(19)中华人民共和国国家知识产权局

(12)实用新型专利

(10)授权公告号 CN 208580108 U (45)授权公告日 2019.03.05

(21)申请号 201820492323.0

(22)申请日 2018.04.08

(73)专利权人 广州天宝颂原生物科技开发有限 公司

地址 510663 广东省广州市经济技术开发 区玉树工业园敬业三街B栋403房

(72)发明人 宋建勋 王小明 夏坤 卢艳华 佟顺刚

(74)专利代理机构 广州嘉权专利商标事务所有 限公司 44205

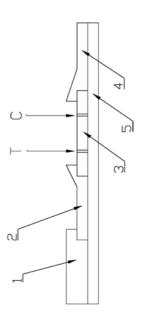
代理人 谭英强

(51) Int.CI.

GO1N 33/577(2006.01)

GO1N 33/558(2006.01)

GO1N 33/533(2006.01)


权利要求书1页 说明书4页 附图4页

(54)实用新型名称

一种抗缪勒管激素免疫层析定量检测试纸 条

(57)摘要

本实用新型公开了一种抗缪勒管激素免疫 层析定量检测试纸条,包括PVC底板、样品垫、荧 光标记物结合垫、硝酸纤维素和吸水垫;所述试 纸条由样品垫、荧光标记物结合垫、硝酸纤维素、 吸水垫依次搭接粘贴在PVC底板上构成。所述荧 光标记物结合垫上固定有生物素标记的抗缪勒 管激素单克隆抗体和链霉亲和素标记的荧光蛋 白;所述硝酸纤维膜上有检测线和质控线,检测 线包被抗缪勒管激素单克隆抗体,其与上述生物 素标记的抗缪勒管激素单克隆抗体具有不同的 识别表位。本实用新型与目前常见的检测抗缪勒 □ 管激素的方法相比,如:化学发光法/酶联免疫吸

- 1.一种抗缪勒管激素免疫层析定量检测试纸条,其特征在于:所述的试纸条包括PVC底板,所述PVC底板上依次设有样品垫、荧光标记物结合垫、硝酸纤维素膜和吸水垫,所述样品垫搭接在荧光标记物结合垫上,所述荧光标记物结合垫和吸水垫分别搭接在硝酸纤维素膜的两端,所述荧光标记物结合垫上固定有生物素标记的抗缪勒管激素单克隆抗体和链霉亲和素标记的荧光蛋白;所述硝酸纤维素膜上设有检测线与质控线,所述检测线固定有识别抗缪勒管激素另外一个表位的单克隆抗体,所述质控线固定有羊抗鼠IgG多克隆抗体,所述检测试纸条还包括卡壳,所述卡壳上设有加样孔和观察窗,所述PVC底板、样品垫、荧光标记物结合垫、硝酸纤维素膜和吸水垫均置于卡壳内,所述荧光标记物结合垫包括层叠的第一荧光标记物结合垫和第二荧光标记物结合垫,所述第一荧光标记物结合垫的一端垫在样品垫的下方,所述第二荧光标记物结合垫交叠压在硝酸纤维素膜的一端。
- 2.根据权利要求1所述的抗缪勒管激素免疫层析定量检测试纸条,其特征在于:所述检测线位于检测区中靠近荧光标记物结合垫的一端,所述质控线位于检测区中靠近吸水垫的一端,所述检测线和质控线相隔的距离为4-8mm。
- 3.根据权利要求1所述的抗缪勒管激素免疫层析定量检测试纸条,其特征在于:所述观察窗对着所述硝酸纤维素膜的检测区,观察窗为长方形孔。
- 4.根据权利要求1所述的抗缪勒管激素免疫层析定量检测试纸条,其特征在于:所述加 样孔对着所述样品垫的加样区,加样孔为椭圆形孔。
- 5.根据权利要求1所述的抗缪勒管激素免疫层析定量检测试纸条,其特征在于:所述荧光蛋白是绿色荧光蛋白、藻胆蛋白中的一种。
- 6.根据权利要求1所述的抗缪勒管激素免疫层析定量检测试纸条,其特征在于:所述样品垫为经表面活性剂缓冲液浸泡处理后干燥的玻璃纤维构件。
- 7.根据权利要求1所述的抗缪勒管激素免疫层析定量检测试纸条,其特征在于:所述卡 壳包括塑料上壳和塑料下壳,所述塑料上壳扣合塑料下壳上后形成卡壳。

