(19) **日本国特許庁(JP)**

(12) 公 開 特 許 公 報(A)

(11)特許出願公開番号

特開2008-69172 (P2008-69172A)

最終頁に続く

(43) 公開日 平成20年3月27日(2008.3.27)

弁理士 安村 高明

(51) Int.Cl.	F 1			テーマコード (参考)
CO7K 14/47	(2006.01) CO7K	14/47	ZNA	4BO24
C 1 2 N 15/09	(2006.01) C 1 2 N	15/00	A	4CO84
A 6 1 K 39/00	(2006.01) A 6 1 K	39/00	Н	4CO85
A61P 35/00	(2006.01) A 6 1 P	35/00		4HO45
A61P 35/02	(2006.01) A 6 1 P	35/02		
	審査請	求 有 請求」	頃の数1 OL	(全 97 頁) 最終頁に続く
(21) 出願番号	特願2007-279673 (P2007-279673)	(71) 出願人	397069329	
(22) 出願日	平成19年10月26日 (2007.10.26)		コリクサ コー	-ポレイション
(62) 分割の表示	特願2006-227215 (P2006-227215)		アメリカ合衆国	国 モンタナ 59840-
	の分割		3131, /	ヽミルトン, オールド コ
原出願日	平成11年9月30日 (1999.9.30)		ーバリス ロー	-F 553
(31) 優先権主張番号	09/164, 223	(71) 出願人	501128416	
(32) 優先日	平成10年9月30日 (1998.9.30)		ガイジャー,	アレキサンダー
(33) 優先権主張国	米国 (US)		アメリカ合衆国	国 ワシントン 98112
(31) 優先権主張番号	09/276, 484		, シアトル,	42エヌディー アベニ
(32) 優先日	平成11年3月25日 (1999.3.25)		ュー イースト	1421
(33) 優先権主張国	米国 (US)	(74) 代理人	100078282	
			弁理士 山本	秀策
		(74)代理人	100062409	

(54) 【発明の名称】WT1特異的免疫療法のための組成物および方法

(57)【要約】

【課題】白血病および癌の予防および治療のための改善された方法についての当該分野における必要性を満たし、そしてさらに他の関連する利点を提供すること

【解決手段】ネイティブのWT1の免疫原性部分あるいは1以上の置換、欠失、付加および/または挿入において異なるその改変体を含む、ポリペプチドであって、このような改変により、該改変体のWT1特異的抗血清および/またはT細胞株もしくはクローンと反応する能力が実質的に減少しておらず、ここで該ポリペプチドは、ネイティブのWT1ポリペプチド内に存在する16以下の連続するアミノ酸残基を含む、ポリペプチド。

【選択図】なし

【特許請求の範囲】

【請求項1】

ネイティブのWT1の免疫原性部分あるいは1以上の置換、欠失、付加および/または挿入において異なるその改変体を含む、ポリペプチド。

【発明の詳細な説明】

【技術分野】

[0001]

(技術分野)

本発明は、一般に悪性疾患(例えば、白血病および癌)の免疫療法に関する。より詳細には、本発明は、WT1に対する免疫応答を惹起または増強するための組成物、ならびに悪性疾患を予防および/または処置するためのそのような組成物の使用に関連する。

10

【背景技術】

[0002]

(発明の背景)

癌および白血病は、米国内および世界中で重大な健康問題である。そのような疾患の検出および処置における前進がなされてきたが、ワクチンまたは癌および白血病の予防または処置のための他の普遍的に首尾良い方法は、現在のところ利用可能ではない。疾患の管理は、現在のところ、早期診断および攻撃的な処置の組合せに依存し、これは、種々の処置(例えば、手術、放射線治療、化学療法およびホルモン療法)のうちの1つ以上を含み得る。特定の癌のための処置方針は、頻繁には、特定の腫瘍マーカーの分析を含む種々の予後変数に基づいて選択される。しかし、確立されたマーカーの使用は、頻繁には、解釈するのが困難な結果を導き、そして多くの癌患者において高い致死率が観察され続けている。

20

[0003]

免疫療法は、癌および白血病の処置および生存率を実質的に改善する能力を有する。最近のデータによって、白血病は、骨髄移植の状況下での免疫療法(例えば、ドナーリンパ球注入)によって治癒され得ることが実証される。そのような治療は、腫瘍関連抗原(TAA)に対する免疫応答の惹起または増強を含み得る。しかし、現在までのところ、比較的わずかなTAAが既知であり、そしてそのような抗原に対する免疫応答の惹起は、まれに例外が存在するが、治療的に有益であるとは示されていない。

30

【発明の開示】

【発明が解決しようとする課題】

[0004]

従って、白血病および癌の予防および治療のための改善された方法についての当該分野における必要性が存在する。本発明は、これらの必要性を満たし、そしてさらに他の関連する利点を提供する。

【課題を解決するための手段】

[0005]

(発明の要旨)

簡潔に述べると、本発明は、疾患(例えば、白血病および癌)の診断および治療のための組成物および方法を提供する。1つの局面において、本発明は、ネイティブのWT1の免疫原性部分またはその改変体(これは、抗原特異的抗血清および/またはT細胞株もしくはクローンと反応するその改変体の能力が実質的に減少されないように、1つ以上の置換、欠失、付加および/または挿入で異なる)を含むポリペプチドを提供する。特定の実施態様において、このポリペプチドは、ネイティブWT1ポリペプチドの16を超えない連続したアミノ酸残基を含む。他の実施態様において、このポリペプチドは、ネイティブのWT1ポリペプチドのアミノ酸175~44の外でででこのポリペプチドは、ネイティブのWT1ポリペプチドのアミノ酸175~44の内に存在する16を超えない連続するアミノ酸残基を含む。この免疫原性部分は、好ましくはMHCクラスII分子に結合する。特定の実施

40

態様において、このポリペプチドは、以下からなる群から選択される配列を含む:(a)表II~XLVIのうちの任意の1つ以上において示される配列、(b)前述の配列の改変体(これは、抗原特異的抗血清および/またはT細胞株もしくはクローンと反応するその改変体の能力が実質的に減少されないように、1つ以上の置換、欠失、付加および/または挿入で異なる)、および(c)上記のポリペプチドの模倣物(抗原特異的抗血清および/またはT細胞株もしくはクローンと反応するその模倣物の能力が実質的に減少されないような)。

[0006]

他の実施態様において、このポリペプチドは、以下からなる群から選択される配列を含む:

[0007]

【化1】

(a) ALLPAVPSL (SEQ ID NO:34),

GATLKGVAA (SEQ ID NO:88), CMTWNQMNL (SEQ ID NOs: 49 *** 258), SCLESQPTI (SEQ ID NOs: 199 *** 296), SCLESQPAI (SEQ ID NO:198), NLYQMTSQL (SEQ ID NOs: 147 *** 284), ALLPAVSSL (SEQ ID NOs: 35 **** 255), RMFPNAPYL (SEQ ID NOs: 185 *** 293),

20

30

10

(b)前述の配列の改変体(これは、抗原特異的抗血清および / または T 細胞株もしくはクローンと反応するその改変体の能力が実質的に減少されないように、1つ以上の置換、欠失、付加および / または挿入で異なる)、および(c)上記のポリペプチドの模倣物(抗原特異的抗血清および / または T 細胞株もしくはクローンと反応するその模倣物の能力が実質的に減少されないような)。模倣物は、1つ以上のアミノ酸模倣物と組み合わせてアミノ酸を含み得るか、または完全に非ペプチド模倣物であり得る。

[00008]

さらなる局面において、本発明は、WT1タンパク質の免疫原性部分の改変体を含むポリペプチドを提供し、ここでこの改変体は、抗原特異的抗血清および/またはT細胞株もしくはクローンと反応するその改変体の能力がネイティブのWT1タンパク質と比較して増強されるように、その免疫原性部分内の1~3アミノ酸位置での置換に起因して、その免疫原性部分とは異なる。

[0009]

本発明はさらに、上記のW T 1 ポリペプチドをコードするW T 1 ポリヌクレオチドを提供する。

[0010]

他の局面において、本発明は、薬学的組成物およびワクチンを提供する。薬学的組成物は、薬学的に受容可能なキャリアまたは賦形剤と組み合わせて、上記のポリペプチドレオチド;(ii)WT1ポリペプチドに特異的に結合するその抗体または抗原結合フラグメント;(iii)WT1ポリペプチドに特異的に反応するT細胞、あるいは(i v y y t i i i)WT1ポリペプチドと特異的に反応するT細胞、あるいは(i v y y t i i i)WT1ポリペプチドを発現する抗原提示細胞。ワクチンは、上記のポリペプチドおよびパーまたは以下のうちの1つ以上を含む:(i)WT1ポリヌクレオチド;(i i)WT1ポリスプチドを発現する抗原提示細胞、または(i i i)抗イディオタイプ抗体、およびポートでを発現する抗原提示細胞、または(i i i)抗イディオタイプ抗体、およびポートでを発現する抗原提示細胞、または(i i i)抗イディオタイプ抗体、およびポートで表現する抗原提示細胞、または(i i i)抗イディオタイプ抗体、およびポートでを発現するが、オイティブのWT1ポリペプチドのWT1ポリペプチン内に使用されるWT1ポリペプチド内に存在する。免疫応答エンハンサーは、アジュバントであり得る。好ましくは、免疫応答エンハンサーは、下細胞応答を増強する。

40

[0011]

本発明はさらに、患者に上記の薬学的組成物またはワクチンを投与することを含む、患者において免疫応答を増強または誘導するための方法を提供する。特定の実施態様において、患者はヒトである。

[0012]

本発明はさらに、患者に上記の薬学的組成物またはワクチンを投与することを含む、患者において悪性疾患の発達を阻害するための方法を提供する。悪性疾患としては、白血病(例えば、急性骨髄性白血病、急性リンパ性白血病および慢性骨髄性白血病)および癌(例えば、乳癌、肺癌、甲状腺癌もしくは胃腸癌、または黒色腫)が挙げられるがそれらに限定されない。患者は、悪性疾患に罹患していてよいが、罹患している必要はなく、そしてこの薬学的組成物またはワクチンの投与は、そのような疾患の発病(onset)を阻害し得るか、または既存の疾患の進行および/もしくは転移を阻害し得る。

[0013]

本発明はさらに、他の局面において、骨髄および / もしくは末梢血またはその画分からWT1を発現する細胞を除去するための方法を提供する。この方法は、骨髄、末梢血または骨髄もしくは末梢血の画分と、WT1ポリペプチドと特異的に反応するT細胞とを接触させる工程を含み、ここでこの接触させる工程は、骨髄、末梢血または画分中の骨髄性細胞またはリンパ性細胞の数の10%未満、好ましくは5%未満およびより好ましくは1%未満までのWT1陽性細胞の除去を可能にするに十分な条件および時間で行われる。骨髄、末梢血および画分は、WT1発現と関連する疾患に罹患する患者から得られ得るか、またはそのような疾患に罹患しないヒトもしくは非ヒト哺乳動物から得られ得る。

[0 0 1 4]

関連する局面において、本発明は、上記のように調製された骨髄、末梢血または骨髄もしくは末梢血の画分を患者に投与する工程を含む、患者における悪性疾患の発達を阻害するための方法を提供する。そのような骨髄、末梢血または画分は、自家(autologous)であり得るか、または関連するもしくは関連しないヒトもしくは非ヒト動物(例えば、同系または同種異系)に由来し得る。

[0 0 1 5]

他の局面において、本発明は、T細胞の刺激(または、プライミング(priming))および / または拡大(expansion)を可能にするに十分な条件下および時間でWT1ポリペプチドとT細胞とを接触させることを含む、T細胞刺激および / または拡大のための方法を提供する。そのようなT細胞は、自家、同種異系、同系または関連しないWT1特異的細胞であり得、そしてインビトロまたはインビボで刺激され得る。特定の実施態様において、拡大されたT細胞は、骨髄、末梢血または骨髄もしくは末梢血の画分内に存在し、そしてクローン性(clonal)であり得る(が、その必要はない)。特定の実施態様において、T細胞は、刺激および / または拡大の間に哺乳動物中に存在し得る。WT1特異的T細胞は、例えば、ドナーリンパ球注入において使用され得る。

[0016]

関連する局面において、上記で調製されたT細胞を患者に投与する工程を含む、患者における悪性疾患の発達を阻害するための方法が提供される。そのようなT細胞は、特定の実施態様において、自家、同系または同種異系であり得る。

[0017]

本発明はさらに、他の局面において、患者におけるWT1発現と関連する悪性疾患のための免疫または治療の有効性をモニタリングするための方法を提供する。そのような方法は、患者における抗体、CD4+T細胞および/またはCD8+T細胞応答をモニタリングすることに基づく。特定のそのような局面において、方法は、以下の工程を包含し得る:(a)以下(i)WT1ポリペプチド;(ii)WT1ポリペプチドをコードするポリヌクレオチド;または(iii)WT1ポリペプチドを発現する抗原提示細胞、のうちの1つ以上とともに第1の生物学的サンプルをインキュベートする工程であって、ここでこの第1の生物学的サンプルは、治療または免疫の前に患者から得られ、そしてここでこの

10

20

30

40

インキュベーションは、免疫複合体が形成するのを可能にする条件下および時間で行われる、工程;(b)WT1ポリペプチドと、WT1ポリペプチドに特異的に結合する生物学的サンプルにおける抗体との間に形成される免疫複合体を検出する工程;(c)治療または免疫の後に、同じ患者から得られる第2の生物学的サンプルを用いて、工程(a)および(b)を反復する工程;ならびに(d)第1および第2の生物学的サンプルにおいて検出される免疫複合体の数を比較する工程、およびそれから、この患者におけるこの治療または免疫の有効性をモニタリングする工程。

[0018]

上記の方法の特定の実施態様において、この検出する工程は以下を含む:(a)この免疫複合体に結合し得る検出試薬とともにこの免疫複合体をインキュベートする工程であって、ここでこの検出試薬はレポーター基を含む、工程、(b)非結合検出試薬を除去する工程、および(c)このレポーター基の存在または非存在を検出する工程。この検出試薬は、例えば、WT1ポリペプチドに特異的に結合する抗体に結合し得る第2の抗体またはその抗原結合フラグメントまたは分子(例えば、プロテインA)を含み得る。他の実施態様において、レポーター基は、WT1ポリペプチドに結合し、そして検出する工程は、非結合WT1ポリペプチドを除去する工程、およびその後にこのレポーター基の存在または非存在を検出する工程を包含する。

[0019]

さらなる局面において、患者におけるWT1発現と関連する悪性疾患のための免疫または治療の有効性をモニタリングするための方法は、以下の工程を包含のようなスクレオチド;(ii)WT1ポリペプチドを到する抗原提示細胞、のうちの1カメチド;または(iii)WT1ポリペプチドを発現する抗原提示細胞、のこの第1のよいを発現する抗原提示細胞、のこの第1のよいでは第1の生物学のサンプルをインキュベートするこのの第1の第1治療とは免疫の前に患者から得られ、そのインキュベートおよびが時間の活性化、増殖および/または溶解の量を対して、工程によびがある工程によびがある。この生物学のサンプルを用いて、は免疫後に同じ患者から得られる、工程;ならびに(d)第1および第2の生物学のよび第2の生物学の大は免疫をよび、は免疫後に同じ患者から得られる、工程;ならびに(d)第1および第2の生物学の大は免疫をしての患者におけるこの治療または免疫の有効性をモニタリングする工程。

[0020]

本発明はさらに、患者におけるWT1発現と関連する悪性疾患の発達を阻害するための方法を提供する。この方法は、以下の工程を包含する:(a)以下(i)WT1ポリペプチド;(ii)WT1ポリペプチドをコードするポリヌクレオチド;または(iii)WT1ポリペプチドを発現する抗原提示細胞、のうちの1つ以上とともに、患者から単離されたCD4+および/またはCD8+T細胞を、そのT細胞が増殖するようにインキュベートする工程;ならびに(b)増殖されたT細胞の有効量をこの患者に投与する工程、およびそれからこの患者における悪性疾患の発達を阻害する工程。特定の実施態様において、T細胞をインキュベートする工程は、1回以上反復され得る。

[0021]

他の局面においては、本発明は、患者内でのWT1発現に関連する悪性疾患の発達を阻害するための方法を提供し、これは以下の工程を包含する:(a)患者から単離されたCD4⁺および/またはCD8⁺T細胞を一つ以上の(i)WT1ポリペプチド;(ii)WT1ポリペプチドをコードするポリヌクレオチド;または(iii)WT1ポリペプチドを発現する抗原提示細胞とともにインキュベートし、その結果このT細胞が増殖する工程;(b)増殖した一つ以上の細胞をクローニングする工程;および(c)患者に対してクローン化したT細胞の効果的な量を投与する工程。

[0022]

50

10

20

30

20

30

40

50

他の局面においては、方法が、患者内でのWT1発現に関連する悪性疾患の存在または非存在を決定するために提供され、これは以下の工程を包含する:(a)患者から単離されたCD4⁺および/またはCD8⁺T細胞を一つ以上の(i)WT1ポリペプチド;(ii)WT1ポリペプチドをコードするポリヌクレオチド;または(iii)WT1ポリペプチドを発現する抗原提示細胞とともにインキュベートする工程;および(b)T細胞の特異的な活性化の存在または非存在を検出し、それからWT1発現に関連する悪性疾患の存在または非存在を決定する工程。ある実施態様においては、検出の工程は、T細胞の増殖の存在または非存在を検出する工程を含む。

[0 0 2 3]

さらなる局面においては、本発明は、患者内でのWT1発現に関連する悪性疾患の存在または非存在を決定するための方法を提供し、これは以下の工程を包含する:(a)患者から得られた生物学的なサンプルを一つ以上の(i)WT1ポリペプチド;(ii)WT1ポリペプチドをコードするポリヌクレオチド;または(iii)WT1ポリペプチドを発現する抗原提示細胞とともにインキュベートする工程であって、ここで、このインキュベーションは、免疫複合体が形成されるのを可能にするに十分な条件下でかつそれに十分な時間で行われる工程;および(b)WT1ポリペプチドとWT1ポリペプチドと特異的に結合する生物学的なサンプル中の抗体との間に形成される免疫複合体を検出し、それからWT1発現に関連する悪性疾患の存在または非存在を決定する工程。

[0024]

さらに、本発明は以下を提供する:

(項目1)ネイティブのWT1の免疫原性部分あるいは1以上の置換、欠失、付加および/または挿入において異なるその改変体を含む、ポリペプチドであって、このような改変により、該改変体のWT1特異的抗血清および/またはT細胞株もしくはクローンと反応する能力が実質的に減少しておらず、ここで該ポリペプチドは、ネイティブのWT1ポリペプチド内に存在する16以下の連続するアミノ酸残基を含む、ポリペプチド。

(項目2)前記免疫原性部分が、MHCクラスI分子に結合する、項目1に記載のポリペプチド。

(項目3)前記免疫原性部分が、MHCクラスII分子に結合する、項目1に記載のポリペプチド。

(項目4)項目1に記載のポリペプチドであって、該ポリペプチドが、以下:

(a)表II~XLVIの1以上に列挙される配列;

(b) 1以上の置換、欠失、付加および/または挿入において異なる該配列の改変体であって、このような改変により、該改変体の抗原特異的抗血清および/またはT細胞株もしくはクローンと反応する能力が実質的に減少されていない、改変体;ならびに

(c) 該配列の模倣物であって、該模倣物の抗原特異的抗血清および / または T 細胞株もしくはクローンと反応する能力が実質的に減少されていない、模倣物、

からなる群より選択される配列を含む、ポリペプチド。

(項目5)項目1に記載のポリペプチドであって、該ポリペプチドが、以下:

(a) A L L P A V P S L (配列番号 3 4)、 G A T L K G V A A (配列番号 8 8)、 C M T W N Q M N L (配列番号 4 9 および 2 5 8)、 S C L E S Q P T I (配列番号 1 9 9 および 2 9 6)、 S C L E S Q P A I (配列番号 1 9 8)、 N L Y Q M T S Q L (配列番号 1 4 7 および 2 8 4)、 A L L P A V S S L (配列番号 3 5 および 2 5 5)、 R M F P N A P Y L (配列番号 1 8 5 および 2 9 3);

(b) 1以上の置換、欠失、付加および/または挿入において異なる該配列の改変体であって、このような改変により、該改変体の抗原特異的抗血清および/またはT細胞株もしくはクローンと反応する能力が実質的に減少されていない、改変体;ならびに

(c) 該配列の模倣物であって、該模倣物の抗原特異的抗血清および/またはT細胞株もしくはクローンと反応する能力が実質的に減少されていない、模倣物、

からなる群より選択される配列を含む、ポリペプチド。

(項目 6) 前記ポリペプチドが、ネイティブのWT1ポリペプチドの4~16の連続する

アミノ酸を含む、項目1に記載のポリペプチド。

(項目 7) 前記ポリペプチドが、ネイティブのW T 1 ポリペプチドの 8 ~ 1 0 の連続するアミノ酸を含む、項目 1 に記載のポリペプチド。

(項目8)ネイティブのWT1ポリペプチドの免疫原性部分あるいは1以上の置換、欠失、付加および/または挿入において異なるその改変体のアミノ酸残基1~174を含む、ポリペプチドであって、このような改変により、該改変体のWT1特異的T細胞株またはクローンと反応する能力が実質的に減少しておらず、ここで該ポリペプチドは、該ネイティブのWT1ポリペプチドのアミノ酸175~449内に存在する16以下の連続するアミノ酸残基を含む、ポリペプチド。

(項目9)免疫原性部分内の1位のアミノ酸と3位のアミノ酸との間での置換において異なるWT1の免疫原性部分の改変体を含むポリペプチドであって、この置換により、該改変体のWT1特異的抗血清および/またはT細胞株もしくはクローンと反応する能力が、ネイティブのWT1に比べて増強されている、ポリペプチド。

(項目10)WT1ポリペプチドの免疫原性部分の模倣物であって、ここで少なくとも1つのアミノ酸残基がアミノ酸ではない化合物によって置換されており、このような置換により、該模倣物の抗原特異的抗血清および/またはT細胞株もしくはクローンと反応する能力が減少されていない、模倣物。

(項目11)項目1に記載のポリペプチドを、薬学的に受容可能なキャリアまたは賦形剤と組み合わせて含む、薬学的組成物。

(項目12)前記ポリペプチドが、ネイティブのWT1ポリペプチドの4~16の連続するアミノ酸を含む、項目11に記載の薬学的組成物。

(項目13)前記ポリペプチドが、ネイティブのWT1ポリペプチドの8~16の連続するアミノ酸を含む、項目11に記載の薬学的組成物。

(項目14)項目8に記載のポリペプチドを、薬学的に受容可能なキャリアまたは賦形剤と組み合わせて含む、薬学的組成物。

(項目 1 5) 項目 1 に記載のポリペプチドを、非特異的免疫応答エンハンサーと組み合わせて含む、ワクチン。

(項目16)前記ポリペプチドが、ネイティブのWT1ポリペプチドの4~16の連続するアミノ酸を含む、項目15に記載のワクチン。

(項目 1 7) 前記ポリペプチドが、ネイティブのW T 1 ポリペプチドの 8 ~ 1 0 の連続するアミノ酸を含む、項目 1 5 に記載のワクチン。

(項 目 1 8) 前 記 免 疫 応 答 エ ン ハ ン サ ー が ア ジ ュ バ ン ト で あ る 、 項 目 1 5 に 記 載 の ワ ク チ ン 。

(項目 1 9) 項目 8 に記載のポリペプチドを、非特異的免疫応答エンハンサーと組み合わせて含む、ワクチン。

(項目20)前記免疫応答エンハンサーがアジュバントである、項目19に記載のワクチン。

(項目21)以下を含む、ワクチン:

(a) W T 1 ポリペプチドであって、該ポリペプチドは、ネイティブのW T 1 の免疫原性部分あるいは 1 以上の置換、欠失、付加および / または挿入において異なるその改変体を含む、ポリペプチドであって、このような改変により、該改変体の抗原特異的 T 細胞株またはクローンと反応する能力が実質的に減少していない、W T 1 ポリペプチド; ならびに

(b)患者におけるT細胞応答を優先的に増強する、非特異的免疫応答エンハンサー。 (項目22)項目21に記載のワクチンであって、前記免疫応答エンハンサーが、Mon tanide ISA50、Seppic MONTANIDE ISA 720、サイ トカイン(例えば、GM-CSF、Flat3-リガンド)、ミクロスフェア、ジメチル ジオクタデシルアンモニウムブロミド(DDA)ベースのアジュバント、AS-1、AS - 2、Ribi Adjuvantシステムベースのアジュバント、QS21、サポニン ベースのアジュバント、マイクロフルイダイズされた形態のSyntexアジュバント、 10

20

30

40

MV、ddMV、免疫刺激複合体(iscom)ベースのアジュバント、および不活性化毒素からなる群より選択される、ワクチン。

(項目23)項目10に記載の模倣物を、薬学的に受容可能なキャリアまたは賦形剤と組み合わせて含む、薬学的組成物。

(項目 2 4) 項目 1 0 に記載の模倣物を、非特異的免疫応答エンハンサーと組み合わせて含む、ワクチン。

(項目 2 5) 項目 1 または項目 8 に記載のポリペプチドをコードする、ポリヌクレオチド

(項目26)以下を含む、薬学的組成物:

(a) W T 1 ポリペプチドをコードするポリヌクレオチドであって、該ポリペプチドは、ネイティブのW T 1 の免疫原性部分あるいは 1 以上の置換、欠失、付加および / または挿入において異なるその改変体を含む、ポリペプチドであって、このような改変により、該改変体の抗原特異的抗体および / または T 細胞株もしくはクローンと反応する能力が実質的に減少していない、ポリヌクレオチド;ならびに

(b)薬学的に受容可能なキャリアまたは賦形剤。

(項目27)以下を含む、薬学的組成物:

(a) W T 1 ポリペプチドに特異的に結合する、抗体またはその抗原結合フラグメント ; および

(b)薬学的に受容可能なキャリアまたは賦形剤。

(項目28)以下を含む、薬学的組成物:

- (a)WT1ポリペプチドと特異的に反応する、T細胞;および
- (b)薬学的に受容可能なキャリアまたは賦形剤。

(項目29)以下を含む、薬学的組成物:

(a)以下を発現する、抗原提示細胞:

(i)ネイティブのWT1の免疫原性部分あるいは1以上の置換、欠失、付加および/または挿入において異なるその改変体を含む、WT1ポリペプチドであって、このような改変により、該改変体の抗原特異的抗体および/またはT細胞株もしくはクローンと反応する能力が実質的に減少していない、WT1ポリペプチド;ならびに

(b)薬学的に受容可能なキャリアまたは賦形剤。

(項目30)以下を含む、ワクチン:

(a) W T 1 ポリペプチドをコードするポリヌクレオチドであって、該ポリペプチドは、ネイティブのW T 1 の免疫原性部分あるいは 1 以上の置換、欠失、付加および / または挿入において異なるその改変体を含む、ポリペプチドであって、このような改変により、該改変体の抗原特異的抗体および / または T 細胞株もしくはクローンと反応する能力が実質的に減少していない、ポリヌクレオチド;ならびに

(b) 非特異的免疫応答エンハンサー。

(項目31)以下を含む、ワクチン:

(a)以下を発現する、抗原提示細胞:

(i)ネイティブのWT1の免疫原性部分あるいは1以上の置換、欠失、付加および/または挿入において異なるその改変体を含む、WT1ポリペプチドであって、このような改変により、該改変体の抗原特異的抗体および/またはT細胞株もしくはクローンと反応する能力が実質的に減少していない、WT1ポリペプチド;ならびに

(b) 非特異的免疫応答エンハンサー。

(項目32)以下を含む、ワクチン:

(a)WT1の免疫原性部分に特異的に結合する抗体によって特異的に結合される、抗 イディオタイプ抗体またはその抗原結合フラグメント;および

(b) 非特異的免疫応答エンハンサー。

(項目33)前記免疫応答エンハンサーがアジュバントである、項目30~32のいずれか1項に記載のワクチン。

(項目34)前記免疫応答エンハンサーが、患者におけるT細胞応答を優先的に増強する

10

20

30

40

、 項目 3 0 ~ 3 2 のいずれか 1 項に記載のワクチン。

(項目35)ヒト患者において免疫応答を増強または誘導するための方法であって、該方法は、患者に、以下:

(a) W T 1 ポリペプチドであって、該ポリペプチドは、ネイティブのW T 1 の免疫原性部分あるいは 1 以上の置換、欠失、付加および / または挿入において異なるその改変体を含む、ポリペプチドであって、このような改変により、該改変体の抗原特異的抗体および / または T 細胞株もしくはクローンと反応する能力が実質的に減少していない、W T 1 ポリペプチド;ならびに

(b) 生理学的に受容可能なキャリアまたは賦形剤、

を含む薬学的組成物を投与し、それにより、該ヒト患者において、WT1またはWT1を 発現する細胞に特異的な免疫応答を増強または誘導する工程を包含する、方法。

(項目36)患者において免疫応答を増強または誘導するための方法であって、該方法は、患者に、項目11、14、23または26~29のいずれか1項に記載の薬学的組成物を投与する工程を包含する、方法。

(項目37)ヒト患者において免疫応答を増強または誘導するための方法であって、該方法は、患者に、以下:

(a) W T 1 ポリペプチドであって、該ポリペプチドは、ネイティブのW T 1 の免疫原性部分あるいは 1 以上の置換、欠失、付加および / または挿入において異なるその改変体を含む、ポリペプチドであって、このような改変により、該改変体の抗原特異的抗体および / または T 細胞株もしくはクローンと反応する能力が実質的に減少していない、W T 1 ポリペプチド;ならびに

(b) 非特異的免疫応答エンハンサー、

を含むワクチンを投与し、それにより、該ヒト患者において、WT1またはWT1を発現する細胞に特異的な免疫応答を増強または誘導する工程を包含する、方法。

(項目38)患者において免疫応答を増強または誘導するための方法であって、該方法は、患者に、項目15、19、21、24または30~32のいずれか1項に記載のワクチンを投与し、それにより、該患者において、WT1またはWT1を発現する細胞に特異的な免疫応答を増強または誘導する工程を包含する、方法。

(項目39)ヒト患者においてWT1発現に関連する悪性疾患の発達を阻害するための方法であって、該方法は、ヒト患者に、以下:

(a) W T 1 ポリペプチドであって、該ポリペプチドは、ネイティブのW T 1 の免疫原性部分あるいは 1 以上の置換、欠失、付加および / または挿入において異なるその改変体を含む、ポリペプチドであって、このような改変により、該改変体の抗原特異的抗体および / または T 細胞株もしくはクローンと反応する能力が実質的に減少していない、W T 1 ポリペプチド; ならびに

(b) 生理学的に受容可能なキャリアまたは賦形剤、

を含む薬学的組成物を投与し、それにより該ヒト患者における該WT1発現に関連する悪性疾患の発達を阻害する工程を包含する、方法。

(項目40)患者においてWT1発現に関連する悪性疾患の発達を阻害するための方法であって、該方法は、患者に、項目11、14、23または26~29のいずれか1項に記載の薬学的組成物を投与し、それにより該患者における該悪性疾患の発達を阻害する工程を包含する、方法。

(項目41)ヒト患者においてWT1発現に関連する悪性疾患の発達を阻害するための方法であって、該方法は、患者に、以下:

(a) W T 1 ポリペプチドであって、該ポリペプチドは、ネイティブのW T 1 の免疫原性部分あるいは 1 以上の置換、欠失、付加および / または挿入において異なるその改変体を含む、ポリペプチドであって、このような改変により、該改変体の特異的抗体および / または T 細胞株もしくはクローンと反応する能力が実質的に減少していない、W T 1 ポリペプチド;ならびに

(b) 非特異的免疫応答エンハンサー、

10

20

30

40

を含むワクチンを投与し、それにより該患者における該悪性疾患の発達を阻害する工程を 包含する、方法。

(項目42)患者においてWT1発現に関連する悪性疾患の発達を阻害するための方法であって、該方法は、患者に、項目15、19、21、24または30~32のいずれか1項に記載のワクチンを投与し、それにより該患者における該悪性疾患の発達を阻害する工程を包含する、方法。

(項目43)前記悪性疾患が白血病である、項目39または項目41に記載の方法。

(項目44)前記白血病が、急性骨髄性白血病、急性リンパ球性白血病、または慢性骨髄性白血病である、項目43に記載の方法。

(項目45)前記悪性疾患が癌である、項目39または41に記載の方法。

(項目46)前記癌が、乳房、肺、甲状腺または胃腸の癌または黒色腫である、項目45 に記載の方法。

(項目47)前記悪性疾患が白血病である、項目40に記載の方法。

(項目48)前記白血病が、急性骨髄性白血病、急性リンパ球性白血病、または慢性骨髄性白血病である、項目47に記載の方法。

(項目49)前記悪性疾患が癌である、項目40に記載の方法。

(項目 5 0)前記癌が、乳房、肺、甲状腺または胃腸の癌または黒色腫である、項目 4 9 に記載の方法。

(項目51)前記悪性疾患が白血病である、項目42に記載の方法。

(項目52)前記白血病が、急性骨髄性白血病、急性リンパ球性白血病、または慢性骨髄性白血病である、項目51に記載の方法。

(項目53)前記悪性疾患が癌である、項目42に記載の方法。

(項目 5 4) 前記癌が、乳房、肺、甲状腺または胃腸の癌または黒色腫である、項目 5 3 に記載の方法。

(項目55)項目39に記載の方法であって、前記薬学的組成物が、WT1ポリペプチドを含み、該WT1ポリペプチドが、表II~XLVIの1以上に列挙される配列、ならびに1以上の置換、欠失、付加および/または挿入において異なる該配列の改変体であって、このような改変により、該改変体の抗原特異的抗血清および/またはT細胞株もしくはクローンと反応する能力が減少していない、改変体、からなる群より選択される配列を含む、方法。

(項目56)項目39に記載の方法であって、前記薬学的組成物が、ALLPAVPSL(配列番号34)、GATLKGVAA(配列番号88)、CMTWNQMNL(配列番号49および258)、SCLESQPTI(配列番号199および296)、SCLESQPAI(配列番号199および296)、SCLESQPAI(配列番号199および284)、ALLPAVSSL(配列番号35および255)、RMFPNAPYL(配列番号185および293)からなる群より選択される配列を含むWT1ポリペプチド、ならびに1以上の置換、欠失、付加および/または挿入において異なる該配列の改変体であって、このような改変により、該改変体の抗原特異的抗血清および/またはT細胞株もしくはクローンと反応する能力が減少されていない、改変体、を含む、方法。

