現ベクター」とは、invitroでまたは、目的とする宿主細胞内で発現ベクター中にコードされるポリペプチドを発現することができる構築物を指す。クローニングベクター、バイナリーベクター、インテグレイティングベクター等が本発明の発現ベクターに含まれる。発現の過程には、発現ベクター中のコード配列の翻訳可能なmRNAへの転写、及びmRNAから本発明のポリペプチドへの翻訳、さらに場合によっては発現されたポリペプチドの小胞体内腔、ペリプラズムまたは細胞外への分泌が含まれる。

[0060]

In vitroにおけるポリペプチドの発現を可能にするベクターとしては、 pBES T(Promega)を例示することができる。また、E.coli等の原核細胞宿主に おける発現を可能にするプロモーターとしては P_{\perp} 、araB(Better et 1. (1988) Science 240: 1041-3)、lacZ(Ward et al. (1989) Nature 341: 544-6; Ward al. (1992) FASEB J. 6: 2422-7), trp, tac 、trc(lacとtrpの融合)等のプロモーターが挙げられる。また、trpA由来 、ファージ由来、rrnBリボソーマルRNA由来ターミネーターが、利用可能である。 さらに、大腸菌用のベクターは、好ましくはベクターを宿主内で増幅するための「ori 」、及び形質転換された宿主を選抜するためのマーカー遺伝子を持つ。アンピシリン、テ トラサイクリン、カナマイシン、及びクロラムフェニコール等の薬剤により宿主の判別を 行うことを可能にする薬剤耐性遺伝子の使用が好ましい。特に、ポリペプチドをペリプラ ズムへ分泌させることを目的とする場合、pelBシグナル配列(Lei etal. (1987) J. Bacteriol. 169:4379)を使用することができ る。例えば、M 1 3 系ベクター、p U C 系ベクター、p B R 3 2 2 、p C R - S c r i p t、pGEX-5X-1(Pharmacia)、pEGFP、pBluescript (Stratagene)、pET(Invitrogen;この場合の宿主はT7ポリ メラーゼを発現しているBL21が好ましい)等のベクターを挙げることができる。また 、特にサブクローニングまたは切出し用のベクターとしては、pGEM-T、pDIRE C T 、 p T 7 等を例示できる。

[0061]

大腸菌以外の細菌宿主用としては、バチルス属のものが挙げられ、 p U B 1 1 1 0 系、 p C 1 9 4 系のベクターが例示される。より具体的に、枯草菌由来の p P L 6 0 8、 p K T H 5 0 等を挙げることができる。その他、 P s e u d o m o n a s p u t i d a 、 P s e u d o n o n a s p u t i d a 、 P s e u d o n o n a s p u t i d a 、 P s e u d o n o n a s p u t i d a 、 P s e u d o n o n a s p u t i d a 、 P s e u d o n o n a s p u t i d a 、 P s e u d o n o n a s p u d i d a 、 P s e u d o n o n a s p u d i d a 、 P s e u d o n o n a s p u d i d a 、 P s e u d o n o n a s p u d i d a 、 P s e u d o n o n a s p u d i d a 、 P s e u d o n o n a s p u d i d a 、 P s e u d o n o n a s u d a 、 P s e u d o n o n a s u d a 、 P s e u d o n o n a s u d a 、 P s e u d o n o n a s u d a 、 P s e u d o n o n a s u d a 、 P s e u d o n o n a s u d o n o n a s u d a n o n a s u d a n o n a s u d a n o n o n a s u d a n o n a s u d a n o n o n a s u d a n o n o n a s u

50

biol. 138: 1003 (1992))、Streptomyces 1ividans、Streptomyces 1ividans、Streptomyces 1ivama(Genetic Manipulation of Streptomyces: A Laboratory Manual, Hopwoodetal., Cold Spring Harbor Laboratories (1985)参照;pIJ486(Mol. Gene 103: 97-9 (1991))、pKC1064(Gene 103: 97-9 (1991))、pUWL-KS(Gene 165: 149-50 (1995)))の細菌を宿主とするベクターについては、『微生物学基礎講座8 遺伝子工学』(共立出版)等の文献を参照することができる。ベクターを細菌宿主へ導入するための手法としては、塩化カルシウム法(Mandel and Higaに1970)」、Mol. Biol. 53: 158-62; Hanahan(1970)」、Mol. Biol. 166: 557-80)、エレクトポレーション法等を採用することができる。

[0062]

また、 真核細胞宿主での発現を可能にする調節要素は、酵母を宿主とする場合には、AO X1及びGAL1プロモーターが例示される。酵母由来の発現ベクターとしては、Pic Expression Kit (Invitrogen)、pNV11、SP - Q 0 1 等が例示できる。酵母で利用可能なベクターに関しては、 A d v . Bioch em. Eng. 43: 75-102 (1990)、Yeast 8: 423-(1992)等に詳述されている。より具体的には、Saccharomyces c e r e v i s i a e 等のサッカロマイセス属では、Y R p 系、Y E p 系、Y C p 系、 及びYIp系ベクターが利用可能である。特に、多コピーの遺伝子導入が可能であり、安 定に遺伝子を保持できるインテグレーションベクター(EP537456等)が有用であ る。その他、Kluyveromyces lactis等のクルイベロマイセス属では 、S.cerevisiae由来2μm系ベクター、pKD1系ベクター(J. Bac teriol. 145: 382-90 (1981))、pGK11由来ベクター、 クライベロマイセス自律増殖遺伝子KARS系ベクター等、シゾサッカロマイセス属では 、Mol. Cell. Biol. 6: 80 (1986)に記載のベクター、p AUR224(宝酒造)、チゴサッカロマイセスではpSB3(Nucleic Aci Res. 13: 4267 (1985))由来ベクター、Pichia gusta、Pichia pastoris等のピキア属ではYeast 7: 43 1-43 (1991)、Mol. Cell. Biol. 5: 3376 (19 85)、Nucleic Acids Res. 15: 3859 (1987)等の 文献記載のベクター、Candida maltosa、C.albicans、C.t ropicalis、C.utilis等のキャンディダ属では、特開平8-17317 0号公報記載のベクター、またC.maltosa由来のARS(Agri. Biol . Chem. 51: 1587 (1987))を利用したベクター、Asperg illus niger、A.oryzae等のアスペルギルス属では、Trends Biotechnology 7: 283-7 (1989)記載のベクター、 トリコデルマ属では菌体外セルラーゼ遺伝子由来プロモーター(Bio/Technol ogy 7: 596-603 (1989))を利用したベクターが利用できる。

[0063]

哺乳動物及びその他の動物細胞を宿主とする場合には、アデノウイルス後期プロモーター(Kaufman et al. (1989) Mol. Cell. Biol. 9: 946)、CAGプロモーター(Niwa et al. (1991) Gene 108: 193-200)、CMV 前初期プロモーター(Seed and Aruffo (1987) Proc. Natl. Acad. Sci. USA84: 3365-9)、EF1 プロモーター(Mizushima et al. (1990) Nucleic Acids Res. 18: 5322; Kim

30

50

et al. (1990) Gene 91: 217-23)、HSV TKプロモ -9- SR \mathcal{I} DE-9- (Takebe et al. (1988) Mol. Cell. Biol. 8: 466)、SV40プロモーター(Mulligan al. (1979) Nature 277: 108)、SV40 earl yプロモーター(Genetic Engineering Vol.3, Willi amson ed., Academic Press (1982) pp.83-1 41)、SV40 lateプロモーター(Gheysen and Fiers (1 982) J. Mol. Appl. Genet. 1: 385-94) RSV (ラウス肉腫ウイルス) - LTRプロモーター(Cullen (1987) Meth ods Enzymol. 152: 684-704)、MMLV-LTRプロモータ - 、 C M V エンハンサー、 S V 4 0 エンハンサー、 及びグロビンイントロン等を使用する ことができる。さらに、ネオマイシン、G418等の薬剤による判別を可能とする薬剤耐 性遺伝子がベクターに含まれていることが好ましい。そして、細胞内で遺伝子のコピー数 の増加を計る場合には、例えば核酸合成経路を欠損したCHOを宿主とし、その欠損を補 うDHFR遺伝子を有するpCHOI等のベクターを採用し、メトトレキセート(MTX)によりコピー数を増幅させることができる。一方、遺伝子の一過性発現のためには、 S V40のT抗原遺伝子を染色体上に有するCOS細胞を宿主とし、pcD等のSV40の 複製起点、またはアデノウイルス、ウシパピーローマウイルス(BPV)、ポリオーマウ イルス等の複製開始点を持つベクターを使用することができる。さらに、遺伝子コピー数 の増幅のための選択マーカーとして、アミノグリコシドトランスフェラーゼ(APH)、 チミジンキナーゼ (T K) 、キサンチングアニンホスホリボシルトランスフェラーゼ (E c o g p t)、ジヒドロ葉酸還元酵素(d h f r) 等をコードする遺伝子を含んでもよい 。適当なベクターとして、例えば、Okayama-Bergの発現ベクターpcDV1 (Pharmacia), pCDM8 (Nature 329: 840-2 (198 7))、pRc/CMV、pcDNA1、pcDNA3 (Invitrogen)、pS PORT1(GIBCO BRL), pSV2dhfr(Mol. Cell. Bio 1. 1: 854-64 (1981)), pEF-BOS (Nucleic Aci ds Res. 18: 5322 (1990)), pCEP4(Invitroge n)、pMAM、pDR2、pBK-RSV、pBK-CMV、pOPRSV、pOP1 3、pME18S(Mol.Cell.Biol. 8: 466-72 (1988))等が公知である。

[0064]

特に動物の生体内において本発明のポリヌクレオチドを発現させるためには、pAdex l c w 等のアデノウイルスベクター、 p Z I P n e o 等のレトロウイルスベクターが挙げ られる。ベクターはアデノウイルス法、エレクトポレーション(電気穿孔)法(Суto technology 3: 133 (1990))、カチオニックリポソーム法(カ チオニックリポソームDOTAP(Boehringer Mannheim)等)、正 電荷ポリマーによる導入法、静電気型リポソーム(electrostatic typ e liposome)法、内包型リポソーム(internaltype lipos ome)法、パーティクルガンを用いる方法、リポソーム法、リポフェクション(Pro Natl. Acad. Sci. USA 84: 7413 (1987)) 、 リン 酸 カ ル シ ウ ム 法 (特 開 平 2 - 2 2 7 0 7 5) 、 レ セ プ タ ー 介 在 遺 伝 子 導 入 法 、 レ ト ロウイルス法、DEAEデキストラン法、ウイルス・リポソーム法(別冊実験医学『遺伝 子治療の基礎技術』羊土社(1997);別冊実験医学『遺伝子導入&発現解析実験法』 羊土社(1997); J. Clin. Invest. 93: 1458-64 (1994); Am. J. Physiol. 271: R1212-20 (1 996); Molecular Medicine 30: 1440-8 (199 実験医学 12: 1822-6 (1994); 蛋白質核酸酵素 42: 1806-13 (1997); Circulation 92 (Suppl.II) : 479-82 (1995))、naked-DNAの直接導入法等により宿主に導

30

40

50

入することができる。アデノウイルス及びレトロウイルス以外由来のウイルスベクター、例えば、アデノ随伴ウイルス、シンビスウイルス、センダイウイルス、トガウイルス、パラミクソウイルス、ポックスウイルス、ポリオウイルス、ヘルペスウイルス、レンチウイルス、ワクシニアウイルス等を元に作製されたベクターを利用することもできる。生体内への投与は、exvivo法でもinvivo法で行ってもよい。

[0065]

その他、昆虫発現システムも異種ポリペプチドを発現させる系として知られており、例えば、Autographa california核ポリヘドロシスウイルス(AcNPV)をベクターとし、Spodoptera frugiperda細胞、またはTrichoplusia larvaee細胞中で外来遺伝子を発現させることができる。でい際、目的とする外来遺伝子は、ウイルスの非必須領域にクローニングする。例えば、ポリヘドリンプロモーター制御下に連結してもよい。この場合、ポリヘドリン遺伝子は不活化され、コート蛋白質を欠く組換えウイルスが産生され、該ウイルスに感染したSpodoptera frugiperdaまたはTrichoplusia larvae等の細胞中で目的とするポリペプチドが発現される(Smith (1983) J. Virol. 46: 584; Engelhard (1994) Proc. Natl. Acad. Sci.USA 91: 3224-7)。その他、昆虫細胞由来の発現ベクターとして、Bac-to-BAC baculovirus expression system(Bigco-BRL)、pBacPAK8等も公知である。

[0066]

植物細胞を宿主とする場合には、例えばカリフラワーモザイクウイルスの35Sプロモーター等を利用したベクターが使用可能である。植物細胞へのベクターの導入法としては、 PEG法、エレクトポーレション法、アグロバクテリウム法、パーティクルガン法等が公知である。

[0067]

ベクターへの D N A の挿入は、制限酵素サイトを利用したリガーゼ反応により行うことができる (Current Protocols in Molecular Biology, John Wiley & Sons (1987) Section 11.4-11.11; Molecular Cloning, A Laboratory Manual 2nd ed., Cold Spring Harbor Press (1989) Section 5.61-5.63)。

[0068]

<形質転換体>

本発明の形質転換体は、本発明のポリヌクレオチドにより宿主を形質転換して得られる形質転換体であり、本発明の蛋白質を発現する。

[0069]

