(19)中华人民共和国国家知识产权局

(12)发明专利申请

(10)申请公布号 CN 111366719 A (43)申请公布日 2020.07.03

(21)申请号 201811591675.2

(22)申请日 2018.12.25

(71)申请人 镇江亿特生物科技发展有限公司 地址 212009 江苏省镇江市新区丁卯经十 二路668号

(72)发明人 杜霞 袁超 丁炎

(51) Int.CI.

 $\textit{GO1N}\ \textit{33/533} (2006.01)$

GO1N 33/58(2006.01)

GO1N 21/64(2006.01)

权利要求书1页 说明书5页

(54)发明名称

一种检测赛庚啶的时间分辨荧光免疫试剂 盒

(57)摘要

本发明公开了一种检测赛庚啶的时间荧光分辨荧光免疫分析试剂盒。所述检测赛庚啶的时间分辨荧光免疫分析检测试剂盒是由多孔包被板、缓冲液、赛庚啶标准品、赛庚啶的抗体冻干品、铕标记的羊抗鼠抗体、洗涤液和增强液所组成。所述检测赛庚啶的时间荧光免疫分析试剂盒的检测方法包括下列步骤:(1)免疫原的制备;(2)包被原的制备;(3)单克隆抗体的制备;(4)样品的前处理及检测。本发明检测时间短、平均回收率高、样品前处理简单、能现场操作检测,应用广泛,检测成本低,同时具有检测特异性强,批内和批间差异小、灵敏度高和操作简单快速,且特别适合于大批量样品的检测等优点。

- 1.一种检测赛庚啶的时间分辨荧光免疫分析试剂盒,其特征在于:由多孔包被板,缓冲液,赛庚啶标准品,赛庚啶的抗体冻干品,铕标记的羊抗鼠抗体,洗涤液和增强液所组成。
- 2.一种根据权利要求1所述检测赛庚啶的时间分辨荧光免疫分析试剂盒,包括免疫原、 包被原和单克隆抗体的制备以及样品前处理,其特征在于:
 - (1) 将赛庚啶与牛血清白蛋白偶联,得到免疫原;
 - (2) 将赛庚啶与卵血清蛋白偶联,得到包被原;
- (3) 用步骤(1)的免疫原免疫小鼠,通过杂交瘤技术,得到分泌抗赛庚啶的单克隆抗体的杂交瘤细胞株;
- (4) 以体内诱生腹水法大量制备抗体,使用Protein G柱进行纯化,获得抗赛庚啶的单克隆抗体
 - (5) 用步骤(2)的包被原包被固相载体;
- (6) 将动物组织先经过酸解提取后,再过MAX柱净化,最后加入衍生试剂和催化剂进行处理,得到待测产物;
- (7) 将步骤(6)的待检物进行测量荧光强度cps,对照标准曲线计算样品中的赛庚啶赛 庚啶含量。
- 3.根据权利要求1所述检测赛庚啶的时间荧光免疫分析法试剂盒,其特征在于:所述的固相载体是多孔包被板,采用96孔的多微孔包被板作为固相载体。
- 4.根据权利要求1所述检测赛庚啶的时间荧光分辨免疫分析法试剂盒,其特征在于:所述的衍生试剂是丁胺。
- 5.根据权利要求1所述检测赛庚啶的时间分辨荧光免疫分析法试剂盒,其特征在于:所述的催化剂是腈基磷酸二乙酯。
- 6.根据权利要求1所述检测赛庚啶的时间荧光免疫分析法试剂盒,其特征在于:所述步骤 (6) 和 (7) 具体为取包被有赛庚啶-0VA的微孔包被板,加入50 μ L处理好的样品到各自的微孔中,加入50 μ L以缓冲液稀释的赛庚啶抗体,25~37°C振荡0.5~1小时,洗涤液洗三次,加以缓冲液稀释的100 μ L Eu^{3+} -羊抗鼠抗体,25~37°C振荡0.5~1小时,洗涤液洗六次,加200 μ L增强液振荡5分钟后测量荧光强度cps,从标准曲线计算样品中的赛庚啶含量。

