(19) **日本国特許庁(JP)**

(12) 公表特許公報(A)

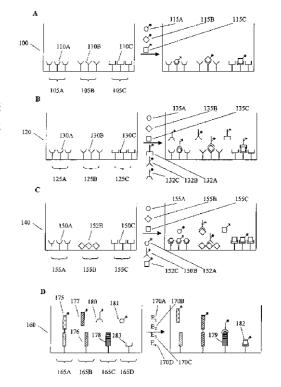
(11)特許出願公表番号

特表2005-521032 (P2005-521032A)

最終頁に続く

(43) 公表日 平成17年7月14日(2005.7.14)

(51) Int.C1. ⁷ GO1N 21/76 C12N 15/09 C12Q 1/00 C12Q 1/48 GO1N 33/53	F I GO1N C12Q C12Q C12Q GO1N 審査請す	1/48 33/53	C Z Z M ·備審査講求 有	テーマコード (参考) 2GO54 4BO24 4BO63 (全 72 頁) 最終頁に続く
(21) 出願番号 (86) (22) 出願日 (85) 翻訳文提出日 (86) 国際公開出 (87) 国際公開日 (87) 国際公開日 (31) 優先權主 (32) 優先權主張 (31) 優先權主張 (32) 優先權主張 (32) 優先權主張 (32) 優先權主張 (32) 優先權主張 (32) 優先權主張 (33) 優先權主張 (34) 優先權主張	平成13年9月10日 (2001.9.10) 米国 (US)	(71) 出願人 (74) 代理人 (74) 代理人 (74) 代理人 (74) 代理人	メソ スケイバルシー アメリカ合衆 ズバーグ、 イ 16020 100066692 弁理士 浅村 100072040 弁理士 浅村 100107504 弁理士 安藤	肇 克則


(54) 【発明の名称】 1 つの試料について複数の測定を実施する方法及び装置

(57)【要約】

(33) 優先権主張国

複数のアッセイドメインを有するアッセイモジュールを 用いて多重試験測定を実施する。好ましい実施形態において、これらの測定は、アッセイモジュールを収容し、 アッセイモジュールのウェル又はアッセイ領域において 発光、好ましくは電極誘導発光を誘発し、誘発された発 光を測定するように構成されたリーダー装置を備え一体 型電極を有するアッセイモジュールにおいて実施される

米国(US)

20

30

40

50

【特許請求の範囲】

【請求項1】

複数のアッセイドメインを含む発光アッセイを実施するためのアッセイモジュールであって、前記アッセイドメインが、第1の試薬を有する第1のアッセイドメインと第2の試薬を有する第2のアッセイドメインとを含み、前記第1のアッセイドメインが前記第2のアッセイドメインの少なくとも10倍明るい発光を生成可能であり、前記第1のアッセイドメインが隣接しておらずかつ/又は少なくとも1つの他のアッセイドメインによって分離されて、前記第1のアッセイドメインから放出される発光と前記第2のアッセイドメインから放出される発光との干渉が低減されたアッセイモジュール。

【請求項2】

複数のアッセイドメインを含むアッセイモジュールにおいて複数の分析物のアッセイを実施する方法であって、前記アッセイドメインが、第1の分析物を測定するための第1の試薬を有する第1のアッセイドメインと第2の分析物を測定するための第2の試薬を有する第2のアッセイドメインとき含み、前記第1のアッセイドメインが前記第2のアッセイドメインと前記第2のアッセイドメインが隣接しておらずかつ/又は少なくとも1つの他のアッセイドメインによって分離されて、前記第1のアッセイドメインから放出される発光と前記第2のアッセイドメインから放出される発光との干渉が低減されたアッセイモジュール。

【請求項3】

前記第1のアッセイドメインが前記第2のアッセイドメインの少なくとも10倍の捕捉 試薬を含む、請求項1に記載のアッセイモジュール。

【請求項4】

前記第1のアッセイドメインが前記第2のアッセイドメインの少なくとも10倍多い試薬を含む、請求項2に記載の方法。

【請求項5】

前記第1のアッセイドメインが前記第2のアッセイドメインの少なくとも100倍明る い発光を生成可能である、請求項1に記載のアッセイモジュール。

【請求項6】

前記第1のアッセイドメインが前記第2のアッセイドメインの少なくとも1,000倍明るい発光を生成可能である、請求項1に記載のアッセイモジュール。

【請求項7】

前記第2のアッセイドメインが、放出された発光を減少させる1つ又は複数の特性を有する、請求項1、3、5又は6に記載のアッセイモジュール。

【請求項8】

前記1つ又は複数の特性が、放出された発光を減少させる捕捉試薬及び/又は放出された発光を減少させる標的分析物を含む、請求項7に記載のアッセイモジュール。

【請求項9】

前記第1のアッセイドメインが少なくとも1つの他のアッセイドメインによって前記第 2のアッセイドメインから分離されている、請求項1、3、5、6、7又は8に記載のアッセイモジュール。

【請求項10】

前記第1のアッセイドメインと前記第2のアッセイドメインが別個に指定可能である、請求項1、3、5、6、7、8又は9に記載のアッセイモジュール。

【請求項11】

前記アッセイモジュールが、複数のウェルを備えるマルチウェルプレートであって、前記ウェルの各々が前記複数のアッセイドメインのコピーを有する、請求項1、3、5、6、7、8、9又は10に記載のアッセイモジュール。

【請求項12】

複数のアッセイドメインを含む発光アッセイを実施するためのアッセイモジュールを作

製する方法であって、前記アッセイドメイン間の干渉が低減するように構成されたパター ンで前記アッセイドメインを形成するステップを含む方法。

【請求項13】

前記パターンが、前記アッセイドメインから放出される発光間の干渉が低減するように 構成されている、請求項12に記載の方法。

【請求項14】

前記パターンが、前記アッセイドメインにおいて起こる反応間の干渉が低減するように構成されている、請求項12又は13に記載の方法。

【請求項15】

前記アッセイドメインを形成する前記ステップが、第2のアッセイドメインに隣接しないように第1のアッセイドメインを配置するステップを含む、請求項12、13又は14 に記載の方法。

【請求項16】

前記アッセイドメインを形成する前記ステップが、第2のアッセイドメインに隣接しないように第1のアッセイドメインを配置するステップを含み、前記第1のアッセイドメインにおいて起こる反応又は前記第1のアッセイドメインに固定された試薬が、(i)前記第2のアッセイドメインにおいて生成される発光、(ii)前記第2のアッセイドメインにおいて起こる反応、及び/又は(iii)前記第2のアッセイドメインに固定された試薬と干渉する、請求項12、13又は14に記載の方法。

【請求項17】

前記パターンが前記発光アッセイの性能を最適化するように構成されている、請求項1 2、13、14、15又は16に記載の方法。

【請求項18】

前記パターンが前記アッセイドメインの配列、間隔、サイズ及び濃度を含む、請求項 1 2 、 1 3 、 1 4 、 1 5 、 1 6 又は 1 7 に記載の方法。

【請求項19】

パネルの分析物を測定するための複数のアッセイドメインを含むアッセイモジュールであって、前記パネルがサイトカイン及び/又はそれらの受容体;成長因子及び/又はそれらの受容体;セカンドメッセンジャー;乱用薬物;治療薬物;自己抗体;アレルゲン特異的抗体;腫瘍マーカー;心臓マーカー;止血に関連するマーカー;急性ウイルス肝炎感染マーカー;アルツハイマー病マーカー;骨粗しょう症マーカー;受胎能マーカー;うっ血性心不全マーカー;甲状腺障害マーカー;前立腺癌のマーカー;サイトカイン、成長因子、アポトーシス経路の成分、P450酵素の発現、腫瘍関連遺伝子の発現をコードするmRNAのmRNAレベルを測定するための核酸アレイ;個体、病原体、腫瘍細胞の遺伝形質を決定するための核酸アレイから選択される分析物カテゴリの成分である複数の分析物を含むアッセイモジュール。

【請求項20】

前記アッセイドメインが、(i)分析物又は分析物アナログ、(ii)分析物に結合する結合試薬、及び/又は(iii)分析物の触媒活性基質を含む、請求項19に記載のアッセイモジュール。

【請求項21】

アッセイモジュールを用いて複数の分析物のアッセイを実施する方法であって、

(a)前記アッセイモジュール内の複数のアッセイドメインと試料を接触させるステップであって、前記複数のアッセイドメインによってパネルの分析物を測定することが可能であり、前記パネルが、サイトカイン及び/又はそれらの受容体;成長因子及び/又はそれらの受容体;セカンドメッセンジャー;乱用薬物;治療薬物;自己抗体;アレルゲン特異的抗体;腫瘍マーカー;心臓マーカー;止血に関連するマーカー;急性ウイルス肝炎感染マーカー;アルツハイマー病マーカー;骨粗しょう症マーカー;受胎能マーカー;うっ血性心不全マーカー;甲状腺障害マーカー;前立腺癌のマーカー;サイトカイン、成長因子、アポトーシス経路の成分、P450酵素の発現、腫瘍関連遺伝子の発現をコードする

20

30

40

mRNAのmRNAレベルを測定するための核酸アレイ;個体、病原体、腫瘍細胞の遺伝形質を決定するための核酸アレイから選択される分析物カテゴリの成分である複数の分析物を含むステップと、

(b)前記アッセイドメインにおいて前記分析物を測定するステップとを含む方法。

【請求項22】

電気化学発光アッセイモジュールを用いて電気化学発光アッセイを実施する方法であって、

(a)前記モジュール内の複数のアッセイドメインと試料を接触させるステップであって、前記複数のアッセイドメインによってパネルの分析物を測定することが可能であり、前記パネルがサイトカイン及び / 又はそれらの受容体;成長因子及び / 又はそれらの受容体;は長因子及び / 又はそれらの受容体;は長因子及び / 又はそれらの受容体;は長因子及び / 又はそれらの受容体;を力したがといるでは、一旦に関連するマーカー;急性ウイルス肝炎感染マーカー;アルツハイマー病マーカー;骨粗しょう症マーカー;受胎能マーカー;うっ血性心不全マーカー;甲状腺障害マーカー;前立腺癌のマーカー;サイトカイン、成長因子、アポトーシス経路の成分、P450酵素の発現、腫瘍関連遺伝子の発現をコードするmRNAのmRNAレベルを測定するための核酸アレイ;個体、病原体、腫瘍細胞の遺伝形質を決定するための核酸アレイから選択される分析物カテゴリの成分である複数の分析物を含み、前記アッセイドメインが1つ又は複数の作用電極を備え又はそれに隣接しているステップと

(b)前 記 複 数 の ア ッ セ イ ド メ イ ン に お い て 電 気 化 学 発 光 を 誘 発 さ せ る ス テ ッ プ と 、

(c) 放出された電気化学発光を検出するステップとを含む方法。

【請求項23】

パネルの分析物を測定する複数の結合ドメインを含むアッセイモジュールにおいてリガンドの特異的結合アッセイを実施する方法であって、前記パネルがサイトカイン及び/又はそれらの受容体;セカンドメッセンジャー;乱用薬物;治療薬物;自己抗体;アレルゲン特異的抗体;腫瘍マーカー;心臓マーカー;止血に関連するマーカー;急性ウイルス肝炎感染マーカー;アルツハイマー病マーカー;骨粗しょう症マーカー;受胎能マーカー;うっ血性心不全マーカー;甲状腺障害マーカー;可放癌のマーカー;サイトカイン、成長因子、アポトーシス経路の成分、P450酵素の発現、腫瘍関連遺伝子の発現をコードするmRNAのmRNAレベルを測定するための核酸アレイ;個体、病原体、腫瘍細胞の遺伝形質を決定するための核酸アレイから選択される分析物カテゴリの成分である複数の分析物を含む方法。

【請求項24】

前記パネルが成長因子受容体のパネルである、請求項23に記載の方法。

【請求項25】

複数のアッセイドメインを含むアッセイモジュールであって、前記アッセイドメインが、分析物の第1の形態に結合可能な第1の試薬を含む第1のアッセイドメインと前記分析物の第2の形態に結合可能な第2の試薬を含む第2のアッセイドメインとを含むアッセイモジュール。

【請求項26】

2 つの形態の分析物を測定する方法であって、

(a) 複数のアッセイドメインを含むアッセイモジュールに試料を導入するステップであって、第1のアッセイドメインが、分析物の第1の形態に結合可能な第1の試薬を含み、第2のアッセイドメインが、前記分析物の第2の形態に結合可能である第2の試薬を含むステップと、

(b)前記第1のアッセイドメイン及び前記第2のアッセイドメインへの分析物の結合 を測定して前記第1の形態及び第2の形態の量を測定するステップとを含む方法。

【請求項27】

前記第2の形態が前記第1の形態の切断された一部である、請求項26に記載の方法。

【請求項28】

50

40

10

20

30

50

前記第2の形態が前記第1の形態の切断された一部である、請求項25に記載のアッセイモジュール。

【請求項29】

前記第2の形態が前記第1の形態のユビキチン結合した形態である、請求項25に記載のアッセイモジュール。

【請求項30】

前記分析物の前記第2の形態が前記第1の形態のリン酸化体である、請求項25に記載のアッセイモジュール。

【請求項31】

前記第2の形態が前記第1の形態の結合体(bound form)である、請求項2 5に記載のアッセイモジュール。

【請求項32】

前記第2のアッセイドメインが前記第1の形態にも結合可能である、請求項25に記載のアッセイモジュール。

【請求項33】

前記第1の形態が非グリコシル化タンパク質であり、前記第2の形態がグリコシル化タンパク質である、請求項25に記載のアッセイモジュール。

【請求項34】

前記第1の形態が遊離PSAであり、前記分析物の前記第2の形態が結合PSAである、請求項25に記載のアッセイモジュール。

【請求項35】

前記第1の形態及び前記第2の形態と結合可能である検出試薬をさらに含む、請求項25、26、27、28、29、30、31、32、33又は34に記載のアッセイモジュール。

【請求項36】

アッセイを実施するためのアッセイモジュールであって、

- (a)第 1 の分析物に結合可能である第 1 の試薬を有する第 1 のアッセイドメインと、
- (b)前記第1の分析物の改変形態に結合可能である第2の試薬を有する第2のアッセイドメインと、
 - (c) 第 2 の 分 析 物 に 結 合 可 能 で あ る 第 3 の 試 薬 を 有 す る 第 3 の ア ッ セ イ ド メ イ ン と 、
- (d)前記第2の分析物の改変形態に結合可能である第4の試薬を有する第4のアッセイドメインとを含むアッセイモジュール。

【請求項37】

前記アッセイモジュールが、さらに、前記第1の分析物、前記第1の分析物の前記改変形態、前記第2の分析物、及び前記第2の分析物の改変形態に結合可能である標識試薬を含む、請求項36に記載のアッセイモジュール。

【請求項38】

前記分析物の第1の形態に結合可能である第1の試薬を含む第1のアッセイドメインと前記分析物の第2の形態に結合可能である第2の試薬を含む第2のアッセイドメインとを有するアッセイモジュールにおいて単一試料中の2つ以上の分析物形態を測定する方法であって、

(a)前記試料を、前記第1のアッセイドメイン及び前記第2のアッセイドメイン、並びに前記分析物の前記第1の形態及び前記第2の形態に結合可能である標識試薬と接触させるステップと、

(b) 前記標識試薬から放出されたシグナルを検出するステップとを含む方法。

【請求項39】

未結合標識試薬を除去する洗浄ステップをさらに含む、請求項38に記載の方法。

【請求項40】

アッセイを実施するためのアッセイモジュールであって、

(a) 第1の分析物に結合可能である第1の試薬を有する第1のアッセイドメインと、

(b)前記第1の分析物の改変形態に結合可能である第2の試薬を有する第2のアッセイドメインと、

- (c) 第 2 の分析物に結合可能である第 3 の試薬を有する第 3 のアッセイドメインと、
- (d)前記第2の分析物の改変形態に結合可能である第4の試薬を有する第4のアッセイドメインとを含むアッセイモジュール。

【請求項41】

前記アッセイモジュールが、さらに、前記第1の分析物、前記第1の分析物の前記改変形態、前記第2の分析物、及び前記第2の分析物の改変形態に結合可能である標識試薬を含む、請求項40に記載のアッセイモジュール。

【請求項42】

前記分析物の第 1 の形態に結合可能である第 1 の試薬を含む第 1 のアッセイドメインと前記分析物の第 2 の形態に結合可能である第 2 の試薬を含む第 2 のアッセイドメインとを有するアッセイモジュールにおいて単一試料中の 2 つ以上の分析物形態を測定する方法であって、

(a)前記試料を、前記第1のアッセイドメイン及び前記第2のアッセイドメイン、並びに前記分析物の前記第1の形態及び前記第2の形態に結合可能である標識試薬と接触させるステップと、

(b)前記標識試薬から放出されたシグナルを検出するステップとを含む方法。

【請求項43】

未結合標識試薬を除去する洗浄ステップをさらに含む、請求項42に記載の方法。

【請求項44】

前記分析物の第1のエピトープに結合可能である第1の試薬を含む第1のアッセイドメインと前記分析物の第2のエピトープに結合可能である第2の試薬を含む第2のアッセイドメインとを有するアッセイモジュールにおいて単一試料中の分析物の2つ以上のエピトープを測定する方法であって、前記試料を、前記第1のアッセイドメイン及び前記第2のアッセイドメインと接触させるステップを含む方法。

【請求項45】

前記試料を、前記分析物に結合可能である1つ又は複数の標識と接触させるステップと、前記1つ又は複数の標識によって放出されるシグナルを検出するステップとをさらに含む、請求項44に記載の方法。

【請求項46】

分析物のアッセイを実施するためのアッセイモジュールであって、

- (a) 前記分析物に結合可能である第1の試薬を含む第1のアッセイドメインと、
- (b)前記分析物に結合可能である前記第1の試薬又は第2の試薬を含む第2のアッセイドメインとを含み、

前記第1のアッセイドメインと前記第2のアッセイドメインが異なる特性を有し、前記異なる特性が表面積、試薬濃度、熱安定性、pH感度、ぬれ性、エピトープ特異性、結合動力学、非特異的結合特性及び結合定数からなる群から選択されるアッセイモジュール。

【請求項47】

分析物のアッセイを実施するためのアッセイドメインの設計を最適化するためのアッセイモジュールであって、

- (a) 前記分析物に結合可能である第1の試薬を含む第1のアッセイドメインと、
- (b)前記第1の試薬を含む第2のアッセイドメインとを含み、

前記第1のアッセイドメインと前記第2のアッセイドメインが異なる諸特性を有し、前記異なる諸特性が表面積、試薬濃度、熱安定性、pH安定性、疎水性又は親水性、共反応物、エピトープ特異性、結合動力学、非特異的結合特性、結合定数及び/又は熱力学からなる群から選択されるアッセイモジュール。

【請求項48】

分析物のアッセイにおけるアッセイ誤差源を検出又は補正する方法であって、

(a)分析物を含む試料を、

10

30

20

40

- (i)前記分析物に結合可能である第1の試薬を含む第1のアッセイドメインと、
- (ii)前記第1の試薬を含む第2のアッセイドメインとを含むアッセイモジュールに導入するステップであって、

前記第1のアッセイドメインと前記第2のアッセイドメインが異なる諸特性を有し、前記異なる諸特性が表面積、試薬濃度、熱安定性、pH安定性、疎水性又は親水性、共反応物、エピトープ特異性、結合動力学、非特異的結合特性、結合定数及び/又は熱力学からなる群から選択されるステップと、

(b) 第1のアッセイドメインと第2のアッセイドメインへの分析物の結合性を比較してアッセイ誤差源を検出又は補正するステップとを含む方法。

【請求項49】

生物学的材料を同定するためのアッセイモジュールであって、

- (a) 第1の生物学的材料の成分及び第2の生物学的材料の成分に結合可能である試薬を含む第1のアッセイドメインと、
- (b)前記第1の生物学的材料の前記成分及び前記第2の生物学的材料の前記成分に結合可能である第2の試薬を含む第2のアッセイドメインとを含み、

前記第2のアッセイドメインに対する前記第1のアッセイドメインへの結合比によって 前記生物学的材料のアイデンティティが示されるアッセイモジュール。

【請求項50】

生物学的材料を同定する方法であって、

(a) 前記生物学的材料の試料を、

(i)第1の生物学的材料の第1の成分及び第2の生物学的材料の第1の成分に結合可能である試薬を含む第1のアッセイドメインと、

(b)前記第1の生物学的材料の第2の成分及び前記第2の生物学的材料の第2の成分に結合可能である第2の試薬を含む第2のアッセイドメインとを含むアッセイモジュールに導入するステップであって、

前記第2のアッセイドメインに対する前記第1のアッセイドメインへの結合比によって 前記生物学的材料のアイデンティティが示されるステップと、

(b)前記第1のアッセイドメインと前記第2のアッセイドメインへの前記生物学的材料の結合比を測定して前記生物学的材料のアイデンティティを決定するステップとを含む方法。

【請求項51】

類似した諸特性を有する2つ以上の病原体のアッセイを実施するための方法であって、

- (a)前記第1の病原体及び前記第2の病原体に結合可能である試薬を含む第1のアッセイドメインと前記第1の病原体及び前記第2の病原体に結合可能である第2の試薬を含む第2のアッセイドメインとを有するアッセイモジュールに試料を導入するステップであって、前記第1の病原体が存在することによって前記第1のアッセイドメインが前記第2のアッセイドメインよりも大きなシグナルを放出するステップと、
- (b)前記第1のアッセイドメインから放出された第1のシグナル及び前記第2のアッセイドメインから放出された第2のシグナルを検出するステップとを含む方法。

【請求項52】

前記第1のシグナル及び前記第2のシグナルから前記第1の病原体及び前記第2の病原体の量を解析するステップをさらに含む、請求項51に記載の方法。

【請求項53】

- (a)分析物に結合可能である試薬を含む第1のアッセイドメインと、
- (b)前記分析物に結合可能である前記試薬を含む第2のアッセイドメインとを含み、前記第1のアッセイドメインと前記第2のアッセイドメインが実質的に同じ濃度の前記試薬を含み、かつそれぞれ独立に指定可能であるアッセイモジュール。

【請求項54】

反応速度を決定する方法であって、

(a) 複数のアッセイドメインを有するアッセイモジュールと試料を接触させるステッ

10

30

20

40

プであって、前記アッセイドメインの各々が、分析物に結合可能なある濃度の試薬を含み 、かつそれぞれ独立に指定可能であるステップと、

(b)前記アッセイドメインからのシグナルを順次指定し検出するステップとを含む方法。

【請求項55】

前記反応が酵素反応である、請求項54に記載の方法。

【請求項56】

前記ドメインが酵素反応産物に対する結合試薬を含む、請求項55に記載の方法。

【請求項57】

前記反応が2つの結合相手の結合反応であり、前記ドメインが前記結合相手の1つを含む、請求項54に記載の方法。

【請求項58】

1 つ又は複数の分析物を検出するのに使用するアッセイモジュールの作製を最適化する方法であって、

(a)複数のアッセイドメインを有するプロトタイプのアッセイモジュールを形成するステップであって、前記複数のアッセイドメインが前記1つ又は複数の分析物と結合可能であり、異なるパラメータを有することが可能であり、前記異なるパラメータが(i)結合試薬、(ii)共反応物、(iii)pH、(iv)ウェル内の位置、(v)試薬濃度、(vi)ドメイン位置、(vii)アッセイ試薬親和性、(viii)アッセイ試薬特異性、(ix)干渉物質に対する感度、及び(x)光学的ひずみに対する感度からなる群から選択されるステップと、

(b)前記1つ又は複数の分析物を含有する試験試料を用いて前記プロトタイプアッセ イモジュールによって試験アッセイを実施するステップと、

(c) 最高性能が得られるアッセイドメインを決定するステップとを含む方法。

【請求項59】

第1の分析物及び/又は第2の分析物を検出するためのアッセイモジュールであって、

(a)前記第1の分析物及び前記第2の分析物に結合するが、前記第2の分析物よりも前記第1の分析物により良好に結合する第1のアッセイドメインと、

(b)前記第1の分析物及び前記第2の分析物に結合するが、前記第1の分析物よりも前記第2の分析物により良好に結合する第2のアッセイドメインとを含むアッセイモジュール。

【請求項60】

試料中の少なくとも第1の分析物及び第2の分析物を検出する方法であって、前記第1の分析物及び前記第2の分析物が類似の結合特性を有し、前記方法が、

(a)第1のアッセイドメイン及び第2のアッセイドメインと前記試料を接触させるステップであって、前記第1のアッセイドメインは前記第1の分析物及び前記第2の分析物に結合するが、前記第2の分析物よりも前記第1の分析物により良好に結合し、前記第2のアッセイドメインは前記第1の分析物及び前記第2の分析物に結合するが、前記第1の分析物よりも前記第2の分析物により良好に結合するステップと、

(b)前記第1のアッセイドメインを誘発してシグナルを放出させるステップと、

(c) 前記第1のアッセイドメインからの前記シグナルを測定するステップと、

(d)前記第1の分析物及び/又は前記第2の分析物の量を解析するステップとを含む方法。

【請求項61】

前記第2のアッセイドメインが前記第2の分析物を隔離する、請求項60に記載の方法

【請求項62】

前記第2のアッセイドメインからのシグナルを測定するステップをさらに含む、請求項60又は61に記載の方法。

【請求項63】

50

40

10

20

20

30

50

分析物と少なくとも1つの干渉物質を含む試料のアッセイを実施するためのアッセイモ ジュールであって、

- (a) 前記分析物に結合可能であるアッセイドメインと、
- (b)前記干渉物質に結合可能である隔離ドメインとを含むアッセイモジュール。

【請求項64】

前記モジュールが、前記隔離ドメインに結合する前記干渉物質を測定するようになされた、請求項63に記載のアッセイモジュール。

【請求項65】

干渉物質の存在下で分析物を測定する方法であって、

- (a)試料を、
 - (i) 前記分析物に結合可能であるアッセイドメインと、
- (i i) 前記干渉物質に結合可能である隔離ドメインとを含むアッセイモジュールに 導入するステップと、
 - (b)前記アッセイドメインへの前記分析物の結合を検出するステップとを含む方法。

【請求項66】

酵素反応を測定するアッセイモジュールであって、

- (a)前記酵素の基質に結合可能である第1のアッセイドメインと、
- (b)前記基質に対する前記酵素の作用によって形成される産物に結合可能である第 2 のアッセイドメインとを含むアッセイモジュール。

【請求項67】

酵素反応を測定する方法であって、

- (a) 前記酵素の試料を基質と共にインキュベートして反応溶液を形成するステップと
- (b)前記反応溶液をアッセイモジュール内の複数のアッセイドメインと接触させるステップであって、前記アッセイドメインが、
 - (i)前記基質に結合可能である第1のアッセイドメインと
- (i i) 前記基質に対する前記酵素の作用によって形成される産物に結合可能である 第 2 のアッセイドメインとを含むステップと、
- (c) 前記第 1 のアッセイドメイン及び前記第 2 のアッセイドメインへの前記基質及び 産物の結合を検出して前記酵素反応を測定するステップとを含む方法。

【請求項68】

酵素反応を測定するためのアッセイモジュールであって、

- (a) 前記酵素の基質又は産物に結合可能である第 1 のアッセイドメインと、
- (b)前記酵素に結合可能である第2のアッセイドメインとを含む、アッセイモジュール。

【請求項69】

酵素反応を測定する方法であって、

- (a) 酵素を、
 - (i)前記酵素の基質又は産物の1つに結合可能である第1のアッセイドメインと、
- (i i) 前記酵素に結合可能である第 2 のアッセイドメインとを含むアッセイモジュ 40 ールに導入するステップと、
 - (b) 前記第2のアッセイドメインに前記酵素を結合させるステップと、
 - (c) 前記アッセイモジュールを洗浄して前記酵素を精製するステップと、
 - (d) 前記酵素を前記基質と接触させて前記産物を形成するステップと、
- (e)前記基質又は産物の前記1つと前記第1のアッセイドメインとの前記結合を測定して前記酵素反応を測定するステップとを含む方法。

【請求項70】

酵素を測定する方法であって、

- (a)酵素を、
 - (i)前記酵素の基質又は産物の1つに結合可能である第1のアッセイドメインと、

(ii)前記酵素に結合可能である第2のアッセイドメインとを含むアッセイモジュールに導入するステップと、

- (b)前記第2のアッセイドメインに前記酵素を結合させるステップと、
- (c) 前記酵素を前記基質と接触させて前記産物を形成するステップと、
- (d)前記基質又は産物の前記1つと前記第1のアッセイドメインとの前記結合を測定して前記酵素の活性を測定するステップと、
- (e)前記第2のアッセイドメインへの前記酵素の結合を測定して酵素量を測定するステップとを含む方法。

【請求項71】

酵素反応を測定する方法であって、

(a) 酵素を、

- (i)前記酵素の基質又は産物の1つに結合可能である第1のアッセイドメインと、
- (i i) 前記酵素に結合可能である第 2 のアッセイドメインとを含むアッセイモジュールに導入するステップと、
- (b)前記第2のアッセイドメインに前記酵素を結合させて固定酵素を形成するステップと、
 - (c) 前記酵素を前記基質と接触させて前記産物を形成するステップと、
- (d)前記基質又は産物の前記1つと前記第1のアッセイドメインとの前記結合を測定して前記酵素反応を測定するステップと、
 - (e) 前記固定酵素の改変を分析するステップとを含む方法。

【請求項72】

前記酵素を前記改変に特異的な結合試薬と接触させるステップをさらに含む、請求項71に記載の方法。

【請求項73】

前記酵素を改変活性と接触させるステップをさらに含み、改変の前記分析ステップで前記改変活性を測定する、請求項71に記載の方法。

【請求項74】

酵素による基質から産物への酵素反応を測定するためのアッセイモジュールであって、

(a)(i)酵素、(ii)基質、(iii)産物、(iv)反応中間体、(v)反応 副産物及び/又は(vi)反応干渉物質からなる群から選択される第1の反応物に結合可 能である第1のアッセイドメインと、

(b)(i)酵素、(ii)基質、(iii)産物、(iv)反応中間体、(v)反応 副産物及び/又は(vi)反応干渉物質からなる群から選択される第2の反応物に結合可 能である第2のアッセイドメインとを含み、

前記第1の反応物と前記第2の反応物とが異なり、それによって前記酵素反応の少なくとも2つの反応物が測定されるアッセイモジュール。

【請求項75】

切断反応を測定するためのアッセイモジュールであって、

- (a) 切断反応用基質を含む第1のアッセイドメインと、
- (b)前記切断反応の産物に結合可能である第2のアッセイドメインとを含むアッセイ モジュール。

【請求項76】

アッセイモジュールにおいて切断反応を測定する方法であって、前記アッセイモジュールが、

- (a)前記切断反応用基質を含む第1のアッセイドメインと、
- (b)前記切断反応の産物に結合可能である第2のアッセイドメインとを含むアッセイ モジュール。

【請求項77】

複数の酵素に対する阻害剤の効果を決定する方法であって、前記酵素に対する基質をその上に固定した複数のアッセイドメインと前記阻害剤及び前記複数の酵素を含有する試料

10

20

30

40

を 接 触 さ せ る ス テ ッ プ と 、 前 記 複 数 の 酵 素 に 対 す る 前 記 阻 害 剤 の 前 記 効 果 を 検 出 す る ス テ ップとを含む方法。