一种抗缪勒管激素免疫层析定量检测试纸条

技术领域

[0001] 本实用新型属于免疫检测领域,具体涉及一种高灵敏度抗缪勒管激素免疫层析定量检测试纸条。

背景技术

[0002] 抗缪勒管激素 (Anti-Mullerian hormone, AMH) 是由两个相同的70kD亚基组成的二聚糖蛋白,相对分子质量为140kD,属蛋白质激素转化生长因子B (TGF-B) 超家族成员之一。抗缪勒管激素在性腺器官发育过程中起重要作用,在男性中,AMH主要由睾丸间质细胞生成,在胚胎发育期间,其生理功能是抑制雄性缪勒管的发育,参与睾丸的分化和发育。在女性中,AMH由卵泡颗粒细胞生成,在女性生殖系统发育过程中,AMH抑制卵巢颗粒细胞上黄体生成素受体及黄体酮的生物合成和调节卵子的发生及细胞的减数分裂,女性随着年龄增加,卵巢功能下降,血清AMH水平也逐渐下降。

[0003] 研究发现,抗缪勒管激素参与女性卵巢功能调节,调控卵泡生长与发育,AMH水平与卵巢储备功能呈正相关性,因此AMH可以作为女性卵巢功能评价的标志物。传统的卵巢功能评估主要以滤泡刺激激素 (FSH)、抑制素B (INHB)、雌激素 (E2)、年龄及窦卵泡数目 (AFC)等作为指标,单一指标无法真实反映卵巢状况。AMH作为一种新型的评估女性卵巢功能的指标,相较于传统方法,具有以下优点:(1)随着年龄增长或卵巢功能开始衰退,早于FSH、INHB、E2出现变化,更早更灵敏体现卵巢功能变化;(2)不受垂体促激素与经期的影响,整个经期周期数值变化不大;(3)可用于预测体外受精联合胚胎移植术 (IVF)的卵巢反应性、预防卵巢过度刺激综合症 (OHSS)、多囊卵巢综合征 (PCOS)的诊断。

[0004] 目前国内外临床上检测AMH的常用方法有酶联免疫吸附法(ELISA)、电化学发光法和化学发光法。其中ELISA方法耗时长、灵敏度低、背景值高、易造成假阳性和假阴性结果,并且需要专业人员进行操作。电化学发光法和化学发光法如罗氏的ELECSYS AMH检测仪目前逐渐替换ELISA法,但价格昂贵,不适合单人份和小批量检测用,加上需要专门的仪器使用人员,维修和检测成本均较高,不适合大范围推广使用。目前国内检测AMH的产品较少,产品性能存在差异,因此,临床上迫切需要建立一种快速、便捷、准确的AMH检测产品。

[0005] 生物素-亲和素系统(biotinavidin system,BAS),是一种医学领域广泛应用的生物反应放大系统。大量研究表明,BAS几乎可与目前研究成功的各种标记物结合。将该系统应用于免疫组化,酶联免疫,荧光免疫,放射免疫等检测技术中,可显著地提高以上技术方法的敏感性、特异性和稳定性,有助于临床快速诊断,并利于进行大规模流行病学调查,成为研究免疫反应的有力工具。由于BAS检测系统经济快速,又无放射物质污染,不需复杂仪器,具有巨大潜力和应用的可能性。

[0006] 生物素-亲和素系统检测原理:生物素经化学修饰后可成为带有多种活性基团的衍生物--活化生物素,活化生物素可以在蛋白质交联剂的介导下,与已知的几乎所有生物大分子偶联,包括蛋白质,核酸,多糖,脂类等。亲和素是卵白蛋白中提取的一种碱性糖蛋白,对生物素有非常高的亲和力,亲和常数(K)为10mo1/L,两者结合稳定性好专一性强。这