一种检测赛庚啶的时间分辨荧光免疫试剂盒

技术领域

[0001] 本发明属于生物检测领域,具体的说,涉及一种检测赛庚啶的时间分辨荧光免疫分析试剂盒。

背景技术

[0002] 赛庚啶(Cyproheptadine,CYP) 是一种人用药,在临床上用于治疗过敏反应导致的皮炎等疾病,由于该药具有可抑制下丘脑的饱觉中枢而刺激食欲的作用,可以促进动物生长。2010年,上海市兽药饲料检测所首次发现 CYP 被一些不法畜牧养殖企业作为新型养殖促进剂非法使用,而CYP在畜产品中的残留对消费者的健康极有危害。2010年底,中国农业部第 1519 号公告《禁止在饲料和动物饮水中使用的物质》明确禁止使用该类药物作为家畜的生产促进剂,2012年,上海市和江苏省率先开展了地产生猪出栏前CYP监测。

[0003] 动物口服 CYP 后 40% 以上由尿液排泄,主要为原形药物及葡萄糖醛酸结合的季铵盐型 CYP,不同动物的尿液中代谢物成分含量有所不同。可通过检测猪尿中的 CYP 残留以监控其在养殖业的非法使用。

[0004] 在赛庚啶的检测方法方面,目前最为常用的方法包括高效液相色谱法(HPLC)、气相色谱-质谱联用(GC-MS)、液相色谱-质谱联用(LC-MS)、酶联免疫吸附分析法(ELISA)等方法。高效液相色谱法(HPLC)具有检测精确度高、假阳性率低的特点;高效液相色谱法(HPLC)的主要确定是仪器价格昂贵、操作比较繁琐,耗时长,检测成本高。气相色谱-质谱联用(GC-MS)法灵敏度高,假阳性率低;但该方法样品需要衍生化处理,造成实验结果会有偏差。液相色谱-质谱联用(LC-MS)可对尿液、血液、毛发等样品进行检测,但同上面的方法类似,实验操作步骤繁琐,检测成本高。酶联免疫吸附分析法(ELISA)是当前应用最广的检测技术之一,主要优点在于检测速度快,样品前处理简单,操作简单,检测成本低,同时便于用于大批量样品的检测。

[0005] 而时间分辨荧光免疫分析法(TR-FIA)由于其特异性强、灵敏度高、操作简单、廉价,且特别适于大批量样品的检测等优点而越来越被人们所重视和采用。目前还没有针对赛庚啶检测的时间荧光免疫分析法的专利和文献报道。

发明内容

[0006] 为解决以上技术问题,本发明的目的在于提供一种蔬菜水果中赛庚啶残留的检测时间分辨荧光免疫分析试剂盒。

[0007] 本发明的目的之二在于提供一种快速简便地检测蔬菜水果中赛庚啶的时间分辨 荧光免疫分析试剂盒的检测方法,用于定量或定性地检测农作物中赛庚啶残留量。

[0008] 本发明目的之一是这样实现的:检测赛庚啶的时间分辨荧光免疫分析试剂盒,其关键在于由多孔包被板、缓冲液、赛庚啶标准品溶液、抗赛庚啶的抗体冻干品、铕标记的兔抗鼠抗体、洗涤液和增强液体所组成。

[0009] 本发明目的之二是这样实现的:检测赛庚啶的时间分辨荧光免疫分析试剂盒的检

测方法,包括免疫原、包被原和单克隆抗体的制备以及样品前处理及检测,其关键在于:

- (1) 免疫原的制备:将半抗原赛庚啶与牛血清白蛋白(BSA)偶联,得到免疫原(赛庚啶-BSA):
- (2) 包被原的制备:将半抗原赛庚啶与卵血清白蛋白(OVA) 偶联,得到包被原(赛庚啶-OVA);
 - (3) 单克隆抗体的制备:
- a. 用步骤(1)的免疫原(赛庚啶-BSA)免疫小鼠,通过杂交瘤技术,得到分泌抗赛庚啶的单克隆抗体的杂交瘤细胞株;
- b. 以体内诱生腹水法大量制备抗体,使用Protein G柱进行纯化,获得抗赛庚啶的单克隆抗体IgG;
 - c. 用步骤(2)的包被原包被96孔包被板;
 - (4) 样品的前处理及检测:

