

US009743947B2

(12) United States Patent Price et al.

(54) END EFFECTOR WITH A CLAMP ARM ASSEMBLY AND BLADE

(71) Applicant: Ethicon Endo-Surgery, LLC, Guaynabo, PR (US)

Inventors: Daniel W. Price, Loveland, OH (US); Jeffrey D. Messerly, Cincinnati, OH (US); Prasanna Malaviya, Mason, OH (US); Robert J. Beetel, III, Sunnyvale, CA (US); Timothy G. Dietz, Wayne, PA (US); David A. Witt, Maineville, OH (US); Douglas J. Turner, Cincinnati, OH (US); David K. Norvell, Monroe, OH (US); Kip M. Rupp, New Richmond, OH (US); John A. Weed, III, Monroe, OH (US); Kevin D. Felder, Cincinnati, OH (US); Kevin L. Houser, Springboro, OH (US); Paul T. Franer, Cincinnati, OH (US); Craig N. Faller, Batavia, OH (US); Craig T. Davis, Cincinnati, OH (US)

(73) Assignee: **Ethicon Endo-Surgery, LLC**, Guaynabo, PR (US)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 14/963,686

(22) Filed: Dec. 9, 2015

(65) Prior Publication Data

US 2016/0095617 A1 Apr. 7, 2016

Related U.S. Application Data

- (62) Division of application No. 13/833,706, filed on Mar. 15, 2013, now Pat. No. 9,241,728.
- (51) **Int. Cl.**A61B 17/295 (2006.01)

 A61B 17/32 (2006.01)

 (Continued)

(10) Patent No.: US 9,743,947 B2

(45) **Date of Patent:** Aug. 29, 2017

(52) U.S. Cl.

CPC .. **A61B** 17/320092 (2013.01); **A61B** 17/2909 (2013.01); **A61B** 18/1445 (2013.01);

(Continued)

(58) Field of Classification Search

CPC A61B 17/320092; A61B 17/320068; A61B 17/320016; A61B 2017/2926;

(Continued)

(56) References Cited

U.S. PATENT DOCUMENTS

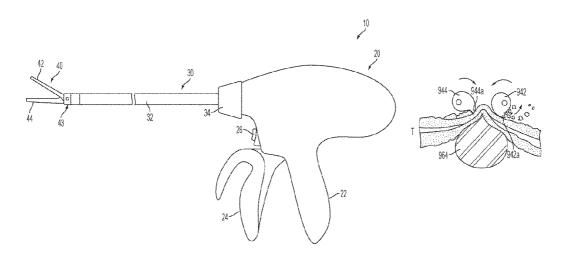
969,528 A 9/1910 Disbrow 1,570,025 A 1/1926 Young (Continued)

FOREIGN PATENT DOCUMENTS

AU 2003241752 A1 9/2003 CA 2535467 A1 4/1993 (Continued)

OTHER PUBLICATIONS

International Search Report for PCT/US2014/022449, dated Sep. 11, 2014 (6 pages).


(Continued)

Primary Examiner — Michael Carey

(57) ABSTRACT

An end effector of a surgical instrument may generally comprise a blade, and a clamp arm assembly comprising a clamp arm movable between an open position and a closed position relative to the blade, and at least one camming member rotationally attached to the clamp arm, wherein the at least one camming member is configured to rotate relative to the blade as the clamp arm moves from the open position to the closed position.

21 Claims, 42 Drawing Sheets

(51)	Int. Cl.		4,156,187			Murry et al.
	A61B 17/29	(2006.01)	4,167,944		9/1979	
	A61B 18/14	(2006.01)	4,188,927		2/1980	
			4,200,106			Douvas et al.
	A61B 18/00	(2006.01)	4,203,444			Bonnell et al.
	A61B 90/00	(2016.01)	4,300,083		11/1981	
(52)	U.S. Cl.		4,302,728			Nakamura
(32)		02 (2016 02). 461B 2017/2012	4,306,570			Matthews
		03 (2016.02); A61B 2017/2913	4,445,063		4/1984	
		B 2017/2916 (2013.01); A61B	4,491,132		1/1985	
	2017/291	19 (2013.01); A61B 2017/2926	4,494,759		1/1985	
	(2013.01);	A61B 2017/320064 (2013.01);	4,504,264			Kelman
		02 (2013.01); A61B 2018/1455	4,512,344		4/1985	
		01); <i>A61B 2090/037</i> (2016.02)	4,526,571			Wuchinich
(50)	,		4,541,638 4,545,374			Ogawa et al.
(58)	Field of Classification		4,574,615			Jacobson Bower et al.
	CPC A61B 2017/2	2929; A61B 2017/2933; A61B	4,617,927		10/1986	
	17/2909	; A61B 18/1445; A61B 90/03;	4,633,119			Thompson
		0/037; A61B 2017/2913; A61B	4,634,420			Spinosa et al.
		2916; A61B 2017/2919; A61B	4,640,279		2/1987	Beard
			4,641,053			Takeda
	2017/320	064; A61B 2018/00202; A61B	4,646,738		3/1987	
		2018/1455	4,646,756			Watmough et al.
	USPC 606/39,	45, 49, 51, 52, 205, 206, 207,	4,649,919			Thimsen et al.
		606/208, 209	4,662,068			Polonsky
	See application file for	r complete search history.	4,674,502		6/1987	
	application the 10	- 15mplete sealen motory.	4,708,127			Abdelghani
(56)	Dofowon	ces Cited	4,712,722			Hood et al.
(56)	Keleren	ices Cheu	4,808,154	A	2/1989	Freeman
	HC DATENT	DOCUMENTS	4,819,635	A	4/1989	Shapiro
	U.S. FAIENT	DOCUMENTS	4,827,911	Α	5/1989	Broadwin et al.
	1.812.002.4 7/1021	Davia	4,832,683			Idemoto et al.
	1,813,902 A 7/1931 2,188,497 A 1/1940		4,836,186		6/1989	
		Johnson	4,838,853		6/1989	
		Wallace	4,844,064			Thimsen et al.
	2,597,564 A 5/1952		4,850,354			McGurk-Burleson et al.
		Calosi et al.	4,852,578			Companion et al.
		Armstrong	4,862,890 4,865,159			Stasz et al. Jamison
	2,748,967 A 6/1956		4,867,157			McGurk-Burleson et al.
	2,845,072 A 7/1958	Shafer	4,878,493			Pasternak et al.
	2,849,788 A 9/1958	Creek	4,881,550		11/1989	
		Richards	4,896,009	A		Pawlowski
	· /	Balamuth et al.	4,903,696			Stasz et al.
		Balamuth et al.	4,915,643			Samejima et al.
	3,015,961 A 1/1962		4,922,902		5/1990	Wuchinich et al.
		Alfons	4,965,532	A	10/1990	Sakurai
	· · · · · · · · · · · · · · · · · · ·	Balamuth et al.	4,979,952		12/1990	Kubota et al.
	3,082,805 A 3/1963		4,981,756			Rhandhawa
	3,432,691 A 3/1969 3,433,226 A 3/1969	Povd	5,013,956			Kurozumi et al.
	3,489,930 A 1/1970		5,015,227			Broadwin et al.
		Winston et al.	5,026,370			Lottick
		Camp et al.	5,026,387			Thomas
		Balamuth	5,035,695			Weber, Jr. et al.
		Tatoian et al.	5,042,707	A	8/1991	
		Camp et al.	5,084,052		1/1992	
	3,614,484 A 10/1971		5,105,117 5,109,819			Yamaguchi Custer et al.
	3,616,375 A 10/1971		5,112,300			Ureche
	3,629,726 A 12/1971	Popescu	5,123,903			Quaid et al.
	3,636,943 A 1/1972	Balamuth	5,126,618			Takahashi et al.
	3,668,486 A 6/1972		D327.872			McMills et al.
		Balamuth	5,152,762			McElhenney
		Peyman et al.	5,162,044			Gahn et al.
	3,805,787 A 4/1974		5,163,421			Bernstein et al.
		Balamuth et al.	5,163,537	A	11/1992	Radev
		Antonevich	5,167,725	\mathbf{A}	12/1992	Clark et al.
		Gilliam, Sr. Balamuth	5,172,344		12/1992	
		Friedman	5,174,276		12/1992	Crockard
		Harris, Sr. et al.	D332,660			Rawson et al.
		Sokal et al.	5,176,677			Wuchinich
		Nikolaev et al.	5,176,695			Dulebohn
		Balamuth et al.	5,184,605			Grzeszykowski
		Newton et al.	5,188,102			Idemoto et al.
		Stella et al.	D334,173			Liu et al.
		Perdreaux, Jr.	5,209,719			Baruch et al.
		Balamuth et al.	5,213,569		5/1993	
	4,074,719 A 2/1978	Semm	5,214,339	A	5/1993	Naito

(56)		Referen	ces Cited	5,562,610			Brumbach
	U.S.	PATENT	DOCUMENTS	5,562,659 5,573,424	A	10/1996 11/1996	Poppe
				5,577,654		11/1996	
	,529 A		Meyer et al.	5,591,187 5,593,414		1/1997 1/1997	
	,282 A		Wuchinich	5,601,601			Tal et al.
	,937 A ,909 A		Kagawa Evans et al.	5,603,773			Campbell
	,910 A		Kajiyama et al.	5,607,436			Pratt et al.
	,236 A		Sasaki et al.	5,609,573		3/1997	Sandock
	,968 A	9/1993		5,618,304			Hart et al.
	,460 A		Klein et al.	5,618,492		4/1997	Auten et al.
	,129 A		Alexander	5,620,447 5,626,587		4/1997 5/1997	Smith et al. Bishop et al.
	,988 A .922 A	11/1993	L'Esperance, Jr.	5,626,595			Sklar et al.
,	,922 A ,957 A	11/1993		5,628,760			Knoepfler
	,925 A		Shipp et al.	5,630,420			Vaitekunas
	,166 A	1/1994	Vaitekunas et al.	5,632,717		5/1997	
	,607 A		Lo et al.	5,640,741 D381,077		6/1997 7/1997	
	,609 A		Pingleton et al.	5,649,937		7/1997	
	,800 A ,817 A		Foshee et al. Hoogeboom et al.	5,651,780		7/1997	Jackson et al.
	,795 A		Ryan et al.	5,653,713			Michelson
	,068 A		Rosar et al.	5,662,662			Bishop et al.
5,304	,115 A	4/1994	Pflueger et al.	5,669,922		9/1997	
	,474 S	5/1994		5,674,235 5,678,568		10/1997	Uchikubo et al.
	,976 A		Olson et al.	5,690,269			Bolanos et al.
	,023 A ,425 A		Green et al. Evans et al.	5,694,936			Fujimoto et al.
	,055 A		Davison et al.	5,695,510	A	12/1997	
	,299 A		Davison et al.	5,700,261			Brinkerhoff
5,326	,013 A		Green et al.	5,704,534			Huitema et al.
	,342 A		Pflueger et al.	5,709,680 5,711,472		1/1998	Yates et al.
	,420 A		Hilal et al. Middleman et al.	5,713,896			Nardella
	,937 A ,502 A		Estabrook et al.	5,715,817			Stevens-Wright et al.
	,474 A		Good et al.	5,717,306	Α	2/1998	Shipp
	,164 A		Imabayashi et al.	5,728,130			Ishikawa et al.
	,423 A		Weaver et al.	5,730,752			Alden et al.
	,994 A		Krauter et al.	5,733,074 5,741,226			Stöck et al. Strukel et al.
	,466 A ,557 A		Christian et al. Nita et al.	5,766,164			Mueller et al.
	,645 A		Klicek et al.	5,772,659			Becker et al.
	,429 A	12/1994		5,792,135			Madhani et al.
	,813 A	12/1994	Shipp	5,792,138		8/1998	
	,564 S		Medema	5,792,165 5,797,959			Klieman et al. Castro et al.
	,067 A	1/1995 2/1995	Greenstein et al.	5,805,140			Rosenberg et al.
	,215 A ,098 A		Tsuruta et al.	5,808,396		9/1998	Boukhny
	,187 A	2/1995		5,810,859			DiMatteo et al.
	,266 A		Brimhall	5,817,084	A	10/1998	
	,312 A		Yates et al.	5,817,119 5,823,197			Klieman et al. Edwards
	,334 A		Evans et al.	5,823,197			Klieman et al.
	,268 A ,887 S	4/1995 5/1995	Snipp Feinberg	5,828,160			Sugishita
	,481 A		Allen et al.	5,833,696		11/1998	Whitfield et al.
	,761 A		Narayanan et al.	5,836,897			Sakurai et al.
	,829 A		Olichney et al.	5,836,957			Schulz et al.
	,844 A	6/1995		5,843,109 5,851,212			Mehta et al. Zirps et al.
	,997 A .639 A		Sieben et al. Kuslich et al.	5,858,018			Shipp et al.
	,370 A		Vaitekunas	5,865,361	A	2/1999	
	,220 A	9/1995		5,873,873		2/1999	
,	,684 A		Schmidt et al.	5,873,882			Straub et al.
	,988 A		Fujio et al.	5,878,193 5,879,364			Wang et al. Bromfield et al.
	,443 A ,003 A		Cordis et al. Green et al.	5,883,615			Fago et al.
	,501 A		Park et al.	5,893,835			Witt et al.
	,162 A		Brumbach	5,897,523			Wright et al.
	,860 A		Middle et al.	5,897,569			Kellogg et al.
	,216 A		Julian et al.	5,903,607		5/1999	Tailliet
	,654 A		Failla et al.	5,904,681			West, Jr.
	,693 A ,738 A	4/1996 4/1996	Mackool Ciervo	5,906,627 5,906,628		5/1999	Spaulding Miyawaki et al.
	,736 A ,331 A		Kresch et al.	5,911,699		6/1999	Anis et al.
	,693 A	7/1996		5,916,229		6/1999	
	,675 A		Pitzen et al.	5,929,846	A	7/1999	Rosenberg et al.
	,671 A	9/1996	Yates	5,935,143		8/1999	
5,562	,609 A	10/1996	Brumbach	5,935,144	A	8/1999	Estabrook

(56)	Referei	nces Cited	6,231,565			Tovey et al.
	IIS PATENT	DOCUMENTS	6,233,476 6,238,366			Strommer et al. Savage et al.
	0.b. 1711L1VI	DOCUMENTO	6,245,065	B1	6/2001	Panescu et al.
5,938,633	A 8/1999	Beaupre	6,251,110			Wampler
5,944,718		Austin et al.	6,252,110 D444,365			Uemura et al. Bass et al.
5,944,737 5,947,984		Tsonton et al. Whipple	D445,092		7/2001	
5,954,736	A 9/1999	Bishop et al.	D445,764		7/2001	
5,954,746	A 9/1999	Holthaus et al.	6,254,623			Haibel, Jr. et al.
5,957,882 5,957,943		Nita et al. Vaitekunas	6,257,241 6,258,034			Wampler Hanafy
5,968,007		Simon et al.	6,267,761	B1	7/2001	Ryan
5,968,060	A 10/1999	Kellogg	6,270,831			Kumar et al.
5,974,342		Petrofsky	6,273,852 6,274,963			Lehe et al. Estabrook et al.
D416,089 5,980,510		Barton et al. Tsonton et al.	6,277,115		8/2001	
5,980,546			6,278,218			Madan et al.
5,989,274		Davison et al.	6,280,407 6,283,981			Manna et al. Beaupre
5,989,275 5,993,465		Estabrook et al. Shipp et al.	6,287,344			Wampler et al.
5,993,972		Reich et al.	6,290,575	B1	9/2001	Shipp
5,994,855	A 11/1999	Lundell et al.	6,299,591		10/2001	
6,024,741		Williamson, IV et al.	6,306,131 6,306,157		10/2001	Hareyama Shchervinsky
6,024,750 6,027,515		Mastri et al. Cimino	6,309,400		10/2001	
6,031,526		Shipp	6,311,783	B1	11/2001	Harpell
6,033,375		Brumbach	6,319,221			Savage et al. Lindemann et al.
6,033,399		Gines	6,325,795 6,325,799		12/2001	
6,036,667 6,036,707		Manna et al. Spaulding	6,325,811		12/2001	Messerly
6,048,224	A 4/2000	Kay	6,328,751		12/2001	
6,050,943		Slayton et al.	6,332,891 6,338,657		1/2001	Himes Harper et al.
6,051,010 6,056,735		DiMatteo et al. Okada et al.	6,340,352			Okada et al.
6,063,098		Houser et al.	6,350,269	B1		Shipp et al.
6,066,132		Chen et al.	6,352,532			Kramer et al.
6,066,151		Miyawaki et al. Orszulak et al.	6,358,264 6,364,888		3/2002 4/2002	Niemeyer et al.
6,068,627 6,068,647		Witt et al.	6,379,320			Lafon et al.
6,077,285		Boukhny	D457,958			Dycus et al.
6,083,191			6,383,194 6,384,690			Pothula Wilhelmsson et al.
6,086,584 6,090,120		Miller Wright et al.	6,387,109			Davison et al.
6,096,033		Tu et al.	6,388,657		5/2002	
6,099,542		Cohn et al.	6,391,042 6,398,779			Cimino Buysse et al.
6,109,500 6,110,127		Alli et al. Suzuki	6,402,743			Orszulak et al.
6,113,594		Savage	6,402,748	B1	6/2002	Schoenman et al.
6,117,152	A 9/2000	Huitema	6,405,733		6/2002	Fogarty et al.
6,126,629 6,129,735		Perkins Okada at al	6,416,486 6,423,073			Wampler Bowman
6,129,740		Okada et al. Michelson	6,423,082	B1	7/2002	Houser et al.
6,132,368	A 10/2000	Cooper	6,425,906			Young et al.
6,132,427		Jones et al.	6,428,538 6,428,539			Blewett et al. Baxter et al.
6,132,448 6,139,320		Perez et al. Hahn	6,432,118	B1	8/2002	Messerly
6,139,561	A 10/2000	Shibata et al.	6,436,114			Novak et al.
6,142,615		Qiu et al.	6,436,115 6,440,062		8/2002 8/2002	Beaupre
6,142,994 6,147,560		Swanson et al. Erhage et al.	6,443,968	B1		Holthaus et al.
6,152,902		Christian et al.	6,443,969	B1	9/2002	Novak et al.
6,154,198		Rosenberg	6,449,006 6,454,781		9/2002	Shipp Witt et al.
6,159,160 6,159,175		Hsei et al. Strukel et al.	6.454,782			Schwemberger
6,162,194			6,458,142	B1	10/2002	Faller et al.
6,165,150	A 12/2000	Banko	6,475,215			Tanrisever
6,174,310		Kirwan, Jr.	6,480,796 6,485,490		11/2002	Wampler et al.
6,179,853 6,183,426		Sachse et al. Akisada et al.	6,491,701			Tierney et al.
6,193,709	B1 2/2001	Miyawaki et al.	6,491,708	B2	12/2002	Madan et al.
6,204,592			6,497,715		12/2002	
6,205,855 6,206,844		Pfeiffer Reichel et al.	6,500,176 6,500,188			Truckai et al. Harper et al.
6,210,337		Dunham et al.	6,500,188			Wedekamp
6,210,402	B1 4/2001	Olsen et al.	6,506,208	B2		Hunt et al.
6,210,403		Klicek	6,511,478	B1		Burnside et al.
6,214,023		Whipple et al.	6,511,493 6,514,267		1/2003 2/2003	Moutafis et al.
6,228,080	D1 3/2001	Gines	0,314,20/	D2	2/2003	Jewell

(56)		Referen	ces Cited	6,770,072			Truckai et al.
	II S	DATENIT	DOCUMENTS	6,773,409 6,773,443			Truckai et al. Truwit et al.
	0.5.	FAILINI	DOCUMENTS	6,773,444			Messerly
6,524.	251 B2	2/2003	Rabiner et al.	6,778,023	B2	8/2004	Christensen
	316 B1		Nicholson et al.	6,783,524			Anderson et al.
	736 B1		Attinger et al.	6,786,382			Hoffman
	784 B2		Truckai et al.	6,786,383 6,790,173		9/2004	Stegelmann Saadat et al.
	272 B2 291 B2		Christopherson et al. Friedman et al.	6,790,216			Ishikawa
	452 B1		Lavigne	6,796,981			Wham et al.
	456 B1		Freeman	D496,997			Dycus et al.
	260 B1		Markel et al.	6,802,843			Truckai et al.
, ,	376 B2		Bishop	6,808,525 6,809,508			Latterell et al. Donofrio
	983 B2 035 B1	5/2003	Cronin et al.	6,810,281			Brock et al.
	558 B1		Lindenmeier et al.	6,827,712	B2	12/2004	Tovey et al.
	563 B2	6/2003		6,828,712			Battaglin et al.
	632 B2		Zisterer et al.	6,835,082		2/2004	Gonnering Hoey et al.
	969 B1		Rittman, III et al.	6,849,073 6,860,878		3/2005	
	427 B1 451 B1		Goble et al. Marucci et al.	6,863,676			Lee et al.
	408 S		Bromley	6,869,439	B2		White et al.
	277 B2		Giordano et al.	6,875,220			Du et al.
	200 B1		Schwemberger et al.	6,877,647 6,882,439			Green et al. Ishijima
	239 B2		Khandkar et al.	6,887,209			Kadziauskas et al.
	288 B2 540 B1	8/2003	Maguire et al.	6,887,252			Okada et al.
	059 B1		West, Jr.	6,899,685	B2		Kermode et al.
	450 B2	9/2003	Mossle et al.	6,905,497			Truckai et al.
	529 B2		Green et al.	6,908,472			Wiener et al. Truckai et al.
	500 B1		Cook et al.	6,913,579 6,915,623			Dey et al.
	501 B2 848 B2		Heller et al. Neuenfeldt	6,923,804			Eggers et al.
	926 B2		Friedman et al.	6,926,712		8/2005	Phan
	974 B2		Penny et al.	6,926,716			Baker et al.
	234 B2		Wiener et al.	6,929,602			Hirakui et al.
	532 B2		Green et al.	6,929,632 6,929,644			Nita et al. Truckai et al.
	669 B1 513 B2		Burnside Panescu et al.	6,933,656			Matsushita et al.
	539 B2		Shipp et al.	D509,589		9/2005	
	545 B2		Shipp et al.	6,942,660			Pantera et al.
	132 B1	12/2003		6,942,677			Nita et al.
	177 B2		Truckai et al.	6,945,981 6,946,779		9/2005	Donofrio et al.
	017 B2 127 B2		Beaupre Wiener et al.	6,948,503			Refior et al.
	941 B2		Brown et al.	D511,145	\mathbf{S}		Donofrio et al.
	860 B1		Takahashi	6,974,450			Weber et al.
	875 B1		Sakurai et al.	6,976,844			Hickok et al.
	690 B1		Okada et al.	6,976,969 6,977,495			Messerly Donofrio
6,609, 6,676	710 B2 660 B2	1/2003	Moutafis et al. Wampler et al.	6,979,332		12/2005	
	621 B2		Wiener et al.	6,981,628	B2	1/2006	Wales
	875 B2		Honda et al.	6,984,220			Wuchinich
	899 B2		Wiener et al.	6,988,295 6,994,708		1/2006 2/2006	
	544 B2		Mastri et al.	7,001,335			Adachi et al.
	701 B2 703 B2		Orszulak et al. Pearson et al.	7,011,657	B2		Truckai et al.
	145 B2		Lee et al.	7,014,638			Michelson
6,689,	146 B1	2/2004	Himes	7,033,357			Baxter et al.
	821 B2		Bonutti	7,037,306 7,041,083			Podany Chu et al.
, ,	215 B1 692 B2		David et al. Kleffner et al.	7,041,088			Nawrocki et al.
	776 B2	4/2004		7,041,102			Truckai et al.
	091 B2		Goble et al.	7,044,949			Orszulak et al.
	059 S	5/2004	Conway et al.	7,066,893			Hibner et al.
	047 B2		Kauf et al.	7,066,895 7,070,597			Podany Truckai et al.
	506 B1 813 B2		McDevitt et al. Yamauhi et al.	7,070,397			Washington et al.
	872 B1	5/2004		7,074,219			Levine et al.
	079 B1		Eggers et al.	7,077,039	B2	7/2006	Gass et al.
D491,	666 S	6/2004	Kimmell et al.	7,077,845			Hacker et al.
	245 B2		Lobdell	7,077,853			Kramer et al.
	284 B1		Spink, Jr.	7,083,618			Couture
	443 B1 815 B2		Morley et al. Beaupre	7,083,619 7,087,054			Truckai et al. Truckai et al.
	825 B2		Shoenman et al.	7,087,034			Underwood et al.
	698 B2		Shibata et al.	7,101,371			Dycus et al.
	535 B2		Take et al.	7,101,378			Salameh et al.