样,结合了荧光物质的亲和素分子与结合有特异性抗体的生物素分子产生反应,起到了多级放大作用,通过对荧光物质的激发而发射特定荧光信号,达到检测未知抗原(或抗体)分子的目的。链霉亲和素是与亲和素有相似生物学特性的一种蛋白质,链霉亲和素与亲和素一样分子中每条肽链都能结合一个生物素,因几乎所有用于标记的物质均可以同亲和素或链霉亲合素结合。利用生物素-亲和素系统研制抗缪勒管激素检测试快速诊断试剂尚无报道。

实用新型内容

[0007] 本实用新型的目的,在于提供一种抗缪勒管激素免疫层析定量检测试纸条,其基于双抗体夹心法、荧光免疫侧向层析和生物素-链霉亲和素放大系统,提供高灵敏度抗缪勒管激素免疫层析定量检测试纸条。使用本实用新型时,提高了检测灵敏度和检测稳定性,降低了非特异性结合,检测时间不大于10分钟,大大提高了诊断效率。

[0008] 本实用新型解决其技术问题的解决方案是:一种抗缪勒管激素免疫层析定量检测试纸条,其包括PVCPVC底板,所述PVC底板上依次设有样品垫、荧光标记物结合垫、硝酸纤维素膜和吸水垫,所述样品垫搭接在荧光标记物结合垫上,所述荧光标记物结合垫和吸水垫分别搭接在硝酸纤维素膜的两端,所述荧光标记物结合垫上固定有生物素标记的抗缪勒管激素单克隆抗体和链霉亲和素标记的荧光蛋白;所述硝酸纤维素膜上设有检测线与质控线,所述检测线固定有识别抗缪勒管激素另外一个表位的单克隆抗体,所述质控线固定有羊抗鼠IgG多克隆抗体。

[0009] 作为上述技术方案的进一步改进,所述荧光标记物结合垫包括层叠的第一荧光标记物结合垫和第二荧光标记物结合垫,所述第一荧光标记物结合垫的一端垫在样品垫的下方,所述第二荧光标记物结合垫交叠压在硝酸纤维素膜的一端。

[0010] 作为上述技术方案的进一步改进,所述检测线位于检测区中靠近荧光标记物结合垫的一端,所述质控线位于检测区中靠近吸水垫的一端,所述检测线和质控线相隔的距离为4-8mm。

[0011] 作为上述技术方案的进一步改进,所述检测试剂条还包括卡壳,所述卡壳上设有加样孔和观察窗,所述PVC底板、样品垫、荧光标记物结合垫、硝酸纤维素膜和吸水垫均置于卡壳内。

[0012] 作为上述技术方案的进一步改进,所述观察窗对着所述硝酸纤维素膜的检测区,观察窗为长方形孔。

[0013] 作为上述技术方案的进一步改进,所述加样孔对着所述样品垫的加样区,加样孔为椭圆形孔。

[0014] 作为上述技术方案的进一步改进,所述荧光蛋白是绿色荧光蛋白、藻胆蛋白中的一种。

[0015] 作为上述技术方案的进一步改进,所述样品垫为经表面活性剂缓冲液浸泡处理后干燥的玻璃纤维构件。

[0016] 作为上述技术方案的进一步改进,所述卡壳包括塑料上壳和塑料下壳,所述塑料上壳扣合塑料下壳上后形成卡壳。

[0017] 本实用新型与现有技术相比,具有如下优点:

[0018] (1) 本实用新型将荧光蛋白作为标记物,此标记物稳定性良好,有利于提高检测稳定性。

[0019] (2) 本实用新型通过利用"链霉亲和素-生物素放大系统",提高检测灵敏度,降低非特异性结合,有利于提高试剂盒性能。

[0020] (3) 本实用新型将荧光免疫层析技术引入AMH的检测,检测时间不大于10分钟,检测线性范围为0.1ng/ml~20.0ng/ml,极大地提高了检测效率。