(項目57)項目41に記載の方法であって、前記ワクチンが、WT1ポリペプチドを含み、該WT1ポリペプチドが、表II~XLVIの1以上に列挙される配列、ならびに1以上の置換、欠失、付加および/または挿入において異なる該配列の改変体であって、このような改変により、該改変体の抗原特異的抗血清および/またはT細胞株もしくはクローンと反応する能力が減少していない、改変体、からなる群より選択される配列を含む、方法。

 (項目58)項目41に記載の方法であって、前記ワクチンが、ALLPAVPSL(配列番号34)、GATLKGVAA(配列番号88)、CMTWNQMNL(配列番号49および258)、SCLESQPTI(配列番号199および296)、SCLESQPAI(配列番号198)、NLYQMTSQL(配列番号147および284)、ALLPAVSSL(配列番号35および255)、RMFPNAPYL(配列番号185お

10

20

30

40

よび293)からなる群より選択される配列を含むWT1ポリペプチド、ならびに1以上 の置換、欠失、付加および/または挿入において異なる該配列の改変体であって、このよ うな改変により、該改変体の抗原特異的抗血清および/またはT細胞株もしくはクローン と反応する能力が減少されていない、改変体、を含む、方法。

(項目59)骨髄、末梢血、または骨髄もしくは末梢血の画分から、WT1を発現する細 胞を除去するための方法であって、該方法は、骨髄、末梢血、または骨髄もしくは末梢血 の画分をWT1ポリペプチドと特異的に反応するT細胞と接触させる工程を包含し、ここ で、該接触させる工程が、骨髄、末梢血、または骨髄もしくは末梢血の画分中の骨髄性細 胞 ま た は リ ン パ 細 胞 の 数 の 1 0 % 未 満 へ の W T 1 陽 性 細 胞 の 除 去 を 可 能 に す る 条 件 下 で そ れを可能にするに十分な時間行われる、方法。

(項目 6 0) 患者においてWT1発現と関連する悪性疾患の発達を阻害するための方法で あって、該方法は、患者に、項目59に記載の方法に従って調製された骨髄、末梢血、ま たは骨髄もしくは末梢血の画分を投与する工程を包含する、方法。

(項目61)前記骨髄、末梢血または画分が、自己由来である、項目60に記載の方法。 (項目62)前記骨髄、末梢血または画分が、同系または同種異系である、項目60に記

(項目 6 3) T 細胞を刺激および / または拡大するための方法であって、該方法は、 T 細 胞 を、 WT1ポリペプチド、WT1ポリペプチドをコードするポリヌクレオチド、および /またはWT1ポリペプチドを発現する抗原提示細胞と、T細胞の刺激および/または拡 大を可能にする条件でそれを可能にするに十分な時間接触させる工程を包含する、方法。 (項目64)前記T細胞が、骨髄、末梢血または骨髄もしくは末梢血の画分内に存在する 、項目63に記載の方法。

(項目65)前記骨髄、末梢血または画分が、WT1発現と関連する悪性疾患に罹患した 患者から得られる、項目63に記載の方法。

(項目66)前記骨髄、末梢血または画分が、WT1発現と関連する悪性疾患に罹患して いない哺乳動物から得られる、項目63に記載の方法。

(項目67)前記T細胞が、拡大の前にクローニングされる、項目63に記載の方法。

(項目 6 8) 哺乳動物において T 細胞を刺激および / または拡大するための方法であって 、該方法は、哺乳動物に、以下:

(a)以下の1以上:

(i)WT1ポリペプチド;

(i i) W T 1 ポリペプチドをコードするポリヌクレオチド; または

(i i i) W T 1 ポリペプチドを発現する抗原提示細胞;

ならびに

(b) 生理学的に受容可能なキャリアまたは賦形剤;

を含む薬学的組成物を投与し、それにより、哺乳動物においてT細胞を刺激および/また は拡大する工程、を包含する、方法。

(項目 6 9) 哺乳動物において T 細胞を刺激および / または拡大するための方法であって 、該方法は、哺乳動物に、以下:

(a)以下の1以上:

(i)WT1ポリペプチド;

(i i) W T 1 ポリペプチドをコードするポリヌクレオチド; または

(i i i) W T 1 ポリペプチドを発現する抗原提示細胞;

ならびに

(b) 非特異的免疫応答エンハンサー;

を含むワクチンを投与し、それにより、哺乳動物においてT細胞を刺激および/または拡 大する工程、を包含する、方法。

(項目70)患者においてWT1発現と関連する悪性疾患の発達を阻害するための方法で あって、該方法は、患者に、項目63に記載の方法に従って調製されたT細胞を投与する 工程を包含する、方法。

10

20

30

40

(項目71)項目70に記載の方法であって、前記骨髄、末梢血または画分が、WT1発現と関連する悪性疾患に罹患する患者から得られる、方法。

(項目72)項目70に記載の方法であって、前記骨髄、末梢血または画分が、WT1発現と関連する悪性疾患に罹患していない哺乳動物から得られる、方法。

(項目 7 3) 患者においてW T 1 発現と関連する悪性疾患のための免疫化または治療の効果をモニターするための方法であって、該方法は、以下の工程:

(a)以下:

(i)WT1ポリペプチド;

- $(ii)WT1\pi^{\prime\prime}$
- (i i i) W T 1 ポリペプチドを発現する抗原提示細胞、

10

の1以上とともに第1の生物学的サンプルをインキュベートする工程であって、ここで、該第1の生物学的サンプルが、治療または免疫化の前に患者から得られ、そしてここで、該インキュベーションが、免疫複合体を形成させる条件下でそれを可能にするに十分な時間行われる、工程;

- (b)該WT1ポリペプチドに特異的に結合する、該生物学的サンプル中の該WT1ポリペプチドと抗体との間に形成される免疫複合体を検出する工程;
- (c) 治療または免疫化の後に該患者から得られる第 2 の生物学的サンプルを使用して、工程(a) および(b) を繰り返す工程; ならびに
- (d)該第1の生物学的サンプルおよび該第2の生物学的サンプルにおいて検出された 免疫複合体の数を比較して、それから該患者における治療または免疫化の効果をモニター する工程、

を包含する、方法。

(項目74)項目73に記載の方法であって、前記検出する工程が、(a)前記免疫複合体を、該免疫複合体に結合し得る検出試薬とともにインキュベートする工程であって、ここで該検出試薬がレポーター基を含む、工程、(b)結合していない検出試薬を除去する工程、ならびに(c)該レポーター基の存在または非存在を検出する工程、を包含する、方法。

(項目 7 5) 前記検出試薬が、前記W T 1 ポリペプチドに特異的に結合する抗体に結合し得る、第 2 の抗体またはその抗原結合フラグメントを含む、項目 7 4 に記載の方法。

(項目76)前記検出試薬がプロテインAを含む、項目74に記載の方法。

30

40

50

20

(項目 7 7) 前記レポーター基が、放射性同位体、蛍光基、発光基、酵素、ビオチン、および色素粒子からなる群より選択される、項目 7 4 に記載の方法。

(項目 7 8) レポーター基が前記W T 1 ポリペプチドに結合し、そして前記検出する工程が、結合していないW T 1 ポリペプチドを除去し、続いて該レポーター基の存在または非存在を検出する工程を包含する、項目 7 3 に記載の方法。

(項目 7 9) 患者においてW T 1 発現と関連する悪性疾患のための免疫化または治療の効果をモニターするための方法であって、該方法は、以下の工程:

(a)以下:

(i)WT1ポリペプチド;

- (i i) W T 1 ポリペプチドをコードするW T 1 ポリヌクレオチド; または
- (i i i) W T 1 ポリペプチドを発現する抗原提示細胞、

の1以上とともに第1の生物学的サンプルをインキュベートする工程であって、ここで、該生物学的サンプルが、CD4+および/もしくはCD8+ T細胞を含み、かつ治療または免疫化の前に患者から得られ、そしてここで、該インキュベーションが、T細胞の特異的活性化、増殖および/もしくは溶解を可能にする条件下でそれを可能にするに十分な時間行われる、工程;

- (b) 該 T 細胞の活性化、増殖および / もしくは溶解の量を検出する工程;
- (c) CD 4 + および / もしくは CD 8 + T細胞を含む第 2 の生物学的サンプルを使用して、工程(a) および (b) を繰り返す工程であって、ここで該第 2 の生物学的サンプルが治療または免疫化の後に該患者から得られる、工程; ならびに

(d)該第1の生物学的サンプルおよび該第2の生物学的サンプル中のT細胞の活性化、増殖および/または溶解の量を比較して、それから該患者における治療または免疫化の効果をモニターする工程、

を包含する、方法。

(項目80)前記悪性疾患が、癌または白血病である、項目73または項目79に記載の方法。

(項目81)患者においてWT1発現と関連する悪性疾患の発達を阻害するための方法であって、該方法は、以下の工程:

- (a)以下:
 - (i)WT1ポリペプチド;

(i i) W T 1 ポリペプチドをコードするポリヌクレオチド; または

(i i i) W T 1 ポリペプチドを発現する抗原提示細胞、

の 1 以上とともに、患者から単離された C D 4 + T 細胞をインキュベートする工程であって、その結果、該 T 細胞が増殖する、工程; ならびに

(b)該患者に、有効量の該増殖したT細胞を投与し、それから該患者における悪性疾患の発達を阻害する、工程、

を包含する、方法。

(項目82)前記悪性疾患が、癌または白血病である、項目81に記載の方法。

(項目83)前記T細胞をインキュベートする工程が、1回以上繰り返される、項目81に記載の方法。

(項目84)患者においてWT1発現と関連する悪性疾患の発達を阻害するための方法であって、該方法は、以下の工程:

(a)以下:

(i)WT1ポリペプチド;

(i i) W T 1 ポリペプチドをコードするポリヌクレオチド; または

(i i i) W T 1 ポリペプチドを発現する抗原提示細胞、

の1以上とともに、患者から単離されたCD4+T細胞をインキュベートする工程であって、その結果、該T細胞が増殖する、工程;

(b) W T 1 ポリペプチドの存在下で増殖した 1 以上の細胞をクローニングする工程;ならびに

(c) 該患者に、有効量の該クローニングした T 細胞を投与する、工程、

を包含する、方法。

(項目85)前記悪性疾患が、癌または白血病である、項目84に記載の方法。

(項目86)患者においてWT1発現と関連する悪性疾患の発達を阻害するための方法であって、該方法は、以下の工程:

(a)以下:

(i)WT1ポリペプチド;

(ii)WT1ポリペプチドをコードするポリヌクレオチド;または

(i i i) W T 1 ポリペプチドを発現する抗原提示細胞、

の 1 以上とともに、患者から単離された C D 8 + T 細胞をインキュベートする工程であって、その結果、該 T 細胞が増殖する、工程; ならびに

(b)該患者に、有効量の該増殖したT細胞を投与し、それから該患者における悪性疾患の発達を阻害する、工程、

を包含する、方法。

(項目87)前記悪性疾患が、癌または白血病である、項目86に記載の方法。

(項目88)前記T細胞をインキュベートする工程が、1回以上繰り返される、項目86に記載の方法。

(項目89)患者においてWT1発現と関連する悪性疾患の発達を阻害するための方法であって、該方法は、以下の工程:

(a)以下:

50

10

20

30

- (i)WT1ポリペプチド;
- (i i) W T 1 ポリペプチドをコードするポリヌクレオチド; または
- (i i i) W T 1 ポリペプチドを発現する抗原提示細胞、
- の 1 以上とともに、患者から単離されたCD8+T細胞をインキュベートする工程であって、その結果、該T細胞が増殖する、工程;
- (b) W T 1 ポリペプチドの存在下で増殖した 1 以上の細胞をクローニングする工程;ならびに
- (c) 該患者に、有効量の該クローニングしたT細胞を投与する、工程、

を包含する、方法

- (項目90)前記悪性疾患が、癌または白血病である、項目89に記載の方法。
- (項目 9 1) 患者においてW T 1 発現と関連する悪性疾患の存在または非存在を決定する ための方法であって、該方法は、以下の工程:
 - (a)以下:
 - (i) W T 1 ポリペプチド;
 - (ii)WT1ポリペプチドをコードするポリヌクレオチド;または
 - (i i i) W T 1 ポ リ ペ プ チ ド を 発 現 す る 抗 原 提 示 細 胞 、
- の 1 以上とともに、患者から単離された C D 4 + T 細胞をインキュベートする工程;ならびに
- (b)該T細胞の特異的活性化の存在または非存在を検出し、それからWT 1 発現と関連する悪性疾患の存在または非存在を決定する、工程、を包含する、方法。
- (項目92)前記悪性疾患が、癌または白血病である、項目91に記載の方法。
- (項目 9 3) 前記検出する工程が、前記 T 細胞の増殖の存在または非存在を検出する工程 を包含する、項目 9 1 に記載の方法。
- (項目94)患者においてWT1発現と関連する悪性疾患の存在または非存在を検出するための方法であって、該方法は、以下の工程:
 - (a)以下:
 - (i)WT1ポリペプチド;
 - (i i) W T 1 ポリペプチドをコードするポリヌクレオチド; または
 - (i i i) W T 1 ポリペプチドを発現する抗原提示細胞、
- の 1 以上とともに、患者から単離された C D 8 + T 細胞をインキュベートする工程;ならびに
- (b)該T細胞の特異的活性の存在または非存在を検出し、それからWT1発現と関連する悪性疾患の存在または非存在を決定する、工程、
- を包含する、方法。
- (項目95)前記悪性疾患が、癌または白血病である、項目94に記載の方法。
- (項目96)前記検出する工程が、細胞溶解活性の生成の存在または非存在を検出する工程を包含する、項目94に記載の方法。
- (項目 9 7) 患者においてW T 1 発現と関連する悪性疾患の存在または非存在を決定するための方法であって、該方法は、以下の工程:
 - (a)以下:
 - (i)WT1ポリペプチド;
 - (i i) W T 1 ポリペプチドをコードするポリヌクレオチド; または
 - (i i i) W T 1 ポリペプチドを発現する抗原提示細胞、
- の 1 以上とともに、患者から得られた生物学的サンプルをインキュベートする工程であって、該インキュベーションが、免疫複合体を形成させる条件下でそれを可能にするに十分な時間行われる工程;ならびに
- (b)該W1ポリペプチドと該WT1ポリペプチドに特異的に結合する生物学的サンプル中の抗体との間で形成される免疫複合体を検出し、それから、WT1発現と関連する悪性疾患の存在または非存在を決定する、工程、

10

20

30

40

を包含する、方法。

(項目98)前記悪性疾患が、癌または白血病である、項目97に記載の方法。

(項目99)項目97に記載の方法であって、前記検出する工程が、(a)前記免疫複合体を、該免疫複合体に結合し得る検出試薬とともにインキュベートする工程であって、ここで該検出試薬がレポーター基を含む、工程、(b)結合していない検出試薬を除去する工程、ならびに(c)該レポーター基の存在または非存在を検出する工程、を包含する、方法。

(項目 1 0 0) 前記検出試薬が、前記W T 1 ポリペプチドに特異的に結合する抗体に結合 し得る、第 2 の抗体またはその抗原結合フラグメントを含む、項目 9 9 に記載の方法。

(項目101)前記検出試薬がプロテインAを含む、項目99に記載の方法。

(項目102)前記レポーター基が、放射性同位体、蛍光基、発光基、酵素、ビオチン、および色素粒子からなる群より選択される、項目99に記載の方法。

(項目103)前記レポーター基が前記WT1ポリペプチドに結合し、そして前記検出する工程が、結合していないWT1ポリペプチドを除去し、続いて該レポーター基の存在または非存在を検出する工程を包含する、項目97に記載の方法。

(項目104)活性な治療用物質として使用するための、項目1~9のいずれか1項に記載のポリペプチド。

(項目105)患者において免疫応答を増強または誘導するための医薬の製造における使用のための、項目1~9のいずれか1項に記載のポリペプチド。

[0 0 2 5]

本発明のこれらおよび他の局面は、下述する詳細な説明および添付する図面を参照すれば明白になる。本明細書中に開示されたすべての参考文献は、各々が個々に援用されたかのようにその全体が参考として本明細書中に援用されている。

【発明を実施するための最良の形態】

[0026]

(発明の詳細な説明)

上述のように、本発明は、一般に、悪性疾患の免疫療法および診断のための組成物および方法に関する。本明細書中に記載される組成物としては、WT1ポリペプチド、WT1ポリペプチドを発現する抗原提示細胞(APC、例えば、樹間)、薬剤(例えば、WT1ポリペプチドに結合する抗体)および/またはWT1には特異的な免疫系細胞(例えば、T細胞)が挙げられ得る。本発明のWT1ポリペプチドにはつかなくとも一部を一般に、ウィルムス腫瘍遺伝子産物(WT1)またはその改変体の少なくとも一部を一般に、本発明の核酸配列は、一般に、このような配列に相補的であるDNA配列またはRNA配列、あるいはこのような配列に相補的であるDNA配列が使用はRNA配列を含む。抗体は、一般に、免疫系タンパク質またはその抗原結合フラグであり、これは、WT1ポリペプチドに特異的であるT細胞は、一般に、WT1ポリペプチドに特異的であるT細胞(例えば、CD4 *および/またはCD8*)である。本明細書中に記載される特定の方法は、さらに、本明細書中に提供されるようなWT1ポリペプチドを発現する抗原提示細胞を使用する。

[0027]

本発明は、ウィルムス腫瘍(WT)遺伝子産物(例えば、WT1)に対して惹起される免疫応答が、WT1遺伝子の発現の増加によって特徴付けられる悪性疾患を患う患者に、予防的利益および/または治療的利益を提供し得るという発見に基づく。このような疾患としては、白血病(例えば、急性骨髄性白血病(AML)、慢性骨髄性白血病(CML)、急性リンパ性白血病(ALL)および小児期ALL)、ならびに多くの癌(例えば、肺、乳房、甲状腺および胃腸の癌、ならびに黒色腫)が挙げられるが、これらに限定されない。WT1遺伝子は、元々、ウィルムス腫瘍を有する患者の染色体11p13における細胞性欠失に基づいて同定および単離された(Callら、米国特許第5,350,840号を参照のこと)。この遺伝子は10のエキソンからなり、そしてジンクフィンガー転写因子をコードし、そしてマウスWT1タンパク質およびヒトWT1タンパク質の配列は、

10

20

30

40

20

30

40

50

図1および配列番号319~320に提供される。

[0028]

(WT1ポリペプチド)

本発明の文脈において、WT1ポリペプチドは、本明細書に記載される場合、ネイティ ブWT1(すなわち、遺伝的に改変されていない生物によって発現されるWT1タンパク 質) ま た は そ の 改 変 体 の 少 な く と も 免 疫 原 性 部 分 を 含 む ポ リ ペ プ チ ド で あ る 。 W T 1 ポ リ ペ プ チ ド は 、 こ れ が ネ イ テ ィ ブ タ ン パ ク 質 ま た は そ の 改 変 体 の 少 な く と も 免 疫 原 性 部 分 を 含む限り、任意の長さであり得る。言い換えると、WT1ポリペプチドは、オリゴペプチ ド(すなわち、ペプチド結合によって連結される比較的少数のアミノ酸残基(例えば、8 ~ 1 0 残基)からなる)、全長WT1タンパク質(例えば、ヒトまたは非ヒト動物(例え ば、マウス)内に存在する)あるいは中間のサイズのポリペプチドであり得る。特定の実 施態様において、ネイティブWT1ポリペプチドの少数の連続するアミノ酸残基を含むW T1ポリペプチドの使用が、好ましい。このようなポリペプチドは、T細胞応答の生成が 所望される特定の使用のために好ましい。例えば、このようなWT1ポリペプチドは、ネ イティブWT1ポリペプチドの、23未満の連続するアミノ酸残基、好ましくは18以下 の連続するアミノ酸残基、そしてより好ましくは15以下の連続するアミノ酸残基を含み 得 る 。 ネ イ テ ィ ブ W T 1 ポ リ ペ プ チ ド の 連 続 す る 9 つ の ア ミ 丿 酸 残 基 を 含 む ポ リ ペ プ チ ド は、一般に、このような目的のために適切である。ネイティブタンパク質由来のさらなる 配列および/または異種配列は、任意のWT1ポリペプチド内に存在し得、そしてこのよ うな配列は、(必要ではないが)さらなる免疫原性特性または抗原性特性を保有し得る。 本明細書中に提供されるようなポリペプチドは、さらに、他のポリペプチドまたは非ポリ ペプチド化合物と(共有結合的にかまたは非共有結合的に)会合され得る。

[0029]

「免疫原性部分」は、本明細書中で使用される場合、B細胞表面抗原レセプターおよび / またはT細胞表面抗原レセプターによって認識される(すなわち、特異的に結合される) ポリペプチドの部分である。特定の好ましい免疫原性部分は、MHCクラス I 分子また はMHCクラスII分子に結合する。本明細書中で使用される場合、免疫原性部分は、こ のような結合が当該分野で公知の任意のアッセイを使用して検出可能である場合、MHC クラスI分子またはMHCクラスII分子「に結合する」といわれる。例えば、ポリペプ チドがMHCクラスIに結合する能力は、¹²⁵Iで標識された 2 ミクログロブリン(2 m) の M H C クラス I / 2 m / ペプチドヘテロ三量体 複合体への取り込みを促進する 能力をモニターすることによって間接的に評価され得る(Parkerら、J.Immu n o 1 . 1 5 2 : 1 6 3 , 1 9 9 4 を参照のこと)。あるいは、当該分野で公知の機能的 ペ プ チ ド 競 合 ア ッ セ イ が 、 使 用 さ れ 得 る 。 特 定 の 免 疫 原 性 部 分 は 、 表 I I ~ X I V の 1 つ 以上に列挙される1つ以上の配列を有する。代表的な免疫原性部分には、以下が挙げられ るが、これらに限定されない:RDLNALLPAVPSLGGGG(ヒトWT1残基6 ~ 2 2 ; 配列番号 1) 、 P S Q A S S G Q A R M F P N A P Y L P S C L E (ヒトおよび マウスWT1残基117~139;それぞれ、配列番号2および3)、GATLKGVA A G S S S S V K W T E (ヒトW T 1 残基 2 4 4 ~ 2 6 2 ; 配列番号 4) 、 G A T L K G V A A (ヒトW T 1 残基 2 4 4 ~ 2 5 2 ; 配列番号 8 8) 、 C M T W N Q M N L (ヒトお よびマウスWT1残基235~243;それぞれ、配列番号49および258)、SCL ESQPTI(マウスWT1残基136~144;配列番号296)、SCLESQPA I (ヒトWT1残基136~144;配列番号198); N L Y Q M T S Q L (ヒトおよ びマウスWT1残基225~233;それぞれ、配列番号147および284); ALL P A V S S L (マウスW T 1 残基 1 0 ~ 1 8 ; 配列番号 2 5 5) ; または R M F P N A P Y L (ヒトおよびマウスW T 1 残基 1 2 6 ~ 1 3 4 ; それぞれ、配列番号 1 8 5 および 2 9 3)。さらなる免疫原性部分は、本明細書中に提供され、そしてその他は、一般に、周 知の技術(例えば、Paul、Fundamental Immunology、第3版 、 2 4 3 ~ 2 4 7 (R a v e n P r e s s , 1 9 9 3)およびその中に引用される参考 文献において要約される技術)を使用して同定され得る。免疫原性部分を同定するための

20

30

40

50

代表的な技術としては、抗原特異的抗血清および/またはT細胞株もしくはクローンと反応する能力についてのポリペプチドのスクリーニングが挙げられる。ネイティブWT1ポリペプチドの免疫原性部分は、(例えば、ELISAおよび/またはT細胞反応性アッセイにおいて)実質的に全長WT1の反応性以上であるレベルで、このような抗血清および/またはT細胞と反応する部分である。言い換えると、免疫原性部分は、全長ポリペプチドの反応性に類似するかまたはそれよりも大きなレベルで、このようなアッセイにおいて反応し得る。このようなスクリーニングは、一般に、HarlowおよびLane、Antibodies:A Laboratory Manual、Cold SpringHarbor Laboratory、1998に記載されるような、当業者に周知の方法を使用して実施され得る。

[0030]

あるいは、免疫原性部分は、Tsitesプログラム(RothbardおよびTayler、EMBO J.7:93~100、1988;Deavinら、Mol.Immunol.33:145~155、1996を参照のこと)のようなコンピュータ分析を使用して同定され得、このコンピュータ分析は、Th応答を誘発する可能性を有するペプチドモチーフについて検索する。マウスクラスI MHCまたはクラスII MHCおよびヒトクラスI MHCまたはクラスII MHCの結合について適切なモチーフを有するCTLペプチドは、BIMAS(Parkerら、J.Immunol.152:163、1994)および他のHLAペプチド結合予測分析に従って同定され得る。免疫原性を確認するために、ペプチドは、HLA A2トランスジェニックマウスモデル、および/または樹状細胞、線維芽細胞もしくは末梢血細胞を使用するインビトロ刺激アッセイを使用して、試験され得る。

[0031]

上述のように、組成物は、ネイティブWT1タンパク質の改変体を含み得る。ポリペプ チド「改変体」は、本明細書中で使用される場合、1つ以上の置換、欠失、付加および/ または挿入においてネイティブポリペプチドと異なり、その結果、そのポリペプチドの免 疫 原 性 が 保 持 さ れ て い る (す な わ ち 、 こ の 改 変 体 が 抗 原 特 異 的 抗 血 清 お よ び / ま た は T 細 胞 株 も し く は ク ロ ー ン と 反 応 す る 能 力 は 、 ネ イ テ ィ ブ ポ リ ペ プ チ ド に 対 し て 実 質 的 に 減 少 されない)、ポリペプチドである。言い換えると、改変体が抗原特異的抗血清および/ま たはT細胞株もしくはクローンと反応する能力は、ネイティブポリペプチドに対して増強 され得るかまたは不変であり得るか、あるいはネイティブポリペプチドに対して50%未 満、 そ し て 好 ま し く は 2 0 % 未 満 減 少 さ れ 得 る 。 こ の よ う な 改 変 体 は 、 一 般 に 、 本 明 細 書 中に記載されるように、上記のポリペプチド配列の1つを改変すること、および改変され たポリペプチドと抗血清および/またはT細胞との反応性を評価することによって、同定 され得る。本発明の文脈において、WT1ポリペプチドの免疫原性部分内の比較的少数の 置換(例えば、1~3)は、ポリペプチドが免疫応答を誘発する能力を増強するように作 用し得ることが、見出されている。適切な置換は、一般に、上記のようにコンピュータプ ログラムを使用することによって同定され得、そしてその効果は、本明細書中に記載され るように、改変されたポリペプチドと抗血清および/またはT細胞との反応性に基づいて 確認される。従って、特定の好ましい実施態様において、WT1ポリペプチドは、免疫原 性部分内の1~3アミノ酸残基が置換され、その結果、抗原特異的抗血清および/または T細胞株もしくはクローンと反応する能力が、改変されていないポリペプチドに対するそ の能力よりも統計学的に大きい、改変体を含む。このような置換は、好ましくは、このポ リペプチドMHC結合部位内に位置され、これは、上記の通りに同定され得る。好ましい 置換は、MHCクラスI分子またはMHCクラスII分子への結合を増加させる。

[0032]

特定の改変体は、保存的置換を含む。「保存的置換」は、あるアミノ酸が類似の特性を有する別のアミノ酸に置換されることであり、その結果、ペプチド化学の当業者は、そのポリペプチドの二次構造および疎水性の性質が実質的に変化していないことを予測する。アミノ酸置換は、一般に、残基の極性、電荷、溶解度、疎水性、親水性および/または両

20

30

40

50

親媒性の性質における類似性に基づいてなされ得る。例えば、負に荷電したアミノ酸としては、アスパラギン酸およびグルタミン酸が挙げられ;正に荷電したアミノ酸としては、リジンおよびアルギニンが挙げられ;そして類似の疎水性値を有する荷電していない極性、グリシンおよびアラニン;アスパラギンおよびグルタミン;ならびにセリン、スレオニン、フェニルアラニンおよびチロシン、が挙げられる。保存的変化を示し得るアミノ酸のの基としては、以下が挙げられる:(1)ala、pro、gly、glu、asp、gln、ser、thr;(2)cys、ser、tyr、thr;(3)val、ile、leu、met、ala、phe;(4)lys、arg、his;および(5)phe、tyr、trp、his。改変体はまた(または、あるいは改変体は)非保存的変化を含む。改変体はまた(または、あるいは改変体は)、例えば、このポリペプチドの免疫原性、二次構造および疎水性性質に対して最小の影響を有するアミノ酸の欠失または付加によって改変され得る。

[0033]

上述のように、WT1ポリペプチドは、翻訳と同時(co-translationally)または翻訳後(post-translationally)にタンパク質の移動を指向するタンパク質のN末端において、シグナル(またはリーダー)配列に結合体化され得る。ポリペプチドはまた(または、あるいはポリペプチドは)、このポリペプチド(例えば、ポリ・His)の合成、精製または同定の容易さのために、あるいはこのポリペプチドの固体支持体への結合を増強するために、リンカーもしくは他の配列に結合体化され得る。例えば、ポリペプチドは、免疫グロブリンのFc領域に結合体化され得る。

[0034]

W T 1 ポリペプチドは、任意の種々の周知技術を使用して調製され得る。本明細書中に 記載されるようなWT1ポリヌクレオチドによってコードされる組換えポリペプチドは、 このポリヌクレオチドから容易に調製され得る。一般に、当業者に公知の任意の種々の発 現ベクターを使用して、組換えWT1ポリペプチドを発現し得る。発現は、組換えポリペ プチドをコードするDNA分子を含む発現ベクターを用いて形質転換されたか、またはこ の発現ベクターを用いてトランスフェクトされた、任意の適切な宿主細胞において達成さ れ得る。適切な宿主細胞としては、原核生物細胞、酵母細胞および高等真核生物細胞が挙 げられる。好ましくは、使用される宿主細胞は、E.coli細胞株、酵母細胞株または 哺乳動物細胞株(例えば、COSもしくはCHO)である。組換えタンパク質または組換 えポリペプチドを培養培地へ分泌する適切な宿主/ベクター系からの上清は、まず、市販 のフィルターを使用して濃縮され得る。次いで、この濃縮物は、適切な精製マトリクス(例えば、アフィニティーマトリクスまたはイオン交換樹脂)に適用され得る。最終的に、 1つ以上の逆相HPLC工程を使用して、組換えポリペプチドをさらに精製し得る。この ような技術を使用して、ネイティブポリペプチドまたはその改変体を調製し得る。例えば 、 ネ イ テ ィ ブ ポ リ ペ プ チ ド の 改 変 体 を コ ー ド す る ポ リ ヌ ク レ オ チ ド は 、 一 般 に 、 標 準 的 な 変異誘発技術(例えば、オリゴヌクレオチド部位特異的変異誘発)を使用して調製され得 、そしてDNA配列の切片は、短縮型ポリペプチドの調製を許容するように除去され得る

[0035]

特定の部分および他の改変体はまた、当業者に周知の技術を使用する合成手段によって生成され得る。例えば、約500未満のアミノ酸、好ましくは約100未満のアミノ酸、そしてより好ましくは約50未満のアミノ酸を有するポリペプチドが、合成され得る。ポリペプチドは、メリーフィールド固相合成法(アミノ酸が、生長するアミノ酸鎖に連続的に付加される)のような任意の商業的に利用可能な固相技術を使用して合成され得る。Merrifield、J.Am.Chem.Soc.85:2149~2146、1963を参照のこと。ポリペプチドの自動化合成のための装置は、Applied BioSystems,Inc.(Foster City,CA)のような供給業者から市販されており、そして製造業者の指示書に従って操作され得る。

20

30

40

50

[0036]

一般に、本明細書中に記載されるようなポリペプチドおよびポリヌクレオチドが、単離される。「単離された」ポリペプチドおよびポリヌクレオチドは、その元々の環境から取り出されたものである。例えば、その天然系に共存するいくつかまたは全ての材料から分離される場合に、天然に存在するタンパク質が、単離される。好ましくは、このようなポリペプチドは、少なくとも約90%純粋、より好ましくは少なくとも約95%純粋、そして最も好ましくは少なくとも約99%純粋である。例えば、天然の環境の一部でないベクター中にクローニングされる場合に、ポリヌクレオチドは、単離されたとみなされる。

[0037]

[0 0 3 8]

(WT1ポリヌクレオチド)

本明細書中に記載されるWT1ポリペプチドをコードする任意のポリヌクレオチドは、本発明により含まれるWT1ポリヌクレオチドである。このようなポリヌクレオチドは、一本鎖(コードまたはアンチセンス)または二本鎖であり得、そしてDNA(ゲノム、cDNAまたは合成)またはRNA分子であり得る。さらなるコード配列または非コード配列が、本発明のポリヌクレオチド内に存在し得るが、存在する必要はなく、そしてポリヌクレオチドは、他の分子および/または支持物質に連結され得るが、連結される必要はない。

[0039]

WT1ポリヌクレオチドは、ネイティブなWT1タンパク質をコードし得るか、または 本明細書中に記載されるWT1の改変体をコードし得る。ポリヌクレオチド改変体は、ネ イティブなWT1タンパク質と比較して、コードされるポリペプチドの免疫原性が減少さ れないような1つ以上の置換、付加、欠失、および/または挿入を含み得る。コードされ るポリペプチドの免疫原性に対する効果は、一般的に本明細書中に記載されるように評価 され得る。好ましい改変体は、ネイティブなWT1配列の免疫原性部分をコードするヌク レオチド位置、わずか20%、好ましくは、わずか10%でヌクレオチド置換、欠失、挿 入および/または付加を含む。特定の改変体は、ネイティブな遺伝子またはその一部と実 質的に相同的である。このようなポリヌクレオチド改変体は、WT1ポリペプチド(また は相補配列)をコードする天然に存在するDNA配列と、中程度のストリンジェント条件 下でハイブリダイズし得る。適切な中程度のストリンジェントな条件は以下を含む;5× SSC、0.5%SDS、1.0mM EDTA(pH8.0)の溶液での前洗浄;50 ~ 6 5 、 5 × S S C における一晩のハイブリダイゼーション ; 続いて、それぞれ 0 . 1 % S D S 含有 2 × S S C 、 0 . 5 × S S C 、および 0 . 2 × S S C を用いた 6 5 O 分間の 2 回の洗浄。このようにハイブリダイズする D N A 配列はまた、本発明の範囲内 である。

20

30

40

50

[0040]