【請求項78】

前記複数の酵素が複数のキナーゼを含む、請求項77に記載の方法。

複数のアッセイドメインを有するアッセイモジュールであって、前記アッセイドメイン が前記アッセイドメイン上に固定された酵素を有するアッセイモジュール。

【請求項80】

前 記 ア ッ セ イ ド メ イ ン が 、 第 1 の 酵 素 を 第 1 の ア ッ セ イ ド メ イ ン 上 に 固 定 し た 第 1 の ア ッセイドメインと第2の酵素を第2のアッセイドメイン上に固定した第2のアッセイドメ インとを含む、請求項79に記載のアッセイモジュール。

【請求項81】

前記酵素の産物に結合可能である結合試薬をさらに含み、前記結合試薬が、前記アッセ イドメインに隣接する結合ドメインに固定されている、請求項79又は80に記載のアッ セイモジュール。

【請求項82】

前記酵素の産物に結合可能である結合試薬をさらに含み、前記結合試薬が前記アッセイ ドメイン上に前記酵素と共に固定されている、請求項79又は80に記載のアッセイモジ ュール。

【請求項83】

前記アッセイドメインが、前記アッセイドメイン上に固定された前記酵素によって産生 される産物の拡散が減少するように構成された封じ込め領域内に含まれている、請求項フ 9、80、81又は82に記載のアッセイモジュール。

【請求項84】

前 記 ア ッ セ イ ド メ イ ン が 誘 電 体 層 内 の 底 部 に あ っ て 、 前 記 ア ッ セ イ ド メ イ ン 上 に 固 定 さ れた前記酵素によって産生される産物の拡散が減少する、請求項79、80、81又は8 2に記載のアッセイモジュール。

【請求項85】

複数の酵素の活性を測定する方法であって、

- (a)前記酵素の基質を含む溶液を、
 - (i) 前記酵素をアッセイドメイン上に固定した複数のアッセイドメインと、

(i i) 前記基質に対する前記酵素の作用によって得られた産物に結合可能である結 合試薬とを含むアッセイモジュールに導入するステップであって、

前記酵素が前記基質に作用して前記産物を形成し、前記結合試薬が前記酵素と前記アッ セイドメイン中に共に固定されており、又は前記結合試薬が、前記アッセイドメインに隣 接する結合ドメインに固定されているステップと、

(b) 前記結合試薬への前記産物の結合を測定して、前記複数の酵素の活性を測定する ステップであって、特定の結合ドメイン内に位置する又はそれに隣接する結合試薬への結 合の程度によって前記結合ドメイン内の酵素活性が示されるステップとを含む方法。

【請求項86】

複数の酵素を含有する試料を、その上に固定された前記酵素に対応する基質を含む複数 のアッセイドメインを有するアッセイモジュールと接触させるステップと、前記アッセイ ドメインにおいて前記基質の酵素反応を検出するステップとを含むアッセイを実施する方 法。

【請求項87】

その上に固定された酵素と前記酵素によって開始される酵素反応の産物に結合可能であ る試薬とを有するアッセイドメイン。

【請求項88】

複数のアッセイドメインを含むアッセイモジュールであって、前記複数のアッセイドメ インが、

10

20

30

- (a)分析物 A 、 分析物 E 及び分析物 C に結合可能である第 1 のアッセイドメインと、
- (b) 分析物 B 、分析物 C 及び分析物 F に結合可能である第 2 のアッセイドメインと、
- (c) 分析物 B 、分析物 D 及び分析物 E に結合可能である第3のアッセイドメインと、
- (d)分析物 A、分析物 D 及び分析物 F に結合可能である第 4 のアッセイドメインとを含むアッセイモジュール。

【請求項89】

前記第1のアッセイドメイン、前記第2のアッセイドメイン及び前記第3のアッセイドメインが分析物Gに結合可能であり、前記第2のアッセイドメイン、前記第3のアッセイドメイン及び前記第4のアッセイドメインが分析物Hに結合可能であり、前記第1のアッセイドメイン、第3のアッセイドメイン及び前記第4のアッセイドメインが分析物Iに結合可能である、請求項88に記載のアッセイモジュール。

【請求項90】

前記第1のアッセイドメインが分析物Wに結合可能であり、前記第2のアッセイドメインが分析物Xに結合可能であり、前記第3のアッセイドメインが分析物Yに結合可能であり、前記第4のアッセイドメインが分析物Zに結合可能である、請求項88に記載のアッセイモジュール。

【請求項91】

複数のアッセイドメインを含むアッセイモジュールであって、前記複数のアッセイドメインが、

(a)分析物A、分析物E、分析物F及び分析物Hに結合可能である第1のアッセイド メインと、

(b) 分析物 A 、分析物 B 、分析物 G 及び分析物 I に結合可能である第 2 のアッセイド メインと、

(c) 分析物 B 、分析物 C 、分析物 H 及び分析物 J に結合可能である第 3 のアッセイド メインと、

(d)分析物C、分析物D、分析物F及び分析物Iに結合可能である第4のアッセイドメインと、

(e) 分析物 D 、分析物 E 、分析物 G 及び分析物 J に結合可能である第 5 のアッセイド メインとを含むアッセイモジュール。

【請求項92】

- (a) 前記第1のアッセイドメインが分析物 K に結合可能であり、
- (b)前記第2のアッセイドメインが分析物 Lに結合可能であり、
- (c) 前記第3のアッセイドメインが分析物Mに結合可能であり、
- (d)前記第4のアッセイドメインが分析物Nに結合可能であり、
- (e)前記第5のアッセイドメインが分析物Oに結合可能である、請求項91に記載のアッセイモジュール。

【請求項93】

M個のアッセイドメインと Z個の異なるアッセイ試薬とを含むアッセイモジュールであって、

(i) Mが3よりも大きな整数であり、ZがMよりも大きく(M!)/[2!(M-2 40)!]以下の整数であり、

(ii) 1~M - 1個のアッセイ試薬が各ドメインに固定され、少なくとも1つのアッセイ試薬が一意的な1対のドメインに固定されるように、前記アッセイ試薬が前記アッセイドメイン間に分布しているアッセイモジュール。

【請求項94】

アッセイ試薬と相互作用する物質をスクリーニングする方法であって、

(a)前記物質を、M個のアッセイドメインと Z 個の異なるアッセイ試薬とを含むアッセイモジュールに導入するステップであって、

(i) Mが3よりも大きな整数であり、ZがMよりも大きく(M!)/[2!(M-2)!]以下の整数であり、

10

20

30

(ii)1~M-1個のアッセイ試薬が各ドメインに固定され、少なくとも1つのアッセイ試薬が一意的な1対のドメインに固定されるように、前記アッセイ試薬が前記アッセイドメイン間に分布しているステップと、

(b) 前記物質と相互作用するアッセイ試薬を決定するステップとを含む方法。

【請求項95】

M個のアッセイドメインと Z個の異なるアッセイ試薬とを含むアッセイモジュールであって、

(i) Mが3よりも大きな整数であり、ZがMよりも大きく(M!)/[Z!(M-Z)!]以下の整数であり、

(ii) 1つを超えるアッセイ試薬が各ドメインに固定され、各アッセイ試薬が一意的な1組の1~ Z個のドメインに固定されるように、前記アッセイ試薬が前記アッセイドメイン間に分布しているアッセイモジュール。

【請求項96】

アッセイ試薬と相互作用する物質をスクリーニングする方法であって、

(a)前記物質を、M個のアッセイドメインと Z 個の異なるアッセイ試薬とを含むアッセイモジュールに導入するステップであって、

(i) Mが3よりも大きな整数であり、ZがMよりも大きく(M!)/[Z!(M-Z)!]以下の整数であり、

(ii)少なくとも1つのアッセイ試薬が各ドメインに固定され、各アッセイ試薬が一意的な1組の1~2個のドメインに固定されるように、前記アッセイ試薬が前記アッセイドメイン間に分布しているステップと、

(b) 前 記 物 質 と 相 互 作 用 す る ア ッ セ イ 試 薬 を 決 定 す る ス テ ッ プ と を 含 む 方 法 。

【請求項97】

複数のアッセイドメインを含むアッセイモジュールであって、前記複数のアッセイドメインが、1つ又は複数の結合試薬を含む1つ又は複数のアッセイドメインを含み、予め結合された標識を含む第1の対照ドメインと、規定の反応をもたらす第2の対照ドメインと、本質的に遮断薬からなる第3の対照ドメインとをさらに含むアッセイモジュール。

【請求項98】

前記第1の対照ドメインが、(i)ECL発生に対する化学的干渉、(ii)光透過に対する光学的干渉、及び/又は(iii)モジュール変化の1つ又は複数を制御する、請求項97に記載のアッセイモジュール。

【請求項99】

前記第2の対照ドメインが、(i)非特異的結合又は生化学活性、(ii)ECL発生に対する化学的干渉、(iii)光透過に対する光学的干渉、(iv)ピペット操作誤差、(v)タイミング誤差、(vi)混合の変動、(vii)温度変動、及び(viii)アッセイモジュールの変動の1つ又は複数を制御する、請求項97又は98に記載のアッセイモジュール。

【請求項100】

前記第3の対照ドメインが非特異的結合を制御する、請求項97、98又は99に記載のアッセイモジュール。

【請求項101】

第1のアッセイドメインと第2のアッセイドメインとを含むアッセイモジュールであって、前記第1のアッセイドメインが分析物に結合可能である結合試薬を含み、前記第2のアッセイドメインが前記分析物又は前記分析物のアナログを含むアッセイモジュール。

【請求項102】

第1のアッセイドメインと第2のアッセイドメインとを含むアッセイモジュールであって、前記第1のアッセイドメインが分析物に結合し、前記第2のアッセイドメインが前記分析物と競合するアッセイモジュール。

【請求項103】

目的分析物を分析する方法であって、

30

20

40

(a)前記分析物を含む試料を、前記分析物に結合する第1のドメインと前記分析物と 競合する第2のドメインとの2つのアッセイドメインを含むアッセイモジュールに導入するステップと、

(b)前記アッセイモジュールにおいて前記分析物のサンドイッチアッセイ及び競合アッセイを実施するステップとを含む方法。

【請求項104】

第 1 のアッセイドメインと第 2 のアッセイドメインとを含むアッセイモジュールであって、前記第 1 のアッセイドメインが、分析物とのサンドイッチ複合体を形成可能である結合試薬を含み、前記第 2 のアッセイドメインが、前記分析物と競合する結合試薬を含むアッセイモジュール。

【請求項105】

分析物に対する結合親和性を有する第1のアッセイドメインと第2のアッセイドメインとを含むアッセイモジュールであって、前記第1のアッセイドメインが分析物に対して前記第2のアッセイドメインの結合親和性の少なくとも10倍の結合親和性を有するアッセイモジュール。

【請求項106】

目的分析物を分析する方法であって、

(a)前記分析物を含む試料を、前記分析物に対する結合親和性を有する第1のアッセイドメインと第2のアッセイドメインとの2つのアッセイドメインを含むアッセイモジュールに導入するステップであって、前記第1のアッセイドメインが前記分析物に対して前記第2のアッセイドメインの結合親和性の少なくとも10倍の結合親和性を有するステップと、

(b)前記第1のドメイン及び前記第2のドメインにおいて前記分析物のサンドイッチアッセイを実施するステップとを含む方法。

【請求項107】

第1のアッセイドメインと第2のアッセイドメインとを含むアッセイモジュールであって、前記第1のアッセイドメインが酵素に対する第1の基質を含み、前記第2のアッセイドメインが前記酵素に対する第2の基質を含み、前記第1の基質が前記第2の基質よりも遅いターンオーバー速度及び/又は高いVmaxを有するアッセイモジュール。

【請求項108】

酵素反応産物に結合可能であるアッセイ試薬を含む1つ又は複数のアッセイドメインと、前記酵素反応の1つ又は複数の酵素を捕捉可能である封鎖剤(sequestrant)を含む1つ又は複数の隔離ドメインとを含むアッセイモジュール。

【請求項109】

1つ又は複数の酵素を含む試料をアッセイモジュール内の複数のアッセイドメインと接触させるステップを含むアッセイを実施する方法であって、前記複数のアッセイドメインが、1つ又は複数の酵素反応産物に結合可能であるアッセイドメインと前記酵素反応の1つ又は複数の酵素を捕捉する1つ又は複数の酵素捕捉ドメインとを含む方法。

【請求項110】

前記試料の未結合成分を前記モジュールから洗浄するステップをさらに含む、請求項109に記載の方法。

【請求項111】

前記酵素反応の1つ又は複数の基質を含む第2の試料を添加するステップをさらに含む、請求項109又は110に記載の方法。

【請求項112】

複数のアッセイドメインを含むアッセイモジュールを用いてアッセイを実施する方法であって、前記アッセイドメインが、

(i) 第 1 の酵素に結合可能である第 1 の酵素ドメインと、

第2の酵素に結合可能である第2の酵素ドメインと、

第3の酵素に結合可能である第3の酵素ドメインとを含めた酵素に結合可能である1列

10

20

30

50

の酵素ドメインと、

(ii)前記第1の酵素に対応する第1の産物に結合可能である第1の産物ドメインと

前記第2の酵素に対応する第2の産物に結合可能である第2の産物ドメインと、

前記第3の酵素に対応する第3の産物に結合可能である第3の産物ドメインとを含む前記酵素の産物に結合可能である1列の産物ドメインとを含み、

前記方法が、

(a) 1 つ又は複数の酵素と前記1つ又は複数の酵素に対応する1つ又は複数の基質とを含めて複数の成分を含有する試料を、前記1列の酵素ドメイン及び前記1列の産物ドメインと接触させるステップと、

10

(b)前記第1の産物ドメインにおける前記第1の産物、前記第2の産物ドメインにおける前記第2の産物、及び前記第3の産物ドメインにおける前記第3の産物を検出するステップとを含む方法。

【請求項113】

前記酵素ドメインが前記対応する産物ドメインに隣接している、請求項112に記載の方法。

【請求項114】

前記酵素ドメインが前記対応する産物ドメインに重なっている、請求項113に記載の方法。

【請求項115】

20

前記第1の酵素ドメインにおける前記第1の酵素、前記第2の酵素ドメインにおける前記第2の酵素、及び前記第3の酵素ドメインにおける前記第3の酵素を検出するステップをさらに含む、請求項112、113又は114に記載の方法。

【請求項116】

前記酵素がキナーゼであり、前記産物が前記酵素のリン酸化産物に対応している、請求項112、113、114又は115に記載の方法。

【請求項117】

2 つ以上のアッセイドメインを含むアッセイモジュールを用いて1つ又は複数の酵素の複数の酵素活性を決定する方法であって、1つ又は複数の酵素を含む試料を、第1の酵素反応の第1の産物に結合可能である第1のドメイン及び第2の酵素反応の第2の産物に結合可能である第2のドメインと接触させるステップと、前記第1のドメイン及び前記第2のドメインにおいて前記第1の産物及び前記第2の産物を検出するステップとを含む方法

30

【請求項118】

前記モジュールが、さらに、前記1つ又は複数の酵素に結合可能である1つ又は複数の酵素アッセイドメインを含む、請求項117に記載の方法。

【請求項119】

前記1つ又は複数の酵素アッセイドメインにおいて前記1つ又は複数の酵素を検出するステップをさらに含む、請求項118に記載の方法。

【請求項120】

40

前記モジュールが、さらに、前記1つ又は複数の酵素に対応する1つ又は複数の基質に結合可能である1つ又は複数の基質アッセイドメインを含む、請求項117に記載の方法

【請求項121】

前記1つ又は複数の基質アッセイドメインにおいて前記1つ又は複数の基質を検出するステップをさらに含む、請求項120に記載の方法。

【請求項122】

複数のアッセイドメインを含むアッセイモジュールであって、前記複数のアッセイドメインが、タンパク質切断を含めた活性を測定可能である第1のアッセイドメインと、前記活性の切断産物を測定可能である第2のアッセイドメインとを含むアッセイモジュール。

30

40

50

【請求項123】

前記第1のアッセイドメインがその上に固定された標識タンパク質を含み、前記第2のアッセイドメインがその上に固定された前記標識タンパク質の切断誘導体に結合可能である結合試薬を含む、請求項122に記載のアッセイモジュール。

【請求項124】

アッセイ試薬を含む1つ又は複数のアッセイドメインと、干渉種を隔離する隔離剤(sequestration agent)を含む1つ又は複数の隔離ドメインとを含む、アッセイモジュール。

【請求項125】

前記1つ又は複数の隔離ドメインが、ビオチン、抗ストレプトアビジン、ヘモグロビン、ビリルビン、脂質、高及び低アルブミン、HAMA、抗ルテニウム、高リウマチ因子、ジゴキシンのDLIF又はジギトキシンタイプの分子、薬物/コメッズ(co meds)、交差反応性分析物、及びそれらの組合せの1つ又は複数の干渉種を隔離する、請求項124に記載のアッセイモジュール。

【請求項126】

アッセイ試薬を含む 1 つ又は複数のアッセイドメインと、標識試薬を隔離可能である隔離剤を含む 1 つ又は複数の隔離ドメインとを含むアッセイモジュール。

【請求項127】

試料と1つ又は複数の試薬とを含有する組成物を前記複数のアッセイドメインと接触させるステップを含む、複数のアッセイドメインを有するアッセイモジュールを用いてアッセイを実施する方法であって、前記1つ又は複数の試薬が、分析物に結合可能である標識試薬、分析物のアナログ又は前記分析物の結合相手を含み、前記複数のアッセイドメインが、前記分析物に結合可能である第1のアッセイドメインと前記標識試薬に結合可能である第2のアッセイドメインとを含む方法。

【請求項128】

前記第1のアッセイドメイン上の前記分析物を検出するステップをさらに含む、請求項 127に記載の方法。

【請求項129】

複数のアッセイドメインを含むアッセイモジュールであって、前記アッセイドメインが、分析物に結合可能である第1のアッセイドメインと、1つ又は複数の凍結乾燥試薬に結合可能である第2のアッセイドメインとを含むアッセイモジュール。

【請求項130】

複数のアッセイドメインを含むアッセイモジュールを用いてアッセイを実施する方法であって、前記アッセイドメインが、1つ又は複数の酵素に結合可能である第1のアッセイドメインと、前記1つ又は複数の酵素の1つ又は複数の酵素産物に結合可能である第2のアッセイドメインとを含み、前記方法が、

(a) 1 つ又は複数の酵素を含めた複数の成分を含有する第 1 の試料を前記モジュール内の前記第 1 のアッセイドメインと接触させ、それによって前記 1 つ又は複数の酵素を固定するステップと、

(b) 前記第1の試料の未結合成分を前記モジュールから分離させるステップと、

(c)前記1つ又は複数の酵素の1つ又は複数の基質を含有する第2の試料を前記第2のアッセイドメインと接触させるステップと、

(d)前記第2のアッセイドメインに結合した前記酵素産物を検出するステップとを含む方法。

【請求項131】

前記第1のアッセイドメイン上の前記1つ又は複数の酵素を検出するステップをさらに含む、請求項130に記載の方法。

【請求項132】

前記アッセイモジュールがマルチウェルプレートであり、前記アッセイモジュール内の前記アッセイドメインが前記プレートのウェル内に位置する、請求項1、3、5、6、7

、8、9、10、11、19、20、25、27、28、29、30、31、32、33、34、35、36、37、40、41、46、47、49、53、59、63、64、66、68、74、75、79、80、81、82、83、84、88、89、90、91、92、93、95、97、98、99、100、101、102、104、105、107、108、122、123、124、125、126又は129に記載のアッセイモジュール。

【請求項133】

前記ウェルが1つ又は複数の作用電極表面を備え、前記アッセイドメインが前記1つ又は複数の作用電極表面上に位置する、請求項132のマルチウェルプレート。

【請求項134】

前記アッセイモジュールが、さらに、1つ又は複数の作用電極表面を備え、前記アッセイドメインが前記1つ又は複数の作用電極表面上に位置する、請求項1、3、5、6、7、8、9、10、11、19、20、25、27、28、29、30、31、32、33、34、35、36、37、40、41、46、47、49、53、59、63、64、66、68、74、75、79、80、81、82、83、84、88、89、90、91、92、93、95、97、98、99、100、101、102、104、105、107、108、128、123、124、125、126又は129に記載のアッセイモジュール。

【請求項135】

前記アッセイモジュールがマルチウェルプレートであり、前記アッセイモジュール内の前記アッセイドメインが前記プレートのウェル内に位置する、請求項2、4、12、13、14、15、16、17、18、21、22、23、24、26、38、39、42、43、44、45、48、50、51、52、54、55、56、57、58、60、61、62、65、67、69、70、71、72、73、76、85、86、94、96、103、106、109、110、111、112、113、114、115、116、116、117、118、118、119、127、128、130又は131に記載の方法。

【請求項136】

前記ウェルが1つ又は複数の作用電極表面を備え、前記アッセイドメインが前記1つ又は複数の作用電極表面上に位置する、請求項135に記載の方法。

【請求項137】

前記アッセイモジュールが、さらに、1つ又は複数の作用電極表面を備え、前記アッセイドメインが前記1つ又は複数の作用電極表面上に位置する、請求項2、4、12、13、14、15、16、17、18、21、22、23、24、26、38、39、42、43、44、45、48、50、51、52、54、55、56、57、58、60、61、62、65、67、69、70、71、72、73、76、85、86、94、96、103、106、109、110、111、112、113、114、115、116、117、118、118、119、120、121、127、128、130又は131に記載の方法。

【請求項138】

前記複数のアッセイドメインが1つ又は複数の作用電極上に位置する、請求項77又は78に記載の方法。

【請求項139】

前記アッセイドメインが作用電極上に位置する、請求項87に記載のアッセイドメイン

【発明の詳細な説明】

【技術分野】

[0001]

本願は、2001年9月10日に出願された米国仮出願第60/318,293号、2001年9月10日に出願された米国仮出願第60/318,284号、2001年9月

10

20

30

40

20

30

40

50

10日に出願された米国仮出願第60/318,289号、及び2002年3月11日に出願された米国仮出願第60/363,498号の優先権を主張するものである。これら各々の特許出願を参照により本明細書に援用する。

[0002]

本願は、1つの試料について複数の化学、生化学及び/又は生物学アッセイを実施する ための試薬、装置、システム、キット及び方法に関する。

【背景技術】

[0003]

現在、薬物スクリーニングを含めた分析測定に電気化学発光(ECL)を利用するいく つかの市販機器がある。誘導されてECLを放出することができる種(ECL活性種)が 、ECL標識として使用されてきた。ECL標識の例には、i)トリス・ビピリジル・ル テニウム(RuBpy)成分などのRu含有及びOs含有有機金属化合物を含めて、金属 が 例 え ば V I I I 族 の 貴 金 属 で あ る 有 機 金 属 化 合 物 、 並 び に i i) ル ミ ノ ー ル 及 び そ の 関 係化合物がある。ECLプロセスにECL標識と共に関与する種を、本明細書ではECL 共反応物(coreactant)と呼ぶ。一般に使用される共反応物としては、RuB p y 由来の E C L に対する第三級アミン (例えば、米国特許第 5 , 8 4 6 , 4 8 5 号を参 照されたい)、オキザレート及びパーサルフェート、並びにルミノール由来のECLに対 する過酸化水素(例えば、米国特許第5,240,863号を参照されたい)などがある 。ECL標識が発生する光を、レポーターシグナルとして診断操作に使用することができ る(参照により本明細書に援用するBard他、米国特許第5,238,808号)。例 えば、ECL標識は、抗体、核酸プローブ、受容体又はリガンドなどの結合剤に共有結合 することができる。ECL標識から発せられるECLを測定することによって、結合相互 作用への結合試薬の関与をモニターすることができる。あるいは、ECL活性化合物から のECLシグナルによって、化学的環境を示すことができる(例えば、ECL共反応物の 形 成 又 は 破 壊 を モ ニ タ ー す る E C L ア ッ セ イ に つ い て 記 載 し た 米 国 特 許 第 5 , 6 4 1 , 6 23号を参照されたい)。ECLアッセイを実施するためのECL、ECL標識、ECL アッセイ及び計装についてのさらに詳細な背景については、米国特許第5,093,26 8 号、同第 5 , 1 4 7 , 8 0 6 号、同第 5 , 3 2 4 , 4 5 7 号、同第 5 , 5 9 1 , 5 8 1 号、同第5,597,910号、同第5,641,623号、同第5,643,713号 、同第5,679,519号、同第5,705,402号、同第5,846,485号、 同第 5 , 8 6 6 , 4 3 4 号、同第 5 , 7 8 6 , 1 4 1 号、同第 5 , 7 3 1 , 1 4 7 号、同 第 6 , 0 6 6 , 4 4 8 号、同第 6 , 1 3 6 , 2 6 8 号、同第 5 , 7 7 6 , 6 7 2 号、同第 5 , 3 0 8 , 7 5 4 号、同第 5 , 2 4 0 , 8 6 3 号、同第 6 , 2 0 7 , 3 6 9 号、同第 6 , 2 1 4 , 5 5 2 号 及 び 同 第 5 , 5 8 9 , 1 3 6 号 、 並 び に 国 際 公 開 第 9 9 / 6 3 3 4 7 号、同第00/03233号、同第99/58962号、同第99/32662号、同第 9 9 / 1 4 5 9 9 号、同第 9 8 / 1 2 5 3 9 号、同第 9 7 / 3 6 9 3 1 号及び同第 9 8 / 5 7 1 5 4 号を参照されたい。

[0004]

市販のECL機器は、並外れた性能を示す。これらの機器は、優れた感度、ダイナミックレンジ、精度、及び複雑な試料マトリックスの許容度を含めた理由のために広範に使用されるようになった。市販の計測手段は、恒久的に再使用可能なフローセルを含むフローセルベースの設計を用いている。最近、電極上に固定された、ECLの誘導に使用される試薬を用いるECL計測手段が開示された(例えば、米国特許第6,140,045号、同第6,066,448号、同第6,090,545号、同第6,207,369号及び国際公開第98/12539号を参照されたい)。このようなECL測定に適した一体型電極を有するマルチウェルプレートも最近開示された(例えば、それぞれ2002年6月28日に出願され、参照により本明細書に援用する「発光試験測定用アッセイプレート、リーダーシステム及び方法(Assay Plates、Reader Systemsand Methods for Luminescence Test Measurements)」と題する同時係属出願の米国特許出願第10/185,274号及び

30

40

50

同第 1 0 / 1 8 5 , 3 6 3 号を参照されたい)。一体型電極を有するこれらのマルチウェルプレートには、 1 つのウェル中に複数のアッセイドメインを有するプレートが具備されている。

[0005]

マルチウェルアッセイプレートを使用することによって、プレートの複数のウェルに分 散 さ れ た 複 数 の 試 料 を 並 行 し て 処 理 し 分 析 す る こ と が 可 能 に な る 。 一 般 に 、 試 料 及 び 試 薬 は、(マイクロプレート又はマイクロタイタープレートとしても知られる)マルチウェル アッセイプレート中で保存され、処理され、かつ/又は分析される。マルチウェルアッセ イプレートは、様々な形式、サイズ及び形状を取ることができる。便宜上、ハイスループ ットアッセイ用に試料を処理するために使用されるいくつかの計測手段に対する標準がい くつかある。標準プレート形式において実施されるアッセイでは、これらのプレートを保 存 し 移 動 す る た め の 容 易 に 利 用 可 能 な 装 置 、 並 び に プ レ ー ト 中 に か つ プ レ ー ト か ら 液 体 を 迅速に分注するための容易に利用可能な装置を利用することができる。いくつかの十分に 確立されたマルチウェルプレート形式としては、96ウェルプレート(12×8列のウェ ル)、 3 8 4 ウェルプレート (2 4 × 1 6 列のウェル) 及び 1 5 3 6 ウェルプレート (4 8×32列のウェル)で見られるものなどがある。生体分子スクリーニング学会(The Society for Biomolecular Screening)は、様々 なプレート形式のためのマイクロプレート推奨仕様を公表している(http://ww w.sbsonline.org参照)。この推奨仕様を、参照により本明細書に援用す る。

【発明の開示】

【課題を解決するための手段】

[0006]

本発明は、1つの試料について複数のアッセイを実施するための装置、システム、システム、システム、コンポーネント、試薬、キット及び方法を含む。本発明は、複数のアッセイ測定を含む。本発明は、複数のアッセイ測定を含む。本発明は、複数のアッセイ測定を含む。なび/又は複数のアッセイ測1にを含むっしい表面上の別々の場所を含む1つした。であるためにアッセイをジュールを含む。アッセイセルは、チャンバ、チャネルでしているでであるアッセイモジュールの他のアッセイドメインに接触している体積の流体を、アッセイモジュールののアッセイドメインに接触している体積の流体を、アッセイモジュールののアッセイドメインに接触している体積が変にあれていることが合まれているではマルチウェルプレートには、複数のウェルが含まれ、1つ又は複数のウェルプレートには、マルチウェルプレートには、マッセイドメインマルチウェルプレートには、マルチウェルプレートには、アッセイドメインマルチウェルプレートには、アッセイドメインマルチウェルプレートには、アッセイドメインマルチウェルプレートには、アッセイドメインマルチウェルプレートと共に使用しているように設計されたプレートハンドリング装置のび/又はプレートリーダー)に適合するように設計されていることが好ましい。

[0007]

本発明のアッセイは、電極の使用、光の発生、及び発生した光の測定を含む検出ステップと組み合わせることが好ましい。このような検出ステップに使用することができるプロセスの例としては、(電気生成(electrogenerated)化学発光とも呼ばれる)電気化学発光、電気化学的に生成される種によって誘発される化学発光などがある。使用上かつ便宜上、これらの3つのプロセスを「電極誘導発光(electrode induced luminescence)」と呼ぶ。電気化学発光としては、電気によって生成される種、光の放出などがある。例えば、電気化学発光には、1つ又は複数の反応物が電気化学的に生成され、それらが1つ又は複数の化学反応を起こして、とで、好ましくは繰り返し放出する種を生成するプロセスによって生成される発光が含まれる。本発明は、電極を使用する必要がないアッセイ及び測定にも関係し、例えば、本発明のアッセイは、化学発光、蛍光、生物発光、リン光、光学濃度、及びシンチラント(s

20

30

40

50

cintillant)からの光の放出が関与するプロセスの測定に基づくことができる。本発明は、発光を含まないアッセイ及び測定にも関係し、例えば、本発明のアッセイは、電気化学プロセス(例えば、電流又は電圧の測定又は発生を含めたプロセス)、電気的プロセス(例えば、抵抗又はインピーダンスの測定を含めたプロセス)、表面プラズモン共鳴又は光学的干渉効果の測定に基づくことができる。

[0008]

したがって、本発明の特定の好ましい実施形態において、アッセイモジュール及び/又はMDMWプレートは、例えば、それぞれ2002年6月28日に出願され、参照に法にの事業に接用する(「発光試験測定用アッセイプレート、リーダーシステム及び方法(Assay Plates、Reader Systems and Methods for Luminescence Test Measurements)」と題する)同時係属の米国特許出願第10/185,274号及び同第10/185,363号に記載されるように、電極誘導発光測定(最も好ましくは、電気化学発光測定)を用いて誘導されるように構成されている。ウェル表面(例えば、電極によって形成されたウェル中の電極上)にパターン形成が再である。このような物理的境界により、アッセイドメインは、表面の突起又はくぼみ、表面に付着又は印刷されたパターン形成材料、及び又は物理的性質(例えば、ぬれ性)が異なる表面領域間の界面を含めた物理的境界によって画成されていることが有利である。このような物理的境界により、アッセイドメインに塗布された数滴の試薬が拡散するのを制限し防止することによって、ウェル表面上での試薬のパターン形成が簡単になる。