U.S. PATENT DOCUMENTS 7,104,804 B2 92,006 Robitson et al. 7,104,804 B2 92,006 Wite et al. 7,104,804 B2 92,006 Wite et al. 7,104,804 B2 92,006 Wite et al. 7,111,708 B2 92,006 Wite et al. 7,111,708 B2 92,006 Wite et al. 7,111,708 B2 92,006 Wite et al. 7,112,018 B2 92,006 Wite et al. 7,112,018 B2 92,006 Wite et al. 7,113,018 B2 102,006 Goerne et al. 7,113,018 B2 102,006 Robitson et al. 7,113,018 B2 102,006 Robitson et al. 7,113,018 B2 102,006 Robitson et al. 7,124,124 B2 102,006 Robitson et al. 7,125,101 B2 102,006 Robitson et al. 7,125,101 B2 102,006 Robitson et al. 7,125,101 B2 102,006 Robitson et al. 7,135,018 B2 112,006 Robitson et al. 7,135,018 B2 112,007 Robitson et	(56)	Referen	ces Cited	7,416,101 B2 7,416,437 B2		Shelton, IV et al. Sartor et al.
7,10,8,504 B2 92006 Witt et al. 7,422,139 B2 92008 Subton, IV et al. 7,10,8,605 B2 92006 Wales et al. D378,643 S 10,2008 Shumer et al. D378,643 S 10,2008 Shumer et al. D378,644 S 10,2008 Shumer et al. D378,645 S 12,2008 Shumer et al. D378,645 S 12,2009 Shumer	U.	S. PATENT	DOCUMENTS	D576,725 S	9/2008	Shumer et al.
7,111,709 B2 92006 Wirt et al. 742,2463 B2 92008 Kuo 7,111,709 B2 92006 Truckai et al. D578,644 S 10,2008 Shumer et al. D578,643 S 11,2006 Shumer et al. D578,643 S 11,2006 Shumer et al. D578,643 S 11,2006 Shumer et al. D578,643 S 12,2009 Shelton, IV et al. D578,644 S 12,2007 Shelton, IV et al. D578,644 S 12,2007 Shelton, IV et al. D578,644 S 12,2009 She	7.104.024 D	2 0/2006	D 1 1		2 9/2008 9/2008	Falkenstein et al.
7.111.769 B2 9.2006 Vales et al. D378.643 S 10.2008 Shumer et al. D378.645 S 10.2009 Shumer et al.	, ,					
DSSI,311 S 10,2006 Guern et al. DSPS,645 S 10,2008 Shumer et al. 7,411,634 B2 10,2006 Shehon, V et al. 7,411,634 B2 10,2006 Shehon, V et al. 7,441,634 B2 10,2006 Shehon, V et al. 7,451,249 B2 10,2006 Canacon et al. 7,461,181 B2 12,2008 Shehon, IV et al. 7,125,720 Shehon, IV et al. 7,451,240 B2 10,2006 Canacon et al. 7,472,815 B2 12,2008 Shehon, IV et al. 7,472,148 B2 12,2008 Shehon, IV et al. 7,472,148 B2 12,2008 Shehon, IV et al. 7,472,148 B2 12,2006 Shehon, IV et al. 7,472,148 B2 12,2008 Shehon, IV et al. 7,472,148 B2 12,2009 Shehon, IV et al. 7,472,148 B2 12,2007 Shehon, IV et al. 7,472,148	7,111,769 B	2 9/2006				
7,117,04 B2 10,2006 Knoberg 7,41,704 B2 10,2008 Babaev 7,41,845 B2 10,2008 Saleton, IV et al. 7,41,524 B2 10,2006 Saleton et al. 7,41,524 B2 10,2008 Karlet et al. 7,41,524 B2 10,2008 Karlet et al. 7,46,346 B2 12,2008 Karlet et al. 7,46,346 B2 12,2008 Karlet et al. 7,47,281 B2 12,2008 Karlet et al. 7,47,281 B2 12,2008 Karlet et al. 7,47,281 B2 12,2009 Karlet et al. 7,47,481 B2 12,2009 Karlet et al. 7,47,481 B2 12,2009 Karlet et al. 7,47,481 B2 12,2009 Karlet et al. 7,484,488 B2 22,2009 Karlet et al. 7,484,488 B2 22,000						
7.118,504 B2 10/2006 Rinchie et al. 7.441,694 B2 10/2008 Shelton, IV et al. 7.128,732 B2 10/2006 Tuckai et al. 7.462,181 B2 10/2008 Shelton, IV et al. 7.462,181 B2 10/2008 Charlos at al. 7.462,181 B2 10/2008 Shelton, IV et al. 7.462,181 B2 10/2008 Shelton, IV et al. 7.462,181 B2 10/2008 Shelton, IV et al. 7.462,183 B2 10/2009 Shelton, IV et al. 7.462,184 B2 20/2009 Shelton, IV et al. 7.462,183 B2 10/2009 Shelton, IV et al. 7.462,184 B2 20/2009 Shelton, IV et al. 7.462,184 B2 20/200						
7,125,409 82 10,2006 Truckai et al. 7,402,148 82 12,2008 Schlon, IV et al. 7,128,718 82 12,000 Schlon, IV et al. 7,138,80 82 11,2006 Satro et al. 7,472,815 82 12,000 Schlon, IV et al. 7,135,030 82 11,2006 Schwemberger et al. 7,473,418 82 12,000 Johnston et al. 7,479,148 82 12,000 Schwemberger et al. 7,479,148 82 12,000 Branch et al. 7,479,148 82 12,000 Branch et al. 7,479,148 82 12,000 Branch et al. 7,481,775 82 12,000 Miller 7,488,188 82 22,000 Branch et al. 7,153,185 81 12,000 Shalton et al. 7,481,476 82 22,000 Rabiner et al. 7,153,185 81 12,000 Shalton et al. 7,503,693 82 22,000 Shalton et al. 7,150,853 82 12,000 Muratsu 7,503,693 82 22,000 Shalton et al. 7,503,693 82 22,000				, ,		,
7,128,720 82 10,2006 Podany 7,464,846 81 12,2009 Shelion, IV et al. 7,131,810 82 11,2006 Sartor et al. 7,473,263 82 11,2009 Shelion, IV et al. 7,135,018 82 11,2006 Sartor et al. 7,473,263 82 11,2009 Shelion, IV et al. 7,135,018 82 11,2006 Sartor et al. 7,479,160 82 12,000 Shelion, IV et al. 7,135,018 82 12,000 Sartor et al. 7,479,160 82 12,000 Sartor et al. 7,134,403 82 12,000 Sartor et al. 7,134,403 82 12,000 Sartor et al. 7,135,315 82 12,000 Miller 7,488,285 82 22,000 Miller 7,488,285 82 22,000 Rabiner et al. 7,503,293 82 32,000 Sartor et al. 7,156,189 81 12,007 Sarcofone et al. 7,503,293 82 32,000 Sartor et al. 7,156,758 82 12,007 Marhasin et al. 7,503,693 82 32,000 Sartor et al. 7,156,759 82 12,007 Sarcofone et al. 7,506,791 82 32,000 Shelfon, IV et al. 7,160,296 82 12,007 Pearson et al. 7,506,791 82 32,000 Shelfon, IV et al. 7,160,296 82 12,007 Sartor et al. 7,506,791 82 32,000 Shelfon, IV et al. 7,160,296 82 12,007 Pairson et al. 7,506,791 82 32,000 Shelfon, IV et al. 7,160,296 82 12,007 Sartor et al. 7,506,791 82 32,000 Shelfon, IV et al. 7,160,296 82 12,007 Sartor et al. 7,506,791 82 32,000 Shelfon, IV et al. 7,160,248 82 12,007 Tinckai et al. 7,504,208 82 2,2009 Tince et al. 7,504,808 82 2,2009 Tince et a						
7.13,809 B2 11/2006 Sarbor et al. 7,472,245 B2 1/2009 Slohnston et al. 7,135,030 B2 11/2006 Schwemberger et al. 7,479,148 B2 1/2009 Beaupre et al. 7,479,148 B2 1/2009 Branch et al. 7,479,148 B2 1/2009 Branch et al. 7,479,148 B2 1/2009 Branch et al. 7,479,146 B2 1/2007 Branch et al. 7,479,146 B2 1/2007 Branch et al. 7,479,146 B2 1/2007 Branch et al. 7,479,147 B2 1/2009 Branch et	, ,					Shelton, IV et al.
7,135,030 B2 11,2006 Schwenberger et al. 7,479,148 B2 12,009 Beaupre 7,131,940 B2 11,2006 Boyse et al. 7,479,146 B2 12,009 Weikel, Ir et al. 7,144,403 B2 12,000 Miller 7,488,253 B2 22,000 Honda et al. 7,153,158 B2 12,000 Miller 7,488,253 B2 22,000 Honda et al. 7,153,653 B2 12,000 Nakajima et al. 7,503,693 B2 22,000 Golizzke et al. 7,150,853 B2 12,000 Muratsu 7,503,893 B2 3,2000 Golizzke et al. 7,150,853 B2 12,000 Muratsu 7,503,693 B2 3,2000 Muratsu 7,150,759 B2 12,000 Muratsu 7,506,799 B2 3,2009 Rabiner et al. 7,506,799 B2 2,2007 Rabiner et al. 7,506,799 B2 2,2009 Rabiner et al. 7,506,799 B2		2 11/2006	Sartor et al.			
7,137,989 B2 11,2006 Boyse et al. 7,479,160 B2 12,009 Weikel, Jr. et al. 7,144,030 B2 12,000 Booth 7,481,775 B2 12,000 Miller 7,488,285 B2 22,009 Honda et al. 7,153,315 B2 12,2006 Miller 7,488,285 B2 22,009 Robiner et al. 7,156,189 B1 12,007 Rakajima et al. 7,502,234 B2 32,009 Goliszek et al. 7,156,189 B1 12,007 Muratsu 7,503,893 B2 32,009 Kuklick 7,157,058 B2 12,007 Muratsu 7,503,893 B2 32,009 Kabiner et al. 7,506,790 B2 32,009 Shelton, IV 1,157,058 B2 12,007 Racenet et al. 7,506,790 B2 32,009 Shelton, IV 1,157,157,157,157,157,157,157,157,157,15						
7.144.403 B2 12/2006 Booth 7.481,775 B2 1.2009 Werkel, Jr. et al. D336.093 S1 12/2007 Miller 7.488,285 B2 2.2009 Honda et al. D336.093 S1 12/2007 Makajima et al. 7.494,468 B2 2.2009 Rabiner et al. 7.156,853 B2 1/2007 Marasin et al. 7.503,893 B2 3.2009 Solbszek et al. 7.157,685 B2 1/2007 Marasin et al. 7.503,895 B2 3.2009 Solbsten et al. 7.157,08 B2 1/2007 Marasin et al. 7.506,790 B2 3.2009 Solbsten et al. 7.160,296 B2 1/2007 Baily 7.524,320 B2 3.2009 Solbsten et al. 7.160,299 B2 1/2007 Baily 7.524,320 B2 4.2009 Tierney et al. 7.160,299 B2 1/2007 Stulen et al. 7.530,966 B2 5.2009 Solbsten et al. 7.534,243 B1 5.2009 Chin et al. 7.160,144 B2 1/2007 Hock et al. 7.534,243 B1 5.2009 Chin et al. 7.169,144 B2 1/2007 Tirockai et al. 7.534,243 B1 5.2009 Chin et al. 7.179,254 B2 2/2007 Pendekanti et al. 7.534,874 B1 5.2009 Chin et al. 7.179,254 B2 2/2007 Pendekanti et al. 7.534,874 B1 5.2009 Goonering Tirockai et al. 7.534,874 B1 5.2009 Goonering Tirockai et al. 7.534,574 B2 6.2009 Goonering Tirockai et al. 7.536,663 B2 2.2009 Solbsten					2 1/2009	Branch et al.
D\$556.093 S L.2007 Nabajim et al. 7,494.468 B2 2,2009 Rabiner et al. 7,156.833 B1 1,2007 Maratsu 7,503.893 B2 3,2009 Kucklick 7,150.883 B2 1,2007 Maratsu 7,503.893 B2 3,2009 Kucklick 7,150.883 B2 1,2007 Maratsu 7,503.893 B2 3,2009 Sabelton, IV 7,500.895 B2 1,2007 Racenet et al. 7,506,790 B2 3,2009 Shelton, IV 7,500.896 B2 1,2007 Racenet et al. 7,506,790 B2 3,2009 Shelton, IV 7,500.896 B2 1,2007 Racenet et al. 7,504,320 B2 4,2009 Tierney et al. 7,504,320 B2 4,2009 Tierney et al. 7,534,243 B1 5,2009 Chin et al. 7,534,243 B1 5,2009 Chin et al. 7,408,478 B2 2,2007 Fendekanti et al. 7,540,871 B2 6,2009 Connering 7,170,271 B2 2,2007 Friedman et al. 7,540,871 B2 6,2009 Connering 7,170,271 B2 2,2007 Truckai et al. 7,540,871 B2 6,2009 Connering 7,186,253 B2 3,2007 Truckai et al. 7,549,564 B2 6,2009 Connering 7,186,253 B2 3,2007 Truckai et al. 7,549,564 B2 6,2009 Connering 7,186,253 B2 3,2007 Truckai et al. 7,549,564 B2 6,2009 Connering 7,186,253 B2 4,2007 Chack et al. 7,549,564 B2 6,2009 Connering 7,186,253 B2 4,2007 Chack et al. 7,549,564 B2 6,2009 Connering 7,200,483 B2 4,2007 Chack et al. 7,569,657 B2 8,2009 Chack et al. 7,572,268 B2 8,2009 Chack et al. 7,200,486 Chack et al. 7,572,268 B2 8,2009 Chack et al. 7,200,486 Chack et al. 7,572,268 B2 8,2009 Chack et al. 7,200,486 Chack et al. 7,200,4	7,144,403 B	2 12/2006	Booth			
7,156,189 B1 1/2007 Bas-Cohen et al. 7,502,234 B2 3/2009 Goliszek et al. 7,151/988 B2 1/2007 Muratsin et al. 7,508,393 B2 3/2009 Raciner et al. 7,508,393 B2 3/2009 Rabiner et al. 7,151/9780 B2 1/2007 Racenet et al. 7,508,790 B2 3/2009 Omaits et al. 7,160,296 B2 1/2007 Pearson et al. 7,506,791 B2 3/2009 Omaits et al. 7,160,299 B2 1/2007 Baily 7,530,996 B2 5/2009 Beaupe et al. 7,161,348 B2 1/2007 Stulen et al. 7,534,230 B2 4/2009 Timere et al. 7,534,230 B2 4/2009 Timere et al. 7,534,243 B1 5/2009 Chin et al. 7,169,144 B2 1/2007 Hoye et al. 7,534,243 B1 5/2009 Chin et al. 7,179,254 B2 1/2007 Pendekanti et al. 7,540,871 B2 6/2009 Findeman						
7,156,853 B2 12007 Marhasin et al. 7,503,895 B2 3/2009 Kucklick 7,157,9750 B2 12007 Marhasin et al. 7,503,895 B2 3/2009 Sheliner et al. 7,150,750 B2 3/2009 Sheliner et al. 7,150,296 B2 12007 Baily 7,524,320 B2 4/2009 Tierney et al. 7,153,424 B1 5/2009 Sheliner et al. 7,534,243 B1 5/2009 Chin et al. 7,534,243 B1 5/2009 Chin et al. 7,150,144 B2 12007 Tiruckai et al. 7,544,200 B2 6/2009 Houser et al. 7,549,564 B2 6/2009 Houser et al. 7,559,450 B2 7/2009 Wales et al. 7,559,45				7,502,234 B2	2 3/2009	Goliszek et al.
7.159.750 B2 1/2007 Racenet et al. 7.596.790 B2 3/2009 Shelton, IV 7.160.296 B2 1/2007 Baily 7.530.781 B2 3/2009 Granais et al. 7.596.791 B2 3/2009 Granais et al. 7.596.791 B2 3/2009 Granais et al. 7.594.208 B2 1/2007 Shelton et al. 7.534.243 B1 5/2009 Chin et al. 7.549.371 B2 2/2007 Pendekanti et al. 7.534.243 B1 5/2009 Chin et al. 7.549.371 B2 2/2007 Pendekanti et al. 7.544.200 B2 6/2009 Gronnering 7.179.271 B2 2/2007 Truckai et al. 7.549.576 B2 6/2009 Gronnering 7.186.253 B2 3/2007 Truckai et al. 7.549.576 B2 6/2009 Gronnering 7.186.253 B2 3/2007 Truckai et al. 7.559.450 B2 7/2009 Wales et al. 7.559.450 B2 7/2009 Wales et al. 7.559.650 B2 7/2009 Wales et al. 7.559.650 B2 8/2009 Shelton, IV et al. 7.569.057 B2 8/2009 Shelton, IV et al. 7.572.266 B2 8/2009 Freeherg 7.572.266 B2 8/2009 Young et al. 7.572.266 B2 9/2009 Young et al. 7.572.266 B2 9/200	7,156,853 B	2 1/2007	Muratsu			
7,160,296 B2 1/2007 Pearson et al. 7,506,791 B2 3/2009 Omaits et al. 7,160,299 B2 1/2007 Fearson et al. 7,506,291 B2 4/2009 Tirrey et al. 7,161,348 B2 1/2007 Studen et al. 7,534,248 B1 5/2009 Chin et al. 7,161,146 B2 1/2007 Tirreka et al. 7,540,371 B2 6/2009 Gonnering 7,179,274 B2 2/2007 Friedman et al. 7,540,371 B2 6/2009 Gonnering 7,179,278 B2 2/2007 Friedman et al. 7,540,371 B2 6/2009 Gonnering 7,179,278 B2 2/2007 Tirreka et al. 7,540,564 B2 6/2009 Boudreaux 7,180,233 B2 3/2007 Tirreka et al. 7,559,450 B2 6/2009 Boudreaux 7,180,233 B2 3/2007 Tirreka et al. 7,559,450 B2 7/2009 Wales et al. 7,559,450 B2 8/2009 Wales et al. 7,559,450 B2 9/2009 Wales et						
7,160,299 B D 1/2007 Sulien et al. 7,534,280 B2 4/2009 tieney et al. 7,163,144 B2 1/2007 Sulien et al. 7,534,243 B1 5/2009 Genering et al. 7,169,144 B2 1/2007 Truckai et al. 5/54,871 B2 6/2009 Genering et al. 7,179,254 B2 2/2007 Pendekanti et al. 7,549,471 B2 6/2009 Gonnering et al. 7,549,251 B2 2/2007 Pendekanti et al. 7,549,470 B2 6/2009 Gonnering et al. 7,549,256 B2 6/2009 Gonnering et al. 7,549,256 B2 6/2009 Gonnering et al. 7,549,256 B2 6/2009 Gonnering et al. 7,559,450 B2 6/2009 Gonnering et al. 7,559,450 B2 7/2009 Walse et al. 7,569,057 B2 8/2009 Shelton, IV et al. 7,204,820 B2 4/2007 Akahoshi 7,569,057 B2 8/2009 Shelton, IV et al. 7,204,820 B2 4/2007 Akahoshi 7,569,057 B2 8/2009 Walse et al. 7,204,820 B2 4/2007 Akahoshi 7,569,057 B2 8/2009 Walse et al. 7,204,820 B2 8/2009 Walse et al. 7,204,830 B2 8/2009 Walse et al. 7,2				7,506,791 B2	2 3/2009	Omaits et al.
7,169,144 B2 1/2007 Hoey et al. 7,534,243 B1 5,2009 Chin et al. 7,169,146 B2 1/2007 Price et al. 7,549,254 B2 2/2007 Freidman et al. 7,540,871 B2 6,2009 Gomering 7,179,271 B2 2/2007 Freidman et al. 7,549,264 B2 6,2009 Gomering 7,186,253 B2 3/2007 Truckai et al. 7,549,646 B2 6,2009 Boudreaux 7,189,233 B2 3/2007 Truckai et al. 7,549,646 B2 6,2009 Boudreaux 7,189,233 B2 3/2007 Truckai et al. 7,559,450 B2 7,2009 Manikawa 8,2009 Shelton, 1V et al. 7,564,240 B2 7,2009 Shelton, 1V et al. 7,567,012 B2 7,2009 Manikawa 8,2009 Shelton, 1V et al. 7,569,057 B2 8,2009 Shelton, 1V et al. 7,572,058 B2 9,2009 Shelton, 1V et al. 7,573,058 B2 10,2009 Shelton, 1V et al. 7,573,058 B2 2,2000 Shelton, 1V et al. 7,573,058	7,160,299 B	2 1/2007	Baily			
7,169,146 Fig. 1/2007 Truckai et al. 1.0594,983 S. 6/2009 Price et al. 7,179,271 B2 2/2007 Friedman et al. 7,544,200 B2 6/2009 Houser 7,179,271 B2 2/2007 Friedman et al. 7,544,200 B2 6/2009 Houser 7,179,233 B2 3/2007 Truckai et al. 7,549,564 B2 6/2009 Wales et al. 7,186,253 B2 4/2007 Danck et al. 7,559,670,12 B2 7,2009 Namikawa 7,198,635 B2 4/2007 Danck et al. 7,568,603 B2 8/2009 Namikawa 7,204,820 B2 4/2007 Danck et al. 7,508,603 B2 8/2009 Namikawa 7,204,820 B2 4/2007 Danck et al. 7,508,603 B2 8/2009 Namikawa 7,207,997 B2 4/2007 Shipp et al. 7,572,268 B2 8/2009 Moore et al. 7,211,029 B2 5/2007 Treat 7,578,820 B2 8/2009 Moore et al. 7,211,269 B2 5/2007 Treat 7,582,084 B2 9/2009 Moore et al. 7,211,269 B2 5/2007 Truckai et al. 7,582,084 B2 9/2009 Moore et al. 7,223,229 B2 5/2007 Truckai et al. 7,582,084 B2 9/2009 Swanson et al. 7,223,229 B2 5/2007 Truckai et al. 7,582,084 B2 9/2009 Shipp et al. 7,223,229 B2 5/2007 Truckai et al. 7,582,085 B2 9/2009 Shipp et al. 7,223,229 B2 5/2007 Truckai et al. 7,582,085 B2 9/2009 Shipp et al. 7,223,229 B2 5/2007 Truckai et al. 7,582,085 B2 9/2009 Shipp et al. 7,223,229 B2 5/2007 Truckai et al. 7,582,085 B2 9/2009 Shipp et al. 7,223,229 B2 5/2007 Truckai et al. 7,601,119 B2 10/2009 Shipp et al. 7,223,229 B2 5/2007 Truckai et al. 7,601,119 B2 10/2009 Shipp et al. 7,223,229 B2 5/2007 Salurai et al. 7,601,139 B2 10/2009 Shipp et al. 7,223,229 B2 5/2007 Salurai et al. 7,601,139 B2 10/2009 Shipp et al. 7,223,223 B2 2/2007 Shipp e						
7,179,254 B2 2/2007 Pendekanti et al. 7,544,200 B2 6/2009 Gomering 7,179,271 B2 2/2007 Friedman et al. 7,544,200 B2 6/2009 Boudreaux 7,186,233 B2 3/2007 Truckai et al. 7,549,564 B2 6/2009 Boudreaux 7,189,233 B2 3/2007 Truckai et al. 7,559,450 B2 7/2009 Namikawa 7,198,635 B2 4/2007 Akahoshi 7,569,057 B2 8/2009 Namikawa 7,204,820 B2 4/2007 Akahoshi 7,569,057 B2 8/2009 Namikawa 7,207,997 B2 4/2007 Akahoshi 7,569,057 B2 8/2009 Namikawa 7,207,997 B2 4/2007 Akahoshi 7,569,268 B2 8/2009 Sabaev 7,211,079 B2 5/2007 Greenberg 7,572,266 B2 8/2009 Babaev 7,211,079 B2 5/2007 Truckai et al. 7,582,048 B2 8/2009 Babaev 7,211,072 B2 5/2007 Edalley et al. 7,582,048 B2 9,2009 Shipp et al. 7,220,951 B2 5/2007 Truckai et al. 7,582,048 B2 9,2009 Shipp et al. 7,223,229 B2 5/2007 Truckai et al. 7,581,181 B2 9,2009 Olsen 7,223,259 B2 5/2007 Truckai et al. 7,581,181 B2 9,2009 Olsen 7,223,453 B2 6/2007 Sakurai et al. 7,581,181 B2 9,2009 Truckai et al. 7,251,071 B2 6/2007 Sakurai et al. 7,601,119 B2 10,2009 Shipp et al. 7,223,453 B2 9/2007 Sakurai et al. 7,601,119 B2 10,2009 Shipp et al. 7,235,071 B2 6/2007 Sakurai et al. 7,601,119 B2 10,2009 Shipp et al. 7,235,071 B2 6/2007 Sakurai et al. 7,601,119 B2 10,2009 Shipp et al. 7,235,071 B2 10,2007 Sakurai et al. 7,601,139 B2 10,2007 Sakurai et al. 7,601,601,601 B2 10,2007 Sakurai et al. 7,603,604 B2 2,2010 Sakurai et al. 7,603,604 B2 2,2000 Sakurai et al. 7,603,604 B2 2,20	7,169,144 B	2 1/2007		D594,983 S	6/2009	
7,180,233 B2 3/2007 Tiruckai et al. 7,549,564 B2 6/2009 Boudreaux 7,189,233 B2 3/2007 Tiruckai et al. 7,557,012 B2 7/2009 Namikawa 7,198,635 B2 4/2007 Schechter et al. 7,567,012 B2 7/2009 Namikawa 7,198,635 B2 4/2007 Akaboshi 7,569,603 B2 8/2009 Liu et al. 7,508,603 B2 8/2009 Schelton, IV et al. 7,207,997 B2 8/2007 Akaboshi 7,569,603 B2 8/2009 Liu et al. 7,207,997 B2 8/2007 Akaboshi 7,569,603 B2 8/2009 Schelton, IV et al. 7,207,997 B2 8/2007 Akaboshi 7,578,820 B2 8/2009 Schelton, IV et al. 7,210,881 B2 5/2007 Greenberg 7,578,820 B2 8/2009 Babaev 7,211,712 B3 5/2007 Tireat 7,578,820 B2 8/2009 Moore et al. 7,217,269 B2 5/2007 El-Galley et al. 7,582,084 B2 9/2009 Schelton, IV et al. 7,217,269 B2 5/2007 El-Galley et al. 7,588,181 B2 9/2009 Schelton, IV et al. 7,220,951 B2 5/2007 Imman et al. 7,588,181 B2 9/2009 Tirme tal. 7,588,181 B2 9/2009 Tirme tal. 7,217,269 B2 5/2007 Imman et al. 7,588,181 B2 9/2009 Tirme tal. 7,220,951 B2 6/2007 Sakurai et al. 7,601,119 B2 10/2009 Shaltonian 7,224,262 B2 7/2007 Wiener et al. 7,601,119 B2 10/2009 Shaltonian 7,236,868 B1 8/2007 Shah et al. 7,641,653 B2 1/2010 Houser 7,236,868 B1 8/2007 Shah et al. 7,644,653 B2 1/2010 Houser 7,236,868 B2 1/2007 Brewer et al. 7,654,431 B2 2/2010 Houser 4,223,483 B2 9/2007 Brewer et al. 7,654,431 B2 2/2010 Houser 4,223,483 B2 9/2007 Brewer et al. 7,654,431 B2 2/2010 Houser 4,223,483 B2 9/2007 Brewer et al. 7,654,431 B2 2/2010 Houser 4,223,483 B2 9/2007 Brewer et al. 7,654,431 B2 2/2010 Houser 4,223,483 B2 9/2007 Brewer et al. 7,654,431 B2 2/2010 Houser 4,223,483 B2 9/2007 Brewer et al. 7,654,431 B2 2/2010 Houser 4,223,483 B2 9/2007 Brewer et al. 7,654,431 B2 2/2010 Houser 4,223,483 B2 9/2007 Brewer et al. 7,654,431 B2 2/2010 Brewer 4,223,483 B2 9/2007 Brewer 4,223,483 B2 9/2007 Brewer 4,223,483 B2 9/2007 Brewer 4,223,483	7,179,254 B	2 2/2007				
7,189,233 B2 3/2007 Truckai et al. 7,559,450 B2 7/2009 Wales et al. 7,568,603 B2 4/2007 Akahoshi 7,568,603 B2 8/2009 Shelton, IV et al. 7,264,820 B2 4/2007 Shipp et al. 7,567,603 B2 8/2009 Shelton, IV et al. 7,270,818 B2 5/2007 Greenberg 7,572,268 B2 8/2009 Moore et al. 7,572,268 B2 9/2009 Shipp et al. 7,572,268 B2 9/2009 Shipp et al. 7,572,268 B2 9/2009 Moore et al. 7,572,272,272,272 B2 1/2009 Moore et al. 7,572,272,272,272,272,272,272,272,272,27						
7,198,635 B2 4/2007 Danek et al. 7,568,603 B2 8/2009 Shelton, IV et al. 7,204,820 B2 4/2007 Shipp et al. 7,572,266 B2 8/2009 Young et al. 7,207,907 B2 4/2007 Shipp et al. 7,572,266 B2 8/2009 Houng et al. 7,207,907 B2 5/2007 Tract 7,572,268 B2 8/2009 Moore et al. 7,211,079 B2 5/2007 Tract 7,578,820 B2 8/2009 Moore et al. 7,211,128 B2 5/2007 El-Galley et al. 7,582,084 B2 9/2009 Moore et al. 7,221,126 B2 5/2007 El-Galley et al. 7,582,084 B2 9/2009 Moore et al. 7,220,915 B2 5/2007 Trackai et al. 7,588,181 B2 9/2009 Shipp et al. 7,223,229 B2 5/2007 Illimma et al. 7,588,178 B2 9/2009 Shipp et al. 7,223,229 B2 5/2007 Illimma et al. 7,588,178 B2 9/2009 Shipp et al. 7,223,207 B2 6/2007 Salvari et al. 7,560,119 B2 10/2009 Shiminan et al. 7,560,119 B2 10/2009 Shiminan Francisco Francisc				, ,		
7,204,820 B2						
7.207.997 B2					8/2009	Liu et al.
7,211,128 B2 5/2007 Treat 7,578,820 B2 8,2009 Moore et al.						
7.217,128 B2						
7,217,269 B2 5/2007 El-Galley et al. 7,582,095 B2 9/2009 Shipp et al. 7,220,251 B2 5/2007 Truckai et al. 7,588,181 B2 9/2009 Timm et al. 7,223,229 B2 5/2007 Sakurai et al. 7,601,119 B2 1/2009 Shahinan 7,235,071 B2 6/2007 Sakurai et al. 7,601,517 B2 10/2009 Hollower 7,244,262 B2 7/2007 Wiener et al. 7,61,693 B2 11/2009 Houser 7,258,688 B1 8/2007 Shah et al. 7,641,653 B2 1/2010 Dalla Betta et al. 7,263,7483 B2 9/2007 Brower et al. 7,645,278 B2 1/2010 Hueil et al. 7,273,483 B2 9/2007 Bromley et al. 7,659,833 B2 1/2010 Hueil et al. 7,285,895 B2 10/2007 Beaupré 7,670,338 B2 2/2010 Weiner et al. 7,300,435 B2 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
7,223,229 B2 5/2007 Imman et al. 7,223,425 B2 6/2007 Sakurai et al. 7,234,265 B2 6/2007 Gonnering 7,607,557 B2 102009 Shahinian 7,234,262 B2 7/2007 Wiener et al. 7,244,262 B2 7/2007 Shah et al. 7,258,688 B1 8/2007 Shah et al. 7,268,873 B2 9/2007 Wiener et al. 7,273,483 B2 9/2007 Wiener et al. 7,273,483 B2 9/2007 Wiener et al. 7,273,483 B2 9/2007 Brown et al. 7,273,483 B2 9/2007 Brownley et al. 7,285,048 B2 10/2007 Brownley et al. 7,285,395 B2 10/2007 Beaupré 7,670,334 B2 3/2010 Warner et al. 7,300,431 B2 11/2007 Wham et al. 7,300,435 B2 11/2007 Wham et al. 7,300,435 B2 11/2007 Beaupre 7,678,069 B1 3/2010 Shelton, IV et al. 7,303,531 B2 12/2007 Wham et al. 7,303,531 B2 12/2007 Wham et al. 7,303,531 B2 12/2007 Wham et al. 7,304,394 B2 12/2007 Wham et al. 7,311,706 B2 12/2007 Manzo 7,688,70 B2 3/2010 Shipp 7,303,894 B2 12/2007 Manzo 7,688,670 B2 3/2010 Shipp 7,311,706 B2 12/2007 Truckai et al. 7,311,709 B2 12/2008 Howard et al. 7,335,068 B2 2/2008 Howard et al. 7,335,069 B2 2/2008 Howard et al. 7,335,069 B2 6/2008 Shelton, IV et al. 7,336,069 B2 6/2008 Shelton, IV et al. 7,330,071 B2 6/2005 Shelton, IV et al. 7,331,731 B2 6/2010 Bayat 7,331,731 B2 6/2008 Shelton, IV et al. 7,331,730,13 B2 6/2008 Smith et al. 7,766,210 B2 8/2010 Shelton, IV et al. 7,330,071 B2 6/2008 Smith et al. 7,766,210 B2 8/2010 Shelton, IV et al. 7,330,071 B2 6/2008 Smi	7,217,269 B	2 5/2007	El-Galley et al.			
7,229,455 B2						
7,244,262 B2 7(2007) Wiener et al. 7,621,930 B2 11/2009 Houser 7,258,688 B1 8/2007 Shah et al. 7,641,653 B2 1/2010 Jalla Betta et al. 7,269,873 B2 9/2007 Brewer et al. 7,641,653 B2 1/2010 Ichihashi et al. 7,273,483 B2 9/2007 Wiener et al. 7,654,431 B2 2/2010 Hueil et al. D552,241 S 10/2007 Goble et al. 7,659,833 B2 2/2010 Warner et al. 7,282,048 B2 10/2007 Goble et al. 7,656,647 B2 2/2010 Marner et al. 7,282,048 B2 10/2007 Beaupré 7,670,334 B2 3/2010 Hueil et al. 7,300,431 B2 11/2007 Dubrovsky 7,670,338 B2 3/2010 Ryan 7,300,435 B2 11/2007 Wham et al. 7,678,125 B2 3/2010 Baker et al. 7,303,531 B2 12/2007 Lee et al. 7,678,125 B2 3/2010 Baker et al. 7,303,531 B2 12/2007 Manzo 7,686,26 B2 3/2010 Sakurai et al. 7,309,849 B2 12/2007 Truckai et al. 7,686,826 B2 3/2010 Cohen 7,311,706 B2 12/2007 Truckai et al. 7,688,628 B2 3/2010 Phillips et al. 7,311,795 B2 1/2008 McGre				7,601,119 B	2 10/2009	
7,258,688 B1 8/2007 Shah et al. 7,641,653 B2 1/2010 Ichibashi et al. 7,258,688 B1 8/2007 Shah et al. 7,645,278 B2 1/2010 Ichibashi et al. 7,273,483 B2 9/2007 Wiener et al. 7,654,431 B2 1/2010 Hueil et al. 0,552,241 S 10/2007 Journal of the proper						
7,269,873 B2 9/2007 Brewer et al. 7,645,278 B2 1/2010 Ichihashi et al. 7,273,483 B2 9/2007 Wiener et al. 7,654,431 B2 2/2010 Hueil et al. 7,282,048 B2 10/2007 Bromley et al. 7,655,647 B2 2/2010 Warner et al. 7,285,895 B2 10/2007 Beaupré 7,670,334 B2 3/2010 Hueil et al. 7,300,431 B2 11/2007 Wham et al. 7,674,263 B2 3/2010 Albrecht et al. 7,300,435 B2 11/2007 Wham et al. 7,678,069 B1 3/2010 Baker et al. 7,303,531 B2 12/2007 Wham et al. 7,682,366 B2 3/2010 Sakurai et al. 7,303,557 B2 12/2007 Manzo 7,686,770 B2 3/2010 Cohen 7,311,706 B2 12/2007 Truckai et al. 7,688,236 B2 3/2010 Lee et al. 7,311,706 B2	, ,					
D552,241 S 10/2007 Bromley et al. 7,659,833 B2 2/2010 Warner et al.	7,269,873 B	2 9/2007				
7,282,048 B2 10/2007 Goble et al. 7,665,647 B2 2/2010 Shelton, IV et al. 7,285,895 B2 10/2007 Beaupré 7,670,334 B2 3/2010 Hueil et al. 7,300,431 B2 11/2007 Dubrovsky 7,670,338 B2 3/2010 Albrecht et al. 7,300,435 B2 11/2007 Wham et al. 7,674,263 B2 3/2010 Ryan 7,300,446 B2 11/2007 Beaupre 7,678,069 B1 3/2010 Baker et al. 7,303,531 B2 12/2007 Lee et al. 7,678,125 B2 3/2010 Shipp 7,303,557 B2 12/2007 Wham et al. 7,682,366 B2 3/2010 Cohen 7,309,849 B2 12/2007 Truckai et al. 7,686,826 B2 3/2010 Cohen 7,309,849 B2 12/2007 Truckai et al. 7,686,826 B2 3/2010 Cohen 7,311,706 B2 12/2007 Schoenman et al. 7,686,826 B2 3/2010 Wallace et al. 7,311,706 B2 12/2007 Truckai et al. 7,691,098 B2 4/2010 Wallace et al. 7,311,705 B2 1/2008 McGreevy 7,699,846 B2 4/2010 Ryan 7,318,831 B2 1/2008 Alvarez et al. 7,713,202 B2 5/2010 Boukhny et al. 7,331,410 B2 2/2008 Andreas et al. 7,714,481 B2 5/2010 Sakai 7,335,907 B2 2/2008 Wiener 7,717,915 B2 5/2010 Miyazawa 7,335,907 B2 2/2008 Wiener 7,721,935 B2 5/2010 Miyazawa 7,335,068 B2 4/2008 Whener 7,721,935 B2 5/2010 Miyazawa 7,335,068 B2 4/2008 Truckai et al. 7,726,537 B2 6/2010 Miyazawa 7,353,068 B2 4/2008 Wham et al. 7,726,537 B2 6/2010 Bleich RE40,388 E 6/2008 Gines 7,740,594 B2 6/2010 Bleich 7,380,695 B2 6/2008 Shelton, IV et al. 7,766,210 B2 8/2010 Shelton, IV et al. 7,380,695 B2 6/2008 Truckai et al. 7,766,210 B2 8/2010 Shelton, IV et al. 7,380,696 B2 6/2008 Shelton, IV et al. 7,766,693 B2 8/2010 Shelton, IV et al. 7,390,317 B2 6/2008 Truckai et al. 7,766,693 B2 8/2010 Shelton, IV et al. 7,380,696 B2 6/2008 Truckai et al. 7,766,693 B2 8/2010 Shelton, IV et al. 7,390,317 B2 6/2008 Smith et al. 7,766,693 B2 8/2010 Shelton, IV et al. 7,404,508 B2 7/2008 Smith et al. 7,766,693 B2 8/2010 Shelton, IV et al. 7,666,93 B2 8/2010 Shelt	7,273,483 B	2 9/2007				
7,285,895 B2 10/2007 Beaupré 7,570,334 B2 3/2010 Hueil et al. 7,300,431 B2 11/2007 Dubrovsky 7,670,338 B2 3/2010 Albrecht et al. 7,300,446 B2 11/2007 Wham et al. 7,678,069 B1 3/2010 Ryan 7,303,531 B2 12/2007 Lee et al. 7,678,125 B2 3/2010 Shipp 7,303,537 B2 12/2007 Wham et al. 7,686,781 B2 3/2010 Sakurai et al. 7,306,597 B2 12/2007 Truckai et al. 7,686,770 B2 3/2010 Cohen 7,311,706 B2 12/2007 Truckai et al. 7,688,286 B2 3/2010 Phillips et al. 7,311,706 B2 12/2007 Truckai et al. 7,698,082 B2 3/2010 Phillips et al. 7,311,709 B2 12/2007 Truckai et al. 7,699,846 B2 4/2010 Ryan 7,311,709 B2 1				7,665,647 B2	2/2010	Shelton, IV et al.
7,300,435 B2 11/2007 Wham et al. 7,678,069 B1 3/2010 Baker et al. 7,300,446 B2 11/2007 Lee et al. 7,678,069 B1 3/2010 Shipp 7,303,531 B2 12/2007 Wham et al. 7,682,366 B2 3/2010 Shipp 7,303,557 B2 12/2007 Manzo 7,686,770 B2 3/2010 Cohen 7,309,849 B2 12/2007 Truckai et al. 7,686,826 B2 3/2010 Lee et al. 7,311,706 B2 12/2007 Truckai et al. 7,688,028 B2 3/2010 Lee et al. 7,311,706 B2 12/2007 Truckai et al. 7,688,028 B2 3/2010 Phillips et al. 7,311,706 B2 12/2007 Truckai et al. 7,691,098 B2 4/2010 Wallace et al. 7,311,705 B2 12/2007 Truckai et al. 7,699,846 B2 4/2010 Ryan 7,318,831 B2 1/2008 McGreevy 7,699,846 B2 4/2010 Ryan 7,318,831 B2 1/2008 Andreas et al. 7,713,202 B2 5/2010 Boukhny et al. 7,332,6236 B2 2/2008 Andreas et al. 7,714,481 B2 5/2010 Sakai 7,331,410 B2 2/2008 Truwit et al. 7,714,481 B2 5/2010 Beetel 7,335,165 B2 2/2008 Truwit et al. 7,717,915 B2 5/2010 Miyazawa 7,335,997 B2 2/2008 Wiener 7,721,935 B2 5/2010 Racenet et al. 7,353,068 B2 4/2008 Tanaka et al. 7,726,537 B2 6/2010 Price et al. 7,354,440 B2 4/2008 Tanaka et al. 7,726,537 B2 6/2010 Bayat 7,380,695 B2 6/2008 Chen ReAd,388 E 6/2008 Gines 7,740,594 B2 6/2010 Bleich READ,388 E 6/2008 Truckai et al. 7,738,969 B2 6/2010 Song 7,380,696 B2 6/2008 Truckai et al. 7,766,693 B2 8/2010 Otten et al. 7,381,209 B2 6/2008 Truckai et al. 7,766,693 B2 8/2010 Shelton, IV et al. 7,766,693 B2 8/2010 Sattor et al. 7,740,508 B2 7/2008 Smith et al. 7,766,693 B2 8/2010 Mastri et al.	7,285,895 B	2 10/2007	Beaupré			
7,300,446 B2 11/2007 Beaupre 7,678,069 B1 3/2010 Baker et al. 7,303,531 B2 12/2007 Lee et al. 7,678,125 B2 3/2010 Shipp 7,303,537 B2 12/2007 Wham et al. 7,686,2366 B2 3/2010 Sakurai et al. 7,306,597 B2 12/2007 Truckai et al. 7,686,826 B2 3/2010 Cohen 7,309,849 B2 12/2007 Truckai et al. 7,686,826 B2 3/2010 Lee et al. 7,311,706 B2 12/2007 Schoenman et al. 7,688,028 B2 3/2010 Phillips et al. 7,311,709 B2 12/2007 Truckai et al. 7,691,098 B2 4/2010 Wallace et al. 7,311,709 B2 12/2007 Truckai et al. 7,691,098 B2 4/2010 Wallace et al. 7,311,709 B2 12/2007 Truckai et al. 7,699,846 B2 4/2010 Ryan 7,318,831 B2 11/2008 McGreevy 7,699,846 B2 4/2010 Ryan 7,318,831 B2 11/2008 Andreas et al. 7,713,202 B2 5/2010 Boukhny et al. 7,332,6236 B2 2/2008 Andreas et al. 7,714,481 B2 5/2010 Sakai 7,331,410 B2 2/2008 Truwit et al. 7,717,915 B2 5/2010 Beetel 7,335,165 B2 2/2008 Wiener 7,721,935 B2 5/2010 Racenet et al. 7,335,068 B2 4/2008 Howard et al. 7,726,537 B2 6/2010 Price et al. 7,353,068 B2 4/2008 Truckai et al. 7,726,537 B2 6/2010 Bayat 7,364,577 B2 4/2008 Wham et al. 7,726,537 B2 6/2010 Bayat 7,364,577 B2 4/2008 Wham et al. 7,738,969 B2 6/2010 Bleich RE40,388 E 6/2008 Gines 7,740,594 B2 6/2010 Bleich RE40,388 E 6/2008 Shelton, IV et al. 7,738,120 B2 8/2010 Shelton, IV et al. 7,381,209 B2 6/2008 Truckai et al. 7,766,210 B2 8/2010 Shelton, IV et al. 7,390,317 B2 6/2008 Truckai et al. 7,766,210 B2 8/2010 Shelton, IV et al. 7,300,317 B2 6/2008 Taylor et al. 7,766,210 B2 8/2010 Shelton, IV et al. 7,300,317 B2 6/2008 Taylor et al. 7,766,609 B2 8/2010 Shelton, IV et al. 7,404,508 B2 7/2008 Smith et al. 7,770,7774 B2 8/2010 Mastri et al.						
7,303,531 B2 12/2007 Lee et al. 7,678,125 B2 3/2010 Shipp 7,303,557 B2 12/2007 Wham et al. 7,682,366 B2 3/2010 Cohen 7,309,849 B2 12/2007 Truckai et al. 7,686,770 B2 3/2010 Lee et al. 7,311,706 B2 12/2007 Truckai et al. 7,688,028 B2 3/2010 Lee et al. 7,311,709 B2 12/2007 Truckai et al. 7,688,028 B2 3/2010 Phillips et al. 7,311,709 B2 12/2007 Truckai et al. 7,691,098 B2 4/2010 Wallace et al. 7,311,709 B2 12/2007 Truckai et al. 7,691,098 B2 4/2010 Wallace et al. 7,311,795 B2 1/2008 McGreevy 7,699,846 B2 4/2010 Ryan 7,318,831 B2 1/2008 Alvarez et al. 7,713,202 B2 5/2010 Boukhny et al. 7,326,236 B2 2/2008 Andreas et al. 7,714,481 B2 5/2010 Sakai 7,331,410 B2 2/2008 Yong et al. 7,717,312 B2 5/2010 Miyazawa 7,335,165 B2 2/2008 Wiener 7,717,915 B2 5/2010 Miyazawa 7,335,997 B2 2/2008 Wiener 7,721,935 B2 5/2010 Racenet et al. 7,337,010 B2 2/2008 Wiener 7,721,935 B2 5/2010 Racenet et al. 7,353,068 B2 4/2008 Truckai et al. 7,726,537 B2 6/2010 Price et al. 7,354,440 B2 4/2008 Truckai et al. 7,726,537 B2 6/2010 Bayat 7,364,577 B2 4/2008 Wham et al. 7,738,969 B2 6/2010 Bleich RE40,388 E 6/2008 Gines 7,740,594 B2 6/2010 Bleich RE40,388 E 6/2008 Gines 7,740,594 B2 6/2010 Hibner 7,380,696 B2 6/2008 Shelton, IV et al. 7,751,115 B2 7/2010 Song 7,380,696 B2 6/2008 Shelton, IV et al. 7,766,210 B2 8/2010 Shelton, IV et al. 7,390,317 B2 6/2008 Truckai et al. 7,766,693 B2 8/2010 Shelton, IV et al. 7,404,508 B2 7/2008 Smith et al. 7,770,774 B2 8/2010 Mastri et al.				7,678,069 B	3/2010	Baker et al.
7,306,597 B2 12/2007 Manzo 7,686,770 B2 3/2010 Cohen 7,306,597 B2 12/2007 Truckai et al. 7,686,826 B2 3/2010 Lee et al. 7,311,706 B2 12/2007 Truckai et al. 7,688,028 B2 3/2010 Phillips et al. 7,311,709 B2 12/2007 Truckai et al. 7,691,098 B2 4/2010 Wallace et al. 7,311,709 B2 12/2007 Truckai et al. 7,691,098 B2 4/2010 Wallace et al. 7,311,709 B2 12/2007 Truckai et al. 7,699,846 B2 4/2010 Wallace et al. 7,318,831 B2 1/2008 Alvarez et al. 7,713,202 B2 5/2010 Boukhny et al. 7,326,236 B2 2/2008 Andreas et al. 7,714,481 B2 5/2010 Sakai 7,331,410 B2 2/2008 Yong et al. 7,717,312 B2 5/2010 Beetel 7,335,165 B2 2/2008 Trucwit et al. 7,717,915 B2 5/2010 Miyazawa 7,335,997 B2 2/2008 Wiener 7,721,935 B2 5/2010 Racenet et al. 7,337,010 B2 2/2008 Howard et al. D618,797 S 6/2010 Price et al. 7,353,068 B2 4/2008 Truckai et al. 7,726,537 B2 6/2010 Olson et al. 7,354,440 B2 4/2008 Truckai et al. 7,724,537 B2 6/2010 Bleich RE40,388 E 6/2008 Gines 7,740,594 B2 6/2010 Bleich 7,380,695 B2 6/2008 Doll et al. 7,7380,696 B2 6/2008 Shelton, IV et al. 7,381,209 B2 6/2008 Taylor et al. 7,766,693 B2 8/2010 Sartor et al. 7,390,317 B2 6/2008 Taylor et al. 7,766,693 B2 8/2010 Mastri et al. 7,740,598 B2 7/2008 Smith et al. 7,776,774 B2 8/2010 Mastri et al. 7,740,598 B2 7/2008 Smith et al. 7,776,774 B2 8/2010 Mastri et al.						
7,309,849 B2 12/2007 Truckai et al. 7,686,826 B2 3/2010 Phillips et al. 7,311,706 B2 12/2007 Truckai et al. 7,689,028 B2 3/2010 Phillips et al. 7,311,709 B2 12/2007 Truckai et al. 7,691,098 B2 4/2010 Wallace et al. 7,317,955 B2 1/2008 McGreevy 7,699,846 B2 4/2010 Ryan 7,318,831 B2 1/2008 Alvarez et al. 7,713,202 B2 5/2010 Boukhny et al. 7,326,236 B2 2/2008 Andreas et al. 7,714,481 B2 5/2010 Sakai 7,331,410 B2 2/2008 Yong et al. 7,717,312 B2 5/2010 Beetel 7,335,165 B2 2/2008 Trucwit et al. 7,717,915 B2 5/2010 Miyazawa 7,335,997 B2 2/2008 Wiener 7,721,935 B2 5/2010 Racenet et al. 7,337,010 B2 2/2008 Howard et al. D618,797 S 6/2010 Price et al. 7,353,068 B2 4/2008 Truckai et al. 7,726,537 B2 6/2010 Olson et al. 7,354,440 B2 4/2008 Truckai et al. 7,722,177 B2 6/2010 Beich RE40,388 E 6/2008 Gines 7,740,594 B2 6/2010 Hibner 7,380,695 B2 6/2008 Shelton, IV et al. 7,381,209 B2 6/2008 Truckai et al. 7,766,693 B2 8/2010 Shelton, IV et al. 7,390,317 B2 6/2008 Smith et al. 7,766,693 B2 8/2010 Mastri et al. 7,740,598 B2 7/2008 Smith et al. 7,770,774 B2 8/2010 Mastri et al.						
7,311,709 B2 12/2007 Truckai et al. 7,691,098 B2 4/2010 Wallace et al. 7,317,955 B2 1/2008 McGreevy 7,699,846 B2 4/2010 Ryan 7,318,831 B2 1/2008 Alvarez et al. 7,713,202 B2 5/2010 Boukhny et al. 7,326,236 B2 2/2008 Andreas et al. 7,714,481 B2 5/2010 Sakai 7,331,410 B2 2/2008 Truwit et al. 7,717,312 B2 5/2010 Beetel 7,335,997 B2 2/2008 Wiener 7,721,935 B2 5/2010 Miyazawa 7,335,997 B2 2/2008 Wiener 7,721,935 B2 5/2010 Racenet et al. 7,337,010 B2 2/2008 Howard et al. D618,797 S 6/2010 Price et al. 7,353,068 B2 4/2008 Tanaka et al. 7,726,537 B2 6/2010 Olson et al. 7,354,440 B2 4/2008 Tanaka et al. 7,727,177 B2 6/2010 Bayat 7,364,577 B2 4/2008 Wham et al. 7,738,969 B2 6/2010 Bleich RE40,388 E 6/2008 Gines 7,740,594 B2 6/2010 Bleich RE40,388 E 6/2008 Cines 7,740,594 B2 6/2010 Hibner 7,380,695 B2 6/2008 Doll et al. 7,751,115 B2 7/2010 Song 7,380,696 B2 6/2008 Shelton, IV et al. 7,366,210 B2 8/2010 Shelton, IV et al. 7,390,317 B2 6/2008 Taylor et al. 7,766,693 B2 8/2010 Mastri et al. 7,404,508 B2 7/2008 Smith et al. 7,770,774 B2 8/2010 Mastri et al.						
7,317,955 B2 1/2008 McGreevy 7,699,846 B2 4/2010 Ryan 7,318,831 B2 1/2008 Alvarez et al. 7,713,202 B2 5/2010 Boukhny et al. 7,326,236 B2 2/2008 Andreas et al. 7,714,481 B2 5/2010 Sakai 7,331,410 B2 2/2008 Yong et al. 7,717,312 B2 5/2010 Miyazawa 7,335,997 B2 2/2008 Wiener 7,721,935 B2 5/2010 Racenet et al. 7,337,010 B2 2/2008 Howard et al. D618,797 S 6/2010 Price et al. 7,353,068 B2 4/2008 Tanaka et al. 7,726,537 B2 6/2010 Olson et al. 7,354,440 B2 4/2008 Tanaka et al. 7,726,537 B2 6/2010 Bayat 7,364,577 B2 4/2008 Wham et al. 7,354,440 B2 4/2008 Thurked et al. 7,738,969 B2 6/2010 Bleich RE40,388 E 6/2008 Gines 7,740,594 B2 6/2010 Bleich RE40,388 E 6/2008 Gines 7,740,594 B2 6/2010 Bleich 7,380,695 B2 6/2008 Shelton, IV et al. 7,381,209 B2 6/2008 Taylor et al. 7,766,210 B2 8/2010 Shelton, IV et al. 7,390,317 B2 6/2008 Taylor et al. 7,766,693 B2 8/2010 Mastri et al. 7,404,508 B2 7/2008 Smith et al. 7,770,774 B2 8/2010 Mastri et al.						
7,318,831 B2 1/2008 Alvarez et al. 7,713,202 B2 5/2010 Boukhny et al. 7,326,236 B2 2/2008 Andreas et al. 7,714,481 B2 5/2010 Sakai 7,331,410 B2 2/2008 Yong et al. 7,717,312 B2 5/2010 Beetel 7,335,165 B2 2/2008 Truwit et al. 7,717,915 B2 5/2010 Miyazawa 7,335,997 B2 2/2008 Wiener 7,721,935 B2 5/2010 Racenet et al. 7,353,068 B2 2/2008 Howard et al. 7,726,537 B2 6/2010 Olson et al. 7,353,068 B2 4/2008 Tanaka et al. 7,726,537 B2 6/2010 Olson et al. 7,364,577 B2 4/2008 Wham et al. 7,738,969 B2 6/2010 Bleich RE40,388 E 6/2008 Gines 7,740,594 B2 6/2010 Hibner 7,380,696 B2 6/2008 Shelton, IV et al. D621,503 S 8/2010 Otten et al.				, ,		
7,331,410 B2 2/2008 Yong et al. 7,717,312 B2 5/2010 Beetel 7,335,165 B2 2/2008 Wiener 7,721,935 B2 5/2010 Miyazawa 7,335,997 B2 2/2008 Wiener 7,721,935 B2 5/2010 Racenet et al. 7,337,010 B2 2/2008 Howard et al. D618,797 S 6/2010 Price et al. 7,353,068 B2 4/2008 Tanaka et al. 7,726,537 B2 6/2010 Olson et al. 7,354,440 B2 4/2008 Turckai et al. 7,726,537 B2 6/2010 Bayat 7,364,577 B2 4/2008 Wham et al. 7,738,969 B2 6/2010 Bleich RE40,388 E 6/2008 Gines 7,740,594 B2 6/2010 Bleich 7,380,695 B2 6/2008 Doll et al. 7,751,115 B2 7/2010 Song 7,380,696 B2 6/2008 Shelton, IV et al. 7,381,209 B2 6/2008 Turckai et al. 7,766,210 B2 8/2010 Shelton, IV et al. 7,390,317 B2 6/2008 Taylor et al. 7,766,693 B2 8/2010 Sartor et al. 7,404,508 B2 7/2008 Smith et al. 7,770,774 B2 8/2010 Mastri et al.	7,318,831 B	2 1/2008	Alvarez et al.			
7,335,165 B2 2/2008 Truwit et al. 7,717,915 B2 5/2010 Miyazawa 7,335,997 B2 2/2008 Wiener 7,721,935 B2 5/2010 Racenet et al. 7,337,010 B2 2/2008 Howard et al. D618,797 S 6/2010 Olson et al. 7,353,068 B2 4/2008 Tanaka et al. 7,726,537 B2 6/2010 Olson et al. 7,354,440 B2 4/2008 Truckai et al. 7,727,177 B2 6/2010 Bayat 7,364,577 B2 4/2008 Wham et al. 7,738,969 B2 6/2010 Bleich RE40,388 E 6/2008 Gines 7,740,594 B2 6/2010 Bleich RE40,388 E 6/2008 Doll et al. 7,751,115 B2 7/2010 Song 7,380,695 B2 6/2008 Shelton, IV et al. 7,381,209 B2 6/2008 Truckai et al. 7,766,210 B2 8/2010 Otten et al. 7,390,317 B2 6/2008 Taylor et al. 7,766,693 B2 8/2010 Sartor et al. 7,404,508 B2 7/2008 Smith et al. 7,770,774 B2 8/2010 Mastri et al.						
7,337,010 B2 2/2008 Howard et al. D618,797 S 6/2010 Price et al. 7,353,068 B2 4/2008 Tanaka et al. 7,726,537 B2 6/2010 Olson et al. 7,354,440 B2 4/2008 Truckai et al. 7,727,177 B2 6/2010 Bayat 7,364,577 B2 4/2008 Wham et al. 7,738,969 B2 6/2010 Bleich RE40,388 E 6/2008 Gines 7,740,594 B2 6/2010 Hibner 7,380,695 B2 6/2008 Doll et al. 7,751,115 B2 7/2010 Song 7,381,209 B2 6/2008 Truckai et al. 7,766,210 B2 8/2010 Otten et al. 7,390,317 B2 6/2008 Taylor et al. 7,766,693 B2 8/2010 Sartor et al. 7,404,508 B2 7/2008 Smith et al. 7,770,774 B2 8/2010 Mastri et al.				7,717,915 B2	5/2010	Miyazawa
7,353,068 B2 4/2008 Tanaka et al. 7,726,537 B2 6/2010 Olson et al. 7,354,440 B2 4/2008 Truckai et al. 7,727,177 B2 6/2010 Bayat 7,364,577 B2 4/2008 Wham et al. 7,738,969 B2 6/2010 Bleich RE40,388 E 6/2008 Gines 7,740,594 B2 6/2010 Hibner 7,380,695 B2 6/2008 Doll et al. 7,751,115 B2 7/2010 Song 7,380,696 B2 6/2008 Shelton, IV et al. D621,503 S 8/2010 Otten et al. 7,381,209 B2 6/2008 Truckai et al. 7,766,210 B2 8/2010 Shelton, IV et al. 7,390,317 B2 6/2008 Taylor et al. 7,766,693 B2 8/2010 Sartor et al. 7,404,508 B2 7/2008 Smith et al. 7,770,774 B2 8/2010 Mastri et al.						
7,354,440 B2 4/2008 Truckai et al. 7,727,177 B2 6/2010 Bayat 7,364,577 B2 4/2008 Wham et al. 7,738,969 B2 6/2010 Bleich RE40,388 E 6/2008 Gines 7,740,594 B2 6/2010 Hibner 7,380,695 B2 6/2008 Doll et al. 7,751,115 B2 7/2010 Song 7,380,696 B2 6/2008 Shelton, IV et al. D621,503 S 8/2010 Otten et al. 7,381,209 B2 6/2008 Truckai et al. 7,766,210 B2 8/2010 Shelton, IV et al. 7,390,317 B2 6/2008 Taylor et al. 7,766,693 B2 8/2010 Sartor et al. 7,404,508 B2 7/2008 Smith et al. 7,770,774 B2 8/2010 Mastri et al.						
RE40,388 E 6/2008 Gines 7,740,594 B2 6/2010 Hibner 7,380,695 B2 6/2008 Doll et al. 7,751,115 B2 7/2010 Song 7,380,696 B2 6/2008 Shelton, IV et al. D621,503 S 8/2010 Otten et al. 7,381,209 B2 6/2008 Truckai et al. 7,766,210 B2 8/2010 Shelton, IV et al. 7,390,317 B2 6/2008 Taylor et al. 7,766,693 B2 8/2010 Sartor et al. 7,404,508 B2 7/2008 Smith et al. 7,770,774 B2 8/2010 Mastri et al.	7,354,440 B	2 4/2008	Truckai et al.	7,727,177 B2	6/2010	Bayat
7,380,695 B2 6/2008 Doll et al. 7,751,115 B2 7/2010 Song 7,380,696 B2 6/2008 Shelton, IV et al. D621,503 S 8/2010 Otten et al. 7,381,209 B2 6/2008 Truckai et al. 7,766,210 B2 8/2010 Shelton, IV et al. 7,390,317 B2 6/2008 Taylor et al. 7,766,693 B2 8/2010 Sartor et al. 7,404,508 B2 7/2008 Smith et al. 7,770,774 B2 8/2010 Mastri et al.						
7,380,696 B2 6/2008 Shelton, IV et al. D621,503 S 8/2010 Otten et al. 7,381,209 B2 6/2008 Truckai et al. 7,766,210 B2 8/2010 Shelton, IV et al. 7,390,317 B2 6/2008 Taylor et al. 7,766,693 B2 8/2010 Sartor et al. 7,404,508 B2 7/2008 Smith et al. 7,770,774 B2 8/2010 Mastri et al.						
7,390,317 B2 6/2008 Taylor et al. 7,766,693 B2 8/2010 Sartor et al. 7,404,508 B2 7/2008 Smith et al. 7,770,774 B2 8/2010 Mastri et al.						
7,404,508 B2 7/2008 Smith et al. 7,770,774 B2 8/2010 Mastri et al.						
			Taylor et al. Smith et al			