取包被有包被原(赛庚啶-0VA)的多孔包被板,加入50 μ L的赛庚啶到各自的微孔中,加50 μ L以缓冲液稀释的抗赛庚啶抗体,25 \mathbb{C} \sim 37 \mathbb{C} 振荡0.5~1小时,洗涤液洗3次,加以缓冲液稀释的100 μ L Eu^{3+} -兔抗鼠抗体,25 \mathbb{C} \sim 37 \mathbb{C} 振荡0.5~1小时,洗涤液洗6次,加200 μ L增强液振荡5分钟后测量荧光强度cps,根据标准曲线计算样品中的赛庚啶含量。

[0010] 上述的固相载体是多孔包被板,采用96孔的多孔包被板作为固相载体。

[0011] 本发明主要采用时间分辨荧光免疫分析方法来检测赛庚啶。采用时间分辨荧光免疫分析法的技术主要有两个方面:第一,特异性单克隆抗体制备,用偶联的免疫原免疫小鼠,通过杂交瘤技术,得到分泌抗赛庚啶的单克隆抗体的杂交瘤细胞株;以体内诱生腹水法大量制备抗体,使用Protein G柱进行纯化,获得抗赛庚啶的单克隆抗体IgG。第二,Eu³+标记抗体的制备。

[0012] 本发明测定方法:测定的基础是标记免疫反应。包被有赛庚啶-0VA的多孔包被板,加入测试样品到各自的微孔中,再加入抗赛庚啶抗体,振荡反应,游离的赛庚啶与微孔板上的赛庚啶-0VA竞争抗赛庚啶抗体,洗涤液洗涤,没有连接的赛庚啶抗体在洗涤步骤中被除去。加入Eu³+-兔抗鼠抗体,进行标记免疫反应,再用洗涤液洗涤,反应后没有连接的Eu³+-兔抗鼠抗体在洗涤步骤中被除去。加增强液振荡后,在紫外灯的激发下发射很强的荧光,用时间分辨荧光仪测定其荧光强度cps,荧光强度与样品中的浓度成反比,对照标准曲线即可确定样品中赛庚啶的量。

[0013] 本发明检测方法不需要昂贵的仪器,样品前处理简单、能现场操作检测,应用广泛,该方法灵敏、准确、快速,操作简便、特异性强,适用于大批样品的快速检测。

具体实施方式

实施例

[0014] 1、免疫原与包被原制备

本发明免疫原(赛庚啶-BSA)的合成:准确称取赛庚啶324mg溶解在2mL N,N-二甲基甲酰胺中,搅拌下逐滴加入γ-氨基丁酸溶液,搅拌反应3小时,调节反应液pH 10左右。离心除掉沉淀物。将上述反应逐滴加入BSA溶液中(320mg BSA溶解于5mL生理盐水),再加入N-羟基

琥珀酰亚胺 (NHS) 23mg, N, N-二环己基碳二亚胺 (DCC) 45.4mg, 4℃反应过夜, 离心除去沉淀, 取上清液用磷酸缓冲液 (PBS) 透析3天,每6小时更换透析液,将所得产物低压冻干,于-20℃保存备用;

包被原(赛庚啶-OVA)的合成:在上述反应中,将BSA换成OVA后,得到反应偶联物赛庚啶-OVA,该偶联物作为TR-FIA检测时作为包被原使用。

[0015] 2、单克隆抗体制备

2.1动物免疫

用步骤1制备的免疫原分别免疫6周龄雌性Balb/c小鼠,每只小鼠的免疫剂量为100μg/0.2mL。首次免疫,用无菌0.01mol/L pH7.4 PBS溶解免疫原(赛庚啶-BSA),再与等量弗氏完全佐剂混合,完全乳化,劲背部皮下分2~3点注射;加强免疫,用0.01mol/L pH7.4 PBS溶解免疫原与等量弗氏完全佐剂混合,充分乳化,小鼠腹腔注射。每次间隔14~21天,第3次免疫后7~10天开始对免疫小鼠尾静脉采血,收集血清,用ELISA检测小鼠血清效价。末次免疫后间隔4周以上,在细胞融合前3~4天,腹腔注射赛庚啶-BSA抗原100μg/0.2mL/只,注射后每天注意观察,保证融合前小鼠状态良好。