[0009]

[0010]

本発明には、複数のアッセイドメインを含むアッセイセルを使用することによって、特に、MDMWプレートを使用することによって可能になる多重化を利用するアッセイ形式が含まれる。好ましいアッセイ形式を以下に記述する。その形式のいくつかは、MDMWプレートとして記述されるものの、複数のドメインを有するアッセイセルを含む他のアッセイモジュールにも適用することができることを理解されたい。アッセイセルにおいて利用可能であるアッセイドメインの多重度によって、下記形式の多くを1つのセルに集約することが可能になることも理解されたい。

[0011]

好ましい一アッセイ形式においては、複数の分析物又は活性が、MDMWプレートの1つのウェル中で測定される。例えば、特定の生体系(例えば、サイトカインmRNA又はタンパク質レベルをモニターするためのイムノアッセイ又はハイブリダイゼーションアッセイのパネル)、病態(例えば、心臓マーカー用、アレルギー反応の原因であるアレルゲンの同定用、感染性生物の同定用などのアッセイパネル)、組織タイプ、生物、タンパク

20

30

40

50

質 の ク ラ ス 、 酵 素 又 は 生 物 学 的 分 子 な ど に 関 連 す る 複 数 の 分 析 物 又 は 活 性 を 測 定 す る た め にアッセイパネルを開発することができる。一実施形態においては、1パネルのアッセイ によって、生体系を同定するためのフィンガープリント(例えば、特定の細胞タイプ、細 胞 小 器 官 タ イ プ 、 生 物 タ イ プ 、 組 織 タ イ プ 、 細 菌 又 は ウ イ ル ス に 関 連 す る 分 析 物 レ ベ ル の パターン)が提供される。例えば、生体系のある属内に見出される異なる成分に対する複 数のアッセイを使用してその属内の種又は亜種を同定することができる。別の実施形態に おいては、生体系内の異なる成分に対する複数のアッセイを含む示差的な測定を用いて、 生体系の状態(例えば、疾患状態と正常状態、活性化状態と正常状態など)が同定され、 又は外的条件又は刺激(例えば、病態の進行、刺激性種の添加、潜在的薬物候補の添加、 p H 、 温度などの環境条件の変化などに関連する成分の分布の変化)による影響を受ける 生 体 系 内 の 成 分 が 同 定 さ れ る 。 ア ッ セ イ パ ネ ル を 用 い て 1 つ 又 は 複 数 の タ ン パ ク 質 の 機 能 を決定することもできる。例えば、酵素基質及び/又は潜在的結合相手のパターン化され たライブラリに対してタンパク質をスクリーニングして、酵素活性又は結合活性を確認す ることができる。逆に、パターン化されたタンパク質ライブラリを既知の生物学的材料に 曝 して、 タン パ ク 質 が 生 物 学 的 材 料 に 結 合 し 、 そ れ と 反 応 し 、 又 は 形 質 転 換 さ れ る か ど う かを決定することができる。

[0 0 1 2]

別の好ましいアッセイ形式においては、ウェル中に存在するアッセイドメインのいってかの画分が、内部標準、対照又は標準物質に充てられる。例えば、1つ又は複数のアッセイドメインは、被覆なしのままでも、試料との反応に関与しないと考えられる遮断断面をは生体材料で被覆することもでき、このようなアッセイドメインを用いて、ウェル表はで標識の非特異的結合を測定及び/又は補正することができる。別の例では、1つ又はででは、1つ又は標識で標識された試薬)で被覆し、1つなアッセイドメインを標識試薬(例えば、FCL標識で標識された試薬)で被覆し、1つなアッセイドメインを用いて、標識(例えば、FH、温度、干渉化学物質(chL)の発生及び測定に影響を及ぼし得る諸条件を測定及び/又は補正することができる。からのシグナルの発生に影響を及びルセイドメインを用いて、アッセイ混合物中に加えられてで、別の別では、1つ又は複数のアッセイドメインを用いて、アッセイ混合物中に加えられて、別別に対する対照アッセイが実施される。対照アッセイを用いて、対照アッセイを用いて、対照アッセイ反応に影響を及ぼす諸条件、及びアッセイ反応に影響を及ぼす諸条件、及びアッセイ反応に影響を及ぼす諸条件、なびアッセイ反応に影響を及ぼす諸条件、なびアッセイ反応に影響を及ぼす諸条件、などの変化)を測定及び/又は補正することができる。

[0013]

別の好ましいアッセイ形式においては、同じ分析物又は活性が、ウェル内の複数のドメインにおいて測定され、このような重複性によって、アッセイ結果における統計的信頼性を高くすることができる。同じ分析物のこのような複数の測定では、複数のほぼ同一のアッセイドメインを使用して、あるいは、ある特性(例えば、ドメインサイズ、ドメイン位置、アッセイ試薬の表面密度、遮断薬、アッセイ試薬の親和性、アッセイ試薬の特異性、アッセイ形式、干渉物質に対する感度、温度に対する感度、アッセイ動力学、光学的ひば、みに対する感度など)が異なるアッセイドメインを使用して、アッセイ誤差源(例えば、一貫性のない混合又は不均一な混合、アッセイドメインにおけるアッセイ試薬の立体的な密集、非特異的結合、マトリックス効果、干渉種、不正確な温度制御、アッセイステップの不正確なタイミング、アッセイダイナミックレンジの超過、流体体積又はメニスカス形状の変化など)を明らかにし、検出し、かつ/又は補償することができる。

[0014]

別の好ましいアッセイ形式においては、同じ分析物又は活性が、ウェル内の、個々に指定可能である電極上に含まれる複数のドメインにおいて測定される。このようなシステムでは、電気的エネルギーを個々のアッセイドメインに選択した回数だけ連続してかけて、電流、電位又は、好ましくは、電極によって誘導される発光(最も好ましくは、ECL)の経時変化を測定することによって、アッセイ反応の動力学を測定することができる。異

20

30

40

50

なるアッセイドメインにおいて異なる時点で測定することによって、ダメージを与える恐れがある電気的エネルギーを同じアッセイドメインに繰り返しかける必要がなくなる。

[0015]

別 の 好 ま し い ア ッ セ イ 形 式 に お い て は 、 同 じ 分 析 物 を 、 分 析 物 の 異 な る 特 性 又 は 活 性 を 測定するように設計されたウェル内の異なるアッセイドメインにおいて測定する。一実施 形態においては、各酵素の酵素活性に対する選択性が異なる様々なアッセイドメイン(例 えば、選択した酵素活性に対する基質を含むアッセイドメイン、及び/又は選択した酵素 活性の基質若しくは産物を捕捉し測定することが可能であるアッセイドメイン)、酵素の 結合活性を測定できるように設計された様々なアッセイドメイン(例えば、酵素の潜在的 結合相手を含むアッセイドメイン、又は酵素を捕捉して、溶液中の潜在的結合相手との相 互作用の測定を可能にするように設計されたアッセイドメイン)、及び/又は酵素が第2 の酵素に対する基質として作用する能力を測定できるように設計されたアッセイドメイン (例 え ば 、 第 1 の 酵 素 に 対 す る 第 2 の 酵 素 の 作 用 に よ る 産 物 の 特 異 的 結 合 ア ッ セ イ を 可 能 にするように設計された結合ドメイン)を含むウェルにおいて複数の異なる活性を有する 酵素が測定される。別の実施形態においては、ウェルには、(例えば、イムノアッセイな どの結合アッセイによって)酵素量を測定するためのドメインと、酵素に関連する1つ又 は複数の活性を測定するための1つ又は複数の他のドメインとが含まれる。この実施形態 によって、測定される活性を酵素量に関係付けることが可能になる。目的とする酵素を捕 捉可能であるアッセイドメインを導入することによって、さらに、アッセイウェル中の粗 製 試 料 から 酵 素 を 精 製 す る こ と が 可 能 に な る 利 点 が あ る 。 本 発 明 の さ ら に 別 の 実 施 形 態 に おいては、ウェルには、目的酵素を捕捉可能であるアッセイドメインと、目的酵素の活性 を測定するための1つ又は複数の追加のアッセイドメインとが含まれる。このようなウェ ルを用いる方法には、粗製酵素試料中の不純物から酵素を精製するための洗浄ステップを 含めることができる。

[0016]

別の好ましいアッセイ形式においては、1つのウェルにおいて実施可能である測定数が、ウェル内の各ドメイン中に複数のアッセイ試薬を同時に固定すること(co‐imm々しょ1 i z i n g)によって増加する。例えば、M個の潜在的結合相手のライブラリリェルをウェル中のM個のアッセイドメイン上に形成し、標識生体材料を含む試料についた場し、結合現象を示すシグナルを生じるアッセイドメインを求めることによって、I個の潜在的は、I個の潜在的は、I個の問題できる。あるいは、I個の潜在的結合相手を各アッセイドメインに同時に固定することによって、M×I個の潜在的はまのライブラリパターンを形成することによって、M×I個の潜在的は手のライブラリパターンを形成することが表出を有することが示される印できる。アッセイキットは、ウェルのアッセイドメインののアッセイに対象ののできる。アッセイキットは、ウェルのアッセイドメインの個々の成が次に対象できる。アッセイキットは、ウェルのアッセイドメインの個々の成が次に対象である。アッセイキットは、ウェルのアッセイドメインの個々の成が次に対象である。できるのMDMWプレートと、第1のプレートとのカロのMDMWプレート(例えば、有するであるのが第1のプレート上のアッセイドメインの一成分を含むである。

[0017]

別の好ましい実施形態においては、パターン形成され、1列のM個(ここで、Mは3よりも大きな整数である)のドメイン上で一義的に同定されるアッセイ成分数は、一義的なアッセイドメイングループ中に各試薬をパターン形成することによって増加する。例えば、最大 Z = (M !) / [2 ! (M - 2) !] 個の潜在的結合相手(好ましくは、> M 個の結合相手)のライブラリパターンを形成することができ、最大 (M - 1) 個の結合相手が各ドメインに固定されるが、1つ又は複数の(好ましくは、すべての)結合相手は一義的な1対のドメインに固定される(他の結合相手は、1つのドメインの一義的なセット中に固定されることが好ましい。この場合、これら1つ又は複数の結合相手を、結合現象を示すシグナルを生じるアッセイドメイン対を求めることによって同定することができる。例

20

30

40

50

として示すと、 4 、 7 、 1 0 及び 2 5 個のアッセイドメインを含むウェルは、ウェル 1 個当たりそれぞれ 6 、 2 1 、 4 5 及び 3 0 0 個の一義的なドメイン対を有する。同様に、最大(M!) / [Z ! (M - Z)!] 個の潜在的結合相手(好ましくは、 > M 個の結合相手)のライブラリパターンを形成することができ、 1 つ又は複数の(好ましくは、すべての)結合相手が Z 個の一義的なドメイングループに固定される。所与のウェルにおいてスクリーニングできる成分数は、 Z_1 個のドメイングループ中にいくつかの成分をパターン形成させ、 Z_2 個のドメイングループ中に他の成分をパターン形成させ、以下同様にしてさらに増加させることができる。ここで、 Z_1 、 Z_2 、 は 1 以上 M 以下の整数である

[0018]

別の好ましいアッセイ形式においては、潜在的交差反応性分析物が同じウェル中の異な るドメインにおいて測定される。例えば、2つの類似した分析物(第1の分析物及び第2 の分析物)を、たとえ結合試薬が各分析物に対して部分的にしか選択的でないとしても、 結 合 試 薬 を 含 む 2 つ の ア ッ セ イ ド メ イ ン (第 1 の 分 析 物 に 選 択 的 な 第 1 の ド メ イ ン 及 び 第 2の分析物に選択的な第2のドメイン)を用いて測定することができる。同じウェルにお いてアッセイを実施することによって、第2のドメインに第2の分析物が結合して、溶液 中のその有効濃度が低下し、第1のドメインにおける第1の分析物の測定に干渉し難くな る。両方の交差反応種を測定できることによって、このような効果が交差反応を完全には 排除しない程度にシグナルを数学的にデコンボリューションすることが可能になり、アッ セイ結果に対する交差反応の効果がさらに低下する。このようなデコンボリューションは 、 例 え ば 、 経 験 的 な 較 正 に 基 づ く こ と が で き (例 え ば 、 両 方 の 分 析 物 の 濃 度 が 異 な る 標 準 物 質 の 2 次 元 マ ト リ ッ ク ス を 用 い て 、 好 ま し く は 実 験 計 画 法 を 用 い て 標 準 物 質 が 選 択 さ れ 、結果がモデル化される)、又は理論モデル(例えば、各々可能な結合相互作用と関連す る 熱 力 学 的 パ ラ メ ー タ 及 び / 又 は 動 力 学 的 パ ラ メ ー タ を 用 い て 誘 導 さ れ る モ デ ル) に 基 づ くことができる。場合によっては、第1の分析物のみが測定され、第2のドメインは第2 の分析物を隔離し、第1の分析物の測定に干渉するのを防止するためにのみ働く。交差反 応及び干渉を減少させるための上述の方法を用いて、i)ビリルビン、脂質、ヘマグロビ ン(hemaglobin)などの粗製生物学的試料(例えば、血液、プラズマ、血清、 組織抽出物、細胞抽出物)中の干渉物質を削減しかつ/又は明らかにし、かつ/又は主i) 密 接 に 関 係 す る 種 か ら の ア ッ セ イ 干 渉 及 び 交 差 反 応 を 予 防 す る の を 助 け か つ / 又 は 予 防 し、例えば、密接に関係する薬物と関係する代謝産物、ステロイドホルモンと関係する代 謝 産 物 、 ビ タ ミ ン と 関 係 す る 代 謝 産 物 、 タ ン パ ク 質 の 変 形 態 、 核 酸 と 糖 類 (例 え ば 、 分 析 物の様々なリン酸化状態、分析物の様々な分解状態間、分析物の様々な結合状態など)な どを測定する手助けをし、また識別することができる。

[0019]

別の好ましいアッセイ形式においては、ウェル中の複数の異なるアッセイドメインは、様々な形態の目的分析物を測定するようになされている。例として示すと、遊離及び結合した形態の目的分析物(例えば、遊離PSAと結合PSA)を測定し、未改変及び/又は改変形態の目的分析物を測定し(測定可能な改変例としては、リン酸化、ユビキチン結合、プレニル化、ミリストイル化、グリコシド化などがあるが、これらだけに限定されない)、かつ/又は分析物の切断又は分解産物(例えば、プロテアーゼ、ヌクレアーゼ又はグリコシダーゼ産物)を測定するようにドメインを構成することができる。あるいは、(例えば、遊離PSAと全PSAを測定する場合)1つのアッセイドメインでは複数の形態の分析物の総量が包括的に測定され、別のアッセイドメインはその分析物の1形態に特異的である。

[0020]

別の好ましいアッセイ形式においては、目的反応の出発材料/基質及び産物(及び、場合によっては、中間体及び/又は副産物)が、MDMWプレートのウェルの異なるアッセイドメインにおいて測定される。一実施形態においては、様々なウェルの測定が異なる反応時間で実施され、反応の完全な動力学的特性の解明が可能になる。第2の実施形態にお

20

30

50

いて、出発材料及び産物(又は、反応で生成及び/又は消費される任意の2つの種)のアッセイによって、あるレベルの交差反応性が示される。上述したように、両方の種を測定して、交差反応性の効果を軽減させることができる。第3の実施形態において、出発材料と産物の両方を測定することによって、出発材料の本来の量の変化を補正することが可能になる。このような補正は、組織などの複雑な生体系における細胞中の反応又は活性を追跡するときに特に重要である。例えば、細胞の活性化に応じた細胞受容体のリン酸化を追跡する際には、細胞系における受容体タンパク質の発現レベルの変化を反映するようにリン酸化受容体の測定量を補正することが望ましい。受容体のリン酸化体及び非リン酸化体を測定することによって、リン酸化の程度を百分率で表すことが可能になる。あるいは、全受容体及びリン酸化受容体を測定することによって、同じ情報を得ることができる。

[0021]

別の好ましいアッセイ形式において、ウェルには、切断反応に対する標識基質を含有する第1のアッセイドメインと、切断反応産物を捕捉可能である結合試薬を含有するアッセイドメインとが含まれている。基質は標識(好ましくはECL標識)に連結こことが第1のアッセイドメインから遊離することに切断反応の結果、標識に連結した切断産物が第1のアッセイドメインから遊離であるにであるでである。例として示すと、第1のアッセイドメインからのシグナルの増加を測定することによができる。例として示すと、結合試薬を、切断産物に対して誘導されるがプローブ(例えば、タンパ、タのアーゼの作用によって放出されるオリコマができる。あるいは、基質をさらに捕捉成分(例えば、ハプテンとはでするにができる。あるいは、基質をさらに捕捉成分(例えば、ハプテンとはできる。た切断産物においては、結合試薬を、捕捉成分に対して誘導される結合試薬(例えば、アビジン又はストレプトアビジンに対する抗体)とすることができる

[0022]

別の好ましいアッセイ形式においては、酵素産物を捕捉可能である結合試薬に酵素ライ ブラリを同時に固定して、酵素と酵素産物を捕捉可能である結合試薬との両方を含有する アッセイドメインを有する1列のアッセイドメインを形成させる。このようなアレイによ って、酵素反応に由来するシグナルが、酵素配列に応じたパターンで生じることが可能に なる。一実施形態において、酵素を、その酵素の産物に優先的に特異的である結合試薬と 組 み 合 わ せ る 。 別 の 実 施 形 態 に お い て は 、 結 合 試 薬 は 、 ウ ェ ル 中 の 複 数 の 酵 素 の 産 物 と 結 合可能である。このような場合、アッセイドメインは、適切な間隔をおいて配置され、1 つのドメイン中で産生された産物が、異なるドメインに拡散する機会を有する前に同じド メイン中の結合試薬に結合する確率を増加させるのに適切な諸条件下(例えば、混合のな い状態)で実施される。例えば、チロシンキナーゼのライブラリを、 1 列のアッセイドメ インにパターン化し、各ドメインに抗ホスホチロシン抗体を含ませることもできる。(好 ましくは標識に連結された、最も好ましくはECL標識に連結された)1つ又は複数のチ ロシンキナーゼ基質を導入することによって、基質がリン酸化され、抗ホスホチロシン抗 体によって標識産物が捕捉される。ドメイン中で産生された標識産物は、同じドメイン中 の抗体によって優先的に捕捉され、あるドメインにおいて発生したシグナルが、そのドメ インにおける酵素活性を確実に表すようになる。

[0023]

別の好ましいアッセイ形式においては、結合種に対して所望の特異性を有する結合試薬に対する抗体(又は他の結合試薬)のスクリーニングを助けるために、複数のアッセイドメインが使用される。試料(例えば、ハイブリドーマ培養物の上清)を複数のアッセイドメインと接触させる。1つのアッセイドメインには結合種が含まれる。それ以外のアッセイドメインには、特異性及び交差反応性に対する対照(例えば、密接に関係する物質、潜在的アッセイ干渉物質、結合試薬を生成させるために用いられる免疫化手順において使用される担体タンパク質、担体タンパク質・ハプテン複合体を産生させるために用いられるリンカーなど)が含まれる。一実施形態においては、1クラスの結合試薬(例えば、抗種

20

30

40

50

抗体(anti-species antibody))に広範に結合する標識された第2の結合試薬を用いて、結合試薬の結合を検出することができる。別の実施形態においては、複数の結合ドメインが、様々な抗体クラスに対する1パネルの抗種抗体を含み(あるいは、任意の抗体クラスに特異的な結合試薬を用いることができる)、上清中の抗体のクラスを決定するために、結合ドメインをハイブリドーマ上清(又は抗体を含有する他の試料)と接触させる。好ましい一実施形態において、特定のドメインへの結合試薬の結合は、試料中のすべての抗体量が測定されるように、1クラスの結合試薬(例えば、抗種抗体)に広範に結合する標識された第2の結合試薬を用いて検出される。あるいは、標識ハプテンを検出試薬として用いて所望の特異性を有するクラスの抗体のみを測定することができる。

[0024]

別の好ましいアッセイ形式においては、複数のアッセイドメインを用いて、アッセイのダイナミックレンジが、単一のアッセイドメインを用いて得られるダイナミックレンジよりも拡大される。例えば、目的分析物に対する親和性が異なる結合試薬を含む複数の結合ドメインを結合アッセイに使用することができる。親和性の最も高い結合試薬を含むドメインが、濃度の低い分析物を測定するために使用される。親和性が中程度又は低い結合試薬を含むドメインが、濃度が中程度又は高い分析物を含む試料に対して使用される。親和性が中程度又は低い結合試薬を含むアッセイドメインの場合、結合試薬は、アッセイドメインによって測定される分析物濃度範囲のほぼ中央にある解離定数を有するように選択することが好ましい。

[0025]

高 濃 度 で フ ッ ク 効 果 (h o o k m e f f e c t) が あ る サ ン ド イ ッ チ 結 合 ア ッ セ イ の 特 異的なケースでは、(第1のアッセイドメインにおいて実施される)サンドイッチイムノ アッセイを(第2のアッセイドメインにおいて実施される)同じ分析物に対する競合アッ セイと組み合わせることによって、アッセイのダイナミックレンジを拡大することができ る。競合アッセイでは、試料中の分析物と固定分析物アナログが、標識抗分析物抗体への 結合に対して競合することが好ましい。分析物アナログは、サンドイッチアッセイにおけ る捕捉抗体によって認識されるエピトープを含まないことがより好ましい(例えば、分析 物アナログを、捕捉抗体によって認識されるエピトープを含まないタンパク質分析物から 誘導されるペプチド断片とすることができる)。サンドイッチ及び競合アッセイでは、同 じ標識検出抗体を使用することができる。検出抗体量は、分析物アナログと捕捉抗体の合 計 量 に ほ ぼ 等 し い こ と が 有 利 で あ る 。 分 析 物 量 が 捕 捉 抗 体 量 よ り も 少 な い 場 合 、 サ ン ド イ ッチアッセイによって、分析物濃度にほぼ直線的に依存するシグナルが得られ、競合アッ セイは分析物濃度にほぼ無関係になる。分析物量が捕捉抗体量よりも多い場合、サンドイ ッチアッセイ(フック効果、すなわち、分析物が検出又は捕捉抗体の一方のみに結合し、 同時に両方には結合しない確率が高くなるので)と競合アッセイ(競合のために)の両方 からのシグナルが減少することになる。この領域においては、競合アッセイを用いて分析 物を定量することができ、又は競合アッセイを用いてサンドイッチアッセイのダイナミッ クレンジを超えたことを単に警告することができる。別の実施形態においては、結合動力 学が異なる捕捉試薬が選択される。結合時間及び動力学的定数は、i)低濃度の分析物が 、速やかに結合するアッセイドメインにおいて測定され、ii)(アッセイドメインの結 合容量を超える)高濃度の分析物が、結合するのが遅いドメインでの動力学的に制御され た結合反応において測定されるように選択される。

[0026]

別の好ましいアッセイ形式においては、ウェル中の 1 つ又は複数のアッセイドメインを、固相アッセイ用固相以外の目的で使用する。例として示すと、i)アッセイドメインは、アッセイ干渉物質を隔離する結合試薬を含むことができ、ii)アッセイドメインは、血液、血清、細胞溶解物、組織試料などの粗製試料から、生物学的材料(例えば、機能が未知なタンパク質、酵素、酵素基質、結合反応における結合相手など)を捕捉及び精製するための結合試薬を含むことができ、かつ/又はiii)アッセイドメインを、アッセイ

20

30

40

50

の途中で再水和し溶解させる乾燥試薬(例えば、結合試薬、酵素、酵素基質、対照、標準 物質、緩衝液、遮断薬、洗浄剤、標識試薬、ECL共反応物、阻害剤、薬物候補など)を 保存する場所として使用することができる。1つのアッセイドメイン中の乾燥試薬は、ア ッ セ イ ウ ェ ル の 調 製 及 び 保 存 中 に 、 試 薬 間 の 不 要 な 相 互 作 用 を 防 止 す る た め に 、 ウ ェ ル 中 の他のアッセイドメインと接触させないことが好ましい。このような場合、ドメイン全体 に試料が広がるのに十分な体積の試料がウェルに添加されるまで、乾燥試薬を他のアッセ イドメインと接触させない。乾燥試薬をアッセイドメインに保存するとき、アッセイドメ インには数滴の流体しか閉じ込められないが、複数のドメインにはより多量の流体が拡散 できる物理的境界 (例えば、ウェル表面の突起又はくぼみ、表面に付着又は印刷されたパ タ - ン 形 成 材 料 、 及 び 又 は ぬ れ 性 な ど の 物 理 的 性 質 が 異 な る 表 面 領 域 間 の 界 面) に よ っ て 、アッセイドメインが包囲されていることが有利である。競合結合アッセイの一実施形態 においては、ウェルの1つのアッセイドメインには固定結合試薬が含まれ、別のアッセイ ド メ イ ン に は 乾 燥 標 識 競 合 物 が 含 ま れ る 。 こ の 配 置 に よ っ て 、 試 料 添 加 前 に 、 競 合 物 が 結 合試薬に結合するのが防止される。サンドイッチ結合アッセイの一実施形態においては、 ウェルの第1のアッセイドメインには固定捕捉結合試薬が含まれ、第2のアッセイドメイ ンには乾燥標識結合試薬が含まれる。この配置によって、例えば試薬の乾燥又は保存中に 標 識 結 合 試 薬 が 第 1 の ア ッ セ イ ド メ イ ン に 非 特 異 的 に 結 合 す る の が 防 止 さ れ る 。 酵 素 阻 害アッセイの一実施形態においては、ウェルの第1のアッセイドメインには、(アッセイ ドメイン上で乾燥され又はアッセイドメイン中に固定された)酵素基質が含まれ、第2の アッセイドメインには乾燥酵素が含まれる。この配置によって、阻害剤を含有する試料を 添加する前に酵素が基質に作用することが防止される。

[0027]

【発明を実施するための最良の形態】

[0028]

本発明のアッセイドメインは、広範な形式のアッセイを実施するようになされている。アッセイ測定は、固相、好ましくは、アッセイドメイン表面からの検出可能標識(例えば、酵素、粒子、光ルミネセンス種、化学発光種、電気化学発光種、電気活性種、放射性種、磁性種など)の捕捉又は放出と組み合わせることが好ましい。標識は電極誘導発光(最も好ましくは、電気化学発光)によって検出可能であり、固相は電極誘導発光(好ましくは、電気化学発光)を誘導するようになされた電極であることが好ましい。同様に、本明細書に記載するアッセイの考え方は、表面プラズモン共鳴、光学的干渉技術などの標識を使用する必要がない固相アッセイ形式にも適用することができる。

[0029]

図1A~Dは、複数のアッセイドメインを含むアッセイセル(好ましくは、MDMWプレートのウェル)において実施できるアッセイパネルの選択された例を示す概略図である

20

30

40

50

。図1Aに、標識分析物115A~Cに対する固定結合試薬110A~Cを含むアッセイドメイン105A~Cを有するMDMWプレートのウェル100において実施される結合アッセイのパネルを示す。適切な結合試薬/分析物の組合せは当技術分野で既知であり、抗体/ハプテン、抗体/抗原、受容体/リガンド、核酸配列/相補配列、レクチン/糖、核酸/核酸結合タンパク質、タンパク質/タンパク質(例えば、2量体タンパク質、凝集型結合複合体(aggregate form binding complex)などがある。

[0030]

図1Bに、分析物135A~Cに対する固定捕捉結合試薬130A~C及び可溶性検出結合試薬132A~Cを含むアッセイドメイン125A~Cを有するMDMWプレートのウェル120において実施されるサンドイッチ結合アッセイのパネルを示す。好ましい一実施形態においては、パネルは、サンドイッチイムノアッセイのパネルである。別の好ましい実施形態においては、パネルは、サンドイッチ核酸ハイブリダイゼーションアッセイのパネルである。

[0031]

図1 C に、アッセイドメイン 1 4 5 A ~ C を含む M D M W プレートのウェル 1 4 0 において実施される競合結合アッセイのパネルを示す。分析物 1 5 5 A ~ C は、結合試薬 1 5 0 A ~ C への結合について競合物 1 5 2 A ~ C と競合する。分析物の競合物が標識されている場合、対応する結合試薬は固定されており、その逆もまた同様である。好ましい一実施形態においては、パネルは、競合イムノアッセイのパネルである。

[0032]

図1Dに、MDMWプレートのウェル160において実施される酵素アッセイのパネルを示す。酵素170Aによって、(アッセイドメイン165Aに固定された)標識基で175が切断されてアッセイドメインから標識産物が放出される。酵素170Bによって標識をでで、(アッセイドメイン165Bに固定された)基質176と標識基質177が結合5Cに固定された)基質178が改変されて標識結合試薬180によって認識される産物19が作製される。酵素170Dによって、標識基質181の標識産物182への転換がが開業183に捕捉される。別の実施形態においては、基質181及び産物182に標識ができる酵素(及び他の化学活性、生化学活性及び/又は生物活性)としては、核酸リガーゼ、ヘリカーゼ、インテグラーゼ、ヌクレアーゼ、プロテアーゼ、メラーゼ、核酸リガーゼ、ヘリカーゼ、インテグラーゼ、ヌクレアーゼ、プロテアーゼ、タンパク質合成、グリコシダーゼ、ホスファターゼ、オナーゼ、プレニル化酵素、ミリストイル化酵素などがあるが、これらだけに限定されない。

[0033]

有用なパネルとしては、特異的生化学システム、生化学経路、組織、生物、細胞タイプ の 細胞小器官、病態、受容体クラス、酵素クラスなどに関連した分析物又は活性に対する アッセイパネルなどがある。好ましいパネルとしては、サイトカイン及び / 又はそれらの 受容体(例えば、TNF- 、TNF- 、IL1- 、IL1- 、IL2、IL4、IL6、IL10、IL12、IFN- などの1つ又は複数)、成長因子及び / 又はものの受容体(例えば、EGF、VGF、TGF、VEGFなどの1つ又は複数)、大クアチジルイノシトールなど)乱用薬物、治療薬物、自己抗体(例えば、Sm、RNP、SS-A、SS-B Jo-1及びSc1-70抗原に対する1つ又は複数の抗体)、アアリルゲン特異的抗体、腫瘍マーカー、心臓マーカー(例えば、トロポニンT、トロポニンT、ルゲン特異的抗体、腫瘍マーカー、心臓マーカー(例えば、トロポニンT、リコポーツエストロポーツエストローで、ロ2量体、トロンビン・アンチトロンビン複合体、プロトロンビン断イカー、抗第メa因子などの1つ又は複数)、急性ウイルス肝炎感染マーカー(例えば