(56)	Referen	ices Cited	D661,801 S		Price et al.
U.S	. PATENT	DOCUMENTS	D661,802 S D661,803 S		Price et al. Price et al.
			D661,804 S		Price et al.
7,771,425 B2	8/2010	Dycus et al.	8,197,472 B2		Lau et al.
7,771,444 B2		Patel et al.	8,197,502 B2		Smith et al. Gilbert
7,775,972 B2		Brock et al.	8,207,651 B2 8,210,411 B2		Yates et al.
7,776,036 B2 7,778,733 B2		Schechter et al. Nowlin et al.	8,226,675 B2		Houser et al.
7,780,054 B2	8/2010		8,235,917 B2		Joseph et al.
7,780,593 B2		Ueno et al.	8,236,019 B2		Houser
7,780,651 B2		Madhani et al.	8,236,020 B2		Smith et al.
7,780,659 B2		Okada et al.	8,241,271 B2 8,246,575 B2	8/2012	Millman et al.
7,784,662 B2		Wales et al.	8,246,615 B2		Behnke
7,796,969 B2 7,798,386 B2		Kelly et al. Schall et al.	8,252,012 B2	8/2012	
7,799,020 B2		Shores et al.	8,253,303 B2	8/2012	Giordano et al.
7,799,045 B2		Masuda	8,257,377 B2		Wiener et al.
7,803,152 B2		Honda et al.	8,257,387 B2		Cunningham Kimura et al.
7,806,891 B2		Nowlin et al.	8,273,087 B2 D669,992 S		Schafer et al.
7,810,693 B2 7,811,283 B2		Broehl et al. Moses et al.	D669,993 S		Merchant et al.
7,811,283 B2 7,819,819 B2		Quick et al.	8,286,846 B2	10/2012	Smith et al.
7,821,143 B2		Wiener	8,287,485 B2		Kimura et al.
D627,066 S		Romero	8,287,528 B2		Wham et al. Carroll et al.
7,824,401 B2		Manzo et al.	8,287,532 B2 8,292,888 B2		Whitman
7,832,611 B2	11/2010	Boyden et al.	8,298,223 B2		Wham et al.
7,834,484 B2 7,837,699 B2		Yamada et al.	8,298,225 B2	10/2012	
7,845,537 B2		Shelton, IV et al.	8,303,576 B2	11/2012	
7,846,155 B2		Houser et al.	8,303,580 B2		Wham et al.
7,846,161 B2		Dumbauld et al.	8,303,583 B2 8,319,400 B2		Hosier et al. Houser et al.
7,854,735 B2 D631,155 S		Houser et al. Peine et al.	8,323,302 B2		Robertson et al.
7,861,906 B2		Doll et al.	8,333,778 B2	12/2012	Smith et al.
7,862,560 B2		Marion	8,333,779 B2		Smith et al.
7,876,030 B2		Taki et al.	8,334,468 B2		Palmer et al.
D631,965 S		Price et al.	8,334,635 B2 8,337,407 B2		Voegele et al. Quistgaard et al.
7,878,991 B2 7,879,033 B2		Babaev Sartor et al.	8,338,726 B2		Palmer et al.
7,892,606 B2		Thies et al.	8,344,596 B2	1/2013	Nield et al.
7,901,400 B2	3/2011	Wham et al.	8,348,967 B2	1/2013	
7,901,423 B2		Stulen et al.	8,357,103 B2 8,366,727 B2		Mark et al. Witt et al.
7,905,881 B2 7,909,824 B2		Masuda et al. Masuda et al.	8,372,099 B2		Deville et al.
7,922,061 B2		Shelton, IV et al.	8,372,101 B2	2/2013	Smith et al.
7,922,651 B2		Yamada et al.	8,372,102 B2		Stulen et al.
D637,288 S		Houghton	8,374,670 B2 8,377,059 B2	2/2013	Deville et al.
D638,540 S 7,936,203 B2		Ijiri et al. Zimlich	8,377,085 B2		Smith et al.
7,950,205 B2 7,951,095 B2		Makin et al.	8,382,748 B2		Geisel
7,951,165 B2		Golden et al.	8,382,775 B1		Bender et al.
7,959,050 B2		Smith et al.	8,382,782 B2		Robertson et al. Deville et al.
7,959,626 B2		Hong et al.	8,403,948 B2 8,403,949 B2		Palmer et al.
7,972,329 B2 7,976,544 B2		Refior et al. McClurken et al.	8,403,950 B2		Palmer et al.
7,981,050 B2		Ritchart et al.	8,418,073 B2	4/2013	Mohr et al.
7,998,157 B2		Culp et al.	8,418,349 B2		Smith et al.
8,038,693 B2	10/2011		8,419,757 B2		Smith et al. Smith et al.
8,057,498 B2		Robertson	8,419,758 B2 8,419,759 B2	4/2013	
8,058,771 B2 8,061,014 B2		Giordano et al. Smith et al.	8,425,545 B2		Smith et al.
8,070,711 B2		Bassinger et al.	8,430,898 B2		Wiener et al.
8,070,762 B2		Escudero et al.	8,435,257 B2		Smith et al.
8,075,558 B2		Truckai et al.	8,439,912 B2 8,439,939 B2		Cunningham et al. Deville et al.
8,089,197 B2 8,097,012 B2		Rinner et al. Kagarise	8,444,637 B2		Podmore et al.
8,105,323 B2		Buysse et al.	8,444,662 B2		Palmer et al.
8,142,461 B2	3/2012	Houser et al.	8,444,664 B2		Balanev et al.
8,152,801 B2	4/2012	Goldberg et al.	8,460,288 B2		Tamai et al.
8,152,825 B2		Madan et al.	8,461,744 B2 8,469,981 B2		Wiener et al. Robertson et al.
8,157,145 B2 8,161,977 B2		Shelton, IV et al. Shelton, IV et al.	8,469,981 B2 8,479,969 B2		Shelton, IV
8,162,966 B2		Connor et al.	8,480,703 B2		Nicholas et al.
8,172,846 B2		Brunnett et al.	8,485,413 B2		Scheib et al.
8,172,870 B2	5/2012		8,486,057 B2		Behnke, II
8,177,800 B2		Spitz et al.	8,486,096 B2		Robertson et al.
8,182,502 B2 8,186,877 B2		Stulen et al. Klimovitch et al.	8,491,578 B2 D687,549 S		Manwaring et al. Johnson et al.
0,100,8// B2	3/2012	Kilmovitch et al.	ک لا د د,۱۵۵۸	0/2013	Joinison et al.