[0021] (4) 本实用新型可通过荧光免疫分析仪对结果进行判读,可实现自动化,减少主观因素的影响,提供便利、快速、可靠的诊断结果。

[0022] (5)本实用新型制作方便,体积小、便于携带且成本较低,克服了酶联免疫吸附法及化学发光法价格高、耗时长和操作要求高的缺点,实现单人份定量检测。

[0023] (6) 本实用新型可批量生产,适用于临床快速诊断和现场快速诊断;易于保存,有利于基层单位推广。

附图说明

[0024] 为了更清楚地说明本实用新型实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单说明。显然,所描述的附图只是本实用新型的一部分实施例,而不是全部实施例,本领域的技术人员在不付出创造性劳动的前提下,还可以根据这些附图获得其他设计方案和附图。

[0025] 图1是本实用新型实施例一的结构示意图;

[0026] 图2是本实用新型实施例二的结构示意图:

[0027] 图3是本实用新型实施例三的结构示意图;

[0028] 图4是本实用新型实施例四的结构示意图。

具体实施方式

[0029] 以下将结合实施例和附图对本实用新型的构思、具体结构及产生的技术效果进行清楚、完整地描述,以充分地理解本实用新型的目的、特征和效果。显然,所描述的实施例只是本实用新型的一部分实施例,而不是全部实施例,基于本实用新型的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本实用新型保护的范围。另外,文中所提到的所有联接/连接关系,并非单指构件直接相接,而是指可根据具体实施情况,通过添加或减少联接辅件,来组成更优的联接结构。

[0030] 参照图1,一种抗缪勒管激素免疫层析定量检测试纸条,其包括PVCPVC底板5,所述PVC底板5上依次设有样品垫1、荧光标记物结合垫2、硝酸纤维素膜3和吸水垫4,所述样品垫1交叠压在荧光标记物结合垫2上,荧光标记物结合垫2为玻璃纤维膜,所述荧光标记物结合垫2上固定有生物素标记的抗缪勒管激素单克隆抗体(浓度0.3~1.5mg/mL)和链霉亲和素标记(或亲和素)的荧光蛋白(使用激发光波长530nm,发射光波长570nm,浓度0.1~1.0mg/mL);所述吸水垫4和荧光标记物结合垫2分别交叠压在硝酸纤维素膜3的两端,所述的硝酸纤维素膜3上设有检测线T和质控线C,所述检测线T固定有识别抗缪勒管激素另外一个表位的单克隆抗体(浓度0.5~3mg/mL),所述质控线C固定有羊抗鼠IgG多克隆抗体(浓度0.2~2.0mg/mL),质控线C用于检测试纸条的有效性。

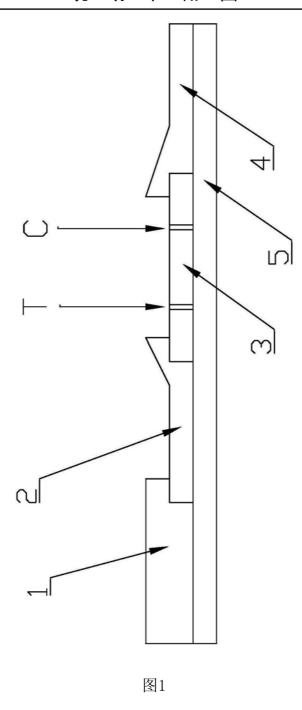
[0031] 将生物素标记的抗缪勒管激素单克隆抗体和链霉亲和素(或亲和素)标记的荧光蛋白固定在荧光标记物结合垫2上,将有识别抗缪勒管激素另外一个表位的单克隆抗体和羊抗鼠IgG多克隆抗体固定于硝酸纤维素膜上分别作为检测线T和质控线C。当待测样品加到样品垫1上后,通过层析作用向前移动,样品中抗缪勒管激素与荧光标记物结合垫2上结合荧光标记物(荧光蛋白)的抗缪勒管激素抗体(Mab-AMH*Fluoro)反应形成复合物AMH—Mab-AMH*Fluoro,在层析作用下反应复合物继续向前移动经过硝酸纤维膜上包被的AMH抗体(检测线)时,反应复合物被包被的AMH抗体捕获形成复合物(Mab-AMH—AMH—Mab-AMH*Fluoro)(检测线),通过荧光免疫分析仪读取检测线的反应信号,在激发光源的作用下,荧光物质发射特定波长的荧光信号,荧光免疫分析仪俘获荧光信号,通过信号转化及设定的标准曲线自动转化为定量数值,计算出样本中抗缪勒管激素的浓度,得到抗缪勒管激素检测结果。