20

30

40

50

、 A 型 肝 炎 ウ イ ル ス に 対 す る I g M 抗 体 、 B 型 肝 炎 コ ア 抗 原 に 対 す る I g M 抗 体 、 B 型 肝 炎 表 面 抗 原 、 C 型 肝 炎 ウ イ ル ス に 対 す る 抗 体 な ど の 1 つ 又 は 複 数) 、 ア ル ツ ハ イ マ ー 病 マ ーカー (- アミロイド、タウタンパク質など)、骨粗 しょう症マーカー(例えば、架橋 N又はC-テロペプチド、総デオキシピリジノリン、遊離デオキシピリジノリン、オステ オカルシン、 アルカリホスファターゼ、 I型コラーゲンの C 末端プロペプチド、 骨特異的 アルカリホスファターゼなどの1つ又は複数)、受胎能マーカー(markers f e r t i l i t y) (例えば、エストラジオール、プロゲステロン、卵胞刺激ホルモ ン(FSH)、黄体形成ホルモン(LH)、プロラクチン、 - hCG、テストステロン などの1つ又は複数)、うっ血性心不全マーカー(例えば、 - ナトリウム利尿タンパク 質(- natriuretic protein)(BNP)、a-ナトリウム利尿タ ンパク質(ANP)、エンドセリン、アルドステロンなどの1つ又は複数)、甲状腺障害 マーカー (例 え ば 、 甲 状 腺 刺 激 ホ ル モ ン (T S H) 、 全 T 3 、 遊 離 T 3 、 全 T 4 、 遊 離 T 4 及びリバース T 3 の 1 つ又は複数)、及び前立腺癌のマーカー(例えば、全 P S A 、遊 離PSA、複合PSA、前立腺酸性ホスファターゼ、クレアチンキナーゼなどの1つ又は 複数)に対するイムノアッセイなどがある。好ましいパネルとしては、サイトカイン、成 長因子、アポトーシス経路の成分、P450酵素の発現、腫瘍関連遺伝子の発現などをコ ードするmRNAのmRNAレベルを測定するための核酸アレイも含まれる。好ましいパ ネルとしては、個体(例えば、SNP分析)、病原体、腫瘍細胞などの遺伝形質を決定す るための核酸アレイも含まれる。好ましいパネルとしては、酵素及び/又は酵素基質(例 えば、ユビキチン結合、プロテアーゼ活性、キナーゼ活性、ホスファターゼ活性、核酸プ ロセシング活性、GTP加水分解酵素活性、グアニンヌクレオチド交換活性、GTP加水 分解酵素活性化活性などに関連する基質及び / 又は酵素)のライブラリも含まれる。好ま しいパネルとしては、受容体又はリガンドのライブラリ(例えば、Gタンパク質共役受容 体、チロシンキナーゼ受容体、核ホルモン受容体、細胞接着分子(インテグリン、VCA M 、 C D 4 、 C D 8)、主要組織適合複合体タンパク質、ニコチン受容体などのパネル) も含まれる。好ましいパネルとしては、様々な源から(例えば、様々な細胞タイプ、細胞 系、組織、生物、活性化状態などから)の細胞、細胞膜、膜断片、再構成膜、細胞小器官 などのライブラリも含まれる。

[0 0 3 4]

パネルを適用することには、生体系の状態を決定し、病態を検出又は同定することが含まれる。(例えば、正常若しくは罹患生体系、又は正常若しくは活性生体系などに由来する試料中の複数の分析物の示差測定による)生体系の状態に関連する分析物の測定。パネルを薬物スクリーニングに使用することもできる。パネルを使用することによって、複数の生物活性(例えば、結合相互作用又は酵素活性)に対する潜在的薬物の効果を、MDMVプレートの1つのウェルで決定することができる。パネルを使用して、タンパク質のキャラクタリゼーションを加速することができる。例えば、タンパク質を生物学的材料とおうリに対してスクリーニングして、タンパク質に結合し、タンパク質を酵素基質と初め、タンパク質の酵素活性によって改変され、又はタンパク質ライブラリに対してスクリーニングして、生物学的材料を酵素基質と認め、生物学的材料の活を同定することができる。逆に、生物学的材料を酵素基質と認め、生物学的材料の活性によって改変され、又は生物学的材料を酵素基質と認め、生物学的材料の活性によって改変され、又は生物学的材料と相互作用するタンパク質を同定することができる。

[0035]

アッセイセル又はウェル中のいくつかのアッセイドメインを、アッセイ対照又は標準物質用に確保することができる。図2は、本発明の一実施形態による、目的分析物に対する試験結合アッセイ、非特異的結合に対する対照、シグナル発生及び伝達の効率に対する対照、及び対照結合アッセイを含むアッセイパネルの概略図である。図2に、アッセイドメイン210Aには、目的分析物217に特異的な捕捉結合試薬215(例えば、抗体又は核酸)が含まれる。アッセイドメイン210Bには、好ましくはアッセイドメイン210A中の開

30

40

50

口部位(open site)を遮断するためにも用いられた遮断薬225(例えば、BSA又はウシIgG)が含まれる。また、遮断薬225は、アッセイに導入される試料と相互作用しないと考えられる以外は、捕捉結合試薬215に類似した諸特性を有するイン2100には、標識試薬235が含まれる。アッセイドメイン2100には、標識試薬235が含まれる。ウェルには、分析物215に特異的な標識検出抗体219、対照分析物247に特異的な標識検出抗体219、未知量の分析物217、及び所定量の対照分析物247も含まれる。アッセイドメイン210A中にサンドイッチ複合体が形成されることによって、分析物の測定でがックグラウンドシグナル量が測定される。アッセイドメイン2106を使用して、標識試薬の非特異的結合を含めたバックグラウンドシグナル量が測定される。アッセイドメイン2100を使用して、標識はセイドメイン2100中のサンドイッチ複合体の測定を利用して、結合反応対率に及びチメイン2100かで表によれる。アッセイドメイン2100日の対応によいては、アッセイドメイン2100日の別定を実施す要因が制御される。別の実施形態においては、アッセイドメイン2100日の別定を実施するための試薬が含まれる。

[0036]

図3に、本発明の一実施形態による、複数の活性を有する酵素の活性のアッセイを示す。アッセイは、MDMWプレートのウェル300中で実施される。酵素370によって、(アッセイドメイン365Aに固定された)標識基質375が切断されてアッセイドメインから標識産物が放出される。酵素370によって、さらに、(アッセイドメイン365Bに固定された)基質376と標識基質377が結合して、標識がアッセイドメイン365Bに固定された)基質378が改変されて、標識結合試薬380によって認識される産物379が作製される。酵素370によって、さらに、標識基質381から標識産物382への転化が触媒される。次いで、標識産物382が(アッセイドメイン365Dに固定された)結合試薬38に捕捉される。別の実施形態においては、基質381に標識が付けられず、標識検出結合試薬が添加されてサンドイッチ複合体が形成されることによって産物382が検出される。

[0037]

図4に、本発明の一実施形態による、酵素活性のアッセイを示す。 MDMWプレートのウェル400には、酵素415に結合可能である固定捕捉結合試薬412(例えば、抗体)を含むアッセイドメイン410が含まれ、アッセイドメイン420には、酵素を含有になる。酵素を含有になる。酵素を含合には、抗体)が含まれる。酵素を含合には、糖素を含合によって、アッセイドメイン420中の酵素が捕捉される。場である。場である。場では、洗浄ステップを導入して酵素試料中の干渉物質を除去することができる。標識物ででは、洗浄ステップを導入して酵素が大人と20中で捕捉され測定される標識をでかる。標識検出試薬417(例えば、抗体)を添加することによって、アッセイドメイン420中で捕捉され測定されるででができる。原識がどれてなる。この測定によって、酵素量に関係付けられる酵素活性が測定されるいでは、酵素410を標識して、標識検出試薬417を省略することができる。別のよいでは、おいては、標識検出試薬417を省略することができる。別のよいは、おいては、標識検出試薬417を省略することができる。別のようには、おいては、標識検出試薬417を省略することができる。別のようには、おいては、標識検出試薬415が捕捉され、酵素415が捕捉され、酵素415が捕捉され、酵素415が捕捉され、酵素415が捕捉され、酵素415

[0038]

図 5 に、本発明の一実施形態によるアッセイを示す。ここで、酵素活性は基質の消費及び産物の産生を測定することによって測定される。M D M W プレート中のウェル 5 0 0 には、標識酵素基質 5 1 5 に特異的である固定捕捉結合試薬 5 1 2 を含むアッセイドメイン 5 1 0 A、及び標識酵素産物 5 2 0 に特異的である固定捕捉結合試薬 5 1 7 を含むアッセイドメイン 5 1 0 B が含まれる。標識基質 5 1 5 と酵素基質に酵素が作用して得られた標

識産物 5 2 0 との混合物を含む試料がウェル 5 0 0 に導入される。基質及び産物を結合アッセイにより測定することによって、基質の初期量が不明であっても、転化の程度を計算することが可能である。あるいは、基質 5 1 5 は標識されず、基質 5 1 5 及び産物 5 2 0 はサンドイッチ結合アッセイ又は競合結合アッセイによって測定される。本発明の好ましい実施形態においては、酵素はキナーゼ又はホスファターゼであり、結合試薬はペプチド又はタンパク質のリン酸化体又は非リン酸化体に特異的な抗体である。あるいは、1つ捕捉試薬は産物又は基質のどちらかに特異的であり、他方の捕捉試薬はその両方に均等に結合する。このパネルによって、1つのドメインにおける産物又は基質、並びに他方のドメインにおける産物及び基質の合計を測定することが可能になる。

[0039]

図6に、本発明の一実施形態による、切断活性を有する酵素のアッセイを示す。MDMWプレートのウェル600には、固定標識基質615を含むアッセイドメイン610、及び標識酵素産物625に特異的である固定結合試薬622を含むアッセイドメイン620が含まれる。酵素630によって、基質615が切断されてアッセイドメイン620に捕捉される産物625が形成される。このアッセイ形式によって、基質消費と産物産生の両方を測定することが可能になる。場合によっては、基質615は標識されず、産物625はサンドイッチ又は競合結合アッセイによって測定される。好ましい実施形態において、酵素630はプロテアーゼであり、基質615は標識ペプチドであり、結合試薬622はその捕捉成分に特異的である。

[0040]

図 7 に、本発明の一実施形態による、固定酵素列の活性を測定するアッセイ形式を示す 。 M D M W プレートのウェル 7 0 0 には、固定酵素 7 1 5 A ~ C 及び固定結合試薬 7 2 0 A~Cを含むアッセイドメイン710A~Cが含まれる。この結合試薬は、同じアッセイ ドメインに同時固定された酵素の産物に特異的である。(同じでも異なっていてもよい) 標識基質725A~Cを導入すると、(同じでも異なっていてもよい)標識産物730A ~Cが産生される。酵素が結合試薬に接近すると、産物は、(隣接ドメインにおける産物 の拡散及び捕捉に対抗して)それが産生されたアッセイドメイン中で優先的に捕捉される 。アッセイドメインは、ウェルの底のわずかなくぼみにあって、ドメイン表面近くの対流 を防止し、ドメイン表面から離れる水平拡散を防止することが好ましい。別の実施形態に おいては、基質は標識されず、産物はサンドイッチ又は競合結合アッセイによって測定さ れる。好ましい一実施形態においては、酵素はキナーゼであり、基質はキナーゼライブラ リの特異的メンバーのコンセンサス配列を有し、結合試薬は同時固定される酵素の産物に 特異的な抗体である。あるいは、結合試薬は、リンペプチド(例えば、抗ホスホチロシン 又は抗ホスホセリン抗体)に広く特異的である。別の好ましい実施形態において、酵素は キナーゼであり、基質は同じ一般的なキナーゼ基質であり、結合試薬はリンペプチド(例 え ば 、 抗 ホ ス ホ チ ロ シ ン 又 は 抗 ホ ス ホ セ リ ン 抗 体) に 広 く 特 異 的 で あ る 同 じ 結 合 試 薬 で あ る。

[0041]

図8A~Cに、本発明の好ましい実施形態による、目的分析物に対する親和性が異なる3つのアッセイドメインを含む拡張ダイナミックレンジ結合アッセイを示す。このアッセイドメインの結合容量よりも高い分析物濃度にダイナミックレンジを拡張しなければならないときに特に有利である。MDMWプレート中のウェルクの1には、分析物820を測定するためのアッセイドメイン810A~Cが含まれるこのウェルには、i)分析物の解離定数がKd゚である固定結合試薬815Aを含むアッセイドメイン810A、ii)分析物の解離定数がKd゚である固定結合試薬815Bを含むアッセイドメイン810B、及びiii)分析物の解離定数がKd゚である固定結合試薬815Cを含むアッセイドメイン810Cが含まれ、Kd゚<Kd゚である固定結 代d゚及びKd゚は、好ましくは、アッセイドメイン810Aを飽和させるのに必要な分析物濃度よりも高い。標識分析物820がウェルに導入される。解離定数は10倍以上異

10

20

30

40

20

30

40

50

なり、i)分析物濃度が<<K $_{\rm d}$ ^b であるとき、アッセイドメイン 8 1 0 A のみがかなり占有され(図 8 A)、ii)分析物濃度がほぼ K $_{\rm d}$ ^b に等しいときに、アッセイドメイン 8 1 0 A が飽和し、アッセイドメイン 8 1 0 B の一部が占有され、アッセイドメイン 8 1 0 C はごくわずかしか占有されず(図 8 B)、i i i)分析物濃度がほぼ K $_{\rm d}$ ^c に等しいときに、アッセイドメイン 8 1 0 A 及び 8 1 0 B が飽和になり、アッセイドメイン 8 1 0 C の一部が占有される(図 8 C)ことが好ましい。各濃度範囲において、部分的に占有されたアッセイドメインからのシグナルを用いて分析物が定量される。場合によっては、アッセイドメイン 8 1 0 C が省略され、又はアッセイドメインが追加されて、さらなる濃度範囲にダイナミックレンジが拡張される。

[0042]

図9A~Bに、本発明の好ましい実施形態による、同じ分析物のサンドイッチ結合アッ セイ及び競合結合アッセイを含む拡張ダイナミックレンジ結合アッセイを示す。このアッ セイ形式は、ウェル中のアッセイドメインの結合容量よりも高い分析物濃度にダイナミッ クレンジを拡張しなければならないときに特に有利である。 M D M W プレート中のウェル 9 0 0 には、 i) 分析物 9 1 5 に特異的である固定捕捉結合試薬 9 1 2 を含むアッセイド メイン 9 1 0 、 及び i i) 標 識 結 合 試 薬 9 1 7 へ の 結 合 に 対 し て 分 析 物 9 1 5 と 競 合 す る 固定競合物925を含むアッセイドメイン920が含まれる。分析物915及び標識結合 試薬917を導入すると、標識結合試薬917がサンドイッチ複合体によってアッセイド メイン 9 1 0 に結合し、直接結合によってアッセイドメイン 9 2 0 に結合する。捕捉結合 試薬912の量は、競合物925の量とほぼ同じであり、標識結合試薬917の量のほぼ 半分であることが好ましい。分析物量が捕捉結合試薬量(すなわち、アッセイドメイン9 1 0 の 結 合 容 量) よ り も 少 な い 場 合 、 ア ッ セ イ ド メ イ ン 9 1 0 に 結 合 し た 標 識 量 は 分 析 物 量にほぼ比例し、アッセイドメイン920に結合した標識量はほぼ一定で飽和している(図9A)。分析物の量が捕捉結合試薬量よりも多い場合、アッセイドメイン910に結合 した標識量は「フック効果」のために分析物の増加につれて減少し、アッセイドメイン9 2 0 に 結合 した 標 識 量 も 競 合 結 合 の た め に 減 少 す る (図 9 B) 。 し た が っ て 、 競 合 ア ッ セ イを用いて分析物濃度が高い分析物を定量することができ、サンドイッチアッセイがその ダ イ ナ ミ ッ ク レン ジ を 超 え た こ と を 簡 単 に 警 告 す る こ と が で き る 。 好 ま し い 実 施 形 態 に お いて、分析物915はタンパク質であり、結合試薬912及び917は分析物915上の 様 々 な エ ピ ト ー プ に 特 異 的 な 抗 体 で あ る 。 競 合 物 9 2 5 は 、 分 析 物 9 1 5 の 標 識 さ れ た タ イプとすることができ、より好ましくは、結合試薬917に結合するが結合試薬912に は結合しないペプチドとすることができる(それによって、結合試薬912又は競合物9 2 5 が表面及び結合から取り除かれる可能性が低下する)。

[0043]

本発明の好ましい実施形態によれば、本発明のアッセイドメインは、電極誘導発光(好 ましくは、電気化学発光)アッセイ用に構成されたアッセイモジュール又はプレートに導 入される。例えば、アッセイドメインは、アッセイセル(例えば、MDMWプレートのウ ェル)内の1つ又は複数の一体型電極上に支持される。適切なアッセイモジュール及びウ ェルプレート、そのようなアッセイモジュール及びプレートを使用する方法、それを組み 込んだシステムは、2002年6月28日に出願され、参照により本明細書に援用する「 発光試験測定用アッセイプレート、リーダーシステム及び方法(Assay Plate s, Reader Systems and Methods for Lumines cence Test Measurements)」と題する米国特許出願第10/1 8 5 , 2 7 4 号及び同第 1 0 / 1 8 5 , 3 6 3 号に記載されている(3 、 4 及び 5 . 1 ~ 5.6項参照)。本発明の好ましい一実施形態によれば、アッセイモジュール又はプレー トには、1つ又は複数(好ましくは2つ以上、6つ以上、24個以上、96個以上、38 4 個以上、 1 5 3 6 個以上又は 9 6 0 0 個以上)のアッセイウェル、アッセイチャンバ及 び/又はアッセイドメイン(例えば、アッセイ反応が起きる、かつ/又はアッセイシグナ ルが放出されるモジュール表面、すなわち、一般に電極表面、好ましくは作用電極表面上 の別個の箇所)が含まれる。さらに好ましい実施形態によれば、アッセイモジュールは、

20

30

40

50

標準ウェル構成(例えば、6ウェル、24ウェル、96ウェル、384ウェル、1536ウェル、6144ウェル又は9600ウェル)を有するマルチウェルアッセイプレートである。このようなプレートのウェルは、複数(例えば、2つ以上、4つ以上、7つ以上、25個以上、64個以上、100個以上など)の別個のアッセイドメインをさらに含むことができる。

[0044]

本発明の一態様は、アッセイ、好ましくは発光アッセイ、より好ましくは電極誘導発光アッセイ、さらに好ましくは電気化学発光アッセイに使用されるように構成された改良アッセイモジュール(例えば、プレート)に関する。本発明のアッセイモジュールは、好ましくは E C L アッセイに適しているだけでなく、蛍光アッセイ、化学発光アッセイ、生物発光アッセイ、リン光アッセイ、光透過率アッセイ(例えば、光学濃度又は光散乱の測定)及び(例えば、測定が電流又は電圧の測定を含む)電気化学アッセイにも適している。

[0045]

本発明の好ましい一実施形態によれば、アッセイモジュール又はプレートには、1つ又は複数(好ましくは2つ以上、6つ以上、24個以上、96個以上、384個以上、1536個以上又は9600個以上)のアッセイウェル、アッセイチャンバ及び/又はアッセイドメイン(例えば、アッセイ反応が起きる、かつ/又はアッセイシグナルが放出されるモジュール表面、すなわち、一般に電極表面、好ましくは作用電極表面上の別個の箇所)が含まれる。特に好ましい実施形態によれば、アッセイプレートは、標準ウェル構成(例えば、6ウェル、24ウェル、96ウェル、384ウェル、1536ウェル、6144ウェル又は9600ウェル)を有するマルチウェルアッセイプレートである。

[0046]

電極誘導発光ウェル(好ましくは、電気化学発光ウェル(すなわち、電気化学発光用に構成されたウェル))又は電極誘導発光ドメイン(好ましくは、電気化学発光アッセイドメイン(すなわち、電気化学発光アッセイ用に構成されたアッセイドメイン))は、(作用電極表面などの)第1の電極表面を含むことができ、好ましくは(対電極表面などの)第2の電極表面も含むことができる。

[0047]

本発明は、1つ又は複数のアッセイを実施するための複数のウェル(及び/又はチャンバ)を含むマルチウェルモジュール、好ましくはアッセイプレートにも関する。複数のウェル(及び/又はチャンバ)のうち2つ以上には、少なくとも1つの第1の電極表面、及び好ましくは少なくとも1つの対電極表面が含まれる。好ましい実施形態によれば、複数のウェル(及び/又はチャンバ)のうち2つ以上には、ウェル中で発光を誘発させるようになされた作用電極表面、及び、好ましくは対電極表面が含まれる。本発明は、1つ又は複数のアッセイを実施するための複数のウェルを含むマルチウェルモジュール、好ましくはプレートにも関する。複数のウェルのうち1つ又は複数には、ウェル中で発光を誘発させるようになされた作用電極表面及び対電極表面が含まれる。すべて又は実質的にすべてのウェルが電極表面を含むことが好ましい。

[0048]

別の実施形態は、電極誘導発光(好ましくは、電気化学発光)アッセイを実施するための、複数のウェルを含むマルチウェルアッセイモジュール、好ましくはアッセイプレートに関する。複数のウェルの各々には、少なくとも1つの第1の電極表面(例えば、作用電極)と、好ましくは、少なくとも1つの第2の電極表面(例えば、対電極)が含まれる。

[0049]

別の実施形態は、1つ又は複数の電極誘導発光(好ましくは、電気化学発光)アッセイを実施するための、電極表面を含む複数のウェル又はアッセイ領域を有するアッセイプレートに関する。電極表面は、本質的に、少なくとも1つの作用電極表面と少なくとも1つの対電極表面からなる。

[0050]

アッセイ領域又はアッセイウェルには参照電極がなく、アッセイドメイン密度がより高

くなり、発光を誘発し測定するための計測手段が単純化されることが好ましい。

[0051]

本発明の一態様は、アッセイ、好ましくは発光アッセイ、より好ましくは電極誘導発光アッセイ、さらに好ましくは電気化学発光アッセイに使用するように構成された改良アッセイモジュール(例えば、プレート)に関する。本発明のアッセイモジュールは、ECLアッセイに適しているだけでなく、蛍光アッセイ、化学発光アッセイ、生物発光アッセイ、リン光アッセイ、光透過率アッセイ(例えば、光学濃度又は光散乱の測定)、及び(例えば、測定が電流又は電圧の測定を含む)電気化学アッセイにも適していることが好ましい。

[0052]

本発明の好ましい一実施形態によれば、アッセイモジュール又はプレートには、1つ又は複数(好ましくは2つ以上、6つ以上、24個以上、96個以上、384個以上、1536個以上又は9600個以上)のアッセイウェル、アッセイチャンバ及び/又はアッセイドメイン(例えば、アッセイ反応が起こるモジュール表面、及び/又はアッセイシグナルが放出されるモジュール表面、すなわち一般に電極表面、好ましくは作用電極表面上の別個の箇所)が含まれる。特に好ましい実施形態によれば、アッセイプレートは、標準ウェル構成(例えば、6ウェル、24ウェル、96ウェル、384ウェル、1536ウェル、6144ウェル又は9600ウェル)を有するマルチウェルアッセイプレートである。

[0053]

電極誘導発光ウェル(好ましくは、電気化学発光ウェル(すなわち、電気化学発光用に構成されたウェル))又は電極誘導発光ドメイン(好ましくは、電気化学発光アッセイドメイン(すなわち、電気化学発光アッセイ用に構成されたアッセイドメイン))は、(作用電極表面などの)第1の電極表面を含むことができ、好ましくは(対電極表面などの)第2の電極表面も含むことができる。

[0054]

本発明は、1つ又は複数のアッセイを実施するための、複数のウェル(及び/又はチャンバ)を含むマルチウェルモジュール、好ましくはアッセイプレートにも関する。複数のウェル(及び/又はチャンバ)のうち2つ以上に、少なくとも1つの第1の電極表面と、好ましくは少なくとも1つの対電極表面とが含まれる。好ましい実施形態によれば、複数のウェル(及び/又はチャンバ)のうち2つ以上に、ウェルにおいて発光を誘発させるように構成された作用電極表面と、好ましくは対電極表面が含まれる。本発明は、1つ又は複数のアッセイを実施するための、複数のウェルを有するマルチウェルモジュール、好ましくはプレートにも関する。複数のウェルのうち1つ又は複数には、ウェルにおいて発光を誘発させるように構成された作用電極表面と対電極表面が含まれる。すべて又は実質的にすべてのウェルには電極表面が含まれることが好ましい。

[0055]

別の実施形態は、電極誘導発光(好ましくは、電気化学発光)アッセイを実施するための、複数のウェルを含むマルチウェルアッセイモジュール、好ましくはアッセイプレートに関する。複数のウェルの各々には、少なくとも1つの第1の電極表面(例えば、作用電極)と、好ましくは、少なくとも1つの第2の電極表面(例えば、対電極)とが含まれる

[0056]

別の実施形態は、1つ又は複数の電極誘導発光(好ましくは、電気化学発光)アッセイを実施するための、複数のウェル又は電極表面を含むアッセイ領域を有するアッセイプレートに関する。電極表面は、本質的に、少なくとも1つの作用電極表面と少なくとも1つの対電極表面とからなる。

[0057]

アッセイ領域又はアッセイウェルには参照電極がなく、アッセイドメイン密度がより高くなり、発光を誘発し測定するための計測手段が単純化されることが好ましい。

[0058]

10

20

30

作用電極表面積は、対電極表面積に比べて、小さくても、同じでも、大きくてもよい。いくつかの実施形態において、作用電極表面は、対電極表面よりも極めて大きいことが好ましい。この構成によって、アッセイ試薬を固定する作用電極表面がより大きくなる。好ましくは、作用電極表面と対電極表面の表面比は、少なくとも2対1、より好ましくは少なくとも5対1、さらに好ましくは少なくとも10対1、さらに好ましくは少なくとも50が1、最も好ましくは少なくとも50が対1である。驚くべきことに、本発明のアッセイモジュールは、極めて小さな対電極表面を用いて、電気化学発光アッセイを実施することができる。作用電極は、ウェル上に配置された光検出器によって捕捉可能である、電極から放出されるECLの割合が最大になるように、実質的にウェルの中央に位置することが好ましい。

[0059]

別の実施形態によれば、第1の電極表面(例えば、作用電極表面)は、各ウェルの底部の中央に位置し、第2の電極表面(例えば、対電極表面)は、各ウェルの底部の周囲に隣接している。いくつかの実施形態において、作用電極表面は各ウェルの底部中央に位置し、対電極表面によって完全に包囲されている。

[0060]

また、いくつかの用途では、作用電極表面が、例えば、ウェル又はウェル底部の表面積よりも小さいことが望ましい。いくつかの用途では、この構成によって、非特異的シグナルを減少させることができる。本発明の一実施形態によれば、マルチウェルアッセイモジュールは、第1の電極表面、第2の電極表面及び誘電体表面(好ましくは、誘電体表面は、第1の電極表面と第2の電極表面の間のウェル底面である)を含むウェル底部を有する複数のウェルを有する。第1の電極表面と誘電体表面(又は、ウェル底面)の比は、1対5未満、好ましくは1対10、より好ましくは1対30である。

[0061]

本発明の好ましい一実施形態によれば、アッセイモジュールには、誘電体表面が結合している第1の電極表面(好ましくは、作用電極表面)が含まれる。誘電体表面は、電極表面は、りも高く又は低く(好ましくは、高く)かつノは電極表面と疎水性が異なるートル、より好ましくは2~30マイクロメートル、最も好ましくは8~12マイクロメートル、高いことが好ましい。誘電体境界は、鋭く画成された縁部を有する(すなわち、境界壁が急勾配かつ/又は電極と誘電体表面よりも10度、好ましくは15度、より好ましくは30度、より好ましくは30度、より好ましくは30度、より好ましくは30度、より好ましくは30度、より好ましくは30度、より好ましくは30度、最も好ましくは50度の水接触角を有する。誘電体表面が電極表面よりも高くかつ/又は疎水性である1つである。特に、境界壁が急勾配かつ/又は電極と誘電体境界の界面が鋭角である前である。特に、境界壁が急勾配かつ/又は電極と誘電体境界の界面が鋭角である説であるのに特に有用である。

[0062]

別の実施形態によれば、アッセイモジュールには、1つ又は複数(好ましくは2つ以上)のウェルと、1つ又は複数の第1の電極表面(好ましくは、1つ又は複数の作用電極表面)と、それに固定された複数のアッセイドメインとが含まれる。複数のアッセイドメインのうち少なくとも2つには異なる結合試薬が含まれることが好ましい。好ましくは、各ウェルには、少なくとも4つ、より好ましくは少なくとも7つ、さらに好ましくは少なくとも15個のアッセイドメインが含まれる。好ましい一実施形態は、各ウェルが1つのウェルにつき少なくとも16個、好ましくは少なくとも25個、より好ましくは少なくとも64個、さらに好ましくは少なくとも100個のアッセイドメイン、最も好ましくは少なくとも250個のアッセイドメインを含む24ウェルプレートである。

[0063]

40

30

10

20

20

30

40

50

本発明の別の実施形態は、複数のウェルを有するマルチウェルモジュール(好ましくはマルチウェルプレート)に関する。このウェルには、アッセイドメインがその上に固定された複数の作用電極表面が含まれる。アッセイドメインは、個別に指定可能であることが好ましい。例えば、ウェルは、ウェル内の他のアッセイドメインから独立して指定可能である電極を含む複数のアッセイドメインを含むことができる。別の例において、一群のウェルは、ウェル内の他のアッセイドメインから独立して指定可能であるが、他のウェルの各々におけるアッセイドメインと一緒に指定可能である電極を含む各々複数のアッセイドメインを含むことができる。

[0064]

また、いくつかの用途では、作用電極表面は、例えばウェル又はウェル底部の表面積よりも小さいことが望ましい。いくつかの用途においては、この構成によって、非特異的シグナルを減少させることができる。本発明の一実施形態によれば、マルチウェルアッセイモジュールは、第1の電極表面、第2の電極表面及び誘電体表面(好ましくは、誘電体表面は、第1の電極表面と第2の電極表面の間のウェル底面である)を含むウェル底部を有する複数のウェルを有する。第1の電極表面と誘電体表面(又は、ウェル底面)の比は、1対5未満、好ましくは1対10、より好ましくは1対30である。

[0065]

本発明の好ましい一実施形態によれば、アッセイモジュールには、誘電体表面が結合している第1の電極表面(好ましくは、作用電極表面)が含まれる。誘電体表面は、電極表面よりも高く又は低く(好ましくは、高く)かつ/又は電極表面と疎水性が異なる(イタートル、高いことが好ましくは2~30マイクロメートル、最も好ましくは8~12マイクロメートル、高いことが好ましい。誘電体境界は、鋭く画成された縁部を有するでが出まり、は15度、より好ましくは30度、かつ/又は電極と誘電体境界の界面が鋭角であるらにに好ましくは15度、より好ましくは30度、対けましくは15度、より好ましくは30度、対けもは20度、より好ましくは30度、対けもは10度、大けましくは50度のプラーは、誘電体境界を用いて電極表面が電極表面に対きる1000のののののののでもである。

[0066]

別の実施形態によれば、アッセイモジュールには、1つ又は複数(好ましくは2つ以上)のウェルと、1つ又は複数の第1の電極表面(好ましくは、1つ又は複数の作用電極表面)と、それに固定された複数のアッセイドメインとが含まれる。複数のアッセイドメインのうち少なくとも2つには異なる結合試薬が含まれることが好ましい。好ましくは、各ウェルには、少なくとも4つ、より好ましくは少なくとも7つ、さらに好ましくは少なくとも15個のアッセイドメインが含まれる。好ましい一実施形態は、各ウェルが1つのウェルにつき少なくとも16個、好ましくは少なくとも25個、より好ましくは少なくとも64個、さらに好ましくは少なくとも100個のアッセイドメイン、最も好ましくは少なくとも250個のアッセイドメインを含む24ウェルプレートである。