< 宿主 >

本発明により、本発明のポリヌクレオチドまたはベクターを含む宿主が提供される。本発明のポリペプチドの製造には、in vitro及びin vivoの産生系が考えられる。本発明の宿主には、古細菌、細菌、真菌類、植物、昆虫、魚類、両生類、八虫類、鳥類、哺乳類由来の原核及び真核細胞が含まれる。本発明の宿主は、本発明のポリペプチドをコードするポリヌクレオチドを細胞内に含むものである。該ポリヌクレオチドは、宿主細胞のゲノム上の天然に存在する位置になければよく、該ポリヌクレオチド自身のプロモーター支配下にあっても、ゲノム中に組み込まれていても、染色体外の構造として保持されていても良い。

[0070]

細菌宿主としては、E.coli(JM109, DH5, HB101, XL1Blue)、Serratia marcescens、Bacillus subtilis等、エシェリシア属、ストレプトコッカス属、スタフィロコッカス属、セラチア属、バシルス属等に属するのグラム陽性及びグラム陰性細菌を例示することができる。

30

40

50

[0071]

[0072]

宿主細胞へのベクターの導入は、エレクトポレーション法(Chu et al. (1 987) Nucleic Acids Res. 15: 1311-26)、カチオニ ックリポソーム法、電気パルス穿孔法(Current Protocols in olecular Biology, John Wiley & Sons (198 7) Section 9.1-9.9)、微小ガラス管を使用した直接注入法、マイク ロインジェクション法、リポフェクション(Derijard (1994) Cell 1025-37; Lamb (1993) Nature Genetics 22-30; Rabindran et al. (1993) Scien ce 259: 230-4)、リポフェクタミン法(GIBCO-BRL)、リン酸カ ルシウム法(Chen and Okayama (1987) Mol. Cell. Biol. 7: 2745-52)、DEAEデキストラン法(Lopata et al. (1984) Nucleic Acids Res. 12: 5707-Sussman and Milman (1985) Mol. C e l l . 4: 1642-3)、FuGene6試薬(Boehringer-M annheim)等により行い得る。

[0073]

本発明の製造法は、本発明の蛋白質すなわちラブコネクチン 3 結合蛋白質の製造法であり、本発明の形質転換体を培養し、該形質転換体が発現したラブコネクチン 3 結合蛋白質を培養物から採取することを含む。より具体的には前述の〈蛋白質の製造〉に記載した方法を用いることができる。

[0074]

ラブコネクチン3 とラブコネクチン3 は、抗ラブコネクチン3 抗体および抗ラブコネクチン3 抗体のいずれを用いても共免疫沈降される。両タンパクは、0.5 M N a C 1 または1% C H A P S 存在下では互いから分離しないが、1 M N a C 1 存在下で一部が、1%デオキシコレート存在下では完全に分離する。さらに、これらの二つのタンパクは、シナプス小胞に共存する。これらの結果は、ラブコネクチン3 と3 とがサブユニット構造を構成することを示している。

[0075]

ラブコネクチン 3 は 膜貫通部分を持たないが、シナプス小胞と結合することが示されている(上記非特許文献 1)。ラブコネクチン 3 は、 Triton X - 100やNP - 40の様な界面活性剤の存在下で小胞から分離することから、この蛋白質はシナプス小胞の表在性膜蛋白質の一つであることが示唆される。同様に、ラブコネクチン 3 は 膜貫通部分を持たず、同じ状況下で小胞から分離することから、この蛋白質もまた、シナプス小

胞の表在性膜蛋白質の一つであることが示唆される。

[0076]

ラブコネクチン 3 は直接 R a b 3 G E P に化学量論的に結合するが、ラブコネクチン 3 は結合しない。ラブコネクチン 3 と 3 の複合体は直接 R a b 3 G E P に結合するが、化学量論的にはこの結合はラブコネクチン 3 のものよりもずっと小さいことから、 3 と 3 と の相互作用が、 R a b 3 G E P が複合体に結合しない様にその結合部位を隠すことが示唆される。対照的に、ラブコネクチン 3 、 3 、 およびそれらの複合体のいずれも R a b 3 G A P に結合しないことから、ラブコネクチン 3 は間接的に、おそらくは未同定の分子を介して、 R a b 3 G A P に結合すると示唆される。

[0 0 7 7]

なお、 ラブコネクチン 3 および G D P / G T P 交換反応促進蛋白質は、 J . Biol. Chem., 2 7 2 , 3 8 7 5 - 3 8 7 8 (1997)、 J . Biol. Chem., 2 7 3 , 2 4 7 8 1 - 2 4 7 8 5 、特開平 1 0 - 2 1 0 9 7 1 号公報等に記載されているようにして得ることができる。

[0078]

<プローブ>

本発明により、本発明のポリヌクレオチドに対するプローブが提供される。本発明のプロポリヌクレオチドに相補的な、少なくとも15ヌクレオチドを有少ののでは、スクレオチドを有すなのかならず、とも15ヌクレオチド配列中の少ならは、スクレオチド配列中の少ならない。スクレオチド配列中の少ならず、とは、スクレオチド配列中の少ならず、とは、スクレオチド配列中の少ならず、といりでは、大きに対になっている場合のみならず、とちの少なくとも15の場合はいい、大きでは、多7%または99%)が対になっているものも含む。対にないのように対しているものも含む。対にないのより、大きに対しては、カーンをは、大きのかが対してが対して、大きのよりに対しては、大きのができる。本発明のポリスクレオチドの場合とは、大きのよりに対してなる少なくとも15ヌクレオチドを有するポリヌクレオチドを高方には、大きのよりには、大きのよりには、大きのよりには、大きのよりには、大きのよりには、大きのよりには、大きのよりには、大きのよりには、大きのよりには、大きのよりには、大きのよりには、大きのよりには、大きのよりには、大きのよりには、大きのよりには、大きないできる。また、本発明の蛋白できる。測定するサンブルは、臓器、組織、細胞等である。

[0079]

プローブを用いる本発明のポリヌクレオチドの解析または本発明の蛋白質をコードする遺伝子の解析は、プローブを被検ポリヌクレオチドとハイブリダイズさせることにより行うことができ、通常には、プローブを被検ポリヌクレオチドとハイブリダイズさせ、生じたハイブリッドを検出し、その検出結果を解析することにより行われる。検出結果の解析には、ポリヌクレオチドまたは遺伝子の測定(検出、定量を含む)、ポリヌクレオチドまたは遺伝子の局在の検出が含まれる。被検ポリヌクレオチドは、被検組織または被検細胞中に存在するものであってもよい。

[0800]

< プライマ**ー** >

本発明により、本発明のポリヌクレオチドに対するプライマーが提供される。このような本発明のプライマーは、本発明のポリヌクレオチドに相補的な、少なくとも15ヌクレオチドを有するポリヌクレオチドからなり、本発明のポリヌクレオチドを検出または増幅するために利用することができる。通常、プライマーとして使用する場合には15~100 使用する場合には、少なくとも15、好ましくは30個の塩基より構成されていることが望ましい。プライマーの場合には、3′末端側の領域を標的とする配列に対して相補的な配列に、5′末端側には制限酵素認識配列、タグ等を付加した形態に設計することができる。本発明のプライマーは、本発明のポリヌクレオチドに対してハイブリダイズすること

10

20

30

40

30

40

50

ができる。本発明のプライマーは、好ましくは、本発明のポリヌクレオチドの一部の、連続してなる少なくとも15ヌクレオチドを有するポリヌクレオチドからなる。本発明のプライマーを用いることにより、本発明のポリヌクレオチドを検出または単離することができる。また、本発明の蛋白質をコードする遺伝子発現を解析することができる。さらには、発現の局在を解析することができる。測定するサンプルは、臓器、組織、細胞等である。これらのプライマーを用いて、mRNAをRT-PCRにより増幅できることは言うまでもない。また、定量的RT-PCRにより、サンプル中のmRNAを定量することもできる。

[0081]

プライマーを用いる本発明のポリヌクレオチドの解析または本発明の蛋白質をコードする遺伝子の解析は、プライマーを被検ポリヌクレオチドとハイブリダイズさせることにより行うことができ、通常には、プライマーを被検ポリヌクレオチドとハイブリダイズさせることによりポリヌクレオチドの増幅を行い(すなわち被検ポリヌクレオチド(必要により逆転写を行う)をテンプレートとし、プライマーを用いてPCRを行い)、増幅産物を検出し、その検出結果を解析することにより行われる。検出結果の解析には、ポリヌクレオチドまたは遺伝子の測定(検出、定量を含む)、ポリヌクレオチドまたは遺伝子の局在の検出が含まれる。被検ポリヌクレオチドは、被検組織または被検細胞中に存在するものであってもよい。

[0082]

<アンチセンス>

本発明により、本発明のポリヌクレオチドに対するアンチセンスポリヌクレオチドが提供される。本発明のアンチセンスポリヌクレオチドは、本発明のポリヌクレオチドの細胞内における発現をmRNAまたはDNAに対して結合することにより抑制するものである。

[0083]

アンチセンスが標的遺伝子の発現抑制作用の機構としては、(1)3重鎖形成による転写開始阻害、(2)RNAポリメラーゼにより形成される局所的開状ループ構造部位とのハイブリッド形成による転写抑制、(3)合成中のRNAとのハイブリッド形成によるスプライシング抑制、(5)スプライソソーム形成部位とのハイブリッド形成によるスプライシング抑制、(6)mRNAとのハイブリッド形成による、mRNAの細胞質への移行抑制、(7)キャッピング部位またはポリA付加部位とのハイブリッド形成によるスプライシング抑制、(8)翻訳開始因子結合部位とのハイブリッド形成による翻訳開始抑制、(9)リボソーム結合部位とのハイブリッド形成による翻訳抑制、(10)mRNA翻訳領域またはポリソーム結合部位とのハイブリッド形成によるプチド鎖の伸長抑制、並びに(11)核酸と蛋白質の相互作用部位とのハイブリッド形成による遺伝子発現抑制が挙げられるに発展ので発見の相互作用部位とのハイブリッド形成による遺伝子発現抑制が挙げられるによるでは、東京化学同人、pp.319.347 (1993))。

[0084]

本発明のヌクレオチド鎖に含まれるアンチセンスポリヌクレオチドは、上述の(1)~(11)のどの機構により遺伝子発現を抑制するポリヌクレオチドであってもよく、即ちた、発現を阻害する目的の遺伝子の翻訳領域のみならず、非翻訳領域の配列に対するアンチセンスポリヌクレオチドをコードするDNAとの発現を可能とする適当な制御配列下に連結して使用され得る。アンチセンスポリヌクレオチドは、標的とする遺伝子の翻訳領域または非翻訳領域に対して完全に相補的である必要はなく、効果的に該遺伝子の発現を阻害するものであればよい。このようなアンチセンスポリヌクレオチドとしは、少なくとも15bp以上、好ましくは1000bp以上であり通常3000bp以内、好ましくは2000bp以内、より好ましくは5000bp以内の鎖長を有し、標的遺伝子の転写産物の相補鎖に対して好ましくは90%以上、より好ましくは95%以上同一である。このようなアンチセンスポリヌクレオチドは、本発明のポリヌクレオチドを基に、ホスホロチオネート法

(Stein (1988) Nucleic Acids Res. 16: 320 9-21)等により調製することができる。

[0085]

<リボザイム>

本発明により、本発明のポリヌクレオチドに対するリボザイムが提供される。本発明のリボザイムは、本発明のポリヌクレオチドの細胞内における発現をmRNAまたはDNAに対して結合することにより抑制するものである。

[0086]

リボザイムとは、RNAを構成成分とする触媒の総称であり、大きくラージリボザイム(large ribozyme)及びスモールリボザイム(small liboyme)に分類される。ラージリボザイムは、核酸のリン酸エステル結合を切断し、反応後に5 ' - リン酸と3 ' - ヒドロキシル基を反応部位に残す酵素である。ラージリボザイムは、 さらに(1)グアノシンによる5^-スプライス部位でのトランスエステル化反応を行う グループIイントロンRNA、(2)自己スプライシングをラリアット構造を経る二段階 反応で行うグループIIイントロンRNA、及び(3)加水分解反応によるtRNA前駆 体を5′側で切断するリボヌクレアーゼPのRNA成分に分類される。それに対して、ス モールリボザイムは、比較的小さな構造単位(40bp程度)であり、RNAを切断して 、 5 ~-ヒドロキシル基と 2 ~- 3 ~環状リン酸を生じさせる。スモールリボザイムには 、ハンマーヘッド型(Koizumi et al. (1988) FEBS Let 228: 225)、ヘアピン型(Buzayan (1986) Nature 323: 349; Kikuchi and Sasaki (1992) leic Acids Res. 19: 6751; 菊地洋(1992)化学と生物 30: 112)等のリボザイムが含まれる。リボザイムは、改変及び合成が容易にな ため多様な改良方法が公知であり、例えば、リボザイムの基質結合部を標的部位の近くの RNA配列と相補的となるように設計することにより、標的RNA中の塩基配列UC、U U または U A を認識 して切断するハンマーヘッド型リボザイムを作ることができる(K o izumi et al. (1988) FEBS Lett. 228: 225; 小泉誠及び大塚栄子(1990)蛋白質核酸酵素35: 2 1 9 1 ; Koizumi et al. (1989) Nucleic Acids Res. 17: 70 59)。ヘアピン型のリボザイムについても、公知の方法に従って設計、製造が可能であ る(Kikuchi and Sasaki (1992) Nucleic Acid s Res. 19: 6751; 菊地洋(1992)化学と生物 30: 112)

[0087]

本発明のアンチセンスポリヌクレオチド及びリボザイムは、細胞内における遺伝子の発現を制御するために、レトロウイルス、アデノウイルス、アデノ随伴ウイルス等のウイルス由来のベクター、リポソーム等を利用した非ウイルスベクター、またはnaked DNAとしてex vivo法またはin vivo法により遺伝子治療に用いることもできる。