遺伝コードの縮重の結果として、WT1ポリペプチドをコードする多くのヌクレオチド配列が存在することが当業者に明らかである。いくつかのこれらのポリヌクレオチドは、任意のネイティブな遺伝子のヌクレオチド配列に対して最小の相同性を有する。それにもかかわらず、コドン使用頻度における差異に起因して変動するポリヌクレオチドが、特に本発明により意図される。

[0041]

一旦、上記のようにWT1の免疫原性部分が同定されると、WT1ポリヌクレオチドが 、任意の種々の技術を使用して調製され得る。例えば、WT1ポリヌクレオチドが、WT 1 を 発 現 す る 細 胞 か ら 調 製 さ れ る c D N A か ら 増 幅 さ れ 得 る 。 こ の よ う な ポ リ ヌ ク レ オ チ ドは、ポリメラーゼ連鎖反応(PCR)を介して増幅され得る。このアプローチのために 、 配 列 特 異 的 プ ラ イ マ - が 、 免 疫 原 性 部 分 の 配 列 に 基 づ い て 設 計 さ れ 得 、 そ し て 購 入 さ れ 得るか、または合成され得る。例えば、ヒトWT1遺伝子のPCR増幅のための適切なプ ライマーには以下が挙げられる:第1工程 - P118:1434 - 1414:5 'GAG A G T C A G A C T T G A A A G G A G T 3 '(配列番号 5) および P 1 3 5 : 5 ' C T GAGCTCAGCAAATGGGC3′(配列番号6);第2工程- P136:5′ G A G C A T G C A T G G G C T C C G A C G T G C G G G 3 ′ (配列番号 7) および P 1 3 7 : 5 ' G G G T A C C C A C T G A A C G G T C C C C G A 3 ' (配列番号 8) マウスWT1遺伝子のPCR増幅のためのプライマーには以下が挙げられる:第1工程 - P 1 3 8 : 5 ' T C C G A G C C G C A C C T C A T G 3 ' (配列番号 9) および P 1 3 9 : 5 ' G C C T G G G A T G C T G G A C T G 3 ' (配列番号 1 0) ; 第 2 工程 - P 1 4 0 : 5 ' G A G C A T G C G A T G G G T T C C G A C G T G C G G 3 ' (配列番号 1 1) および P 1 4 1 : 5 ' G G G G T A C C T C A A A G C G C C A C G T G G A G T T T 3 '(配列番号 1 2)。

[0042]

次いで、増幅された部分を使用して、全長遺伝子が、周知の技術を使用してヒトゲノム DNAライブラリーまたは適切な cDNAライブラリーから単離され得る。あるいは、全 長遺伝子が、複数のPCRフラグメントから構築され得る。WT1ポリヌクレオチドはま た、オリゴヌクレオチド成分を合成し、そして完全なポリヌクレオチドを産生するために 共に成分を連結することにより調製され得る。

[0043]

WT1ポリヌクレオチドはまた、当該分野において公知の任意の方法によって合成され得、その方法には化学合成が挙げられる(例えば、固層ホスホラミダイト化学合成)。ポリヌクレオチド配列における改変はまた、標準的な変異誘発技術(例えば、オリゴヌクレオチド指向性、部位特異的変異誘発(Adelmanら、DNA 2:183、1983を参照のこと)、を使用して導入され得る。あるいは、DNAが適切なRNAポリメラーでプロモーター(例えば、T7またはSP6)とともにベクターに組み込まれる場合、RNA分子は、WT1ポリペプチドをコードするDNA配列のインビトロまたはインとボードされるポリペプチドをコードするDNA配列のインビトロまたはインな、コードされるポリペプチドを調製し得る。さらに、またはあるいは、コードされるポリペプチドがインビボで産生されるように、患者に対して一部が投与され得る(例えば、WT1チドがインビボで産生されるように、患者に対して一部が投与され得るに使いてより)ンスフェクトし、そしてそのトランスフェクトされた細胞を患者に投与することにより)

[0044]

W T 1 ポリペプチドをコードするポリヌクレオチドは一般的に、インビトロまたはインビボにおいてそのポリペプチドを産生するために使用され得る。コード配列に相補的なW T 1 ポリヌクレオチド(すなわち、アンチセンスポリヌクレオチド)はまた、プローブとしてまたはW T 1 発現を阻害するために使用され得る。アンチセンスRNAに転写され得る c DNA 構築物もまた、組織の細胞に導入され、アンチセンスRNAの産生を促進し得

る。

[0045]

任意のポリヌクレオチドがさらに改変され、インビボにおける安定性を増加し得る。可能な改変には以下が挙げられるが、これらに限定されない; 5 ' および / または 3 ' 未端における隣接配列の付加;骨格におけるホスホジエステラーゼ結合に代わるホスホロチオネートまたは 2 ' O - メチルの使用;および / または非伝統的な塩基(例えば、イノシン、キューオシン、ワイブトシン)、ならびにアデニン、シチジン、グアニン、チミン、およびウリジンのアセチル形態、メチル形態、チオ形態および他の改変形態の包含。

[0046]

本明細書中に記載されるようなヌクレオチド配列が、確立された組換えDNA技術を使用して、種々の他のヌクレオチド配列に結合され得る。例えば、ポリヌクレオチドは、任意の種々のクローニングベクターにクローン化され得る、そのベクターには、プラスミド、ファージまド、ファージ誘導体およびコスミドが挙げられる。特定の目的のベクターには、発現ベクター、複製ベクター、プローブ産生ベクターおよび配列決定ベクターが挙げられる。一般的には、ベクターは、少なくとも1つの生物体において機能的な複製起点、都合のよい制限エンドヌクレアーゼ部位および1つ以上の選択マーカーを含む。他のエレメントは、所望される用途に依存し、そして当業者において明らかである。

[0047]

特定の実施態様において、ポリヌクレオチドは、哺乳動物の細胞に入り、そしてそこで 発現することを可能にするように処方され得る。以下に記載されるように、このような処 方物は、治療目的のために特に有用である。当業者は、標的細胞においてポリヌクレオチ ドの発現を達成するための多くの方法が存在すること、および任意の適切な方法が使用さ れ得ることを理解する。例えば、ポリヌクレオチドがウイルスベクター(例えば、アデノ ウイルス、アデノ随伴ウイルス、レトロウイルスまたはワクシニアウイルスまたは他にポ ックスウイルス (例えば鳥類ポックスウイルス))に組み込まれ得る。 DNAをこのよう なベクターに組み込むための技術は、当業者において周知である。さらにレトロウイルス ベクターは、選択マーカー(形質導入された細胞の同定または選択を援助するために)に ついての遺伝子および/またはベクターを標的特異的にするための標的部分(例えば、特 定の標的細胞上のレセプターに対するリガンドをコードする遺伝子)を伝達または組み込 み得る。標的化はまた、当業者において公知の方法により、抗体を使用して達成され得る 。例えば、腫瘍防御および養子免疫療法実験(腫瘍あるいは白血病増殖阻害またはこのよ うな細胞の溶解を実証するため)を実施するために使用され得るWT1陽性腫瘍モデルを 樹立する際の使用のために、そのようなベクター内のcDNA構築物を使用して、ヒトま たは動物細胞株にトランスフェクトし得る。

[0048]

ポリヌクレオチドについての他の治療的処方物は、コロイド分散系(例えば、高分子複合体、ナノカプセル、ミクロスフィア、ビーズ)および脂質ベースの系(水中油(oil・in・water)、エマルジョン、ミセル、混合ミセルおよびリポソームが挙げられる)を含む。インビトロおよびインビボにおける送達ビヒクルとして使用するために好ましいコロイド系はリポソームである(すなわち、人工膜小胞)。このような系の調製および使用は、当該分野において周知である。

[0049]

(抗体およびそのフラグメント)

本発明は、さらにW T 1 ポリペプチドに特異的に結合する結合薬剤(例えば、抗体、およびその抗原結合フラグメント)を提供する。本明細書中で使用されるように、薬剤がW T 1 ポリペプチドと検出可能なレベル(例えば、E L I S A 内)で反応し、類似の条件下で、関連しないタンパク質と検出可能に反応しない場合、薬剤は「特異的に結合する」と言われる。本明細書中で使用される場合、「結合」とは、「複合体」が形成されるような2 つの別々の分子間の非共有結合的会合を言う。結合する能力は、例えは、その複合形成についての結合定数を決定することにより評価され得る。この結合定数は、その複合

10

20

30

40

20

30

40

50

体の濃度をその成分濃度の積で除算して得られた値である。一般的に、複合体形成についての結合定数が約 10^3 L/molを超える場合、2つの化合物は、本発明の文脈中において「結合する」と言われる。この結合定数は、当該分野において周知の方法を使用して決定され得る。

[0050]

上記の要求を満足する任意の薬剤が結合薬剤となり得る。好ましい実施態様において、 結合薬剤は、抗体であるか、またはその抗原結合フラグメントである。特定の抗体が、例 えば、Santa Cruz Biotechnology(Santa Cruz,C A)から商業的に入手可能である。あるいは、抗体は、当業者に公知の任意の種々の技術 により調製され得る。例えば、HarlowおよびLane,Antibodies:A Laboratory Manual, Cold Spring Harbor boratory,1988を参照のこと。一般的に、抗体は、細胞培養技術により産生 され得、その技術には本明細書中に記載されるようなモノクローナル抗体の産生、または 組換え抗体の産生を可能にするために、適切な細菌細胞宿主または哺乳動物細胞宿主に抗 体遺伝子をトランスフェクトすることによるものが挙げられる。1つの技術において、ポ リペプチドを含む免疫原は、初めに任意の広範な種々の哺乳動物に注射される(マウス、 ラット、ウサギ、ヒツジまたはヤギ)。この工程において、本発明のポリペプチドは改変 を伴わずに免疫原として作用し得る。あるいは、特に比較的短いポリペプチドに対して、 ポリペプチドがキャリアタンパク質(例えば、ウシ血清アルブミンまたはキーホールリン ペットヘモシアニン)に結合される場合、優れた免疫応答が誘発され得る。この免疫原は 、好ましくは、1つ以上のブースター免疫を組み込んだ予め決定されたスケジュールに従 って、動物宿主に注射され、そしてこの動物は定期的に採血される。次いで、このペプチ ドに対して特異的なポリクローナル抗体は、そのような抗血清から、例えば適切な固形支 持体と結合されたポリペプチドを使用するアフィニティークロマトグラフィーによって精 製され得る。

[0051]

目的の抗原性ポリペプチドに対して特異的なモノクローナル抗体が、例えば、KohlerおよびMilstein(Eur.J.Immunol.6:511-519、1976)の技術およびそのさらに改善された技術を使用して調製され得る。手短に言うを有る抗体を産生し得る不死細胞株の調製を含む。このような細胞株が、例えば、上記の胞は、の免疫化された動物から得られた脾臓細胞から産生され得る。次いで、この脾臓細胞から産生され得る。次いで、この脾臓細胞から産生されの免疫化された動物と同時により不死化される。種々の融合技術が使用され得る。例えば、脾臓細胞のはで、の免疫により不死化される。種々の融合技術が使用され得る。例えば、脾臓細胞の増殖を支持するが、ミエローマ細胞の増殖は支持しない選択培地上に低密度でシンにの増殖を支持するが、ミエローマ細胞の増殖は支持ン、アミノプテリン、イブリッドのコロートし得る。好ましい選択技術はHAT(ヒポキサンチン、アミノプテリン、チミジンが観察される。単一コロニーが選択され、そしてその培養上清が、そのポリペプチドに対する結合活性について試験される。高い反応性および特異性を有するハイブリドーマが好ましい。

[0052]

モノクローナル抗体が、増殖するハイブリドーマコロニーの上清から単離され得る。さらに、種々の技術(例えば、適切な脊椎動物宿主(例えば、マウス)の腹腔内へのハイブリドーマ細胞株の注入)が、収率を増強するために使用される。次いで、モノクローナル抗体が腹水または血液から収集され得る。混入物は、従来の技術(例えば、クロマトグラフィー、ゲルろ過、沈澱および抽出)によって抗体から除去され得る。本発明のポリペプチドは、精製プロセス(例えば、アフィニティークロマトグラフィー工程)において使用され得る。

[0053]

特定の実施態様において、抗体の抗原結合フラグメントの使用が好まれ得る。そのようなフラグメントには、Fabフラグメントが挙げれるが、これは標準的な技術を使用して調製され得る。手短に言うと、免疫グロブリンが、プロテインAビーズカラム上のアフィニティークロマトグラフィーにより、ウサギ血清から精製され得(HarlowおよびLane、Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory、1988)、そしてFabフラグメントおよびFcフラグメントを産生するためにパパインにより消化され得る。FabフラグメントおよびFcフラグメントが、プロテインAビーズカラム上のアフィニティークロマトグラフィーにより分離され得る。

[0054]

モノクローナル抗体およびそのフラグメントは、1以上の治療剤に結合され得る。この点に関して適切な薬剤は、例えば、自己骨髄をインビトロでパージするために使用され得る、放射性トレーサーおよび化学療法剤を含む。代表的な治療剤は、放射性核種、分化誘導剤、薬物、毒素、およびそれらの誘導体を含む。好ましい放射性核種は、⁹⁰ Y、¹²³ I、¹²⁵ I、¹³¹ I、¹⁸⁶ Re、¹⁸⁸ Re、²¹¹ At、および²¹² Biを含む。好ましい薬物は、メトトレキセート、ならびにピリミジンアナログおよびプリンアナログを含む。好ましい分化誘導剤は、ホルボールエステルおよび酪酸を含む。好ましい毒素は、リシン、アブリン、ジフテリア毒素、コレラ毒素、ゲロニン(gelonin)、Pseudomonas外毒素、Shigella毒素、およびアメリカヤマゴボウ抗ウイルスタンパク質を含む。診断目的については、放射性薬剤の結合が、転移の追跡を容易にするためか、またはWT1・陽性腫瘍の位置を決定するために、使用され得る。

[0055]

治療剤は、直接的または間接的(例えば、リンカー基を通じて)のいずれかで、適切なモノクローナル抗体に結合(例えば、共有結合)され得る。薬剤と抗体との間の直接的な反応は、各々が他方と反応し得る置換基を保有する場合に可能である。例えば、一方に対する求核基(例えば、アミノ基またはスルフヒドリル基)は、カルボニル含有基(例えば、無水物または酸ハライド)と、または他方に対する良好な脱離基(例えば、ハライド)を含むアルキル基と反応することが可能であり得る。

[0056]

あるいは、治療剤および抗体をリンカー基を通じて結合させることが所望され得る。リンカー基は、結合能力を妨害することを回避するために、薬剤から抗体を離すスペーサーとして機能し得る。リンカー基はまた、薬剤または抗体上の置換基の化学反応性を増大させるように働き得、それにより結合効率を増大させる。化学反応性における増大はまた、薬剤、または薬剤上の官能基の使用を容易にし得るが、これは、そうでなければ可能ではない。

[0057]

種々の二官能性試薬または多官能性試薬(ホモ官能性およびヘテロ官能性の両方)(例えば、Pierce Chemical Co.、Rockford、ILのカタログに記載されるもの)が、リンカー基として用いられ得ることは、当業者に明らかである。結合は、例えば、アミノ基、カルボキシル基、スルフヒドリル基または酸化した糖質残基を通じてもたらされ得る。このような方法論を記載している多数の参考文献(例えば、Rodwellらに対する米国特許第4,671,958号)が存在する。

[0058]

本発明の免疫結合体の抗体部分を含まないときに治療剤がより強力である場合、細胞中へのインタナリゼーションの間またはその際に切断可能であるリンカー基を使用することが所望され得る。多くの異なる切断可能なリンカー基が、記載されている。これらのリンカー基からの薬剤の細胞内放出についての機構は、ジスルフィド結合の還元による切断(例えば、Spitlerに対する米国特許第4,489,710号)、光不安定結合の照射による切断(例えば、Senterらに対する米国特許第4,625,014号)、誘導体化されたアミノ酸側鎖の加水分解による切断(Kohnらに対する米国特許第4,6

10

20

30

40

20

30

40

50

38,045号)、血清補体媒介加水分解による切断(例えば、Rodwellらに対する米国特許第4,671,958号)、および酸触媒加水分解による切断(例えば、Blattlerらに対する米国特許第4,569,789号)を含む。

[0.059]

1よりも多くの薬剤を抗体に結合させることが所望され得る。1つの実施態様では、薬 剤の複数の分子が、1つの抗体分子に結合され得る。別の実施態様では、1よりも多い型 の薬剤が、1つの抗体に結合され得る。特定の実施態様にも関わらず、1よりも多い薬剤 を有する免疫結合体が、種々の様式で調製され得る。例えば、1よりも多い薬剤が、抗体 分子に直接的に結合され得るか、または付着のために複数の部位を提供するリンカーが、 使用され得る。あるいは、キャリアが使用され得る。キャリアは、種々の様式において薬 剤を保有し得、この様式は、直接的かまたはリンカー基を通じてかのいずれかでの共有結 合を含む。適切なキャリアは、アルブミンのようなタンパク質(例えば、Katoらに対 する米国特許第4,507,234号)、ペプチドおよびアミノデキストランのようなポ リサッカリド (S h i h ら に 対する米国特許 第 4 , 6 9 9 , 7 8 4 号) を含む。キャリア はまた、非共有結合によってか、またはリポソームビヒクル内でのカプセル化によって薬 剤を保有し得る(例えば、米国特許第4,429,008号および同第4,873,08 8 号) 。 放射性核種薬剤に特異的なキャリアは、放射性ハロゲン化低分子およびキレート 化合物を含む。例えば、米国特許第4,735,792号は、代表的な放射性ハロゲン化 低分子およびそれらの合成を開示している。放射性核種キレートは、金属、または金属酸 化物、放射性核種を結合するためにドナー原子として窒素原子および硫黄原子を含むキレ - ト化合物を含むキレート化合物から形成され得る。例えば、Davisonらに対する 米 国 特 許 第 4 , 6 7 3 , 5 6 2 号 は 、 代 表 的 な キ レ ー ト 化 合 物 お よ び そ れ ら の 合 成 を 開 示 している。

[0060]

抗体および免疫結合体について、種々の投与経路が使用され得る。代表的には、投与は、静脈内、筋肉内、皮下、または切除された腫瘍のベッドにおいてである。抗体 / 免疫結合体の正確な用量は、使用される抗体、腫瘍上の抗原密度、および抗体のクリアランスの速度に依存して変動することが明らかである。

[0061]

また、WT1の免疫原性部分を模倣する抗イディオタイプ抗体が、本明細書中に提供される。このような抗体は、周知の技術を使用して、WT1の免疫原性部分に特異的に結合する、抗体、またはその抗原結合フラグメントに対して惹起され得る。WT1の免疫原性部分を模倣する抗イディオタイプ抗体は、本明細書中に記載されるように、WT1の免疫原性部分に特異的に結合する、抗体、またはその抗原結合フラグメントに結合する抗体である。

[0062]

(T 細 胞)

免疫治療組成物はまた、またはあるいは、WT1に特異的なT細胞を含む。このような細胞は、一般に、標準的な手順を使用して、インビトロまたはエキソビボで調製され得る。例えば、T細胞は、市販の細胞懸濁系(例えば、CellPro Inc.Bothell WAから入手可能なCEPRATE $^{\mathsf{TM}}$ 系)を使用して、哺乳動物(例えば、患者)の骨髄、末梢血あるいは骨髄または末梢血の画分内に存在し得る(またはそれらから単離され得る)(米国特許第5,240,856号;米国特許第5,215,926号;WO89/06280;WO91/16116およびWO92/07243もまた参照のこと)。あるいは、T細胞は、関連しているかまたは関連していない、ヒト、非ヒト動物、細胞株または培養物に由来し得る。

[0063]

T細胞は、WT1ポリペプチド、WT1ポリペプチドをコードするポリヌクレオチド、および/またはWT1ポリペプチドを発現する抗原提示細胞(APC)で刺激され得る。 このような刺激は、WT1ポリペプチドに特異的であるT細胞の生成を許容するに十分な

20

30

40

50

条件下および時間で行われる。好ましくは、WT1ポリペプチドまたはポリヌクレオチドは、抗原特異的 T 細胞の生成を容易にする、送達ビヒクル(例えば、ミクロスフェア)内に存在する。簡潔には、T 細胞は、慣用的な技術によって(例えば、末梢血リンパ球のFicol1/H y p a q u e 密度勾配遠心分離によって)、患者または関連しているかもしくは関連していないドナーから単離され得、WT1ポリペプチドとインキュベートされる。例えば、T 細胞は、WT1ポリペプチド(例えば、5 μ g ~ 2 5 μ g / m 1)または匹敵する量のWT1ポリペプチドを合成している細胞とともに、37 で2~9日間(代表的には4日間)インビトロでインキュベートされ得る。コントロールとして働くWT1ポリペプチドの非存在下で、T 細胞サンプルの別々のアリコートをインキュベートすることが所望され得る。

[0064]

T細胞は、このT細胞がWT1ポリペプチドでコーティングされているか、またはこの ようなポリペプチドをコードする遺伝子を発現している標的細胞を殺傷する場合に、WT 1 ポリペプチドに特異的であるとみなされる。T細胞の特異性は、任意の種々の標準的な 技術を使用して評価され得る。例えば、クロム放出アッセイまたは増殖アッセイにおいて は、陰性コントロールと比較して、溶解および/または増殖における2倍を超える上昇の 刺激指数は、T細胞特異性を示す。このようなアッセイは、例えば、Chenら、Can Res.54:1065~1070、1994に記載されるように行われ得る。 あるいは、T細胞の増殖の検出が、種々の公知の技術によって達成され得る。例えば、T 細胞増殖は、DNA合成の上昇した速度を測定することによって(例えば、トリチウム化 チミジンで T 細胞の培養物をパルス標識し、そして D N A 中に取り込まれたトリチウム化 チミジンの量を測定することによって)検出され得る。 T細胞増殖を検出する他の様式は 、インターロイキン - 2 (IL - 2)産生、 C a²⁺フラックス、または色素(例えば、 3 - (4 , 5 - ジメチルチアゾール - 2 - イル) - 2 , 5 - ジフェニル - テトラゾリウム) の取り込みにおける上昇を測定することを包含する。あるいは、リンホカイン(例えば、 インターフェロン)の合成が、測定され得るか、またはWT1ポリペプチドに応答し得 るT細胞の相対数が、定量され得る。サイトカイン放出(例えば、TNFまたはIFN-)のレベルにおける 2 倍の上昇が T 細胞活性化を示す標準的なサイトカインアッセイを 使用して測定した場合に、W T 1 ポリペプチド (2 0 0 n g / m 1 ~ 1 0 0 μ g / m 1 、 好ましくは100ng/ml~25μg/ml))との3~7日間の接触は、T細胞の増 殖において少なくとも2倍の上昇を生じるはずであり、そして/または上記のような2~ 3時間の接触は、T細胞の活性化を生じるはずである(Coliganら、Curren Protocols in Immunology、第1巻、Wiley Inte rscience (Greene 1998)を参照のこと)。WT1特異的T細胞は、 標 準 的 な 技 術 を 使 用 し て 拡 大 さ れ 得 る 。 好 ま し い 実 施 態 様 に お い て 、 こ の T 細 胞 は 、 患 者 または関連しているか、もしくは関連していないドナーに由来し、そして刺激および拡大 の後に患者に投与される。

[0065]

WT1ポリペプチド、ポリヌクレオチド、またはWT1発現APCに応答して活性化された T細胞は、CD4 $^+$ および/またはCD8 $^+$ であり得る。CD4 $^+$ またはCD8 $^+$ T細胞の特異的活性化が、種々の様式で検出され得る。特異的 T細胞活性化を検出するための方法は、T細胞の増殖、サイトカイン(例えば、リンホカイン)の産生、または細胞溶解性活性の生成(すなわち、WT1に特異的な細胞傷害性 T細胞の生成)を検出することを包含する。CD4 $^+$ T細胞については、特異的 T細胞活性化を検出するために好ましい方法は、T細胞の増殖の検出である。CD8 $^+$ 細胞については、特異的 T細胞活性化を検出するために好ましい方法は、細胞溶解性活性の生成の検出である。

[0066]

治療目的については、WT1ポリペプチド、ポリヌクレオチド、またはAPCに応答して増殖するCD4⁺T細胞またはCD8⁺T細胞は、インビトロまたはインビボのいずれかで数の上では増殖され得る。インビトロでのこのようなT細胞の増殖は、種々の様式で達

成され得る。例えば、T細胞は、T細胞増殖因子(例えば、インターロイキン・2)、お よび/またはWT1ポリペプチドを合成する刺激性細胞を添加してか、または添加するこ となく、WT1ポリペプチドに再び曝露され得る。刺激性細胞の添加は、CD8+T細胞 応答を生成する場合に好ましい。T細胞は、WT1ポリペプチドでの断続的な再刺激に応 答する特異性を保持することで、インビトロで多数に増殖され得る。簡潔には、一次的な インビトロ刺激(IVS)については、多数のリンパ球(例えば、 4×10^7 よりも多い)が、ヒト血清を含む培地を有するフラスコ中に置かれ得る。WT1ポリペプチド(例え ば、10μg/mlでのペプチド)が、破傷風毒素(例えば、5μg/ml)とともに、 直接的に添加され得る。次いで、これらのフラスコが、インキュベートされ得る(例えば で7日間)。第2のIVSについては、次いで、T細胞が収集され、そして2~ 3 × 1 0 ⁷の 照 射 さ れ た 末 梢 血 単 核 細 胞 を 有 す る 新 し い フ ラ ス コ 中 に 置 か れ る 。 W T 1 ポ リペプチド(例えば、10μg/ml)が、直接的に添加される。これらのフラスコが、 で7日間インキュベートされる。第2のIVSの2日および4日後に、2~5ユニ ットのインターロイキン・2(IL・2)が、添加され得る。第3のIVSについては、 T細胞は、ウェル中に置かれ得、そしてこのペプチドでコーティングされた、個体独自の EBV形質転換B細胞で刺激され得る。IL-2が、各々の周期の2日目および4日目に 添加され得る。これらの細胞が特異的な細胞傷害性T細胞であることが示されるとすぐに 、これらは、2、4および6日目により多いIL-2(20ユニット)を用いて、10日 の刺激周期を使用して拡大され得る。

[0067]

あるいは、WT1ポリペプチドの存在下で増殖する1以上のT細胞が、クローニングに よって、数の上で拡大され得る。細胞をクローニングするための方法は、当該分野におい て公知であり、そして限界希釈を含む。応答性T細胞は、密度勾配遠心分離およびヒツジ 赤血球細胞ロゼッティングにより感作された患者の末梢血から精製され得、そして照射さ れた自己充填細胞(autologous filler cell)の存在下で名目上 の抗原で刺激することによって培養物中で樹立され得る。CD4⁺T細胞株を生成するた めに、W T 1 ポリペプチドが、抗原性刺激として使用され、そしてエプスタイン・バーウ イルスでの感染により不死化された自己末梢血リンパ球(PBL)またはリンパ芽球腫細 胞株(LCL)は、抗原提示細胞として使用される。CD8⁺T細胞株を生成するために 、 W T 1 ポ リ ペ プ チ ド を 産 生 す る 発 現 ベ ク タ ー で ト ラ ン ス フ ェ ク ト さ れ た 自 己 抗 原 提 示 細 胞が、刺激性細胞として使用され得る。樹立されたT細胞株は、1×10⁶の照射された PBL細胞またはLCL細胞および組換えインターロイキン - 2 (r I L - 2) (5 0 U / m l)を有する 9 6 ウェル平底プレートにおける 1 ウェルあたり 0 . 5 の細胞の頻度で . 刺激されたT細胞をプレートすることによって抗原刺激の2~4日後にクローニングさ れ得る。樹立されたクローン増殖を有するウェルは、最初のプレーティングのおよそ2~ 3週間あとに同定され、そして自己抗原提示細胞の存在下で適切な抗原で再刺激され、次 いで 続いて、 抗原 刺 激 の 2 ~ 3 日 後 で の 低 用 量 の r I L 2 (1 0 U / m l) の 添 加 に よっ て拡大され得る。T細胞クローンは、およそ2週間毎の抗原およびrIL2での定期的な 再刺激によって24ウェルプレートにおいて維持され得る。

[0068]

特定の実施態様では、同種異系T細胞が、インビボおよび/またはインビトロでプライムされ得る(すなわち、WT1に感作される)。このようなプライミングは、WT1ポリペプチド、このようなポリペプチドをコードするポリヌクレオチドまたはこのようなポリペプチドを産生する細胞と、T細胞をプライムすることを許容する条件下および時間で、接触させることによって達成され得る。一般に、T細胞は、例えば、本明細書中に記載される標準的な増殖、クロム放出および/またはサイトカイン放出アッセイにより測定されるように、WT1ポリペプチドとの接触がT細胞の増殖および/または活性化を生じる場合に、プライムされるとみなされる。陰性コントロールと比較して、増殖または溶解における2倍よりも大きい上昇、およびサイトカインレベルにおける3倍よりも大きい上昇の刺激指数は、T細胞特異性を示す。インビトロでプライムされた細胞は、例

10

20

30

40

20

30

40

50

えば、骨髄移植において、またはドナーリンパ球注入として、用いられ得る。

[0069]

(薬学的組成物およびワクチン)

特定の局面において、ポリペプチド、ポリヌクレオチド、抗体および / またはT細胞が、薬学的組成物またはワクチンに組み込まれ得る。あるいは、薬学的組成物は、WT1ポリスクレオチドでトランスフェクトされた抗原提示細胞(例えば、樹状細胞)を含み得、この結果、この抗原提示細胞は、WT1ポリペプチドを発現する。薬学的組成物は、1以上のこのような化合物または細胞、および薬理学的に受容可能なキャリアまたは賦形剤を含む。特定のワクチンは、1以上のそのような化合物または細胞、および非特異的免疫に答エンハンサー(例えば、アジュバントまたはリポソーム(これらの中に化合物が取り込まれる))を含み得る。薬学的組成物およびワクチンは、送達系(例えば、米国特許第4,897,268号および同第5,075,109号に開示される生分解性ミクロスフェアのような)をさらに含み得る。本発明の範囲内の薬学的組成物およびワクチンはまた、生物学的に活性または不活性であり得る、他の化合物を含み得る。

[0070]

特定の実施態様において、薬学的組成物およびワクチンは、患者(例えば、ヒト)においてWT1ポリペプチドに特異的なT細胞応答を誘発するように設計される。一般的に、T細胞応答は、比較的短いポリペプチド(例えば、ネイティブWT1ポリペプチドのの連続残基、より好ましくは、8~16の連続残基を含む)を介して支持のの連続残基を含む)を介して支持のの連続残基を含む)を介して支持のの連続残基を含む)を介して支持のの連続残基を含む)を介して支持のの連続残基を含む)を介して支持のの連続残基を含む)を介して支持のの連続残基を含む)を介して支持のの連続残基を含む)を介して支持のの連続残基を含む)を介してよりを介して、ロクチンは、T細胞応答を優先的に増強する非特別のに増強すると、この免疫応答エンハンサーは、WT11がのよびのデェント(例えば、CFA)のので増強には、T細胞応答を少なとも2倍、溶解性応答を少なよりに増強しのでは、が増強に比べて増殖性を少なとも2倍増強し得るが、抗体応答が増強ないとも2倍増強し得るが、抗体応答を検出の影響を表しない。WT1ポリペプチドに対するT細胞応答または抗体応答が増強される一般的に、当該分野で公知の任意の代表的技術(例えば、本明細書中に提供される技術)を使用して決定され得る。

[0071]

薬学的組成物またはワクチンは、上記のようなポリペプチドの1以上をコードするDN Aを含み得、その結果、このポリペプチドはインサイチュで生成される。上記のように、 DNAは、当業者に公知の種々の送達系のいずれかの中に存在し得、これらの送達系とし ては、核酸発現系、細菌発現系およびウイルス発現系ならびに哺乳動物発現系が挙げられ る。適切な核酸発現系は、患者における発現に必要なDNA配列、cDNA配列またはR NA配列(例えば、適切なプロモーターおよび終結シグナル)を含む。細菌送達系は、細 菌(例えば、Bacillus‐Calmette‐Guerrin)の投与を含み、そ の細菌は、その細胞表面上でポリペプチドの免疫原性部分を発現する。好ましい実施態様 において、DNAは、ウイルス発現系(例えば、ワクシニアウイルスまたは他のポックス ウイルス、レトロウイルス、あるいはアデノウイルス)を使用して導入され得、これらの 発 現 系 は 、 非 病 原 性 (欠 損 性) の 複 製 コン ピテン ト な ウ イ ル ス の 使 用 を 含 み 得 る 。 こ の よ うな発現系にDNAを組み込むための技術は、当業者に周知である。このDNAはまた、 例えば、Ulmerら、Science 259:1745-1749、1993に記載 され、そしてCohen, Science 259:1691-1692、1993に総 説されるように、「裸」であり得る。裸のDNAの取り込みは、生分解性ビーズ上にこの DNAをコートすることによって増加され得、このビーズは、細胞に効率的に輸送される

[0072]

上記のように、薬学的組成物またはワクチンは、WT1ポリペプチドを発現する抗原提

20

30

40

50

示細胞を含み得る。治療目的のために、本明細書中に記載されるように、抗原提示細胞は、好ましくは、自己の樹状細胞である。このような細胞は、Reevesら、CancerRes.56:5672-5677,1996;Tutingら、J.Immuno1.160:1139-1147,1998;およびNairら、Nature Biotechnol.16:364-369,1998に記載のような、標準的な技術を使用して調製およびトランスフェクトされ得る。抗原提示細胞の表面上のWT1ポリペプチドの発現は、本明細書中に記載のような、インビトロ刺激および標準的な増殖、ならびにクロム放出アッセイによって確証され得る。

[0073]

当業者に公知の任意の適切なキャリアは、本発明の薬学的組成物において使用され得るが、キャリアの型は、投与形態に依存して変化する。本発明の組成物は、任意の適切な投与形式(例えば、局所的投与、経口投与、経鼻投与、静脈内投与、頭蓋内投与、腹腔内投与、皮下投与または筋肉内投与を含む)について処方され得る。非経口投与(例えば、ワルコール、脂肪、ワックスまたは緩衝液を含む。経口投与のために、上記のキャリアのいずれか、または固・キャリア(例えば、マンニトール、ラクトース、デンプン、ステアリン酸マグネシウム、サッカリンナトリウム、タルク、セルロース、グルコース、スクロース、および炭酸マグッカリンナトリウム、タルク、セルロース、グルコース、ボリ乳酸ポリグリコール・シウム)が、使用され得る。生分解性ミクロスフェア(例えば、ポリ乳酸ポリグリコール酸)もまた、本発明の薬学的組成物のためにキャリアとして使用され得る。特定の局所適用のために、周知の成分を使用するクリームまたはローションのような処方物が、好ましい。