(56)		Referen	ces Cited	9,095,367			Olson et al.
	11.0	DATENT	DOCUMENTS	9,107,689			Robertson et al.
	U.S.	PATENT	DOCUMENTS	9,113,940 9,168,054			Twomey Turner et al.
8,506,555	5 B2	8/2013	Ruiz Morales	9,198,714			Worrell et al.
8,509,318			Tailliet	9,220,527			Houser et al.
8,512,359			Whitman et al.	9,226,766			Aldridge et al.
8,512,365			Wiener et al.	9,226,767 9,232,979			Stulen et al. Parihar et al.
8,523,889 8,531,064			Stulen et al. Robertson et al.	9,237,921			Messerly et al.
8,535,340		9/2013		9,241,728		1/2016	Price et al.
8,535,341		9/2013		9,241,731			Boudreaux et al.
8,546,996			Messerly et al.	9,259,234 9,283,045			Robertson et al. Rhee et al.
8,546,999			Houser et al. Kimura et al.	9,326,788			Batross et al.
8,551,086 8,568,400		10/2013		9,339,289			Robertson
8,573,461			Shelton, IV et al.	9,351,754			Vakharia et al.
8,573,465			Shelton, IV	9,393,037			Olson et al.
8,579,928			Robertson et al.	9,408,622 9,414,853			Stulen et al. Stulen et al.
8,591,459 8,591,500			Clymer et al. Wham et al.	9,421,060			Monson et al.
8,591,500			Robertson	9,427,249			Robertson et al.
D695,407			Price et al.	9,439,668			Timm et al.
D696,63			Price et al.	9,439,669			Wiener et al. Wiener et al.
8,602,031			Reis et al.	9,445,832 2001/0025173			Ritchie et al.
8,602,288 8,608,745			Shelton, IV et al. Guzman et al.	2001/0025173			Shahidi et al.
8,616,431			Timm et al.	2001/0025184			Messerly
8,623,027	7 B2		Price et al.	2001/0031950		10/2001	
8,650,728	3 B2		Wan et al.	2001/0039419			Francischelli et al. Cimino
8,652,155			Houser et al.	2002/0002377 2002/0019649			Sikora et al.
8,659,208 8,663,220			Rose et al. Wiener et al.	2002/0022836			Goble et al.
8,690,582			Rohrbach et al.	2002/0029055	A1		Bonutti
8,696,366			Chen et al.	2002/0049551			Friedman et al.
8,704,425			Giordano et al.	2002/0052617 2002/0077550			Anis et al. Rabiner et al.
8,709,031		4/2014	Stulen Schultz	2002/0077330			Sakurai et al.
8,747,351 8,749,116			Messerly et al.	2002/0156493			Houser et al.
8,752,749			Moore et al.	2003/0014087		1/2003	Fang et al.
8,753,338	3 B2		Widenhouse et al.	2003/0036705			Hare et al.
8,754,570) B2		Voegele et al.	2003/0050572 2003/0055443		3/2003	Brautigam et al. Spotnitz
8,758,352 8,764,735			Cooper et al. Coe et al.	2003/0114851		6/2003	Truckai et al.
8,771,270			Burbank	2003/0144680		7/2003	Kellogg et al.
8,773,001	1 B2		Wiener et al.	2003/0199794			Sakurai et al.
8,779,648			Giordano et al.	2003/0204199 2003/0212332			Novak et al. Fenton et al.
8,784,418 8,808,319			Romero Houser et al.	2003/0212352		11/2003	
8,827,992			Koss et al.	2003/0212392			Fenton et al.
8,845,537	7 B2		Tanaka et al.	2003/0212422			
8,882,791		11/2014		2003/0229344 2004/0030254			Dycus et al. Babaev
8,888,776			Dietz et al. Davison et al.	2004/0030234			Brassell et al.
8,888,809 8,899,462			Kostrzewski et al.	2004/0047485			Sherrit et al.
8,900,259			Houser et al.	2004/0054364			Aranyi et al.
8,911,460	B2		Neurohr et al.	2004/0064151 2004/0092921			Mollenauer Kadziauskas et al.
8,951,248			Messerly et al.	2004/0092921			Adams et al.
8,951,272 8,956,349			Robertson et al. Aldridge et al.	2004/0097911		5/2004	Murakami et al.
8,961,547			Dietz et al.	2004/0097912			Gonnering
8,968,283	3 B2	3/2015		2004/0097919			Wellman et al.
8,968,355			Malkowski et al.	2004/0097996 2004/0116952			Rabiner et al. Sakurai et al.
8,974,477 8,979,890			Yamada Boudreaux	2004/0132383			Langford et al.
8,986,287			Park et al.	2004/0147934			Kiester
8,986,302			Aldridge et al.	2004/0167508			Wham et al.
8,989,903			Weir et al.	2004/0176686			Hare et al.
9,017,326			DiNardo et al.	2004/0176751 2004/0199193			Weitzner et al. Hayashi et al.
9,039,695 9,043,018		5/2015	Giordano et al. Mohr	2004/0199193		10/2004	
9,044,261			Houser	2004/0215132		10/2004	
9,050,093	3 B2	6/2015	Aldridge et al.	2004/0243147		12/2004	
9,050,124			Houser	2004/0260300			Gorensek et al.
9,060,775			Wiener et al.	2005/0020967		1/2005	
9,060,776 9,066,747			Yates et al. Robertson	2005/0021018 2005/0021065			Anderson et al. Yamada et al.
9,000,74			Messerly et al.	2005/0021065			Muir et al.
9,089,360			Messerly et al.	2005/0039537			Messerly et al.
, ,	_		,				•