[0088]

本発明のアンチセンスポリヌクレオチド及びリボザイムの塩基配列の確認は、上述のポリ ヌクレオチドと同様の方法により行うことができる。

[0089]

< R N A 干渉 >

本発明により、本発明のポリヌクレオチドに対して R N A 干渉により切断する二本鎖 R N A が提供される。本発明の二本鎖 R N A は、本発明のポリヌクレオチドの細胞内における発現を m R N A に対して結合し、酵素的に切断されることにより抑制するものである (Fire et al. (1998) Nature 391: 806-811; 森田 隆ら. (2002) 蛋白質 核酸 酵素 47: 1939-1945)。

[0090]

50

40

10

20

20

30

50

本発明の二本鎖RNAは、細胞内における遺伝子の発現を制御するために、レトロウイルス、アデノウイルス、アデノ随伴ウイルス等のウイルス由来のベクター、リポソーム等を利用した非ウイルスベクター、またはnaked DNAとしてex vivo法またはin vivo法により遺伝子治療に用いることもできる。

[0091]

本発明のアンチセンスポリヌクレオチド、リボザイムおよび本発明のポリヌクレオチドに対してRNA干渉により切断する二本鎖RNAは、本発明の蛋白質をコードするmRNAを減少させることができる。従って、本発明の蛋白質を減少させることができる。また、本発明のアンチセンスポリヌクレオチド、リボザイムおよび本発明のポリヌクレオチドに対してRNA干渉により切断する二本鎖RNAは、ラブコネクチン3結合蛋白質の阻害試薬として機能するため、本発明の蛋白質の機能解析試薬として有用である。

[0092]

本発明において、ラブコネクチン3結合蛋白質がシナプスに局在することが確認されたこと、ラブコネクチン3およびGDP/GTP交換反応促進蛋白質に結合することが確認されたことから、シナプス小胞の輸送の制御に関与していると考えられるので、ラブコネクチン3結合蛋白質を阻害する物質は、シナプス小胞の輸送の異常が原因と考えられる疾患、例えば、知的障害(精神遅滞)、注意欠陥多動障害、自閉性障害、学習障害などに関与している可能性が考えられる。従って、本発明のアンチセンスポリヌクレオチド、リボザイムおよび本発明のポリヌクレオチドに対してRNA干渉により特異的に切断する二本鎖RNAは、本発明の蛋白質に阻害作用を有するこれら疾患の治療剤の有効成分として使用できると考えられる。

[0093]

< 抗体 >

本発明により、本発明のポリペプチドまたはポリペプチド断片に対する抗体が提供される 。 本 発 明 の 抗 体 に は ポ リ ク ロ ー ナ ル 抗 体 、 モ ノ ク ロ ー ナ ル 抗 体 、 キ メ ラ 抗 体 、 一 本 鎖 抗 体 (scFV)(Huston et la. (1988) Proc. Natl. Sci. USA85: 5879-83; The Pharmacol ogy of Monoclonal Antibody, vol.113, Ros enburg and Moore ed., Springer Verlag (1 9 9 4) pp. 2 6 9 - 3 1 5)、ヒト化抗体、多特異性抗体(Le Doussal al. (1992) Int. J. Cancer Suppl. 7: 8-62; Paulus (1985) Behring Inst. Mitt. 78: 118-32; Millstein and Cuello (1983) Nature 305: 537-9; Zimmermann (1986) Rev . Physiol. Biochem. Pharmacol. 105: 176-260; Van Dijk et al. (1989) Int. J. er 43: 944-9)、並びに、Fab、Fab'、F(ab')2、Fc、Fv 等の抗体断片が含まれる。さらに、本発明の抗体は必要に応じ、PEG等により修飾され ていてもよい。その他、本発明の抗体は、 - ガラクトシダーゼ、マルトース結合蛋白質 、GST、緑色蛍光蛋白質(GFP)等との融合蛋白質として製造され得、二次抗体を用 いずに検出できるようにしてもよい。また、ビオチン等により抗体を標識することにより アビジン、ストレプトアビジン等を用いて抗体の回収を行い得るように改変されていても よい。

[0094]

本発明の抗体は、本発明のポリペプチド若しくはその断片、またはそれらを発現する細胞を感作抗原として製造することができる。また、本発明のポリペプチド若しくはその断片のうち短いものは、ウシ血清アルブミン、キーホールリンペットへモシアニン、卵白アルブミン等のキャリアに結合して免疫原として用いてもよい。また、本発明のポリペプチドまたはその断片と共に、アルミニウムアジュバント、完全(または不完全)フロイントアジュバント、百日咳菌アジュバント等の公知のアジュバントを抗原に対する免疫応答を強

30

40

50

化するために用いてもよい。

[0095]

ポリクローナル抗体は、例えば、本発明のポリペプチドまたはその断片を所望によりアジュバントと共に哺乳動物に免疫した動物より血清を得る。ここで用いる哺乳動物は、特に限定されないが、ゲッ歯目、ウサギ等のウサギ目、カニクイザル、アカゲザル、マントヒヒ、チンパンジー等のサル等の霊長目の動物が挙げられる。動物の免疫化は生理良力に原をPhosphate-Buffered Saline(PBS)または生理食体水等で適宜希釈、懸濁し、必要に応じアジュバントを混合して乳化した後、動物の腹腔内または皮下に注射して行われる。その後、好ましくは、フロイント不完全アジュバントは、プロイント不完全アジュバントに混合した感作抗原を4~21日毎に数回投与する。抗体の産生は、血清中の所望の抗体のものをポリクローナル抗体として用いても良いし、さらに精製して用いてもよい。具体的な方法として、例えば、『Current Protocols in Molecul ar Biology』(John Willey & Sons (1987) Section 11.12-11.13)を参照することができる。

[0096]

モノクローナル抗体を産生するためには、まず、上述のようにして免疫化した動物より脾臓を摘出し、該脾臓より免疫細胞を分離し、適当なミエローマ細胞の融合は、Milstein (1981) Methods Enzymol. 73: 3-46)に準じて行うことができる。ここでできる。ここでできる。ここでできる。ここでできる。ここのようなミエローマ細胞を強力により選択することを可能にする細胞合されたハイブリドーマは、融合により選択することを可能にするにする細胞のようなミエローマを用いた場合、融合されたハイブリドーマは、融合によりで培養液)で培養して選択する。次に、作成されたハイブリドーマの中から、本発明の後でプチドまたはその断片に対して結合する抗体を産生するクローンを選択する。その後でプチドまたはその断片に対して結合する抗体を産生するクローンを選択する。と表でもの表にいていて、「これ」にあれて、関け、大力ローンをでは、では、大力ローンをでは、では、大力ローンをでは、では、大力ローンを選択したクローンをでは、では、大力ローンを選択したクローンをでは、大力ローンを選択したクローンをでは、大力ローンをでは、大力ローンを選択したクローンをでは、大力ローンをでは、大力ローンをでは、大力ローンをでは、大力ローンをでは、大力ローンをでは、大力ローンをできる。

[0097]

ハイブリドーマは、その他、最初にEBウイルスに感染させたヒトリンパ球をinvitroで免疫原を用いて感作し、感作リンパ球をヒト由来のミエローマ細胞(U266等)と融合し、ヒト抗体を産生するハイブリドーマを得る方法(特開昭63-17688号公報)によっても得ることができる。また、ヒト抗体遺伝子のレパートリーを有するトランスジェニック動物を感作して製造した抗体産生細胞を用いても、ヒト抗体を得ることができる(WO92/03918; WO93/02227; WO94/02602; WO94/25585;WO96/33735; WO96/34096; Mendezet a1. (1997) Nat. Genet. 15: 146-56等)。ハイブリドーマを用いない例としては、抗体を産生するリンパ球等の免疫細胞に癌遺伝子を導入して不死化する方法が挙げられる。

[0098]

また、遺伝子組換え技術により抗体を製造することもできる(Borrebaeck and Larrick (1990) Therapeutic Monoclonal Antibodies, MacMillan Publishers LTD., UK参照)。そのためには、まず、抗体をコードする遺伝子をハイブリドーマまたは抗体産生細胞(感作リンパ球等)からクローニングする。得られた遺伝子を適当なベクターに組み込み、宿主に該ベクターを導入し、宿主を培養することにより抗体を産さ生させる。このような組換え型の抗体も本発明の抗体に含まれる。代表的な組換え型の抗体として、

50

非ヒト抗体由来可変領域及びヒト抗体由来定常領域とからなるキメラ抗体、並びに非ヒト抗体由来相補性決定領域(CDR)、及び、ヒト抗体由来フレームワーク領域(FR)及び定常領域とからなるヒト化抗体が挙げられる(Jones et al. (1986) Nature 321: 522-5; Reichmann et al. (1988) Nature 332: 323-9; Presta (1992) Curr. Op. Struct. Biol. 2: 593-6; Methods Enzymol. 203: 99-121 (1991))。

[0099]

[0100]

[0101]

抗体及び抗体断片の回収及び精製は、プロテインA及びGを用いて行う他、<ポリペプチドの製造>の項で詳細に記載した蛋白質精製技術によっても行い得る(Antibodies: A Laboratory Manual, Ed Harlow and David Lane, Cold Spring Harbor Laboratory (1988))。例えば、本発明の抗体の精製にプロテインAを利用する場合、Hyper D、POROS、Sepharose F.F.(Pharmacia)等のプロテインAカラムが公知であり、使用可能である。得られた抗体の濃度は、その吸光度を測定することにより、または酵素結合免疫吸着検定法(ELISA)等により決定することができる。

4 4 4 - 8; EP 4 0 4 0 9 7; WO 9 3 / 1 1 1 6 1 参照)。

[0102]

抗体の抗原結合活性は、吸光度測定、蛍光抗体法、酵素免疫測定法(EIA)、放射免疫測定法(RIA)、ELISA等により測定することができる。ELISA法により測定の場合、本発明の抗体をプレート等の担体に固相化し、次いで本発明のポリペプチドを添加した後、目的とする抗体を含む試料を添加する。ここで、抗体を含む試料としては、抗体産性細胞の培養上清、精製抗体等が考えられる。続いて、本発明の抗体を認識する二次

20

30

40

50

抗体を添加し、プレートのインキュベーションを行う。その後、プレートを洗浄し、二次抗体に付加された標識を検出する。即ち、二次抗体がアルカリフォスファターゼで標識されている場合には、p・ニトロフェニルリン酸等の酵素基質を添加して吸光度を測定することで、抗原結合活性を測定することができる。また、抗体の活性評価に、BIAcore (Pharmacia)等の市販の系を使用することもできる。

[0103]

本発明の抗体は、ラブコネクチン3結合蛋白質の検出試薬として用いることができる。つまり、本発明の抗体を用いて、免疫組織学的な解析方法を行うことができ、したがって、本発明は、免疫組織学的な解析方法、例えば、蛋白質の発現量を解析する方法、蛋白質の局在を解析する方法を提供する。免疫組織学的な解析方法としては、例えば、酵素免疫測定法(EIA)、放射免疫測定法(RIA)、ELISA法、Western blot法、フローサイトメトリー、免疫組織化学染色等があげられる。また、本発明のポリペプチド及びその断片の精製に使用することができる。

[0104]

本発明においてラブコネクチン3結合蛋白質がシナプスに局在することが確認されたことから、ラブコネクチン3結合蛋白質をシナプスのマーカーとして、本発明の抗体を用いた検出を行うこともできる。従って、本発明の抗体は、必要に応じシナプス検出試薬として用いることができる。また、本発明の蛋白質は、ラブコネクチン3およびGDP/GTP交換反応促進蛋白質に結合することが確認されたことから、本発明の抗体は、これらの検出にも用いることができる。

[0105]

<本発明のスクリーニング法>

本発明の蛋白質は、ラブコネクチン3およびRab3 GDP/GTP交換反応促進蛋白質に結合する。従って、本発明の蛋白質は、これらの結合を増加またものであるが、蛋白質はと下由来のものであるが、蛋白質はと下由来のものであるが、蛋白質はと下由来のものである明のである明の蛋白質はと下中である。本発明の蛋白質はと下中である明のである明のである明のである明のである明のである明のである明ののの用途に使用できる。従って、本発明の3との結合を促進する物質または同量には、ラブコネクチン3結合を促進する物質または関連を表のでは、ラブコネクチン3結合を促進する物質または加または、では、カン3とであってでは、前記結合を選択することを含む前記結合ののののののでは、アローニング方法であってでは、ならのには進蛋白質を選択するののでは、アローニング方法であって、アローニング方法であって、アローニング方法であって、アローニング方法であっての関連を促進する物質または関節によりのはは、アローニング方法であってのには、アローニング方法であってのには、アローニング方法であってのには、アローニング方法であってのには、アローニング方法であってのには、アローニング方法であってのには、アローニング方法であってのには、アローニング方法であってのには、アローニング方法であってのには、アローには、アロ

[0106]

ラブコネクチン 3 結合蛋白質とラブコネクチン 3 との結合、および、Rab 3 GDP/GTP交換反応促進蛋白質結合蛋白質とRab 3 GDP/GTP交換反応促進蛋白質との結合の測定は、蛋白質相互間の結合を測定する公知の方法に従って行うことができる。

[0107]

本発明の蛋白質およびその異種相同蛋白質は、 p 1 6 0 は神経伝達物質放出等のシナプス小胞の輸送の制御に関与していると考えられるので、このように選択されたこれらの結合を促進または阻害する物質は、シナプス小胞の輸送の異常が原因となる疾患(例えば、知的障害(精神遅滞)、注意欠陥多動障害、自閉性障害、学習障害)の治療剤の有効成分として使用できると考えられる。