[0067]

本発明の別の実施形態は、複数のウェルを有するマルチウェルモジュール(好ましくはマルチウェルプレート)に関する。このウェルには、アッセイドメインがその上に固定された複数の作用電極表面が含まれる。アッセイドメインは、個別に指定可能であることが好ましい。例えば、ウェルは、ウェル内の他のアッセイドメインから独立して指定可能である電極を含む複数のアッセイドメインを含むことができる。別の例において、一群のウェルは、ウェル内の他のアッセイドメインから独立して指定可能であるが、他のウェルの各々におけるアッセイドメインと一緒に指定可能である電極を含む各々複数のアッセイド

メインを含むことができる。

[0068]

本発明は、本発明のアッセイモジュール及びMDMWプレートからのシグナルを測定する方法及び装置にも関する。本発明の好ましい装置を使用して、アッセイモジュール、好ましくはマルチウェルアッセイプレート中で実施されるアッセイにおける発光を誘発させ測定することができる。例えば、1つ又は複数の光検出器;遮光性容器(1ight tight tencかつ装置から(特に、遮光性容器中にかつ遮光性容器から)マルチウェルアッセイモジュールを移す機構;マルチウェルアッセイモジュールを光検出器及び電気接点と配列させ配向させる機構;モジュールを追跡し同定する機構(例えば、バーコードリーダー);モジュールに電気接続させるための機構、モジュールにおいて発光を誘発させる1つ又は複数の電気エネルギー源;並びに適切な電子機器及びソフトウエアを組み込むことができる。

[0069]

装置は、1つ又は複数のアッセイモジュールを保管し、積み重ね、移動させかつ/又は分配する機構(例えばマルチウェルプレートスタッカ)も備えることができる。装置は、光を測定する多数の光検出器(例えば、多数の光ダイオード)又は画像形成用検出器(imaging photodetector)(例えば、CCDカメラ)を有利に使用することができる。これらの検出器によって、装置が複数のウェル、アッセイドメイン及び/又はアッセイセルからの光を同時に測定し、かつ/又は個々のウェル、アッセイセル及び/又はアッセイドメインから放出される光の強度及び空間分布を画像化することが可能になる。

[0070]

装置は、好ましくは、アッセイモジュール、好ましくはマルチウェルアッセイプレートの1つ又は複数のセクターからの光を測定することができる。いくつかの実施形態については、セクターには、1からアッセイモジュール中のウェル(及び/又はアッセイセルがが含まれる(例えば、マルチウェルプレート中のウェルの横列、縦列又は2次元サブルイントから50パーセントが含まれる。特に好ましい実施形態においては、マルチウェルプレートのウェルのサントから50パーセントが含まれる。特に好ましい実施形態においては、マルチウェルデセクター(1行又は1列のウェルを含む各セクター)とセクターに分割することができる)に分割される。サイズが同じ6つの上で形セクターに分割することができる)に分割される。カコンは複数のウェルを含むてしたずましくはプレートにおいてとした連続的に誘発し、かつ/又は所与のモジュール、好ましくはプレート内のセクターのECLを連続的に測定するように構成されている。

[0071]

本発明の一態様は、改良電極組成及び表面を有する電極上のアッセイドメイン、及びこれらの電極組成及び表面を含むアッセイモジュールにおける材料の固定化に関する。本発明における電極は、好ましくは、導電性材料で構成される。電極は、金、銀、白金、ニッケル、スチール、イリジウム、銅、アルミニウム、導電性アロイなどの金属を含むことができる。これらは酸化物被覆金属(例えば、酸化アルミニウム被覆アルミニウム)も含むことができる。電極は、分子炭素導電体などの非金属導体を含むことができる。電極は、インジウムスズ酸化物(ITO)、アンチモンスズ酸化物(ATO)などの半導体材料で含むこともできる。電極は、導電性複合材を含有する材料、インク、ペースト、ポリマーブレンド、金属/非金属複合材にである。では半導体材料を含むことができる。電極材料は、実質的にシリコーンベースの材料を含まないことが好ましい。

10

20

30

20

30

50

[0072]

本発明のアッセイモジュールに使用される電極(特に作用電極)は、発光種から発光を有利に誘発させることができる。作用電極の好ましい材料は、第三級アルキルアミン(トリプロピルアミンなど)の存在下でルテニウム・トリス・ビピリジンから電気化学発光を誘発可能な材料である。このような好ましい材料の例は、白金、金、ITO、炭素、炭素・ポリマー複合材及び導電性ポリマーである。

[0 0 7 3]

電極は、カーボン、カーボンブラック、グラファイトカーボン、カーボンナノチューブ、カーボンフィブリル、グラファイト、カーボンファイバー、それらの混合物などの炭素ベース材料で構成されることが好ましい。 導電性カーボン・ポリマー複合材、マトリックス中に分散された導電性粒子(例えば、カーボンインク、カーボンペースト、金属インク)及び/又は導電性ポリマーで構成されることが有利である。本発明の好ましい一実施形態は、炭素、好ましくはカーボン層、より好ましくはカーボンインクのスクリーンの形態は、炭素、好ましくはカーボン層、より好ましくはカーボンインクには、Acheson くはマルチウェルプレートである。いくつかの有用なカーボンインクには、Acheson Colloids Co.(例えば、Acheson 440B、423ss、PF407A、PF407C、PM-003A、30D071、435A、Electrodag 505SS及びAauadag(商標))、E.I.Du Pont de Nemours and Co.(例えば、Dupont 7105、7101、7102、7103、7144、7082、7861D及びCB050)、Conductive Compounds Inc(例えば、C-100)、及びErcon Inc.(例えば、G-451)によって製造される材料などがある。

[0074]

別の好ましい実施形態においては、本発明の電極は、カーボンフィブリルを含む。「カ ーボンフィブリル」、「カーボンナノチューブ」、単層ナノチューブ(SWNT)、多層 ナノチューブ (MWNT) 、「グラファイトナノチューブ」、「グラファイトフィブリル 」、「カーボン細管(carbon tubule)」、「フィブリル」及び「バッキー チューブ」という用語はすべて、広範なクラスの炭素材料を記述するために使用すること ができる(Dresselhaus, M.S.; Dresselhaus, G.; Ekl und,P.C.;「フラーレン及びカーボンナノチューブの科学(Science Fullerenes and Carbon Nanotubes), Acad emic Press、San Diego、CA.、1996及びそれに引用されてい る文献を参照されたい)。「フィブリル」及び「カーボンフィブリル」という用語を、本 願 で は こ の 広 範 な ク ラ ス の 炭 素 ベ ー ス 材 料 を 包 含 す る た め に 使 用 す る 。 米 国 特 許 第 4 , 6 63,230号、同第5,165,909号及び同第5,171,560号に記載されて いる個々のカーボンフィブリルは特に有利である。それらは、約3.5 nm~70 nmの 範囲にある直径、及び直径の10~倍を超える長さ、複数の本質的に連続した秩序のある 炭素原子層の外部領域、及び明確な内核領域を有することができる。単に説明のために示 すと、カーボンフィブリルの典型的な直径は、約7~25nmとすることができ、典型的 な長さの範囲は1000nm~10,000nmとすることができる。カーボンフィブリ ルは、単層の炭素原子及び1 n m ~ 2 n m の範囲の直径を有することもできる。本発明の 電 極 に は 、 例 え ば フ ィ ブ リ ル マ ッ ト 、 フ ィ ブ リ ル 凝 集 体 、 フ ィ ブ リ ル イ ン ク 、 フ ィ ブ リ ル 複合材(例えば、オイル、ペースト、セラミック、ポリマーなどの中に分散されたフィブ リルを含む導電性複合材)の形をした1つ又は複数のカーボンフィブリルが含まれる。本 発明の好ましい一実施形態は、炭素ナノチューブ含有複合材(好ましくは、ポリマーマト リックス中に分散されたカーボンナノチューブ)を含む基板を含むマルチウェルプレート に関する。基板表面はエッチングされてカーボンナノチューブが露出しており、それによ って1つ又は複数の作用電極が形成される。

[0 0 7 5]

電極は、モールディングプロセスによって(すなわち、電極の作製中に)、パターン付

20

30

40

50

着によって、パターン印刷によって、選択的エッチングによって、ダイ打ち抜き又はレー ザ穿孔などのカッティングプロセスによって、かつ/又はエレクトロニクス微細加工分野 で既知の技術によってパターン形成することができる。電極は、自立型とすることができ 、又は他の材料、例えばフィルム、プラスチックシート、接着剤フィルム、紙、バッキン グ、メッシュ、フェルト、繊維材料、ゲル、固体(例えば、金属、セラミック、ガラス) 、エラストマー、液体、テープ、接着剤、他の電極、誘電体材料などで支持することがで きる。支持体は剛性でも柔軟性でも、平面でも異型でも、透明でも、半透明でも、不透明 でも反射性でもよい。支持体は、アセテート、ポリスチレンなどの平面プラスチックシー トを含むことが好ましい。電極材料を、塗布、スプレーコーティング、スクリーン印刷、 インクジェット印刷、レーザ印刷、スピンコーティング、蒸着コーティング、化学気相成 長など当分野で既知の様々なコーティング及び堆積プロセスによって支持体に施すことが できる。支持された電極は、フォトリソグラフィ技術(例えば、電子機器の微細加工にお い て 確 立 さ れ た 技 術) 、 選 択 的 エ ッ チ ン グ 、 及 び / 又 は 選 択 的 堆 積 (例 え ば 、 マ ス ク を 通 して実施される蒸着又はCVDプロセス)によってパターン形成することができる。好ま しい実施形態において、電極は、導電性炭素/ポリマー複合材の押出しフィルムで構成さ れる。別の好ましい実施形態においては、電極は、基板上に付着したスクリーン印刷導電 性インクで構成される。電極は、他の導電性材料によって支持されていてもよい。スクリ ーン印刷カーボンインク電極は、電極の導電性が向上するように導電性金属インク (例え ば、銀インク)層上に印刷されていることが有利である。

[0076]

本発明の好ましい一実施形態によれば、電極表面(好ましくは、アッセイモジュール又はアッセイプレートの作用電極表面)は、誘電体表面に結合している。誘電体表面は、電極表面よりも高く又は低く(好ましくは、高く)かつ/又は電極表面と疎水性が異なる(好ましくは、より疎水性)。誘電体境界は、電極表面よりも0.5~100マイクロメートル、より好ましくは2~30マイクロメートル、最も好ましくは8~12マイクロメートル高いことが好ましい。誘電体境界は、鋭く画成された縁部を有する(すなわち、境界壁が急勾配かつ/又は電極と誘電体境界の界面が鋭角である)ことがさらに好ましい。

[0077]

好ましくは、第1の電極表面は、誘電体表面よりも10度、好ましくは15度、より好ましくは20度、より好ましくは30度、さらに好ましくは40度、最も好ましくは50度小さい水接触角を有する。誘電体表面が電極表面よりも高くかつ/又は疎水性である1つの利点は、誘電体境界を用いて電極表面境界内に試薬を閉じ込めることができる試薬付着プロセスにある。特に、境界壁が急勾配かつ/又は電極と誘電体境界の界面が鋭角である鋭く画成された縁部を有することは、溶液の液滴を「ピン止めし」、それらを電極表面に閉じ込めるのに特に有用である。本発明の特に好ましい実施形態において、誘電体境界は、1つ又は複数のアッセイドメインが電極上に露出するようにパターン形成された誘電体インクを、電極上及び/又は電極の周囲に印刷することによって形成される。

[0078]

電極は、化学又は機械的処理によって改変して、試薬が固定されるのを改善することができる。その表面を処理して、試薬を固定するための官能基を導入し、吸着性を向上させることができる。表面処理を用いて、電極表面の諸特性、例えば、水の表面拡散性又は電極表面における電気化学プロセスの動力学に影響を及ぼすこともできる。使用可能な技術としては、電磁放射、電離放射、プラズマ、あるいは酸化剤、求電子試薬、求核試薬、還元剤、強酸、強塩基及び/又はそれらの組合せなどの化学試薬への暴露などがある。電極の1つ又は複数の成分をエッチングする処理によって、粗度が増加し、したがって電極の表面積が増加して特に有利になることがある。ポリマーマトリックス又はバインダ中に導電性粒子又はファイバー(例えば、カーボン粒子又はフィブリル)を含む複合材電極の場合、ポリマーの選択的エッチングによって導電性粒子又はファイバーを露出させることができる。

[0079]

20

30

40

50

特に有用な一実施形態は、電極の変更形態であり、より広範にはプラズマ、特にグロー放電とも呼ばれる低温プラズマで処理することによって本発明に組み込まれる材料なる。処理中にプラズマと接触する電極の物理的性質、化学組成又は表面化学諸特性を変えるためにこの処理が諸特性を変えるためにこの処理が諸特性を変えるためにこののできる。これらの変化によって、例えば、試薬の固定を助け、汚染物質を削減をし、かつ/又は均一性を向上させることができる。有用なプラズマの例としては、成を素、アルゴン、アンモニア、水素、フルオロカーボン、水及びそれらの組合せがある。酸素プラズマは、炭素・ポリマーを含むいてカーボン粒子を露出させるのに特材料に引いる酸素プラズマを用いて、カルボン酸又は他の酸化炭素官能基を炭素又は「活性化させることができる)、試薬が結合できるようになる。同様に、アンモニア含有プラスを用いて、アッセイ試薬を結合させるのに使用されるアミノ基を導入することができる。

電極表面の処理は、固定化を改善又は促進させ、電極のぬれ性を変え、表面積を増加さ せ、試薬(例えば、脂質、タンパク質又は脂質/タンパク質層)を固定するための結合容 量又は分析物の結合を増大させ、かつ/又は電極での電気化学反応の動力学を変えるのに 有利である。しかし、いくつかの用途においては、未処理電極を使用することが好ましい 場合もある。例えば、本発明者らは、大きなダイナミックレンジ、したがって電極面積当 たり大きな結合容量を要する用途の場合、カーボンインク電極をエッチングしてから固定 することが有利であることを見出した。本発明者らは、(例えば、酸素プラズマによる) 酸化エッチングが、エッチングされていないインクよりも、トリプロピルアミン(TPA)が酸化される可能性が低下し、水の接触角が減少する点でさらに利点があることを発見 した。水の接触角が小さいと、少量の水性緩衝液に希釈した試薬を塗布することによって 試 薬 が 電 極 に 吸 着 し 、 少 量 で も 電 極 表 面 に 均 等 に 分 散 さ せ る こ と が 可 能 に な る 。 驚 く べ き ことに、本発明者らは、インク中にポリマーバインダが存在するにもかかわらず、エッチ ングされていないカーボンインク電極でも優れたアッセイを実施できることを見出した。 実 際 、 感 度 が 高 く 、 又 は 非 特 異 的 結 合 が 少 な い こ と が 必 要 な い く つ か の 用 途 に お い て は 、 エッチングされていないカーボンインク電極を用いて、露出炭素の表面積を最低限に抑え 、 し た が っ て バ ッ ク グ ラ ウ ン ド シ グ ナ ル 、 及 び 露 出 炭 素 に 対 す る 試 薬 の 非 特 異 的 結 合 に よ る試薬の損失を最小限に抑えることが好ましい。使用するインク、及びインクを塗布する ために使用するプロセスによっては、電極表面が水性溶液で容易にぬれないこともある。 本発明者らは、試薬吸着時の電極のぬれ性の低さを、低濃度の非イオン洗浄剤を試薬溶液 に添加して電極表面上の溶液の拡散を促進させることによって補えることを見出した。少 量の溶液から試薬を局在的に固定させている間は、均一に拡散させることが特に重要であ る。例えば、本発明者らは、0.005~0.04%のTriton X-100(登録 商標)の添加によって、電極へのタンパク質の吸着に影響を及ぼすことなく、電極に施さ れた誘電体膜又は隣接する誘電体膜(好ましくは、厚さが0.5~100マイクロメート ル、より好ましくは 2 ~ 3 0 マイクロメートル、最も好ましくは 8 ~ 1 2 マイクロメート ルであり、鋭く画成された縁部を有する印刷誘電体膜)の、電極表面に流体を閉じ込める 能力が乱されることなく、エッチングされていないカーボンインク表面上にタンパク質溶 液を拡散させることが可能になることを見出した。Triton X-100などの非イ オン洗浄剤を用いて、エッチングされていないスクリーン印刷電極上への試薬(例えば、 捕捉試薬)の拡散を促進させるときには(すなわち、試薬を固定させるために)、試薬を 含有する溶液を電極表面上で乾燥させることが好ましい。この乾燥ステップによって、固

[0081]

他の材料をそれに結合させるために用いることができる化学官能基で電極を誘導体化することができる。材料を、これらの官能基に共有結合させることができ、又は非共有的に吸着させて、電極を誘導体化又は非誘導体化することができる。電極を、その表面に共有

定化プロセスの効率及び再現性が大きく向上することが判明した。

20

30

40

50

結合した化学官能基と共に調製することができる。これらの化学官能基としては、COOH、OH、NH2、活性カルボキシル(例えば、N・ヒドロキシスクシンイミド(NHS)エステル)、ポリ(エチレングリコール)、チオール、アルキル((CH2)n)基、及び/又はそれらの組合せ)などがあるが、これらだけに限定されない。ある種の化学官能基(例えば、COOH、OH、NH2、SH、活性カルボキシル)を用いて、試薬を電極に結合させることができる。有用な固定化及びバイオコンジュゲーション技術をさらに参照するには、G・Hermanson、A.Mallia及びP.Smith、固定親和性リガンド技術(Immobilized Affinity Ligand Techninues)(Academic Press、San Diego、1992)及びG・Hermanson、バイオコンジュゲート技術(Bioconjugate Techninues)(Academic Press、San Diego、1996)を確認されたい。

[0082]

好ましい実施形態においては、NHSエステル基を用いて求核性化学官能基(例えば、アミン)を有する他の分子又は材料を結合させる。好ましい実施形態において、求核性化学官能基は、天然に及び/又は化学誘導体化によって生体分子上及び/又は生体分子中に存在する。適切な生体分子の例としては、アミノ酸、タンパク質及びその機能性断片、抗体、抗体の結合断片、酵素、核酸、及びそれらの組合せなどがあるが、これらだけに限定されない。これは、多数のこのような可能な技術の1つであり、一般に、本明細書に示す例、並びに多数の他の類似の材料及び/又は生体分子に適用可能である。好ましい実施形態において、ECL用に使用することができる試薬を、NHSエステル基によって電極に結合させることができる。

[0083]

電極に対する材料の非特異的結合の程度を制御できることが望ましい。単に非限定的な例として示すと、タンパク質、抗体、抗体断片、細胞、細胞下粒子、ウイルス、血清及び/又は1つ若しくは複数のその成分、ECL標識(例えば、Ru^{ェ ェ} (bpy)₃及びRu^{ェ ェ エ} (bpy)₃誘導体)、シュウ酸塩、トリアルキルアミン、抗原、分析物及び/又はそれらの組合せ)の非特異的吸着を低減又は防止できることが好ましい。別の例では、生体分子の結合が促進されることが望ましい。

[0084]

非特異的結合を低減又は防止する1つ又は複数の化学成分(ブロッキング基としても知られる)を、電極中、電極上、又は電極近傍に存在させることができる。そのような成分、例えば、PEG成分及び/又は帯電残基(例えば、リン酸塩、アンモニウムイオン)を、電極に結合させ又は電極上に塗布することができる。有用なブロッキング試薬の例としては、タンパク質(例えば、血清アルブミン及びイムノグロビン(immunoglobins))、核酸、ポリエチレンオキシド、ポリプロピレンオキシド、ポリエチレンオキシド、ポリエチレンオキシドとポリプロピレンオキシドのブロックコポリマー、ポリエチレンイミン、洗浄剤又は界面活性剤(例えば、Brij、Triton、Tween、Thesit、Lubrol、Genapol、Pluronic(例えば、F108)、Tetronic、Tergitol及びSpanの商品名で知られる非イオン洗浄剤/界面活性剤のクラス)などがある。

[0085]

電極に使用される材料を界面活性剤で処理して非特異的結合を減少させることができる。例えば、当業者に周知の界面活性剤及び/又は洗浄剤(例えば、洗浄剤のTween、Triton、Pluronics(例えば、F108)、Span及びBrijシリーズ)で電極を処理することができる。PEG及び/又はPEGと同様に振るまう分子(例えば、オリゴ糖又は多糖、他の親水性オリゴマー又はポリマー)(「ポリエチレングリコールの化学:バイオ技術的及び生物医学的応用(Polyethyleneglycol chemistry:Biotechnical and Biomedical Applications」、Harris,J.M編、1992、Plenum Pr

20

30

40

50

ess)の溶液を、界面活性剤及び/又は洗浄剤の代わりに使用することができ、かつ/又はそれらと併用することができる。上述したある種の要素の望ましくない非特異的吸着を、遮断薬、例えば、ウシ血清アルブミン(BSA)、免疫グロブリンG(IgG)などのタンパク質の競合非特異的吸着によってブロックすることができる。アッセイ試薬を電極上に吸着又は共有結合させ、その後その電極を遮断薬で処理して、表面の残留非占有部位をブロックすることができる

[0086]

好ましい実施形態においては、生体分子又は他の媒体を、炭素含有材料、例えば、カー ボンブラック、フィブリル、及び/又は他の材料中に分散させた炭素に(共有手段によっ てでも非共有手段によってでも)固定させることが望ましい。抗体、抗体断片、タンパク 質、酵素、酵素基質、阻害剤、補助因子、抗原、ハプテン、リポタンパク質、リポ糖、細 胞、細胞下成分、細胞受容体、ウイルス、核酸、抗原、脂質、糖タンパク質、炭水化物、 ペプチド、アミノ酸、ホルモン、タンパク質結合リガンド、薬物、及び/又はそれらの組 合せを結合させることができる。ポリマー、エラストマー、ゲル、コーティング、ECL タグ、レドックス活性種(例えば、トリプロピルアミン、シュウ酸塩)、無機材料、キレ ート剤、リンカーなど、ただしこれらだけに限定されない非生物学的要素を結合させるこ とも望ましい。複数の種を同時に吸着させて電極表面上に混合層を形成させることもでき る。生物学的材料(例えば、タンパク質)を受動吸着によって炭素含有電極上に固定させ ることが最も好ましい。驚くべきことに、生体膜(例えば、細胞、細胞膜、膜断片、膜小 胞、リポソーム(lipsomes)、細胞小器官、ウイルス、細菌など)を、膜成分の 活性、又は結合試薬への接近し易さを損なうことなく、炭素上に直接吸着させることがで きる(例えば、2002年7月29日に出願され、参照により本明細書に援用する同時係 属中の米国特許出願第10/208,526号(「固定脂質/タンパク質層を有するアッ セイ電極、それを作製する方法、及びそれを発光試験測定に使用する方法(Assay Electrodes Having Immobilized Lipid/Prot ein Layers, Methods Of Making The Same nd Methods Of Using The Same For Lumines Test Measurements)」と題する)を参照されたい)。 cence

[0 0 8 7]

本発明のマルチウェルアッセイプレートに使用される電極は、一般に、非多孔質であるが、いくつかの用途においては、多孔質電極を使用することが有利である(例えば、カーボンファイバー又はフィブリルのマット、焼結金属、及びろ過膜に付着した金属フィルム、紙又は他の多孔質基板。これらの用途としては、i)電極表面への質量輸送を増加させる(例えば、電極表面上の分子に対する溶液中の分子の結合速度を増加させる)、ii)電極表面上で粒子を捕捉する、かつ/又はiii)ウェルから液体を除去するために電極による溶液のろ過を使用する用途などがある。

[0088]

本発明のアッセイモジュールには、誘電体インク、フィルム又は他の電気絶縁材料(以後、誘電体と称する)を使用することができる。本発明における誘電体を、電極間の、材料を接着し(すなわち、接着剤として)ができる。な発明における、接着剤として、材料を接着し(すなわち、接着剤として)とで、力として、しるしでは、1 n d i c i a)とでできる。 ができる。 が料を送り、インターンでは非多孔質でのか解した材料とすることができる。 はいできるには、 液体、 ゲル、 固体、 又はマトリックス中に分散した材料とすることができる。 はいの形で付着し、 硬化してはることができる。 がりているは、 インケストンカートとすることができる。 がりましい。 非導電性インクの誘電体材料は、 実質的にシリコーンを含まないことが好ましい。 非導電性インクの

例としては、Acheson Colloids Co.(例えば、Acheson 451SS、452SS、PF-021、ML25251、ML25240、ML25265及びElectrodag 38DJB16クリアー)及びE.I.du Pontde Nemours and Co.(例えば、Dupont:5018、3571及び5017)によって製造される材料などのUV硬化誘電体がある。

[0089]

本発明の誘電体は、様々な手段、例えば、印刷、スプレー、積層によって施すことができ、あるいは接着剤、にかわ、溶媒又はメカニカルファスナーを用いて付けることができる。誘電体層のパターン及び/又は穴は、モールディングプロセスによって(すなわないできるができ、レーザ穿牙ングによって、かつ/又はダイ打ち抜き、レーザ穿穿立とができる。誘電体は、確立されたフォトリソグラフィ技術(例えば、半導体電子機器産業において用いられている技術とで、かつ/又は蒸着又はCVDプロセスを用いてパターン形成された付着によって(例えば、マスクを通した付着によって)パターン状に付着及び/又はエッチングことができる。好ましい実施形態においては、印刷(例えば、インクジェット印刷、より印刷又は、より好ましくは、スクリーン印刷が、及び場合によいしく使化され、溶媒でで誘電体インクを基板上に付着させる。スクリーン印刷誘電体はUV硬化され、溶媒では、非導電性ポリマーフィルムは、接着剤を用いて支持体に付けられる。

[0090]

電極に印刷された又は隣接した誘電体インクを用いて電極表面領域に流体を閉じ込めるときには、誘電体膜は、好ましくは厚さが 0 . 5 ~ 1 0 0 マイクロメートル、より好ましくは 2 ~ 3 0 マイクロメートル、最も好ましくは 8 ~ 1 2 マイクロメートルであり、好ましくは、急勾配の壁を有する鋭く画成された縁部も有する。

[0091]

[0092]

プレート上部は、導電性材料でできていても非導電性材料でできていてもよい。プレート上部の大部分は、ポリスチレン、ポリエチレン、ポリプロピレンなどの堅い熱可塑材料でできた単一の成形構造であることが好ましい。この単一構造は、一般に反応物を通さず、適度なレベルの熱及び光に耐え、好ましくは、生体分子の吸着に耐性がある安価な材料で形成されている(あるいは、被覆されている)ことが最適である。プレート上部は実質的にシリコーンを含まないことが好ましい。プレート上部は透明でも半透明でもよい。ある種のECL測定プロセスの結果を改善するために、様々な色の材料を使用することができる

[0093]

40

10

20

20

30

40

50

プレート上部は、ウェル間のクロストークを防止するために、光を透過させない材料を 含むことが好ましい。反射性の高い金属コーティング又は構成材料を用いて、ウェルの各 々 に 対 し て 特 に 反 射 性 の 内 面 を 設 け て 光 が 光 検 出 器 に 伝 送 さ れ る 効 率 を 上 げ る こ と が で き る。光散乱粒子(例えば、酸化鉛、アルミナ、シリカ、好ましくは、二酸化チタン粒子) を充填したプラスチックなどの不透明白色プラスチック材料を用いて、光を高度に散乱す るウェル内面を設け、それによって集光効率を上げることができる。一実施形態において 好ましいプレート上部は、このような光散乱粒子を4~20wt%、好ましくは6~2 0 %、より好ましくは 6 ~ 1 5 %、さらに好ましくは 6 ~ 1 2 %、最も好ましくは約 9 % の濃度で含むプラスチック(例えば、ウェル壁)を含む。別の好ましい実施形態において は、プレート上部は、ウェル内の異なる箇所からのECLで発生した光の反射又は散乱を 防止し、ECL試験測定中の反射干渉を防止する不透明な、好ましくは非反射性の黒色材 料を含む。一般に、ウェルから放出された光を画像化するとき(例えば、ウェルから放出 された光の画像を作製するカメラを用いるとき)には、散乱光を検出すると画像の忠実度 が低下するので、(例えば、プレート上部によって画成される)ウェル内面は、吸収性(例 え ば 、 黒 色) の 、 好 ま し く は 非 散 乱 性 材 料 を 含 む こ と が 有 利 で あ る 。 一 般 に 、 非 画 像 モ ードで光を検出するとき(例えば、ウェルから放出された光すべてを、単一の光検出器を 用いて検出するとき)、ウェル内面は反射性又は散乱性の高い材料を含み、ウェル壁での 光の吸着による光損失を防止し、検出器における集光を最大にすることが有利である。

[0094]

本発明には、アッセイモジュール上部、並びにアッセイモジュール上部及びプレート底部又はアッセイモジュール基板を含む組立アッセイモジュールも含まれる。アッセイモジュール上部は、(上述したように)プレート上部とすることができる。アッセイモジュール上部は、例えば、プレート底部又はアッセイモジュール基板と結合させたときに、ウェル及び/又はチャンバを画成する穴、チャネル及び/又はウェルを有することができる。このようなウェル及び/又はチャンバは、好ましくは、プレート底部又はアッセイモジュール基板によって設けられる1つ又は複数の電極(及び/又はアッセイドメイン)を含む。アッセイモジュール上部は、追加のチャネル、チューブ又は他のマイクロフルイディクスを有し、アッセイモジュールのウェル、フローセル及びチャンバの中、外及び/又は間に試料を流すことができる。

[0095]

[0096]

プレート上部1020は、上述したプレート上部である。接着層1030は、プレート上部1020と誘電体層1040、導電層1050及び/又は基板層1060の流体耐密シールを形成するのに適切な接着剤である。接着層1030は、例えば、スプレーコーティングによってプレート上部1020に塗布される接着剤コーティングとすることができる。好ましい実施形態において、接着層1030は、両面接着テープ(すなわち、両面に接着剤が塗布されたプラスチックフィルム)である。穴1032は、レーザ穿孔、ダイ打

20

30

40

50

ち抜きなどのカッティングプロセスによって形成されることが好ましい。場合によっては、接着剤1030を省略することができる(例えば、隣接層が接着性を有するとき、又は例えば、締め付け、ヒートシール、音波溶接(sonic welding)、溶剤溶接などによって接着剤を用いないで封止できるとき)。あるいは、プレート上部1020と接着層1030の両方を省略することができる。

[0097]