[0074]

このような組成物はまた、緩衝液(例えば、中性の緩衝化生理食塩水またはリン酸緩衝化生理食塩水)、炭水化物(例えば、グルコース、マンノース、スクロースまたはデキストラン)、マンニトール、タンパク質、ポリペプチドまたはアミノ酸(例えば、グリシン)、抗酸化剤、キレート剤(例えば、EDTAまたはグルタチオン)、アジュバント(例えば、水酸化アルミニウム)および / または保存剤を含み得る。あるいは、本発明の組成物は、凍結乾燥物として処方され得る。化合物はまた、周知の技術を使用してリポソーム内にカプセル化され得る。

[0075]

任意の種々の非特異的免疫応答エンハンサー(例えば、アジュバント)が、本発明のワ クチンにおいて使用され得る。多くのアジュバントは、迅速な異化から抗原を保護するよ うに設計された物質(例えば、水酸化アルミニウムまたは鉱油)、および免疫応答の刺激 物質(例えば、リピドA、Bortadella pertussisまたはMycob acterium tuberculosis誘導タンパク質)を含む。適切な非特異的 免疫応答エンハンサーとしては、以下が挙げられる:ミョウバンベースのアジュバント(例えば、Alhydrogel、Rehydrogel、リン酸アルミニウム、Alga mmulin、水酸化アルミニウム);オイルベースのアジュバント(フロイントアジュ バント(FA)、Specol、RIBI、TiterMax、Montanide SA50またはSeppic MONTANIDE ISA 720);サイトカイン(例えば、GM-СSFまたはF1at3リガンド); ミクロスフェア; 非イオン性ブロッ ク コ ポ リ マ ー ベ ー ス の ア ジ ュ バ ン ト ; ジ メ チ ル ジ オ ク タ デ シ ル ア ン モ ニ ウ ム ブ ロ ミ ド (D DA)ベースのアジュバントAS-1、AS-2 (Smith Kline am); Ribi Adjuvant系ベースのアジュバント: QS21(Aquila);サポニンベースのアジュバント(粗サポニン、サポニンQuil A);ムラミルジ ペプチド(MDP)ベースのアジュバント(例えば、SAF(微小流動体化(micro f l u i d i z e d) 形態のSyntexアジュバント(SAF-m))); ジメチルジ オクタデシルアンモニウムブロミド(DDA);ヒト補体ベースのアジュバントm.va c c a e および誘導体;免疫刺激複合体(i s c o m)ベースのアジュバント;不活性化 毒素;および弱毒化した感染因子(例えば、M.tuberculosis)。

20

30

40

50

[0076]

上記のように、特定の実施態様において、免疫応答エンハンサーは、WT1ポリペプチドに対するT細胞応答(例えば、CD4⁺および/またはCD8⁺)を優先的に誘発または増強する、それらの能力について選択される。このような免疫応答エンハンサーは、当該分野で周知であり、そしてこれには、以下が挙げられる(しかし、これらに限定されない):Montanide ISA50、Seppic MONTANIDE ISA 720、サイトカイン(例えば、GM-CSFまたはFlat3リガンド)、ミクロスフェア、ジメチルジオクタデシルアンモニウムブロミド(DDA)ベースのアジュバント、AS-1(Smith Kline Beecham)、AS-2(Smith Kline Beecham)、AS-2(Smith Kline Beecham)、Ribi Adjuvant系ベースのアジュバント、QS21(Aquila)、サポニンベースのアジュバント(粗サポニン、サポニンQuil A)、微小流動体化形態のSyntexアジュバント(SAF-m)、MV、ddMV(Genesis)、免疫刺激複合体(iscom)ベースのアジュバントおよび不活性化毒素。

[0077]

本明細書中に記載される組成物およびワクチンは、徐放性処方物(すなわち、投与後に化合物の緩やかな放出をもたらす、カプセルまたはスポンジのような処方物)の一部として投与され得る。このような処方物は、一般的に、周知の技術を使用して調製され得、そして例えば、経口、直腸または皮下の埋め込みによるか、または所望の標的部位への埋め込みによって投与され得る。徐放性処方物は、ポリペプチド、ポリヌクレオチド、抗体または細胞を含み得、これらは、キャリアマトリックス中に分散されるか、そして/または速度制御性の膜に囲まれたリザーバ内に含まれる。このような処方物内での使用のためのキャリアは、生体適合性であり、そしてまた生分解性であり得;好ましくは、処方物は、比較的一定レベルの活性成分の放出を提供する。徐放性処方物内に含まれる活性化合物の量は、埋め込み部位、速度および予想される放出時間、ならびに処置または予防されるべき状態の性質に依存する。

[0078]

(悪性疾患の治療)

本発明のさらなる局面において、本明細書中に記載の組成物およびワクチンは、悪性疾患(例えば、進行性または転移性の疾患、あるいは小さい腫瘍負荷(例えば、最小の残留性疾患)によって特徴付けられる疾患)の発症を阻害するために使用され得る。一般的に、このような方法は、WT1発現に関連する疾患を予防、遅延または処置するために使用され得る。換言すると、本明細書中に提供される治療方法は、既存のWT1関連疾患を処置するために使用され得るか、あるいは疾患を有さない患者において、またはWT1発現に未だ関連付けられていない疾患に罹患している患者において、このような疾患の発症を予防または遅延させるために使用され得る。

[0079]

本明細書中で使用される場合、疾患の経過の間のいくつかの時点で疾患細胞(例えば、腫瘍細胞)が、その同じ組織の正常細胞より高レベルでWT1ポリペプチドを検出可能に生成する場合、その疾患は、「WT1発現に関連する」。WT1発現の悪性疾患との関連は、WT1が腫瘍上に存在することを必要としない。例えば、WT1の過剰発現は、腫瘍の開始に関連し得るが、そのタンパク質の発現は、その後消失し得る。あるいは、WT1発現の増加によって特徴付けられない悪性疾患は、後の時点で、WT1発現の増加によって特徴付けられる疾患に進行し得る。従って、疾患細胞が、増加レベルのWT1を先に発現したか、現在発現するか、または後に発現することが予想される任意の悪性疾患は、「WT1発現に関連する」するとみなされる。

[0800]

免疫治療は、任意の種々の技術を使用して実行され得、ここで、本明細書中に提供される化合物または細胞は、患者からWT1発現細胞を除去するように機能する。このような除去は、WT1またはWT1を発現する細胞に特異的な患者における免疫応答を増強また

20

30

40

50

は誘導する結果として生じ得る。あるいは、WT1発現細胞は、エキソビボで除去され得る(例えば、自己骨髄、末梢血、あるいは骨髄または末梢血の画分の処置によって)。骨髄または末梢血の画分は、当該分野の任意の標準的技術を使用して得られ得る。

[0081]

このような方法において、薬学的組成物およびワクチンは、患者に投与され得る。本明 細書中で使用される場合、「患者」とは、任意の温血動物(好ましくは、ヒト)をいう。 患者は、悪性疾患に罹患していてもよいし、していなくてもよい。従って、上記の薬学的 組成物およびワクチンは、疾患の発生を予防するために(すなわち、予防的に)使用され 得るか、または疾患に罹患した患者を処置するために(例えば、既存の疾患の進行および /または転移を、予防または遅延させるために)使用され得る。疾患に罹患した患者は、 最小の残留性疾患(例えば、完全または部分的寛解における白血病患者中の低い腫瘍負荷 、または外科的な放射線療法および/または化学療法後の腫瘍負荷の減少後の癌患者)を 有し得る。このような患者は、再発を阻害するために免疫化され得る(すなわち、再発を 予防または遅延させるか、あるいは再発の重篤度を低下させる)。特定の好ましい実施態 様において、患者は、白血病(例えば、AML、CML、ALLまたは幼少期ALL)、 脊髄形成異常症候群(MDS)または癌(例えば、胃腸癌、肺癌、甲状腺癌または乳癌、 あるいは黒色腫)に罹患し、ここで、白血病の癌は、WT1陽性(すなわち、本明細書中 に提供されるような、抗WT1抗体と検出可能に反応するか、または本明細書中に記載さ れるように、RT-PCRによって検出可能なレベルでWT1 mRNAを発現する)か 、またはWT1発現細胞に対する自己免疫疾患に罹患する。

[0082]

本明細書中に提供される組成物は、単独か、あるいは手術、照射、化学療法および/または骨髄移植(自己、同系、同種異系または無関係の)のような従来の治療レジメンと組み合わせて使用され得る。以下により詳細に議論されるように、本明細書中に提供される結合剤およびT細胞は、自己性の幹細胞をパージするために使用され得る。このようなパージング(purging)は、例えば、骨髄移植あるいは血液またはその成分の輸血の前に有益であり得る。本明細書中に提供される結合剤、T細胞、抗原提示細胞(APC)および組成物は、さらに、インビトロおよび/またはインビボで、自己、同系、同種異系または無関係のWT1特異的T細胞を、拡大および刺激(または初回刺激)するために使用され得る。このようなWT1特異的T細胞は、例えば、ドナーリンパ球注入において使用され得る。

[0083]

投与の経路および頻度、ならびに投薬量は、個体間で変化し、そして標準的な技術を使 用して容易に確立され得る。一般的に、薬学的組成物およびワクチンは、注射によって(例えば、皮内、筋肉内、静脈内または皮下)か、鼻内(例えば、吸入によって)にか、ま たは経口的に投与され得る。いくつかの腫瘍において、薬学的組成物またはワクチンは、 局所的に(例えば、直腸鏡検査(rectocoloscopy)、胃鏡検査、ビデオ内 視鏡検査(videoendoscopy)、血管造影または当該分野で公知の他の方法 によって)投与され得る。好ましくは、1~10用量が、52週の期間にわたって投与さ れ得る。好ましくは、6用量が、1ヶ月間隔で投与され、そしてブースターワクチン接種 が、その後定期的に与えられ得る。代替的プロトコルは、個々の患者に適切であり得る。 適切な用量は、上記のように投与される場合に、基底(すなわち、未処置)レベルより少 なくとも10~50%大きい、抗腫瘍免疫応答を促進し得る化合物の量である。このよう な応答は、患者における抗腫瘍抗体を測定することによってか、またはインビトロで患者 の 腫 瘍 細 胞 を 殺 傷 し 得 る 細 胞 溶 解 性 エ フ ェ ク タ ー 細 胞 の ワ ク チ ン 依 存 性 の 生 成 に よ っ て モ ニターされ得る。このようなワクチンはまた、非ワクチン接種患者と比較した場合に、ワ ク チ ン 接 種 し た 患 者 に お い て 改 善 さ れ た 臨 床 結 果 (例 え ば 、 よ り 頻 繁 な 完 全 ま た は 部 分 的 寛 解 、 あ る い は よ り 長 い 無 疾 患 お よ び / ま た は 全 体 敵 生 存) を 導 く 免 疫 応 答 を 引 き 起 こ し 得 る べ き で あ る 。 一 般 的 に 、 1 以 上 の ポ リ ペ プ チ ド を 含 む 薬 学 的 組 成 物 お よ び ワ ク チ ン に ついて、1用量に存在する各ポリペプチドの量は、約100µg~5mgの範囲である。

20

30

40

50

適切な用量サイズは、患者のサイズに伴って変化するが、代表的には、約 0 . 1 m L ~ 5 m L の範囲である。

[0084]

一般的には、適切な投薬量および治療レジメは、治療的および / または予防的利点を提供するに十分な量で活性な化合物を提供する。このような応答は、改善された臨床的な結果(例えば、より頻繁な完全または部分的寛解、またはより長く疾患がないこと、および / もしくは全体的な生存)を達成することによって、処置されていない患者と比較して処置された患者においてモニターされ得る。前から存在するWT1に対する免疫応答の増加は、一般的に、改善された臨床的な結果と相関する。このような免疫応答は、一般的に、標準的な増殖、細胞毒性、またはサイトカインアッセイを使用して評価され得る。これらは、処置の前後に患者から得られたサンプルを使用して実行され得る。

[0085]

さらなる局面において、WT 1 発現と関連する悪性疾患の発症を阻害するための方法は、上記のように、WT 1 ポリペプチドまたはWT 1 発現 APCに対する応答において活性化された自系のT細胞の投与を包含する。このようなT細胞は、CD 4^+ および/またはCD 8^+ であり得、そして上記のように増殖され得る。T細胞は、悪性疾患の発症を阻害するに有効な量で個体に投与され得る。代表的には、約 $1 \times 10^9 \sim 1 \times 10^{11}$ T細胞/M²が、静脈内、腔内、または切除された腫瘍のベッド中で投与される。細胞の数および投与の頻度が患者の応答に依存することは、当業者に明白である。

[0086]

特定の実施態様において、T細胞は、自系の骨髄移植の前に刺激され得る。このような刺激は、インビボまたはインビトロで生じ得る。インビトロの刺激については、患者から得られた骨髄および/または末梢血(または骨髄もしくは末梢血の画分)は、上記のようなT細胞の刺激を可能にするに十分な条件下および時間の間、WT1ポリペプチド、WT1ポリペプチドを発現するAPCと接触され得る。次いで、骨髄、末梢血幹細胞、および/またはWT1特異的T細胞は、標準的な技術を使用して患者に投与され得る。

[0087]

関連する実施態様において、関連するドナーまたは関連しないドナーのT細胞は、同系または同種異系の(関連するかまたは関連しない)骨髄移植の前に刺激され得る。このような刺激は、インビボまたはインビトロで起こり得る。インビトロの刺激については、関連するドナーまたは関連しないドナーから得られた骨髄および/または末梢血(または骨髄もしくは末梢血の画分)は、上記のようなT細胞の刺激を可能にするに十分な条件下および時間の間、WT1ポリペプチド、WT1ポリヌクレオチド、および/またはWT1ポリペプチドを発現するAPCと接触され得る。次いで、骨髄、末梢血幹細胞、および/またはWT1特異的T細胞は、標準的な技術を使用して患者に投与され得る。

[0088]

他の実施態様において、本明細書中に記載されるWT 1 特異的T細胞は、自系の骨髄、末梢血、または骨髄もしくは末梢血の画分(例えば、患者への投与前のCD 3 4 ⁺富化末梢血)からWT 1 を発現する細胞を取り除くために使用され得る。このような方法は、WT 1 を発現する細胞を、骨髄または末梢血中での骨髄細胞またはリンパ細胞の総数に対して10%未満まで、好ましくは5%未満まで、そしてより好ましくは1%未満までの減少させることを可能にするに十分な条件下で、またはそれを可能にするに十分な時間、骨髄またはPBをそのようなT細胞と接触されることによって実行され得る。このような細胞が取り除かれた程度は、例えば、定性的および定量的PCR分析、形態学、免疫組織化学、およびFACS分析のような標準的な方法によって容易に決定され得る。次いで、骨髄またはPB(またはそれらの画分)は、標準的な技術を使用して、患者に投与され得る。

[0089]

(診断的方法)

本発明はさらに、WT1発現と関連する悪性疾患を検出するための方法、およびそのよ

20

30

40

50

うな疾患のための免疫または治療の有効性をモニタリングするための方法を提供する。このような方法は、WT1タンパク質に特異的な免疫応答がこのような疾患に罹患した患者において検出され得、そしてこのような免疫応答を増強する方法は、予防的または治療的利点を提供し得るという、本発明における発見に基づく。

[0090]

W T 1 発現に関連する悪性疾患の存在または非存在を決定するために、患者は、W T 1 に特異的なT細胞のレベルについて試験され得る。特定の方法において、患者から単離さ れた C D 4 ⁺および / または C D 8 ⁺ T 細胞を含む生物学的サンプルは、W T 1 ポリペプチ ド、WT1ポリペプチドをコードするポリヌクレオチド、および/またはWT1ポリペプ チドを発現するAPCとともにインキュベートされ得、そして本明細書中に記載されるよ うに、T細胞の特異的活性化の存在または非存在が検出される。適切な生物学的サンプル には、単離されたT細胞が含まれるが、これには限定されない。例えば、T細胞は、慣用 的な技術によって(例えば、末梢血リンパ球のFicol1/Hypaque密度勾配遠 心分離によって)患者から単離され得る。T細胞は、インビトロで、WT1ポリペプチド (例えば、5~25µg/ml)と37 で、2~9日間(代表的には4日間)インキュ ベートされ得る。コントロールとして機能するために、WT1ポリペプチドの非存在下で T細胞サンプルの別のアリコートをインキュベートさせることが所望され得る。CD4^ T細胞については、活性化は、好ましくはT細胞の増殖を評価することによって検出され る。CD8⁺T細胞については、活性化は、好ましくは細胞溶解活性を評価することによ って検出される。疾患を有しない患者における、少なくとも2倍多い増殖のレベルおよび / または少なくとも 2 0 % 多 N 細 胞 溶 解 性 活 性 の レ ベ ル は 、 W T 1 発 現 に 関 連 す る 悪 性 疾 患 の 存 在 を 示 す 。 増 殖 の レ ベ ル お よ び / ま た は 細 胞 溶 解 性 活 性 と 、 治 療 に 対 す る 予 想 さ れ た応答との間のさらなる相関は、当該分野で周知の方法を用いて作製され得る。特に、よ り高い抗体応答、増殖応答、および/または溶解性応答を示す患者は、治療に対するより 高い応答を示すことが予測され得る。

[0091]

他の方法において、患者から得られた生物学的サンプルは、WT1に特異的な抗体のレベルについて試験される。生物学的サンプルは、免疫複合体を形成するに十分な条件下および時間の間、WT1ポリペプチド、WT1ポリペプチドをコードするポリヌクレオチド、および/またはWT1ポリペプチドを発現するAPCとともにインキュベートされる。次いで、WT1ポリペプチドに特異的に結合する生物学的サンプル中でWT1ポリペプチドと抗体との間に形成された免疫複合体が、検出される。このような方法における使用のための生物学的サンプルは、抗体を含むことが予想される患者から得られた任意のサンプルであり得る。適切な生物学的サンプルには、血液、血清、腹水、骨髄、胸水、および脳脊髄液を含む。

[0092]

生物学的サンプルは、ポリペプチドと、WT1に特異的な抗体との間で免疫複合体を形成するに十分な条件下および時間の間、反応混合液中で、WT1ポリペプチドとともにインキュベートされる。例えば、生物学的サンプルおよびWT1ポリペプチドは、4 で24~38時間インキュベートされ得る。

[0093]

インキュベーション後、反応混合液は、免疫複合体の存在について試験される。WT1ポリペプチドと、生物学的サンプル中に存在する抗体との間に形成された免疫複合体の検出は、種々の公知の技術(例えば、ラジオイムノアッセイ(RIA)および酵素結合免疫吸着検定法(ELISA))によって達成され得る。適切なアッセイは、当該分野で周知であり、そして科学文献および特許文献に十分に記載される(例えば、HarlowおよびLane、Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988)。使用され得るアッセイには、以下が含まれるがこれらに限定されない:Davidら(米国特許第4,376,110号)の二重モノクローナル抗体サンドウィッチイムノアッセイ技術;モノク

20

30

40

50

ローナル・ポリクローナル抗体サンドウィッチアッセイ(Wideら、KirkhamおよびHunter編,Radioimmunoassay Mathods,E.andS.Livingstone,Edinburgh,1970);Gordonらの「western blot」法(米国特許第4,452,901号);標識したリガンドの免疫沈降(Brownら、J.Biol.Chem.255:4980-4983,1980);例えば、RainesおよびRoss(J.Biol.Chem.257:5154-5160,1982)によって記載される酵素結合免疫吸着検定法(ELISA);蛍光色素の使用を含む免疫細胞化学技術(Brooksら、Clin,Exp.Immunol.39:477,1980);および活性の中和(Bowen-Popeら、Proc.Natl.Acad.Sci.USA 81;2396-2400,1984)。他のイムノアッセイには以下の米国特許に記載されるものが含まれるが、これらに限定されない:米国特許第3,817,827号;同第3,850,752号;同第3,901,654号;同第3,935,074号;および同第4,098,876号。

[0094]

検出目的のために、WT1ポリペプチドは、標識されるか、または標識されないかのいずれかであり得る。標識されないWT1ポリペプチドは、凝集アッセイにおいて、または免疫複合体に結合する標識された検出試薬(例えば、WT1ポリペプチドに特異的に結合する抗体に結合し得る、抗免疫グロブリン、プロテインG、プロテインA、もしくはレクチンおよび二次抗体、またはそれらの抗原結合フラグメント)と組み合わせて使用され得る。WT1ポリペプチドが標識される場合、レポーター基は、当該分野で公知の、任意の適切なレポーター基であり得、これらは、放射性同位元素、蛍光基、発光基、酵素、ビオチン、および色素粒子であり得る。

[0095]

特定のアッセイにおいて、標識していないWT1ポリペプチドは、固体支持体上に固定 化される。この固体支持体は、ポリペプチドが結合され得る、当業者にとって公知の任意 の物質であり得る。例えば、この固体支持体は、マイクロタイタープレート中の試験ウェ ルまたはニトロセルロースもしくは他の適切なメンブレンであり得る。あるいは、その支 持体は、ビーズまたはディスク(例えば、ガラス、ガラス繊維、ラテックス、または、ポ リスチレンもしくはポリビニルクロライドのようなプラスチック材料)であり得る。この 支 持 体 は ま た 、 磁 気 粒 子 ま た は 光 フ ァ イ バ ー セ ン サ ー (例 え ば 、 米 国 特 許 第 5 , 3 5 9 , 6 8 1 号に開示されるもののような)であり得る。ポリペプチドは、特許文献および科学 文献に十分に記載される、当業者に公知である種々の技術を用いて、固体支持体上に固定 化され得る。本発明の文脈において、用語「固定化」とは、非共有結合的な結合(例えば 、吸着)および共有結合的な結合(これは、抗原と支持体上の官能基との間の直接的な連 結であり得るか、または架橋剤による連結であり得る)の両方をいう。マイクロタイター プレート中のウェルまたはメンブレンへの吸着による固定化が好ましい。このような場合 において、吸着は、適切な緩衝液中で、適切な時間の間、WT1ポリペプチドを固体支持 体と接触されることによって達成され得る。接触時間は温度によって変動し得るが、代表 的には、約1時間と約1日間との間である。一般的に、プラスチックマイクロタイタープ レート(例えば、ポリスチレンまたはポリビニルクロライド)のウェルを、約10ng~ 約10μg、および好ましくは約100ng~約1μgの量の範囲のポリペプチドと接触 させることが、適切な量のポリペプチドを固定化するために十分である。

[0096]

固定化後に、支持体上の残存するタンパク質結合部位は、代表的にはブロックされる。当業者に公知である任意の適切なブロッキング剤(例えば、ウシ血清アルブミン、Tween20[™](Sigma Chemical Co.,St.Louis,MO)、熱不活化正常ヤギ血清(NGS)、またはBLOTTO(脱脂粉乳の緩衝化溶液であり、これはまた、保存剤、塩、および消泡剤も含む))。次いで、その支持体は、特異的な抗体を含むことが疑われる生物学的サンプルとともにインキュベートされる。そのサンプルは、

20

30

40

50

巧みに適用され得るか、または、より頻繁には、それは、通常、少量(重量で0.1%~5.0%)のタンパク質(例えば、BSA、NGS、またはBLOTTO)を含む緩衝溶液中で希釈され得る。一般的に、適切な接触時間(すなわち、インキュベーション時間)は、そのような抗体を含むサンプル中でWT1を特異的に結合する抗体の存在を検出するに十分である時間の間である。好ましくは、その接触時間は、結合した抗体と結合していない抗体との間の平衡において達成される、少なくとも約95%の結合である結合のレベルを達成するに十分である。当業者は、平衡を達成するに十分な時間が、時間の間にわたって生じる結合のレベルをアッセイすることによって容易に決定され得ることを理解する。室温においては、約30分間のインキュベーション時間が一般的に十分である。

[0097]

次いで、結合していないサンプルは、適切な緩衝液(例えば、 0 . 1 % Tween 2 0[™]を含むPBS)で固体支持体を洗浄することによって除去され得る。次いで、免疫複 合体を結合し、そしてレポーター基を含む検出試薬が添加され得る。その検出試薬は、結 合抗体を検出するに十分な時間の間、免疫複合体とともにインキュベートされる。適切な 時間の長さは、一般的に、時間の間にわたって生じる結合のレベルをアッセイすることに よって決定され得る。次いで、結合していない検出試薬が除去され、そして結合した検出 試薬が、レポーター基を用いて検出される。レポーター基を検出するために用いられる方 法は、レポーター基の性質に依存する。放射活性基については、シンチレーション計数ま たはオートラジオグラフィー法が一般に適切である。分光学的な方法は、色素、発光基、 および蛍光基を検出するために使用され得る。ビオチンは、異なるレポーター基(一般に 、放射活性基もしくは蛍光基、または酵素)に結合されたアビジンを用いて検出され得る 。酵素レポーター基(例えば、西洋ワサビペルオキシダーゼ、 - ガラクトシダーゼ、ア ルカリホスファターゼ、およびグルコースオキシダーゼ)は、一般に、基質の添加(一般 に、特定の時間の間)によって検出され得、続いて、反応生成物の分光学的分析または他 の分析によって検出され得る。利用される特定の方法に関わらず、バックグラウンド(す なわち、疾患を有しない個体から得られた生物学的サンプルについて観察されたレベル) よりも少なくとも 2 倍大きい結合した検出試薬のレベルは、WT1発現に関連する悪性疾 患の存在を示す。

[0098]

一般的に、免疫または治療の有効性をモニタリングするための方法は、患者におけるWT1に特異的な抗体またはT細胞のレベルの変化をモニタリングする工程を含む。抗体生物学のサンプルを、治療お法は、以下の工程を含み得る:(a)患者から得られた生物学的サンプルを、治療および免疫の前に、WT1ポリペプチドとはインキュベートおよび時間の間、行われる;(b)WT1ポリペプチドと、WT1ポリペプチドに特異ので、このインキュベーションは、免疫を複合体が出まれた免疫を関いて、エ程(a)が高または免疫後の患者から取られた第2の生物学ンプルを用いて、工程(a)がよび(b)とを反復する工程;ならびに(d)第1および第2の生物学のサンプルすらのよび(b)とを反復する工程。あるいは、WT1ポリペプチドをコードをポリスクレオチドまたはWT1ポリペプチドを発現するAPCが、WT1ポリペプ・でポカリに利用され得る。この発現されWT1ポリペプチドによって発現されWT1ポリペプチドと、生物学的サンプル中の抗体との間の免疫複合体が検出される。

[0099]

T細胞活性化および/またはWT1特異的前駆体の数をモニターする方法は、以下の工程を包含し得る: (a)治療または免疫前の患者から得られたCD4+細胞および/またはCD8+細胞を含む第1の生物学的サンプル(例えば、骨髄、末梢血、またはそれらの画分)を、WT1ポリペプチドと共にインキュベートする工程であって、T細胞の特異的な活性化、増殖、および/または溶解を可能にするに十分な条件および時間で、このインキュベーションを実施する、工程;(b)T細胞の活性化、増殖、および/または溶解の

量を検出する工程;(c) C D 4 + T 細胞および / または C D 8 + T 細胞を含み、かつ治療または免疫後の同一患者から採取された第 2 の生物学的サンプルを使用して、工程(a)および工程(b)を繰り返す工程;ならびに(d)第 1 の生物学的サンプルおよび第 2 の生物学的サンプルにおける、 T 細胞の活性化、増殖、および / または溶解の量を比較する工程。あるいは、 W T 1 ポリペプチドをコードするポリヌクレオチド、または W T 1 ポリペプチドを発現する A P C を、 W T 1 ポリペプチドの代わりに使用し得る。

[0100]

このような方法における使用のための生物学的サンプルは、抗体、CD4+ T細胞および/またはCD8+ T細胞を含むことが予期される患者から得られる任意のサンプルであり得る。適切な生物学的サンプルとしては、血液、血清、腹水、骨髄、胸水、および脳脊髄液が挙げられる。第1の生物学的サンプルは、治療もしくは免疫の開始前に、または治療もしくはワクチン接種レジメンを通した途中(part way)で獲得され得る。第2の生物学的サンプルは、類似の様式であるが、さらなる治療または免疫後の時点で獲得されるべきである。第2の生物学的サンプルは、第1の生物学的サンプルの単離と第2の生物学的サンプルの単離との間に、少なくとも一部の治療または免疫が行われるという条件で、治療もしくは免疫の完了時またはその途中で獲得され得る。

[0101]

両方のサンプルについてのインキュベーション工程および検出工程を、一般に、上記のように実施し得る。第1のサンプルと相対的な第2のサンプルにおける免疫複合体の数の統計的に有意な増加は、首尾よい治療または免疫を反映する。

[0102]

以下の実施例は例示のために提供され、制限のためではない。

[0103]

(実施例)

(実施例1)

(血液学的悪性疾患を有する患者における、WT1に対する免疫応答の同定)

本実施例は、血液学的悪性疾患を有する患者において存在する免疫応答の同定を例証する。

[0104]

患者において予め存在するWT1特異的抗体応答を評価するため、AML、ALL、CMLおよび重篤な再生不良性貧血を有する患者の血清を、ウェスタンブロット分析を用いて分析した。ヒト白血病性細胞株K562(American

Type Culture Collection、Manassas、VA)由来のWT1を免疫沈降する能力について、血清を試験した。各々の場合において、免疫沈降物をゲル電気泳動により分離し、メンブレンに転写し、そして抗WT-1抗体であるWT180(Santa Cruz Biotechnology,Inc.、Santa Cruz、CA)でプローブした。このウェスタンブロット分析は、血液学的悪性疾患を有する患者において強力なWT1特異的抗体を同定した。AMLを有する患者についての結果を示す代表的なウェスタンブロットを、図2に示す。この患者の血清を使用して生成された免疫沈降物中の52kDタンパク質を、WT1特異的抗体により認識した。52kDタンパク質は、陽性コントロールと同じサイズに移動した。

[0105]

(実施例2)

(WT1を発現する細胞株で免疫したマウスにおける、WT1に対する抗体の同定) 本実施例は、インビボでWT1特異的抗体応答を誘導するための、WT1を発現する細胞の使用を例証する。

[0106]

白血病を有する患者において存在するWT1に対する抗体の検出は、WT1に対する免疫を誘発するために、WT1タンパク質に対して免疫することが可能であることを強力に暗示した。WT1に対する免疫がワクチン接種により生成され得るか否かを試験するため

10

20

30

40

に、TRAMP-C(B6起源のWT1陽性腫瘍細胞株)をマウスに注射した。簡潔には、雄性B6マウスを、皮下で 5×10^6 TRAMP-C細胞により免疫し、そして3週間の間隔で 5×10^6 細胞により2回追加免疫した。最後の免疫の3週間後に血清を獲得し、そして脾臓の単一細胞懸濁物を、25μMの -2-メルカプトエタノール、200ユニット/mlのペニシリン、10mMのL-グルタミン、および10%のウシ胎仔血清を有するRPMI 1640培地(GIBCO)中で調製した。

[0107]

TRAMP-Cに対する免疫後に、免疫した動物におけるWT1特異的抗体応答が検出可能であった。代表的なウェスタンブロットを図3に示す。これらの結果は、WT1タンパク質に対する免疫応答を誘発し得ることを示す。

[0108]

(実施例3)

WT1ペプチドで免疫したマウスにおけるThおよび抗体応答の同定)

本実施例は、WT1ペプチドでの免疫が、WT1に特異的な免疫応答を誘発する能力を 例証する。

[0109]

A b および増殖性 T 細胞応答を誘発するために適切なペプチドを、 T h 応答を誘発する能力を有するペプチドモチーフについて検索する T s i t e s プログラム(R o t h b a r d および T a y l o r、 E M B O J . 7 : 9 3 - 1 0 0、 1 9 8 8 ; D e a v i n ら、 M o l . I m m u n o l . 3 3 : 1 4 5 - 1 5 5、 1 9 9 6) に従って同定した。表 1 に示されるペプチドを、合成および配列決定した。

[0110]

【表1】

<u>表 I</u> WT1 ^07⁰41

107041	勘です り	注解
マウス: p6-22	RDLNALLPAVSSLGGGG	th WT1 mt 到1:対17
	(SEQ ID NO:13)	Ex 2 1 4 1
난 : p6-22	RDLNALLPAVPSLGGGG	
,	(SEQ ID NO:1)	
ヒト/マウス :	PSQASSGQARMFPNAPYLPSCLE	
p117-139	(SEQ ID NOs: 2 かい3)	
マウス:p244-262	GATLKGMAAGSSSSVKWTE	th WT1 新列1:对切
. ,	(SEQ ID NO:14)	ミスマッチ1
Ŀ	GATLKGVAAGSSSSVKWTE	
<u> </u>	(SEQ ID NO:4)	
ヒトノマウス :	RIHTHGVFRGIQDVR	
p287-301	(SEQ ID NOs: 15おび 16)	
マウス: p299-313	VRRVSGVAPTLVRS	ヒトWT1酉そかりにすけて
	(SEQ ID NO:17)	1522441
ヒトノマウス	CQKKFARSDELVRHH	
p421-435	(SEQ ID NOs: 19 おお20)	

免疫のために、ペプチドを以下のようにグループ分けした:

群A:p6-22ヒト: 1 m l 中に10.9 mg(10μl = 100μg)

p 1 1 7 - 1 3 9 ヒト/マウス: 1 m l 中に 7 . 6 m g (1 4 μ l = 1 0 0 μ g)

p 2 4 4 - 2 6 2 ヒト: 1 m 1 中に4 . 6 m g (2 2 μ l = 1 0 0 μ g) 群 B : p

2 8 7 - 3 0 1 ヒト/マウス: 1 m l 中に 7 . 2 m g (1 4 μ l = 1 0 0 μ g)

マウス p 2 9 9 - 3 1 3 ; 1 m l 中に 6 . 6 m g (1 5 μ l = 1 0 0 μ g)

20

10

30

40

р 4 2 1 - 4 3 5 ヒト / マウス: 1 m l 中に 3 . 3 m g (3 0 μ l = 1 0 0 μ g) コントロール: (F B L ペプチド 1 0 0 μ g) + C F A / I F A

コントロール: (CD45ペプチド 100μg)+CFA/IFA。

[0111]

群Aは、WT1のアミノ末端部分内に存在するペプチド(エキソン1)を含んだ。そして群Bは、他のDNA結合タンパク質に対する配列相同性を有する4つのジンクフィンガー領域を含むカルボキシ末端内に存在するペプチドを含んだ。群Bの中で、p287-301およびp299-313は、エキソン7(ジンクフィンガー1)由来であり、そしてp421-435は、エキソン10(ジンクフィンガーIV)由来であった。