(56)		Referen	ces Cited	2008/0051812			Schmitz et al.
	HC	DATENIT	DOCUMENTS	2008/0058585 2008/0058775			Novak et al. Darian et al.
	0.5.	FAILUNI	DOCUMENTS	2008/0058845			Shimizu et al.
2005/0070800) A1	3/2005	Takahashi	2008/0077145			Boyden et al.
2005/0096683			Ellins et al.	2008/0082039			Babaev Tanaka et al.
2005/0099824			Dowling et al.	2008/0082098 2008/0097501		4/2008	
2005/0103819 2005/0143769			Racenet et al. White et al.	2008/0114364			Goldin et al.
2005/0149108		7/2005		2008/0125768			Tahara et al.
2005/016534:			Laufer et al.	2008/0140158			Hamel et al.
2005/0177184		8/2005		2008/0147092 2008/0171938			Rogge et al. Masuda et al.
2005/0182339 2005/0188743		8/2005 9/2005	Lee et al.	2008/0171938			Masuda et al.
2005/0192610			Houser et al.	2008/0177268			Daum et al.
2005/0209620			Du et al.	2008/0188878		8/2008	
2005/0222598			Ho et al.	2008/0200940 2008/0208108			Eichmann et al. Kimura
2005/0234484 2005/024966			Houser et al. Tuszynski et al.	2008/0208108			Ota et al.
2005/025640:			Makin et al.	2008/0214967			Aranyi et al.
2005/0261583			Hughes et al.	2008/0234709			Houser
2005/0261588			Makin et al.	2008/0243106 2008/0243162			Coe et al. Shibata et al.
2005/0273090 2005/0288659			Nieman et al. Kimura et al.	2008/0245102		10/2008	
2006/003079			Zhou et al.	2008/0249553			Gruber et al.
2006/005882:			Ogura et al.	2008/0255423			Kondo et al.
2006/0063130			Hayman et al.	2008/0262490			Williams
2006/0066183			Bromfield et al.	2008/0281200 2008/0281315		11/2008	Voic et al.
2006/0074442 2006/0079874			Noriega et al. Faller et al.	2008/0281313			Sherman et al.
2006/0079879			Faller et al.	2008/0287948		11/2008	Newton et al.
2006/0084963	3 A1		Messerly	2009/0023985		1/2009	
2006/0095046			Trieu et al.	2009/0024141 2009/0048537			Stahler et al. Lydon et al.
2006/019003 ² 2006/0206100			Nishizawa et al. Eskridge et al.	2009/0048337			Yachi et al.
2006/020610			Schomer et al.	2009/0054894		2/2009	Yachi
2006/0211943		9/2006	Beaupre	2009/0076506		3/2009	
2006/0217729			Eskridge et al.	2009/0082716 2009/0088738		3/2009	Akahoshi Guerra et al.
2006/0224160 2006/0235300			Trieu et al. Cotter et al.	2009/0088785			Masuda
2006/0247558		11/2006		2009/0112229		4/2009	Omori et al.
2006/0253050			Yoshimine et al.	2009/0118751			Wiener et al.
2006/0264809			Hansmann et al.	2009/0118802 2009/0138006			Mioduski et al. Bales et al.
2006/0271030 2007/001623:			Francis et al. Tanaka et al.	2009/0138000			Smith et al.
2007/001623			Beaupre	2009/0143800			Deville et al.
2007/0055228			Berg et al.	2009/0143806			Witt et al.
2007/0056596			Fanney et al.	2009/0149801 2009/0163807		6/2009 6/2009	Crandall et al.
2007/006091: 2007/006093:			Kucklick Schwardt et al.	2009/0103807		8/2009	
2007/006093.			Bromfield	2009/0216157	A1	8/2009	Yamada
2007/0074584			Talarico et al.	2009/0223033			Houser
2007/0078458			Dumbauld et al.	2009/0254077 2009/0254080		10/2009 10/2009	
2007/010631			Shelton, IV et al. Daw et al.	2009/0254080			Beaupre
2007/0129710 2007/013077			Ehlert et al.	2009/0270771		10/2009	Takaĥashi
2007/0131034			Ehlert et al.	2009/0270812			Litscher et al.
2007/014988		6/2007		2009/0270853 2009/0270891		10/2009	Yachi et al.
2007/0156163 2007/0162050		7/2007	Davison et al.	2009/0270899			Carusillo et al.
2007/0102030			Telles et al.	2009/0275940			Malackowski et al.
2007/0173803			Wham et al.	2009/0299141			Downey et al.
2007/0173813		7/2007		2009/0318945 2009/0327715			Yoshimine et al. Smith et al.
2007/0173872 2007/0175949			Neuenfeldt Shelton, IV et al.	2010/0004508			Naito et al.
2007/0175945			Kucklick	2010/0016785			Takuma
2007/0191712			Messerly et al.	2010/0016852			Manzo et al.
2007/021948		9/2007		2010/0022825			Yoshie Whitman et al.
2007/0239028 2007/023910		10/2007 10/2007	Houser et al.	2010/0030233 2010/0030248			Palmer et al.
2007/023910			Salehi et al.	2010/0036370			Mirel et al.
2007/0260234			McCullagh et al.	2010/0042077	A1	2/2010	Okada
2007/0265560		11/2007	Soltani et al.	2010/0049180			Wells et al.
2007/0275348		11/2007		2010/0057118			Dietz et al.
2007/028233: 2007/0287933		12/2007	Young et al. Phan et al.	2010/0063525 2010/0063528			Beaupre et al. Beaupré
2007/028793.		12/2007		2010/0003328			Miller et al.
2008/0009848	3 A1		Paraschiv et al.	2010/0106173	A1		Yoshimine
2008/0013809	9 A1	1/2008	Zhu et al.	2010/0158307	A1	6/2010	Kubota et al.

(56)	Referen	nces Cited	2013/0053840 A1		Krapohl et al.
II C	DATENIT	COCCUMENTS	2013/0072856 A1 2013/0072857 A1		Frankhouser et al. Frankhouser et al.
U.S.	PATENT	DOCUMENTS	2013/0072837 A1 2013/0079762 A1		Twomey et al.
2010/0168741 A1	7/2010	Sanai et al.	2013/0103023 A1		Monson et al.
2010/0187283 A1		Crainich et al.	2013/0103024 A1		Monson et al.
2010/0222714 A1	9/2010	Muir et al.	2013/0110145 A1		Weitzman
2010/0228264 A1		Robinson et al.	2013/0123776 A1 2013/0123777 A1		Monson et al. Monson et al.
2010/0234906 A1 2010/0262134 A1	9/2010	Koh Jensen et al.	2013/0123777 A1 2013/0123782 A1		Trees et al.
2010/0202134 A1 2010/0274160 A1		Yachi et al.	2013/0123822 A1		Wellman et al.
2010/0280407 A1	11/2010		2013/0131660 A1		Monson et al.
2010/0292691 A1		Brogna	2013/0165929 A1		Muir et al. Mohr et al.
2010/0298743 A1		Nield et al.	2013/0217967 A1 2013/0253498 A1		Germain et al.
2010/0298851 A1 2010/0331742 A1	11/2010	Masuda	2013/0274734 A1		Maass et al.
2011/0004233 A1		Muir et al.	2013/0282038 A1		Dannaher et al.
2011/0009850 A1		Main et al.	2013/0296908 A1		Schulte et al.
2011/0015660 A1*	1/2011	Wiener A61B 17/32009	2013/0338661 A1 2013/0345689 A1		Behnke, II Ruddenklau et al.
2011/0077648 A1	2/2011	606/169 Lee et al.	2014/0005640 A1		Shelton, IV et al.
2011/007/048 A1 2011/0087218 A1		Boudreaux et al.	2014/0005653 A1		Shelton, IV et al.
2011/0112526 A1		Fritz et al.	2014/0005656 A1		Mucilli et al.
2011/0125151 A1		Strauss et al.	2014/0005661 A1 2014/0005662 A1		Shelton, IV et al. Shelton, IV et al.
2011/0125174 A1		Babaev	2014/0005676 A1		Shelton, IV et al.
2011/0144806 A1 2011/0224689 A1		Sandhu et al. Larkin et al.	2014/0005680 A1		Shelton, IV et al.
2011/0224089 A1 2011/0238065 A1		Hunt et al.	2014/0005681 A1		Gee et al.
2011/0257650 A1		Deville et al.	2014/0005702 A1		Timm et al.
2011/0270126 A1		Gunday et al.	2014/0005705 A1 2014/0005708 A1		Weir et al. Shelton, IV et al.
2011/0290853 A1		Shelton, IV et al. Shelton, IV et al.	2014/0005708 A1 2014/0005718 A1		Shelton, IV et al.
2011/0290856 A1 2011/0295242 A1		Spivey et al.	2014/0012299 A1		Stoddard et al.
2012/0004655 A1		Kim et al.	2014/0066962 A1		Robertson et al.
2012/0022525 A1		Dietz et al.	2014/0087569 A1 2014/0107538 A1	3/2014	Lee Wiener et al.
2012/0022530 A1		Woodruff et al.	2014/0107338 A1 2014/0114327 A1		Boudreaux et al.
2012/0022583 A1 2012/0059289 A1		Sugalski et al. Nield et al.	2014/0135804 A1		Weisenburgh, II et al.
2012/0065628 A1	3/2012		2014/0155921 A1		Price et al.
2012/0071863 A1		Lee et al.	2014/0180280 A1		Sigmon, Jr.
2012/0078139 A1		Aldridge et al.	2014/0243864 A1 2014/0276970 A1		Voegele et al. Messerly et al.
2012/0078243 A1 2012/0078244 A1		Worrell et al. Worrell et al.	2015/0045819 A1		Houser et al.
2012/0078244 A1 2012/0078247 A1		Worrell et al.	2015/0066067 A1	3/2015	
2012/0078278 A1		Bales, Jr. et al.	2015/0073460 A1	3/2015	
2012/0080332 A1		Shelton, IV et al.	2015/0112335 A1 2015/0119914 A1		Boudreaux et al. Neurohr et al.
2012/0101495 A1 2012/0101501 A1	4/2012	Young et al. Nishimura et al.	2015/0119915 A1		Neurohr et al.
2012/0101301 A1 2012/0109159 A1		Jordan et al.	2015/0119916 A1	4/2015	Dietz et al.
2012/0116379 A1		Yates et al.	2015/0123348 A1		Robertson et al.
2012/0116391 A1		Houser et al.	2015/0157355 A1 2015/0157356 A1	6/2015	Price et al.
2012/0116394 A1		Timm et al.	2015/0164533 A1		Felder et al.
2012/0116395 A1 2012/0130256 A1		Madan et al. Buysse et al.	2015/0164534 A1		Felder et al.
2012/0130365 A1		McLawhorn	2015/0164535 A1		Felder et al.
2012/0136354 A1	5/2012		2015/0164536 A1 2015/0164537 A1		Czarnecki et al. Cagle et al.
2012/0138660 A1		Shelton, IV	2015/0164538 A1		Aldridge et al.
2012/0143211 A1 2012/0150170 A1	6/2012 6/2012	Buysse et al.	2015/0182251 A1		Messerly et al.
2012/0165816 A1		Kersten et al.	2015/0182276 A1		Wiener et al.
2012/0172873 A1		Artale et al.	2015/0182277 A1 2015/0196318 A1		Wiener et al. Messerly et al.
2012/0172904 A1		Muir et al.	2015/0190318 A1 2015/0250495 A1		Robertson et al.
2012/0177005 A1 2012/0184946 A1		Liang et al. Price et al.	2015/0257780 A1		Houser
2012/0199630 A1		Shelton, IV	2015/0257781 A1		Houser et al.
2012/0199632 A1		Spivey et al.	2015/0265308 A1		Houser et al.
2012/0203143 A1		Sanai et al.	2015/0327883 A1 2015/0328484 A1		Messerly et al. Messerly et al.
2012/0203247 A1 2012/0209289 A1		Shelton, IV et al. Duque et al.	2015/0340586 A1	11/2015	Wiener et al.
2012/0209289 A1 2012/0209303 A1		Frankhouser et al.	2015/0351789 A1		Robertson et al.
2012/0210223 A1	8/2012	Eppolito	2016/0030076 A1		Faller et al.
2012/0215220 A1		Manzo et al.	2016/0089209 A1		Parihar et al.
2012/0245582 A1 2012/0253370 A1		Kimball et al. Ross et al.	2016/0089533 A1 2016/0106509 A1		Turner et al. Worrell et al.
2012/0253370 A1 2012/0269676 A1		Houser et al.	2016/0100509 A1 2016/0120563 A1		Messerly et al.
2012/0330307 A1		Ladtkow et al.	2016/0144204 A1		Akagane
2013/0012957 A1	1/2013	Shelton, IV et al.	2016/0192999 A1	7/2016	Stulen et al.
2013/0030433 A1		Heard	2016/0206342 A1		Robertson et al.
2013/0035680 A1	2/2013	Ben-Haim et al.	2016/0262786 A1	9/2016	Madan et al.

(56) Referen	ces Cited	EP	2074959 A1	7/2009
U.S. PATENT	DOCUMENTS	EP EP EP	2106758 A1 2111813 A1	10/2009 10/2009
2016/0296249 A1 10/2016	Robertson	EP	2200145 A1 1214913 B1	6/2010 7/2010
2016/0296250 A1 10/2016	Olson et al.	EP EP	2238938 A1 2298154 A2	10/2010 3/2011
	Olson et al.	EP	1510178 B1	6/2011
2016/0317217 A1 11/2016	Batross et al.	EP EP	1946708 B1 2305144 A1	6/2011 6/2011
2016/0367281 A1 12/2016	Gee et al.	EP	2335630 A1	6/2011
FOREIGN PATE	NT DOCUMENTS	EP EP	1502551 B1 2361562 A1	7/2011 8/2011
CN 1233944 A	11/1999	EP	2365608 A2	9/2011
CN 1253485 A	5/2000	EP EP	2420197 A2 2422721 A2	2/2012 2/2012
CN 1634601 A CN 1640365 A	7/2005 7/2005	EP	1927321 B1	4/2012
CN 1694649 A	11/2005	EP EP	2510891 A1 2316359 B1	10/2012 3/2013
CN 1922563 A CN 1951333 A	2/2007 4/2007	EP EP	1586275 B1 1616529 B1	5/2013 9/2013
CN 101040799 A	9/2007	EP	2583633 B1	10/2014
CN 101467917 A CN 202027624 A	1/2009 11/2011	EP EP	2113210 B1 2859858 B1	3/2016 12/2016
DE 3904558 A1 DE 9210327 U1	8/1990 11/1992	GB	1482943 A	8/1977
DE 4323585 A1	1/1995	GB GB	2032221 A 2317566 A	4/1980 4/1998
DE 19608716 C1 DE 20021619 U1	4/1997 3/2001	GB	2379878 B	11/2004
DE 10042606 A1	8/2001	GВ ЈР	2447767 B S 50-100891 A	8/2011 8/1975
EP 0136855 B1 EP 0171967 A2	9/1984 2/1986	JP	S 59-68513 U	5/1984
EP 1839599 A1	10/1987	JP	S 59141938 A 62-221343 A	8/1984 9/1987
EP 0336742 A2 EP 0342448 A1	4/1989 11/1989	JP	S 62-227343 A 62-292153 A	10/1987 12/1987
EP 0424685 B1 EP 0443256 A1	5/1991	JP	S 62-292154 A	12/1987
EP 0443256 A1 EP 0456470 A1	8/1991 11/1991	JP JP	63-109386 A 63-315049 A	5/1988 12/1988
EP 0238667 B1 EP 0598976 A2	2/1993 1/1994	JP	H 01-151452 A	6/1989
EP 0677275 A2	3/1995	JP JP	H 01-198540 A 02-71510 U	8/1989 5/1990
EP 0482195 B1 EP 0695535 A1	1/1996 2/1996	JP	2-286149 A	11/1990
EP 0741996 A2	11/1996	JP JP	H 02-292193 A H 03-37061 A	12/1990 2/1991
EP 0612570 B1 EP 1108394 A2	6/1997 6/2001	JP JP	04-25707 U H 04-64351 A	2/1992 2/1992
EP 1138264 A1	10/2001 1/2002	JP	4-30508 U	3/1992
EP 1229515 A2	8/2002	JP JP	H 04-150847 A H 04-152942 A	5/1992 5/1992
EP 1285634 A1 EP 0908155 B1	2/2003 6/2003	JP	05-095955 A	4/1993
EP 0705570 B1	4/2004	JP JP	H 05-115490 A H 06-70938 A	5/1993 3/1994
EP 0765637 B1 EP 0870473 B1	7/2004 9/2005	JР	6-104503 A	4/1994
EP 0624346 B1	11/2005	JP JP	6-507081 A H 06-217988 A	8/1994 8/1994
EP 1594209 A1 EP 1199044 B1	11/2005 12/2005	JP JP	H 7-508910 A 7-308323 A	10/1995 11/1995
EP 1609428 A1 EP 1199043 B1	12/2005 3/2006	JP	8-24266 A	1/1996
EP 1433425 B1	6/2006	JP JP	8-275951 A H 08-299351 A	10/1996 11/1996
EP 1256323 B1 EP 1698289 A2	9/2006 9/2006	JP	H 08-336545 A	12/1996
EP 1704824 A1	9/2006	JP JP	H 09-503146 A H 09-135553 A	3/1997 5/1997
EP 1749479 A1 EP 1815950 A1	2/2007 8/2007	JP JP	H 09-140722 A	6/1997 1/1998
EP 1844720 A1	10/2007	JP	H 10-5237 A 10-295700 A	1/1998
EP 1862133 A1 EP 1875875 A1	12/2007 1/2008	JP JP	H 11-501543 A H 11-128238 A	2/1999 5/1999
EP 1199045 B1 EP 1964530 A1	6/2008 9/2008	JP	H 11-192235 A	7/1999
EP 1972264 A1	9/2008	JP	11-253451 A H 11-318918 A	9/1999 11/1999
EP 1974771 A1 EP 1435852 B1	10/2008 12/2008	JP	2000-041991 A	2/2000
EP 1498082 B1	12/2008	JР	2000-070279 A 2000-210299 A	3/2000 8/2000
EP 1707131 B1 EP 1997438 A2	12/2008 12/2008	JР	2000-210299 A 2000-271145 A	10/2000
EP 1477104 B1	1/2009	JP	2000-287987 A 2001-029353 A	10/2000 2/2001
EP 2014218 A2 EP 2042112 A2	1/2009 4/2009	JP	2001-502216 A	2/2001
EP 1832259 B1	6/2009	JP	2001-309925 A	11/2001

(56)	References (Cited	WO	WO 98/35621		8/1998
	FOREIGN PATENT D	OCHMENTS	WO WO	WO 98/37815 A WO 98/47436 A		9/1998 10/1998
	FOREIGN FAIENT L	OCCIMENTS	wo	WO 99/20213		4/1999
JP	2002-186901 A 7/2	2002	WO	WO 99/52489		10/1999
JP		2002	WO WO	WO 00/64358 A		11/2000
JP JP		2002	WO	WO 00/74585 A WO 01/24713 A		12/2000 4/2001
JP JP		2002 2002	WO	WO 01/54590		8/2001
JP		2002	WO	WO 01/67970		9/2001
JP		2002	WO WO	WO 01/95810 A WO 02/24080 A		12/2001 3/2002
JP JP		2002 2003	WO	WO 02/24080 1 WO 02/38057 1		5/2002
JP		2003	WO	WO 02/062241	A1	8/2002
JP	2003612 A 1/2	2003	WO	WO 03/082133		10/2003
JP		2003	WO WO	WO 2004/012615 A WO 2004/026104 A		2/2004 4/2004
JP JP		2003 2003	wo	WO 2004/032754		4/2004
ĴР		2003	WO	WO 2004/032762		4/2004
JP		2003	WO WO	WO 2004/032763 A WO 2004/037095 A		4/2004 5/2004
JP JP		2003	WO	WO 2004/05/093 A		7/2004
JР		2003 2004	WO	WO 2004/098426		11/2004
JР		2004	WO	WO 2004/112618		12/2004
JP		2005	WO WO	WO 2005/117735 A WO 2005/122917 A		12/2005 12/2005
JP JP		2005 2005	WO	WO 2006/012797		2/2006
JР		2005	WO	WO 2006/042210		4/2006
JP	2005-534451 A 11/2	2005	WO	WO 2006/058223		6/2006
JP		2006	WO WO	WO 2006/063199 A WO 2006/083988 A		6/2006 8/2006
JP JP		2006 2006	WO	WO 2006/101661		9/2006
JР		2006	WO	WO 2006/119139		11/2006
JР		2006	WO	WO 2006/119376		11/2006
JP		2006	WO WO	WO 2006/129465 A WO 2007/008703 A	A1	12/2006 1/2007
JP JP		2006 2007	WO	WO 2007/008703 A		1/2007
JР		2007	WO	WO 2007/038538		4/2007
JP	2007-527747 A 10/2	2007	WO	WO 2007/040818		4/2007
JP		2008	WO WO	WO 2007/047380 A WO 2007/047531 A		4/2007 4/2007
JP JP		2008 2008	WO	WO 2007/056590		5/2007
JР		2008	WO	WO 2007/087272		8/2007
JP		2008	WO WO	WO 2007/143665		12/2007 2/2008
JP JP		2008 2008	WO	WO 2008/016886 A WO 2008/042021 A		4/2008
JР		2008	WO	WO 2008/049084		4/2008
JP		2009	WO	WO 2008/051764		5/2008
JР		2009	WO WO	WO 2008/089174 A WO 2008/118709 A		7/2008 10/2008
JP JP		2009 2009	wo	WO 2008/130793		10/2008
JР		2009	WO	WO 2009/010565	A 1	1/2009
JP		2009	WO WO	WO 2009/018067 A WO 2009/018406 A		2/2009 2/2009
JP JP		2010 2010	WO	WO 2009/018400 A		3/2009
JP		2010	WO	WO 2009/046234		4/2009
JP		2010	WO	WO 2009/073402		6/2009
JР	2010-534522 A 11/2	2010	WO WO	WO 2009/120992 A WO 2009/141616 A		10/2009 11/2009
JP JP		2010 2011	WO	WO 2009/141616 A		2/2010
JP JP		2012	WO	WO 2010/068783	A1	6/2010
JP	5208761 B2 6/2	2013	WO	WO 2011/008672		1/2011
JP		2015	WO WO	WO 2011/052939 A WO 2011/100321 A		5/2011 8/2011
JP RU		2015 2000	wo	WO 2011/144911		11/2011
RU		2002	WO	WO 2012/061722	A2	5/2012
WO	WO 92/22259 A2 12/	1992	WO	WO 2012/128362		9/2012
WO WO		1993	WO WO	WO 2012/135705		10/2012
WO WO		1993 1993	WO	WO 2012/135721 A WO 2013/018934 A		10/2012 2/2013
WO		1993	WO	WO 2013/062978		5/2013
WO	WO 94/21183 A1 9/.	1994	WO	WO 2014/092108	A 1	6/2014
WO		1994	WO	WO 2016/009921	A 1	12/2016
WO WO		1995 1995				
WO		1996		OTHER	PUBI	LICATIONS
WO		1996	.	10 " -		n , , , , , , , , , , , , , , , , , , ,
WO		1998		•		n Patentability for PCT/US2014/
WO	WO 98/26739 A1 6/	1998	022449,	dated Sep. 15, 2015	(8 pa	ages).

(56) References Cited

OTHER PUBLICATIONS

Technology Overview, printed from www.harmonicscalpel.com, Internet site, website accessed on Jun. 13, 2007, (3 pages).

Sherrit et al., "Novel Horn Designs for Ultrasonic/Sonic Cleaning Welding, Soldering, Cutting and Drilling," Proc. SPIE Smart Structures Conference, vol. 4701, Paper No. 34, San Diego, CA, pp. 353-360, Mar. 2002.

AST Products, Inc., "Principles of Video Contact Angle Analysis," 20 pages, (2006).

Lim et al., "A Review of Mechanism Used in Laparoscopic Surgical Instruments," Mechanism and Machine Theory, vol. 38, pp. 1133-1147, (2003).

Gooch et al., "Recommended Infection-Control Practices for Dentistry, 1993," Published: May 28, 1993; [retrieved on Aug. 23, 2008]. Retrieved from the internet: URL: http://wonder.cdc.gov/wonder/prevguid/p0000191/p0000191.asp (15 pages).

Huston et al., "Magnetic and Magnetostrictive Properties of Cube Textured Nickel for Magnetostrictive Transducer Applications," IEEE Transactions on Magnetics, vol. 9(4), pp. 636-640 (Dec. 1973).

Incropera et al., "Fundamentals of Heat and Mass Transfer", Wiley, New York (1990). (Book—not attached).

F. A. Duck, "Optical Properties of Tissue Including Ultraviolet and Infrared Radiation," pp. 43-71 in *Physical Properties of Tissue* (1990).

Orr et al., "Overview of Bioheat Transfer," pp. 367-384 in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. van Gernert, eds., Plenum, New York (1995).

Campbell et al, "Thermal Imaging in Surgery," p. 19-3, in *Medical Infrared Imaging*, N. A. Diakides and J. D. Bronzino, Eds. (2008).

Sullivan, "Cost-Constrained Selection of Strand Diameter and Number in a Litz-Wire Transformer Winding," IEEE Transactions on Power Electronics, vol. 16, No. 2, Mar. 2001, pp. 281-288.

Sullivan, "Optimal Choice for Number of Strands in a Litz-Wire Transformer Winding," IEEE Transactions on Power Electronics, vol. 14, No. 2, Mar. 1999, pp. 283-291.