[0108]

このような治療剤(医薬)は、スクリーニングにより選択された物質(有効成分)を、製剤化することにより製造できる。製剤化は、選択された物質の種類、製剤の形態等により

30

50

適宜、通常の方法に従って行うことができる。医薬は、有効成分と医薬的に許容な可能な 担体との医薬組成物としてもよい。

[0109]

【実施例】

本発明を下記実施例により更に詳しく説明するが、本発明はこれに限られるものではない

[0110]

【実施例1】

(1) Rab3 GEPと共免疫沈降されたラット蛋白質の取得

[0111]

No.3 バンドをゲルから切り出してトリプシンで消化し、そしてそのペプチドを質量分析にかけた。コンピューターデーターベース検索により、 p 1 6 0 がヒト c D N A 断片 (K I A A 0 5 4 1 , G e n B a n k アクセッション番号 A B 0 1 1 1 1 3) から推定されるアミノ酸配列を含むことが明らかになった。

[0112]

なお、下記(5)に示すように、 p 1 6 0 はラブコネクチン 3 と複合体を形成することが 判明したので、以下、 p 1 6 0 をラブコネクチン 3 、ラブコネクチン 3 をラブコネクチン 3 と呼ぶ。

[0113]

(2)分子クローニングと一次構造決定

KIAAO541 CDNAは、約3.5kbのコーディング領域とインフレーム停止コドンを含むが、予想される開始コドンを欠いていた。また、KIAAO541 CDNAの配列はヒトゲノムのBACクローンに含まれていた(GenBankアクセッション番号ACO007052およびACO08006)。この情報を基礎として、ヒトラブコネクチン3 CDNAの57末端を得るためにPCRを行った。具体的には以下のように行った。ATG GCA AAC AGC CTT GTT CTA CCC ATT GTT CTA CCC ATT GCC AGC CCT TT GTT CTA CCC TT TCT TCA CTT CCC (配列番号3)/GTT GTC ATT GCC AGC CCT TT CT TCA CCC Rを用いて増幅した。PCRを物はPCR4 Bluntベクター(Invitrogen)にサブクローンした。DNAシークエンシングを、ジデオキシ核酸ターミネーション法により、DNAシークエンサー(ABIPRISM 3100 Genetic Analyzer, PE Biosystems)で行った。この結果、約1.0kbのコーディング領域と予想される開始コドンを含むcDNA断片を得た。

[0114]

ヒトラブコネクチン3 cDNAの全長が、このcDNA断片をKIAA0541 cD

30

40

50

NAにライゲーションすることで得られた(配列番号1)。コードされる蛋白質は1,490アミノ酸からなり、計算上の分子量は163,808であった(配列番号2)。した C D N A がヒトラブコネクチン3 の全長をコードするかどうかを確認するため、この C D N A がヒトラブコネクチン3 の全長をコードするかどうかを確認するため、このけいにいて抗ラブコネクチン3 が体を用いたウエスタンプロッティングを行った。具 E にかけには以下のように行った。 P C M V F a ラブコネクチン3 (下記(3)参照)を H E K 2 9 3 細胞にトランスフェクトし、その細胞の溶解液を S D S - P A G E にかけ C をポリリルアミドゲル)にかけ、続いて抗ラブコネクチン3 - 1 抗体(下記(3)参照)を用いたウエスタンプロッティングが行われた。対照として H E K 2 9 3 細胞がティングを行った。この結果、分子量約160k D a のタンパクが検出された(図1の C)。蛋白質の C 中、各レーンは以下の通りである。レーン1,対照 H E K 2 9 3 細胞(1μg蛋白質)、レーン3,ラット脳のホモジェネート(20μg蛋白質)。

[0115]

この分子量は、ラット脳由来の天然のラブコネクチン3 と同様であった。それゆえ、この c D N A がヒトラブコネクチン3 の全長をコードすると結論された。ヒトラブコネクチン3 は、ラットTRAG(GenBankアクセッション番号 A F 3 0 5 8 1 3)とヒトW D R 7 (GenBankアクセッション番号 X M 0 2 8 5 8 8)に似た領域構造を示した。TRAG はこれまで、TGF - 耐性細胞株で発現する蛋白質として同定されていたが、その機能は知られていない(Cytogenet. Cell Genet. 8 8 , 3 2 4 - 3 2 5 , 2 0 0 0 0)。

[0116]

(3)ラブコネクチン3 に対する抗体の調製

ラブコネクチン3 の発現ベクターを、pGex4T-1 (Amersham Biosciences Inc)を用いて構築した。構築物はラブコネクチン3 の以下のアミノ酸配列を含んでいた。pGex4T-1ラブコネクチン3 -1、アミノ酸番号487-625; pGex4T-1ラブコネクチン3 -2、アミノ酸番号615-920

[0117]

GST融合タンパクはE. coliで発現させ、グルタチオンセファロースビーズ(Amersham Biosciences Inc.)を用いて精製した。抗原としてGST-ラブコネクチン3 - 1 および - 2 をそれぞれ用いてウサギポリクローナル抗ラブコネクチン3 - 1 および - 2 抗体を作成し、NHS - 活性化セファロースビーズ(Amersham Biosciences Inc.)に各抗原を共有結合したものを用いてアフィニティー精製した。

[0118]

(4) ラブコネクチン3 の組織および細胞下(subcellular)の分布の検討ラブコネクチン3 の組織および細胞下分布を検討した。組織分布については、種々のラット組織のホモジェネート(各20μg蛋白質)をSDS-PAGEにかけ、続いて抗ラブコネクチン3 - 2 抗体を用いてウエスタンプロッティングを行った。細胞下分布については、ラット大脳のホモジェネートを、細胞下分画し(J. Biol.Chem.,265, 11872-11879 (1990))、各画分(各10μg蛋白質)をそれぞれSDS-PAGEにかけ、抗ラブコネクチン3 - 1 抗体、抗ラブコネクチン3 抗体、または抗Rab3 GEP抗体を用いてウエスタンブロッティングを行った。

[0119]

この結果、組織分布解析により、ラブコネクチン 3 が脳に特異的に発現していることが明らかになった(図 2 の A)。脳での細胞レベル下分布解析により、ラブコネクチン 3 が C S V 画分中に高濃度であることを示した(図 2 の B)。図 2 の B における記号は以下

20

50

[0120]

さらに、マウス海馬とラット海馬ニューロンの初代培養(J. Biol. Chem., 277, 9629-9632 (2002))について免疫電子顕微鏡観察(Biochem. Biophys. Res. Commun., 202, 1235-1243 (1994))を行った。

[0121]

試料は、抗ラブコネクチン3 抗体と抗ラブコネクチン3 - 2 抗体を用いて二重染色を行い、続いて免疫蛍光顕微鏡法で観察した。

[0 1 2 2]

この結果、ラブコネクチン 3 はラブコネクチン 3 と共に、マウス海馬のシナプス領域と初代培養を行ったラット海馬ニューロンに共存していることが明らかになった(図 3 の A a と A b)。図 3 の A a は、マウス海馬 C A 3 領域 、 A b は、ラット海馬ニューロン初代培養(培養 2 0 日目)である。記号は以下の通りである。 S R , 放線状層、 S L , 淡明層、 S P , 錐体層、バー , 3 0 μ m。

[0 1 2 3]

また、培養 2 2 日目のニューロンを、抗ラブコネクチン 3 - 1 抗体で染色した(図 3 の B)。図 3 の B においてバーは 2 0 0 n m を示す。この結果は、ラブコネクチン 3 が シナプス小胞と関連することを示した(図 3 の B)。

[0124]

これらの結果は、ラブコネクチン 3 とラブコネクチン 3 がシナプス小胞に共存することを示す。なお、図 3 に示した結果は、 3 つの独立した実験の典型例である。

[0125]

(5) ラブコネクチン 3 に対する、ラブコネクチン 3 、Rab 3 GEPおよびRa 30 b 3 G A P の 結合の 検討

ラブコネクチン 3 とラブコネクチン 3 の結合を検討した。 C S V 画分の抽出物を、抗ラブコネクチン 3 または 3 - 2 抗体による免疫沈降にかけた。各免疫沈降物を S D S - P A G E (8%ポリアクリルアミドゲル)にかけ、続いて抗ラブコネクチン 3 または 3 - 1 抗体によるウエスタンブロッティングを行った。さらに、抗ラブコネクチン 3 - 2 抗体を用いた免疫沈降物は、まず 0 . 5 M N a C 1 または 1% C H A P S で洗浄し、次いで S D S - P A G E (8%ポリアクリルアミドゲル)にかけ、さらにクーマシーブリリアントブルーによるタンパク染色を行った。結果を図 4 の A a ~ A c に示す。 A a は、抗ラブコネクチン 3 抗体による免疫沈降物、 A b は、抗ラブコネクチン 3 - 2 抗体による免疫沈降物の 結果である。

[0 1 2 6]

ラブコネクチン3 がその抗体を用いてP2C画分抽出物から免疫沈降されたとき、ラブコネクチン3 はウエスタンプロッティングから予想されたように共免疫沈降された(図4のAa)。逆に、ラブコネクチン3 がその抗体を用いてP2C画分抽出物から免疫沈降されたとき、ラブコネクチン3 が共免疫沈降された(図4のAb)。抗ラブコネクチン3 ・ 2 抗体により共免疫沈降されたラブコネクチン3 およびラブコネクチン3 を、0・5 M NaClまたは1% CHAPSのどちらかで洗浄し、続いてクーマシーブリリアントブルーでタンパク染色した。両タンパクは互いに分離せず、明らかに同じ分子比率で染色された(図4のAc)。ラブコネクチン3 とラブコネクチン3 は、1

30

40

50

M NaClで一部が、1%デオキシコレートで完全に互いに分離した(データ省略)。 これらの結果は、ラブコネクチン3 とラブコネクチン3 が 複合体を形成することを 示している。

[0127]

次に、ラブコネクチン3 および3 のいずれがRab3 GEPおよびRab3 GA Pに結合しているかを調べた。この目的のため、昆虫細胞から得たラブコネクチン 3 と Rab 3 GEP、そしてE.coli.から得たRab 3 GAPの非触媒サブユニッ ト (p 1 5 0) の 純 粋 な サン プ ル を 調 製 し た (J . Biol . Chem . , 2 7 2 , 3875-3878 (1997) J. Biol. Chem., 273, 2 4 7 8 1 - 2 4 7 8 5 参照)。ラブコネクチン 3 は巨大な蛋白質なので、その全長蛋白 質を、COS7細胞のような哺乳類細胞株で発現させることや、その純粋なリコンビナン トサンプルをE.coliや昆虫細胞から用意することにまだ成功していない。それゆえ 、 天 然 の ラ ブ コ ネ ク チ ン 3 、 お よ び 、 3 と 3 の 複 合 体 を ラ ッ ト 脳 P 2 C 画 分 か ら 調 製した。ラブコネクチン3 と3 の複合体は、プロテインAセファロースビーズに結合 した抗ラブコネクチン3 - 2 抗体を用いて、 P 2 C 画分から免疫沈降され、続いて 0 . M NaC1でビーズが洗浄された。このサンプルはラブコネクチン3 と3 の複 合体として使われた。鎖の調製をするための別の実験で、プロテインAセファロースビー ズに結合した抗ラブコネクチン3 - 2 抗体を用いてP2C画分から免疫沈降されたラブ コネクチン3 と3 の複合体は、3 を3 から分離するために、1M NaClで洗 浄 された。 ビーズより分離された 3 は、続いてプロテイン A セファロースビーズに固定 した3 に対する抗体を用いて免疫沈降された。

[0128]

ラブコネクチン 3 、 3 または複合体と結合されたアフィニティービーズを準備した。 ラブコネクチン 3 結合ビーズに関しては、製造者のプロトコールに基づき(GIBCO BRL) p Fast Bac Hta ラブコネクチン 3 を用いて、ラブコネクチン 3 c D N A を持つバキュロウイルスを準備し、バキュロウイルスをHigh Five cell(Invitrogen)にトランスフェクトした。細胞の抽出物(5mg蛋白 質)をバッファーAを用いて調製し、プロテインAセファロースビーズ(20μ1湿容量)に固定された抗ラブコネクチン3 - 2 抗体と共に4 で一晩静置した。ラブコネクチ 結合ビーズに関しては、初めに、プロテインAセファロースビーズに結合された抗 ラブコネクチン 3 - 2 抗体を用いて、ラブコネクチン 3 と 3 の複合体を上記の P 2 C画分から免疫沈降させた。次いでラブコネクチン3 を1M NaClを含むバッファ Aにより4 で1時間洗浄することでビーズから分離した。分離したラブコネクチン3 (0 . 4 μ g 蛋白質)を回収し、プロテイン A セファロースビーズ(2 0 μ 1 湿容量) に固定された抗ラブコネクチン 3 抗体と共に 4 で一晩静置した。複合体結合ビーズに 関しては、ラブコネクチン3 と3 の複合体をP2C画分から同様に免疫沈降させ、次 いで 0 . 5 M NaClを含むバッファー Aでビーズを洗浄した。ラブコネクチン 3 、 3 、または複合体と結合したアフィニティービーズは、次いで、バッファー A で完全 に洗浄した。

[0129]

30

40

50

50を示す。

[0130]

この結果、ラブコネクチン 3 はリコンビナント R a b 3 GEPに化学量論的に結合したが、ラブコネクチン 3 は結合しなかった(図 4 の B a 1 および B b 1)。複合体は R a b 3 GEPに直接結合したが、化学量論的にはこの結合は、ラブコネクチン 3 のものに比べ相当低かった(データ省略)。一方、ラブコネクチン 3 、 3 そして複合体のいずれも、 R a b 3 GAPには結合しなかった(図 4 の B a 2 , B b 2 (複合体についてはデータ省略))。