導 電 層 1 0 5 0 は、 E C L ア ッ セ イ に お け る 作 用 電 極 及 び / 又 は 対 電 極 と し て 使 用 す る のに適した材料を備え、プラスチックシート、フィルムなどの非導電性基板である基板1 0 6 0 上に支持されている。導電層 1 0 5 0 は、カーボンインクなどの導電性コーティン グであり、スクリーン印刷などの印刷プロセスによって形成できることが好ましい。導電 層1050は、例えば、規定のパターンのスクリーン印刷によって、6つの電気的に絶縁 された作用電極セクション 1 0 5 2 と 6 つの電気的に絶縁された対電極セクション 1 0 5 4に区分けされて、プレート1000が6つの独立して指定可能な正方形のセクターに分 割される。図に示すように、区分けは、所与のウェル中の流体が少なくとも1つの作用電 極 セクションと少なくとも 1つの対電極 セクションに接触するように設計される。作用電 極 セクション は、 電 極 の 性 能 を 最 適 化 す る よ う に 対 電 極 セ ク シ ョ ン と は 異 な る コ ン ポ ー ネ ントを有することができ、又は製造の複雑さを最小限に抑えるために、例えば、印刷ステ ップ数を削減するために同じ材料からなることができる。これらはどちらも、銀インク下 層の上にカーボンインク上層を備え、カーボンインクは活性電極表面を与え、銀インクは アッセイでのプレート使用中に、電気的ポテンシャル(electrical pote ntial)が特定のセクション全体に均等に分布するように十分な導電性を備えている ことが好ましい。例えば2段階の印刷プロセスによって、このような層を形成するとき、 上層は下層よりも寸法がわずかに大きく、かつウェル1002中の試料が下層材料に確実 に曝されない適切な厚さであることが有利である。複数の層において、下層が後続の処理 ステップ又はECL測定を妨害しないように確実に完全に下層を覆うために、上層を印刷 又は付着させることが有利である(例えば、好ましい電極材料は、1層の銀インクの上に 3層のカーボンインクを含み、これらの層は、最も好ましくは、スクリーン印刷によって 付けられる)。誘電体層1040は電気絶縁フィルムであり、好ましくは、スクリーン印 刷などの印刷プロセスによって誘電体インクで形成される。誘電体層1040は、ウェル 1002中の流体に接触する導電層1050の表面(すなわち、覆われていない表面)を 画成するようにパターン形成されている。誘電体層1040中の穴1042によって、導 電 層 1050の作用 電 極 セクション1052上に流体封 じ込め 領域 が 画 成される。 このよ う な 流 体 封 じ 込 め 領 域 に お い て 、 誘 電 体 層 は 、 少 量 の 流 体 を 作 用 電 極 上 に 閉 じ 込 め 、 例 え ば、ウェル内の選択したアッセイドメイン上にアッセイ試薬を付着させる助けとするため に用いることができるバリアーとして作用する。誘電体層1040中の穴1042によっ て、プレート1000の各ウェル内の作用電極表面上に、1つの流体封じ込め領域及び/ 又はアッセイドメインが画成される。場合によっては、誘電体層1040を省略すること ができる(このような場合、試薬を、例えば、マイクロディスペンシング(microd ispensing)又はピントランスファー(pin transfer)技術を用い て制御された付着によって、規定のアッセイドメイン中に依然として付着させることがで きる)。

[0098]

接触層1070は、マルチウェルアッセイプレートを外部の電気エネルギー源へ電気的に接続する導電層である。接触層を、一連の作用電極接点1072及び対電極接点1074に区分して、電極1052及び1054の特定のセクションに独立して接続させることができる。接触層は、(導電性の高い)銀インク下層とその後の(銀インクの腐食を防止し、銀が後続のプラズマ処理ステップに曝されることによって生じるあらゆる有害効果を防止するための)カーボンインク上層を好ましくは印刷することによって、最も好ましくはスクリーン印刷することによって形成される。基板1060中の穴1062及び1064は、好ましくは、ダイ打ち抜き、レーザ穿孔などのカッティングプロセスによって作製

20

30

40

50

される。穴1062には、導電性材料が充填されて、作用電極接点1072と作用電極セクション1052が電気的に接続される。穴1064には、導電性材料が充填されて、対電極接点1074と対電極セクション1054が電気的に接続される。穴1062及び1064には、導電層1050又は接触層1070の形成中、好ましくは導電性材料が充填される。例えば、基板上への導電性インクの印刷中に、余分なインクが基板の穴に押し込められて、穴が導電性インクで充填される。

[0099]

操作時、試験試料は、プレート1000のウェルに導入される。電気エネルギー源は、(それぞれ1つ又は複数の作用電極接点1072及び1つ又は複数の対電極接点1074を介して)1つ又は複数の作用電極セクション1052と1つ又は複数の対電極セクション1054に接続される。これらの接続間に電気的エネルギーをかけることによって、電極セクション1052及び1054の露出表面を介して試験試料に電気化学ポテンシャルが印加される(電気化学ポテンシャルの印加は、電気的エネルギー源に電気的に接続している作用電極セクション及び対電極セクションに接触しているセクター中のウェルに限定される)。

[0100]

図10A及び10Bに示す構造は、異なる数のウェル、異なる配置のウェル及び/又は異なる配置の独立して指定可能であるセクターを有するプレートに適用可能なように容易に改変される。好ましい実施形態には、1つのウェル当たり4、7又は10個のアッセイドメインを有する96ウェルプレート、1つのプレート当たり25、64又は100個のウェルを有する24ウェルプレートなどがある。図10Cに、4つの「流体封じ込め領域」1141が各ウェルの作用電極表面に露出するように設計された誘電体層1040の変更形態である誘電体層1140を示す(図では、プレートの1つのセクターのみが示されている)。図10Dに、誘電体層1040を誘電体層1140で置換した以外はプレート10000と同じであるプレート1100の3つのウェルの定型化された断面図を示す。

[0101]

図11に、ゲノム分析又はプロテオーム分析に特に適した本発明の実施形態であるマル チウェルアッセイプレート1500を示す。ウェルのサイズは、(下記のように)画像装 置によってウェルから生じる発光のイメージング効率が最適化されるように選択される。 マルチウェルアッセイプレート1500は、順に、プレート上部1520、接着層153 0、導電性テープ層 1 5 1 4 B、誘電体層 1 5 4 0、導電層 1 5 5 2、基板 1 5 6 0、接 触層1572及び導電性テープ層1514Aを含む層状構造である。構成要素1580に 、上部から底部に 1 5 4 0 (上部)、 1 5 5 2 、 1 5 6 0 、 1 5 7 2 (底部)の順で整列 し積み重ねられた層1572、1560、1552及び1540を示す。折り目1516 で構成要素1580の周りに導電性テープ1510を折り重ねることによって、導電性テ -プ層1514A及び1514Bが設けられる。穴1522、1532及び1518は、 構成要素1580によって画成されるウェル底部を有する複数のウェルを形成するように 配列される。基板 1 5 6 0 を通るスルーホール 1 5 6 2 によって、導電層 1 5 5 2 と接触 層 1 5 7 2 との間に電気的通路が設けられる。導電性テープ層 1 5 1 4 A を通るスルーホ ール1512によって、接触層1572への接続(したがって、導電層1552に接触さ せる方法)が可能になる。プレート上部1520は、ウェルの特異的な配置以外は図10 のプレート上部 1 0 2 0 と同様である。接着層 1 5 3 0 は、図 1 0 の接着層 1 0 3 0 と同 様 の 接 着 剤 で あ り 、 省 略 す る こ と が で き る 。 導 電 性 テ ー プ 1 5 1 0 は 、 絶 縁 及 び 接 着 基 板 上の導電性フィルムを含む積層構造である(好ましくは、一方がアルミニウム蒸着層で被 覆され、他方が接着剤で被覆されたプラスチックフィルムである)。基板1560、導電 層 1 5 5 2 、誘電体層 1 5 4 0 及び接触層 1 5 7 2 は、組成及び調製が図 1 0 に示した基 板 1 0 6 0 、 導電層 1 0 5 0 、 誘電体層 1 0 4 0 及び接触層 1 0 7 2 に類似している。 導 電 層 1552は、 プレート1500が6つの独立して指定可能であるセクターに分割され るように、6つの正方形セクションに区分けされている(各々が1つのウェルを有する)

。誘電体層 1 5 4 0 を通る穴 1 5 4 2 によって、各ウェル中の多数(好ましくは 1 0 ~ 5

30

40

50

0,000、より好ましくは100~10,000;図に示したのは256である)の流体封じ込め領域が画成される。特定の核酸配列、特定のタンパク質などの結合試薬を、選択的に導入し、かつ又は選択的マイクロディスペンシングによって特異的流体封じ込め領域中に固定する。

[0102]

本発明のプレートの実施形態を示す図は、ウェル、セクター及び流体封じ込め領域 / アッセイドメインの数、形状及び分布について特定のパターンで示されているが、これらのパラメータが広範に変化してもこれらの設計が適応可能であることは明白なはずである。

[0103]

本発明のアッセイドメイン及び固定層は、多種多様な確立されたアッセイ形式、例えば、電気化学電圧及び/又は電流、好ましくは電極誘導発光、最も好ましくは電気化学発光の測定に基づくアッセイを実施するのに有用である。ECLアッセイを実施する方法の例としては、米国特許第5,591,581号、同第5,641,623号、同第5,643,713号、同第5,705,402号、同第6,066,448号、同第6,165,708号、同第6,207,369号及び同第6,214,552号、並びに国際公開第87/06706号及び同第98/12539号を参照されたい。これらの参考文献を参照により本明細書に援用する。アッセイは、分析物の量の測定;試料の特性(例えば、浸底、発光、電気化学活性、色、濁度など)の測定;化学、生化学及び/又は生物活性(例えば、酵素活性)の測定;動力学又は熱力学的パラメータ(例えば、反応速度又は反応平衡定数)の測定などを対象にすることができるが、これらだけに限定されない。

[0104]

本発明の実施形態を用いて、目的分析物又は活性を含む様々な試料を試験することができる。このような試料は、固形、エマルジョン、懸濁液、液体又は気体の形とすることができる。これらは、例えば、(生又は死)細胞及び細胞に由来する産物、細胞断片、細胞画分、細胞溶解物、細胞小器官、細胞膜、(ハイブリドーマなどの抗体産生生物からの上清を含めた)細胞培養上清、廃水又は飲料水、食品、飲料、薬学的組成物、血液、血清、血しょう、毛、汗、尿、糞便、組織、唾液、粘液、オイル、下水、環境試料、有機溶媒又は空気を含む試料又はそれらに由来する試料とすることができるが、これらだけに限定されない。試料は、さらに、例えば、水、有機溶媒(例えば、アセトニトリル、ジメチルスルホキシド、ジメチルホルムアミド、n・メチルピロリドン又はアルコール)又はそれらの混合物を含むことができる。

[0105]

測定することができる分析物としては、試料中に存在するホールセル、細胞表面抗原、 細胞下粒子(例えば、細胞小器官又は膜断片)、ウイルス、プリオン、チリダニ又はその 断片、ウイロイド、抗体、抗原、ハプテン、脂肪酸、核酸(及び合成アナログ)、タンパ ク質(及び合成アナログ)、リポタンパク質、多糖、阻害剤、補助因子、ハプテン、細胞 受 容 体 、 受 容 体 リ ガ ン ド 、 リ ポ 多 糖 、 糖 タ ン パ ク 質 、 ペ プ チ ド 、 ポ リ ペ プ チ ド 、 酵 素 、 酵 素基質、酵素産物、セカンドメッセンジャー、細胞代謝産物、ホルモン、薬物、合成有機 分子、有機金属分子、トランキライザー、バルビツール酸塩、アルカロイド、ステロイド 、ビタミン、アミノ酸、糖、レクチン、組換え又は誘導タンパク質、ビオチン、アビジン 、ストレプトアビジン、無機分子などがあるが、これらだけに限定されない。測定するこ とができる活性としては、ホスホリラーゼ、ホスファターゼ、エステラーゼ、トランスグ ルタミナーゼ、核酸損傷活性(nucleic acid damaging vities)、トランスフェラーゼ、オキシダーゼ、レダクターゼ、デヒドロゲナーゼ - グリコシダーゼ、リボソーム、タンパク質プロセシング酵素(例えば、プロテアーゼ、 キナーゼ、タンパク質ホスファターゼ、ユビキチン・タンパク質リガーゼなど)、核酸プ ロセシング酵素(例えば、ポリメラーゼ、ヌクレアーゼ、インテグラーゼ、リガーゼ、ヘ リカーゼ、テロメラーゼなど)、細胞受容体活性化(cellular recepto r activation)、セカンドメッセンジャーシステム活性化(second messenger system activation)などの活性があるが、これ

30

40

50

らだけに限定されない。

[0106]

本発明の一実施形態においては、発光、化学発光及び/又はレドックス活性物質(好ま しくは、ECL活性物質)を含んでいる可能性がある試料を、本発明のアッセイプレート 又はアッセイプレートの1つ若しくは複数のウェルに導入し、試料からの電気化学又は発 光 シ グ ナ ル (好 ま し く は 、 電 気 化 学 発 光) を 誘 発 さ せ 、 1 つ 又 は 複 数 の ア ッ セ イ ド メ イ ン からの電気化学又は発光シグナル(好ましくは、電気化学発光)を測定して、物質の量を 測定し、かつ/又は物質を同定する。本発明の別の実施形態においては、発光、化学発光 及び/又はレドックス活性物質(好ましくは、ECL活性物質)を含有する試料を、本発 明のアッセイプレート又はアッセイプレートの1つ若しくは複数のウェルに導入し、試料 からの電気化学又は発光シグナル(好ましくは、電気化学発光)を誘発させ、1つ又は複 数 の ア ッ セ イ ド メ イ ン か ら の 電 気 化 学 又 は 発 光 シ グ ナ ル (好 ま し く は 、 電 気 化 学 発 光) を |測 定 し て 、 物 質 か ら の シ グ ナ ル の 発 生 に 影 響 を 及 ぼ す 物 質 、 化 学 活 性 又 は 生 物 活 性 の 存 在 (例えば、ECL共反応物、水素イオン、消光剤、化学発光トリガー(chemilum inescence trigger)などの存在、生成及び/又は消費)を測定する。 本発明の別の実施形態においては、発光、化学発光及び/又はレドックス活性物質(好ま しくは、ECL活性物質)を標識として用いて、酵素基質、結合試薬などのアッセイ試薬 のモニタリングが可能になる。分析物に特異的な標識結合試薬を用いることによって分析 物を測定するアッセイ形式には、均一法と不均法がある。不均法には、溶液中の標識から 固相/電極上の標識(及び/又は材料に結合した標識)を分離する洗浄ステップが含まれ る。

[0107]

[0108]

好ましい発光材料及び標識としては、Ru、Os及びReの発光有機金属複合体などがある。いくつかの特に有用な材料は、ルテニウム及びオスミウムのポリピリジル複合体、は特に、ML¹L²L³である。の構造を有する複合体である。本発明者らは、(その開示を参照により本明知書に援用する、2001年6月29日に出願され同時係属中の「非特異的結合特性の改善されたECL標識、それを使用する方法、及びそれを含むキット(ECL Labels Having Improved Non-Specific Binding Properties, Methods of Using and Kits Containing the Same)」と題する米国特許出願第09/8966,974号に記載されたように)負に帯電した基、好ましくはサルフェート基、最も好ましくはスルホネート基を含む置換基を与える置換ビピリジン又はフェナントロリンを加えることが、特に炭素、カーボン粒子、カーボンフィブリル、炭素複合材、カーボンフィブリル、炭素複合材、カーボンフィブリルを付入

20

30

40

50

び / 又はカーボンインクを含む電極への非特異的結合に対するそれらの耐性のために特に好ましいことを見出した。

[0109]

本発明は、本発明の電極を用いた検出方法にも関する。

[0 1 1 0]

本発明の一態様は、(好ましくは、アッセイセル又はアッセイウェルのアッセイドメイン中の)電極上に固定された目的分析物を測定する方法に関する。一実施形態は、i)例えば目的分析物を含む試料と電極を接触させることによって、好ましくはアッセイドメイン内で、電極に目的分析物を固定するステップと、ii)目的分析物を測定するステップとを含む。固定化は、好ましくは電極上の官能基との共有結合の形成によって、より好ましくは電極に固定された結合試薬との特異的結合相互作用の形成によって、最も好ましくは電極への受動吸着によって進行する。

[0111]

本発明の別の態様は、(好ましくは、アッセイセル又はアッセイウェルのアッセイドメイン中の)電極上に固定された生体材料に結合している目的分析物を測定する方法に関する。一実施形態は、 i)分析物を含む試料と生体材料を接触させるステップと、 i i)分析物及び生体材料を含む複合体を電極上に形成させるステップと、 i i)目的分析物を測定するステップとを含む。生体材料は、好ましくは電極上の官能基との共有結合を介して、より好ましくは電極上に固定された捕捉試薬との特異的結合相互作用によって、最も好ましくは電極上への受動吸着によって電極上に固定されている。場合によっては、アッセイ方法には、電極上に生体材料を固定するステップも含まれる。この固定化ステップを、生体材料を試料と接触させるステップの前、ステップ中及び/又はステップ後に実施することができる。

[0 1 1 2]

分析物を測定する上述の方法には、、でましくは、電気化学発光を誘発させる、で適切な諸条件下、例えば、ECL共反応物の存在下で)電気的エネルギー(例えば、ECL共反応物の存在下で)で表光を電気化学発光種から)電極において誘発された発光(好ましくは、電気化学発光をが含まれることが好ましい。、発光シグナルは、存在を発光を誘発させるステップを含むことが好ましい。、ECL共反応物を導入した後に結合には、、分析物自体でも、分析物にに結合を発光種でもよい。このような結合には、、うが、1 1 1)(例えば、分析物にには、分析物を標識にによるがあるには、方が、1 1 1)非特異的結合対が、た発光種でもよい。このような結合には、方が、1 1)非特異的結合対が物でも、がある標識抗体による)特異的結合には、方ががあるには、前の表がの結合を形成するステップを含むる標識と分析物の結合を形成するステップを含むる標識と分析物の結合を形成するステップはステップを表表が表表を表示の対して、標識と分析物の結合を形成するステップはステップを表示が表表を表示の対していた。できる。できる。

[0113]

本発明の別の態様は、(好ましくは、アッセイセル又はアッセイウェルのアッセイドメイン中の)電極上に固定された生体材料と結合相手の結合相互作用を測定する方法に関する。一実施形態には、i)生体材料を生体材料の結合相手と接触させるステップと、ii)生体材料と結合相手を含む複合体を電極上に形成するステップと、ii)複合体を測定して結合相互作用を測定するステップとが含まれる。生体材料は、好ましくは電極上の官能基への共有結合を介して、より好ましくは電極上に固定された捕捉試薬との特異的結合相互作用によって、最も好ましくは電極上の受動吸着によって電極上に固定されている。場合によっては、このアッセイ方法には、電極上に生体材料を固定するステップも含まれる。この固定化ステップを、生体材料を結合相手と接触させるステップの前、ステップ中及び/又はステップ後に実施することができる。結合相互作用の測定は、i)生体材料の

20

30

40

50

量を測定すること、ii)結合相手の量を測定すること、及びiii)結合相手に対する生体材料の親和性を測定することを含めて、ただしこれらだけに限定されない様々な用途に使用することができる。結合の程度が、例えば、阻害剤量又は阻害剤の阻害定数を示すように、アッセイ方法は、さらに、生体材料及び/又は結合相手を結合相互作用の阻害剤と接触させるステップを含むことができる。阻害アッセイを用いて、結合相互作用の阻害剤用化合物をスクリーニングすることもできる。

[0114]

結合相互作用を測定する上述の方法には、こらに、(好ましくは、電気化学発光を誘発でせるのに適切な諸条件下、例えば、ECL共反応物の存在下で)電気的エネルギーる電気のに適切な諸条件下、例えば、ECL共反応物の存在下で)電気的に関連するステップと、(例えば、結合相手しくは、電気化学発光種から)電極においる。ここで、発光シグナルは学発光を調定するステップとが含まれることが好ましい。ここで、発光シグに加をで、となるで発光を誘発させるステップを含むこともできる。発光種は、結合相互作用数に相関する。場合によって、発光シグに物でで、自由をで発光を誘発させるステップを含むこともできる。発光種は、結合相手に対する標識抗体による)特異の結合相互作用などがある。ことは結合相互作用などがある。ことによって、標識と結合相手を制度的結合は変なアッセイ方法はことによって、標識と結合相手を表には、は結合相互作用などがある。ことによって、標識と結合相手を表によるの形成を、で、標識と結合を表別である。では混合することによって、標識と結合相手を表別である。アッセイ方法は、電極に結合を表別である。アッセイ方法は、電極に結合なステップを含むことができる。では複数の洗浄ステップも含むことができる。

[0115]

本発明の別の態様は、物質を改変する活性又はプロセスを測定する方法に関する。この方法には、活性を含む試料に物質をさらすステップ、又はプロセスが起こる条件に物質をさらすステップと、改変の程度を測定して活性又はプロセスを測定するステップとが含まれる。改変された物質及び/又は残留している未改変物質を本発明のアッセイ方法に従って(例えば、出発材料又は産物に特異的な標識抗体を用いることによって)選択的に測定することによって、改変の程度を測定することが好ましい。場合によっては、改変の程度が、例えば、阻害剤量又は阻害剤の阻害定数を示すように、活性又はプロセスの阻害剤の存在下で活性又はプロセスを実施する。阻害アッセイを用いて、結合相互作用の阻害剤用化合物をスクリーニングすることもでき、かつ/又は固定物質の結合相手を改変する活性又はプロセスを測定することもできる。

[0116]

[0117]

物質を改変する活性又はプロセス(あるいは、活性又はプロセスの阻害剤)を測定する

方法の一実施形態は、膜タンパク質の活性化の結果(例えば、物理的又は化学的環境の変化、膜電位の変化、タンパク質の凝集、膜受容体へのリガンドの結合などの結果として)起こる活性又はプロセスの測定に関する。例えば、膜タンパク質の活性化によって、タンパク質又は他の膜成分のリン酸化(リン酸化成分は、例えば、リンペプチド特異的抗体を用いて測定される)、ii)表在性膜タンパク質(peripheral membrane protein)、細胞質タンパク質などの可溶性細胞成分の隔離又は膜への結合(あるいは、遊離)(可溶性細胞成分の結合は、例えば、成分に特異的な抗体を用いて測定される)、iii)膜タンパク質のアップレギュレーション又はダウンレギュレーション(膜タンパク質は、例えば、モニターする特異的膜タンパク質に特異的な抗体を用いて測定される)などがもたらされることがある。

[0118]

本発明の別の態様は、アッセイモジュール、好ましくはアッセイプレート、より好まし くはマルチウェルアッセイプレートと、結合試薬、酵素、酵素基質及びアッセイを実施す るのに有用な他の試薬からなる群から選択される少なくとも1つのアッセイ成分とを含む 、 ア ッ セ イ 、 好 ま し く は 発 光 ア ッ セ イ 、 よ り 好 ま し く は 電 極 誘 導 発 光 ア ッ セ イ 、 最 も 好 ま しくは電気化学発光アッセイを実施するのに使用するキットに関する。例としては、ホー ルセル、細胞表面抗原、細胞下粒子(例えば、細胞小器官又は膜断片)、ウイルス、プリ オン、チリダニ又はその断片、ウイロイド、抗体、抗原、ハプテン、脂肪酸、核酸(及び 合成アナログ)、タンパク質(及び合成アナログ)、リポタンパク質、多糖、リポ多糖、 糖 タンパク 質 、ペ プチド、 ポリペ プチド、 酵 素 (例 え ば 、 ホ ス ホ リ ラ ー ゼ 、 ホ ス フ ァ タ ー ゼ、エステラーゼ、トランスグルタミナーゼ、トランスフェラーゼ、オキシダーゼ、レダ クターゼ、デヒドロゲナーゼ、グリコシダーゼ、タンパク質プロセシング酵素(例えば、 プロテアーゼ、キナーゼ、タンパク質ホスファターゼ、ユビキチン・タンパク質リガーゼ など)、核酸プロセシング酵素(例えば、ポリメラーゼ、ヌクレアーゼ、インテグラーゼ 、リガーゼ、ヘリカーゼ、テロメラーゼなど))、酵素基質(例えば、上述した酵素基質)、セカンドメッセンジャー、細胞代謝産物、ホルモン、薬物、トランキライザー、バル ビツール酸塩、アルカロイド、ステロイド、ビタミン、アミノ酸、糖、レクチン、組換え 又は誘導タンパク質、ビオチン、アビジン、ストレプトアビジン、発光標識(好ましくは 、 電 気 化 学 発 光 標 識) 、 電 気 化 学 発 光 共 反 応 物 、 p H 緩 衝 液 、 遮 断 薬 、 防 腐 剤 、 安 定 剤 、 洗浄剤、乾燥剤、吸湿剤などがあるが、これらだけに限定されない。このようなアッセイ 試薬は、(好ましくは、発光標識、最も好ましくは電気化学発光標識で)標識されていて もいなくてもよい。本発明の一実施形態には、アッセイモジュール、好ましくはアッセイ プレート、より好ましくはマルチウェルアッセイプレートと、(a)少なくとも1つの発 光標識(好ましくは、電気化学発光標識)、(b)少なくとも1つの電気化学発光共反応 物)、(c)1つ又は複数の結合試薬、(d)pH緩衝液、(e)1つ又は複数のブロッ キング試薬、(f)防腐剤、(g)安定剤、(h)酵素、(i)洗浄剤、(j)乾燥剤及 び(k)吸湿剤からなる群から選択される少なくとも1つのアッセイ成分とを含む、アッ セイ、好ましくは発光アッセイ、より好ましくは電極誘導発光アッセイ、最も好ましくは 電気化学発光アッセイを実施するのに使用されるキットが含まれる。

[0119]

キットは、アッセイモジュール、好ましくはアッセイプレートと、1つ以上、好ましくは2つ以上、より好ましくは3つ以上の容器に入ったアッセイ成分とを含むことが好ましい。

[0120]

アッセイモジュールは、マルチウェルプレートは、セクター中での電極誘導発光アッセイ(好ましくは、電気化学発光アッセイ)の実施に使用するようになされていることが好ましい。

[0121]

ー実施形態によれば、キットには、1つ又は複数のプレートウェル中に、好ましくは乾燥した形で1つ又は複数のアッセイ成分が含まれる。

10

20

30

[0122]

一実施形態によれば、アッセイ成分は、別個の容器に入れられている。別の実施形態によれば、キットには、結合試薬及び安定剤を含む容器が含まれる。別の実施形態によれば、ウェル試薬には、結合試薬、安定剤が含まれ得る。キットでは、いかなる液体もウェル中に含まれないことが好ましい。

[0123]

好ましい一実施形態は、アッセイプレート、好ましくはマルチウェルアッセイプレートと、少なくとも1つの発光標識(好ましくは、電気化学発光標識)及び少なくとも1つの電気化学発光共反応物)からなる群から選択される少なくとも1つのアッセイ成分とを含む電極誘導発光アッセイ(好ましくは、電気化学発光アッセイ)を実施するのに使用するキットに関する。

[0124]

別の実施形態は、マルチウェルプレート及び少なくとも1つの電極誘導発光標識(好ましくは、電気化学発光標識)及び/又は少なくとも1つのバイオ試薬及び/又は少なくとも1つのブロッキング試薬(例えば、BSA)を含むキットに関する。

[0 1 2 5]

好ましい一実施形態によれば、キットには、抗体、抗体断片、タンパク質、酵素、酵素基質、阻害剤、補助因子、抗原、ハプテン、リポタンパク質、リポ糖、細胞、細胞下成分、細胞受容体、ウイルス、核酸、抗原、脂質、糖タンパク質、炭水化物、ペプチド、アミノ酸、ホルモン、タンパク質結合リガンド、薬物、発光標識(好ましくは、ECL標識)又はそれらの組合せから選択されるプレート表面上に好ましくは固定された少なくとも1つのバイオ試薬が含まれる。

[0126]

別の好ましい実施形態によれば、キットには、固有のチロシンキナーゼ活性を有する 1 回 膜 貫 通 受 容 体 、 非 チ ロ シ ン キ ナ ー ゼ 膜 貫 通 受 容 体 (例 え ば 、 ト ラ ン ス フ ェ リ ン 受 容 体) 、Gタンパク質共役受容体(GPCR)、GPCRエフェクタータンパク質(例えば、ア デニル酸シクラーゼ)、ホスホイノシチド(例えば、ホスファチジルイノシトール4,5 ニリン酸(PIP,))、リン脂質又はスフィンゴ脂質組成物、同定((identif ication)、又は機能(function)(すなわち、アポトーシス中のホスフ ォチジルセリン (p h o s p h o t i d y l s e r i n e) 存在量の変化)、細胞小器官 に 結 合 し た G T P 加 水 分 解 酵 素 / グ ア ニ ン ヌ ク レ オ チ ド 交 換 因 子 (G E F) / G T P 加 水 分 解 酵 素 活 性 化 タン パ ク 質 (G A P) 、 サ イ ト カ イ ン / ケ モ カ イ ン 受 容 体 、 細 胞 接 着 分 子 (例 え ば 、 V C A M 、 イ ン テ グ リ ン) 、 細 胞 質 表 在 性 膜 タ ン パ ク 質 キ ナ ー ゼ (c y t o p lasmic peripheral membrane protein kinas e s) (例えば、 s r c) 、細胞内タンパク質キナーゼアダプタ / ドッキングタンパク質 (例えば、インシュリン受容体基質 1 、 G R B 2) 、イオンチャネル (例えば、ニコチン アセチルコリン受容体、CFTRなど)、受動輸送体(例えば、グルコース)、能動(A TP駆動)輸送体、イオン連結輸送体(ion-linked transporter) (例えば、Na+/グルコース)、グリコシルトランフェラーゼ(glycosylt r a n f e r a s e) / 糖 タンパク 質 修 飾 酵 素 、 核 膜 断 片 、 及 び 可 溶 性 受 容 体 か ら 選 択 さ れる活性タンパク質を含む、プレート表面に好ましくは固定された少なくとも1つの生体 膜又はその成分が含まれる。

[0127]

キットは、タンパク質、核酸又はそれらの組合せで構成される固定試薬を含むことが好ましい。

[0128]

好ましい一実施形態によれば、複数のウェルには、少なくとも 2 つの異なるバイオ試薬が含まれる。例えば、ウェルは、異なるバイオ試薬を含む 2 つ以上のアッセイドメインを含むことができる。

[0129]

50

10

20

30

キットは、少なくとも1つの電気化学発光共反応物及び/又は少なくとも1つの電極誘導発光標識(好ましくは、電気化学発光標識)を含むことが好ましい。

[0130]

本発明の別の態様は、生物活性化合物を選択又は同定するための、場合によっては、このような生物活性化合物を適切な担体組成物に適切な用量で組み込むための改良方法及びシステムに関する。本発明には、好ましくは50を超える、より好ましくは100、より好ましくは500、さらに好ましくは1,000、最も好ましくは5,000のスクリーニングが含まれる、好ましくはハイスループットスクリーニング(HTS)によって、新しい薬物をスクリーニングするための本発明のアッセイ電極、キット及び/又は方法の使用が含まれる。特に好ましい実施形態によれば、スクリーニングには、10,000を超える、50,000を超える、100,00を超える、500,000を超える及び/又は1,000,000を超える化合物が含まれる。

[0131]

本発明の一実施形態は、生物活性化合物を化合物ライブラリから選択又は同定する方法に関する。前記方法には、生物活性又は生化学活性について前記化合物ライブラリをスクリーニングすることが含まれる。前記スクリーニングには、本発明のアッセイ電極を用いて、生物活性又は生化学活性について化合物ライブラリの分析を行うことが含まれる。

[0132]

この方法は、さらに、1つ又は複数の活性化合物を同定することを含むことが好ましい

[0 1 3 3]