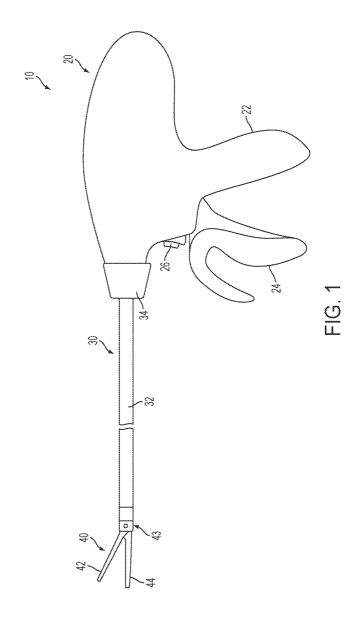
Graff, K.F., "Elastic Wave Propagation in a Curved Sonic Transmission Line," IEEE Transactions on Sonics and Ultrasonics, SU-17(1), 1-6 (1970).

Makarov, S. N., Ochmann, M., Desinger, K., "The longitudinal vibration response of a curved fiber used for laser ultrasound surgical therapy," Journal of the Acoustical Society of America 102, 1191-1199 (1997).

Morley, L. S. D., "Elastic Waves in a Naturally Curved Rod," Quarterly Journal of Mechanics and Applied Mathematics, 14: 155-172 (1961).

Walsh, S. J., White, R. G., "Vibrational Power Transmission in Curved Beams," Journal of Sound and Vibration, 233(3), 455-488 (2000).

Covidien 501(k) Summary Sonicision, dated Feb. 24, 2011 (7 pages).


Gerhard, Glen C., "Surgical Electrotechnology: Quo Vadis?," IEEE Transactions on Biomedical Engineering, vol. BME-31, No. 12, pp. 787-792, Dec. 1984.

Fowler, K.R., "A Programmable, Arbitrary Waveform Electrosurgical Device," IEEE Engineering in Medicine and Biology Society 10th Annual International Conference, pp. 1324, 1325 (1988).

LaCourse, J.R.; Vogt, M.C.; Miller, W.T., III; Selikowitz, S.M., "Spectral Analysis Interpretation of Electrosurgical Generator Nerve and Muscle Stimulation," IEEE Transactions on Biomedical Engineering, vol. 35, No. 7, pp. 505-509, Jul. 1988.

U.S. Appl. No. 13/751,680, filed Jan. 28, 2013.

^{*} cited by examiner

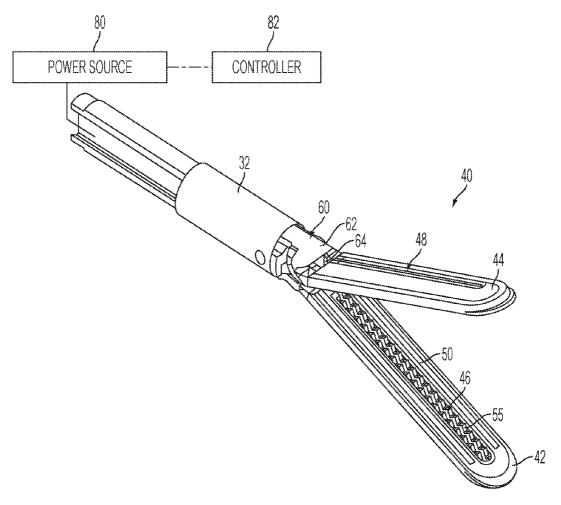
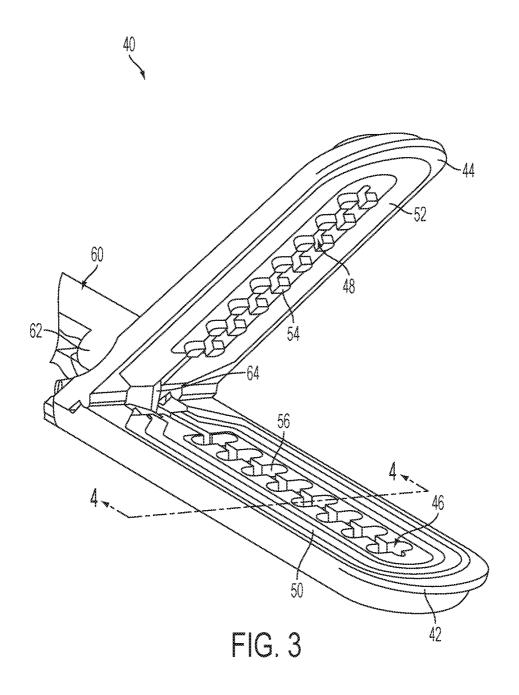
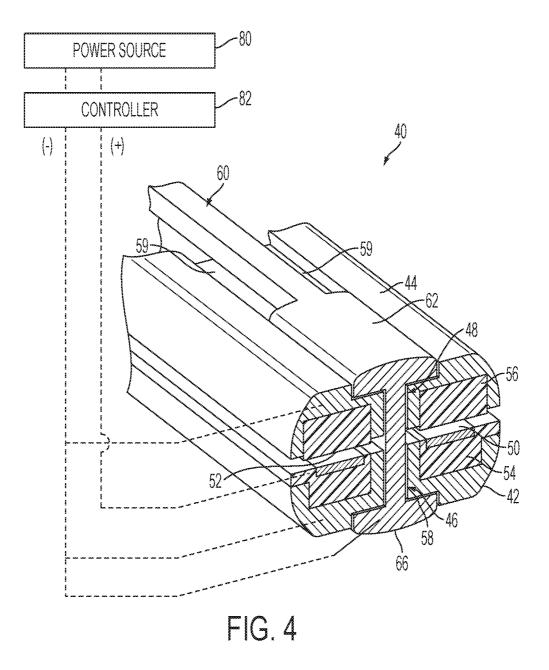




FIG. 2

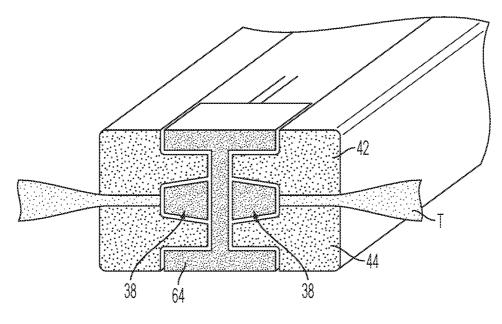
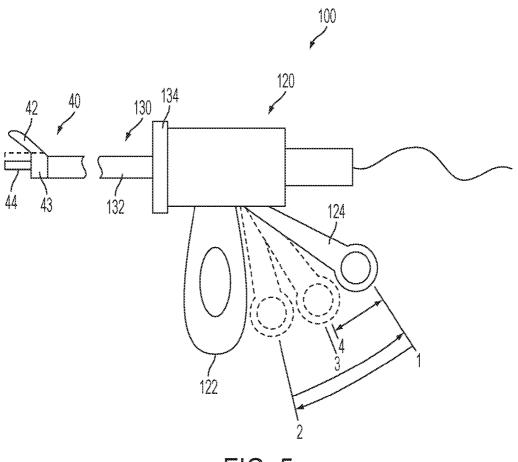
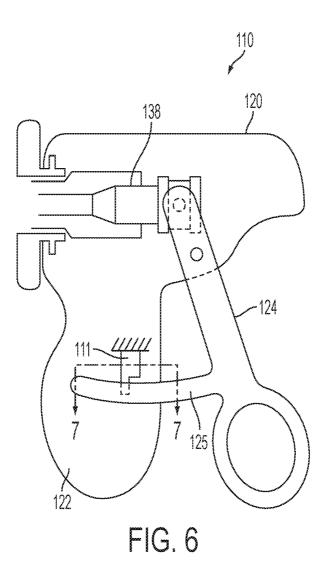
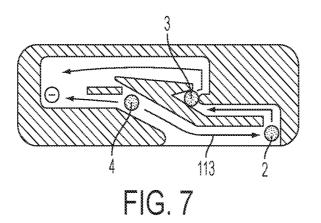
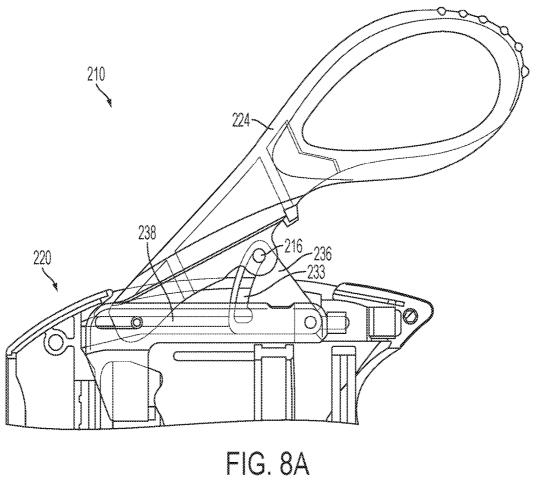
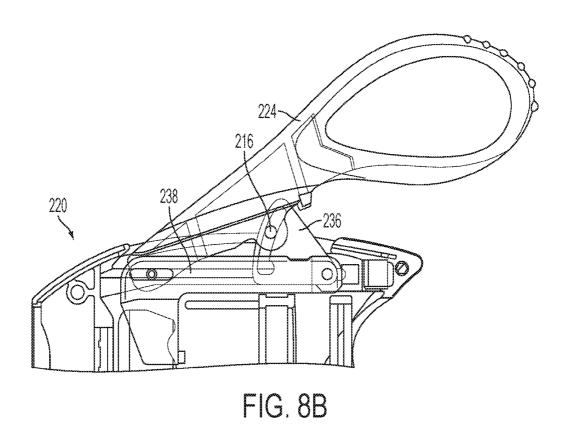
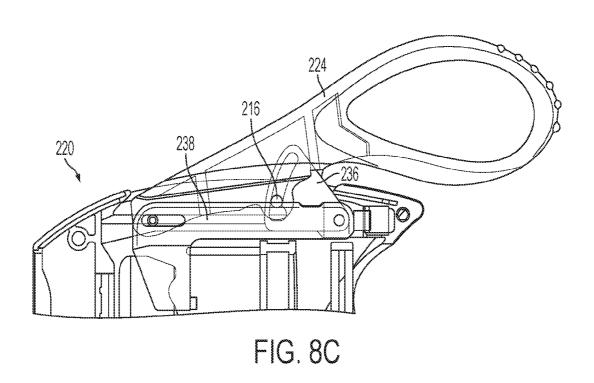
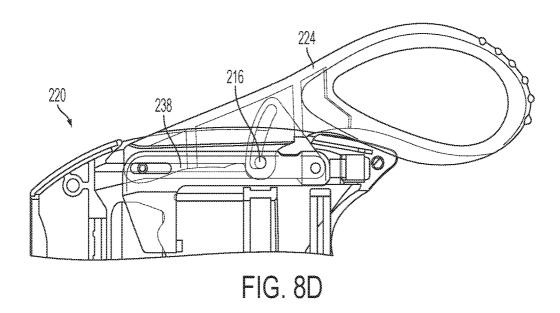
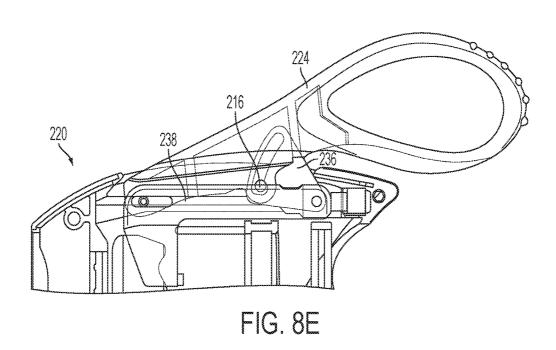


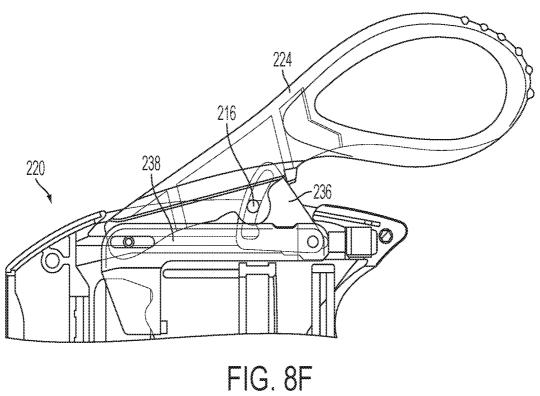
FIG. 4A

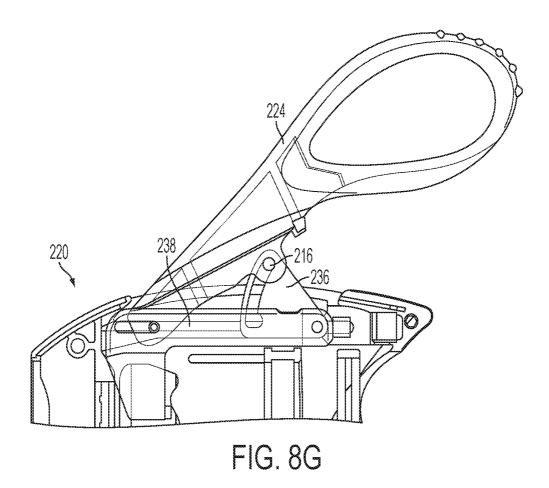







FIG. 5









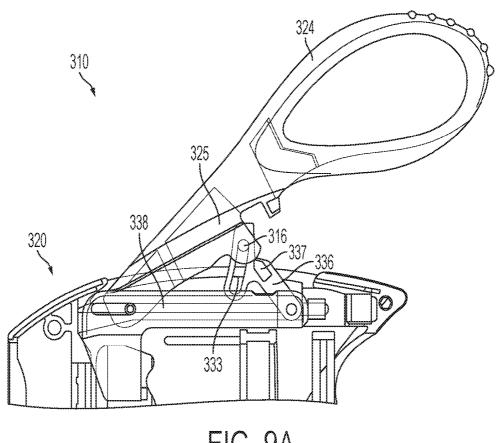
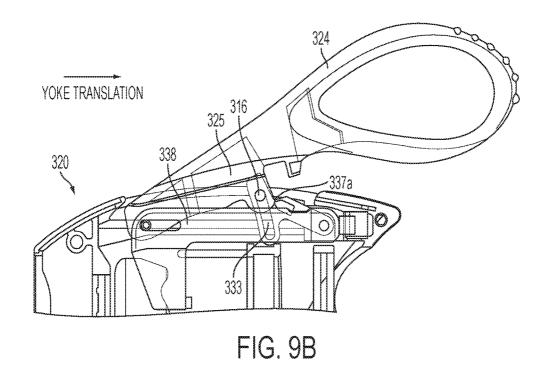
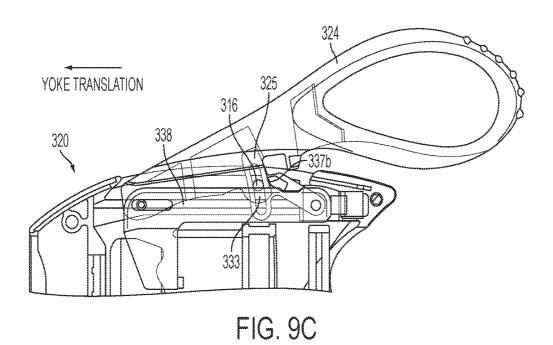
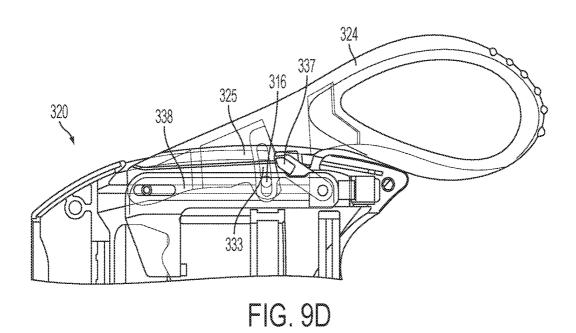
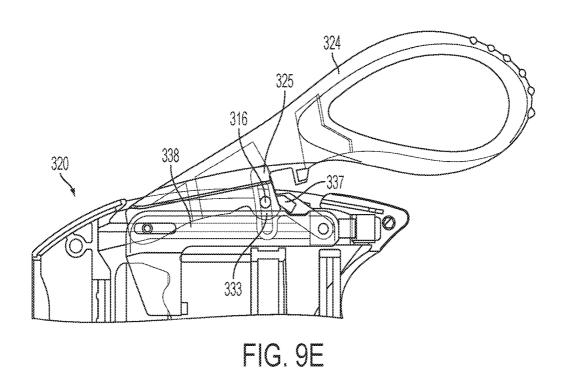
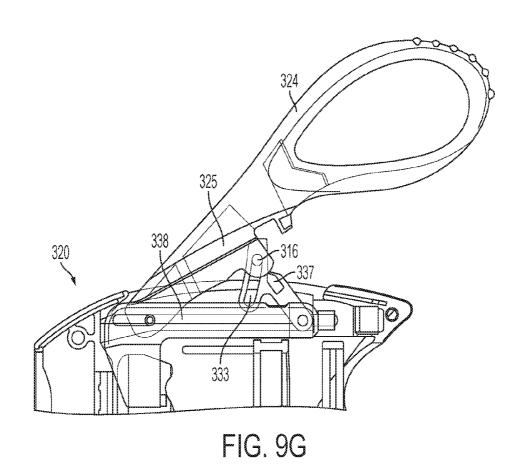
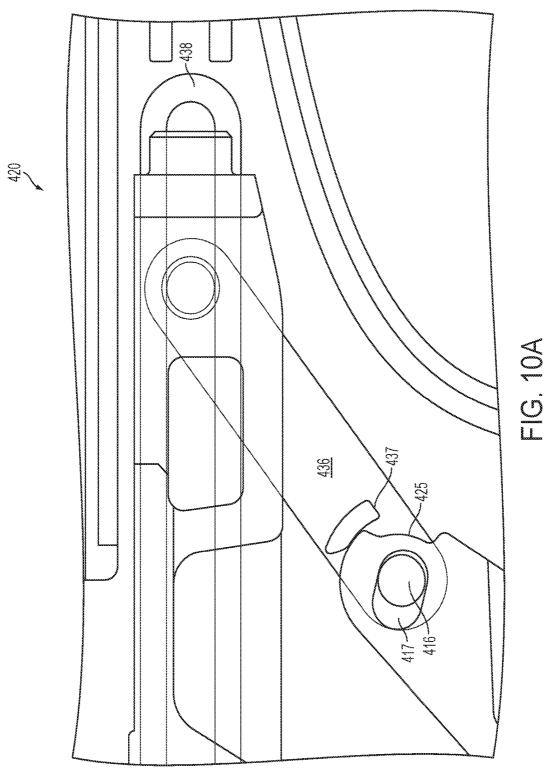
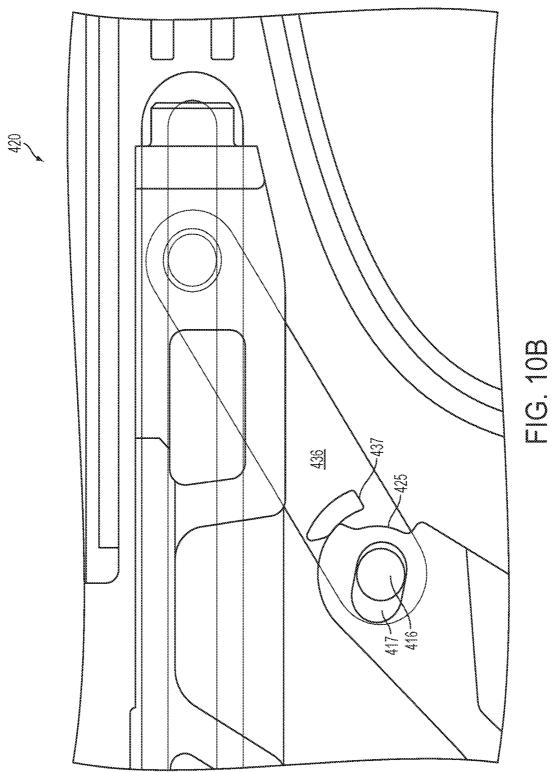
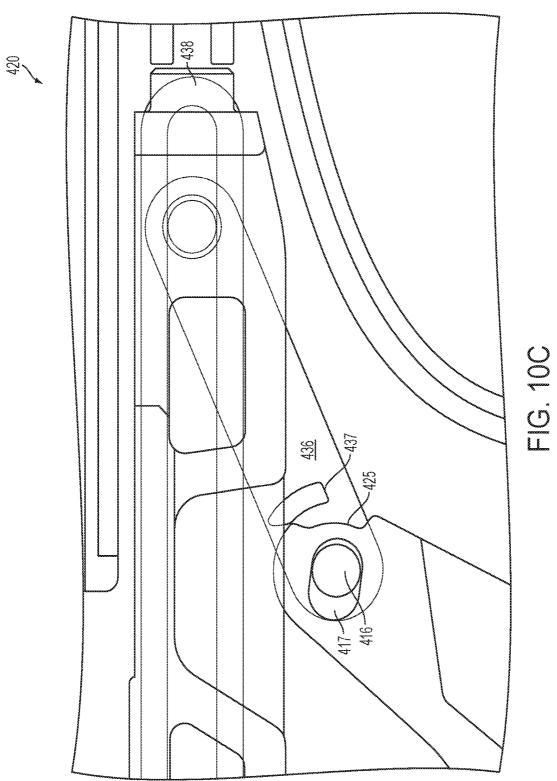