[0112]

B6マウスを、WT1ペプチドの群またはコントロールペプチドで免疫した。ペプチドを、注射のために1mlの滅菌水中に溶解し、そしてB6マウスを3週間の間隔で3回免疫した。使用したアジュバントは、CFA/IFA、GM-CSF、およびMontinideであった。次いで、WT1に特異的な抗体の存在を、実施例1および2に記載のように決定し、そして増殖性T細胞応答を、標準的なチミジン取りこみアッセイを使用して評価した。このアッセイでは、細胞を抗原の存在下で培養し、そして取りこまれた放射能を測定することにより、増殖を評価した(Chenら、Cancer Res.54:1065-1070、1994)。詳細には、リンパ球を、1ウェルあたり2×10⁵細胞にて96ウェルプレート中で培養し、このウェルは4×10⁵の照射した(3000ラド)同系脾臓細胞および明示されたペプチドを有した。

[0113]

群Aとして明示されたペプチドの群によるマウスの免疫は、WT1に対する抗体応答を誘発した(図4)。ワクチンBに対する免疫後に全く抗体は検出されず、これはワクチンBでの免疫からのヘルパーT細胞応答の欠如と一致する。P117-139は、増殖性T細胞応答を誘発した(図5A~5C)。刺激指数(SI)は、8と72との間を変動した。他のペプチド(P6-22およびP299-313)もまた、増殖性T細胞応答を誘発することが示された。P6-22での免疫は2.3の刺激指数(SI)を生じ、そしてP299-313での免疫は3.3のSIを生じた。陽性コントロールは、ConA刺激したT細胞、ならびに既知の抗原(例えば、CD45およびFBL)で刺激したT細胞、および同種異系T細胞株(DeBruijnら、Eur.J.Immuno1.21:2963-2970、1991)を含んだ。

[0114]

図6Aおよび6Bは、ワクチンA(図6A)およびワクチンB(図6B)において各3つのペプチドについて観察された増殖性応答を示す。ワクチンAは、3と8との間(バルク線)を変動する刺激指数(SI)で、免疫ペプチドp6-22およびp117-139に対する増殖性T細胞応答を誘発した。p244-262に対する増殖応答は検出されなかった(図6A)。

[0115]

引き続くインビトロ刺激を、p6-22およびp117-139のみを使用する単一ペプチド刺激として実施した。p117-139でのワクチンA特異的T細胞株の刺激は、p6-22に対する応答を伴わずに、p117-139に対する増殖を生じた(図7A)。この株由来のクローンは、p117-139に特異的であった(図7B)。対照的に、p6-22でのワクチンA特異的T細胞株の刺激は、p117-139に対する応答を伴わずに、p6-22に対する増殖を生じた(図7C)。この株由来のクローンは、p6-22に特異的であった(図7D)。

[0116]

これらの結果は、WT1ペプチドでのワクチン接種が、WT1タンパク質に対する抗体 応答および免疫ペプチドに対する増殖性T細胞応答を誘発し得ることを示す。

[0117]

(実施例4:WT1ペプチドで免疫したマウスにおけるCTL応答の誘導)

10

20

30

40

本実施例は、WT1ペプチドのCTL免疫を誘発する能力を例示する。

[0 1 1 8]

クラスI MHCへの結合に適切なモチーフを有するペプチド(9マー)を、BIMAS HLAペプチド結合予測分析(Parkerら、J.Immunol.152:163,1994)を用いて同定した。このような分析で同定したペプチドを、表II~XLIVに示す。これらの表の各々において、スコアは、示したMHC分子に対するペプチドの理論的結合親和性(解離の半減期)を反映する。

[0119]

Th応答を誘発する能力を有するペプチドモチーフを検索する、Tsitesプログラム(RothbardおよびTaylor,EMBO J. 7:93-100,1988;Deavinら、Mol.Immunol.33:145-155,1996)を用いて同定したペプチドを、図8Aおよび8B、ならびに表XLVにさらに示す。

[0120]

[0121]

【表2】

		**************************************	スコア(この部分配列を含む分子の解離の 推定の半減期)
順位	開始位置	部分配列の残基のリスト CLESQPAIR (SEQ ID	18.000
1	137	NO:47)	18.500
2	80	GAEPHEEQC (SEQ	9.000
2	80	ID NO:87)	, , , , , , , , , , , , , , , , , , ,
3	40	FAPPGASAY (SEQ	5.000
3	1 70	ID NO:74)	
4	354	QCDFKDCER (SEQ	5.000
7	354	ID NO:162)	
5	2	GSDVRDLNA (SEQ	3.750
•	_	ID NO:101)	
6	152	VTFDGTPSY (SEQ ID	2.500
Į.		NO:244)	
7	260	WTEGQSNHS (SEQ	2.250
·		ID NO:247)	
8	409	TSEKPFSCR (SEQ ID	1.350
	Ì	NO:232)	
9	73	KQEPSWGGA (SEQ	1.350
		ID NO:125)	
10	386	KTCQRKFSR (SEQ	1.250
		ID NO:128)	
11	37	VLDFAPPGA (SEQ	1.000
		ID NO:241)	
12	325	CAYPGCNKR (SEQ	1.000
		ID NO:44)	0.000
13	232	QLECMTWNQ (SEQ	0.900
	<u> </u>	ID NO:167)	0.750
14	272	ESDNHTTPI (SEQ ID	0.730
		NO:71)	0.750
15	366	RSDQLKRHQ (SEQ	0.750
		ID NO:193)	0.750
16	222	SSDNLYQMT (SEQ ID NO:217)	0.750
	407	RSDELVRHH (SEQ	0.750
17	427	ID NO:191)	323
18	394	RSDHLKTHT (SEQ	0.750
1 10	374	ID NO:192)	
19	317	TSEKRPFMC (SEQ	0.675
'	1 31,	ID NO:233)	
20	213	QALLLRTPY (SEQ ID	0.500
-		NO:160)	

(表 I I I : ヒトW T 1 ペプチドのヒト H L A A 0 2 0 1 に対する結合についての、B I M A S H L A ペプチド結合予測分析の結果)【 0 1 2 2 】

10

20

30

【表3】

16.44	明仏仏	部分配列の残基のリスト	スコア(この部分配列を含む分子の解離の
順位 1	開始位置 126	RMFPNAPYL (SEQ	推定の半減期) 313.968
1	120	ID NO:185)	313.908
2	187		205 162
Z	10/	SLGEQQYSV (SEQ	285.163
3	10	ID NO:214)	101 804
3	10	ALLPAVPSL (SEQ ID	181.794
4	242	NO:34)	160.050
4	242	NLGATLKGV (SEQ	159.970
	205	ID NO:146)	60.060
5	225	NLYQMTSQL (SEQ	68.360
		ID NO:147)	
6	292	GVFRGIQDV (SEQ	51.790
	<u> </u>	ID NO:103)	
7	191	QQYSVPPPV (SEQ	22.566
		ID NO:171)	
8	280	ILCGAQYRI (SEQ ID	17.736
		NO:116)	
9	235	CMTWNQMNL (SEQ	15.428
		ID NO:49)	_
10	441	NMTKLQLAL (SEQ	15.428
		ID NO:149)	
11	7	DLNALLPAV (SEQ	11.998
		ID NO:58)	
12	227	YQMTSQLEC (SEQ	8.573
	i	ID NO:251)	
13	239	NQMNLGATL (SEQ	8.014
		ID NO:151)	
14	309	TLVRSASET (SEQ ID	7.452
		NO:226)	
15	408	KTSEKPFSC (SEQ ID	5.743
		NO:129)	
16	340	LQMHSRKHT (SEQ	4.752
		ID NO:139)	
17	228	QMTSQLECM (SEQ	4.044
		ID NO:169)	
18	93	TVHFSGQFT (SEQ ID	3.586
		NO:235)	
19	37	VLDFAPPGA (SEQ	3.378
		ID NO:241)	!
20	86	EQCLSAFTV (SEQ ID	3.068
		NO:69)	

(表IV:ヒトWT1ペプチドのヒトHLA A 0205に対する結合についての、BIMAS HLAペプチド結合予測分析の結果)【0123】

10

20

30

【表4】

	·		スコア(この部分配列を含む分子の解離の
順位	開始位置	部分配列の残基のリスト	推定の半減期)
1	10	ALLPAVPSL (SEQ ID	42.000
		NO:34)	
2	292	GVFRGIQDV (SEQ ID	-24.000
		NO:103)	
3	126	RMFPNAPYL (SEQ ID	21.000
	<u> </u>	NO:185)	
4	225	NLYQMTSQL (SEQ	21.000
		ID NO:147)	
5	239	NQMNLGATL (SEQ	16.800
		ID NO:151)	
6	302	RVPGVAPTL (SEQ ID	14.000
		NO:195)	
7	441	NMTKLQLAL (SEQ	7.000
	1	ID NO:149)	<u>-</u>
8	235	CMTWNQMNL (SEQ	7.000
	<u> </u>	ID NO:49)	
9	187	SLGEQQYSV (SEQ ID	6.000
		NO:214)	
10	191	QQYSVPPPV (SEQ ID	4.800
		NO:171)	
11	340	LQMHSRKHT (SEQ	4.080
	<u> </u>	ID NO:139)	
12	242	NLGATLKGV (SEQ	4.000
		ID NO:146)	
13	227	YQMTSQLEC (SEQ ID	3.600
		NO:251)	
14	194	SVPPPVYGC (SEQ ID	2.000
		NO:218)	
15	93	TVHFSGQFT (SEQ ID	2.000
		NO:235)	
16	280	ILCGAQYRI (SEQ ID	1.700
1.7		NO:116)	1000
17	98	GQFTGTAGA (SEQ ID	1.200
10	200	NO:99)	1,000
18	309	TLVRSASET (SEQ ID	1.000
19	81	NO:226) AEPHEEQCL (SEQ ID	0.980
17	01	NO:30)	U.70U
20	73	KQEPSWGGA (SEQ	0.960
20	13	ID NO:125)	V.30V

(表V:ヒトWT1ペプチドのヒトHLA A24に対する結合についての、BIMAS HLAペプチド結合予測分析の結果)【0124】

10

20

30

10

20

30

40

【表5】

			 スコア(この部分配列を含む分子の解離の
順位	開始位置	部分配列の残基のリスト	推定の半減期)
1	302	RVPGVAPTL (SEQ	16.800
	1	ID NO:195)	
2	218	RTPYSSDNL (SEQ ID	12.000
	1	NO:194)	
3	356	DFKDCERRF (SEQ	12.000
		ID NO:55)	
4	126	RMFPNAPYL (SEQ	9.600
		ID NO:185)	
5	326	AYPGCNKRY (SEQ	7.500
	1	ID NO:42)	-
6	270	GYESDNHT (SEQ ID	7.500
		NO:106)T	
7	239	NQMNLGATL (SEQ	7.200
		ID NO:151)	
8	10	ALLPAVPSL (SEQ ID	7.200
	<u></u>	NO:34)	
9	130	NAPYLPSCL (SEQ ID	7.200
		NO:144)	
10	329	GCNKRYFKL (SEQ	6.600
	I.,	ID NO:90)	
11	417	RWPSCQKKF (SEQ	6.600
		ID NO:196)	
12	47	AYGSLGGPA (SEQ	6.000
		ID NO:41)	
13	180	DPMGQQGSL (SEQ	6.000
		ID NO:59)	
14	4	DVRDLNALL (SEQ	5.760
	ļ	ID NO:62)	
15	285	QYRIHTHGV (SEQ	5.000
		ID NO:175)	
16	192	QYSVPPPVY (SEQ	5.000
		ID NO:176)	
17	207	DSCTGSQAL (SEQ	4.800
		ID NO:61)	
18	441	NMTKLQLAL (SEQ	4.800
10	 	ID NO:149)	4.000
19	225	NLYQMTSQL (SEQ	4.000
20	225	ID NO:147)	4.000
20	235	CMTWNQMNL (SEQ ID NO:49)	4.000
	<u></u>	ID MO:49)	

(表 V I : ヒトW T 1 ペプチドのヒト H L A A 3 に対する結合についての、 B I M A S H L A ペプチド結合予測分析の結果)【 0 1 2 5 】

【表6】

開始位置 部分配列の残基のリスト 推定の半減期 40.000 436 NMHQRNMTK (SEQ ID NO:148) 20.000 ID NO:168 20.000 ID NO:168 6.000 NO:48 126 RMFPNAPYL (SEQ ID NO:185 ID NO:185 4.500 ID NO:36 10 ALLPAVPSL (SEQ ID NO:34) 4.050 137 CLESQPAIR (SEQ ID NO:34) 4.000 4.000 137 CLESQPAIR (SEQ ID NO:34) 137 CLESQPAIR (SEQ ID NO:34) 137 CLESQPAIR (SEQ ID NO:34) 137 137 CLESQPAIR (SEQ ID NO:34) 137	
436	
240 QMNLGATLK (SEQ 20.000	
ID NO:168 6.000	
88 CLSAFTVHF (SEQ ID NO:48) 126 RMFPNAPYL (SEQ ID NO:185) 4.500 169 AQFPNHSFK (SEQ ID NO:36) 10 ALLPAVPSL (SEQ ID NO:34) 4.050 137 CLESQPAIR (SEQ ID 4.000	
NO:48) 126 RMFPNAPYL (SEQ ID NO:185) 169 AQFPNHSFK (SEQ ID NO:36) 10 ALLPAVPSL (SEQ ID NO:34) 137 CLESQPAIR (SEQ ID 4.000	
126 RMFPNAPYL (SEQ ID NO:185) 169 AQFPNHSFK (SEQ ID NO:36) 10 ALLPAVPSL (SEQ ID NO:34) 137 CLESQPAIR (SEQ ID 4.000	
ID NO:185) 169	
169 AQFPNHSFK (SEQ ID NO:36) 10 ALLPAVPSL (SEQ ID NO:34) 137 CLESQPAIR (SEQ ID 4.000	
ID NO:36) 10 ALLPAVPSL (SEQ ID NO:34) 137 CLESQPAIR (SEQ ID 4.000	
10 ALLPAVPSL (SEQ ID NO:34) 137 CLESQPAIR (SEQ ID 4.000	
NO:34) 4.000 137 CLESQPAIR (SEQ ID 4.000	
NO:34) 4.000 137 CLESQPAIR (SEQ ID 4.000	
1 ¹ 1 2 2 4 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
NO:47) 5 3.000	
225 NLYQMTSQL (SEQ 3.000	
1 ID NO:147) 2.700	
32 AQWAPVLDF (SEQ 2.700	
1D NO:37)	
0 280 ILCGAQYRI (SEQ ID 2.760	
1 N():110/ L 1 D()	_
1 386 KTCQRKFSR (SEQ 1.800	
1 ID NO:128) 1 1200)
235 CMTWNQMNL (SEQ 1.200	
12 ID NO:49)1 200)
13 441 NMTKLQLAL (SEQ 1.200	
10 NO:149)	0
14 152 VTFDGTPSY (SEQ ID	
NO:244)	00
15 187 SLGEQQYSV (SEQ 0.90	
15 ID NO:214)	00
16 383 FQCKTCQRK (SEQ 0.00	
10 NU:80)	50
17 292 GVFRGIQDV (SEQ U.4.	
1 ID NO:103)	05
18 194 SVPPPVYGC (SEQ ID 0.4	
NO:218)	100
19 287 RIHTHGVFR (SEQ ID 0.3	
NO:104)	360
20 263 GQSNHSTGY (SEQ U.S. ID NO:100)	

(表VII: ヒトWT1ペプチドのヒトHLA A68.1に対する結合についての、BIMAS HLAペプチド結合予測分析の結果)【0126】

【表7】

			7 - 7 /- AM/AMAAA. 47 - 47 - 47
順位	開始位置	部分配列の残基のリスト	│スコア(この部分配列を含む分子の解離の │推定の半減期)
1	100	FTGTAGACR (SEQ	100,000
-		ID NO:84)	100.000
2	386	KTCQRKFSR (SEQ	50.000
		ID NO:128)	
3	368	DQLKRHQRR (SEQ	30.000
	•	ID NO:60)	
4	312	RSASETSEK (SEQ ID	18.000
		NO:190)	
5	337	LSHLQMHSR (SEQ	15.000
		ID NO:141)	
6	364	FSRSDQLKR (SEQ ID	15,000
		NO:83)	
7	409	TSEKPFSCR (SEQ ID	15.000
		NO:232)	
8	299	DVRRVPGVA (SEQ	12.000
		ID NO:63)	
9	4	DVRDLNALL (SEQ	12.000
10	110	ID NO:62)	10.000
10	118	SQASSGQAR (SEQ	10.000
		ID NO:216)	0.000
11	343	HSRKHTGEK (SEQ	9.000
10	160	ID NO:111)	0.000
12	169	AQFPNHSFK (SEQ	9.000
12	202	ID NO:36)	0.000
13	292	GVFRGIQDV (SEQ	8.000
14	325	ID NO:103)	7.500
14	323	CAYPGCNKR (SEQ ID NO:44)	7.500
15	425	FARSDELVR (SEQ	7.500
15	423	ID NO:75)	7.500
16	354	QCDFKDCER (SEQ	7.500
••	357	ID NO:162)	7.500
17	324	MCAYPGCNK (SEQ	6.000
'	1 32.	ID NO:142)	51090
18	251	AAGSSSSVK (SEQ	6.000
		ID NO:28)	
19	379	GVKPFQCKT (SEQ	6.000
		ID NO:104)	
20	137	CLESQPAIR (SEQ ID	5.000
		NO:47)	

(表VIII: ヒトWT1ペプチドのヒトHLA A 1101に対する結合についての、BIMAS HLAペプチド結合予測分析の結果)【0127】

10

20

30

【表8】

	T		
順位	開始位置	部分配列の残基のリスト	スコア(この部分配列を含む分子の解離の推定の半減期)
1	386	KTCQRKFSR (SEQ	1,800
•	300	ID NO:128)	·
2	169	AQFPNHSFK (SEQ	1.200
~		ID NO:36)	_
3	436	NMHQRNMTK (SEQ ID NO:148)	0.800
4	391	KFSRSDHLK (SEQ ID NO:120)	0.600
5	373	HQRRHTGVK (SEQ ID NO:109)	0.600
6	383	FQCKTCQRK (SEQ ID NO:80)	0.600
7	363	RFSRSDQLK (SEQ ID NO:178)	0.600
8	240	QMNLGATLK (SEQ ID NO:168)	0.400
9	287	RIHTHGVFR (SEQ ID NO:182)	0.240
10	100	FTGTAGACR (SEQ ID NO:84)	0.200
11	324	MCAYPGCNK (SEQ ID NO:142)	0.200
12	251	AAGSSSSVK (SEQ ID NO:28)	0.200
13	415	SCRWPSCQK (SEQ ID NO:201)	0.200
14	118	SQASSGQAR (SEQ ID NO:216)	0.120
15	292	GVFRGIQDV (SEQ ID NO:103)	0.120
16	137	CLESQPAIR (SEQ ID NO:47)	0.080
17	425	FARSDELVR (SEQ ID NO:75)	0.080
18	325	CAYPGCNKR (SEQ ID NO:44)	0.080
19	312	RSASETSEK (SEQ ID NO:190)	0.060
20	65	PPPPHSFI (SEQ ID NO:156)K	0.060

(表IX:ヒトWT1ペプチドのヒトHLA A 3 1 0 1 に対する結合についての、BIMAS HLAペプチド結合予測分析の結果)【0128】

【表9】

植	開始位置	部分配列の残基のリスト	スコア (この部分配列を含む分子の解離の 推定の半減期)
1	386	KTCQRKFSR (SEQ ID NO:128)	9.000
2	287	RIHTHGVFR (SEQ ID NO:182)	6.000
3	137	CLESQPAIR (SEQ ID NO:47)	2,000
4	118	SQASSGQAR (SEQ ID NO:216)	2.000
5	368	DQLKRHQRR (SEQ ID NO:60)	1.200
6	100	FTGTAGACR (SEQ ID NO:84)	1.000
7	293	VFRGIQDVR (SEQ ID NO:238)	0.600
8	325	CAYPGCNKR (SEQ ID NO:44)	0.600
9	169	AQFPNHSFK (SEQ ID NO:36)	0.600
10	279	PILCGAQYR (SEQ ID NO:155)	0.400
11	436	NMHQRNMTK (SEQ ID NO:148)	0.400
12	425	FARSDELVR (SEQ ID NO:75)	0.400
13	32	AQWAPVLDF (SEQ ID NO:37)	0.240
14	240	QMNLGATLK (SEQ ID NO:168)	0.200
15	354	QCDFKDCER (SEQ ID NO:162)	0.200
16	373	HQRRHTGVK (SEQ ID NO:109)	0.200
17	383	FQCKTCQRK (SEQ ID NO:80)	0.200
18	313	SASETSEKR (SEQ ID NO:197)	
19	358	KDCERRFSR (SEQ ID NO:118)	0.180
20	391	KFSRSDHLK (SEQ ID NO:120)	0.180

(表X:ヒトWT1ペプチドのヒトHLA A 3302に対する結合についての、BIMAS HLAペプチド結合予測分析の結果)【0129】

【表10】

頁位	開始位置	部分配列の残基のリスト	スコア(この部分配列を含む分子の解離の 推定の半減期) 15,000	
1	337	LSHLQMHSR (SEQ		
1		ID NO:141)	15.000	
2	409	TSEKPFSCR (SEQ ID		
_	1	NO:232)	15.000	
3	364	FSRSDQLKR (SEQ ID		
J		NO:83)	9,000	
4	137	CLESQPAIR (SEQ ID		
7		NO:47)	9,000	
5	368	DQLKRHQRR (SEQ		
J		ID NO:60)	4.500	
6	287	RIHTHGVFR (SEQ ID		
O	20,	NO:182)	3.000	
7	210	TGSQALLLR (SEQ ID		
1	210	NO:223) -	3,000	
8	425	FARSDELVR (SEQ	3.000	
ō	1 725	1D NO:75)	3,000	
	313	SASETSEKR (SEQ ID	5.000	
9	71.5	NO:197)	2,000	
- 16	293	VFRGIQDVR (SEQ II	5,000	
10	, 233	NO:238)	2.000	
	354	QCDFKDCER (SEQ	5,000	
1	334	(ID NO:162)	2.000	
1	2 100	FTGTAGACR (SEQ		
1	2 100	ID NO:84)	2.000	
 	3 118	SQASSGQAR (SEQ		
\	3 118	ID NO:216)	2 000	
<u> </u>	325	CAYPGCNKR (SEC	₹	
1	14 325	ID NO:44)	1500	
<u>_</u>	15 207	DSCTGSQAL (SEC	Q	
1	15 207	ID NO:61)	3.500	
L	16 139	ESQPAIRNQ (SEQ	ID	
1	16 139	NO:72)	1.500	
\perp	17 299	DVRRVPGVA (SE	Q	
	17 299	ID NO:63)	1.500	
L	18 419	PSCQKKFAR (SE	Q	
l	18 419	ID NO:159)	1.500	
L	19 272	ESDNHTTPI (SEQ	ID	
ļ	19 272	NO:71)	1 500	
Ļ	20 4	DVRDLNALL (SI	EQ	
Ì	20 4	ID NO:62)		

(表XI:ヒトWT1ペプチドのヒトHLA B14に対する結合についての、BIMAS HLAペプチド結合予測分析の結果)【0130】

【表11】

			 スコア(この部分配列を含む分子の解離の
順位	開始位置	部分配列の残基のリスト	大コア(この部分配列を含むかずの屏幕の 推定の半減期)
1	362	RRFSRSDQL (SEQ ID	1000.000
-		NO:187)	
2	332	KRYFKLSHL (SEQ	300.000
		ID NO:127)	
3	423	KKFARSDEL (SEQ	150.000
		ID NO:122)	
4	390	RKFSRSDHL (SEQ ID	150.000
		NO:183)	
5	439	QRNMTKLQL (SEQ	20.000
	•	ID NO:173)	•
6	329	GCNKRYFKL (SEQ	10.000
		ID NO:90)	`
7	10	ALLPAVPSL (SEQ ID	10.000
		NO:34)	
8	180	DPMGQQGSL (SEQ	9.000
		ID NO:59)	
9	301	RRVPGVAPT (SEQ	6.000
	<u> </u>	ID NO:189)	
10	126	126 RMFPNAPYL (SEQ 5.000	5.000
		ID NO:185)	
11	371	KRHQRRHTG (SEQ	5.000
<u> </u>		ID NO:126)	
12	225	NLYQMTSQL (SEQ	5.000
	<u> </u>	ID NO:147)	
13	144	IRNQGYSTV (SEQ ID	4.000
		NO:117)	0.000
14	429	DELVRHHNM (SEQ	3.000
		ID NO:53)	2.000
15	437	MHQRNMTKL (SEQ	3.000
4.0	<u> </u>	ID NO:143)	2.000
16	125	ARMFPNAPY (SEQ	3.000
		ID NO:38)	3.000
17	239	NQMNLGATL (SEQ	3.000
10	2006	ID NO:151)	3.000
18	286	YRIHTHGVF (SEQ ID NO:252)	3.000
19	174	HSFKHEDPM (SEQ	3.000
17	1/4	ID NO:110)	2.000
20	372	RHQRRHTGV (SEQ	3.000
20	312	ID NO:181)	1
	<u> </u>	10 1(0.101)	<u> </u>

(表XII: ヒトW T 1 ペプチドのヒト H L A B 4 0 に対する結合についての、B I M A S H L A ペプチド結合予測分析の結果)【0131】

10

20

30

【表12】

			スコア(この部分配列を含む分子の解離の
順位	開始位置	部分配列の残基のリスト	推定の半減期)
1	81	AEPHEEQCL (SEQ ID NO:30)	40.000
2	429	DELVRHHNM (SEQ ID NO:53)	24,000
3	410	SEKPFSCRW (SEQ ID NO:207)	20.000
4	318	SEKRPFMCA (SEQ ID NO:208)	15.000
5	233	LECMTWNQM (SEQ ID NO:131)	12.000
6	3	SDVRDLNAL (SEQ ID NO:206)	10.000
7	349	GEKPYQCDF (SEQ ID NO:91)	8.000
8	6	RDLNALLPA (SEQ ID NO:177)	5.000
9	85	EEQCLSAFT (SEQ ID NO:65)	4.000
10	315	SETSEKRPF (SEQ ID NO:209)	4.000 -
11	261	TEGQSNHST (SEQ ID NO:221)	4.000
12	23	GCALPVSGA (SEQ ID NO:89)	3.000
13	38	LDFAPPGAS (SEQ ID NO:130)	3.000
14	273	SDNHTTPIL (SEQ ID NO:204)	2.500
15	206	TDSCTGSQA (SEQ ID NO:220)	2.500
16	24	CALPVSGAA (SEQ ID NO:43)	2.000
17	98	GQFTGTAGA (SEQ ID NO:99)	2.000
18	30	GAAQWAPVL (SEQ ID NO:86)	2.000
19	84	HEEQCLSAF (SEQ ID NO:107)	2.000
20	26	LPVSGAAQW (SEQ ID NO:138)	2.000

(表XIII: ヒトWT1ペプチドのヒトHLA B60に対する結合についての、BIMAS HLAペプチド結合予測分析の結果)【0132】

【表13】

領位	開始位置	mij mij	スコア(この部分配列を含む分子の解離の 推定の半減期) 160.000
1	81	AEPHEEQCL (SEQ ID	400.000
		NO:30)	40.000
2	3	SDVRDLNAL (SEQ	-10 ,000
~		ID NO:206)	40.000
3	429	DELVRHHNM (SEQ	40.000
,	1 12	ID NO:53)	22.000
4	233	LECMTWNQM (SEQ	22.000
4		ID NO:131)	20,000
	273	SDNHTTPIL (SEQ ID	20.000
5	2/3	NO:204)	0.000
6	209	CTGSQALLL (SEQ ID	8.000
0	205	NO:52)	0.000
	30	GAAQWAPVL (SEQ	8.000
7	30	ID NO:86)	8.000
0	318	SEKRPFMCA (SEQ	8.000
8	310	ID NO:208)	0.000
<u></u>	180	DPMGQQGSL (SEQ	8.000
9	180	ID NO:59)	7.000
	138	LESQPAIRN (SEQ II	5.280
10	130	NO:132)	1.400
	239	NQMNLGATL (SEC	4.400
11	239	ID NO:151)	
	329	GCNKRYFKL (SEC	4.400
12	323	ID NO:90)	
L	130	NAPYLPSCL (SEQ I	D 4,400
13	130	NO:144)	
L_	4 85	EEQCLSAFT (SEQ)	ID 4.400
1.	4 83	NO:65)	
<u> </u>	5 208	SCTGSQALL (SEQ	ID 4,000
1	5 208	NO:202)	
<u> </u>	6 207	DSCTGSQAL (SE	Q 4.000
1	6 207	ID NO:61)	1,000
 	7 218	RTPYSSDNL (SEQ	ID 4.000
	218	NO:194)	1,000
L	18 261	TEGQSNHST (SEQ	ID 4.000
	18 261	NO:221)	4.000
_	19 18	LGGGGGCAL (SI	EQ 4.000
	19 18	ID NO:134)	2 200
]	20 221	YSSDNLYQM (SI	EQ 2.200
1	20 221	ID NO:253)	

(表XIV:ヒトWT1ペプチドのヒトHLA B61に対する結合についての、BIMAS HLAペプチド結合予測分析の結果)【0133】

【表14】

位	開始位置	部分配列の残基のリスト	スコア (この部分配列を含む分子の解離の 推定の半減期) 20.000
	318	SEKRPFMCA (SEQ	20.000
İ		ID NO:208)	16,000
2	429	DELVRHHNM (SEQ	i 10,000
		ID NO:53)	10.000
-	298	QDVRRVPGV (SEQ	10.000
		ID NO:164)	8.000
4	81	AEPHEEQCL (SEQ ID	8.000
) "	NO:30)	
5	233	LECMTWNQM (SEQ	8.000
)	255	ID NO:131)	5.500
	6	RDLNALLPA (SEQ	5.500
6	0	ID NO:177)	
	85	EEQCLSAFT (SEQ ID	4.000
7	85	NO:65)	
	261	TEGQSNHST (SEQ ID	4.000
8	261	NO:221)	
	206	TDSCTGSQA (SEQ	2.500
9	206	ID NO:220)	
		RGIQDVRRV (SEQ	2.200
10	295	ID NO:179)	
		SDVRDLNAL (SEQ	2.000
11	3	ID NO:206)	
		VAAGSSSSV (SEQ	2.000
12	250	ID NO:236)	
		SGAAQWAPV (SEC	2.000
13	29	ID NO:211)	
		SETSEKRPF (SEQ I	D 1.600
14	315	NO:209)	
		LESQPAIRN (SEQ I	D 1.200
15	138	NO:132)	
L		GATLKGVAA (SE	0 1.100
10	5 244	ID NO:88)	
		GGGGCALPV (SE	O 1.100
1	7 20	ID NO:92)	
L		RNMTKLQLA (SE	1.100
1	8 440	ID NO:186)	
<u></u>		GCALPVSGA (SE	1.100
T	9 23	ID NO:89)	
1		QQYSVPPPV (SE	1.000
	20 191	ID NO:171)	

(表XV:ヒトWT1ペプチドのヒトHLA B62に対する結合についての、BIMAS HLAペプチド結合予測分析の結果)【0134】

【表15】

植	開始位置	部分配列の残基のリスト	スコア(この部分配列を含む分子の解離の 推定の半減期) 211.200
 1	146	NQGYSTVTF (SEQ	
- 1		ID NO:150)	96.000
	32	AQWAPVLDF (SEQ	
	}	ID NO:37)	96.000
3	263	GQSNHSTGY (SEQ	
,		ID NO:100)	96,000
4	88	CLSAFTVHF (SEQ ID	
•	1	NO:48)	9.600
5	17	SLGGGGGCA (SEQ	_
,		ID NO:215)	8.800
6	239	NQMNLGATL (SEQ	0.000
U		ID NO:151)	8.000
7	191	QQYSVPPPV (SEQ	
,		ID NO:171) ,	8,000
8	98	GQFTGTAGA (SEQ	0.500
0		ID NO:99)	6,000
9	384	QCKTCQRKF (SEQ	
		ID NO:163)	4.800
10	40	FAPPGASAY (SEQ	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
IU	'	ID NO:74)	4.800
11	227	YQMTSQLEC (SEQ	1.50
1 1		ID NO:251)	1 400
13	187	SLGEQQYSV (SEQ	1.125
1.	2	ID NO:214)	4.400
1	3 86	EQCLSAFTV (SEQ II	
1	3	NO:69)	4.400
┝╌	4 152	VTFDGTPSY (SEQ I	_ """
l '		NO:244)	4.000
├-;	15 101	TGTAGACRY (SEC	}
۱ ٔ		ID NO:224)	4.000
-	16 242	NLGATLKGV (SEC	2
1	10 2.2	ID NO:146)	4.000
-	17 92	FTVHFSGQF (SEQ)	ID
1	11	NO:85)	4.000
\vdash	18 7	DLNALLPAV (SE	Q
1	,	1 (D NO:58)	4.000
\vdash	19 123	GQARMFPNA (SE	EQ
1	1)	ID NO:98)	0.100
+	20 280	ILCGAQYRI (SEQ	m /
١	20	NO:116)	

(表XVI:ヒトWT1ペプチドのヒトHLA B7に対する結合についての、BIMAS HLAペプチド結合予測分析の結果)【0135】

【表16】

			スコア(この部分配列を含む分子の解離の
順位	開始位置	部分配列の残基のリスト	推定の半減期)
1	180	DPMGQQGSL (SEQ ID NO:59)	240.000
2	4	DVRDLNALL (SEQ ID NO:62)	200.000
3	302	RVPGVAPTL (SEQ ID NO:195)	20.000
4	30	GAAQWAPVL (SEQ ID NO:86)	12.000
5	239	NQMNLGATL (SEQ ID NO:151)	12.000
6	130	NAPYLPSCL (SEQ ID NO:144)	12.000
7	10	ALLPAVPSL (SEQ ID NO:34)	12.000
8	299	DVRRVPGVA (SEQ = ID NO:63)	5.000
9	208	SCTGSQALL (SEQ ID NO:202)	4.000
10	303	VPGVAPTLV (SEQ ID NO:242)	4,000
11	18	LGGGGGCAL (SEQ ID NO:134)	4.000
12	218	RTPYSSDNL (SEQ ID NO:194)	4.000
13	207	DSCTGSQAL (SEQ ID NO:61)	4.000
14	209	CTGSQALLL (SEQ ID NO:52)	4,000
15	329	GCNKRYFKL (SEQ ID NO:90)	4.000
16	235	CMTWNQMNL (SEQ ID NO:49)	4.000
17	441	NMTKLQLAL (SEQ ID NO:149)	4.000
18	126	RMFPNAPYL (SEQ ID NO:185)	4.000
19	225	NLYQMTSQL (SEQ ID NO:147)	4.000
20	143	AIRNQGYST (SEQ ID NO:33)	3.000