[0016] 2.2单克隆抗体制备

分离免疫小鼠的脾细胞,并进行匀浆制备免疫脾细胞。取1只免疫的Balb/c小鼠,从眼 眶放血分离血清作为阴性血清,处死。小鼠用75%酒精浸泡5min,进行整体消毒。将小鼠四肢 固定,然后用镊子夹住小鼠下腹部皮肤,剪开一小口,再用镊子撕开皮肤,露出腹膜,换一套 镊子和剪刀,在腹部中央腹膜上用剪刀剪开一小口。换一套镊子和剪刀,用剪刀剪开腹膜, 露出脾脏,再换一套器械用镊子夹住脾脏,用剪刀将脾脏外膜剪破,然后放入事先灭菌的匀 浆器中。加适量基础培养基(RPMI-1640)于匀浆器中,进行研磨,挤压出脾细胞,取出匀浆器 的匀浆棒,再补加适量基础培养基(RPMI-1640),静置2min,将上层细胞液吸取后,放入腹腔 巨噬细胞离心管中,重复上述操作1次。1200r/min离心10min,除去上清。将108个免疫脾细 胞与1~2×10⁷个SP2/0骨髓瘤细胞按照1:10或1:5的比例加入离心管中,进行混匀,然后于 1500r/min水平离心10min,弃去上清。将离心管倒扣在灭菌的吸水纸上,把管中液体吸干。 用手指或桌面轻轻敲击管底,让沉淀的细胞松动,再把离心管置于37℃水浴锅中。在1min内 缓慢将50% PEG 0.8mL滴入离心管中,边加边轻轻用吸管尖搅拌沉淀细胞。再继续搅拌30s 后,静置1min,然后慢慢加入事先进行37℃预温的40mL基础培养基(RPMI-1640)。加基础培 养基方法为:第1min内逐滴滴入1mL, 第2min内逐滴滴入2mL, 第3min内逐滴滴入3mL, 第 4min内逐滴滴入4mL,在每次加培养基时需缓慢加入,并轻轻地搅拌培养基,最后将剩余的 RPMI-1640培养基慢慢加入。1000r/min离心5min,除去上清。然后用HAT培养基悬浮混合的 细胞,再加入饲养脾细胞。根据需要补加适量的HAT培养基,混合均匀,再将含有饲养细胞的 细胞融合液滴加到96孔细胞培养板上,滴加量约为150 µL/孔。将培养板置于37℃、5% CO2 饱和湿度培养箱中,进行培养。用建立的间接ELISA筛选阳性细胞克隆。选择强阳性集落生 长的孔,用有限稀释法进行克隆。并对其他阳性孔,进行24孔扩大培养,用间接ELISA和间接 竞争ELISA对扩大培养孔的上清液进行检测,对间接ELISA和间接竞争ELISA均为阳性孔的 细胞进行液氮冷冻保存。通过融合检测,并进行3次亚克隆后获得杂交瘤细胞株。杂交瘤细 胞株经过多次传代、冻存、复苏,杂交瘤细胞分泌抗体稳定。进行杂交瘤细胞染色体的计数, 将每株杂交瘤细胞随机选择20个细胞,进行细胞染色体条数的计数,再计算细胞染色体条

数的平均值。小鼠脾细胞染色体数为40条,SP2/0细胞的染色体数目平均数为62~68条,而本试验获得的20株杂交瘤细胞染色体数目都在92~103条之间,平均为96.8条。本杂交瘤细胞染色体数目高于两亲本细胞的染色体数目,说明是两种细胞的杂交产物。取细胞株细胞分泌的培养上清液,进行1:10稀释后,用夹心ELISA方法测定抗体亚型,该细胞株分泌的抗体亚型为IgG1。采用辛酸-硫酸铵法对小鼠腹水进行纯化。该单克隆抗体可用于制备时间分辨荧光检测试剂盒。