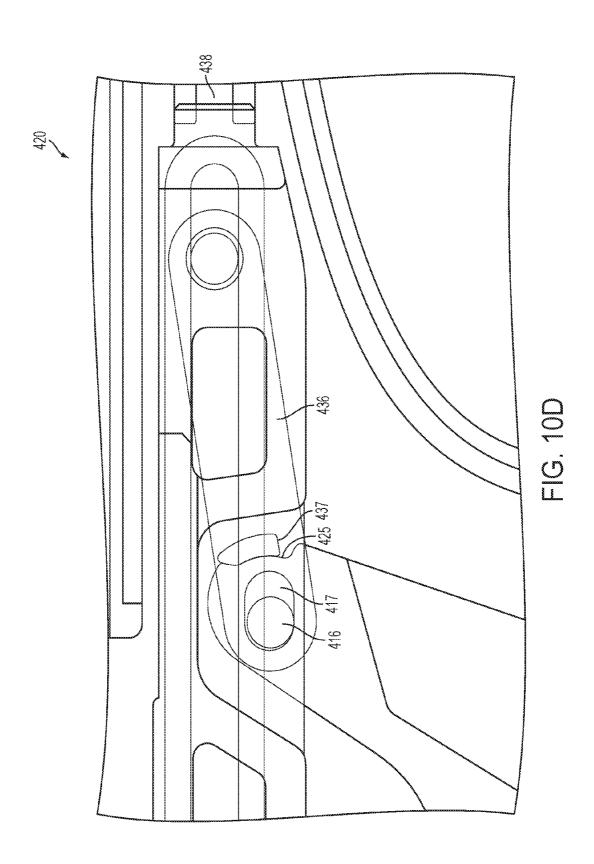
FIG. 9A

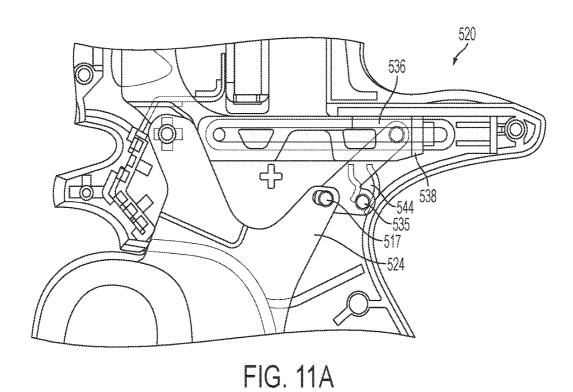


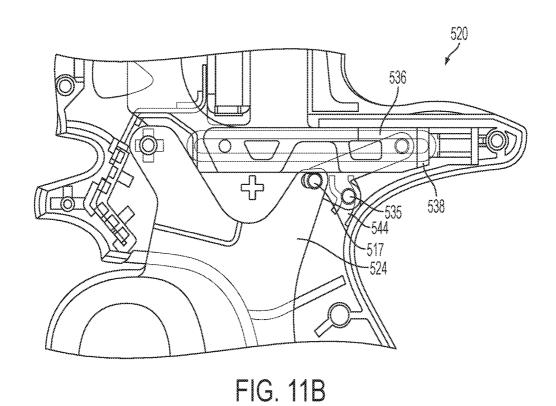


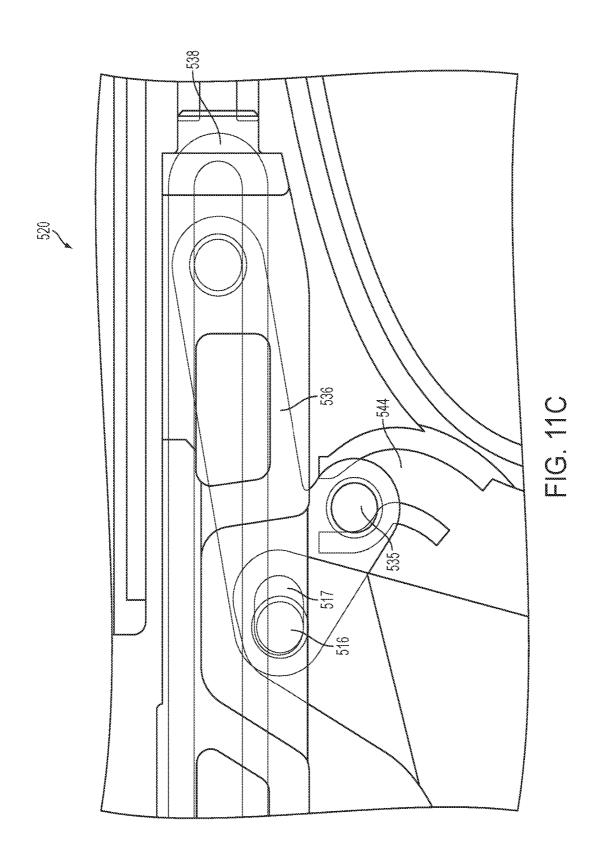


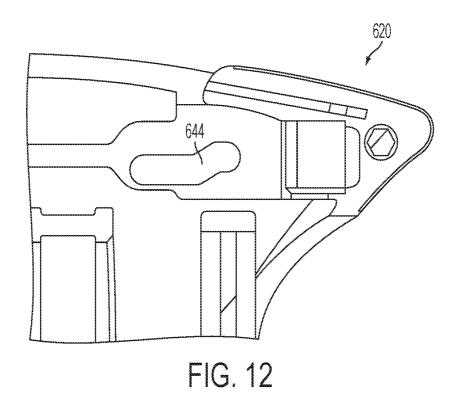


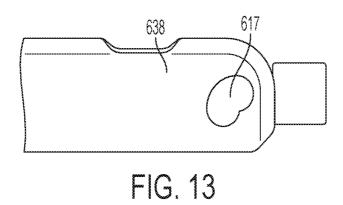


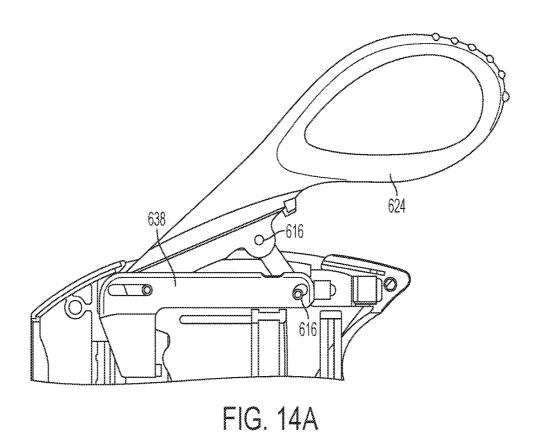


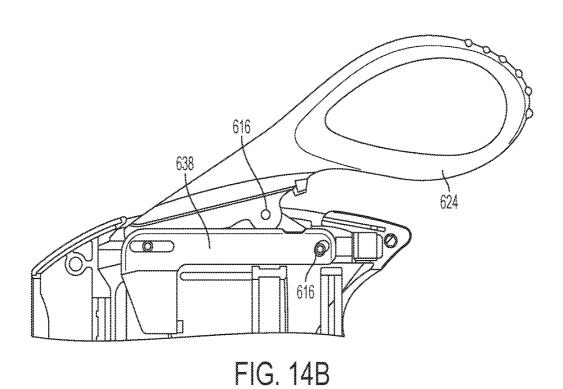


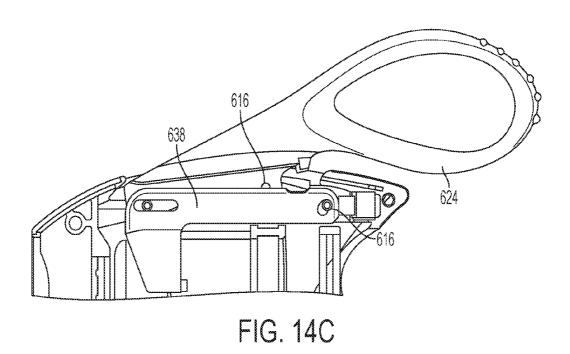


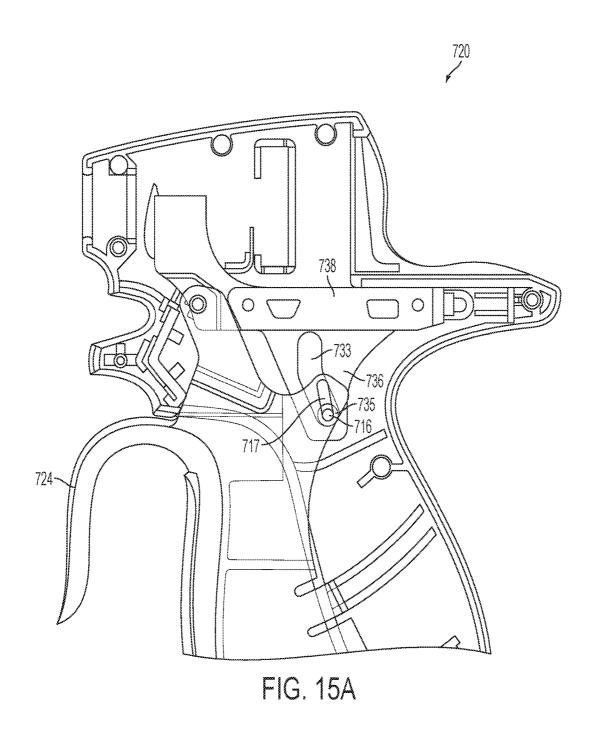


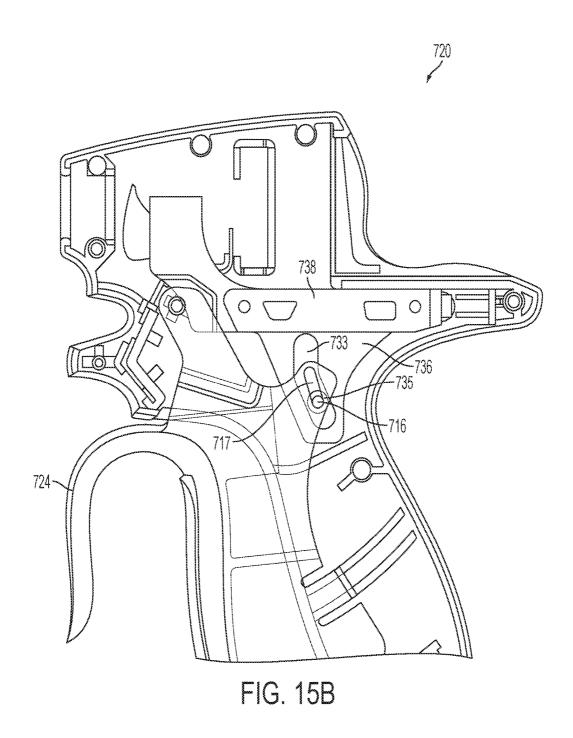


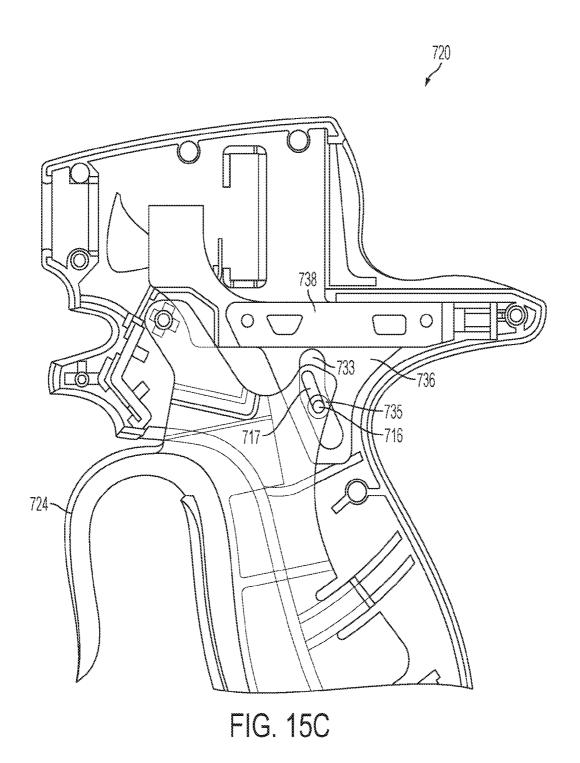


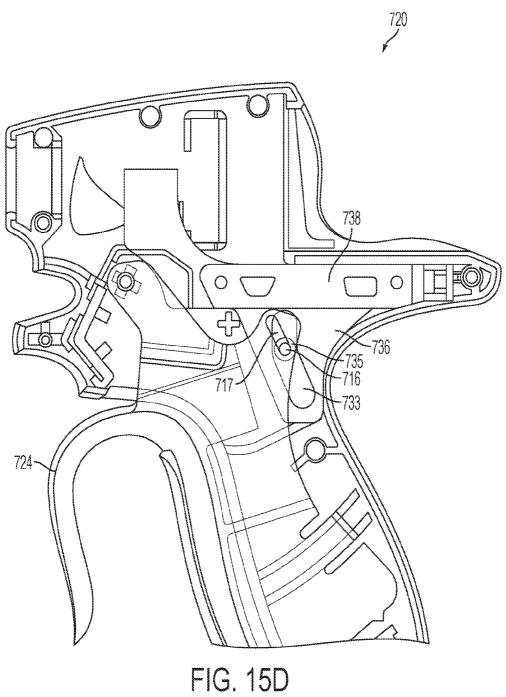












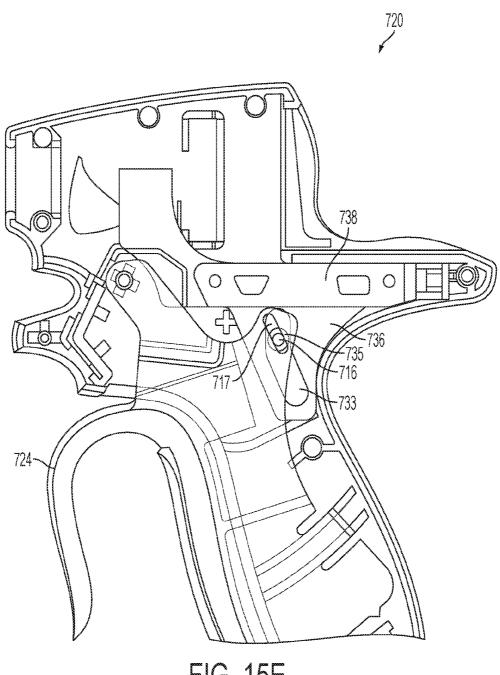
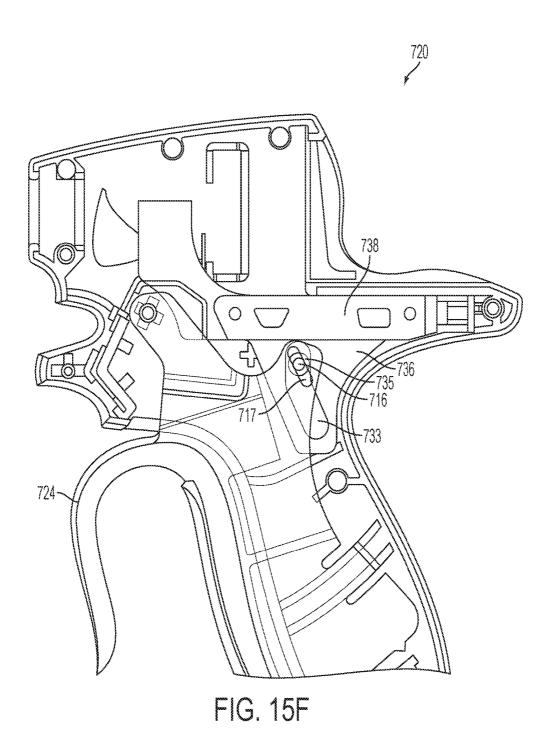



FIG. 15E

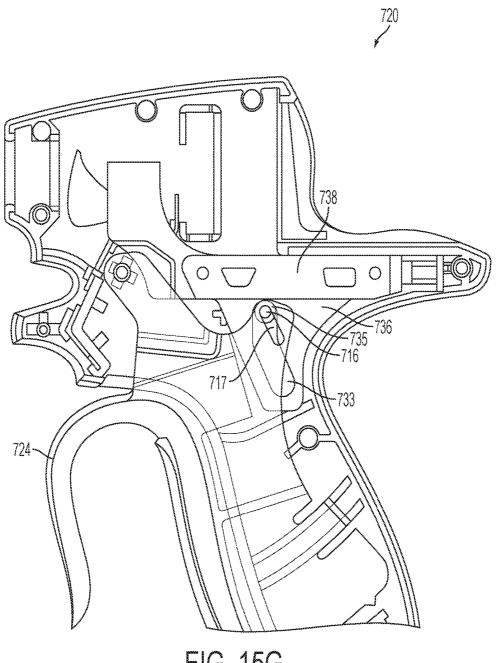
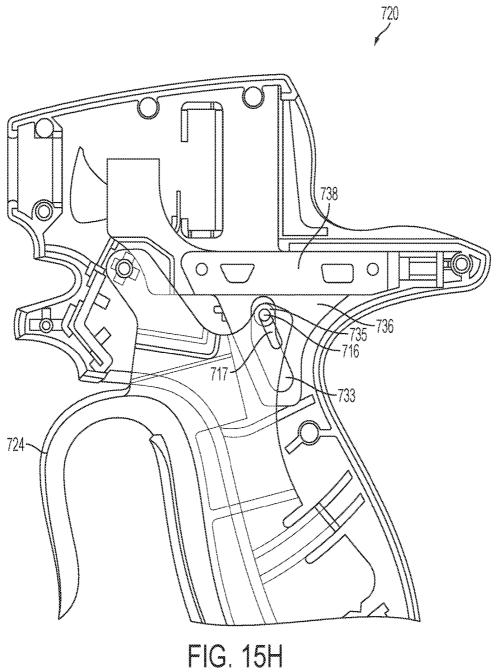
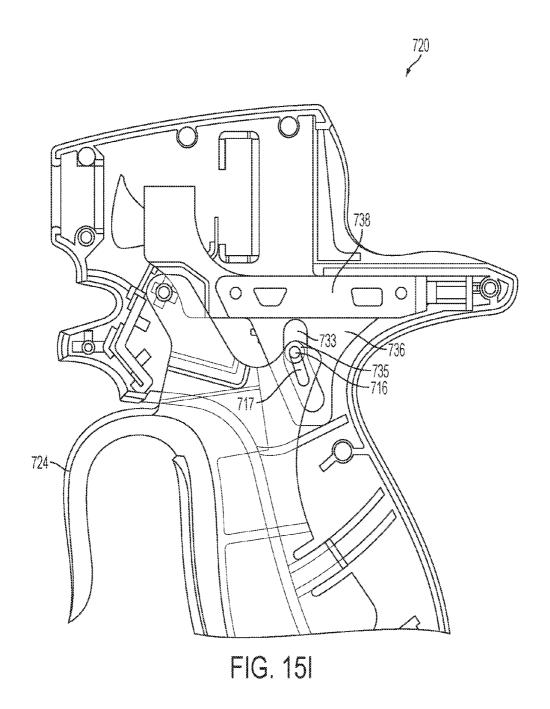
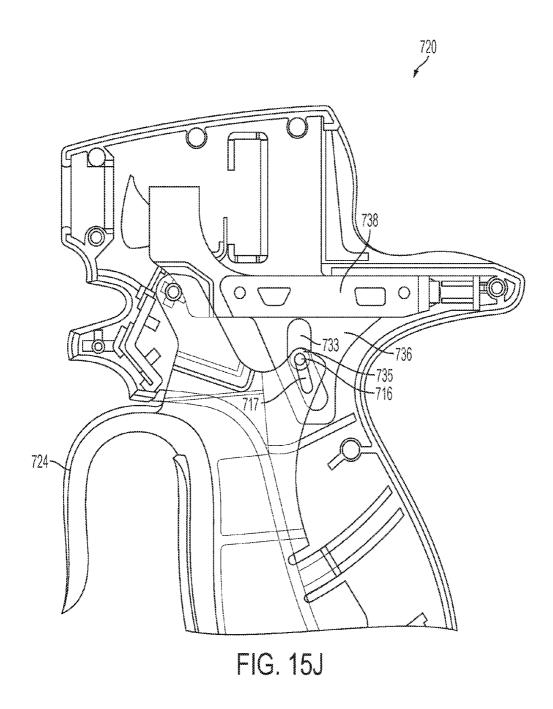
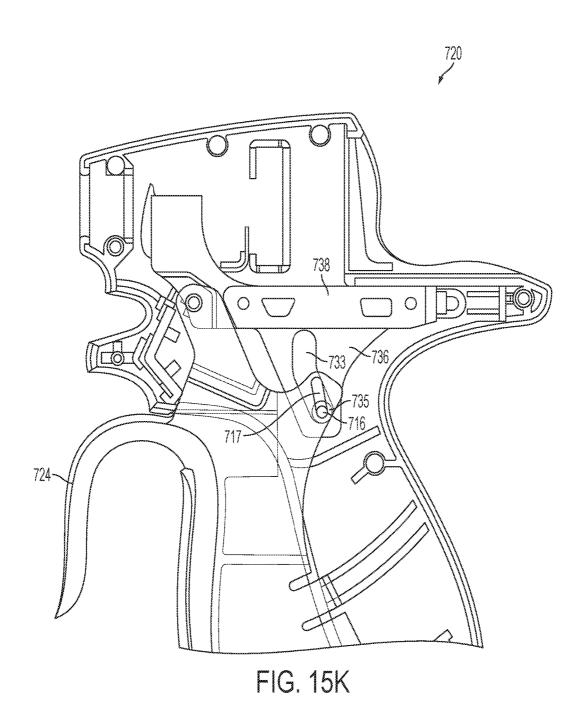






FIG. 15G

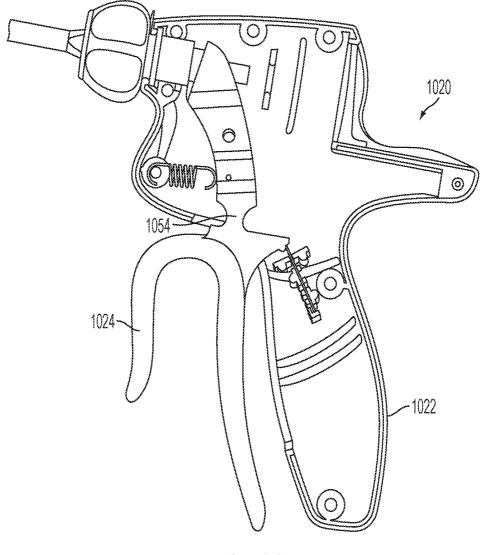


FIG. 16

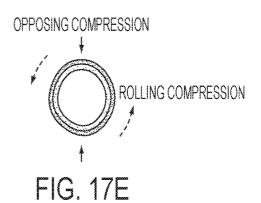
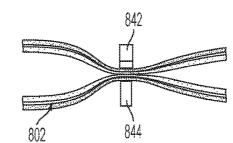



FIG. 17B

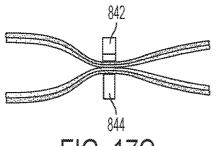


FIG. 17C

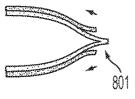


FIG. 17D

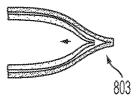


FIG. 17H

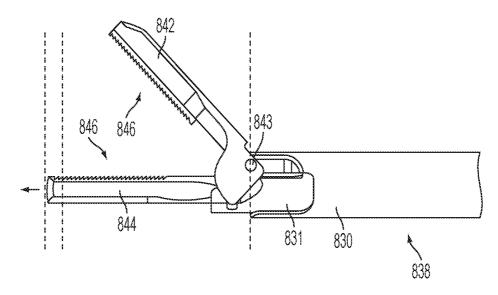


FIG. 18A

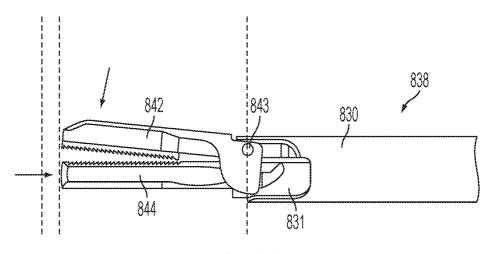


FIG. 18B

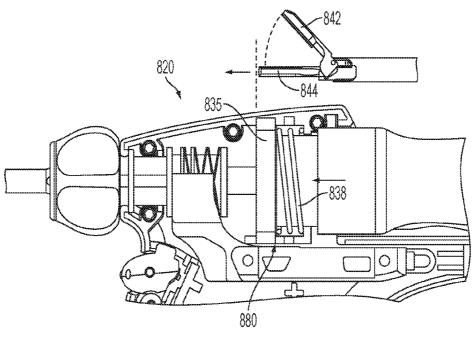


FIG. 19A

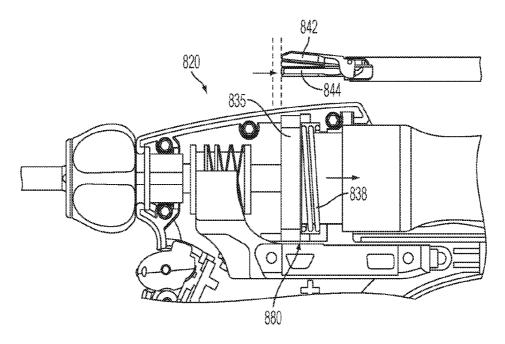


FIG. 19B

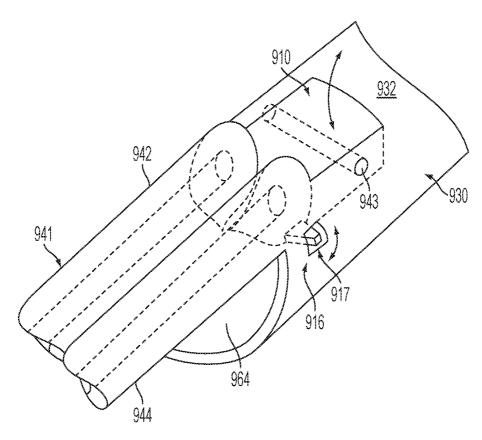


FIG. 20

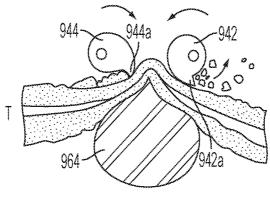


FIG. 21A

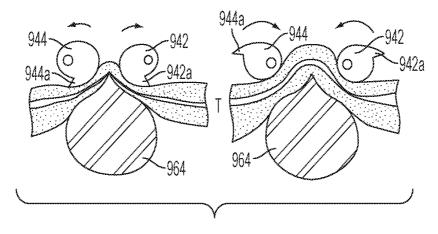


FIG. 21B

END EFFECTOR WITH A CLAMP ARM ASSEMBLY AND BLADE

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional application claiming priority under 35 U.S.C. §121 to U.S. patent application Ser. No. 13/833,706, entitled SURGICAL INSTRUMENT WITH MULTIPLE CLAMPING MECHANISMS, filed 10 Mar. 15, 2013, which issued as U.S. Pat. No. 9,241,728 on Jan. 26, 2016, the entire disclosure of which is hereby incorporated by reference herein.

BACKGROUND

1. Field of the Invention

The present application generally relates to medical devices and methods, and in particular, surgical instruments configured to weld and/or incise tissue.

2. Description of the Related Art

In various circumstances, a surgical instrument can be configured to apply energy to tissue in order to treat and/or destroy the tissue. In certain circumstances, a surgical instrument can comprise one or more electrodes which can be 25 positioned against and/or positioned relative to the tissue such that electrical current can flow through the electrodes and into the tissue. The surgical instrument can further comprise an electrical input, a supply conductor electrically coupled with the electrodes, and/or a return conductor which 30 can be configured to allow current to flow from the electrical input, through the supply conductor, through the electrodes and tissue, and then through the return conductor to an electrical output, for example. In various circumstances, the energy can generate heat within the captured tissue to create 35 one or more hemostatic seals within the tissue. Such embodiments may be particularly useful for sealing blood vessels, for example. The surgical instrument can comprise an ultrasonic blade, connected to an ultrasonic transducer, to couple mechanical vibration to tissue and create one or more 40 hemostatic seals and divide the tissue simultaneously. Such embodiments may be particularly useful for sealing and dividing blood vessels, for example. Furthermore, other energy modalities may be contemplated, but not limited to, microwave, laser, thermal, and high intensity focused ultra- 45 sound. The surgical instrument can further comprise a cutting member which can be moved relative to the tissue and electrodes in order to transect the tissue.

The foregoing discussion is intended only to illustrate various aspects of the related art in the field of the invention 50 at the time, and should not be taken as a disavowal of claim scope.