(表XVII: ヒトWT1ペプチドのヒトHLA B8に対する結合についての、BIMAS HLAペプチド結合予測分析の結果)【0136】

【表17】

			 スコア(この部分配列を含む分子の解離の	
順位	開始位置	部分配列の残基のリスト	推定の半減期)	
1	329	GCNKRYFKL (SEQ ID NO:90)	16.000	
2	4	DVRDLNALL (SEQ ID NO:62)	12.000	
3	316	ETSEKRPFM (SEQ ID NO:73)	3.000	
4	180	DPMGQQGSL (SEQ ID NO:59)	1.600	
5	208	SCTGSQALL (SEQ ID NO:202)	0.800	
6	130	NAPYLPSCL (SEQ ID NO:144)	0.800	
7	244	GATLKGVAA (SEQ ID NO:88)	0.800	
8	30	GAAQWAPVL (SEQ ID NO:86)	0.800	
9	299	DVRRVPGVA (SEQ ID NO:63)	0.400	
10	420	SCQKKFARS (SEQ ID NO:200)	0.400	
11	387	TCQRKFSRS (SEQ ID NO:219)	0.400	
12	225	NLYQMTSQL (SEQ ID NO:147)	SEQ 0.400	
13	141	QPAIRNQGY (SEQ ID NO:170)	0.400	
14	10	ALLPAVPSL (SEQ ID NO:34)	0.400	
15	207	DSCTGSQAL (SEQ ID NO:61)	0.400	
16	384	QCKTCQRKF (SEQ ID NO:163)	0.400	
17	136	SCLESQPAI (SEQ ID NO:198)	0.300	
18	347	HTGEKPYQC (SEQ ID NO:112)	0.300	
19	401	HTRTHTGKT (SEQ ID NO:114)	0.200	
20	332	KRYFKLSHL (SEQ ID NO:127)	0.200	

(表XVIII: ヒトWT1ペプチドのヒトHLA B 2702に対する結合についての、BIMAS HLAペプチド結合予測分析の結果)【0137】

10

20

30

【表18】

i位	開始位置	部分配列の残基のリスト	スコア(この部分配列を含む分子の解離の 推定の半減期) 900,000
1	332	KRYFKLSHL (SEQ	900.000
	<u></u>	ID NO:127)	900.000
	362	RRFSRSDQL (SEQ ID	λού.000
		NO:187)	200.000
}	286	YRIHTHGVF (SEQ ID	200.000
,		NO:252)	200,000
1	125	ARMFPNAPY (SEQ	200.000
+	123	ID NO:38)	
	375	RRHTGVKPF (SEQ	180.000
5	\ 3/3	ID NO:188)	
<u> </u>	22	AQWAPVLDF (SEQ	100.000
6	32	ID NO:37)	
	001	RRVPGVAPT (SEQ	60.000
7	301	ID NO:189)	
	120	QRNMTKLQL (SEQ	60.000
8	439	ID NO:173)	
		RMFPNAPYL (SEQ	22.500
9	126	ID NO:185)	
		ARSDELVRH (SEQ	20.000
10	426	ID NO:39)	
		NQGYSTVTF (SEQ	20.000
11	146	ID NO:150)	
_		ID NO.130)	20.000
12	144	IRNQGYSTV (SEQ II	
		NO:117)	20.000
13	389	QRKFSRSDH (SEQ	
		ID NO:172)	20.000
14	263	GQSNHSTGY (SEQ	2010-
		ID NO:100)	20.000
15	416	CRWPSCQKK (SEC	20.000
	1	ID NO:50)	10.000
10	5 191	QQYSVPPPV (SEQ	10.000
- '	- (ID NO:171)	D 10.000
1	7 217	LRTPYSSDN (SEQ I	ן ע
•		NO:140)	
1	8 107	CRYGPFGPP (SEQ)	ID 10.000
		NO:51)	
	9 98	GQFTGTAGA (SEC	Q 10,000
1	´ ´ ´ `	ID NO:99)	
 	20 239	NQMNLGATL (SE	Q 6.000
1 1	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	ID NO:151)	

(表XIX:ヒトWT1ペプチドのヒトHLA B 2705に対する結合についての、BIMAS HLAペプチド結合予測分析の結果)【0138】

【表19】

			スコア(この部分配列を含む分子の解離の
順位	開始位置	部分配列の残基のリスト	推定の半減期)
1	332	KRYFKLSHL (SEQ	30000.000
-		ID NO:127)	
2	362	RRFSRSDQL (SEQ ID	30000.000
_		NO:187)	
3	416	CRWPSCQKK (SEQ	10000.000
_		ID NO:50)	
4	439	QRNMTKLQL (SEQ	2000.000
•	ļ	ID NO:173)	
5	286	YRIHTHGVF (SEQ ID	1000.000
•	ļ	NO:252)	
6	125	ARMFPNAPY (SEQ	1000.000
-	ļ	ID NO:38)	
7	294	FRGIQDVRR (SEQ ID	1000.000
		NO:81)	
8	432	VRHHNMHQR (SEQ	1000.000
	}	ID NO:243)	
9	169	AQFPNHSFK (SEQ	1000.000
		ID NO:36)	
10	375	RRHTGVKPF (SEQ	900.000
-		ID NO:188)	
11	126	RMFPNAPYL (SEQ	750.000
		ID NO:185)	
12	144	IRNQGYSTV (SEQ ID	600.000
]	NO:117)	
13	301	RRVPGVAPT (SEQ	600.000
	1	ID NO:189)	
14	32	AQWAPVLDF (SEQ	500.000
		ID NO:37)	
15	191	QQYSVPPPV (SEQ	300.000
		ID NO:171)	
16	373	HQRRHTGVK (SEQ	200.000
		ID NO:109)	
17	426	ARSDELVRH (SEQ	200.000
		ID NO:39)	000.000
18	383	FQCKTCQRK (SEQ	200.000
		ID NO:80)	200,000
19	239	NQMNLGATL (SEQ	200.000
		ID NO:151)	200,000
20	389	QRKFSRSDH (SEQ	200.000
		ID NO:172)	

(表XX:ヒトWT1ペプチドのヒトHLA B 3501に対する結合についての、 BIMAS HLAペプチド結合予測分析の結果) [0139]

【表20】

			スコア(この部分配列を含む分子の解離の
順位	開始位置	部分配列の残基のリスト	推定の半減期)
1	278	TPILCGAQY (SEQ ID NO:227)	40.000
2	141	QPAIRNQGY (SEQ ID NO:170)	40.000
3	219	TPYSSDNLY (SEQ ID NO:231)	40.000
4	327	YPGCNKRYF (SEQ ID NO:250)	20.000
5	163	TPSHHAAQF (SEQ ID NO:228)	20.000
6	180	DPMGQQGSL (SEQ ID NO:59)	20.000
7	221	YSSDNLYQM (SEQ ID NO:253)	20.000
8	26	LPVSGAAQW (SEQ ID NO:138)	10.000
9	174	HSFKHEDPM (SEQ ID NO:110)	10.000
10	82	EPHEEQCLS (SEQ ID NO:68)	6.000
11	213	QALLERTPY (SEQ ID NO:160)	6.000
12	119	QASSGQARM (SEQ ID NO:161)	6.000
13	4	DVRDLNALL (SEQ ID NO:62)	6.000
14	40	FAPPGASAY (SEQ ID NO:74)	6.000
15	120	ASSGQARMF (SEQ ID NO:40)	5,000
16	207	DSCTGSQAL (SEQ ID NO:61)	5.000
17	303	VPGVAPTLV (SEQ ID NO:242)	4.000
18	316	ETSEKRPFM (SEQ ID NO:73)	4.000
19	152	VTFDGTPSY (SEQ ID NO:244)	4.000
20	412	KPFSCRWPS (SEQ ID NO:123)	4.000

(表XXI:ヒトWT1ペプチドのヒトHLA B 3 7 0 1 に対する結合についての、BIMAS HLAペプチド結合予測分析の結果)【0140】

【表21】

			│ │ スコア(この部分配列を含む分子の解離の
順位	開始位置	部分配列の残基のリスト	推定の半減期)
1	3	SDVRDLNAL (SEQ	40,000
		ID NO:206)	
2	273	SDNHTTPIL (SEQ ID	40.000
		NO:204)	
3	81	AEPHEEQCL (SEQ ID	10.000
		NO:30)	
4	298	QDVRRVPGV (SEQ	8.000
		ID NO:164)	
5	428	SDELVRHHN (SEQ	6.000
		ID NO:203)	,
6	85	EEQCLSAFT (SEQ ID	5,000
		NO:65)	
7	208	SCTGSQALL (SEQ ID	5.000
		NO:202)	- 1.
8	4	DVRDLNALL (SEQ	5.000
		ID NO:62)	
9	209	CTGSQALLL (SEQ ID	5.000
	.==*	NO:52)	
10	38	LDFAPPGAS (SEQ ID	4.000
		NO:130)	
11	223	SDNLYQMTS (SEQ	4.000
		ID NO:205)	
12	179	EDPMGQQGS (SEQ	4.000 -
	1	ID NO:64)	
13	206	TDSCTGSQA (SEQ	4.000
		ID NO:220)	
14	6	RDLNALLPA (SEQ	4.000
-	İ	ID NO:177)	
15	84	HEEQCLSAF (SEQ ID	2.000
		NO:107)	
16	233	LECMTWNQM (SEQ	2.000
		ID NO:131)	
17	429	DELVRHHNM (SEQ	2.000
		ID NO:53)	
18	315	SETSEKRPF (SEQ ID	2.000
		NO:209)	
19	349	GEKPYQCDF (SEQ	2.000
		ID NO:91)	
20	302	RVPGVAPTL (SEQ	1.500
		ID NO:195)	

(表XXII: ヒトWT1ペプチドのヒトHLA B 3801に対する結合についての、BIMAS HLAペプチド結合予測分析の結果)【0141】

10

20

30

【表22】

植位	開始位置	部分配列の残基のリスト	スコア(この部分配列を含む分子の解離の 推定の半減期)
1	437	MHQRNMTKL (SEQ	36.000
1	1	ID NO:143)	
2	434	HHNMHQRNM (SEQ	6.000
_	15.	ID NO:108)	
3	372	RHQRRHTGV (SEQ	6.000
J]	ID NO:181)	
4	180	DPMGQQGSL (SEQ	4.000
4	100	ID NO:59)	
5	433	RHHNMHQRN (SEQ	3.900
3	455	ID NO:180)	
6	165	SHHAAQFPN (SEQ	3.900
U	105	ID NO:213)	
7	202	CHTPTDSCT (SEQ ID	3.000
	202	NO:45)	
8	396	DHLKTHTRT (SEQ	3.000
0		ID NO:57)	
9	161	GHTPSHHAA (SEQ	3.000
7		ID NO:94)	
10	302	RVPGVAPTL (SEQ	2.600
IV	50-	ID NO:195)	- 100
11	417	RWPSCQKKF (SEQ	2.400
11	1 '	ID NO:196)	0.400
12	327	YPGCNKRYF (SEQ	2.400
12	1 32	ID NO:250)	2.000
13	208	SCTGSQALL (SEQ ID	2.000
13		NO:202)	2.000
14	163	TPSHHAAQF (SEQ	2.000
•-7		ID NO:228)	2.000
15	120	ASSGQARMF (SEQ	2.000
1.0		ID NO:40)	2,000
16	18	LGGGGGCAL (SEQ	2.000
, 0		ID NO:134)	1.800
17	177	KHEDPMGQQ (SEQ	1.000
.,		ID NO:121)	1,800
18	83	PHEEQCLSA (SEQ II	1,600
- `		NO:154)	1,300
19	9 10	ALLPAVPSL (SEQ II	7
		NO:34)	1.300
2	0 225	NLYQMTSQL (SEQ	1.500
	1	ID NO:147)	

(表XXIII: ヒトWT1ペプチドのヒトHLA B 3901に対する結合についての、BIMAS HLAペプチド結合予測分析の結果)【0142】

【表23】

領位	開始位置	部分配列の残基のリスト	スコア(この部分配列を含む分子の解離の推定の半減期)
1	437	MHQRNMTKL (SEQ ID NO:143)	135.000
2	332	KRYFKLSHL (SEQ ID NO:127)	45.000
3	434	HHNMHQRNM (SEQ ID NO:108)	30.000
4	362	RRFSRSDQL (SEQ ID NO:187)	30.000
5	372	RHQRRHTGV (SEQ ID NO:181)	30.000
6	10	ALLPAVPSL (SEQ ID NO:34)	9.000
7	439	QRNMTKLQL (SEQ ID NO:173)	7.500
8	390	RKFSRSDHL (SEQ ID NO:183)	6.000
9	396	DHLKTHTRT (SEQ ID NO:57)	6.000
10	239	NQMNLGATL (SEQ ID NO:151)	6.000
11	423	KKFARSDEL (SEQ ID NO:122)	6.000
12	126	RMFPNAPYL (SEQ ID NO:185)	6.000
13	225	NLYQMTSQL (SEQ ID NO:147)	6.000
14	180	DPMGQQGSL (SEQ ID NO:59)	6.000
15	144	IRNQGYSTV (SEQ ID NO:117)	5.000
16	136	SCLESQPAI (SEQ ID NO:198)	4.000
17	292	GVFRGIQDV (SEQ ID NO:103)	3.000
18	302	RVPGVAPTL (SEQ ID NO:195)	3.000
19	208	SCTGSQALL (SEQ ID NO:202)	
20	207	DSCTGSQAL (SEQ ID NO:61)	3.000

(表XXIV:ヒトWT1ペプチドのヒトHLA B 3902に対する結合についての、BIMAS HLAペプチド結合予測分析の結果)【0143】

【表24】

順位	開始位置	部分配列の残基のリスト	スコア (この部分配列を含む分子の解離の 推定の半減期)
1	239	NQMNLGATL (SEQ	24.000
-		ID NO:151)	2.11000
2	390	RKFSRSDHL (SEQ ID	20.000
		NO:183)	
3	423	KKFARSDEL (SEQ	20.000
		ID NO:122)	
4	32	AQWAPVLDF (SEQ	5.000
		ID NO:37)	
5	146	NQGYSTVTF (SEQ	5.000
		ID NO:150)	·
6	130	NAPYLPSCL (SEQ ID	2.400
		NO:144)	
7	225	NLYQMTSQL (SEQ	2.400
		ID NO:147)	
8	30	GAAQWAPVL (SEQ	2.400
	Ì	ID NO:86)	
9	441	NMTKLQLAL (SEQ	2.400
	<u> </u>	ID NO:149)	
10	302	RVPGVAPTL (SEQ	2.400
		ID NO:195)	
11	126	RMFPNAPYL (SEQ	2.000
		ID NO:185)	
12	218	RTPYSSDNL (SEQ ID	2.000
		NO:194)	
13	209	CTGSQALLL (SEQ ID	2.000
		NO:52)	
14	332	KRYFKLSHL (SEQ	2.000
		ID NO:127)	2.000
15	180	DPMGQQGSL (SEQ	2.000
		ID NO:59)	2 000
16	437	MHQRNMTKL (SEQ	2.000
		ID NO:143)	2.000
17	207	DSCTGSQAL (SEQ	2.000
10	000	ID NO:61)	2.000
18	208	SCTGSQALL (SEQ ID NO:202)	2.000
19	329	GCNKRYFKL (SEQ	2.000
17	323	ID NO:90)	2.000
20	10	ALLPAVPSL (SEQ ID	2.000
20	10	NO:34)	

(表XXV:ヒトWT1ペプチドのヒトHLA B 4403に対する結合についての、BIMAS HLAペプチド結合予測分析の結果)【0144】

10

20

30

10

20

30

40

【表25】

			│ │スコア(この部分配列を含む分子の解離の
順位	開始位置	部分配列の残基のリスト	推定の半減期)
1	315	SETSEKRPF (SEQ ID	80.000
		NO:209)	
2	349	GEKPYQCDF (SEQ	80.000
		ID NO:91)	
3	84	HEEQCLSAF (SEQ ID	60.000
	<u> </u>	NO:107)	
4	410	SEKPFSCRW (SEQ	48.000 -
		ID NO:207)	
5	429	DELVRHHNM (SEQ	24.000
		ID NO:53)	
6	278	TPILCGAQY (SEQ ID	15.000
	1	NO:227)	·
7	141	QPAIRNQGY (SEQ	9.000
		ID NO:170)	
8	40	FAPPGASAY (SEQ	9.000
		ID NO:74)	
9	213	QALLLRTPY (SEQ ID	9.000
		NO:160)	
10	318	SEKRPFMCA (SEQ	8.000
	<u> </u>	ID NO:208)	
11	81	AEPHEEQCL (SEQ ID	8.000
		NO:30)	
12	152	VTFDGTPSY (SEQ ID	مت 4.500
		NO:244)	
13	101	TGTAGACRY (SEQ	4.500
		ID NO:224)	
14	120	ASSGQARMF (SEQ	4.500
		ID NO:40)	
15	261	TEGQSNHST (SEQ ID	4.000
		NO:221)	
16	85	EEQCLSAFT (SEQ ID	4.000
		NO:65)	· · · · · · · · · · · · · · · · · · ·
17	233	LECMTWNQM (SEQ	4.000
	<u></u>	ID NO:131)	
18	104	AGACRYGPF (SEQ	4.000
		ID NO:31)	
19	3	SDVRDLNAL (SEQ	3.000
		ID NO:206)	<u> </u>
20	185	QGSLGEQQY (SEQ	3.000
	1	ID NO:166)	

(表XXVI:ヒトWT1ペプチドのヒトHLA B 5 1 0 1 に対する結合についての、BIMAS HLAペプチド結合予測分析の結果)【0145】

10

20

30

40

【表26】

	"		
			スコア(この部分配列を含む分子の解離の
順位	開始位置	部分配列の残基のリスト	推定の半減期)
1	303	VPGVAPTLV (SEQ	314.600
		ID NO:242)	
2	180	DPMGQQGSL (SEQ	242.000
		ID NO:59)	
3	250	VAAGSSSSV (SEQ	157.300
		ID NO:236)	
4	130	NAPYLPSCL (SEQ ID	50.000
	l	NO:144)	
5	30	GAAQWAPVL (SEQ	50.000
	<u> </u>	ID NO:86)	
6	20	GGGGCALPV (SEQ	44.000
		ID NO:92)	
7	64	PPPPPHSFI (SEQ ID	40.000
	1	NO:157)	
8	29	SGAAQWAPV (SEQ	40.000
		ID NO:211)	
9	18	LGGGGGCAL (SEQ	31.460
		ID NO:134)	
10	295	RGIQDVRRV (SEQ	22.000
	1	ID NO:179)	
11	119	QASSGQARM (SEQ	18.150
	·	ID NO:161)	
12	418	WPSCQKKFA (SEQ	12.100
		ID NO:246)	
13	82	EPHEEQCLS (SEQ ID	12.100
		NO:68)	
14	110	GPFGPPPPS (SEQ ID	11.000
	.	NO:96)	
15	272	ESDNHTTPI (SEQ ID	8.000
		NO:71)	
16	306	VAPTLVRSA (SEQ	7.150
		ID NO:237)	
17	280	ILCGAQYRI (SEQ ID	6.921
	1	NO:116)	
18	219	TPYSSDNLY (SEQ ID	6.600
		NO:231)	
19	128	FPNAPYLPS (SEQ ID	6.500
		NO:79)	
20	204	TPTDSCTGS (SEQ ID	6.050
		NO:230)	

(表XXVII: ヒトWT1ペプチドのヒトHLA B 5 1 0 2 に対する結合についての、BIMAS HLAペプチド結合予測分析の結果)【0146】

【表27】

ber 4 ·		40 () T3D) @ T844 = 11 = 1	スコア(この部分配列を含む分子の解離の
順位	開始位置	部分配列の残基のリスト	推定の半減期)
1	295	RGIQDVRRV (SEQ	290.400
	202	ID NO:179)	200 000
2	303	VPGVAPTLV (SEQ	200.000
	100	ID NO:242)	120 100
3	180	DPMGQQGSL (SEQ	133.100
	- 250	ID NO:59)	110.000
4	250	VAAGSSSSV (SEQ	110.000
-		ID NO:236)	55,000
5	30	GAAQWAPVL (SEQ	55.000
	120	ID NO:86)	50.000
6	130	NAPYLPSCL (SEQ ID	50.000
7	1 20	NO:144)	44.000
1	20	GGGGCALPV (SEQ	44,000
	1 22	ID NO:92)	44.000
8	29	SGAAQWAPV (SEQ	44.000
		ID NO:211)	40.000
9	64	PPPPPHSFI (SEQ ID	40.000
10	110	NO:157)	26.200
10	119	QASSGQARM (SEQ	36.300
11		ID NO:161)	27.500
11	110	GPFGPPPPS (SEQ ID	27.500
1.0		NO:96)	05.000
12	412	KPFSCRWPS (SEQ ID	25.000
		NO:123)	21200
13	18	LGGGGGCAL (SEQ	24.200
		ID NO:134)	14,500
14	24	CALPVSGAA (SEQ	16.500
		ID NO:43)	4.500
15	219	TPYSSDNLY (SEQ ID	15.000
		NO:231)	
16	292	GVFRGIQDV (SEQ	14.641
		ID NO:103)	
17	136	SCLESOPAI (SEQ ID NO:198)	14.520
18	418	WPSCQKKFA (SEQ	12.100
		ID NO:246)	
19	269	TGYESDNHT (SEQ	11.000
		ID NO:225)	
20	351	KPYQCDFKD (SEQ	11.000
		ID NO:124)	

(表XXVIII: ヒトWT1ペプチドのヒトHLA B 5 2 0 1 に対する結合についての、BIMAS HLAペプチド結合予測分析の結果)【0147】

10

20

30

【表28】

順位	開始位置	部分配列の残基のリスト	スコア (この部分配列を含む分子の解離の 推定の半減期)
1	191	QQYSVPPPV (SEQ	100,000
		ID NO:171)	100,000
2	32	AQWAPVLDF (SEQ	30.000
		ID NO:37)	30.000
3	243	LGATLKGVA (SEQ	16.500
		ID NO:133)	
4	303	VPGVAPTLV (SEQ	13.500
		ID NO:242)	33.233
5	86	EQCLSAFTV (SEQ ID	12.000
		NO:69)	
6	295	RGIQDVRRV (SEQ	10.000
	ŀ	ID NO:179)	
7	98	GQFTGTAGA (SEQ	8.250
		ID NO:99)	•
8	292	GVFRGIQDV (SEQ	8.250
		ID NO:103)	
9	29	SGAAQWAPV (SEQ	6.000
		ID NO:211)	
10	146	NQGYSTVTF (SEQ	5.500
		ID NO:150)	- 1 1
11	20	GGGGCALPV (SEQ	5.000
		ID NO:92)	,
12	239	NQMNLGATL (SEQ	4.000
		ID NO:151)	
13	64	PPPPPHSFI (SÉQ ID	3.600
	!	NO:157)	
14	273	SDNHTTPIL (SEQ ID	3.300
		NO:204)	
15	286	YRIHTHGVF (SEQ ID	3.000
		NO:252)	
16	269	TGYESDNHT (SEQ	3.000
	·	ID NO:225)	
17	406	TGKTSEKPF (SEQ ID	2.750
		NO:222)	
18	327	YPGCNKRYF (SEQ	2.750
		ID NO:250)	
19	7	DLNALLPAV (SEQ	2.640
		ID NO:58)	
20	104	AGACRYGPF (SEQ	2.500
		ID NO:31)	

(表XXIX:ヒトWT1ペプチドのヒトHLA B 5801に対する結合についての、BIMAS HLAペプチド結合予測分析の結果)【0148】

10

20

30

【表29】

94	始位置	部分配列の残基のリスト	スコア(この部分配列を含む分子の解離の 推定の半減期) 96.800
+~	230	TSQLECMTW (SEQ	·
		ID NO:234)	60.000
Γ	92	FTVHFSGQF (SEQ ID	
		NO:85)	40.000
T	120	ASSGQARMF (SEQ	
ļ		ID NO:40)	20.000
十	168	AAQFPNHSF (SEQ	
		ID NO:29)	12.000
十	408	KTSEKPFSC (SEQ ID	
1		NO:129)	9,900
十	394	RSDHLKTHT (SEQ	
- 1		ID NO:192)	7.200
	276	HTTPILCGA (SEQ ID	
- 1		NO:115)	6.600
╗	218	RTPYSSDNL (SEQ ID	
- 1		NO:194)	6,000
	152	VTFDGTPSY (SEQ ID	'
		NO:244)	6.000
0	40	FAPPGASAY (SEQ	
•		ID NO:74)	4.500
1	213	QALLLRTPY (SEQ II	
-		NO:160)	4.400
12	347	HTGEKPYQC (SEQ	
	Ì	ID NO:112)	4,400
13	252	AGSSSSVKW (SEC ID NO:32)	
		GSQALLLRT (SEQ)	4.356
14	211	NO:102)	
	\	HSFKHEDPM (SEC	4.000
15	174	ID NO:110)	
		TSEKRPFMC (SEC	4.000
16	317	ID NO:233)	
		LPVSGAAQW (SE	4.000
17	26	ID NO:138)	
		HTHGVFRGI (SEQ	3.600
18	289	NO:113)	
		SSDNLYQMT (SE	3.300
19	222	ID NO:217)	
		FSGQFTGTA (SEC	3.300
2	0 96	PSGQF1G1A (SEC	

(表XXX:ヒトWT1ペプチドのヒトHLA CW0301に対する結合についての、BIMAS HLAペプチド結合予測分析の結果)【0149】

【表30】

位	開始位置	部分配列の残基のリスト	スコア(この部分配列を含む分子の解離の 推定の半減期) 100.000
1	10	ALLPAVPSL (SEQ ID	100.000
		NO:34)	48.000
!	332	KRYFKLSHL (SEQ	+Ģ.000
		ID NO:127)	36.000
3	126	RMFPNAPYL (SEQ	30.000
•		ID NO:185)	20,000
_	3	SDVRDLNAL (SEQ	30.000
•	_	ID NO:206)	24.000
5	239	NQMNLGATL (SEQ	24.000
,		ID NO:151)	24.000
6	225	NLYQMTSQL (SEQ	24.000
U	42.7	ID NO:147)	
7	180	DPMGQQGSL (SEQ	20.000
1	100	ID NO:59)	
0	362	RRFSRSDQL (SEQ ID	12.000
8	302	NO:187)	
_	329	GCNKRYFKL (SEQ	10.000
9	329	ID NO:90)	
10	286	YRIHTHGVF (SEQ ID	10.000
10	200	NO:252)	
	201	RRVPGVAPT (SEQ	10.000
11	301	ID NO:189)	
	24	CALPVSGAA (SEQ	10.000
12	24	ID NO:43)	
	136	SCLESQPAI (SEQ ID	7.500
13	136	NO:198)	
	407	MHQRNMTKL (SEQ	7.200
14	437	ID NO:143)	
<u> </u>	200	RKFSRSDHL (SEQ II	6.000
15	390	NO:183)	
		KKFARSDEL (SEQ	6.000
10	423	ID NO:122)	
		FTVHFSGQF (SEQ II	D 5.000
1	7 92	NO:85)	
		DELVRHHNM (SEC	5.000
1	8 429	ID NO:53)	·
		NAPYLPSCL (SEQ I	A.800
1	9 130	NAPYLPSCL (SEQ 1	
		GAAQWAPVL (SE	4.000
7	20 30	GAAQWARYL (SD)	<u> </u>
		ID NO:86)	

(表XXXI:ヒトWT1ペプチドのヒトHLA CW0401に対する結合についての、BIMAS HLAペプチド結合予測分析の結果)【0150】

【表31】

临丛	開松光里	部分配列の残基のリスト	スコア (この部分配列を含む分子の解離の 推定の半減期)
<u>順位</u> 1	開始位置 356	DFKDCERRF (SEQ	120.000
1	330	ID NO:55)	120.000
2	334	YFKLSHLQM (SEQ	100.000
-	354	ID NO:248)	100.000
3	180	DPMGQQGSL (SEQ	88.000
_	100	ID NO:59)	86.000
4	163	TPSHHAAQF (SEQ	52.800
·		ID NO:228)	32.000
5	327	YPGCNKRYF (SEQ	40.000
		ID NO:250)	
6	285	QYRIHTHGV (SEQ	27,500
		ID NO:175)	
7	424	KFARSDELV (SEQ	25.000
		ID NO:119)	
8	326	AYPGCNKRY (SEQ	25.000
	ļ	ID NO:42)	
9	192	QYSVPPPVY (SEQ	25.000
		ID NO:176)	
10	417	RWPSCQKKF (SEQ	22.000
		ID NO:196)	
11	278	TPILCGAQY (SEQ ID	12.000
		NO:227)	
12	10	ALLPAVPSL (SEQ ID	11.616
		NO:34)	
13	141	QPAIRNQGY (SEQ	11.000
		ID NO:170)	
14	303	VPGVAPTLV (SEQ	11.000
		ID NO:242)	
15	219	TPYSSDNLY (SEQ ID	10.000
		NO:231)	
16	39	DFAPPGASA (SEQ	7.920
		ID NO:54)	
17	99	QFTGTAGAC (SEQ	6.000
		ID NO:165)	
18	4	DVRDLNALL (SEQ	5.760
		ID NO:62)	
19	70	SFIKQEPSW (SEQ ID	5.500
000		NO:210)	6 300
20	63	PPPPPPHSF (SEQ ID	5.280
	<u> </u>	NO:158)	

(表 X X X I I : ヒトW T 1 ペプチドのヒト H L A C W 0 6 0 2 に対する結合についての、 B I M A S H L A ペプチド結合予測分析の結果)【 0 1 5 1 】

10

20

30

【表32】

真位	開始位置	部分配列の残基のリスト	スコア (この部分配列を含む分子の解離の 推定の半減期)
1	332	KRYFKLSHL (SEQ ID NO:127)	9.680
2	239	NQMNLGATL (SEQ ID NO:151)	6.600
3	130	NAPYLPSCL (SEQ ID NO:144)	6.600
4	7	DLNALLPAV (SEQ ID NO:58)	6.000
5	441	NMTKLQLAL (SEQ ID NO:149)	6.000
6	225	NLYQMTSQL (SEQ ID NO:147)	6.000
7	4	DVRDLNALL (SEQ ID NO:62)	6.000
8	3	SDVRDLNAL (SEQ ID NO:206)	4.400
9	10	ALLPAVPSL (SEQ ID NO:34)	4.000
10	213	QALLLRTPY (SEQ ID NO:160)	3.300
11	319	EKRPFMCAY (SEQ ID NO:67)	3.000
12	30	GAAQWAPVL (SEQ ID NO:86)	2.200
13	242	NLGATLKGV (SEQ ID NO:146)	2.200
14	292	GVFRGIQDV (SEQ ID NO:103)	2.200
15	207	DSCTGSQAL (SEQ ID NO:61)	2.200
16	362	RRFSRSDQL (SEQ ID NO:187)	2.200
17	439	QRNMTKLQL (SEQ ID NO:173)	2.200
18	295	RGIQDVRRV (SEQ ID NO:179)	2.200
19	423	KKFARSDEL (SEQ ID NO:122)	2.200
20	180	DPMGQQGSL (SEQ ID NO:59)	2.200

(表XXXIIII: ヒトWT1ペプチドのヒトHLA CW0702に対する結合についての、BIMAS HLAペプチド結合予測分析の結果)【0152】

10

20

30

40

【表33】

		l i	スコア(この部分配列を含む分子の解離の
位	開始位置	[H15.1. BC 2.1-2.2000	推定の半減期) 26.880
1	319	EKRPFMCAY (SEQ	20.880
		ID NO:67)	24.000
2	326	AYPGCNKRY (SEQ	24.000
		ID NO:42)	14 794
3	40	FAPPGASAY (SEQ	14.784
	Ì	ID NO:74)	10.000
4	192	QYSVPPPVY (SEQ	12.000
		ID NO:176)	
5	278	TPILCGAQY (SEQ ID	12.000
		NO:227)	
6	219	TPYSSDNLY (SEQ ID	12.000
-		NO:231)	
7	213	QALLLRTPY (SEQ ID	8.800
•		NO:160)	
8	125	ARMFPNAPY (SEQ	8.000
O.	123	ID NO:38)	
9	327	YPGCNKRYF (SEQ	6.600
7	321	ID NO:250)	
10	152	VTFDGTPSY (SEQ ID	5.600
10	132	NO:244)	
11	141	QPAIRNQGY (SEQ	4.800
11	141	ID NO:170)	
10	345	RKHTGEKPY (SEQ	4.000
12	343	ID NO:184)	
10	185	QGSLGEQQY (SEQ	4.000
13	185	ID NO:166)	
	101	TGTAGACRY (SEQ	4.000
14	101	ID NO:224)	
		RRHTGVKPF (SEQ	4.000
15	375	ID NO:188)	
		GQSNHSTGY (SEQ	4.000
16	263	ID NO:100)	
		TPSHHAAQF (SEQ	3.000
17	163		
		ID NO:228)	2.688
18	33	QWAPVLDFA (SEQ	2.000
		ID NO:174)	2.640
19	130	NAPYLPSCL (SEQ II	2.010
		NO:144)	2,400
20	84	HEEQCLSAF (SEQ II	2.400
!		NO:107)	

(表 X X X I V : ヒトW T 1 ペプチドのマウス M H C クラス I D b に対する結合についての、B I M A S H L A ペプチド結合予測分析の結果)【 0 1 5 3 】