[0032] 作为上述技术方案的进一步改进,参照图3,所述荧光标记物结合垫2包括层叠的第一荧光标记物结合垫20和第二荧光标记物结合垫21,所述第一荧光标记物结合垫20的一端垫在样品垫1的下方,所述第二荧光标记物结合垫21交叠压在硝酸纤维素膜3的一端。荧光标记物结合垫2的分层设置,便于将荧光标记物结合垫2安装在样品垫1和硝酸纤维素膜3之间。

[0033] 作为上述技术方案的进一步改进,参照图3所述的检测线T靠近荧光标记物结合垫2一方端,所述质控线C靠近吸水垫4一方,所述检测线T和质控线C相隔距离在4-8mm之间。

[0034] 作为上述技术方案的进一步改进,参照图2和图4,还包括卡壳,所述PVC底板5、样品垫1、荧光标记物结合垫2、硝酸纤维素膜3和吸水垫4均置于卡壳6内,所述卡壳6壳面上对应于硝酸纤维膜3的位置设有观察窗8,卡壳6壳面上对应于样品垫1的位置设有加样孔7。

[0035] 作为上述技术方案的进一步改进,所述观察窗8为长方形孔。


[0036] 作为上述技术方案的进一步改进,所述加样孔7为椭圆形孔。

[0037] 作为上述技术方案的进一步改进,所述荧光蛋白是绿色荧光蛋白、藻胆蛋白中的一种。

[0038] 作为上述技术方案的进一步改进,所述样品垫1为经表面活性剂缓冲液浸泡处理后干燥的玻璃纤维构件。样品垫由玻璃纤维构成,经表面活性剂缓冲液浸泡处理,干燥后使用。所述样品垫1的裁剪宽度为0.3~0.5cm。

[0039] 作为上述技术方案的进一步改进,所述卡壳6包括塑料上壳60和塑料下壳61,所述塑料上壳60扣合塑料下壳61上后形成卡壳6。

[0040] 以上是对本实用新型的较佳实施方式进行了具体说明,但本实用新型创造并不限于所述实施例,熟悉本领域的技术人员在不违背本实用新型精神的前提下还可作出种种的等同变型或替换,这些等同的变型或替换均包含在本申请权利要求所限定的范围内。