[0017] 2.3单克隆抗体的纯化

采用辛酸-硫酸铵法对小鼠腹水进行纯化:取小鼠腹水10mL,加入等体积的巴比妥缓冲液,适量的二氧化硅混合,室温振荡30min。室温静置15min后,取上清于洁净离心管中,4℃,1800r/min离心20min;取上清液18mL,加入36mL 0.06mo1/L醋酸钠缓冲液,用HC1调pH值至4.5,充分搅拌下在30min内缓慢加入辛酸297 μ L;继续搅拌10min,然后转入4℃冰箱静置2h,4℃,15000r/min离心30min,上清液经0.45 μ m滤膜过滤后体积为50mL;加入5mL 0.1mo1/L的磷酸缓冲液,用Na0H调pH值至7.6,搅拌下缓缓加入硫酸铵至终浓度为0.277g/mL;4℃冰箱静置2h后,4℃,12000r/min离心30min,弃上清;沉淀用5mL 0.1mo1/L的磷酸缓冲液重悬,装入透析袋,用5000mL 0.01mo1/L μ H7.2 PBS缓冲液充分透析后,再用2000 μ L蒸馏水透析,最后用3000mL三蒸去离子水透析;然后4℃,12000r/min离心30min,弃沉淀,收集上清液,测蛋白浓度。做SDS-PAGE电泳,鉴定单克隆抗体的纯度。

[0018] 2.4兔抗鼠IgG抗体的制备

用Balb/C小鼠IgG免疫健康新西兰大白兔,制备高效价的兔抗鼠IgG高免血清,采用饱和硫酸铵沉淀法对血清进行粗提,经G-200过柱后得到高纯度的兔抗鼠IgG。

[0019] 3.1、制备试剂盒和检测样品

取溶解于50 mmo1/L PBS pH7.0的5g/L兔抗鼠抗体1~2mL,经PD-10柱转换缓冲条件,洗脱液为含0.155mmo1/L NaC1的50 mmo1/L Na₂CO₃-NaHCO₃ pH8.5缓冲液。收集蛋白峰,经紫外吸收分析定量(1.46A280-0.74A260),用上述洗脱液稀释兔抗鼠抗体至2g/L。取500~1000 μ L稀释后的兔抗鼠抗体加入含0.2~0.4mg的Eu³+-N₂-[p-异氰酸-苄基]-二乙烯三胺四乙酸(Eu³+-DTTA)的小瓶中,30℃磁力搅拌反应20小时。反应液经用80mmo1/L Tris-HC1 pH7.8缓冲液平衡的Sepharose CL-6B柱(1×40cm)层析,A₂₈₀监测收集蛋白峰,稀释分装备用。

[0020] 3.2包被板固相抗原制备

将赛庚啶-0VA用50mmo1/LNa₂CO₃-NaHCO₃ pH9.6缓冲液稀释至1mg/L的包被液,96孔包被板各孔加100 μ L,4℃放置过夜。弃去包被液,冲洗三次,加150 μ L含3g/L 0VA的上述缓冲液封闭,4℃放置过夜。弃去封闭液,真空抽干,板条密封后置-20℃冷冻保存。

[0021] 3.3试剂的配制

- (1) 赛庚啶标准品溶液配制:将赛庚啶标准品,稀释成为0ng/mL,0.01ng/mL,0.025ng/mL,0.1ng/mL,0.25ng/mL,10ng/mL,2.5ng/mL,10ng/mL,25ng/mL,100ng/mL系列浓度,稀释液为0.1mo1/L pH7.5磷酸盐缓冲液;
- (2)缓冲液:8mmo1/L NaC1、0.2% OVA、50μmo1/L二乙烯三胺五乙酸(DTPA)、0.1mL/L Tweeen-80和0.1%NaN3的50mmo1/L Tris-HC1 pH7.8;
- (3)洗涤液为:14.5mmol/L NaCl、0.2mL/L Tweeen-80和0.2%NaN3的50mmol/L Tris-HCl pH7.8;