[0131]

CSV画分の抽出物を、抗Rab3 GEPまたはGAP p150抗体による免疫沈降にかけた。各免疫沈降物をSDS-PAGE(8%ポリアクリルアミドゲル)にかけ、続いて抗Rab3GEPまたはGAP p150抗体そして抗ラブコネクチン3 抗体および抗ラブコネクチン3 -1抗体を用いたウエスタンブロッティングを行った。結果を図4のCaおよびCbに示す。Caは、抗Rab3 GEP抗体を用いた免疫沈降物、Cbは、抗Rab3 GAP p150抗体を用いた免疫沈降部の結果である。

[0132]

ラブコネクチン 3 は、ラブコネクチン 3 と同様に、 P 2 C 画分の抽出物から、抗 R a b 3 G E P または抗 R a b 3 G A P p 1 5 0 抗体を用いてそれぞれ、 R a b 3 G E P または R a b 3 G A P p 1 5 0 により一貫して共免疫沈降された(図 4 の C a および C b ならびに図 1 の A 参照)。

[0 1 3 3]

総合すると、これらの結果は、制御された様式で、ラブコネクチン3 が、直接的にRab3 GEPに結合し、また、未同定の分子を介して間接的にRab3 GAPに結合することを示す。なお、図4の結果は、3つの独立した実験の典型例である。

[0134]

[0135]

【実施例2】

ポリL‐リジンをコートしたウェルで1×10⁶ の神経芽腫細胞PC‐12を培養し、培養開始日の翌日にリポフェクチン法によりmycを発現するpCMV myc及びP160(ラブコネクチン3)をmycとの融合タンパク質として発現するpCMV mycにp160をトランスフェクトした。pCMV mycは、J. Biol. Chem, 272, 11943-11951(11997)に記載されている。pCMV myc:p160は、ラブコネクチン3 のアミノ酸配列1~1490(全長)をコードするDNAを、ラブコネクチン3 とmycとの融合蛋白質が発現されるように組み込んだものである。

[0136]

トランスフェクションの 2 日後に、低カリウム(カリウム濃度: 4 . 7 m M)バッファーを加え、 3 7 で 1 0 分間インキュベートした後、バッファーを取り除いて、低カリウム濃度または高カリウム(カリウム濃度: 6 0 m M)のバッファーを加えた。 3 7 で

10分間インキュベートした後、上清中に分泌された成長ホルモン(GH)及び細胞に残されたGHの量を、hGH ELISAキット(ロッシュ社製)にて測定した。結果は、上清中及び細胞中のGHをあわせた量を100%として、分泌されたGHの割合(%)として表現した。

[0137]

その結果、低カリウムバッファーでは全体の2.3%しか放出されなかった成長ホルモンが、高カリウムバッファーでは、8.9%が放出され、カリウムの刺激により増加した成長ホルモンの放出は、p160を発現させることにより7.0%まで抑制された。この結果より、p160は成長ホルモン放出等のシナプス小胞の輸送の制御に関与していると考えられる。

[0138]

【発明の効果】

本発明により、 Ca^2 * 依存性エキソサイトーシス、特には Rab3Aの活性化および不活性化の制御機構の解明に有用な蛋白質、ならびに、この蛋白質を用いる、 Ca^2 * 依存性エキソサイトーシス、特には Rab3Aの活性化および不活性化の制御に有用な物質のスクリーニング方法が提供される。

[0 1 3 9]

【配列表】

```
〈110〉エーザイ株式会社(Eisai Co., Ltd.)
```

〈120〉ラブコネクチン3結合蛋白質

⟨130⟩ P-B1320

⟨150⟩ JP 2002-319521

10

(151) 2002-11-01

 $\langle 160 \rangle 4$

(210) 1

(211) 4473

 $\langle 212 \rangle$ DNA

20

40

(213) Homo sapiens

(220)

⟨221⟩ CDS

 $\langle 400 \rangle$ 1

(222) (1).. (4470)

30

atg gca gga aac agc ctt gtt cta ccc att gtt ctt tgg ggt cga aaa 48 Met Ala Gly Asn Ser Leu Val Leu Pro Ile Val Leu Trp Gly Arg Lys

1 5 **10** 15

gcg ccc aca cat tgc atc tca gcg gta ctt tta aca gat gat ggg gcc 96

Ala Pro Thr His Cys Ile Ser Ala Val Leu Leu Thr Asp Asp Gly Ala

20 25 30

acg atc gta aca gga tgt cac gac gga caa ata tgt ctc tgg gat ctt 144

Thr Ile Val Thr Gly Cys His Asp Gly Gln Ile Cys Leu Trp Asp Leu

		35					40					45					
tca	gta	gaa	ctg	caa	att	aat	cct	cga	gca	ctg	ttg	ttt	ggt	cat	aca	192	
_	_								_			Phe		_			
	50					55					60						
gca	tca	atc	act	tgt	ttg	tct	aaa	gct	tgt	gct	tcc	agt	gac	aaa	cag	240	
Ala	Ser	Ile	Thr	Cys	Leu	Ser	Lys	Ala	Cys	Ala	Ser	Ser	Asp	Lys	G1n		
65					70					75					80		10
tat	att	gtg	agt	gca	tct	gaa	agt	gga	gag	atg	tgc	ctc	tgg	gat	gtg	288	
Tyr	I1e	Val	Ser	Ala	Ser	Glu	Ser	G 1y	Glu	Met	Cys	Leu	Trp	Asp	Val		
				85					90					95			
agt	gat	ggc	aga	tgt	att	gaa	ttt	aca	aaa	tta	gct	tgc	aca	cat	act	336	
Ser	Asp	Gly	Arg	Cys	Ile	Glu	Phe	Thr	Lys	Leu	Ala	Cys	Thr	His	Thr		
			100					105					110				
ggc	ata	cag	ttc	tac	cag	ttc	tct	gtt	ggg	aat	cag	cga	gaa	gga	agg	384	20
Gly	Ile	G1n	Phe	Tyr	Gln	Phe	Ser	Val	Gly	Asn	${\bf G}{\bf 1}{\bf n}$	Arg	Glu	Gly	Arg		
		115					120					125					
ctt	tta	tgc	cac	gga	cat	tac	cct	gaa	atc	ctt	gtt	gtg	gat	gct	acc	432	
Leu	Leu	Cys	His	Gly	His	Tyr	Pro	Glu	Ile	Leu	Val	Val	Asp	Ala	Thr		
	130					135					140						
agc	ctt	gaa	gta	tta	tac	tcc	tta	gta	tca	aag	ata	tca	cca	gac	tgg	480	
Ser	Leu	G1u	Val	Leu	Tyr	Ser	Leu	Val	Ser	Lys	Ile	Ser	Pro	Asp	Trp		30
145					150					155					160		
att	agc	tcc	atg	agt	att	att	cga	tcc	cac	cga	aca	caa	gag	gac	aca	528	
Ile	Ser	Ser	Met	Ser	Ile	Ile	Arg	Ser	His	Arg	Thr	Gln	Glu	Asp	Thr		
				165					170					175			
gtg	gta	gca	ctc	tcg	gtg	ac t	ggc	atc	ctg	aag	gtc	tgg	att	gtt	acc	576	
Va1	Val	Ala	Leu	Ser	Val	Thr	Gly	Ile	Leu	Lys	Val	Trp	Ile	Val	Thr		
			180					185					190				40
tcg	gaa	ata	agt	gac	atg	cag	gat	act	gag	cca	ata	ttt	gag	gag	gaa	624	

Ser	Glu	I1e	Ser	Asp	Met	G1 n	Asp	Thr	Glu	Pro	Ile	Phe	Glu	Glu	Glu		
		195					200					205					
tcc	aaa	cca	att	tat	tgt	cag	aat	tgc	caa	agc	atc	tct	ttt	tgt	gca	672	
Ser	Lys	Pro	Ile	Tyr	Cys	Gln	Asn	Cys	Gln	Ser	Ile	Ser	Phe	Cys	Ala		
	210					215					220						
ttt	aca	caa	agg	tca	ctt	ttg	gtt	gtg	tgt	tcc	aaa	tat	tgg	agg	gtg	720	
Phe	Thr	G1n	Arg	Ser	Leu	Leu	Val	Val	Cys	Ser	Lys	Tyr	Trp	Arg	Val		10
225					230					235					240		
ttc	gat	gcc	gga	gac	tat	tcc	ttg	ttg	tgt	tca	ggt	cct	agt	gaa	aat	768	
Phe	Asp	Ala	Gly	Asp	Tyr	Ser	Leu	Leu	Cys	Ser	Gly	Pro	Ser	Glu	Asn		
				245					250					255			
gga	cag	aca	tgg	acc	ggg	ggg	gac	ttt	gtc	tca	tca	gat	aaa	gtc	atc	816	
Gly	Gln	Thr	Trp	Thr	Gly	Gly	Asp	Phe	Val	Ser	Ser	Asp	Lys	Val	Ile		
			260					265					270				20
att	tgg	aca	gaa	aat	ggg	caa	agt	tat	att	tac	aaa	cta	cct	gcc	agt	864	
Ile	Trp		Glu	Asn	Gly	Gln		Tyr	Ile	Tyr	Lys		Pro	Ala	Ser		
		275					280					285					
_	ctt		_		_			_		_			_	_	-	912	
Cys	Leu	Pro	Ala	Ser	Asp		Phe	Arg	Ser	Asp		Gly	Lys	Ala	Val		
	290					295					300						
	aat															960	30
	Asn	Leu	Ile	Pro		Val	Gln	His	Ile		Leu	Asp	Arg	Lys			
305					310					315					320		
	gag															1008	
Lys	Glu	Leu	Leu		Cys	Pro	Pro	Val		Arg	Phe	Phe	Tyr		Cys		
				325					330					335			
	gaa															1056	40
Arg	Glu	Tyr		His	Lys	Leu	Leu		Gln	Gly	Asp	Ser		Gly	Arg		40
			340					345					350				

t tg									_	_		_				1104	
Leu .	Asn		Trp	Asn	He	Ser	_	Thr	Ala	Asp	Lys		Gly	Ser	Glu		
_		355					360		_,			365				1150	
gaa i																1152	
Glu		Leu	Ala	Me I	IDI		ser	116	ser	ren		GIU	Ala	гпе	ASP		
	370	+	+	4		375	<i></i>	-++	-+-	t	380			a.t.a	-++	1900	
aaa	_					_				_	_	_				1200	10
Lys : 385	ren	чэп	rru	CyS	390	AIA	GIY	116	116	395	GIII	ren	SEL	vai	400		
CCC	aat	oσt	a a t	(Ta a		ctt	999	σta	act		207 t	ata	tac	ata		1248	
Pro .				_				_		_						1240	
110	лэц	DCI	иоп	405	110	LCu	гур	101	410	AIG	DCI	141	LYI	415	110		
gca	cat	gga	сga		øtt	tøt	gg t	røt		gat	gga	ลฮด	ata		att	1296	
Ala																1200	20
	,	- · · ·	420		144	0,0	- · · ·	425			- · ·		430	144.			
gta	cct	gcc		cag	acg	gcc	ata		cag	ctg	ttg	caa		gaa	cac	1344	
Val :		_															
		435					440					445	-				
atg	ctc	aga	aga	ggt	tgg	cca	cct	cac	aga	aca	ctc	cgt	ggt	cat	cgg	1392	
Met :	Leu	Arg	Arg	G1y	Trp	Pro	Pro	His	Arg	Thr	Leu	Arg	G1y	His	Arg		
	450					455					460						30
aac	aaa	gtc	aca	tgt	ttg	cta	tat	cct	cat	cag	gtc	tca	gct	cgg	tat	1440	
Asn :	Lys	Va 1	Thr	Cys	Leu	Leu	Tyr	Pro	His	Gln	Va1	Ser	Ala	Arg	Tyr		
465					470					475					480		
gat	caa	aga	tac	ctg	ata	tct	gga	ggt	gtg	gat	ttt	tca	gtc	ata	att	1488	
Asp (G1n	Arg	Tyr	Leu	Ile	Ser	Gly	Gly	Val	Asp	Phe	Ser	Val	Ile	Ile		
				485					490					495			
tgg i	gac	ata	ttt	tct	gga	gaa	atg	aaa	cat	atc	ttc	tgt	gtt	cat	ggt	1536	40
Trp .	Asp	I1e	Phe	Ser	Gly	Glu	Met	Lys	His	Ile	Phe	Cys	Val	His	G1y		