【表34】

			スコア(この部分配列を含む分子の解離の
顶位	開始位置	部分配列の残基のリスト	推定の半減期) 5255.712
1	235	CMTWNQMNL (SEQ	3233.712
	100	ID NO:49)	1990.800
2	126	RMFPNAPYL (SEQ	1990.800
		ID NO:185)	020.000
3	221	YSSDNLYQM (SEQ	930.000
		ID NO:253)	22.501
4	228	QMTSQLECM (SEQ	33.701
	<u> </u>	ID NO:169)	
5	239	NQMNLGATL (SEQ	21.470
		ID NO:151)	_
6	441	NMTKLQLAL (SEQ	19.908
•		ID NO:149)	
7	437	MHQRNMTKL (SEQ	19.837
		ID NO:143)	
8	136	SCLESQPAI (SEQ ID	11.177
		NO:198)	
9	174	HSFKHEDPM (SEQ	10.800
		ID NO:110)	
10	302	RVPGVAPTL (SEQ	10.088
		ID NO:195)	
11	130	NAPYLPSCL (SEQ ID	8.400
	1	NO:144)	
12	10	ALLPAVPSL (SEQ ID	5.988
	ì	NO:34)	
13	208	SCTGSQALL (SEQ ID	4.435
		NO:202)	
14	209	CTGSQALLL (SEQ ID	3.548
		NO:52)	
15	238	WNQMNLGAT (SEQ	3.300
		ID NO:245)	
16	218	RTPYSSDNL (SEQ ID	3.185
	•	NO:194)	
17	24	CALPVSGAA (SEQ	2.851
		ID NO:43)	
18	18	LGGGGGCAL (SEQ	2.177
		ID NO:134)	
19	142	PAIRNQGYS (SEQ ID	2.160
		NO:152)	
20	30	GAAQWAPVL (SEQ	1.680
		ID NO:86)	

(表XXXV:ヒトWT1ペプチドのマウスMHC クラスI Ddに対する結合についての、BIMAS HLAペプチド結合予測分析の結果)【0154】

10

20

30

【表35】

um 21	mm (), ((—	4 1 1 4 4 4 4 1 = 1	スコア(この部分配列を含む分子の解離の
順位	開始位置	部分配列の残基のリスト	推定の半減期)
1	112	FGPPPPSQA (SEQ ID	48.000
		NO:76)	
2	122	SGQARMFPN (SEQ	36.000
		ID NO:212)	
3	104	AGACRYGPF (SEQ	30.000
		ID NO:31)	
4	218	RTPYSSDNL (SEQ ID	28.800
		NO:194)	
5	130	NAPYLPSCL (SEQ ID	. 20.000
		NO:144)	
6	302	RVPGVAPTL (SEQ	20.000
		ID NO:195)	
7	18	LGGGGGCAL (SEQ	20.000
	·	ID NO:134)	
8	81	AEPHEEQCL (SEQ ID	10.000
	•	NO:30)	
9	29	SGAAQWAPV (SEQ	7.200
		ID NO:211)	
10	423	KKFARSDEL (SEQ	7.200
	'	ID NO:122)	,
11	295	RGIQDVRRV (SEQ	7.200
	2,5	ID NO:179)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
12	390	RKFSRSDHL (SEQ ID	6.000
12	3,00	NO:183)	0.555
13	332	KRYFKLSHL (SEQ	6,000
13	332	ID NO:127)	0.000
14	362	RRFSRSDQL (SEQ ID	6.000
14	302	NO:187)	0.000
15	417	RWPSCQKKF (SEQ	6.000
13	41/	ID NO:196)	0.000
14	100		6,000
16	160	YGHTPSHHA (SEQ	6.000
1=	ļ	ID NO:249)	(000
17	20	GGGGCALPV (SEQ	6.000
-		ID NO:92)	0.000
18	329	GCNKRYFKL (SEQ	5.000
		ID NO:90)	4.500
19	372	RHQRRHTGV (SEQ	4.500
20	ļ <u></u>	ID NO:181)	4.000
20	52	GGPAPPPAP (SEQ ID	4.000
		NO:93)	<u> </u>

(表XXXVI:ヒトWT1ペプチドのマウスMHC クラスI Kbに対する結合についての、BIMAS HLAペプチド結合予測分析の結果)【0155】

10

20

30

【表36】

			スコア(この部分配列を含む分子の解離の
we 44.	****	かいおものはった	スコテ(この部が配列を含むガナの屏幕の 推定の半減期)
順位	開始位置 329	部分配列の残基のリスト GCNKRYFKL (SEQ	24.000
1	329	ID NO:90)	24.000
2	225	NLYQMTSQL (SEQ	10.000
	ID NO:147)		10.000
3	420	SCQKKFARS (SEQ	3,960
3	420	ID NO:200)	3.500
4	218	RTPYSSDNL (SEQ ID	3.630
7	210	NO:194)	3.050
5	437	MHQRNMTKL (SEQ	3.600
•	, ,,,	ID NO:143)	
6	387	TCQRKFSRS (SEQ ID	3.600
·	307	NO:219)	
7	302	RVPGVAPTL (SEQ	3.300
·		ID NO:195)	·
8	130	NAPYLPSCL (SEQ ID	3.000
		NO:144)	1
9			3.000
		NO:113)	
		PGASAYGSL (SEQ	2.400
		ID NO:153)	
11			2.400
		ID NO:56)	
12			2.200
	ŀ	NO:204)	
-13	126	RMFPNAPYL (SEQ	2.200
		ID NO:185)	
14	128	FPNAPYLPS (SEQ ID	2.000
		NO:79)	
15	3	SDVRDLNAL (SEQ	1.584
		ID NO:206)	
16	207	DSCTGSQAL (SEQ	1.584
		ID NO:61)	
17	332	KRYFKLSHL (SEQ	1.500
		ID NO:127)	
18	18	LGGGGGCAL (SEQ	1.320
-10		ID NO:134)	
19	233	LECMTWNQM (SEQ	1.320
20	441	ID NO:131)	1.000
20	441	NMTKLQLAL (SEQ	1.200
	<u> </u>	ID NO:149)	

(表XXXVII: ヒトWT1ペプチドのマウスMHC クラスI Kdに対する結合についての、BIMAS HLAペプチド結合予測分析の結果)【0156】

10

20

30

【表37】

順位		部分配列の残基のリスト	スコア (この部分配列を含む分子の解離の 推定の半減期)	
<u>東江</u> 1	開始位置 285	QYRIHTHGV (SEQ	600.000	
1	265	ID NO:175)	000.000	
2	424	KFARSDELV (SEQ	288.000	
	121	ID NO:119)		
3	334	YFKLSHLQM (SEQ	120.000	
,	ID NO:248)			
4	136	SCLESQPTI (SEQ ID	115,200	
•		NO:199)		
5	239	NOMNLGATL (SEQ	115.200	
_		ID NO:151)		
6	10	ALLPAVSSL (SEQ ID	115.200	
		NO:35)		
7	47	AYGSLGGPA (SEQ	86.400	
		ID NO:41)		
8	180	DPMGQQGSL (SEQ	80.000	
		ID NO:59)		
9	9 270 GYESDNHTA (SEQ 72.00		72.000	
		ID NO:105)		
10	326	AYPGCNKRY (SEQ	60.000	
		ID NO:42)		
11	192	1 7 1		
		ID NO:176)	57.600	
12	272	272 ESDNHTAPI (SEQ ID 57.600		
		NO:70)		
13	289	HTHGVFRGI (SEQ ID	57.600	
		NO:113)		
14	126	DVRDLNALL (SEQ	57.600	
	ļ	ID NO:62)	57.600	
15	4	CTGSQALLL (SEQ ID	37.600	
12	200	NO:52)	48,000	
16	208	SCTGSQALL (SEQ ID	48.000	
17	441	NO:202) NMTKLQLAL (SEQ	48.000	
17	441	ID NO:149)	48.000	
18	207	DSCTGSQAL (SEQ	48.000	
19	207	ID NO:61)	1 70.000	
19	130	NAPYLPSCL (SEQ ID	48.000	
17	1 130	NO:144)		
20	235	CMTWNQMNL (SEQ	48.000	
4∨		ID NO:49)		

(表XXXVIIII: ヒトWT1ペプチドのマウスMHC クラスI K k に対する結合についての、BIMAS H L Aペプチド結合予測分析の結果)【0157】 10

20

30

10

20

30

40

【表38】

		**************************************	スコア(この部分配列を含む分子の解離の 推定の半減期)
真位	開始位置	部分配列の残基のリスト	40.000
1	81	AEPHEEQCL (SEQ ID NO:30)	
2	85	EEQCLSAFT (SEQ ID NO:65)	40.000
3	429	DELVRHHNM (SEQ ID NO:53)	20.000
4	315	SETSEKRPF (SEQ ID NO:209)	20.000
5	261	TEGQSNHST (SEQ ID NO:221)	20.000
6	410	SEKPFSCRW (SEQ ID NO:207)	10.000
7	272	ESDNHTTPI (SEQ ID NO:71)	10.000
8	318	SEKRPFMCA (SEQ ID NO:208)	10.000
9	138	LESQPAIRN (SEQ ID NO:132)	10.000
10	233	LECMTWNQM (SEQ ID NO:131)	10.000
11	298	QDVRRVPGV (SEQ ID NO:164)	10.000
12	84	HEEQCLSAF (SEQ ID NO:107)	10.000
13	349	GEKPYQCDF (SEQ ID NO:91)	10.000
14	289	HTHOVFRGI (SEQ ID NO:113)	10.000
15	179	EDPMGQQGS (SEQ ID NO:64)	
16	136	SCLESQPAI (SEQ ID NO:198)	
17	280	ILCGAQYRI (SEQ ID NO:116)	
18	273	SDNHTTPIL (SEQ ID NO:204)	
19	428	SDELVRHHN (SEQ ID NO:203)	
20	3	SDVRDLNAL (SEQ ID NO:206)	4.000

(表XXXIX:ヒトWT1ペプチドのマウスMHC クラスI Ldに対する結合についての、BIMAS HLAペプチド結合予測分析の結果)【0158】

【表39】

			スコア(この部分配列を含む分子の解離の
順位	開始位置	部分配列の残基のリスト	推定の半減期)
1	163	TPSHHAAQF (SEQ	360.000
		ID NO:228)	
2	327	YPGCNKRYF (SEQ	300.000
		ID NO:250)	
3	180	DPMGQQGSL (SEQ	150.000
		ID NO:59)	
4	26	LPVSGAAQW (SEQ	93.600
	1	ID NO:138)	
5	278	TPILCGAQY (SEQ ID	72.000
	ŀ	NO:227)	
6	141	QPAIRNQGY (SEQ	60.000
		ID NO:170)	
7	219	TPYSSDNLY (SEQ ID	60.000
		NO:231)	•
8	303	VPGVAPTLV (SEQ	60.000
		ID NO:242)	
9	120	ASSGQARMF (SEQ	50.000
,		ID NO:40)	
10	63	PPPPPPHSF (SEQ ID	45.000
		NO:158)	
11	113	GPPPPSQAS (SEQ ID	45.000
		NO:97)	
12	157	TPSYGHTPS (SEQ ID	39.000
		NO:229)	
13	207	DSCTGSQAL (SEQ	32.500
		ID NO:61)	
14	110	GPFGPPPPS (SEQ ID	30.000
		NO:96)	
15	82	EPHEEQCLS (SEQ ID	30.000
		NO:68)	
16	412	KPFSCRWPS (SEQ ID	30.000
	ŀ	NO:123)	
17	418	WPSCQKKFA (SEQ	30.000
		ID NO:246)	
18	221	YSSDNLYQM (SEQ	30.000
		ID NO:253)	
19	204	TPTDSCTGS (SEQ ID	30.000
	1	NO:230)	
20	128	FPNAPYLPS (SEQ ID	30.000
		NO:79)	

(表 X L: ヒトW T 1 ペプチドのウシ H L A A 2 0 に対する結合についての、 B I M A S H L A ペプチド結合予測分析の結果)【 0 1 5 9 】

10

20

30

【表40】

原位	開始位置	部分配列の残基のリスト	スコア (この部分配列を含む分子の解離の 推定の半減期) 1000.00
1	350	EKPYQCDFK (SEQ	· .
.]		ID NO:66)	500.000
	319	EKRPFMCAY (SEQ	· -
2		ID NO:67)	500,000
3	423	KKFARSDEL (SEQ	
)	,	ID NO:122)	500.000
4	345	RKHTGEKPY (SEQ	
4	1	ID NO:184)	500.000
5	390	RKFSRSDHL (SEQ ID	
)	350	NO:183)	120,000
6	137	CLESQPAIR (SEQ ID	12000
O	15.	NO:47)	100.000
7	380	VKPFQCKTC (SEQ	190101
′	1	ID NO:239)	100.000
8	407	GKTSEKPFS (SEQ II	
0	, , ,	NO:95)	100,000
9	335	FKLSHLQMH (SEQ	100.55
7		ID NO:78)	100,000
10	247	LKGVAAGSS (SEQ	100.00
10		ID NO:135)	100.000
11	370	LKRHQRRHT (SEC	2
L	1 7/3	ID NO:136)	100,000
1	2 258	VKWTEGQSN (SEC	2
1	2 250	ID NO:240)	100.000
١.,	3 398	LKTHTRTHT (SEC	2
	3 398	ID NO:137)	100,000
├;	4 331	NKRYFKLSH (SE	Q
۱ '	14	ID NO:145)	100,000
 	15 357	FKDCERRFS (SEQ	
١ ١	13 35.	NO:77)	100,000
-	16 385	CKTCQRKFS (SE	EQ
1	16 385	ID NO:46)	22.000
<u> </u>	17 294	FRGIQDVRR (SEC	5 ID
1	17 294	NO:81)	000 000
1	18 368	DQLKRHQRR (S	EQ
1	18 368	l id NO:60)	90,000
-	19 432	VRHHNMHQR (S	SEQ
-	19 432	ID NO:243)	80,000
┝	20 11	8 SQASSGQAR (S	SEQ
١	20 111	ID NO:216)	

(表XLI:マウスWT1ペプチドのマウスMHC クラスI A 0201に対する 結合についての、BIMAS HLAペプチド結合予測分析の結果)【0160】

【表41】

		}	スコア(この部分配列を含む分子の解離の
i位	開始位置	部分配列の残基のリスト	推定の半減期)
1	126	RMFPNAPYL (SEQ	313.968
		ID NO:293)	
2 187		SLGEQQYSV (SEQ	285.163
		ID NO:299)	
3	10	ALLPAVSSL (SEQ ID	181.794
_	1	NO:255)	
4	225	NLYQMTSQL (SEQ	68.360
•	ĺ	ID NO:284)	
5	292	GVFRGIQDV (SEQ	51.790
-		ID NO:270)	
6	93	TLHFSGQFT (SEQ ID	40.986
•		NO:302)	
7	191	OOYSVPPPV (SEQ	22.566
•	'''	ID NO:290)	1
8	280	ILCGAQYRI (SEQ ID	17.736
•		NO:274)	
9	441	NMTKLHVAL (SEQ	15.428
•	'''	ID NO:285)	
10	235	CMTWNQMNL (SEQ	15.428
10	233	ID NO:258)	
11	7	DLNALLPAV (SEQ	11.998
11	1 '	ID NO:261)	
12	242	NLGATLKGM (SEQ	11.426
		ID NO:283)	
13	227	YQMTSQLEC (SEQ	8.573
	1	ID NO:307)	
14	239	NQMNLGATL (SEQ	8.014
14	1 257	ID NO:286)	
15	309	TLVRSASET (SEQ ID	7.452
1.5	307	NO:303)	
16	408	KTSEKPFSC (SEQ ID	5.743
10	100	NO:277)	
17	340	LOMHSRKHT (SEQ	4.752
17	340	ID NO:280)	
18	228	QMTSQLECM (SEQ	4.044
10	220	ID NO:289)	
19	37	VLDFAPPGA (SEQ	3.378
17	"	ID NO:304)	
20	302	RVSGVAPTL (SEQ	1.869
ZU] 304	ID NO:295)	

(表XLII:マウスWT1ペプチドのマウスMHC クラスI Dbに対する結合についての、BIMAS HLAペプチド結合予測分析の結果)【0161】

10

20

30

【表42】

			スコア(この部分配列を含む分子の解離の	
順位	開始位置	部分配列の残基のリスト	推定の半減期)	
1	221	YSSDNLYQM (SEQ ID NO:308)	312.000	
2	126 RMFPNAPYL (SEQ ID NO:293)		260.000	
3	235	CMTWNQMNL (SEQ ID NO:258)	260.000	
4	437	MHQRNMTKL (SEQ ID NO:281)	200.000	
5	238	WNQMNLGAT (SEQ ID NO:305)	12.000	
6	130	NAPYLPSCL (SEQ ID NO:282)	8.580	
7	3	SDVRDLNAL (SEQ ID NO:298)	7.920	
8	136	SCLESQPTI (SEQ ID NO:296)	7.920	
9	81	AEPHEEQCL (SEQ ID NO:254)	6.600	
10	10	ALLPAVSSL (SEQ ID NO:255)	6.600	
11	218	RTPYSSDNL (SEQ ID NO:294)	6.000	
12	441	NMTKLHVAL (SEQ ID NO:285)	3.432	
13	228	QMTSQLECM (SEQ ID NO:289)	3.120	
14	174	HSFKHEDPM (SEQ ID NO:272)	3.120	
15	242	NLGATLKGM (SEQ ID NO:283)	2.640	
16	261	TEGQSNHGI (SEQ ID NO:301)	2.640	
17	225	NLYQMTSQL (SEQ ID NO:284)	2.640	
18	207	DSCTGSQAL (SEQ ID NO:263)	2.600	
19	119	QASSGQARM (SEQ ID NO:288)	2.600	
20	18	LGGGGGCGL (SEQ ID NO:279)	2,600	

(表XLIII:マウスWT1ペプチドのマウスMHC クラスI Kbに対する結合についての、BIMAS HLAペプチド結合予測分析の結果)【0162】

10

20

30

【表43】

			 スコア(この部分配列を含む分子の解離の
順位	開始位置	部分配列の残基のリスト	推定の半減期)
1	329	GCNKRYFKL (SEQ	24.000
		ID NO:268)	
2	225	NLYQMTSQL (SEQ	10.000
		ID NO:284)	
3	420	SCQKKFARS (SEQ	3.960
_		ID NO:297)	
4	218	RTPYSSDNL (SEQ ID	3.630
		NO:294)	
5	437	MHQRNMTKL (SEQ	3.600
-		ID NO:281)	
6	387	TCQRKFSRS (SEQ ID	3.600
		NO:300)	
7	289	HTHGVFRGI (SEQ ID	3.000
		NO:273)	
8	130	NAPYLPSCL (SEQ ID	3.000
		NO:282)	
9	43	PGASAYGSL (SEQ	2.400 -
		ID NO:287)	
10	155	DGAPSYGHT (SEQ	2.400
		ID NO:260)	
11	126	RMFPNAPYL (SEQ	2.200
		ID NO:293)	
12			2.000
		NO:267)	
13	207	DSCTGSQAL (SEQ	1.584
		ID NO:263)	
14	3	SDVRDLNAL (SEQ	1.584
		ID NO:298)	
15	332	KRYFKLSHL (SEQ	1.500
		ID NO:276)	
16	233	LECMTWNQM (SEQ	1.320
	1	ID NO:278)	
17	18	LGGGGGCGL (SEQ	1.320
		ID NO:279)	
18	242	NLGATLKGM (SEQ	1.200
	1	ID NO:283)	
19	123	GQARMFPN (SEQ ID	1.200
		NO:269)A	
20	441	NMTKLHVAL (SEQ	1.200
	1	ID NO:285)	

(表XLIV:マウスWT1ペプチドのマウスMHC クラスI Kdに対する結合についての、BIMAS HLAペプチド結合予測分析の結果) 【0163】 10

20

30

【表44】

i位	開始位置	部分配列の残基のリスト	スコア(この部分配列を含む分子の解離の 推定の半減期) 600.000
i	285	QYRIHTHGV (SEQ ID NO:291)	
		KFARSDELV (SEQ	288.000
	424		
		ID NO:275)	120.000
	334	YFKLSHLQM (SEQ	
		ID NO:306)	115.200
1	136	SCLESQPTI (SEQ ID	
	i 	NO:296)	115.200
;	239	NQMNLGATL (SEQ	
		ID NO:286)	115.200
6	10	ALLPAVSSL (SEQ ID	
		NO:255)	86.400
7	47	AYGSLGGPA (SEQ	
	<u> </u>	ID NO:256) .	80.000
8	180	DPMGQQGSL (SEQ	
		ID NO:262)	72,000
9	270	GYESDNHTA (SEQ	
		ID NO:271)	60,000
10	192	QYSVPPPVY (SEQ	
		ID NO:292)	60.000
11	326	AYPGCNKRY (SEQ	
	ļ	ID NO:257)	57,600
12	289	HTHGVFRGI (SEQ II	
		NO:273)	57.600
13	4	DVRDLNALL (SEC	
		ID NO:264)	57.600
14	. 126	RMFPNAPYL (SEC	
		ID NO:293)	48.000
15	209	CTGSQALLL (SEQ 1	
		NO:259)	D 48.000
16	86	EQCLSAFTL (SEQ) NO:265)	
		RVSGVAPTL (SEC	48.000
1'	7 302	ID NO:295)	
		RTPYSSDNL (SEQ	ID 48.000
$\lceil 1 \rceil$	8 218	NO:294)	
<u>L</u> _		ESDNHTAPI (SEQ	ID 48.000
1	9 272	NO:266)	
	205	NLYQMTSQL (SE	Q 48.000
2	0 225	ID NO:284)	

(表 X L V : ヘルパーT細胞応答を誘発し得るヒトW T 1 ペプチドについての、T部位ペプチド結合予測分析の結果)

[0164]

【表45】

ペプチド	配列
p6-23	RDLNALLPAVPSLGGGG (SEQ ID NO:1)
p30-35	GAAQWA (SEQ ID NO:309)
p45-56	ASAYGSLGGPAP (SEQ ID NO:310)
p91-105	AFTVHFSGQFTGTAG (SEQ ID NO:311)
p117-139	PSQASSGQARMFPNAPYLPSCLE (SEQ ID NO:2)
p167-171	HAAQF (SEQ ID NO:312)
p202-233	CHTPTDSCTGSQALLLRTPYSSDNLYQMTSQL (SEQ ID NO:313)
p244-262	GATLKGVAAGSSSSVKWTE (SEQ ID NO:4)
p287-318	RIHTHGVFRGIQDVRRVPGVAPTLVRSASETS (SEQ ID NO:314)
p333-336	RYFK (SEQ ID NO:315)
p361-374	ERRFSRSDQLKRHQ (SEQ ID NO:316)
p389-410	QRKFSRSDHLKTHTRTHTGKTS (SEQ ID NO:317)
p421-441	CQKKFARSDELVRHHNMHQRN (SEQ ID NO:318)

特定のCTLペプチド(表XLVIに示す)を、さらなる研究のために選択した。表XLVI中に各ペプチドについて、BIMAS HLAペプチド結合予測分析を用いて得られたスコアを、提供する。

[0165]

(表 X L V I : W T 1 ペプチド配列および H L A ペプチド結合予測)

[0166]

10

【表46】

ペプチド	配列	コメント
p329-337	GCNKRYFKL (SEQ ID NOs: 90 および 268)	237 24,000
p225-233	NLYQMTSQL (SEQ ID NOs: 147 および 284)	クラスIIおよびHLA A2、Kdにもまた結合、 スコア 10,000
p235-243	CMTWNQMNL (SEQ ID NOs: 49 および 258)	HLA A2にもまた結合、スコア 5,255,712
p126-134	RMFPNAPYL (SEQ ID NOs: 185 および 293)	Kd、クラストートおよびHLA A2にもまた結合、 スコア 1,990,800
p221-229	YSSDNLYQM (SEQ ID NOs: 253 および 308)	Ldにもまた結合、スコア 312,000
p228-236	QMTSQLECM (SEQ ID NOs: 169 および 289)	λ37 3, 120
p239-247	NQMNLGATL (SEQ ID NOs: 151 および 286)	HLA A 0201, Kdにもまた結合、スコ7 8,0 15
マウス p136-144	SCLESQPTI (SEQ ID NO:296)	Kdにもまた結合、いに対して1つのミスマ ッチ
th p136-144	SCLESQPAI (SEQ ID NO:198)	スコア 7,920
₹97 p10-18	ALLPAVSSL (SEQ ID NO:255)	Kd、HLA A2にもまた結合、Lトに対して1 つのミスマッチ
th p10-18	ALLPAVPSL (SEQ ID NO:34)	Z37 6,600

C57B1/6マウスMHCに結合するペプチドを、Ljunggrenら、Nature 346:476-480,1990に記載されるように、白血病細胞株RMA-Sを用いて確認した。簡単には、RMA-S細胞を、1%FCSを補充した完全培地中で26 にて7時間培養した。合計10⁶のRMA-S細胞を、24ウェルプレートの各ウェルに添加し、そして単独か、または指定したペプチド(25pg/m1)と共にのいずれかで26 にて16時間インキュベートし、そして完全培地中で37 にてさらに3時間インキュベートした。次いで、細胞を3度洗浄し、そしてフルオレセインイソチオシアト結合体化抗D^b抗体または抗K^b抗体(PharMingen,San Diego,CA)で染色した。標識した細胞を2度洗浄し、再懸濁し、そして1%パラホルムアルデヒドを有する500p1のPBS中で固定し、そしてフローサイトメーター(Becton-Dickinson FACSCalibur(登録商標))において蛍光強度について分析した。RMA-S細胞の表面上でのD゚またはK゚分子の増加の割合を、培地単独でインキュベートした細胞の蛍光強度と比較した、ペプチドと共にインキュベートした細胞の平均蛍光強度の増加により測定した。

[0167]

マウスをマウスクラス I MHCに結合し得るペプチドで免疫した。免疫の後、脾臓細胞をインビトロで刺激し、そしてWT1ペプチドと共にインキュベートした標的を溶解す

10

20

30

る能力について試験した。 C T L を、標準的なクロム放出アッセイ(C h e n ら、C a n c e r R e s . 5 4 : 1 0 6 5 - 1 0 7 0 , 1 9 9 4) で評価した。 1 0 6 の標的細胞を3 7 にて 1 5 0 μ C i のナトリウム 51 C r と共に 9 0 分間、特定のペプチドの存在下または非存在下でインキュベートした。 細胞を 3 回洗浄し、そして 5 % ウシ胎仔血清を有する R P M I 中に再懸濁した。このアッセイのために、 1 0 4 の 51 C r 標識化標的細胞を、 U 底 9 6 ウェルプレートにおいて 2 0 0 μ 1 の最終容量で異なる濃度のエフェクター細胞と共にインキュベートした。上清を、 3 7 にて 4 ~ 7 時間後に取り除き、そして特異的溶解の % を、以下の式により決定した:

比溶解の割合 = 1 0 0 × (実験の放出 - 自発的放出) (最大の放出 - 自発的放出)。

[0168]

表 X L V I I に示される結果は、いくつかのW T 1 ペプチドが、 C T L を生成するために不可欠であるクラス I M H C 分子に結合し得ることを示す。さらに、このペプチドのいくつかは、クロム放出アッセイを用いて決定されるように、ペプチド特異的 C T L (図 9 A および 9 B)を誘発し得た。 C T L ペプチドである、 p 1 0 - 1 8 ヒト、 p 1 3 6 - 1 4 4 ヒト、 p 1 3 6 - 1 4 4 マウスおよび p 2 3 5 - 2 4 3 に対する免疫の後、ペプチド特異的 C T L 株を産生し、そしてクローンを樹立した。これらの結果は、ペプチド特異的 C T L が W T 1 を発現する悪性細胞を死滅させ得ることを示す。

[0169]

(表XLVII:WT1 CTLペプチドのマウスB6クラスI抗原に対する結合)

[0170]

【表47】

ペプチド	マウスMHCクラスIに対する結合親和性
陽性コントロール	91%
陰性コントロール	0.51.3%
p235-243	33.6%
p136-144マウス	27.9%
p136-144 L h	52%
·	2.2%
p10-18:ヒト p225-233	5.8%
p329-337	1.2%
p126-134	0.9%
p221-229	0.8%
p228-236	1.2%
p239-247	1%
p233-241	

(実施例 5 : マウスにおいてW T 1 特異的 C T L を誘発するためのW T 1 ポリペプチドの使用)

本実施例は、WT1陽性腫瘍細胞株を死滅させ得るCTL免疫を誘発するための、代表的なWT1ポリペプチドの能力を示す。

[0171]

クラスI MHCおよびクラスII MHCに結合するために適切なモチーフを有する ペプチドである、p117-139を、TSITESおよびBIMAS

HLAペプチド結合予測分析を用いて上記のように同定した。マウスを、実施例3に記載されるように免疫した。免疫の後、脾臓細胞をインビトロで刺激し、そしてWT1ペプチド、ならびにWT1陽性腫瘍細胞および陰性腫瘍細胞と共にインキュベートした標的を溶解する能力について試験した。CTLを、標準的なクロム放出アッセイで評価した。図10A~10Dに示されるこの結果は、P117が、WT1陽性腫瘍細胞を死滅させ得るWT1特異的CTLを誘発し得るが、WT1陰性細胞の死滅は観察されなかったことを示す。これらの結果は、ペプチド特異的CTLが、実際にWT1を発現する悪性細胞を死滅

10

20

30

40

10

20

30

40

50

させること、およびワクチンおよびT細胞治療が、WT1を発現する悪性腫瘍に対して有効であることを実証する。

[0172]

[0173]

てTL溶解は、標的WT1ペプチドが、腫瘍細胞クラスI MHC分子に関連して、内因的にプロセスおよび提示されることを要求する。上記のWT1ペプチド特異的CTLを、WT1陽性腫瘍細胞株 対 WT1陰性腫瘍細胞株を溶解する能力について試験した。p235-243に特異的なCTLは、p235-243ペプチドともにインキュベートした標的を溶解したが、WT1タンパク質を発現した細胞株を溶解することに失敗した(図11A)。著しく対照的に、p117-139に特異的なCTLは、p117-139ペプチドと共にインキュベートした標的を溶解し、そしてWT1を発現する悪性細胞もまた溶解した(図11B)。陰性コントロールとして、p117-139に特異的なCTLは、WT1陰性EL-4(本明細書中でE10ともいわれる)を溶解しなかった。

[0174]

W T 1 特異的溶解の特異性を、非放射性標的阻害によって確認した(図 1 2 A ~ 1 2 B)。エフェクター細胞を、種々のエフェクター:標的比で、 9 6 ウェルU底プレートにプレートした。 1 0 倍過剰(放射性標的と比べて)の 51 C r 標識を有さない示されたペプチドをコートした標的を、添加した。最終的に、 1 ウェルあたり 1 0 4 の 51 C r 標識化標的細胞を添加し、そしてプレートを 3 7 にて 4 時間インキュベートした。 1 ウェルあたりの総容量は、 2 0 0 μ 1 であった。

[0175]

p 1 1 7 - 1 3 9 特異的 C T L による T R A M P - C の溶解を、関連性のあるペプチド p 1 1 7 - 1 3 9 と共にインキュベートした E L - 4 によって、 5 8 % ~ 3 6 % をブロックしたが、無関係なペプチドと共にインキュベートした E L - 4 ではブロックしなかった (図 1 2 A)。同様に、 B L K - S V 4 0 の溶解は、関連性のあるペプチド p 1 1 7 - 1 3 9 と共にインキュベートした E L - 4 によって、 1 8 % ~ 0 % をブロックした(図 1 2 B)。結果は、 W T 1 ペプチド特異的 C T L が、 プロセスした W T 1 の認識により、 悪性の細胞を特異的に死滅させることを確認する。

[0176]

推定のCTLモチーフを有するいくつかのセグメントは、p117-139内に含まれる。CTLエピトープの正確な配列を決定するために、p117-139内の全ての潜在的な9マーペプチドを合成した(表XLVIII)。これらのペプチドの2つ(p126-134およびp130-138)は、H-2 b クラスI分子に結合することを示した(表XLVIII)。p117-139での免疫により生成したCTLは、p126-134およびp130-138と共にインキュベートした標的を溶解したが、p117-139内の他の9マーペプチドでは溶解しなかった(図13A)。

[0177]

p 1 1 7 - 1 3 9 特異的 C T L 株を、 p 1 2 6 - 1 3 4 または p 1 3 0 - 1 3 8 のいずれかで再刺激した。 p 1 2 6 - 1 3 4 または p 1 3 0 - 1 3 8 で再刺激した後、両方の T 細胞株は、ペプチド比溶解を実証したが、 p 1 3 0 - 1 3 8 特異的 C T L のみが、 W T 1 陽性腫瘍細胞株の溶解を示した(図 1 3 B および 1 3 C)。従って、 p 1 3 0 - 1 3 8 は、天然でプロセスされるエピトープであるように思われる。

10

20

30

40

50

[0178]

(表XLVIII: p117-139内のWT1 CTL 9マーペプチドのマウスB6クラスI抗原に対する結合)

[0 1 7 9]

【表48】

	····			A second to the
ペプチド				マウスMHCクラスIに対する結合親和性
P117-125	PSQASSGQA	(SEQ	ID	2%
NO:221)				
P118-126	SQASSGQAR	(SEQ	ID	2%
NO:216)				
P119-127	QASSGQARM	(SEQ	ID	2%
NOs: 161 and	1 288)			
P120-128	ASSGQARMF	(SEQ	ID	1%
NO:40				
P121-129	SSGQARMFP	(SEQ	ID	1%
NO:222))
P122-130	SGQARMFPN	(SEQ	ID	1%
NO:212)	•			
P123-131	GQARMFPNA	(SEQ	ID	1%
NOs: 98 and	269)			
P124-132	QARMFPNAP	(SEQ	ID	1%
NO:223)	~			
P125-133	ARMFPNAPY	(SEQ	ID	1%
NO:38)	·			
P126-134	RMFPNAPYL	(SEQ	ID	79%
NOs: 185 and	d 293)			
P127-135	MFPNAPYLP	(SEQ	ID	2%
NO:224)		· -		
P128-136	FPNAPYLPS	(SEQ	ĬD	1%
NOs: 79 and	267)			
P129-137	PNAPYLPSC	(SEQ	ID	1%
NO:225)		•		
P130-138	NAPYLPSCL	(SEQ	ID	79%
NOs: 144 and	d 282)	•		
P131-139	APYLPSCLE (SEQ	ID	1%
NO:226)		•		
				

(実施例6:マウス腫瘍細胞株におけるWT1特異的mRNAの同定)

[0180]

単核細胞を、密度勾配遠心分離により単離し、そして直ちに凍結し、そしてWT1特異的mRNAの存在についてRT-PCRにより分析するまで、-80 で保存した。RT-PCRを、一般に、Fraizerら、Blood 86:4704-4706,195に記載されるように行った。総RNAを、標準的な手順に従って10⁷の細胞から抽出した。RNAペレットを、25µLジエチルピロカルボネート処理した水に再懸濁し、そして逆転写に直接用いた。ジンクフィンガー領域(エキソン7~10)を、330bpのマウスcDNAとしてPCRにより増幅した。増幅を、熱サイクラーにおいて、PCRの1回、または、必要な場合、連続した2回の間、行った。50µ1の総反応容量におい