(4)增强液的配制:由15μmol β-萘甲酰三氟丙酮、50μmol三正辛基氧化膦和1mL曲拉通 X-100加入pH3.2邻苯二甲酸氢钾缓冲液中,再定容至1L配制而成。

[0022] 3.4试剂盒提供的试剂

基于上述制备的试剂,本发明用于检测赛庚啶的时间分辨荧光免疫分析试剂盒包括如下材料:

- (1)96孔酶标板×1块;
- (2) 赛庚啶标准品1mg/mL/瓶;
- (3) 抗赛庚啶抗体冻干品,用时用0.5 mL蒸馏水溶解;
- (4) Eu³⁺-兔抗鼠抗体冻干品,用时用0.5 mL蒸馏水溶解;
- (5) 增强液:15mL;
- (6)10×洗涤液:30mL:
- (7)缓冲液:30 mL。

[0023] 3.5测定之前注意事项:

- A. 使用之前将所有试剂回升至室温(18-30℃);
- B.使用之后立即将所有试剂放回2-8℃:
- C.如果样品量大建议使用多通道移液器;
- D. 在所有恒温孵育过程中,避免光线照射,用盖子盖住微孔;
- E.取出需用数量的微孔板及框架,将不用的微孔板放进原锡箔袋中并且与提供的干燥剂一起重新密封,保存于2-8℃。

[0024] 3.6具体检测步骤如下:

取赛庚啶-0VA板条,加入50 μ L的赛庚啶到各自的微孔中,加50 μ L以缓冲液稀释的抗赛庚啶抗体,25℃~37℃振荡0.5~1小时,洗涤液洗3次,加以缓冲液稀释的100 μ L Eu^{3+} -兔抗鼠抗体,25℃~37℃振荡0.5~1小时,洗涤液洗6次,加200 μ L增强液振荡5分钟后测量荧光强度cps,从标准曲线计算样品中的赛庚啶含量。

[0025] 3.7按下列步骤制备试剂盒和检测苹果、玉米、蔬菜样品:

- (1)制备试剂盒同实施例:
- (2) 具体检测步骤如下:

取赛庚啶-0VA板条,加入50 μ L的赛庚啶到各自的微孔中,加50 μ L以缓冲液稀释的抗赛庚啶抗体,25° \sim 37° ∞ 振荡0.5~1小时,洗涤液洗3次,加以缓冲液稀释的100 μ L Eu^{3+} -兔抗鼠抗体,25° ∞ 37° ∞ 振荡0.5~1小时,洗涤液洗6次,加200 μ L增强液振荡5分钟后测量荧光强度cps,根据标准曲线计算样品中的赛庚啶含量。

公开(公告)号 CN	111366719A	公开(公告)日	2020-07-03	
申请号CNZ	201811591675.2	申请日	2018-12-25	
[标]申请(专利权)人(译) 镇江	I亿特生物科技发展有限公司			
申请(专利权)人(译) 镇江	I亿特生物科技发展有限公司			
当前申请(专利权)人(译) 镇江	I亿特生物科技发展有限公司			
[标]发明人 杜靇 袁起 丁炎	<u> </u>			
发明人 杜雷 袁超 丁炎	<u> </u>			
IPC分类号 G01	1N33/533 G01N33/58 G01N21/6	4		
外部链接 <u>Esp</u>	pacenet SIPO			

摘要(译)

本发明公开了一种检测赛庚啶的时间荧光分辨荧光免疫分析试剂盒。所述检测赛庚啶的时间分辨荧光免疫分析检测试剂盒是由多孔包被板、缓冲液、赛庚啶标准品、赛庚啶的抗体冻干品、铕标记的羊抗鼠抗体、洗涤液和增强液所组成。所述检测赛庚啶的时间荧光免疫分析试剂盒的检测方法包括下列步骤:(1)免疫原的制备;(2)包被原的制备;(3)单克隆抗体的制备;(4)样品的前处理及检测。本发明检测时间短、平均回收率高、样品前处理简单、能现场操作检测,应用广泛,检测成本低,同时具有检测特异性强,批内和批间差异小、灵敏度高和操作简单快速,且特别适合于大批量样品的检测等优点。