			500					505					510				
ggt	gag	att	ac t	caa	ctt	cta	gtt	cca	cct	gaa	aac	tgt	agt	gca	aga	1584	
Gly	Glu	Ile	Thr	Gln	Leu	Leu	Va1	Pro	Pro	Glu	Asn	Cys	Ser	Ala	Arg		
		515					520					525					
gta	cag	cac	tgc	atc	tgc	tct	gta	gcc	agt	gac	cac	tca	gta	gga	ctt	1632	
Val	Gln	His	Cys	Ile	Cys	Ser	Val	Ala	Ser	Asp	His	Ser	Val	Gly	Leu		
	530					535					540						10
cta	agt	ttg	cga	gag	aaa	aaa	tgc	ata	atg	ttg	gca	tct	cgt	cac	ctt	1680	
Leu	Ser	Leu	Arg	Glu	Lys	Lys	Cys	Ile	Me t	Leu	Ala	Ser	Arg	His	Leu		
545					550					555					560		
ttt	cct	att	caa	gta	atc	aaa	tgg	agg	cct	tct	gat	gat	tac	ctg	gtg	1728	
Phe	Pro	Ile	Gln	Val	Ile	Lys	Trp	Arg	Pro	Ser	Asp	Asp	Tyr	Leu	Val		
				565					570					575			
gtg	ggg	tgt	tca	gat	ggt	tct	gtg	tac	gtc	tgg	caa	atg	gat	ac t	ggt	1776	20
Val	Gly	Cys	Ser	Asp	Gly	Ser	Val	Tyr	Val	Trp	Gln	Met	Asp	Thr	Gly		
			580					585					590				
											gtt					1824	
Ala	Leu		Arg	Cys	Val	Met		Ile	Thr	Ala	Val		Ile	Leu	Asn		
		595					600					605					
		_	-							_	tca			_		1872	
Ala	_	Asp	Glu	Ala	Val		Ala	Ala	Val	Asp	Ser	Leu	Ser	His	Pro		30
	610					615					620					4000	
											agt					1920	
	Val	Asn	Leu	Lys		Ala	Met	Thr	Arg		Ser	Leu	Ala	Ala			
625					630					635				•	640	4000	
		_	-			_					gca				_	1968	
Lys	Asn	Met	Ala		H1S	Lys	Leu	GIN		Leu	Ala	Thr	Asn		Leu		40
	1.1			645					650			1. 1	1.1	655		007.0	70
gct	tct	gag	gca	tct	gac	aag	gga	aat	пa	CCI	aaa	tat	I C I	cat	aac	2016	

Ala	Ser	Glu	Ala	Ser	Asp	Lys	Gly	Asn	Leu	Pro	Lys	Tyr	Ser	His	Asn		
			660					665					670				
tcc	ctg	atg	gtt	caa	gca	ata	aag	aca	aac	cta	aca	gac	ccg	gac	ata	2064	
Ser	Leu	Met	Val	${\bf G}{\bf l}{\bf n}$	Ala	Ile	Lys	Thr	Asn	Leu	Thr	Asp	Pro	Asp	Ile		
		675					680					685					
cat	gtg	cta	ttc	ttt	gat	gtg	gaa	gcg	ttg	at t	at t	caa	ctc	ctg	ac t	2112	
His	Val	Leu	Phe	Phe	Asp	Val	Glu	Ala	Leu	He	Ile	G1n	Leu	Leu	Thr		10
	690					695					700						
gaa	gaa	gcc	tct	agg	ccg	aat	ac t	gct	ctt	att	tcc	cca	gag	aat	ttg	2160	
Glu	Glu	Ala	Ser	Arg	Pro	Asn	Thr	Ala	Leu	Ile	Ser	Pro	Glu	Asn	Leu		
705					710					715					720		
caa	aaa	gca	tct	ggc	agt	tca	gac	aaa	ggg	ggc	tct	ttt	tta	ac t	gga	2208	
Gln	Lys	Ala	Ser	Gly	Ser	Ser	Asp	Lys	Gly	Gly	Ser	Phe	Leu	Thr	G1y		
				725					730					735			20
aaa	cga	gca	gca	gtt	ctc	ttc	caa	caa	gtg	aaa	gaa	acg	atc	aaa	gag	2256	
Lys	Arg	Ala	Ala	Val	Leu	Phe	Gln	Gln	Val	Lys	Glu	Thr	Ile	Lys	Glu		
			740					745					750				
aac	atc	aag	gaa	cac	ctc	ctt	gat	gat	gaa	gag	gag	gat	gag	gag	ata	2304	
Asn	Ile	Lys	Glu	His	Leu	Leu	Asp	Asp	Glu	Glu	Glu	Asp	Glu	Glu	Ile		
		755					760					765					
atg	agg	cag	aga	agg	gaa	gaa	agt	gat	cct	gaa	tat	cgg	tcc	agc	aaa	2352	30
Met	Arg	G1 n	Arg	Arg	Glu	Glu	Ser	Asp	Pro	Glu	Tyr	Arg	Ser	Ser	Lys		
	770					775					780						
tca	aag	cca	ttg	acc	cta	tta	gaa	tat	aat	tta	ac t	atg	gac	ac t	gca	2400	
Ser	Lys	Pro	Leu	Thr	Leu	Leu	Glu	Tyr	Asn	Leu	Thr	Met	Asp	Thr	Ala		
785					790					795					800		
aag	ctg	ttt	atg	tcc	tgc	ctt	cac	gcc	tgg	ggt	ttg	aat	gaa	gta	ctg	2448	
Lys	Leu	Phe	Met	Ser	Cys	Leu	His	Ala	Trp	Gly	Leu	Asn	Glu	Val	Leu		40
				805					810					815			

gat	gaa	gtt	tgc	ctg	gat	cgc	ctt	gga	atg	ctg	aaa	ccc	cac	tgc	acc	2496	
Asp	Glu	Val	Cy_{S}	Leu	Asp	Arg	Leu	${\bf Gl}{\bf y}$	Met	Leu	Lys	Pro	His	Cys	Thr		
			820					825					830				
gta	tcg	ttt	ggc	ctc	ttg	tca	aga	gga	ggc	cat	atg	tca	ctg	atg	ctg	2544	
Val	Ser	Phe	Gly	Leu	Leu	Ser	Arg	Gly	Gly	His	Met	Ser	Leu	Met	Leu		
		835					840					845					
ccg	ggt	tat	aat	cag	cct	gct	tgt	aaa	ctg	tca	cat	ggg	aaa	aca	gaa	2592	10
Pro	Gly	Tyr	Asn	Gln	Pro	Ala	Cys	Lys	Leu	Ser	His	Gly	Lys	Thr	Glu		
	850					855					860						
gta	gga	agg	aag	ctg	cca	gcg	tct	gag	gga	gta	gga	aag	gga	ac t	tac	2640	
Val	Gly	Arg	Lys	Leu	Pro	Ala	Ser	Glu	Gly	Val	Gly	Lys	G1y	Thr	Tyr		
865					870					875					880		
gga	gtg	tcc	cgt	gcc	gtc	acc	aca	cag	cat	ctc	ctg	tct	atc	att	tct	2688	
Gly	Val	Ser	Arg	Ala	Val	Thr	Thr	Gln	His	Leu	Leu	Ser	Ile	Ile	Ser		20
				885					890					895			
ttg	gca	aat	ac t	tta	atg	agt	atg	acc	aat	gca	ac t	ttt	att	ggt	gat	2736	
Leu	Ala	Asn	Thr	Leu	Met	Ser	Met	Thr	Asn	Ala	Thr	Phe	I1e	Gly	Asp		
			900					905					910				
cat	atg	aag	aag	ggt	cct	acc	agg	cca	cct	aga	cca	agc	acc	cca	gac	2784	
His	Met	Lys	Lys	Gly	Pro	Thr	Arg	Pro	Pro	Arg	Pro	Ser	Thr	Pro	Asp		
		915					920					925					30
ctt	tct	aag	gca	agg	ggt	tcc	cct	cca	ac t	tcc	agt	aat	att	gtg	caa	2832	
Leu	Ser	Lys	Ala	Arg	Gly	Ser	Pro	Pro	Thr	Ser	Ser	Asn	Ile	Va1	G1n		
	930					935					940						
gga	cag	att	aaa	caa	gtt	gct	gca	cct	gtc	gtt	tcc	gct	cgg	tct	gat	2880	
Gly	G1n	Ile	Lys	Gln	Val	Ala	Ala	Pro	Val	Val	Ser	Ala	Arg	Ser	Asp		
945					950					955					960		
gct	gat	cac	tct	ggc	tct	gac	cct	cct	tct	gct	cct	get	tta	cat	acc	2928	40
Ala	Asp	His	Ser	Gly	Ser	Asp	Pro	Pro	Ser	Ala	Pro	Ala	Leu	His	Thr		

				965				g.	70				97.	5		
tgt	ttc	tta	gta		gaa	ggt t	gg ar			ta g	et ge	t ata			2976	
_			_		_	Gly T		_	_	_	_		_	_		
_ • -			980				-	85				99				
gtt	atg	ctg	cca	gac	cta	ctg g	ga	ttg	gat a	aaa	ttt ag	gg (cct	ccc ctt	3024	
Val	Met	Leu	Pro	Asp	Leu	Leu G	ly :	Leu .	Asp 1	Lys I	Phe A	t g	Pro :	Pro Leu		
		995				1	000				10	005				10
ctg	gag	atg	ctg	g gcc	cga	aga	tgg	caa	gat	cga	tgc	ttg	gag	gtg	3069	
Leu	Glu	Met	Leu	ı Ala	a Arg	Arg	Trp	Gln	Asp	Arg	Cys	Leu	Glu	Va1		
	1010)				1015					1020					
aga	gaa	gco	gca	ı caş	g gcc	ctg	ctt	ctg	gcg	gaa	ctg	aga	aga	att	3114	
Arg	Glu	Ala	Ala	ı Glı	n Ala	Leu	Leu	Leu	Ala	Glu	Leu	Arg	Arg	Ile		
	1028	5				1030					1035					
	_	_				gaa	_		_	_		_			3159	20
Glu	Gln	Ala	G13	7 Arg	g Lys	Glu	Ala	I1e	Asp	Ala	Trp	Ala	Pro	Tyr		
	1040					1045					1050					
						cac									3204	
Leu			Tyi	r Ile	e Asp	His		He	Ser	Pro		Val	Thr	Ser		
_	1058					1060					1065				0040	
- -	-		_			acc	_	-		_					3249	30
GIU			GII	ותוו	116	1075		Ala	rro	ASP		ser	GIY	Pro		30
G o o	1070		orto		T (700	1075		cat	(Tak	c++	1080	G o o	an t	Gae.	3294	
						gaa Glu									3234	
ulu	1088		141	. 411	u Gio	1090		111.0	Nap	LCu	1095	qan	nsp	nap		
atr			ggi	t før	• tta	tca		øtc	CCA	ĊЯЯ.		222	222	att	3339	
	Thr			_		Ser	_	_			_				0000	
	1100		j	,	, 200	1105		141			1110	טני		110		40
tct			tac	gas	g gaa	aga		aag	саа	get		get	att	gtt	3384	
					, ,,,,,,,,		-66		- ***					J.,		

Ser	Thr	Ser	Tyr	Glu	Glu	Arg	Arg	Lys	G1 n	Ala	Thr	Ala	Ile	Va1		
	1115					1120					112 5					
tta	ctt	gga	gta	ata	gga	gct	gaa	ttt	ggt	gct	gaa	att	gaa	cct	3429	
Leu	Leu	Gly	Val	Ile	Gly	Ala	Glu	Phe	Gly	Ala	Glu	Ile	Glu	Pro		
	1130					1135					1140					
cct	aaa	cta	ttg	acc	aga	cct	cga	agc	tct	agc	caa	att	cct	gag	3474	
Pro	Lys	Leu	Leu	Thr	Arg	Pro	Arg	Ser	Ser	Ser	Gln	Ile	Pro	G1u		10
	1145					1150					1155					
gga	ttc	ggg	ttg	act	agt	ggt	gga	tcc	aac	tac	tcg	ctg	gcc	aga	3519	
Gly	Phe	Gly	Leu	Thr	Ser	Gly	Gly	Ser	Asn	Tyr	Ser	Leu	Ala	Arg		
	1160					1165					1170					
cat	act	tgc	aag	gca	ctg	acg	ttt	ctt	ctg	cta	cag	cct	cca	agc	3564	
His	Thr	Cys	Lys	Ala	Leu	Thr	Phe	Leu	Leu	Leu	Gln	Pro	Pro	Ser		
	1175					1180					1185					20
ccc	aaa	ctt	cct	cca	cac	agc	ac t	atc	cga	aga	aca	gcc	att	gat	3609	
	Lys					_			_			_		_		
	1190				_	1195			•	Ĭ	1200					
ctg	att	gga	cgt	ggg	ttc		gtt	tgg	gag	cct	tac	atg	gat	gtg	3654	
_	Ile		_				_					_	_			
	1205			,		1210					1215			- - -		
too	gct	gtt	ctg	atg	2 22		ctc	gaa	ctt	tgt		gat	gcc	gag	3699	30
	Ala	_	_	_				_		_	_	_	_			
	1220	141			,	1225				-,,	1230					
222	caa	ctt	øee	99¢	atc		atσ	<i>000</i>	ttσ	cct		aør	CC 8	ØĊa	3744	
	Gln		-				_		_		_	_		-	0111	
тур	1235	LCu	A14	иэп	110	1240	MC t	uly	LCu	110	1245	DCI	110	nia.		
ar t		tea	gee	cac	tct	gcg	200	cat	σcc	ctc		ctc	a t t	acc	3789	
_															0109	40
A14	Asp	ne I	A14	VLR	oci.		VIR	п12	W14	TGII		TGI	116	VI Q		
	1250					1255					1260					

acc	gcc	aga	cca	ccc	gcc	ttc	atc	acc	acc	ata	gcc	aaa	gag	gta	3834	
Thr	Ala	Arg	Pro	Pro	Ala	Phe	Ile	Thr	Thr	Ile	Ala	Lys	Glu	Val		
	1265					1270					1275					
cac	aga	cat	acg	gct	ctt	gca	gca	aat	acc	caa	tca	cag	cag	aat	3879	
His	Arg	His	Thr	Ala	Leu	Ala	Ala	Asn	Thr	Gln	Ser	Gln	G1n	Asn		
	1280					1285					1290					
atg	cac	aca	aca	ac t	ctt	gca	cga	gct	aaa	ggg	gaa	att	ttg	aga	3924	10
Me t	His	Thr	Thr	Thr	Leu	Ala	Arg	Ala	Lys	Gly	Glu	Ile	Leu	Arg		
	1295					1300					1305					
gtc	att	gaa	att	ctt	att	gaa	aag	atg	ccc	aca	gat	gtt	gtg	gat	3969	
Va1	Ile	Glu	Ile	Leu	He	Glu	Lys	Met	Pro	Thr	Asp	Val	Val	Asp		
	1310					1315					1320					
ctt	ctc	gtg	gag	gtt	atg	gac	atc	att	atg	tac	tgc	ctt	gaa	gga	4014	
Leu	Leu	Val	Glu	Val	Met	Asp	Ile	Ile	Met	Tyr	Cys	Leu	Glu	Gly		20
	1325					1330					1335					
tct	tta	gtt	aaa	aag	aaa	ggt	ctt	caa	gaa	tgt	ttc	cca	gcc	atc	4059	
Ser	Leu	Val	Lys	Lys	Lys	Gly	Leu	Gln	Glu	Cys	Phe	Pro	Ala	Ile		
	1340					1345					1350					
tgc	agg	ttc	tac	atg	gtc	agc	tat	tat	gag	cgg	aat	cac	aga	ata	4104	
Cys	Arg	Phe	Tyr	Met	Val	Ser	Tyr	Tyr	Glu	Arg	Asn	His	Arg	Ile		
	1355					1360					1365					30
_	gtt		_	_						_		_			4149	
Ala	Val	Gly	Ala	Arg	His		Ser	Val	Ala	Leu		Asp	Ile	Arg		
	1370					1375					1380					
	gga														4194	
Thr	Gly	Lys	Cys	Gln	Thr		His	Gly	His	Lys		Pro	Ile	Thr		
	1385					1390					1395					40
_	gtg	_		_		_		_			_				4239	40
Ala	Val	Ala	Phe	Ala	Pro	Asp	Gly	Arg	Tyr	Leu	Ala	Thr	Tyr	Ser		