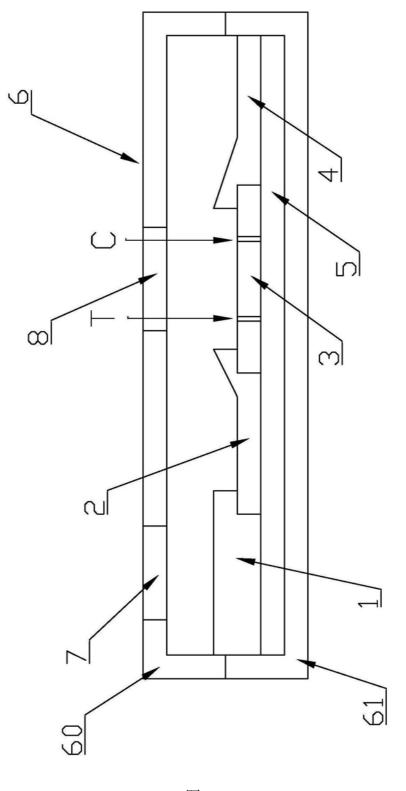
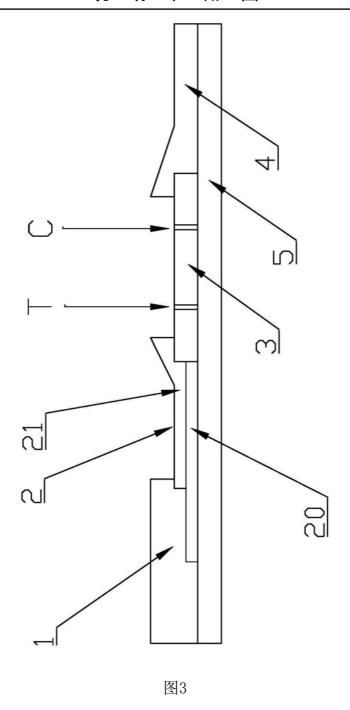
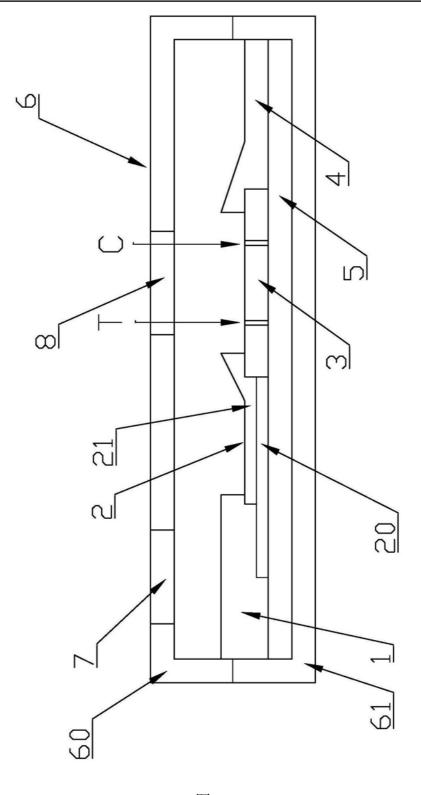
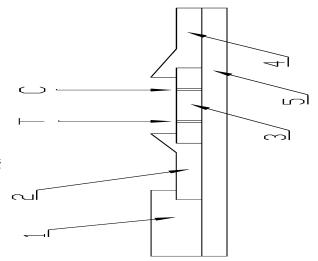



图2




图4

专利名称(译)	一种抗缪勒管激素免疫层析定量检测试纸	条		
公开(公告)号	<u>CN208580108U</u>	公开(公告)日	2019-03-05	
申请号	CN201820492323.0	申请日	2018-04-08	
[标]申请(专利权)人(译)	广州天宝颂原生物科技开发有限公司			
申请(专利权)人(译)	广州天宝颂原生物科技开发有限公司			
当前申请(专利权)人(译)	广州天宝颂原生物科技开发有限公司			
[标]发明人	宋建勋 王小明 夏坤 卢艳华 佟顺刚			
发明人	宋建勋 王小明 夏坤 卢艳华 佟顺刚			
IPC分类号	G01N33/577 G01N33/558 G01N33/533			
外部链接	Espacenet SIPO			

摘要(译)

本实用新型公开了一种抗缪勒管激素免疫层析定量检测试纸条,包括 PVC底板、样品垫、荧光标记物结合垫、硝酸纤维素和吸水垫;所述试 纸条由样品垫、荧光标记物结合垫、硝酸纤维素、吸水垫依次搭接粘贴 在PVC底板上构成。所述荧光标记物结合垫上固定有生物素标记的抗缪 勒管激素单克隆抗体和链霉亲和素标记的荧光蛋白;所述硝酸纤维膜上 有检测线和质控线,检测线包被抗缪勒管激素单克隆抗体,其与上述生 物素标记的抗缪勒管激素单克隆抗体具有不同的识别表位。本实用新型 与目前常见的检测抗缪勒管激素的方法相比,如:化学发光法/酶联免疫 吸附法,不仅大大缩短了检测时间,同时还提高了检测灵敏度。