この方法は、さらに、前記1つ又は複数の活性化合物のインビボでの生物学的利用能、 毒性及び/又は生物活性の試験を含むことが好ましい。好ましい一実施形態によれば、こ の試験には、さらに、本発明のアッセイ電極を用いたスクリーニングが含まれる。

[0134]

この方法は、さらに、前記1つ又は複数の活性化合物のアナログを合成することを含むことが好ましい。好ましい一実施形態によれば、このアナログは、本発明のアッセイ電極を用いて生物学的利用能、生物活性及び/又は毒性についてスクリーニングされる。

[0135]

特に好ましい実施形態によれば、この方法は、さらに、ヒト及び/又は動物に投与するために1つ又は複数の化合物を薬物に処方することも含む。この処方は、1つ又は複数の活性化合物の薬物中の適切な量を決定すること、及びこの適切な量を1つ又は賦形剤又は担体と混合することを含むことが好ましい。賦形剤は、糖及び/又はデンプンを含むことが好ましい。

[0136]

本発明の別の実施形態は、生化学物質の1つ又は複数の複合混合物を分析してその中の複数の結合成分を測定する方法に関する。この方法は、

(a)前記混合物を、その上に固定された1つ又は複数の脂質/タンパク質層を含む1つ又は複数のアッセイ電極と、好ましくは電極誘導発光アッセイ(好ましくは、電気化学発光アッセイ)に適合したマルチウェルプレートに前記混合物を添加することによって接触させるステップであって、プレートのウェルがアッセイ電極を備えるステップと、

(b) 発 光 を 誘 発 さ せ る の に 十 分 な 電 圧 又 は 電 流 を 電 極 に 適 用 す る ス テ ッ プ と 、

(c) 放出された発光を測定するステップとを含む。

[0137]

本発明の別の実施形態は、1つ又は複数のコンビナトリアル(生物学的及び/又は化学的)混合物の結果を分析してその中の複数の結合成分を測定する方法に関する。この方法は、

(a) 好ましくは前記混合物を電極誘導発光(好ましくは、電気化学発光)アッセイに 適合したマルチウェルプレート中に導入することによって、前記混合物を1つ又は複数の アッセイ電極に接触させるステップであって、前記プレートが1つ又は複数のアッセイ電 20

30

40

極を備える複数のウェルを有するステップと、

- (b) 発光を誘発させるのに十分な電圧又は電流を電極に適用するステップと、
- (c) 放出された発光を測定するステップとを含む。
- [0138]

本発明の別の実施形態は、多数の同時アッセイにおいて試料中の単一の生化学物質を測定する方法に関する。この方法は、

(a) 好ましくは電極誘導発光(好ましくは、電気化学発光) アッセイに適合したマルチウェルプレート中に前記試料を導入することによって、前記試料をアッセイ電極と接触させるステップであって、前記プレートが 1 つ又は複数のアッセイ電極を備える複数のウェルを有するステップと、

- (b) 発光を誘発させるのに十分な電圧又は電流を電極に適用するステップと、
- (c) 放出された発光を測定するステップとを含む。
- [0139]

本発明のさらなる実施形態は、創薬方法に関する。この方法は、

- (a) 多数の試験用化合物を選択するステップと、
- (b)(上述したマルチウェルプレート及び/又は装置のどれか1つを用いて)前記多数の化合物を生物活性についてスクリーニングして、1つ又は複数の生物活性化合物を見出すステップと、
- (c)前記1つ又は複数の生物活性化合物を改変して毒性を低減し、かつ/又は生物活性を高め、それによって1つ又は複数の改変生物活性化合物を形成するステップとを含む
- [0140]

この方法は、さらに、(上述した本発明のアッセイ電極を用いて)前記改変生物活性化合物を生物活性及び/又は毒性についてスクリーニングすることを含むことが好ましい。

[0141]

この方法は、さらに、1つ又は複数の前記改変生物活性化合物の適切な用量を決定することを含むことが好ましい。この方法は、さらに、このような用量を糖、デンプンなどの適切な担体に組み込んで固体(例えば、丸剤又は錠剤)又は液体の薬物を形成することを含むことが好ましい。

[0142]

本発明のアッセイ電極、アッセイモジュール及び方法を、様々なスクリーニング及び/又は創薬方法に組み込みかつ/又はその中で使用することが有利である。このようなスクリーニング及び/又は創薬方法としては、Blakeの米国特許第5,565,325号、Chen他の米国特許第5,593,135号、Thastrup他の米国特許第5,521,135号、Agrafiotis他の米国特許第5,684,711号、Dower他の米国特許第5,639,603号、Ashby他の米国特許第5,569,588号、米国特許第5,541,061号、米国特許第5,574,656号、及びPeterson他の米国特許第5,783,431号に開示された方法などがある。

[0143]

別の実施形態によれば、本発明には、さらに、薬物に付随する有害作用を同定すること、及びその有害作用に関する情報をデータベースに保存することが含まれる。参照により本明細書に援用する Classenの米国特許第6,219,674号を参照されたい。

[0144]

本発明の別の態様は、本発明の方法を用いて調製される改良された生物活性化合物及び/又は薬物に関する。

- [0145]
- (実施例)

以下の実施例は、本発明の範囲内にある電極、プレート、キット及び方法のいくつかを 説明するものである。これらの実施例が、決して本発明を限定するものと考えるべきでな いことは言うまでもない。本発明に関する多数の変更形態及び改変形態が、当業者によっ 10

20

30

50

20

30

40

50

て不必要な実験をすることなくなされ得る。

【実施例1】

[0146]

スクリーン印刷電極を有するマルチウェルアッセイプレートの作製

多層プレートの底部を、0.007"厚みのMy1arポリエステルシート上に電極及 び電気接点をスクリーン印刷することによって調製した。Mylarシートを、まずCO ₂ レーザで切断して、導電性スルーホール(すなわち、その後導電性インクを充填して導 電性にされる穴)、及びプレート底部をプレート上部と整列させるために使用した整列ホ ールを形成した。適切にパターン形成された銀インク層(Acheson 479ss) 及びカーボンインク上層(Acheson 407c)をスクリーン印刷して、Myla ァシートの底部に電気接点を形成させた。カーボンインク層を銀インク層よりもわずかに (0 . 0 3 c m (0 . 0 1 インチ)) 大きくして銀フィルムの縁部が露出するのを防止し た。 3 層のカーボンインクを用いて確実に銀が露出しないようにした以外は同様にして M ylarフィルム上部に作用電極及び対電極を形成させた。導電性スルーホールは、これ らのスクリーン印刷ステップ中に導電性インクで充たされた。続いて、誘電体インクを電 極層上に印刷して、作用電極の活性露出表面を画成した。一般に、9つのプレートの底部 を、 1 8 " × 1 2 "の M y l a r シート上に同時に印刷した。スクリーン印刷ステップ中 の典型的な見当合わせ許容誤差(registrational tolerance) は、基板上部で+/-0.018~0.020cm(0.007~0.008インチ)で あり、底部で + / - 0 . 0 3 c m (0 . 0 1 0 インチ) であった。印刷された対電極帯と 作用電極帯の間隔を > 0.025cm(0.010インチ)に維持して短絡が形成される のを防止した。場合によっては、パターン形成されたプレート底部を、大面積の平面電極 で改変されたプラズマチャンバ (Series B、Advanced Plasma Systems、St.Petersburg、FL)中で酸素プラズマ(2000W、 200mtorr)で5分間処理して、作用電極をコンディショニングした。

[0147]

上述したプレート底部及び射出成形プレート上部を用いてマルチウェルアッセイプレー トを組み立てた。プレート上部の寸法は、生体分子スクリーニング学会制定の業界標準に 適合した。プレート上部は、黒色プラスチック(黒色顔料を充填したポリスチレン)又は 白色プラスチック(二酸化チタンを充填したポリスチレン)のどちらかでできていた。プ レート上部底面を、ダイで打ち抜かれた両面テープ(0.05mm(2ミル)のアクリル 感圧接着剤で両面を被覆された0.02mm(1ミル)PET)に接触させて、プレート 上部をプレート底部に密着させた。プレート上部の穴よりもわずかに大きな穴を形成する ようにテープを切断した。プレート底部を(レーザカット整列ホールを用いて)X-Yテ ーブル上のアラインメントピン上に固定した。プレート底部をプレート上部に光学的に整 列させ、次いで、空気圧プレス(182kg(400ポンド)、10秒)によって封着さ せた。アラインメントを十分正確に実施して、露出作用電極をウェル内の中央に置いた(96ウェルプレートの場合 + / - 0 . 0 5 0 c m (0 . 0 2 0 インチ)及び 3 8 4 ウェル プレートの場合 + / - 0 . 0 3 8 c m (0 . 0 1 5 インチ))。これらの許容誤差によっ て、作用電極の露出領域が確実にウェル内にあり、露出した対電極表面が作用電極の両面 に確実に存在した。いくつかの例においては、アッセイ試薬をプレート底部に付着させ乾 燥させてからプレートを組み立てた。

[0148]

上述した手順に従って様々なタイプのマルチウェルアッセイプレートを準備した。参照のため、以下の例において数個の特定のプレート設計をより詳細に説明する。 4 × 4 ウェルの 6 つの正方形セクターに区分けされた 9 6 ウェルプレートであるプレート B を、図 1 0 A に示す部品及びパターンを用いて作製し、黒色プレート上部を付けた。 4 × 4 ウェルの 6 つの正方形セクターに区分けされた 9 6 ウェルプレートであるプレート C を、(各ウェル内の作用電極表面上の 4 つの孤立した「流体封じ込め領域」が露出するように、プレート C 中の誘電体層がパターン形成されている以外は、)図 1 0 に示すように、部品及び

20

30

40

50

パターン並びに黒色プレート上部を用いて作製した(図10C及び10D参照)。プレートロは、各ウェル内の作用電極上の7つの孤立した「流体封じ込め領域」が露出するように誘電体層がパターン形成されている以外は、プレートCとほぼ同じであった。プレート E は、各ウェル内の作用電極上の10個の孤立した「流体封じ込め領域」が露出するように誘電体層がパターン形成されている以外は、プレートCとほぼ同じであった。プレート F、G及び H は、正方形の24個のウェルを有する以外はプレートCと類似しており(プレートは4ウェルの6つの正方形セクターに区分されている)、誘電体層はそれぞれ25、64又は100個の流体封じ込め領域を露出するようにパターン形成された。図10Aにおいて、プレートBの詳細図A、B、C及びDは、それぞれ(プレートの1セクターにおける)印刷接触層、スルーホールを含むMy1arフィルム、印刷電極層、及び印刷誘電体層を示す。

【実施例2】

[0149]

ECL測定

個々の正方形セクターに電気的に接触するように設計された機器でプレートを読み取った。セクターから放出されたECLを画像化するために用いた冷却CCDカメラに連結て、スキャ・ay:1300F、Princeton Instruments)に連結れた(直径が4.1 "のフロントエレメントを有する)テレセントリックレンズを用いて、機器と電気的に接触しているセクターの位置を合わせた。カメラには、プロス・ガほぼ2・6cm×2・6cmで1340×1300ピクセルのCCDチップを使用した。ピクレルのイズは、0・02mm×0・022mmであった。光路中に光学的バンドパスフィルターを用いて、ルテニウム・トリス・ビピリジンの放出プロファイルに一致する光を選トレセントリックレンズの下に平行移動させた。画像分析ソフトウエアを用いて、ウェルはウェル内のアッセイドメインを確認し、特定のウェル又はドメインからのECLを大した。特に示さない限り、およそ2~5Vで3秒間の線形電圧スキャンを用いて、フリロトが制定では、「バックグランド光レベル及び検出器オフセットが補正された後)電圧スキャン期間にわたって測定された全積分光シグナルとして記録される。

【実施例3】

[0150]

MDMWプレートの1つのウェルにおける複数の酵素活性を測定するECLアッセイ多数の核酸プロセシング酵素が、核酸合成(例えば、ポリメラーゼ又はリガーゼ)活性とヌクレアーゼ活性の両方を有する。一例は、RNA依存性DNAポリメラーゼ(RDDP)活性とリボヌクレアーゼH活性の両方を有する酵素であるHIV逆転写酵素(RT)である。以下の例に、MDMWプレートの1つのウェル中で両方のHIV RT活性を測定するECLアッセイを示す。

[0151]

このアッセイ形式を図12に示す。酵素基質は、RNA標的配列の3、末端に結合した(TAGホスホアミダイト、IGEN International,Inc.を用いて)5、標識されたDNAプライマーである。RDDP活性によって、DNAプライマーが伸長されてRNA配列の相補コピーが作られる。リボヌクレアーゼH活性によって、RNAプライマー配列に相補的である固定プローブ(3、-B13)に標識DNA産物をハイブリダイズすることによって測定される(したがって、リボヌクレアーゼ触媒に曝されたDNAプライマーが測定される)。RDDP活性は、伸長されたDNA配列に相補的である固定プローブ(5、-B13)に標識DNA産物をハイブリダイズすることによって測定される(したがって、DNAプライマーのRDDP伸長が測定される)。

[0152]

電極誘導化学発光測定用に構成され、各ウェルの作用電極表面に露出した4つの流体封

じ込め領域を有するMDMWプレート上でアッセイを実施した(実施例1のプレートC)。2つのプローブ(3'-B13及び5'-B13)をビオチン標識して固定化を促進させた。予め各プローブをアビジンに結合させた。(1pmolのプローブを含有する100~1000mLの)流体封じ込め領域上に非接触マイクロディスペンサ(BioDot又はCartesian Technologies)を用いてアビジン・プローブ複合体を微量分注し、溶液を乾燥させて、各プローブを各ウェルの1つの流体封じ込め領域に固定することによって、アッセイドメインを形成した。2つの追加の流体封じ込め領域を対照ドメインとして用いた(1つをアビジンで被覆し、もう1つは未処理であった)。プレートをBSA含有溶液でブロックし、洗浄してから使用した。

[0 1 5 3]

プレートのウェルに、50mM Tris pH8.0、40mM KC1、10mMMgC12、0.025%Triton X-100、2.5mM DTTを含有する緩衝液100uLに希釈したdNTP 1nmo1、基質5pmo1、酵素3pmo1、及び可変量のRT阻害剤を添加することによって、アッセイを実施した。反応混合物を20分間22 でインキュベートしてハイブリダイゼーション反応を進行させた。トリロトをさらに2時間インキュベートしてハイブリダイゼーション反応を進行させた。トリロロルアミンを添加し(ORIGENアッセイ緩衝液、IGEN Internationa1、産物を電気化学発光測定によって分析した。(酵素の前にEDTAを添加したウェルにおいて測定された)アッセイバックグラウンドを減算してECLシグナルを補正したカレアーゼH(図13B)とRDDP活性(図13A)の両方を阻害することがわかる。クレアーゼH(図13B)とRDDP活性(図13A)の両方を阻害することがわかる。これに対し、125uM ddCTP(連鎖停止剤)は、RDDP活性を完全に阻害したが、リボヌクレアーゼH活性には効果を及ぼさなかった(データ示さず)。

【実施例4】

[0154]

呼吸器疾患抗原のパネルの検出

ECL測定用に構成され、各ウェル中に露出した作用電極表面上に4つの流体封じ込め領域を有するMDMWプレート(実施例1のプレートC)を、4つの呼吸器疾患に特異的な抗体、すなわち、インフルエンザA、インフルエンザB、呼吸器合胞体ウイルス(RSV)、及びStreptococcus Pyogenes(Strep A)で被覆した。各抗体で被覆された1つのアッセイドメインを各ウェルが含むように、捕捉抗体溶液(リン酸緩衝食塩水PBS中50ug/m1)を、BioDotディスペンサを用いてウェル内の流体封じ込め領域に分注した(250n1/スポット)。溶液を乾燥させ、5%BSA溶液を添加し(200u1/ウェル)、プレートを終夜冷蔵した。プレートをPBSで洗浄してから使用した(4×250u1/ウェル)。

[0155]

市販供給元から入手した精製ウイルス又は細菌溶液をそれぞれ1000倍又は100倍に P B S で希釈して抗原溶液を調製した。希釈後の概略の力価は、インフルエンザ A が 2 . 3 × 1 0 ^{1 1} ウイルス粒子 / m 1 であり、インフルエンザ B が 3 2 0 H A 単位 / 0 . 0 5 m 1 又は 0 . 1 m g / m 1 タンパク質であり、R S V が 6 . 6 × 1 0 ⁸ ウイルス粒子 / m 1 であり、S t r e p A が 1 . 5 × 1 0 ⁴ C F U / m 1 であった。

[0156]

アッセイを実施するために、各希釈抗原溶液100ulを、0.2%Tween-20を含有するPBS 450ulと混合した。これらの溶液75ulを、適切な標識抗体溶液(Ru(bpy)₃のスルホン化誘導体)の溶液10ulと最終濃度が3ug/ml標識抗体となるように混合した。この溶液50ulを、洗浄したプレートの個々のウェルに添加し、8分間インキュベートした。次いで、プレートをPBSで洗浄し(4×200u1/ウェル)、ORIGENアッセイ緩衝液100u1(IGEN International)を各ウェルに添加した。次いで、電気化学発光検出によってプレートを分析した。図14から、適切なアッセイドメインにおいて各抗原が選択的に測定されたことがわ

10

20

30

40

かる。

【実施例5】

[0157]

M D M W プレートのウェルにおけるチロシンキナーゼ及びセリン / トレオニンキナーゼ 活性の測定

この実施例では、ECL測定用に構成され、各ウェル中に露出した作用電極表面上に4つの流体封じ込め領域を有するMDMWプレート(実施例1のプレートC)を用いた。以下の溶液、すなわち、0.0075%Tritonを含むPBS緩衝液に希釈した1mg/m1ポリ・G1u:Tyr(4:1)(PGT)、0.0075%Tritonを含むPBS緩衝液に希釈した1mg/m1ミエリン塩基性タンパク質(MBP)、0.0075%Tritonを含むPBS緩衝液に希釈した0.5mg/m1アビジン、5%BSAのPBS溶液のうち1つの250nLを各流体封じ込め領域に入れた。次いで、プレートを終夜乾燥させ、5%BSA溶液中4 で2日間ブロックした。プレートを洗浄して遮断薬を除去したから使用した。

[0158]

P G T をリン酸化する場合(チロシンキナーゼアッセイ) 0 . 1 m U / μ l の c - S R C を用い、M B P をリン酸化する場合(トレオニンキナーゼ) 1 5 p g / μ l の E R K - 1 を用いた。アビジン被覆ドメインの捕捉効率を、ビオチン及び R u (b p y) 3 のスルホン化体で標識されたウシ I g G の結合を測定して決定した。

[0159]

各スポット(PGT、MBP、アビジン及びBSA)を、キナーゼ産物に対する標識(Ru(bpy)。のスルホン化誘導体)抗体(抗ホスホチロシン及び抗ホスホ・MBP(あるいは、未標識1次抗体及び標識2次抗体)の存在下で各酵素/分析物の溶液(並びに酵素と分析物の混合物)に暴露した。プレートをインキュベートして酵素反応及び結合反応を進行させた後、TPA含有緩衝液を添加して、プレートをECLによって分析した(洗浄は不要であった)。酵素/分析物の非存在下で測定されたバックグラウンドを減算して、記録されたシグナルを補正した。各ポイントには、バックグラウンドシグナルに対して平均4つの測定値が含まれ、特異的シグナルに対して12個の測定値が含まれる。図15の表に、この実験結果を要約する。

[0160]

PGTドメインのみが、チロシンキナーゼsrcの存在下で高いシグナルを示した。予想したように、MPBは、ERK-1の存在下で高いシグナルが示したが、SRCの存在下でも高いシグナルが得られた。これはおそらく、MPB中にいくつかのチロシンが存在し、また、SRCと抗ホスホチロシン抗体の両方が比較的非特異的な性質を有するためと思われる。アビジンドメインによって、ビオチン化分析物の存在下で良好なシグナルが得られ、アビジンドメインはキナーゼに対する基質として作用しなかった。この結果から、例えば、試験しようとするキナーゼを粗製試料から捕捉する(場合によっては、精製する)ための結合ドメインを含むことの有用性が実証される。BSAスポットでは、分析物/酵素の存在下で有意なシグナルが得られず、遮断薬がアッセイ試薬と非特異的反応を示さなかったことがわかる。

【実施例6】

[0161]

MDMWプレートの検出限界の評価

この実施例において、出願人らは、結合ドメイン面積の関数として、ビオチン及びRu(bpy)3のスルホン化誘導体で標識されたウシIgG(タンパク質1つ当たり約2.3標識)のECL測定の検出限界を測定した。結合ドメインを、電極の1つ又は複数の露出領域(流体封じ込め領域)上にアビジンを被覆することによって(電極表面にアビジン溶液を微量分注し、乾燥させることによって)形成させた。以下の5つのプレートタイプを準備した。

標準96:アビジンで被覆された単一の大きな結合ドメインを有する実施例1のプレー

20

30

40

20

30

40

50

トタイプB。

4 - スポット - 1 : 3 つがアビジンで被覆されて結合ドメインを形成している 4 つの小さな流体封じ込め領域を有する実施例 1 のプレートタイプ C 。

4 - スポット - 3 : 1 つのみがアビジンで被覆されて結合ドメインを形成している 4 つの小さな流体封じ込め領域を有する実施例 1 のプレートタイプ C 。

7 - スポット - 1 : 3 つがアビジンで被覆されて結合ドメインを形成している 7 つのより小さな流体封じ込め領域を有する実施例 1 のプレートタイプ D。

7 - スポット - 3 : 1 つのみがアビジンで被覆されて結合ドメインを形成している 7 つのより小さな流体封じ込め領域を有する実施例 1 のプレートタイプ D。

[0162]

標準のブロッキング及び洗浄操作の後、体積50マイクロリットルの一連のタグ-Ig G-ビオチン希釈液を、2時間インキュベートし断続的に振とうさせながら分析した。2 . 5 ~ 4 . 5 ボルトで 5 秒間スキャンしてプレートを読み取った。図 1 6 に、未補正デー タの両対数プロットを示す。驚くべきことに、標準形式よりもマルチアレイ形式の方が、 実際に、検出限界がかなり良好である。各プレートタイプに対して計算された(標準96 プレートに対する)相対検出限界は、標準96(1.0)、4-スポット-1(4.2) 、 4 - スポット - 3 (1 . 4) 、 7 - スポット - 1 (4 . 4) 、 7 - スポット - 3 (2 . 1)であった。これは、ほとんどのタグが作用電極スポットにおいて捕捉される場合に予 測されたものである。スポットが小さくなるにつれ、放出される特定の光はすべて一定で あるが、バックグラウンドシグナルは面積と共に減少するはずである。検出限界を超える すべての標準物質を平均すると、4スポットのうち1つがスポットされたシグナルは、 スポットがスポットされたときの平均シグナルの2.7倍の高さである。これは、タグ付 き分子のほとんど(約90%)が単一のスポットに捕捉されていることを示している。こ の実施例によって、小さなアッセイドメインを有するMDMWプレートにおけるアッセイ が、従来の単一のドメインプレートにおけるアッセイよりも同等以上の性能を有し得るこ とが実証される。

【実施例7】

[0163]

MDMWプレートの複数の分析物のイムノアッセイ

4種の異なるサイトカイン・インターロイキン1 (IL・1)、インターロイキン 6 (IL-6)、インターフェロン (IFN-)及び腫瘍壊死因子 (TNF-- のサンドイッチイムノアッセイを、実施例1のプレート C に対して記載した設計及び手 順に従って作製されたプレートのウェルにおいて、同時に実施した。各ウェル内の流体封 じ込め領域上に抗体溶液を微量分注することによって別個のアッセイドメイン中に(目的 分析物の 1 つにそれぞれ選択的である) 4 つの捕捉抗体をパターン形成させ (領域 1 つ当 たり1つの抗体)、作用電極表面に抗体を吸着させた。(IL-1 及びTNF- の場 合32ug/mL、IL-6及びIFN- の場合64ug/mLの濃度で)抗体を含有 する溶液(0 . 2 5 u L)及び 0 . 1 % B S A のリン酸緩衝食塩水溶液を、ソレノイドバ ルブ制御マイクロディスペンサ (Biodot Dispensor、Cartesia n Technologies)を用いて流体封じ込め領域上に分注し、蒸発乾燥させた 。この体積の抗体は、流体封じ込め領域内の露出電極表面全体に拡散するのに十分である が、誘電体層によって形成される境界を超えて拡散しないのに十分な少なさであった。作 用電極上の抗体溶液を乾燥後、プレート上部を取り付け、5%(w/v)ウシ血清アルブ ミン(BSA)を含有するリン酸緩衝食塩水(PBS)溶液をウェルに充填することによ って、余分な未結合抗体を取り除いた(及び被覆されていない表面をブロックした)。プ レートをブロッキング溶液と共に終夜4 でインキュベートし、次いで、PBSで洗浄し た。

[0164]

アッセイを、 i)試料 0 . 0 2 m L をウェルに添加し、プレート振とう機上で 1 時間インキュベートするステップと、 i i) ウェルを P B S で洗浄するステップと、 i i i) 4

つ の 目 的 分 析 物 に 対 す る 4 つ の (N H S エ ス テ ル 1 で 標 識 さ れ た) 検 出 抗 体 各 2 , 0 0 0 ng/mLを含有する溶液 0 . 0 2 m Lを添加し、プレート振とう機上で 1 時間インキュ ベートするステップと、 i v) P B S で洗浄するステップと、 v) トリプロピルアミンを 含有するリン酸緩衝液(ORIGENアッセイ緩衝液、IGEN Internatio nal)溶液0.1mLを導入するステップと、vi)ECLを測定するステップとによ って実施した。図17A~Dは、マルチウェルアッセイプレートの単一のウェルにおいて 単一の試料中の目的分析物の各々を独立に測定可能であることを示している。図は、各ア ッセイドメインから放出されたECLを、各分析物の濃度の関数として示している。特定 の分析物を導入すると、分析物に対する捕捉抗体を有するアッセイドメインでは(分析物 の非存在下で測定されたバックグラウンドシグナルに対して)分析物濃度と共にECLが 直線的に増加したが、他の分析物に対する抗体を有するアッセイドメインにおけるECL は影響を受けなかった。図18に、4つの分析物の混合物を含有する溶液を分析するため に用いたウェルのセクターから放出されたECLのCCD画像を示す。強調表示したウェ ルは、4つのアッセイドメインの配置を示すために注釈が付けられている。この特定のウ ェルを、IL-1 及びTNF- をそれぞれ250pg/mL含み、IL-6及びIF N- をそれぞれ8pg/mL含む試料を分析するために使用した。

【実施例8】

[0165]

全EGF受容体及び自己リン酸化EGF受容体の多重アッセイ

この実施例では、MDMWプレートの1つのウェルにおいて全(リン酸化及び非リン酸化)EGF受容体(T-EGFR)及びリン酸化EGF受容体(P-EGFR)を測定するECLアッセイを示す。

[0166]

多重用溶解物の調製

- 1 . A 4 3 1 細胞を 1 5 0 m m 組織培養皿で培養し、血清を終夜飢餓状態においた(1 % ペニシリン ストレプトマイシン及び 1 % ピルビン酸ナトリウムを補充した D M E M)。
- 2.無血清培地で2回すすいだ後、1枚の皿に、無血清培地中200nM EGFで15分間室温で刺激を与えた。刺激を与えないプレートには、無血清培地のみを加えた。
 - 3.細胞を2体積のPBSですすいだ。
- 4. 改変 R I P A 緩衝液(アッセイ初期に添加した新しいオルトバナジン酸ナトリウム) 2 m l を皿に添加した。 R I P A 緩衝液には、緩衝液 1 0 m L 当たり 1 錠の新しいプロテアーゼ阻害錠剤を含む水中に、 1 m M 純粋オルトバナジン酸ナトリウム、 1 5 0 m M N a C l 、 5 0 m M T r i s 、 6 m M デオキシコレート、 0 . 5 % N P 4 0 が含まれていた)。細胞を R I P A と共に 1 0 分間氷上でインキュベートした。
 - 5.上清を収集し、Pierce BCAタンパク質アッセイによって定量した。

[0167]

多重アッセイの手順

- 1.(EGFRの細胞質ドメインに特異的な)T-EGFRのビオチン標識抗体及びP-EGFR(抗ホスホチロシン)を、予め1当量のアビジンと結合させ(1時間)、MDMWプレート(実施例1のプレートC)の各ウェルにおける4つの流体封じ込め領域のうちの2つに分注して(領域1つ当たり1つの抗体、0.5pmo1/領域0.25uL)付着させた。残り2つの流体封じ込め領域を、非特異的結合及び交差反応の対照として用いた。1つの領域は、アビジンのみで被覆された。他の領域は、露出したままであったが、最終的にBSAでブロックした。
- 2 . 抗体を乾燥させた。次いで、ウェル1つ当たり 2 0 0 μ 1 の 5 % B S A 水溶液で 1 時間室温でウェルをブロックした。
 - 3 . プレートを d H 。 0 で 4 回洗浄した。
- 4.溶解物 5 0 μ g / ウェルを 9 6 ウェルプレートの各ウェルに添加し、 1 時間断続的に振とうさせた。

30

20

50

- 5 . プレートを d H 2 0 で 4 回洗浄した。
- 6 . Sulfo-Tag(商標)標識 EGFR抗体(33nM50uL)を添加し 、結合反応を1時間室温で振とうさせながら進めた。プレートをdH20で4回洗浄した
- 7 . 4 0 0 m M g l y g l y アッセイ緩衝液を含むウェル1つ当たり100μlの 100mM TPAをECL分析直前に添加した。
 - 8.ECL検出によってプレートを分析した。

[0168]

以下の表は、刺激を与えた細胞及び刺激を与えない細胞からの溶解物をT・EGFR及 びP-EGFRアッセイして測定したECLシグナルを比較したものである。予想したよ うに、実験の経過と共に、T-EGFRレベルは刺激によってさほど変化しないが、P-EGFRは大きく増加することが認められた。

【表1】

分析物

試料 T-EGFR P-EGFR

非刺激 24, 200 5 7

刺激 23, 545 122

20

30

40

50

【実施例9】

[0169]

自 己 リ ン 酸 化 及 び 非 リ ン 酸 化 E G F 受 容 体 を 検 出 す る た め の 多 重 ア ッ セ イ

この実施例では、非リン酸化EGF受容体とチロシン1173がリン酸化されているE GF受容体との両方をMDMWプレートの単一のウェルにおいて測定するECLアッセイ を示す。

[0170]

別個の細胞皿に0.2nM、5nM及び200nM EGFで刺激を与えた以外は実施 例 8 に記載したようにして、 A - 4 3 1 細胞溶解物を調製した。

[0171]

多重アッセイの手順

1 . チロシン 1 1 7 3 が自己リン酸化されている E G F 受容体に特異的な抗体 (p Y 1 1 7 3) 及びチロシン 1 1 7 3 がリン酸化されていない E G F 受容体に特異的な抗体 (Y 1 1 7 3) を、 M D M W プレート (実施例 1 のプレート C) の各ウェルにおける 4 つの流 体 封 じ 込 め 領 域 の う ち 2 つ に 微 量 分 注 し (領 域 1 つ 当 た り 1 つ の 抗 体 、 0 . 2 p m o l / 領域0.25uL)、受動吸着させて付着させた。残り2つの流体封じ込め領域を、非特 異的結合及び交差反応の対照として用いた。これらの領域は露出したままであったが、最 終的にBSAでブロックした。