	1400					1405					1410					
aac	act	gac	agc	cac	att	tct	ttt	tgg	cag	atg	aac	acg	tca	ctg	4284	
Asn	Thr	Asp	Ser	His	He	Ser	Phe	Trp	G1 n	Met	Asn	Thr	Ser	Leu		
	1415					1420					1425					
ctg	gga	agc	atc	ggc	atg	ctg	aac	tcg	gca	cct	cag	ctg	cgc	tgc	4329	
Leu	Gly	Ser	Ile	Gly	Met	Leu	Asn	Ser	Ala	Pro	Gln	Leu	Arg	Cys		
	1430					1435					1440					10
att	aaa	acc	tac	cag	gtg	ccc	cct	gtg	cag	ccc	gcg	tcc	ccc	ggc	4374	
Ile	Lys	Thr	Tyr	Gln	Val	Pro	Pro	Val	Gln	Pro	Ala	Ser	Pro	G1y		
	1445					1450					1455					
tcc	cac	aat	gcc	ctc	aag	ctg	gcc	cgg	ctc	atc	tgg	ac t	tcc	aac	4419	
Ser	His	Asn	Ala	Leu	Lys	Leu	Ala	Arg	Leu	Ile	Trp	Thr	Ser	Asn		
	1460					1465					1470					
cgc	aac	gtc	atc	ctc	atg	gcc	cat	gac	ggg	aag	gag	cac	cgc	ttc	4464	20
Arg	Asn	Val	Ile	Leu	Met	Ala	His	Asp	G1y	Lys	Glu	His	Arg	Phe		
	1475					1480					1485					
atg	gtc	taa													4473	
Met	Val															
	1490															
•																
) 2															30
(21)		190														
(212																
(213	3) Ho	ono !	sapio	ens												
/404	<i>,</i> , , ,															
) 2	.1		α		. 1 7	n		1 - 27			- 01-		7		
	AIA (ıl y A			ren ,	Val Lo	eu Pi			al Le	eu Irj	p GIY		g Lys		40
1	n "	rıL ▼		5 ^	T1- 4	O 4.	1 <u>. 77</u>	1(mi	4	_ 4_:	15	41-		10
A I a	rro 1	ו זמו	11S (LYS	11 6 9	Ser Al	ia Va	31 L(tu L(tu II	IT ASI	u ASI) GI	y Ala		

			20					25					30			
Thr	Ile		Thr	Gly	Cys	His		Gly	Gln	Ile	Cys	Leu	Trp	Asp	Leu	
_		35				_	40			_	_	45				
Ser	Val 50	Glu	Leu	Gln	Ile	Asn 55	Pro	Arg	Ala	Leu	Leu 60	Phe	Gly	His	Thr	
Ala		T1a	Th e	C170	T A11] 1 70	415	C170	41a		Ser	Ann	T 170	ſln	
65	DCI	116	тшт	Cys	70	DCI	гар	ліц	Cys	75	DCI	DCI	veh	тур	90	40
_	Ile	Val	Ser	Ala	_	Clu	Ser	C1v	Clu		Cve	Leu	Trn	Asn		10
131	116	741	DCI	85	DCI	uiu	DCI	dry	90	111C ¢	033	LCu	пр	95	*41	
Ser	Asp	Gly	Arg		Ile	Glu	Phe	Thr		Leu	Ala	Cys	Thr		Thr	
	_	-	100	•				105	•			-	110			
Gly	Ile	Gln	Phe	Tyr	Gln	Phe	Ser	Val	Gly	Asn	Gln	Arg	Glu	Gly	Arg	
		115					120					125				
Leu	Leu	Cys	His	Gly	His	Tyr	Pro	Glu	Ile	Leu	Val	Val	Asp	Ala	Thr	20
	130					13 5					140					
Ser	Leu	Glu	Val	Leu	Tyr	Ser	Leu	Val	Ser	Lys	Ile	Ser	Pro	Asp	Trp	
145					150					1 55					160	
Ile	Ser	Ser	Met	Ser	Ile	Ile	Arg	Ser	His	Arg	Thr	Gln	Glu	Asp	Thr	
				165					170					175		
Val	Val	Ala	Leu	Ser	Val	Thr	Gly	Ile	Leu	Lys	Val	Trp	Ile	Val	Thr	
			180					185					190			30
Ser	Glu	Ile	Ser	Asp	Met	Gln	Asp	Thr	Glu	Pro	Ile	Phe	Glu	Glu	Glu	
		195					200					205				
Ser		Pro	Ile	Tyr	Cys		Asn	Cys	Gln	Ser		Ser	Phe	Cys	Ala	
	210		_		_	215			_	_	220	_	_	_		
	Thr	Gln	Arg	Ser		Leu	Val	Val	Cys		Lys	Tyr	Trp	Arg		
225 Di			01		230	α.			Δ-	235	0.1	т.		0.1	240	40
ľhė	Asp	Ala	GIY		Tyr	Ser	Leu	Leu		Ser	GIY	Pro	Ser		ASD	- TU
				245					250					255		

Gly	Gln	Thr		Thr	Gly	Gly	Asp	Phe	Val	Ser	Ser	Asp		Val	He	
	_		260					265		_	_	_	270			
He	Trp		Glu	Asn	Gly	Gln		Tyr	Ile	Tyr	Lys		Pro	Ala	Ser	
_		275		_			280		_			285				
Cys		Pro	Ala	Ser	Asp		Phe	Arg	Ser	Asp		Gly	Lys	Ala	Val	
	290					295					300					
Glu	Asn	Leu	Ile	Pro	Pro	Val	Gln	His	Ile	Leu	Leu	Asp	Arg	Lys	Asp	10
305					310					315					320	
Lys	Glu	Leu	Leu	Ile	Cys	Pro	Pro	Val	Thr	Arg	Phe	Phe	Tyr	Gly	Cys	
				325					330					335		
Arg	Glu	Tyr	Phe	His	Lys	Leu	Leu	Ile	Gln	Gly	Asp	Ser	Ser	Gly	Arg	
			340					345					350			
Leu	Asn	Ile	Trp	Asn	Ile	Ser	Asp	Thr	Ala	Asp	Lys	Gln	Gly	Ser	Glu	
		355					360					365				20
Glu	Gly	Leu	Ala	Me t	Thr	Thr	Ser	Ile	Ser	Leu	Gln	Glu	Ala	Phe	Asp	
	370					375					380					
Lys	Leu	Asn	Pro	Cys	Pro	Ala	Gly	Ile	Ile	Asp	Gln	Leu	Ser	Val	He	
385					390					395					400	
Pro	Asn	Ser	Asn	Glu	Pro	Leu	Lys	Val	Thr	Ala	Ser	Val	Tyr	Ile	Pro	
				405					410					415		
Ala	His	Gly	Arg	Leu	Val	Cys	Gly	Arg	Glu	Asp	Gly	Ser	Ile	Val	Ile	30
			420					425					430			
Va1	Pro	Ala	Thr	Gln	Thr	Ala	Ile	Val	${\bf G}{\bf l}{\bf n}$	Leu	Leu	Gln	Gly	Glu	His	
		435					440					445				
Met	Leu	Arg	Arg	Gly	Trp	Pro	Pro	His	Arg	Thr	Leu	Arg	Gly	His	Arg	
	450					455					460					
Asn	Lys	Va 1	Thr	Cys	Leu	Leu	Tyr	Pro	His	G1n	Va1	Ser	Ala	Arg	Tyr	
465					470					475					480	40
Asp	G1n	Arg	Tyr	Leu	Ile	Ser	Gly	Gly	Val	Asp	Phe	Ser	Val	I1e	Ile	

				485					490					495			
Trp	Asp	He	Phe	Ser	Gly	Glu	Met	Lys	His	Ile	Phe	Cys	Val	His	Gly		
			500					505					510				
Gly	Glu	Ile	Thr	Gln	Leu	Leu	Val	Pro	Pro	Glu	Asn	Cys	Ser	Ala	Arg		
		515					520					525					
Val	Gln	His	Cys	Ile	Cys	Ser	Val	Ala	Ser	Asp	His	Ser	Val	Gly	Leu		
	530					535					540					10)
Leu	Ser	Leu	Arg	Glu	Lys	Lys	Cys	Ile	Met	Leu	Ala	Ser	Arg	His	Leu		
545					550					555					560		
Phe	Pro	Ile	Gln	Val	Ile	Lys	Trp	Arg	Pro	Ser	Asp	Asp	Tyr	Leu	Val		
				565					570					575			
Val	Gly	Cys	Ser	Asp	Gly	Ser	Val	Tyr	Val	Trp	Gln	Met	Asp	Thr	Gly		
			580					585					590				
Ala	Leu	Asp	Arg	Cys	Val	Met	Gly	Ile	Thr	Ala	Val	Glu	Ile	Leu	Asn	20)
		595					600					605					
Ala	Cys	Asp	Glu	Ala	Val	Pro	Ala	Ala	Val	Asp	Ser	Leu	Ser	His	Pro		
	610					615					620						
Ala	Val	Asn	Leu	Lys	Gln	Ala	Met	Thr	Arg	Arg	Ser	Leu	Ala	Ala	Leu		
625					630					635					640		
Lys	Asn	Met	Ala	His	His	Lys	Leu	Gln	Thr	Leu	Ala	Thr	Asn	Leu	Leu		
				645					650					655		30)
Ala	Ser	Glu	Ala	Ser	Asp	Lys	Gly	Asn	Leu	Pro	Lys	Tyr	Ser	His	Asn		
			660					665					670				
Ser	Leu	Met	Val	Gln	Ala	Ile	Lys	Thr	Asn	Leu	Thr	Asp	Pro	Asp	Ile		
		675					680					685					
His	Val	Leu	Phe	Phe	Asp	Val	Glu	Ala	Leu	Ile	Ile	Gln	Leu	Leu	Thr		
	690					695					700						
Glu	Glu	Ala	Ser	Arg	Pro	Asn	Thr	Ala	Leu	Ile	Ser	Pro	Glu	Asn	Leu	40)
705					710					715					720		

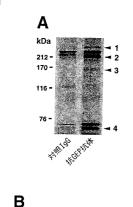
Gin	Lys	Ala	Ser	G1y 725	Ser	Ser	Asp	Lys	G1 y 730	Gly	Ser	Phe	Leu	735	Gly
Lys	Arg	Ala	Ala		Leu	Phe	Gln	Gln		Lys	Glu	Thr	Ile		Glu
	-		740					745		•			750	•	
Asn	Ile	Lys	Glu	His	Leu	Leu	Asp	Asp	Glu	Glu	Glu	Asp	Glu	Glu	Ile
		755					760					765			
Met	Arg	Gln	Arg	Arg	Glu	Glu	Ser	Asp	Pro	Glu	Tyr	Arg	Ser	Ser	Lys
	770					775					780				
Ser	Lys	Pro	Leu	Thr	Leu	Leu	Glu	Tyr	Asn	Leu	Thr	Met	Asp	Thr	Ala
785					790					795					800
Lys	Leu	Phe	Met	Ser	Cys	Leu	His	Ala	Trp	Gly	Leu	Asn	Glu	Val	Leu
				805					810					815	
Asp	Glu	Val		Leu	Asp	Arg	Leu		Met	Leu	Lys	Pro		Cys	Thr
	_		820					825					830		
Val	Ser		Gly	Leu	Leu	Ser	Arg	Gly	Gly	His	Met		Leu	Met	Leu
.	5.1	835		.	_		840	-	_	<i>a</i>		845	-	m-1	61
Pro		Tyr	Asn	GIn	Pro		Cys	Lys	Leu	Ser		Gly	Lys	Thr	GIU
Wa 1	850 C1=	1	1	Lan	D=-	855	C	Clas	C1	₩-1	860	T	C1	ጥኤ	Т
	ыlу	Arg	LYS	ren		Ala	Ser	GIU	ыу		GIY	Lys	ыу	1111	880
865 C1v	Wa 1	Car	Ara	Ala	870 Val	The	Thr	C1n	Uie	875	I 411	Car	I1a	Ιlα	
diy	141	DCI	MIE	885	141	1111	1111	GII	890	LCu	LCu	DCI	116	895	DCI
Len	Ala	Asn	Thr		Met	Ser	Met	Thr		Ala	Thr	Phe	He		Asp
			900					905					910	,	
His	Met	Lys		Gly	Pro	Thr	Arg		Pro	Arg	Pro	Ser		Pro	Asp
		915	-	-			920			_		925			_
Leu	Ser		Ala	Arg	Gly	Ser	Pro	Pro	Thr	Ser	Ser		Ile	Va 1	G1n
	930					935					940				
Gly	Gln	Ile	Lys	Gln	Val	Ala	Ala	Pro	Val	Val	Ser	Ala	Arg	Ser	Asp