て、AmpliTaq DNA Polymerase (Perkin Elmer Cetus, Norwalk, CT)、 $2.5\,\text{mM}$ MgCl $_2$ 、および $2.0\,\text{pmol}$ の各プライマーを用いた。PCR産物の $2.0\,\mu$ Lのアリコートを、臭化エチジウムで染色した $2\,\%$ アガロースゲル上で電気泳動した。このゲルを、Polaroid Jィルム(Polaroid 667, Polaroid Ltd. Hertfordshire, England)で写真撮影した。KwokおよびHiguchi、Nature 339:237-238,1989の推奨に従って、相互汚染に対する予防策を取った。陰性コントロールは、各実験において、cDNAの代わりに水を含有するcDNA試薬およびPCR試薬混合物を含んだ。偽陰性を避けるために、インタクトなRNAおよび適切なcDNA産生の存在を、各サンプルについて、 - アクチンプライマーを用いるコントロールPCRによって評価した。これらのプライマーで増幅されなかったサンプルを、分析から除いた。

[0181]

マウス細胞株における、WT1の増幅のためのプライマーは、以下であった:P115:1458-1478:5' CCC AGG CTG CAA TAA GAG ATA 3'(順方向プライマー;配列番号21);およびP116:1767-1787:5' ATG TTG TGA TGG CGG ACC AAT 3'(逆方向プライマー;配列番号22)(Inoueら、Blood 88:2267-2278,1996;Fraizerら、Blood

86:4704-4706,1995を参照のこと)。

[0182]

コントロール反応に用いた アクチンプライマーは、以下であった: 5 ' G T G G G C G C C C C A G G C A C C A 3 '(センスプライマー;配列番号 2 3);および 5 ' G T C C T T A A T G T C A C G C A C G A T T T C 3 '(アンチセンスプライマー;配列番号 2 4)。

[0183]

 ヒトW T 1 を増幅するのに使用するためのプライマーは、以下を含む: P 1 1 7 : 9 5

 4 - 9 7 4 : 5 ' GG C A T C T G A G A C C A G T G A

GAA 3'(配列番号25);およびP118:1434-1414:5'

G A G A G T C A G A C T T G A A A G C A G T 3 '(配列番号 5)。 ネスティッド R T - P C R について、プライマーは、以下であり得る: P 1 1 9 : 1 0 2 3 - 1 0 4 3 : 5 ' G C T G T C C C A C T T A C A G A T G C A 3 ' (配列番号 2 6);および P 1 2 0 : 1 3 4 5 - 1 3 6 5 : 5 ' T C A A A G C G C C A G C T G G A G T T T 3 '(配列番号 2 7)。

[0184]

表 X L V I I I I は、マウス腫瘍細胞株のW T 1 P C R 分析の結果を示す。表 I V において、(+++)は、R T - P C R の第 1 工程における、強いW T 1 P C R 増幅産物を示し、(++)は、W T 1 R T - P C R の第 1 工程により検出可能であるW T 1 増幅産物を示し、(+)は、W T 1 R T P C R の第 2 工程においてのみ検出可能である、産物を示し、そして(-)は、W T 1 P C R 陰性を示す。

[0185]

(表XLIX:マウス腫瘍細胞株におけるWT1 mRNAの検出)

[0186]

10

20

30

【表49】

纳陀神	WT1 mRNA
K562 (にト 白旦編 ; ATCC): 陽性コントローレ ; (Lozzio かい	+++
Lozzio, Blood 45:321-334, 1975)	
TRAMPC (SV40 秒度転換型的立般, B6); Foster et al.,	+++
Cancer Res. 57:3325-3330, 1997	
BLK-SV40 HD2 (SV40-transf. 綠柏芽钟代 B6; ATCC); Nature	++
<i>276</i> :510-511, 1978	
CTLL (T- 1996, B6; ATCC); Gillis, Nature 268:154-156, 1977)	+
FM (FBL-3 鱼系统, 与血粉, B6); Glynn 去形。Fefer, Cancer	+
Res. 28:434-439, 1968	
BALB 3T3 (ATCC); Aaroston & W. Todaro, J. Cell. Physiol.	+ -
72:141-148, 1968	
S49.1 (山)作順 i, T-和内尼特 B/C; ATCC); Horibata so Fo	+
Harris, Exp. Cell. Res. 60:61, 1970	
BNL CL.2 (所分 所 B/C; ATCC); Nature 276:510-511,	+
1978	
MethA (肉 fig., B/C); Old et al., Ann. NY Acad. Sci. 101:80-	-
106, 1962	<u>, , , , , , , , , , , , , , , , , , , </u>
P3.6.2.8.1 (肾肾五唑, B/C; ATCC); Proc. Natl. Acad. Sci. USA	-
66:344. 1970	
P2N (由 版 前 DBA/2; ATCC); Melling et al., J. Immunol.	-
117:1267-1274, 1976	
BCL1 (以作, B/C; ATCC); Slavin 和 Strober, Nature	-
272:624-626, 1977	
LSTRA (476 P. , B/C); Glynn et al., Cancer Res. 28:434-	-
439, 1968	
E10/EL-4 (14-) B6); Glynn et al., Cancer Res. 28:434-	-
439, 1968	

前述から、本発明の特定の実施態様は、例示の目的のために本明細書中に記載されたが、種々の改変は、本発明の精神および範囲から逸脱することなく、なされ得ることが理解される。従って、本発明は、添付の特許請求の範囲による場合を除き、限定されない。

【図面の簡単な説明】

[0187]

【図1】図1は、マウス(MO)およびヒト(HU)のWT1タンパク質配列(それぞれ配列番号320および319)の比較を示す。

【図2】図2は、血液学的な悪性疾患(AML)を伴う患者におけるWT1特異的抗体の検出を図示するウエスタンブロットである。レーン1は、分子量マーカーを示す;レーン2は、陽性コントロール(WT1特異的抗体と共に免疫沈降されたWT1陽性ヒト白血病細胞株)を示す;レーン3は、陰性コントロール(マウス血清と共に免疫沈降されたWT1陽性細胞株)を示す;そしてレーン4は、AMLを伴う患者の血清と共に免疫沈降されたWT1陽性細胞株を示す。レーン2~4に関して、免疫沈降は、ゲル電気泳動によって分離され、そしてWT1特異的抗体によってプローブされた。

【図3】図3は、TRAMP-C(WT1陽性腫瘍細胞株)を用いて免疫されたB6マウスにおけるWT1特異的抗体応答の検出を図示するウエスタンブロットである。レーン1、3および5は、分子量マーカーを示し、そしてレーン2、4および6は、WT1特異的陽性コントロール(N180、Santa Cruz Biotechnology、WT1タンパク質のN末端領域の180アミノ酸におよぶポリペプチド、ウエスタンブロッ

10

20

30

40

ト上で 5 2 k D に移動する)を示す。用いた一次抗体は、レーン 2 においてはW T 1 8 0 であり、レーン 4 においては免疫していない B 6 マウスの血清であり、そしてレーン 6 においては免疫した B 6 マウスの血清である。

【図4】図4は、代表的なWT1ペプチドを用いて免疫されたマウスにおけるWT1特異的抗体の検出を図示するウエスタンブロットである。レーン1、3および5は、分子量マーカーを示し、そしてレーン2、4および6は、WT1特異的陽性コントロール(N180、Santa Cruz Biotechnology、WT1タンパク質のN末端領域の180アミノ酸におよぶポリペプチド、ウエスタンブロット上で52kDに移動する)を示す。用いた一次抗体は、レーン2においてはWT180であり、レーン4においては免疫していないB6マウスの血清であり、そしてレーン6においては免疫したB6マウスの血清である。

【図5】図5A~5Cは、代表的なWT1ペプチドを用いて免疫されたマウスにおける増殖性T細胞応答の刺激を図示するグラフである。チミジン取り込みアッセイを、表示されたように一つのT細胞株および二つの異なるクローンを用いて実施し、そして結果を、cpmとして表現した。X軸上に示すコントロールは、抗原なし(Agなし)およびB6/培地であり;用いられた抗原はヒトp6~22(p1)、ヒトp117~139(p2)またはヒトp244~262(p3)であった。

【図6】図6Aおよび6Bは、代表的なWT1ペプチドを用いて免疫されたマウスにおける増殖性T細胞応答の刺激を図示するヒストグラムである。三回目の免疫の三週間後に、ワクチンAまたはワクチンBを接種したマウスの脾臓細胞を、培地のみ(培地)または脾臓細胞および培地(B6/抗原なし)、ペプチドp6~22(p6)、p117~139(p117)、p244~262(p244)(ワクチンA;図6A)またはp287~301(p287)、p299~313(p299)、p421~435(p421)(ワクチンB;図6B)を適用したB6脾臓細胞および無関係の25pg/m1のコントロールペプチド(無関係のペプチド)を適用した脾臓細胞とともに培養し、そして(³H)チミジン取り込みによって96時間後に増殖についてアッセイした。棒は、コントロール(抗原を伴わないB6脾臓細胞)の平均値によって除算した実験ウェルの平均値として計算された刺激指数(SI)を示す。

【図7】図7A~7Dは、p117~139およびp6~22に特異的な増殖性T細胞株およびクローンの産生を図示したヒストグラムである。インビボの免疫に続いて、最初のインビトロでの三回の刺激(IVS)を、それぞれワクチンAまたはBの三つのペプチドすべてを用いて実施した。引き続くIVSを、二つの関連したペプチドp117~139およびp6~22のみを用いた単一ペプチド刺激として実施した。クローンを、示すようにp6~22特異的T細胞株およびp117~139特異的T細胞株の両方から誘導した。T細胞を、培地のみ(培地)または脾臓細胞および培地(B6/抗原なし)、25μgノm1のペプチドp6~22(p6)、p117~139(p117)または無関係のコントロールペプチド(無関係のペプチド)を適用したB6脾臓細胞を用いて培養し、そして(³H)チミジン取り込みによって96時間後に増殖についてアッセイした。棒は、コントロール(抗原を伴わないB6脾臓細胞)の平均値によって除算された実験ウェルの平均値として計算された刺激指数(SI)を示す。

【図8A】図8Aおよび8Bは、Th応答を誘発する能力を有するペプチドについてヒトWT1(配列番号319)のTSITES分析の結果を示す。「A」と示された領域は、プロックのAMPHI中間点であり、「R」は、Rothbard/Taylorモチーフにマッチする残基を示し、「D」は、IAdモチーフにマッチする残基を示し、そして「d」は、IEdモチーフにマッチする残基を示す。

【図8B】図8Aおよび8Bは、Th応答を誘発する能力を有するペプチドについてヒトWT1(配列番号319)のTSITES分析の結果を示す。「A」と示された領域は、プロックのAMPHI中間点であり、「R」は、Rothbard/Taylorモチーフにマッチする残基を示し、「D」は、IAdモチーフにマッチする残基を示し、そして「d」は、IEdモチーフにマッチする残基を示す。

10

20

30

40

10

20

30

40

50

【図9】図9Aおよび9Bは、WT1ペプチドを用いて免疫されたマウスにおけるWT1ペプチド特異的CTLの誘発を図示するグラフである。図9Aは、同種異系細胞株による標的細胞の溶解を図示し、そして図9Bは、ペプチドでコートされた細胞株の溶解を示す。各々の場合において、%溶解(標準的クロム放出アッセイによって決定されたような)は、三つの示したエフェクター:標的の比において示される。結果は、リンパ腫細胞(LSTRAおよびE10)ならびにE10+p235~243(E10+P235)について提供される。E10細胞はまた、本明細書中でEL-4細胞とも呼ばれる。

【図10A】図10Aは、WT1ペプチドP117を用いたB6マウスのワクチン接種に引き続き、WT1陽性腫瘍細胞株を殺傷するがWT1陰性細胞株を殺傷しないWT1ペプチド特異的CTLの誘発を図示するグラフである。図10Aは、免疫しないB6マウスのT細胞がWT1陽性腫瘍細胞株を殺傷しないことを図示する。各々の場合において、%溶解(標準的クロム放出アッセイによって決定されたような)は、三つの示したエフェクター:標的の比において示される。結果は、リンパ腫細胞(E10)、前立腺ガン細胞(TRAMP-C)、形質転換された繊維芽細胞株(BLK-SV40)ならびにE10+P117について提供される。

【図10B】図10Bは、WT1ペプチドP117を用いたB6マウスのワクチン接種に引き続き、WT1陽性腫瘍細胞株を殺傷するがWT1陰性細胞株を殺傷しないWT1ペプチド特異的CTLの誘発を図示するグラフである。図10Bは、同種異系細胞株による標的細胞の溶解を図示する。各々の場合において、%溶解(標準的クロム放出アッセイによって決定されたような)は、三つの示したエフェクター:標的の比において示される。結果は、リンパ腫細胞(E10)、前立腺ガン細胞(TRAMP-C)、形質転換された繊維芽細胞株(BLK-SV40)ならびにE10+P117について提供される。

【図10C】図10Cは、WT1ペプチドP117を用いたB6マウスのワクチン接種に引き続き、WT1陽性腫瘍細胞株を殺傷するがWT1陰性細胞株を殺傷しないWT1ペプチド特異的CTLの誘発を図示するグラフである。図10Cは、異なる二つの実験におけるWT1陰性細胞株と比べたWT1陽性腫瘍細胞株の溶解を実証する。さらに、図10Cは、ペプチドにコートされた細胞株(関連したWT1ペプチドP117によってコートされたWT1陰性細胞株E10)の溶解を示す。各々の場合において、%溶解(標準的クロム放出アッセイによって決定されたような)は、三つの示したエフェクター:標的の比において示される。結果は、リンパ腫細胞(E10)、前立腺ガン細胞(TRAMP-C)、形質転換された繊維芽細胞株(BLK-SV40)ならびにE10+P117について提供される。

【図10D】図10Dは、WT1ペプチドP117を用いたB6マウスのワクチン接種に引き続き、WT1陽性腫瘍細胞株を殺傷するがWT1陰性細胞株を殺傷しないWT1ペプチド特異的CTLの誘発を図示するグラフである。図10Dは、異なる二つの実験におけるWT1陰性細胞株と比べたWT1陽性腫瘍細胞株の溶解を実証する。さらに、図10Dは、ペプチドにコートされた細胞株(関連したWT1ペプチドP117によってコートされたWT1陰性細胞株E10)の溶解を示す。各々の場合において、%溶解(標準的クロム放出アッセイによって決定されたような)は、三つの示したエフェクター:標的の比において示される。結果は、リンパ腫細胞(E10)、前立腺ガン細胞(TRAMP-C)、形質転換された繊維芽細胞株(BLK-SV40)ならびにE10+P117について提供される。

【図11】図11Aおよび11Bは、WT1陽性腫瘍細胞を溶解する代表的なペプチドP117~139特異的CTLの能力を図示したヒストグラムである。三回目の免疫の三週間後に、ペプチドp235~243またはp117~139を接種したマウスの脾臓細胞を、関連するペプチドを用いてインビトロにおいて刺激し、そしてWT1ペプチドならびにWT1陽性および陰性腫瘍細胞と共にインキュベートされた標的を溶解する能力について試験した。棒は、25:1のE:T比で三連で実施されたクロム放出アッセイにおける平均%比溶解を示す。図11Aは、示すように、WT1陰性細胞株EL-4(EL-4、WT1陰性);関連する(免疫ならびに再刺激のために用いた)ペプチドp235~24

3(EL-4+p235)を適用したEL-4;関連するペプチドp117~139を適用したEL-4(EL-4+p117)、p126~134を適用したEL-4(EL-4+p130)ならびにWT1陽性腫瘍細胞BLK-SV40(BLK-SV40、WT1陽性)およびTRAMP-C(TRAMP-C、WT1陽性)に対するp235~243特異的T細胞株の細胞傷害性の活性を示す。図11Bは、示すように、EL-4;関連するペプチドp117~139を適用したEL-4(EL-4+p117)および無関連のペプチドp123~131を適用したEL-4(EL-4+p123)、またはp128~136を適用したEL-4(EL-4+p123)、またはp128~136を適用したEL-4(EL-4+p123)、またはp128~136を適用したEL-4(EL-4+p128);BLK-SV40およびTRAMP-Cに対するp117~139特異的T細胞株の細胞傷害性の活性を示す。

10

【図12】図12Aおよび12Bは、非放射性標的阻害によって実証されたような、WT 1 陽性腫瘍細胞の溶解の特異性を図示するヒストグラムである。棒は、 2 5 : 1 の E : T 比で三連で実施されたクロム放出アッセイにおける平均%比溶解を示す。図12Aは、示 すように、W T 1 陰性細胞株 E L - 4 (E L - 4、W T 1 陰性) ; W T 1 陽性腫瘍細胞株 TRAMP-C(TRAMP-C、WT1陽性);⁵¹Cr標識をしない関連するペプチド p 1 1 7 ~ 1 3 9 を適用した 1 0 倍過剰 (放射性標的と比べて)の E L - 4 細胞とともに インキュベートされたTRAMP-C細胞(TRAMP-C+p117非放射性標的)お よび51Cr標識をしない無関連のペプチドを適用したEL-4細胞とともにインキュベー トされたTRAMP-C細胞(TRAMP-C+無関係の非放射性標的)に対するp11 7~139特異的T細胞株の細胞傷害性の活性を示す。図12Bは、示すように、WT1 陰性細胞株 E L - 4 (E L - 4 、 W T 1 陰性) ; W T 1 陽性腫瘍細胞株 B L K - S V 4 0 (BLK-SV40、WT1陽性);関連する非放射性標的とともにインキュベートされ た B L K - S V 4 0 細胞 (B L K - S V 4 0 + p 1 1 7 非放射性標的) および無関連の非 放射性標的とともにインキュベートされたBLK-SV40細胞(BLK-SV40+無 関係の非放射性標的)に対するp117~139特異的T細胞株の細胞傷害性の活性を示 す。

20

【 図 1 3 】 図 1 3 A ~ 1 3 C は、 p 1 1 7 ~ 1 3 9 内の 9 マー C T L エピトープの評価を 3 9 内に適切なH- 2 ^bクラスI結合モチーフを含むかまたは欠如するペプチドに対して 試験し、続いてp126~134またはp130~138を用いて再刺激した。棒は、2 5 : 1 の E : T 比で三連で実施されたクロム放出アッセイにおける平均 % 比溶解を示す。 図 1 3 A は、W T 1 陰性細胞株 E L - 4 (E L - 4 、W T 1 陰性) およびペプチド p 1 1 フ~139を適用したEL-4細胞(EL-4+p117)、ペプチドp119~127 を適用したEL-4細胞(EL-4+p119)、ペプチドp120~128を適用した EL-4細胞(EL-4+p120)、ペプチドp123~131を適用したEL-4細 胞(EL-4+p123)、ペプチドp126~134を適用したEL-4細胞(EL-4 + p 1 2 6)、ペプチド p 1 2 8 ~ 1 3 6 を適用した E L - 4 細胞 (E L - 4 + p 1 2 8)およびペプチドp130~138を適用したEL-4細胞(EL-4+p130)に 対する p 1 1 7 ~ 1 3 9 特異的 T 細胞株の細胞傷害性の活性を示す。図 1 3 B は、W T 1 陰性細胞株 E L - 4、 p 1 1 7 ~ 1 3 9 を適用した E L - 4 細胞 (E L - 4 + p 1 1 7) 、 p 1 2 6 ~ 1 3 4 を適用したEL-4細胞(EL-4+ p 1 2 6) およびWT1陽性腫 瘍細胞株TRAMP-Cに対してp126~134を用いた再刺激後のCTL株の細胞傷 害性の活性を示す。図13Cは、EL-4、p117~139を適用したEL-4細胞(EL-4+p117)、p130~138を適用したEL-4細胞(EL-4+p130) および W T 1 陽性 腫 瘍 細 胞 株 TRAMP-Cに対 して p 1 3 0 ~ 1 3 8 を用 い た 再 刺 激 後のCTL株の細胞傷害性の活性を示す。

30

【図1】

- HU: MGSDVRDLNALLPAYPSLGGGGCCALPVSGAAQNAPVLDFAPPGASAYGSL MO: MGSDVRDLNALLPAYSSLGGGGCGLPYSGAAQNAPVLDFAPPGASAYGSL
- HU: GGPAPPPAPPPPPPPPFHSFJKQEPSWCGAEPHEQQCLSAFTVHFSGOFTGTAG MO: GGPAPPPAPPPPPPPPPPFSFJKQEPSWCGAEPHEEQCLSAFTLHFSGOFTGTAG
- HU: ACRYGPFGPPPPSQASSGQARMFPNAPYLPSCLESQPAIRNQGYSTVTFDGTPS MO: ACRYGPFGPPPPSQASSGQARMFPNAPYLPSCLESQPTIRNQGYSTVTFDGAPS
- HU: YGHTPSHHAAQFPMHSFKHEDPMGQQGSLGEQQYSVPPPVYGCHTPTDSCTG MO: YGHTPSHHAAQFPMHSFKHEDPMGQQSLGEQQYSVPPPVYGCHTPTDSCTG
- HU: SQALLLRTPYSSDNLYOMTSQLECHTWNQMNLGATLKGWAAGSSSSVKWTE MO: SQALLLRTPYSSDNLYOMTSQLECHTWNQMNLGATLKGMAAGSSSSVKWTE
- HU: GQSNHSTGYESDNHTTPILCGAQYRIHTHGVFRGIQDVRRVPGYAPTLVRSAS MO: GQSNHGIGYESDNHTAPILCGAQYRIHTHGVFAGIQDVRRVSGYAPILVRSAS
- HU: ETSEKRPFMCAYPGONKRYFKLSHLOMMSRKHTGEKPYQCDFKDCERRFSR MO: ETSEKRPFMCAYPGONKRYFKLSHLOMMSRKHTGEKPYQCDFKDCERRFSR
- HU: SDCLKRHORRHTGVKPFQCKTCQRKFSRSDHLKTHTRTHTGKTSEKPFSCR MD: SDCLKRHCRRHTGVKPFQCKTCQRKFSRSDHLKTHTRTHTGKTSEKPFSCR
- HU: WPSCQKKFARSDELVRHHNMHQRAMTKLQLAL MD: WHSCQKKFARSDELVRHHNMHQRAMTKLHVAL

Fig. 1

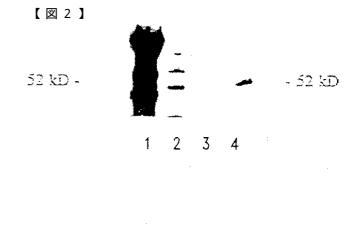
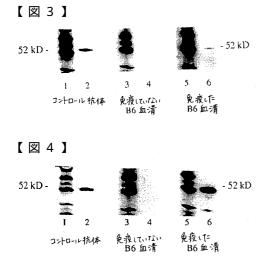
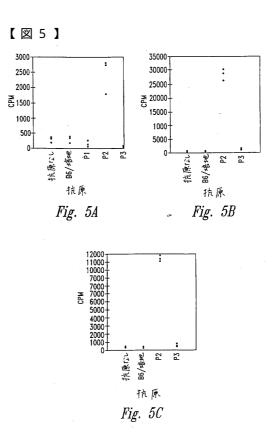
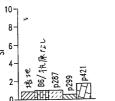
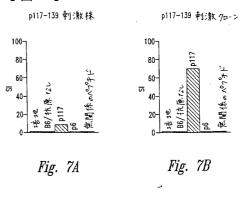




Fig. 2




【図6】

ワクテン B 刺激株

【図7】

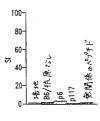


Fig. 7C

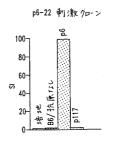


Fig. 7D

【図8A】

MGSDVRD	VAAAV	PAVPS VAAAAI	LOGGG VAAAA	GCAL.	PYSGA AA RRI	AAA R	/LDFA	PPGAS:	aygsli Aaaa	GGP/LD VAAAA	DPAPP	PPPPP	PPHSF	I KOE
	85 PHEEQI	90 CLSAF AA	95 TVHFS	100 GDFTI AA/	105 GTAGA VA VARR.	110 CRYGPF	115 GPPPI	120 PSGASS	125 GQARI AAA RF	130 MEPNAI A	135 PYLPSI AAA/	140 CLESQI VAA	145 PAIRN	150 16YS
155 TVTFDGT	PSYGH	TPSHH A/	AAQFF VAAA RRR	NHSF	KHEDP	1GQQGS	SLGEQ	QYSVP	PVYG	CHTPT	DSCTG 	SOALL	LRTPY	SSDN .AA
230 LYOMTSQ AAAAAAA DDDOODD	LECNTI A	INCHI	LGATL AA .RRRR 	KGVA VA. AA RRRRF KODDOI	AGSSS: A VR DDDDDD	. RRRR	GQSNI	4STGY1	SDNH	TTPIL	CGAQYI	REHTHI AAAA	GVFRG AAAAA RRRR	QDV VAAA
305 RRVPGVA AAAAA RRRI	PTLVR: AMAMA RR	SASET:	SEKRP A	FMCA	rpgcn	(RYFK) RRRR.	SHLO	#HSRKI	ITGEK	PYQCD	FKDCEI A	RRFSR:	SDQLK AAAAA	AAA.
380 RHTGVKP	FQCKT	QRKP. AAAA	SRSDH . AAAA	H,KTH AA.	TRTHT)	aaa	PFSCI	RWPSOI A#	IKKFAI A . FIRRF	RSDEL' AAAA/ R RRF	VRHHM VAAA	YHQRNI AAA	VITK LQ	.AL

Fig.	∂A
Fig.	∂A

【図8B】

MGSDVRDLKAL AAAAAA	L PAYSSLGG AAAAAAAA	VAA	AAQWAP AAAAA RRR	VLDFAPP	gasaygsl ,aaaaaa	GGPAPA AAAAA	PAPPE	PPPPP	PHSFI	KQE
80 85 PSNGGAEPHEE	90 95 QCLSAFTEHI	100 103 FSGQFTGTAG AAAA RRRR	5 110 ACRYGPI	115 1 FGPPPPSi	20 125 DASSGOAR AA RI	130 MEPNAF A RERR	135 YLPSC .AAAA	140 LESQP	1.45 FIRNO	150 ays
155 160 TVTFDGAPSYG	HTPSHIAAQI AAAA RRRR	PNHSFKHEE	IPMGQQG	SLGEQQY	SVPPPVYG	CHTPTE AAAAAA	SCTGS . DDDDOI	QALLLI	RTPYS	AA
230 235 LYOMTSOLECM AAAAAAA DDDDDD	TWNQMNLGAT	FLKGMAAGSS NAA. AAA. RRRRRRR DDDDDDDDDDDDD	SSVKWTE RRRF DD	EGQSNHG R	IGYESDNH	TAPILO	GAQYR	EHTHGI AAA RA	/FRGIO NAAAA/ IRR	DV VAA
305 310 RRYSGVAPTLVI AAAAAAAAA RRRR DDDDDDDDDDD	RSASETSEKF AAAAAAA DD	RPFWCAYPGC	NKRYFKI RRRR.	SHLQMH	SRKHTGEK	PYQCDF	KDCER AA	RFSRSE AA . AAJ	OLKRI Vaaaa	IQR VA.
3BO 3B5 RHTGVKPFQCK	TCORKFSRSI , AAAA, AAA	HLKTHTRTH AAA	TGKTSÐ .AAAA	(PFSCRW	ISCOKKFAI AA RRRI	RSDELV .AAAAA RRRR	RHHNM AAA R	HORNIMI AAAA.	TKLHVA	L

Fig. 8B

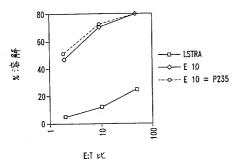


Fig. 9A

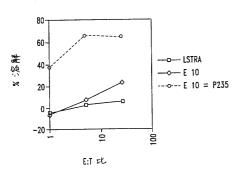
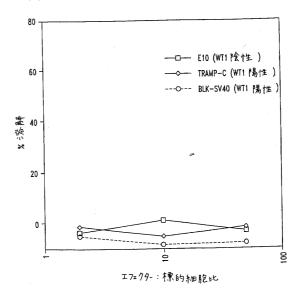
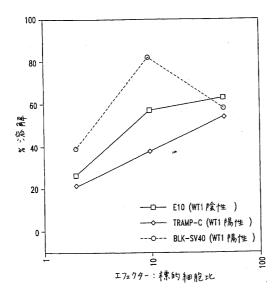
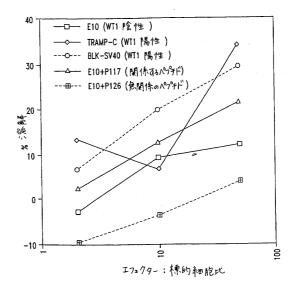
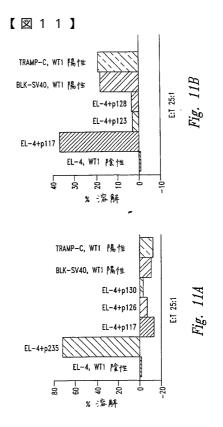
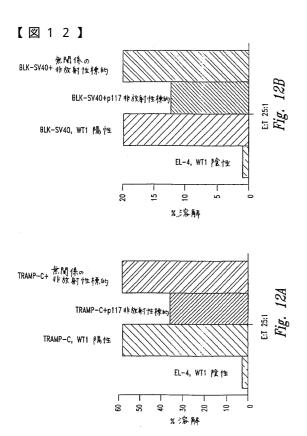
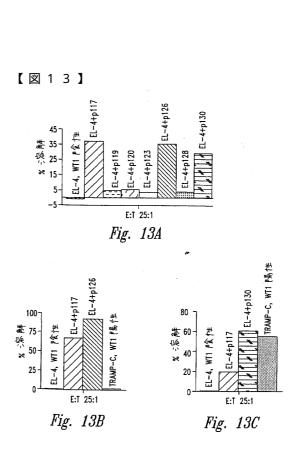




Fig. 9B


【図10A】


【図10B】




【図10C】

【図 1 0 D】 -□- E10 (WT1 陰性) -◇- TRAMP-C (WT1 陽性) -◇- BLK-SV40 (WT1 陽性) -△- E10+P117 (関係なみプラド) --田-- E10+P126 (無関係のパプチド) 10 -10 エフェクター: 棟動 細胞 比

【配列表】 2008069172000001.app

フロントページの続き

(51) Int.CI. F I テーマコード (参考)

A 6 1 K 38/00 (2006.01) A 6 1 K 37/02

(74)代理人 100113413

弁理士 森下 夏樹

(72)発明者 アレキサンダー ガイジャー

アメリカ合衆国 ワシントン 98112, シアトル, 42エヌディー アベニュー イースト 1421

(72)発明者 マーティン チーバー

アメリカ合衆国 ワシントン 98104, マーサー アイランド, 83アールディー アベニュー エス.イー. 6825

F ターム(参考) 4B024 AA01 BA31 CA02 DA02 DA06 DA12 EA04 GA11 HA03

4C084 AA07 BA01 BA08 BA22 BA23 CA18 CA31 DC50 MA17 MA66

NA14 ZB26 ZB27

4C085 AA03 BB01 CC03 CC29 DD61 EE01 GG01

4H045 AA11 AA20 AA30 BA10 CA41 DA86 EA31 FA74 GA21

专利名称(译)	用于WT1特异性免疫疗法的组合物	和方法	
公开(公告)号	<u>JP2008069172A</u>	公开(公告)日	2008-03-27
申请号	JP2007279673	申请日	2007-10-26
[标]申请(专利权)人(译)	科里克萨有限公司 盖伊罐子亚历山大		
申请(专利权)人(译)	Corixa公司公司 Gaija,亚历山大		
[标]发明人	アレキサンダーガイジャー マーティンチーバー		
发明人	アレキサンダー ガイジャー マーティン チーバー		
IPC分类号		5/00 A61P37/04 C07K7/06 C07	38/00 G01N33/50 A61K38/08 A61K38 /K7/08 C07K14/82 C07K16/32 C12Q1
CPC分类号	A61K38/00 A61K39/00 A61K48/00 /4748) A61P15/00 A61P35/00 A61P3	35/02 A61P35/04 A61P37/04 C07K14
FI分类号	C07K14/47.ZNA C12N15/00.A A6 A61K38/16 C07K7/06	1K39/00.H A61P35/00 A61P35/	/02 A61K37/02 A61K38/00 A61K38/01
F-TERM分类号	/GA11 4B024/HA03 4C084/AA07 4 4C084/CA31 4C084/DC50 4C084/ /AA03 4C085/BB01 4C085/CC03 4	4C084/BA01 4C084/BA08 4C08 /MA17 4C084/MA66 4C084/NA 4C085/CC29 4C085/DD61 4C0	6 4B024/DA12 4B024/EA04 4B024 84/BA22 4C084/BA23 4C084/CA18 14 4C084/ZB26 4C084/ZB27 4C085 85/EE01 4C085/GG01 4H045/AA11 66 4H045/EA31 4H045/FA74 4H045
代理人(译)	夏木森下		
优先权	09/164223 1998-09-30 US 09/276484 1999-03-25 US		
其他公开文献	JP4235984B2		
外部链接	Espacenet		

摘要(译)

本发明要解决的问题需要改进的方法来预防和治疗白血病和癌症,并提供其他相关的优点 解决方案:包含天然WT1免疫原性部分或其变体的多肽,其在一个或多个取代,缺失,添加和/或插入方面不同,其中所述修饰允许修饰所述变体。与WT1特异性抗血清和/或T细胞系或克隆反应的能力基本上没有降低,其中多肽包含天然WT1多肽中存在的不超过16个连续氨基酸残基。包含基团的多肽。 【选择图】无

107041	Bt 51]	注解
マカス : p6-22	RDLNALLPAVSSLGGGG	th WT1 配列に対け
	(SEQ ID NO:13)	ミスマッチ 1
는 : p6-22	RDLNALLPAVPSLGGGG	
	(SEQ ID NO:1)	
ヒト/マウス .:	PSQASSGQARMFPNAPYLPSCLE	
p117-139	(SEQ ID NOs: 2 カンジ3)	
マウス:p244-262	GATLKGMAAGSSSSVKWTE	th WTL 新列1:対切
	(SEQ ID NO:14)	E27W41
th:p244-262	GATLKGVAAGSSSSVKWTE	
·	(SEQ ID NO:4)	
ヒト/マウス :	RIHTHGVFRGIQDVR	
p287-301	(SEQ ID NOs: 15おおが16)	
マウス:p299-313	VRRVSGVAPTLVRS	ヒトWT1Bでかりに対して
	(SEQ ID NO:17)	£27×41
ヒトノマウス	CQKKFARSDELVRHH	
p421-435	(SEQ ID NOs: 19 केंग्ड 20)	