2.抗体を終夜乾燥させた。次いで、ウェル1つ当たり200μ1の5%BSA水溶液 で1時間室温でウェルをブロックした。

- 3 . プレートを P B S で洗浄した。
- 4 . 溶解物 5 μg / ウェルを 9 6 ウェルプレートの各ウェルに添加し、プレートを 3 時 間断続的に振とうさせた。
 - 5 . プレートを P B S で洗浄した。
- 6 . 受容体の細胞外ドメインに対する Sulfo-TA G 標識 E G F R 抗体 (3 3 n M 溶液 5 0 u L)を添加し、結合反応を 1 時間室温で振とうさせながら進めた。プレー トをPBSで4回洗浄した。
 - 7.400mM gly-glyアッセイ緩衝液を含む100mM TPAを、ECL

30

40

分析直前にウェル1つ当たり150μ1添加した。

8. Sector HTS(商標)プレートリーダー(Meso Scale Discovery)を用いたECL検出によってプレートを分析した。

[0172]

図19A~Dは、EGF受容体の1173位のチロシンの自己リン酸化量を、マルチウェルアッセイプレートの単一ウェルにおいて制御し定量できることを示している。図19Aの概略図は、同じウェルにおけるpY1173及びY1173抗体の2つのはすむかいの流体封じ込め領域上の配置を示している。A-431細胞溶解物に含有されるEGF受容体は、適切な表面固定抗体に結合する。具体的には、1173位のリン酸化チロシンのみがY1173抗体に結合する。単一ウェル内の2つ以上のアッセイドメインに対する受容体結合の競合は、この形式で回避される。レポーター - EGFR抗体は、両方の受容体の細胞外ドメインに結合する。図19B~DのCCD画像は、増加するEGF濃度の関数として各アッセイドメインから放出されるECLを示している。0.2nM EGFではチロシン1173の検出可能な自己リン酸化は認められない。5nM EGFでは受容体の約50%がリン酸化され、200nM EGFでは約90%がリン酸化された。

【実施例10】

[0173]

M D M W プレートのウェルにおけるチロシンキナーゼ及びセリン / トレオニンキナーゼ 活性の測定

この実施例では、ECL測定用に構成され、各ウェル中に露出した作用電極表面上に4つの流体封じ込め領域を有するMDMWプレート(実施例1のプレートC)を用いた。4つの以下の溶液、すなわち、(i)0.015%Tritonを含むPBS緩衝液に希釈した0.5mg/mlポリ・Glu:Tyr(4:1)(PGT)、(ii)0.015%Tritonを含むPBS緩衝液に希釈した0.2mg/mlミエリン塩基性タンパク質(MBP)、(iii)0.015%Tritonを含むPBS緩衝液に希釈した0.3mg/mlストレプトアビジン、(iv)0.15%Tritonを含むPBS緩衝液に希釈した0.3mg/mlストレプトアビジン、(iv)0.15%Tritonを含むPBS緩衝液に希釈した0.3mg/mlBSA溶液のうち1つの250nLを4つの流体封じ込め領域の各々に入れた。次いで、プレートを、周囲条件で1~1.5時間乾燥させ、0.1%Tritonを含有するPBSで強力に洗浄し、水で洗浄し、5%BSA溶液中での成れを形成し、1%では10nを含有するPBSで強力に洗浄し、水で洗浄溶液の一定の流れを形成し、会分なペプチド/タンパク質を電極表面から極めて効率的に洗浄除去可能であるBionを含分なペプチド/タンパク質を電極表面から極めて対率的に洗浄による。Triton含有溶液を用いて洗浄した後に3回洗浄して痕跡量のTritonを除去した。プロッキング後、プレートを再度洗浄して遮断薬を除去してから使用した。

[0174]

PGTをリン酸化する場合(チロシンキナーゼアッセイ) 0 . 0 5 m U / μ l の c - S R C を用い、M B P をリン酸化する場合(トレオニンキナーゼ) 2 n M の E R K - 2 を用いた。ストレプトアビジン被覆ドメインの捕捉効率を、ビオチン及びR u (b p y) 3 のスルホン化体(M e s o S c a l e D i s c o v e r y の S u l f o - T A G (商標)標識)で標識されたウシIg G の結合を測定して決定した。

[0175]

各スポット(PGT、MBP、ストレプトアビジン及びBSA)を、ホスホチロシン及びリン酸化MBPに対する未標識 1 次抗体及び標識 2 次抗体の溶液にさらした。プレートをインキュベートして酵素反応及び結合反応を進行させた後、TPA含有緩衝液を添加し、プレートをECLによって分析した(洗浄は不要であった)。各ポイントには、CVが7~10%の12回の測定値の平均が含まれる。下記表Aに、この実験から得られた結果を要約する。

【表2】

表Α

ドメイン	酵素なし/ blgG*なし	分析物 blgG* のみ	SRCのみ	ERK2のみ
SA	272	5,447	324	309
PGT	990	953	17,223	1,153
MBP	1,241	1,354	1,237	32,810
BSA	138	134	168	209

10

[0176]

太字の数値は、特異的シグナルである。他の数値は非特異的相互作用によるECLである。

[0177]

PGT及びMBPドメインは、それぞれチロシンキナーゼSRC及びトレオニンキナーゼ(ERK2)の存在下でのみ高いシグナルを示した。両方のキナーゼ(SRC及びERK)の活性の滴定曲線は、対応するドメイン上でほぼ直線的な応答を示した。ストレプトアビジンドメインは、ビオチン化分析物の存在下で良好なシグナルを示したが、キナーゼに対する基質としては働かなかった。この結果から、例えば、試験しようとするキナーゼを粗製試料から捕捉する(場合によっては、精製する)ための結合ドメインを含むことの有用性が実証される。BSAスポットでは、分析物/酵素の存在下では有意なシグナルが得られず、遮断薬がアッセイ試薬と非特異的反応を示さなかったことがわかる。

20

30

[0178]

本発明は、本明細書に記載する具体的な実施形態によって範囲が限定されるべきではない。実際、本明細書に記載する実施形態に加えて本発明の様々な変更形態が、上述の説明及び添付した図から当業者には明らかになるはずである。このような変更形態も、特許請求の範囲内にあるものとする。様々な出版物を本明細書に引用したが、その開示全体を参照により本明細書に援用する。

【図面の簡単な説明】

[0179]

【図1A】本発明の一実施形態による、結合アッセイのパネルの概略図である。

【 図 1 B 】 本 発 明 の 一 実 施 形 態 に よ る 、 サ ン ド イ ッ チ 結 合 ア ッ セ イ の パ ネ ル の 概 略 図 で あ る 。

【図1C】本発明の一実施形態による、競合結合アッセイのパネルの概略図である。

【図1D】本発明の一実施形態による、酵素アッセイのパネルの概略図である。

【図2】本発明の一実施形態による、試験結合アッセイ、非特異的結合に対する対照、シグナル発生及び伝達の効率に対する対照、及び対照結合アッセイを含むアッセイパネルの概略図である。

【図3】本発明の一実施形態による、複数の活性を有する酵素のいくつかの活性に対する アッセイを含むアッセイパネルの概略図である。

【図4】本発明の一実施形態による、酵素に対する結合アッセイ及び酵素産物に対する結合アッセイを含むアッセイパネルの概略図である。

【図 5 】本発明の一実施形態による、酵素反応の基質及び産物に対する結合アッセイを含むアッセイパネルの概略図である。

【図 6 】本発明の一実施形態による、酵素に対する標識基質を含むアッセイドメインと、本発明の標識産物を捕捉可能である結合試薬を含むアッセイドメインとを含む切断酵素用のアッセイパネルの概略図である。

【図7】本発明の一実施形態による、酵素産物に結合可能である試薬を結合させるために同時固定された様々な酵素を含む1列のアッセイドメインを含むアッセイパネルの概略図である。

50

【図8A】本発明の好ましい実施形態による、分析物に対して親和性の異なるアッセイド メインを含む拡張ダイナミックレンジ結合アッセイの概略図である。

【図8B】本発明の好ましい実施形態による、分析物に対して親和性の異なるアッセイド メインを含む拡張ダイナミックレンジ結合アッセイの概略図である。

【図8C】本発明の好ましい実施形態による、分析物に対して親和性の異なるアッセイド メインを含む拡張ダイナミックレンジ結合アッセイの概略図である。

【図9A】同じ分析物に対してサンドイッチ結合アッセイ及び競合結合アッセイを含む、

本発明の好ましい実施形態による拡張ダイナミックレンジ結合アッセイの概略図である。

【図9B】同じ分析物に対してサンドイッチ結合アッセイ及び競合結合アッセイを含む、

本発明の好ましい実施形態による拡張ダイナミックレンジ結合アッセイの概略図である。

【図10A】電極誘導化学発光測定用に構成されたMDMWプレート1000の成層図(layered view)である。

【図10B】電極誘導化学発光測定用に構成されたMDMWプレート1000の3つのウェルの定型化された断面図である。

【図 1 0 C 】図 1 0 A 及び 1 0 B に示す誘電体層 1 0 4 0 の変更形態である誘電体層 1 1 4 0 を示す図である。

【図10D】誘電体層1140を用いたプレート1000の変更形態であるMDMWプレート1100の3つのウェルの定型化された断面図である。

【図11】電極誘導化学発光測定用に構成されたMDMWプレートを示す図である。

【図12】HIV RT酵素の2つの活性に対するアッセイの概略図である。

【図13A】阻害剤によるHIV RTの活性の阻害を示すグラフである。

【図13B】阻害剤によるHIV RTの活性の阻害を示すグラフである。

【図14】4つの異なる病原体を測定するように設計されたMDMWプレートの選択性を示すグラフである。

【図15】2つの異なるキナーゼ活性を測定するように設計されたMDMWプレートの選択性を示す表である。

【 図 1 6 】ビオチン及び R u (b p y) 3 のスルホン化誘導体で標識されたウシ I g G の 濃度の関数としてシグナルをプロットしたグラフである。数及びサイズが異なるアビジン 被覆アッセイドメインを有する M D M W プレートに対してデータをプロットした。

【図17A】マルチウェルアッセイプレートのウェルにおける4種の分析物(IL-1、IL-6、TNF- 及びIFN-)のECLサンドイッチイムノアッセイによる独立した測定結果を示すグラフである。各ウェル中の作用電極は、それぞれこれらの分析物の1つに特異的な捕捉抗体を含む4つのアッセイドメインによってパターン形成されている。プロットは、各アッセイドメインから放出されるECLシグナルを分析物の濃度の関数として示したものである。

【図17B】マルチウェルアッセイプレートのウェルにおける4種の分析物(IL-1、IL-6、TNF- 及びIFN-)のECLサンドイッチイムノアッセイによる独立した測定結果を示すグラフである。各ウェル中の作用電極は、それぞれこれらの分析物の1つに特異的な捕捉抗体を含む4つのアッセイドメインによってパターン形成されている。プロットは、各アッセイドメインから放出されるECLシグナルを分析物の濃度の関数として示したものである。

【図17C】マルチウェルアッセイプレートのウェルにおける4種の分析物(IL-1、IL-6、TNF- 及びIFN-)のECLサンドイッチイムノアッセイによる独立した測定結果を示すグラフである。各ウェル中の作用電極は、それぞれこれらの分析物の1つに特異的な捕捉抗体を含む4つのアッセイドメインによってパターン形成されている。プロットは、各アッセイドメインから放出されるECLシグナルを分析物の濃度の関数として示したものである。

【図17D】マルチウェルアッセイプレートのウェルにおける4種の分析物(IL-1、IL-6、TNF- 及びIFN-)のECLサンドイッチイムノアッセイによる独立した測定結果を示すグラフである。各ウェル中の作用電極は、それぞれこれらの分析物

10

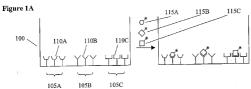
20

30

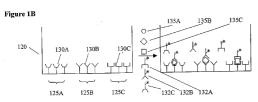
40

の 1 つに特異的な捕捉抗体を含む 4 つのアッセイドメインによってパターン形成されている。プロットは、各アッセイドメインから放出される E C L シグナルを分析物の濃度の関数として示したものである。

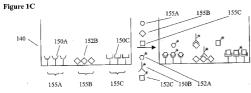
【図18】マルチウェルアッセイプレートのウェルにおける4種の分析物(IL-1 、 IL-6、TNF- 及びIFN-)のECLサンドイッチイムノアッセイによる独立した測定結果を示すCCDカメラ画像である。各ウェル中の作用電極は、それぞれこれらの分析物の1つに特異的な捕捉抗体を含む4つのアッセイドメインによってパターン形成されている。図は、4種の分析物の異なる混合物を含有する試料を分析するために使用したウェルの1セクターから放出されたECLの画像を示している。強調表示したウェルは、4つのアッセイドメインの配置を示すために注釈が付けられている。この特定のウェルを、IL-1 及びTNF- それぞれ250pg/mL並びにIL-6及びIFN-それぞれ8pg/mLを含む試料を分析するために使用した。

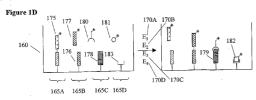

【図19A】本発明の一実施形態によるMSD(商標)Standard 4スポットMulti-Array(商標)Platesを用いたTyrosine 1173におけるEGF誘導Receptor Autophosphorylationアッセイ用に構成された4スポットウェルの概略図である。

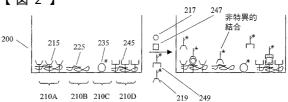
【図19B】EGF濃度の異なるプレートのウェルのCCD画像である。

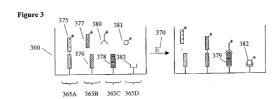

【図19C】EGF濃度の異なるプレートのウェルのCCD画像である。

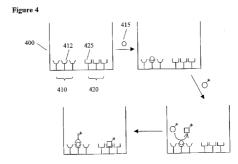
【図19D】EGF濃度の異なるプレートのウェルのCCD画像である。


【図1A】

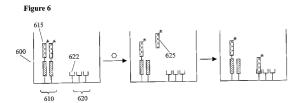

【図1B】

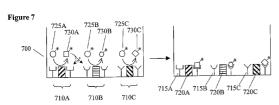

【図1C】

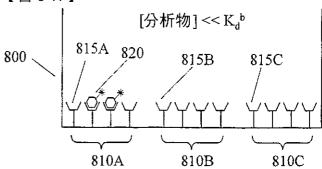

【図1D】

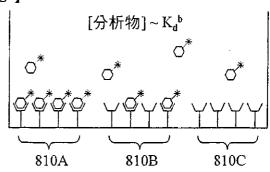

【図2】

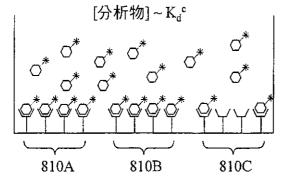
【図3】


【図4】

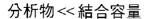

【図5】

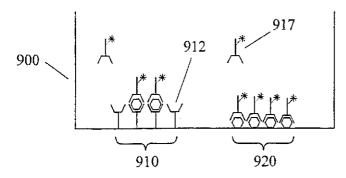

【図6】


【図7】


【図8A】

【図8B】


【図8C】



【図9B】

【図9A】

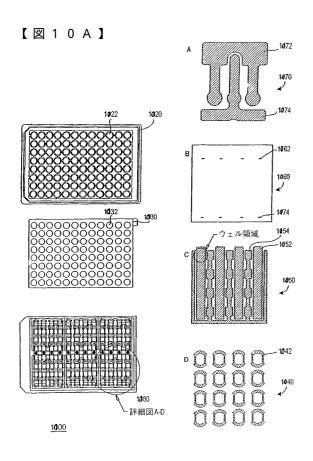
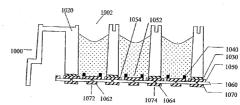
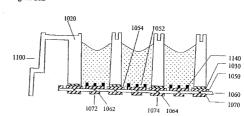
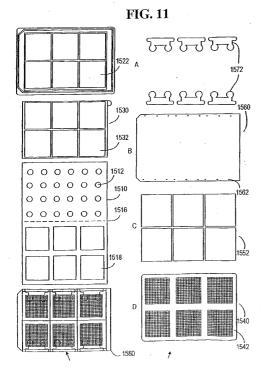



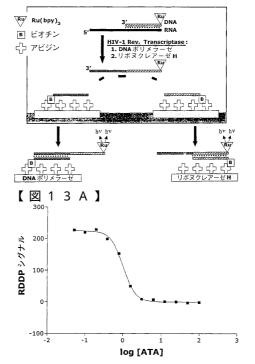
Figure 10B

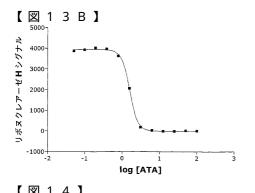


【図10C】 Figure 10C



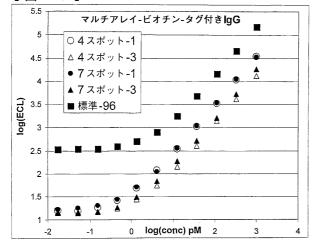
【図10D】

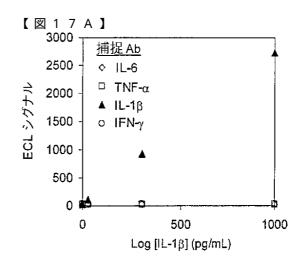

Figure 10D

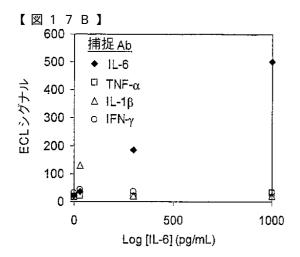

【図11】

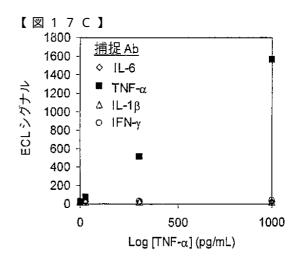
【 図 1 2 】 HIV1 逆転写酵素アッセイ

【図15】


L		
	インフルエンザ A 抗原検出	インフルエンザ B 抗原検出
*	Strep A 補捉 (スポット4)	★ Strep A 捕捉 (スポット4) 】
花	RSV 捕捉 (スポット3)	「 RSV 補捉(スポット3)
捕捉抗	Flu B 捕捉 (スポット2) 】	型 Flu B 捕捉 (スポット2)
無	Flu A 捕捉 (スポット1)	年 Flu A 補提(スポット1)


集 Flua 構変(スポットカ)	完 Mackackackackackackackackackackackackacka
RSV 抗原検出	Strep A 抗原検出
*** Strop A 準度 (スポットの) 「共 RSV 構度 (スポットの) 「共 RSV 構度 (スポットの) 「共 FMA 構造 (スポットの) 「	长 Step A 構能 (スポット4)


PGT 酵素/分析物 ERK SRC + ERK SRC + ERK + blgG* 157 152 447 4% 5% 11% blgG* 268 13% 1,005 13% SRC 177 8% 35,696 7% 1,114 MBP 酵素/分析物 blgG* 646 4% 98 SRC + ERK SRC + ERK + blgG 315 1162 16% 8% SRC 262 6% 5,955 10% 22,413 7% 11,728 6% アビジン 酵素/分析物


	酵素/分析物				
	blgG*	SRC	ERK	SRC + ERK	SRC + ERK + blgG*
В	27,467	38	26	27	24720
CV	5%	19%	14%	21%	8%
S	56,145	1,459	240	2,743	53,406
CV	4%	16%	13%	20%	4%
			BSA		
			酵素/分析:	物	
	blgG*	SRC	ERK	SRC + ERK	SRC + ERK + blgG*
В	83	25	16	17	93
CV	13%	22%	20%	19%	21%
S	162	94	139	338	553
CV	37%	17%	11%	14%	19%

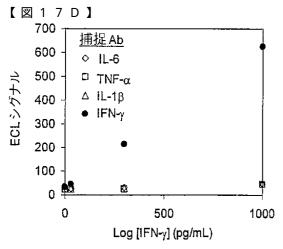
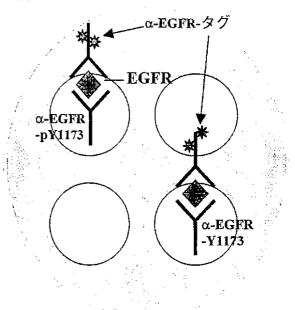



Figure 18

【図19B】

0.2nM EGF

Figure 19B

【図19C】

5nM EGF

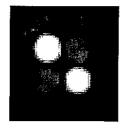


Figure 19C

【図19D】

200nM EGF

Figure 19D

【国際調査報告】

	INTERNATIONAL SEARCH REPOR	? ጥ	International appl	ication No.		
	ATTENNATIONAL GEARGII REFOI		PCT/US02/28652			
IPC(7) US CL According to	IPC(7) : G01N 33/543, 33/551 US CL : 436/6, 149, 172; 252/700 According to International Patent Classification (IPC) or to both national classification and IPC					
Minimum doe	cumentation searched (classification system followed b	ny classification sym	hals)	· · · · · · · · · · · · · · · · · · ·		
	36/6, 149, 172; 252/700					
Documentation Non-Patent L	on searched other than minimum documentation to the iterature	extent that such doc	uments are included i	n the fields searched		
Electronic da	ta base consulted during the international search (nam	e of data base and, v	where practicable, sea	rch terms used)		
C. DOCI	UMENTS CONSIDERED TO BE RELEVANT		-	···		
Category *	Citation of document, with indication, where a	poropriate, of the re	levant nassages	Relevant to claim No.		
X	US 6,207,369 A (WOHLSTADTER et al) 03 March 2001 (03.27.2001), see abstract, see summary, column 8 & 12, column 24, lines 15-67, column 26, lines 1-50, column 31-48, column 72, lines 19-67, column 76, lines 12-40, column 77, lines 36-60, see entire document.					
x	US 5,147,806 A (KAMIN et al) 15 September 1992 summary, columns 1-16.	(09.15.1992), see al	ostract, see	1-8, 12-14, 19-24, 87 and 139		
Х	US 5,093,268 A (LEVENTIS et al) 03 March 1992 (03.03.1992), see abstract, see summary, columns 2-18.					
	documents are listed in the continuation of Box C.		nt family annex.			
"A" document	pecial categories of cited documents: defining the general state of the art which is not considered to be lar relevance	date and n		ernational filing date or priority cation but cited to understand the ention		
	plication or patent published on or after the international filing date	considered	of particular relevance; the i novel or cannot be conside locument is taken alone	claimed invention cannot be red to involve an inventive step		
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot considered to involve an inventive step when the document is considered to involve an inventive step when the document is				p when the document is a documents, such combination		
	"O" document referring to an oral disclosure, use, exhibition or other means being obvious to a person skilled in the art					
priority da	"P" document published prior to the international filing date but later than the "&" document member of the same patent family priority date claimed					
	Date of the actual completion of the international search Date of mailing of the international search report 13 February 2003 (13.02.2003)					
Name and mailing address of the ISA/US Authorized officer						
Commissioner of Patents and Trademarks BOX PCT Workington D. C. 20031						
	Washington, D.C. 20231 Facsimile No. (703)305-3230 Telephone No. (703) 308-1123					
Form PCT/ISA/210 (second sheet) (July 1998)						

	INTERNATIONAL SEARCH REPORT	International application No.				
		PCT/US02/28652				
Box I Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)						
This internat	ional report has not been established in respect of certain claims under Article	17(2)(a) for the following reasons:				
1.	. Claim Nos.: because they relate to subject matter not required to be searched by this Authority, namely:					
2.	Claim Nos.: because they relate to parts of the international application that do not complian extent that no meaningful international search can be carried out, specified					
3.	Claim Nos.: 9-11, 15-18, 83-84, 100, 116, 132, 134-138 because they are dependent claims and are not drafted in accordance with the	e second and third sentences of Rule 6.4(a).				
Box II Ot	servations where unity of invention is lacking (Continuation of Iter	m 2 of first sheet)				
This Internat	ional Searching Authority found multiple inventions in this international applic	ration as follows:				
	· · · · · · · · · · · · · · · · · · ·					
1.	As all required additional search fees were timely paid by the applicant, this searchable claims. As all searchable claims could be searched without effort justifying an additipayment of any additional fee. As only some of the required additional search fees were timely paid by the covers only those claims for which fees were paid, specifically claims Nos.:	onal fee, this Authority did not invite applicant, this international search report				
4.	No required additional search fees were timely paid by the applicant. Conse restricted to the invention first mentioned in the claims; it is covered by claim					
Remark on	Protest	cant's protest.				
	No protest accompanied the payment of additional search fees.					

Form PCT/ISA/210 (continuation of first sheet(1)) (July 1998)

フロントページの続き

(51) Int.CI. ⁷		FΙ			テーマコード(参考)
G 0 1 N	33/532	G 0 1 N	33/53	Р	
G 0 1 N	33/543	G 0 1 N	33/532	В	
G 0 1 N	33/566	G 0 1 N	33/543	5 9 3	
G 0 1 N	37/00	G 0 1 N	33/543	5 9 5	
		G 0 1 N	33/566		
		G 0 1 N	37/00	1 0 2	
		C 1 2 N	15/00	F	

(31)優先権主張番号 60/363,498

(32)優先日 平成14年3月11日(2002.3.11)

(33)優先権主張国 米国(US)

(81)指定国 AP(GH,GM,KE,LS,MW,MZ,SD,SL,SZ,TZ,UG,ZM,ZW),EA(AM,AZ,BY,KG,KZ,MD,RU,TJ,TM),EP(AT,BE,BG,CH,CY,CZ,DE,DK,EE,ES,FI,FR,GB,GR,IE,IT,LU,MC,NL,PT,SE,SK,TR),OA(BF,BJ,CF,CG,CI,CM,GA,GN,GQ,GW,ML,MR,NE,SN,TD,TG),AE,AG,AL,AM,AT,AU,AZ,BA,BB,BG,BR,BY,BZ,CA,CH,CN,CO,CR,CU,CZ,DE,DK,DM,DZ,EC,EE,ES,FI,GB,GD,GE,GH,GM,HR,HU,ID,IL,IN,IS,JP,KE,KG,KP,KR,KZ,LC,LK,LR,LS,LT,LU,LV,MA,MD,MG,MK,MN,MW,MX,MZ,NO,NZ,OM,PH,PL,PT,RO,RU,SD,SE,SG,SI,SK,SL,TJ,TM,TN,TR,TT,TZ,UA,UG,US,UZ,VN,YU,ZA,ZM,ZW

(72)発明者 グレザー、エリ、エヌ アメリカ合衆国、メリーランド、チェヴィ チェイス、 アビレン ドライブ 2800

(72)発明者 ジョンソン、ケント アメリカ合衆国、メリーランド、ベテスダ、 ローズデイル アヴェニュー 4703

(72)発明者 ツイオンスキィ、マイケル アメリカ合衆国、メリーランド、ゲイサーズバーグ、 ファウンタン グリーン レイン 133

(72)発明者 ケンテン、ジョン、エイチ アメリカ合衆国、メリーランド、ボイズ、 シュガー リッジ テラス 2 1 0 2 1

(72) 発明者 デバッド、ジェフ、ディ アメリカ合衆国、メリーランド、ゲイサーズバーグ ファウンタン グリーン レイン 262 ユニット 100

(72)発明者 ウメク、ロバート、エム アメリカ合衆国、メリーランド、シルバースプリング、 インウッド アベニュー 10313

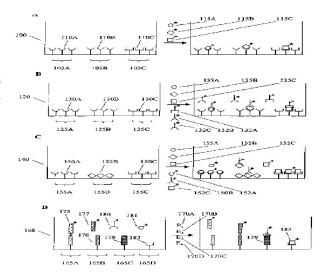
(72)発明者 イーゾン、ポーラ、デニー アメリカ合衆国、メリーランド、ゲルマンタウン コーチマンズ サークル 13909

(72)発明者 ビーバイク、ハンス アメリカ合衆国、メリーランド、ロックビル、 スターリング コート 1

(72)発明者 ウォルシュクトテーア、ヤコブ、エヌ アメリカ合衆国、メリーランド、ポトマック、 ベル エアー レイン 8924

(72)発明者 ウィルバー、ジェームズ アメリカ合衆国、メリーランド、ゲルマンタウン、 スピニング ホイール ドライブ 1363 6

(72)発明者 スィガル、ジョージ アメリカ合衆国、メリーランド、ロックビル トレイルウェイ ドライブ 5 3 3 3


F ターム(参考) 2G054 AA06 AB09 CA22 EA10 FA06 FA17 FA19 FA21 FA40 FA50 4B024 AA11 CA09 CA12 HA14 HA19 4B063 QA18 QQ53 QR07 QR55 QR82 QS39 QX02 QX04

专利名称(译)	用于对一个样本执行多个测量的方	方法和设备	
公开(公告)号	JP2005521032A	公开(公告)日	2005-07-14
申请号	JP2003527386	申请日	2002-09-10
[标]申请(专利权)人(译)	中尺度技术有限责任公司		
申请(专利权)人(译)	中尺度技术有限责任公司		
[标]发明人	グレザーエリエヌ ジョンソンケント ツイオンスキィマイケル ケンテンジョンエイチ デバッドジェフディ ウメクロバートエム イーゾンポーラデニー ビーバイクハンス ウォルシュクトテーアヤコブエラ ウィルバージェームズ スィガルジョージ	Z	
发明人	グレザー、エリ、エヌ ジョンソン、ケント ツイオンスキィ、マイケル ケンテン、ジョン、エイチ デバッド、ジェフ、ディ ウメク、ロバート、エム イーゾン、ポーラ、デニー ビーバイク、ハンス ウォルシュクトテーア、ヤコブ、 ウィルバー、ジェームズ スィガル、ジョージ	IZ	
IPC分类号	G01N33/53 C12N15/09 C12Q1/0 G01N33/68 G01N37/00	00 C12Q1/48 G01N21/76 G01N3	3/532 G01N33/543 G01N33/566
FI分类号	G01N21/76 C12Q1/00.C C12Q1/ /543.593 G01N33/543.595 G01N		G01N33/53.P G01N33/532.B G01N33 /00.F
F-TERM分类号	2G054/AA06 2G054/AB09 2G054/CA22 2G054/EA10 2G054/FA06 2G054/FA17 2G054/FA19 2G054 /FA21 2G054/FA40 2G054/FA50 4B024/AA11 4B024/CA09 4B024/CA12 4B024/HA14 4B024/HA19 4B063/QA18 4B063/QQ53 4B063/QR07 4B063/QR55 4B063/QR82 4B063/QS39 4B063/QX02 4B063 /QX04		
代理人(译)	安藤胜则 小池 诚		
优先权	60/318293 2001-09-10 US 60/318284 2001-09-10 US 60/318289 2001-09-10 US 60/363498 2002-03-11 US		
其他公开文献	JP4768224B2 JP2005521032A5		
外部链接	Espacenet		

摘要(译)

用于确定肽和蛋白质的功能和活性以及用于鉴定和表征影响这些功能和活性的分子的装置,系统,系统组件,方法,组合物和试剂。更具体地,用于确定肽和蛋白质的各种活性的方法和试剂包括它们的结合特异性,结合活性,它们的酶活性和它们作为酶底物的能力。所公开的方法特别适用于分析需要分析大量肽和蛋白质的肽和蛋白质功能。