945					950					955					960	
Ala	Asp	His	Ser	Gly	Ser	Asp	Pro	Pro	Ser	Ala	Pro	Ala	Leu	His	Thr	
				965					970					975		
Cys	Phe	Leu	Val	Asn	Glu	Gly	Trp	Ser	Gln	Leu	Ala	Ala	Met	His	Cys	
			980					985					990			
Val	Met	Leu	Pro	Asp	Leu	Leu	Gly	Leu	Asp	Lys	Phe	Arg	Pro	Pro	Leu	
		995					1000)				1009	5			10
Leu	Glu	Met	Leu	Ala	Arg	Arg	Trp	Gln	Asp	Arg	Cys	Leu	Glu	Val	Arg	
	1010)				1018	5				1020)				
Glu	Ala	Ala	Gln	Ala	Leu	Leu	Leu	Ala	Glu	Leu	Arg	Arg	Ile	Glu	Gln	
1025	5				1030)				1038	5				1040	
Ala	Gly	Arg	Lys	Glu	Ala	Ile	Asp	Ala	Trp	Ala	Pro	Tyr	Leu	Pro	Gln	
				1049	5				1050)				105	5	
Tyr	Ile	Asp	His	Val	Ile	Ser	Pro	Gly	Val	Thr	Ser	Glu	Ala	Ala	Gln	20
			1060)				1065	5				1070)		
Thr	Ile	Thr	Thr	Ala	Pro	Asp	Ala	Ser	Gly	Pro	Glu	Ala	Lys	Val	Gln	
		1078	5				1080)				1085	5			
Glu	Glu	Glu	His	Asp	Leu	Val	Asp	Asp	Asp	Ile	Thr	Thr	Gly	Cys	Leu	
	1090)				1098	5				1100)				
Ser	Ser	Val	Pro	Gln	Met	Lys	Lys	Ile	Ser	Thr	Ser	Tyr	Glu	Glu	Arg	
1105	5				1110)				1118	5				1120	30
Arg	Lys	Gln	Ala	Thr	Ala	Ile	Val	Leu	Leu	Gly	Val	Ile	Gly	Ala	Glu	
				1125	5				1130)				113	5	
Phe	Gly	Ala	Glu	Ile	Glu	Pro	Pro	Lys	Leu	Leu	Thr	Arg	Pro	Arg	Ser	
			1140)				1145	5				1150)		
Ser	Ser	Gln	Ile	Pro	Glu	Gly	Phe	Gly	Leu	Thr	Ser	Gly	Gly	Ser	Asn	
		1158	5				1160)				1165	5			
Tyr	Ser	Leu	Ala	Arg	His	Thr	Cys	Lys	Ala	Leu	Thr	Phe	Leu	Leu	Leu	40
	1170)				1178	5				1180)				

Gln	Pro	Pro	Ser	Pro	Lys	Leu	Pro	Pro	His	Ser	Thr	Ile	Arg	Arg	Thr
1185	5				1190)				119	5				1200
Ala	11 e	Asp	Leu	Ile	Gly	Arg	Gly	Phe	Thr	Val	Trp	Glu	Pro	Tyr	Met
				1209	5				1210)				121	5
Asp	Val	Ser	Ala	Val	Leu	Me t	Gly	Leu	Leu	Glu	Leu	Cys	Ala	Asp	Ala
			1220)				1225	5				1230)	
Glu	Lys	G1n	Leu	Ala	Asn	I1e	Thr	Met	Gly	Leu	Pro	Leu	Ser	Pro	Ala 10
		1238	5				1240)				1249	5		
Ala	Asp	Ser	Ala	Arg	Ser	Ala	Arg	His	Ala	Leu	Ser	Leu	I1e	Ala	Thr
	1250)				125	5				1260)			
Ala	Arg	Pro	Pro	Ala	Phe	Ile	Thr	Thr	Ile	Ala	Lys	Glu	Val	His	Arg
1269	5				1270)				1278	5				1280
His	Thr	Ala	Leu	Ala	Ala	Asn	Thr	Gln	Ser	G1 n	Gln	Asn	Met	His	Thr
				1289	5				1290)				129	5 20
Thr	Thr	Leu	Ala	Arg	Ala	Lys	Gly	Glu	Ile	Leu	Arg	Val	Ile	Glu	Ile
			1300)				1309	5				1310)	
Leu	Ile	Glu	Lys	Met	Pro	Thr	Asp	Val	Val	Asp	Leu	Leu	Val	Glu	Val
		1318	5				1320)				1329	5		
Met	Asp	Ile	Ile	Met	Tyr	Cys	Leu	Glu	Gly	Ser	Leu	Val	Lys	Lys	Lys
	1330)				1338	5				1340)			
Gly	Leu	Gln	Glu	Cys	Phe	Pro	Ala	Ile	Cys	Arg	Phe	Tyr	Met	Val	Ser 30
1345	5				1350)				135	5				1360
Tyr	Tyr	Glu	Arg	Asn	His	Arg	Ile	Ala	Val	Gly	Ala	Arg	His	Gly	Ser
				1365	5				1370)				1378	5
Val	Ala	Leu	Tyr	Asp	Ile	Arg	Thr	Gly	Lys	Cys	Gln	Thr	Ile	His	Gly
			1380)				1389	5				1390)	
His	Lys	G1y	Pro	Ile	Thr	Ala	Val	Ala	Phe	Ala	Pro	Asp	G1y	Arg	
		1398	5				1400)				1405	5		40
Leu	Ala	Thr	Tyr	Ser	Asn	Thr	Asp	Ser	His	Ile	Ser	Phe	Trp	Gln	Met

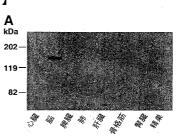
	141()				141	5				1420	0						
Asn '	Thr	Ser	Leu	Leu	Gly	Ser	Ile	Gly	Met	Leu	Asn	Ser	Ala	Pro	Gln			
1425					1430	0				143	5				1440			
Leu A	Arg	Cys	Ile	Lys	Thr	Tyr	Gln	Val	Pro	Pro	Val	Gln	Pro	Ala	Ser			
				1448	5				145	0				145	5			
Pro (Gly	Ser	His	Asn	Ala	Leu	Lys	Leu	Ala	Arg	Leu	Ile	Trp	Thr	Ser			
			1460	0				146	5				1470)				10
Asn A	Arg	Asn	Val	Ile	Leu	Met	Ala	His	Asp	Gly	Lys	Glu	His	Arg	Phe			
		1478	5				1480)				148	5					
Met 1	Val																	
	1490)																
(210)	> 3	3																
(211)	> 3	34																20
(212)) I)NA																
(213)	<i>\</i>	\r t i i	ficia	al Se	equei	ıce												
(220)	〉																	
(223)) [rime	er															
(400)	> 3	3																30
atgg	cage	gaa a	acago	cctte	gt to	ctac	cati	t gt	tc							3	34	
(210)) 4	1																
(211)	> 3	30																
(212)) I)NA																
(213)	<i>Y</i>	\rti	ficia	al Se	equei	ıce												
																		40
(220)	〉																	
/၅၅၅\	٠ -																	
(223)	/ I	rime	: [
/400	\ <i>'</i>	1																
(400)				4												F) /	
gttg	ical	ııg (cago	CCII	ic t	rcac.	11000	;								č	30	

【図面の簡単な説明】

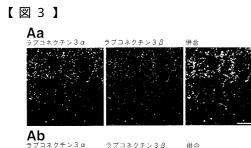

【図1】 p 1 6 0 (ラブコネクチン 3) の単離と一次構造の概要。(A) 抗Rab 3 G E P抗体による p 1 6 0 (ラブコネクチン 3) の共免疫沈降の結果(電気泳動写真)。 1 ; p 3 4 0 、 2 ; p 2 0 0 、 3 ; p 1 6 0 、 4 ; p 6 0。(B)構造概要。グレーはW D ドメインを示す。(C)リコンビナントラブコネクチン 3 のウェスタンブロッティングの結果(電気泳動写真)。レーン 1 ,対照群HEK 2 9 3 細胞(1 μ g 蛋白質)、レーン 2 , p C M V F a ラブコネクチン 3 をトランスフェクトしたHEK 2 9 3 細胞(1 μ g 蛋白質)、レーン 3 ,ラット脳のホモジェネート(2 0 μ g 蛋白質)

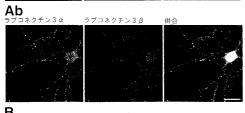
【図2】ラブコネクチン3 の組織および細胞レベル下の分布。(A)組織分布(電気泳動写真)。(B)細胞レベル下分布(電気泳動写真)。Rc‐3 , ラブコネクチン3 、Rc‐3 , ラブコネクチン3 、Rc‐3 , ラブコネクチン3 、GEP, Rab3 GEP、Ho, ホモジェネート画分、P1, 核ペレット画分、P2, 粗シナプトソーム画分、P3, ミクロソーム画分、S, 可溶性細胞質画分、P2A, ミエリン画分、P2B, 小胞体およびゴルジ複合体画分、P2C, シナプトソーム画分、P2D, ミトコンドリア画分、SS, シナプス可溶性画分、CSV, 粗シナプス小胞画分、CSM, 粗シナプス膜画分。

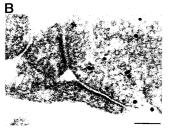
【図3】シナプスにおけるラブコネクチン3 と3 の共存を示す免疫蛍光顕微鏡像(顕微鏡写真)。

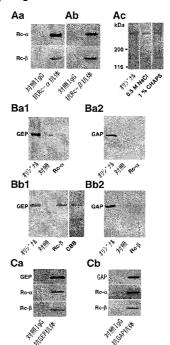

【図4】ラブコネクチン3に対する、Rab3 GEPの直接的な結合とRab3 GA 20 Pの間接的な結合を示すウェスタンプロッティングの結果(電気泳動写真)。


【図1】



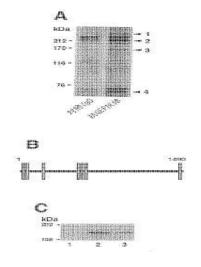



【図2】



【図4】

フロントページの続き


(51) Int.CI. ⁷					FΙ							テーマコード (参考)
C 1 2 N	1/21				C	121	J 1/	21				4 B 0 6 5
C 1 2 N	5/10				C	121	J 9/	00				4 H 0 4 5
C 1 2 N	9/00				C	1 2 F	21/	02		C		
C 1 2 P	21/02				C	1 2 0) 1/	02				
C 1 2 Q	1/02				C	1 2 0) 1/	68		Α		
C 1 2 Q	1/68				C	6 0 1 N	1 33/	15		Z		
G 0 1 N	33/15				C	6 0 1 N	1 33/	50		Z		
G 0 1 N	33/50				C	6 0 1 N	1 33/	53		D		
G 0 1 N	33/53				C	121	J 5/	00		Α		
F ターム(参表	号) 2G045	AA34	AA35	BB14	BB20	BB46	BB50	CB01	DA13	DA36	FA16	
		FB02	FB03	FB12	GC15							
	4B024	AA01	AA11	BA80	CA04	CA09	CA11	CA12	DA02	DA06	EA04	
		GA13	HA14	HA17								
	4B050	CC01	CC10	LL01	LL05							
	4B063	QA01	QA05	QQ02	QQ08	QQ41	QQ53	QR32	QR56	QR62	QS25	
		QS34										
	4B064		CA01		-	-	CC24	DA01	DA13			
	4B065	AA26X	AA91X	AA93X	AA93Y	AB01	AC14	BA02	CA24	CA44	CA46	
	4H045	AA10	AA11	AA20	AA30	BA10	CA40	DA75	EA21	EA50	FA74	

C12N15/09
2P21/02.C 00.A C12N15
CB01 2G045 4B024/AA01 0A02 4B024 .B050/LL01 QQ53 4B063 4B064/CA02 /AA91X 4B065 4 4B065/CA46 DA75 4H045
1

摘要(译)

解决的问题:提供一种蛋白质,该蛋白质用于阐明Ca2+依赖性胞吐作用的控制机制,特别是Rab3A的激活和失活,以及使用该蛋白质的Ca2+依赖性胞吐作用。特别地,其提供了用于筛选可用于控制Rab3A的活化和失活的物质的方法。通过使用抗Rab3 GEP抗体的共免疫沉淀法鉴定了涉及Rab3A激活和失活调节的蛋白质。由于该蛋白与rabconnectin-3和GDP / GTP交换反应促进蛋白结合,因此可用于筛选增加或减少该结合的物质。[选型图]图1