SUMMARY

In various embodiments, a surgical instrument may generally comprise a shaft comprising a proximal end and a distal end, an ultrasonic waveguide at least partially positioned within the shaft, the waveguide having a proximal tioned at the distal end of the waveguide, and a clamp arm assembly pivotally connected to the distal end of the shaft, wherein the clamp arm assembly comprises at least two camming members rotationally attached to a clamp arm, wherein the clamp arm is movable between an open position 65 and a closed position relative to the blade to compress tissue intermediate the clamp arm and the blade when in the closed

position, and wherein the at least two camming members rotate relative to the clamp arm to separate tissue layers when the clamp arm moves between the open position and the closed position.

In various embodiments, an end effector may generally comprise a blade, and a clamp arm assembly configured to pivot relative to the blade, wherein the clamp arm assembly comprises a clamp arm movable between an open position and a closed position to compress tissue or a vessel intermediate the clamp arm assembly and the blade when in the closed position, and at least one camming member rotationally attached to the clamp arm, wherein the at least one camming member is configured to rotate relative to the blade as the clamp arm moves from the open position to the closed position to separate layers of the tissue or the vessel.

In various embodiments, an end effector may generally comprise a blade, and a clamp arm assembly comprising a clamp arm movable between an open position and a closed 20 position relative to the blade, and at least one camming member rotationally attached to the clamp arm, wherein the at least one camming member is configured to rotate relative to the blade as the clamp arm moves from the open position to the closed position.

BRIEF DESCRIPTION OF THE FIGURES

Various features of the embodiments described herein are set forth with particularity in the appended claims. The various embodiments, however, both as to organization and methods of operation, together with advantages thereof, may be understood in accordance with the following description taken in conjunction with the accompanying drawings as follows.

FIG. 1 includes a side elevational view of a surgical instrument according to various embodiments.

FIG. 2 includes a perspective view of the end effector of the device of FIG. 1, in an open configuration according to various embodiments.

FIG. 3 includes another perspective view of the end effector of the device of FIG. 1, in an open configuration according to various embodiments.

FIG. 4 includes a cross-sectional end view of the end effector of FIG. 2, in a closed configuration and with the blade in a distal position according to various embodiments.

FIG. 4A includes a surgical instrument comprising an end effector comprising roller bearings according to various embodiments.

FIG. 5 includes a surgical instrument comprising a trigger assembly in various positions according to various embodi-

FIG. 6 includes a surgical instrument comprising a trigger bypass mechanism according to various embodiments.

FIG. 7 includes the trigger bypass mechanism illustrated

FIGS. 8A-G include a surgical instrument comprising a trigger assembly in various positions according to various embodiments

FIGS. 9A-G include a surgical instrument comprising a end and a distal end, an ultrasonically actuated blade posi- 60 trigger assembly in various positions according to various embodiments.

> FIGS. 10A-D include a surgical instrument comprising a trigger assembly in various positions according to various embodiments.

FIGS. 11A-C include a surgical instrument comprising a trigger assembly in various positions according to various embodiments.

FIG. 12 includes a cross sectional view of a rear yoke pin path in a surgical instrument according to various embodiments

FIG. 13 includes a cross sectional view of a rear yoke pin path in a surgical instrument according to various embodi-

FIGS. **14**A-C include a surgical instrument comprising a trigger assembly in various positions according to various embodiments.

FIGS. **15**A-K include a surgical instrument comprising a 10 trigger assembly in various positions according to various embodiments.

FIG. 16 includes a surgical instrument comprising a trigger assembly according to various embodiments.

FIGS. 17A-H include cross-sectional views of a portion 15 of a vessel subjected to a compressive force according to various embodiments.

FIGS. 18A and 18B include a surgical instrument comprising an end effector in various positions according to various embodiments.

FIGS. 19A and 19B include a side elevational view of the handle assembly of a surgical instrument with a housing half removed according to various embodiments.

FIG. 20 includes an end effector comprising rotational features according to various embodiments.

FIGS. 21A and 21B includes a camming member comprising a protrusion according to various embodiments

Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrate various embodiments of the invention, in one form, and such exemplifications are not to be construed as limiting the scope of the invention in any manner.

DETAILED DESCRIPTION

Various embodiments are directed to apparatuses, systems, and methods for the treatment of tissue. Numerous specific details are set forth to provide a thorough understanding of the overall structure, function, manufacture, and 40 use of the embodiments as described in the specification and illustrated in the accompanying drawings. It will be understood by those skilled in the art, however, that the embodiments may be practiced without such specific details. In other instances, well-known operations, components, and 45 elements have not been described in detail so as not to obscure the embodiments described in the specification. Those of ordinary skill in the art will understand that the embodiments described and illustrated herein are non-limiting examples, and thus it can be appreciated that the 50 specific structural and functional details disclosed herein may be representative and do not necessarily limit the scope of the embodiments, the scope of which is defined solely by the appended claims.

Reference throughout the specification to "various 55 embodiments," "some embodiments," "one embodiment," or "an embodiment", or the like, means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, appearances of the phrases "in various embodiments," "in some embodiments," "in one embodiment," or "in an embodiment", or the like, in places throughout the specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in 65 one or more embodiments. Thus, the particular features, structures, or characteristics illustrated or described in con-

4

nection with one embodiment may be combined, in whole or in part, with the features structures, or characteristics of one or more other embodiments without limitation.

It will be appreciated that the terms "proximal" and "distal" may be used throughout the specification with reference to a clinician manipulating one end of an instrument used to treat a patient. The term "proximal" refers to the portion of the instrument closest to the clinician and the term "distal" refers to the portion located furthest from the clinician. It will be further appreciated that for conciseness and clarity, spatial terms such as "vertical," "horizontal," "up," and "down" may be used herein with respect to the illustrated embodiments. However, surgical instruments may be used in many orientations and positions, and these terms are not intended to be limiting and absolute.

Various embodiments of systems and methods relate to creating thermal "welds" or "fusion" within native tissue volumes. The alternative terms of tissue "welding" and tissue "fusion" may be used interchangeably herein to describe thermal treatments of a targeted tissue volume that result in a substantially uniform fused-together tissue mass, for example, in welding blood vessels that exhibit substantial burst strength immediately post-treatment. The strength of such welds is particularly useful for (i) permanently 25 sealing blood vessels in vessel transection procedures; (ii) welding organ margins in resection procedures; (iii) welding other anatomic ducts wherein permanent closure is required; and also (iv) for performing vessel anastomosis, vessel closure or other procedures that join together anatomic structures or portions thereof. The welding or fusion of tissue as disclosed herein is to be distinguished from "coagulation", "hemostasis" and other similar descriptive terms that generally relate to the collapse and occlusion of blood flow within small blood vessels or vascularized tissue. For 35 example, any surface application of thermal energy can cause coagulation or hemostasis-but does not fall into the category of "welding" as the term is used herein. Such surface coagulation does not create a weld that provides any substantial strength in the treated tissue.

At the molecular level, the phenomena of truly "welding" tissue as disclosed herein may result from the thermallyinduced denaturation of collagen and other protein molecules in a targeted tissue volume to create a transient liquid or gel-like proteinaceous amalgam. A selected energy density is provided in the targeted tissue to cause hydrothermal breakdown of intra- and intermolecular hydrogen crosslinks in collagen and other proteins. The denatured amalgam is maintained at a selected level of hydration-without desiccation-for a selected time interval which can be very brief. The targeted tissue volume is maintained under a selected very high level of mechanical compression to insure that the unwound strands of the denatured proteins are in close proximity to allow their intertwining and entanglement. Upon thermal relaxation, the intermixed amalgam results in protein entanglement as re-crosslinking or renaturation occurs to thereby cause a uniform fused-together mass.

Ultrasonic surgical instruments are finding increasingly widespread applications in surgical procedures by virtue of the unique performance characteristics of such instruments. Depending upon specific instrument configurations and operational parameters, ultrasonic surgical instruments can provide substantially simultaneous cutting of tissue and hemostasis by coagulation, desirably minimizing patient trauma. The cutting action is typically effected by an end effector or blade tip at the distal end of the instrument, which transmits ultrasonic energy to tissue brought into contact with the end effector. Ultrasonic instruments of this nature

can be configured for open surgical use, laparoscopic or endoscopic surgical procedures including robotic-assisted procedures.

Ultrasonic surgical instruments have been developed that include a clamp mechanism to press tissue against the blade 5 of the end effector in order to couple ultrasonic energy to the tissue of a patient. Such an arrangement (sometimes referred to as a clamp coagulator shears or an ultrasonic transector) is disclosed in U.S. Pat. Nos. 5,322,055, 5,873,873, and 6,325,811, all of which are incorporated herein by reference in their entireties. The surgeon activates the clamp arm to press the clamp pad against the blade by squeezing on the handgrip or handle.

Some current ultrasonic shears devices utilize tissue engaging pads or clamp pads that close in parallel with the 15 surface of the blade. By this construction, tissue is grasped between the clamp pad and the blade. The clamp pad may comprise a low coefficient of friction polymer material, or any other suitable low-friction material. Although these designs have been adequate, they tend to suffer from lon- 20 gevity issues since the clamp pads tend to deteriorate over long surgical procedures. Additionally, newer designs of clamp coagulator shears increase blade amplitude and/or the loading of the clamp pad against the tissue and blade and overwhelm the clamp pad material, resulting in less than 25 required clamp pad life. The clamp pad material limits the amount of force that may be applied against the tissue and blade, which in turn limits the tissue thickness or vessel size that some current clamp coagulator shears may effectively cut and coagulate.

It would be desirable to provide electrosurgical instruments that overcome some of the deficiencies of current ultrasonic surgical instruments. Various embodiments of the electrosurgical instruments described herein may overcome some of those deficiencies.

Enhancing the ability to seal vessels may be accomplished by placing the adventitial layers of the opposing sides of a coapted vessel in direct contact with each other. Preventing this direct contact is commonly the muscular (entima) layer of the vessel. The muscular layers may be "split" within a 40 vessel without compromising the adventitia by applying a sufficient compressive force. The muscular layers may retract enough to allow direct adventitial contact. The direct adventitial seals demonstrate higher burst pressures. In various embodiments, an electrosurgical device may provide 45 variable force control to allow the user to create a large compressive force for muscle separation and a smaller compressive force for application of ultrasonic energy and sealing and cutting.

In various embodiments, electrosurgical instruments may 50 be configured to provide multiple trigger positions to deliver multiple levels of compressive force to the tissue. The compressive force may be generally established by a handle using one of two user-selectable clamping modes to provide variable force control: one for cutting and coagulating small 55 blood vessels; and one for cutting and coagulating large blood vessels. The large vessel coagulating mode generally corresponds to a sequence where the end effector delivers a short-term high compressive force and then progresses to a embodiments, the lesser compressive force may be about 50% to about 70% of the high compressive force. The high compressive force may compress a large vessel such that the inner layers of the vessel, i.e., the tunica intima and tunica media, are extruded and separated and only the outer layer 65 of the vessel, i.e., the tunica adventitia, resides within the end effector.

Without wishing to be bound to any particular theory, it is believed that the adventitia contributes most significantly to the seal strength of an ultrasonically transected vessel, and the inner layers of the vessel contribute very little to the seal strength and, in fact, tend to flatten and structurally counteract the adventitia seal. Accordingly, electrosurgical instruments may be configured to provide a high compressive force to mechanically extrude the inner layers of the vessel and a low compressive force to allow direct adventitial contact and an adventitia-to-adventitia seal. Various embodiments of electrosurgical instruments described herein may provide certain advantages over current ultrasonic shears devices, including one or more of the following: obtaining a seal at a more manageable, lower clamping force; obtaining a seal at a lower generator drive power; lower generator power requirements; utilizing less durable clamp pad materials; improved large vessel sealing; improved clamp pad life; improved ergonomics by only using the high clamp force, which corresponds to high input force, when required; improved efficiency; and improved cost savings.

An electrosurgical instruments can be configured to supply energy, such as electrical energy, ultrasonic energy, and/or heat energy, for example, to the tissue of a patient. For example, various embodiments disclosed herein provide electrosurgical jaw structures adapted for transecting captured tissue between the jaws and for contemporaneously welding or sealing the captured tissue margins with controlled application of RF energy. In various embodiments, the electrosurgical jaw structures may be adapted to coagulate the captured tissues rather than weld the captured tissue. Electrosurgical instruments may also be configured to, for example, grasp, sever, and staple tissue. Electrosurgical instruments may be configured to supply other energy modalities and/or combinations thereof, such as, for 35 example, microwave, laser, thermal, ultrasonic and high intensity focused ultrasound. All such arrangements and implementations are intended to be within the scope of this

In various embodiments, referring to FIG. 1, an electrosurgical instrument 10 may comprise a hand piece 20, a shaft 30 extending distally from hand piece 20, and an end effector 40 disposed at a distal end of shaft 30. Hand piece 20 may comprise a pistol grip 22, a pivoting trigger 24, and an activation button 26. Trigger 24 may be pivotable toward and away from pistol grip 22 to selectively actuate end effector 40 as will be described in greater detail below. Activation button **26** may be operable to selectively activate RF circuitry that is in communication with end effector 40, as will also be described in greater detail below. In some versions, activation button 26 may also serve as a mechanical lockout against trigger 24, such that trigger 24 cannot be fully actuated unless button 26 is being pressed simultaneously. Examples of how such a lockout may be provided are disclosed in one or more of the references cited herein. It should be understood that pistol grip 22, trigger 24, and button 26 may be modified, substituted, supplemented, etc. in any suitable way, and that the descriptions of such components herein are merely illustrative.

Shaft 30 may comprise any suitable cross-section, such position of lesser compressive force. For example, in various 60 as, for example, a cylindrical cross-section and/or rectangular cross-section. Shaft 30 may comprise an outer sheath 32 that extends from the hand piece 20. A proximal end of shaft 30 may be attached to the hand piece 20. In various embodiments, shaft 30 may be rotatable about the longitudinal axis defined by sheath 32, relative to hand piece 20 via a knob 34. Such rotation may provide rotation of end effector 40 and shaft 30 unitarily. In various embodiments,

knob 34 may be operable to rotate end effector 40 without rotating any portion of shaft 30.

In various embodiments, end effector 40 may comprise a first jaw 42 and a second jaw 44. Second jaw 44 may be substantially fixed relative to shaft 30; while first jaw 42 may 5 pivot relative to shaft 30, toward and away from second jaw **42**. In various embodiments, actuators, such as, for example, rods and cables, may extend through sheath 32 and be joined with first jaw 42 at a pivotal coupling 43 such that longitudinal movement of the actuator through shaft 30 provides 10 pivoting of first jaw 42 relative to shaft 30 and relative to second jaw 44. In various embodiments, jaws 42, 44 may comprise any other suitable kind of movement and may be actuated in any other suitable fashion. For example, as will be described in greater detail below, jaws 42, 44 may be 15 actuated and thus closed by longitudinal translation of a firing beam 60 such that actuators may simply be eliminated in certain embodiments.

In various embodiments, referring to FIGS. 2-4, first jaw **42** defines a longitudinally extending elongate slot **46** and 20 second jaw 44 defines a longitudinally extending elongate slot 48. The top side of first jaw 42 may comprise a first electrode surface 50 and the underside of second jaw 44 may comprise a second electrode surface 52. Electrode surfaces 50, 52 may be in communication with an electrical source 80 25 via one or more conductors (not shown) that extend along the length of shaft 30. Electrical source 80 may be operable to deliver RF energy to first electrode surface 50 at a first polarity and to second electrode surface 52 at a second (opposite) polarity, such that RF current flows between 30 electrode surfaces 50, 52 and thereby through tissue captured between jaws 42, 44. In various embodiments, firing beam 60 may serve as an electrical conductor that cooperates with electrode surfaces 50, 52, e.g., as a ground return for delivery of bipolar RF energy captured between jaws 42, 35 44. Electrical source 80 may be external to electrosurgical instrument 10 or may be integral with electrosurgical instrument 10, e.g., in hand piece 20. A controller 82 may regulate delivery of power from electrical source 80 to electrode surfaces 50, 52. Controller 82 may be external to electro- 40 surgical instrument 10 or may be integral with electrosurgical instrument 10, e.g., in hand piece 20. It should also be understood that electrode surfaces 50, 52 may be provided in a variety of alternative locations, configurations, and relationships.

Referring to FIG. 4, the lower side of first jaw 42 may comprise a longitudinally extending recess 58 adjacent to slot 46 and the upper side of second jaw 44 may comprise a longitudinally extending recess 58 adjacent to slot 48. FIG. 2 shows the upper side of first jaw 42 including a plurality 50 of teeth serrations 46. It should be understood that the lower side of second jaw 44 may include complementary serrations that nest with serrations 46 to enhance gripping of tissue captured between jaws 42, 44 without necessarily tearing the tissue. FIG. 3 shows an example of serrations 46 55 in first jaw 42 as mainly recesses; with serrations 48 in second jaw 44 as mainly protrusions. Of course, serrations 46, 48 may take any other suitable form or may be simply omitted altogether. It should also be understood that serrations 46, 48 may be formed of an electrically non-conduc- 60 tive, or insulative, material, such as plastic, glass, and/or ceramic, for example, and may include a treatment such as polytetrafluoroethylene, a lubricant, or some other treatment to substantially prevent tissue from getting stuck to jaws 42,

When jaws 42, 44 are in a closed position, shaft 30 and end effector 40 may be sized and configured to fit through

8

trocars having various inner diameters, such that electrosurgical instrument 10 may be usable in minimally invasive surgery, though of course electrosurgical instrument 10 could also be used in open and endoscopic procedures if desired. By way of example only, shaft 30 and end effector 40 may present an outer diameter of approximately 5 mm when jaws 42, 44 are in a closed position. Alternatively, shaft 30 and end effector 40 may present any other suitable outer diameter, such as, for example, from about 2 mm to about 20 mm.

In various embodiments, either jaw 42, 44 or both of jaws 42, 44 may include at least one port, passageway, conduit, and/or other feature that is operable to draw steam, smoke, and/or other gases from the surgical site. Such a feature may be in communication with a source of suction, such as, for example, an external source or a source within hand piece 20. In addition, end effector 40 may comprise one or more tissue cooling features (not shown) that reduce the degree or extent of thermal spread caused by end effector 40 on adjacent tissue when electrode surfaces 50, 52 are activated. Various suitable forms that such cooling features may take will be apparent to those of ordinary skill in the art in view of the teachings herein.

In various embodiments, end effector 40 may comprise one or more sensors (not shown) that are configured to sense a variety of parameters at end effector 40, including but not limited to, jaw position, temperature of adjacent tissue, electrical resistance or impedance of adjacent tissue, voltage across adjacent tissue, forces exerted on jaws 42, 44 by adjacent tissue. In various embodiments, end effector 40 may include one or more positive temperature coefficient (PTC) thermistor bodies 54, 56, e.g., a PTC polymer, located adjacent to electrodes 50, 52 and/or elsewhere. Data from sensors may be communicated to controller 82. Controller 82 may process such data in a variety of ways. In various embodiments, controller 82 may modulate or otherwise change the RF energy being delivered to electrode surfaces 50, 52, based at least in part on data acquired from one or more sensors at end effector 40. In various embodiments, controller 82 may alert the user to one or more conditions via an audio and/or visual feedback device, e.g., speaker, lights, display screen, etc., based at least in part on data acquired from one or more sensors at end effector 40. It should also be understood that some kinds of sensors need not necessarily be in communication with controller 82, and may simply provide a purely localized effect at end effector 40. In various embodiments, PTC thermistor bodies 54, 56 at end effector 40 may automatically reduce the energy delivery at electrode surfaces 50, 52 as the temperature of the tissue and/or end effector 40 increases, thereby reducing the likelihood of overheating. In various embodiments, a PTC thermistor element may be in series with power source 80 and electrode surface 50, 52; and the PTC thermistor may provide an increased impedance to reduce flow of current in response to temperatures exceeding a threshold. Furthermore, it should be understood that electrode surfaces 50, 52 may be used as sensors, e.g., to sense tissue impedance. Various kinds of sensors that may be incorporated into electrosurgical instrument 10 will be apparent to those of ordinary skill in the art in view of the teachings herein. Similarly various things that can be done with data from sensors, by controller 82 or otherwise, will be apparent to those of ordinary skill in the art in view of the teachings herein. Other suitable variations for end effector 40 will also be apparent to those of ordinary skill in the art in view of the teachings herein.

Q

In various embodiments, referring to FIGS. 2-4, electrosurgical instrument may comprise a firing beam 60 that is longitudinally movable along part of the length of end effector 40. Firing beam 60 may be coaxially positioned within shaft 30, extends along the length of shaft 30, and 5 translates longitudinally within shaft 30, though it should be understood that firing beam 60 and shaft 30 may have any other suitable relationship. Firing beam 60 may comprise a sharp distal blade 64, an upper flange 62, and a lower flange 66. As illustrated in FIG. 4, distal blade 64 extends through slots 46, 48 of jaws 42, 44, with upper flange 62 being located above jaw 44 in recess 59 and lower flange 66 being located below jaw 42 in recess 58. The configuration of distal blade 64 and flanges 62, 66 provides an "I-beam" type of cross section at the distal end of firing beam **60**. In various 15 embodiments, flanges 62, 66 may extend longitudinally along any suitable length of firing beam 60. In various embodiments, flanges 62, 66 may be positioned along the exterior of jaws 42, 44, or disposed in corresponding slots formed within jaws 42, 44. For example, each jaw 42, 44 20 may define a "T"-shaped slot, with portions of distal blade 64 being disposed in one vertical portion of each "T"-shaped slot and with flanges 62, 66 being disposed in the horizontal portions of the "T"-shaped slots. Referring to FIG. 4A, in various embodiments, distal blade 64 may comprise at least 25 one roller bearing 38 to compress tissue T and/or fracture calcium formed within or externally to the vessel. Roller bearing 38 may comprise a conical cylinder have a decreasing diameter laterally away from distal blade 64, as shown in FIG. 4A. In various embodiments, roller bearing 38 may 30 comprise a conical cylinder have a increasing diameter laterally away from distal blade 64. In various embodiments, roller bearing 38 may comprise a straight cylinder. In various embodiments, roller bearing 38 may comprise a curved cross-sectional shape, such as, for example, a circle 35 and an ellipse. As shown in FIG. 4A, roller bearings 38 may be positioned on opposing sides of distal blade 64 intermediate jaws 42, 44. In various embodiments, distal blade 64 may comprise a pin (not shown) to rotate roller bearing 38 relative to distal blade 64. In various embodiments, distal 40 blade may comprise a vertical slot including a pin slideably disposed in the vertical slot to rotate roller bearing 38 and/or move roller bearing 38 perpendicularly relative to distal blade 64 Various other suitable configurations and relationships will be apparent to those of ordinary skill in the art in 45 view of the teachings herein.

Distal blade **64** may be substantially sharp, such that distal blade **64** may readily sever tissue that is captured between jaws **42**, **44**. Distal blade **64** may be electrically grounded to provide a return path for RF energy as described elsewhere 50 herein. In various embodiments, distal blade **64** may serve as an active electrode. In various embodiments, distal blade **64** may be selectively energized with ultrasonic energy, such as, for example, harmonic vibrations at about 55.5 kHz.

In various embodiments, the "I-beam" type of configuration of firing beam 60 may provide closure of jaws 42, 44 as firing beam 60 is advanced distally. In particular, flange 62 urges jaw 44 pivotally toward jaw 42 as firing beam 60 is advanced from a proximal position, as shown in FIGS.

1-3, to a distal position, as shown in FIG. 4, by bearing 60 against recess 59 formed in jaw 44. This closing effect on jaws 42, 44 by firing beam 60 may occur before distal blade 64 reaches tissue captured between jaws 42, 44. Such staging of encounters by firing beam 60 may reduce the force required to squeeze grip 24 to actuate firing beam 60 65 through a full firing stroke. In other words, in various embodiments, firing beam 60 may have already overcome

10

an initial resistance required to substantially close jaws 42, 44 on tissue before encountering resistance from severing the tissue captured between jaws 42, 44. Of course, any other suitable staging may be provided.

In various embodiments, flange 62 may be configured to cam against a ramp feature at the proximal end of jaw 44 to open jaw 42 when firing beam 60 is retracted to a proximal position and to hold jaw 42 open when firing beam 60 remains at the proximal position. This camming capability may facilitate use of end effector 40 to separate layers of tissue, to perform blunt dissections, etc., by forcing jaws 42, 44 apart from a closed position. In various embodiments, jaws 42, 44 may be resiliently biased to an open position by a spring or other type of resilient feature. While jaws 42, 44 close or open as firing beam 60 is translated, it should be understood that other embodiments may provide independent movement of jaws 42, 44 and firing beam 60. In various embodiments, one or more cables, rods, beams, or other features may extend through shaft 30 to selectively actuate jaws 42, 44 independently of firing beam 60. Such jaw 42, 44 actuation features may be separately controlled by a dedicated feature of hand piece 20. In various embodiments, such jaw actuation features may be controlled by trigger 24 in addition to having trigger 24 control firing beam 60. It should also be understood that firing beam 60 may be resiliently biased to a proximal position, such that firing beam 60 retracts proximally when a user relaxes their grip on trigger 24.

In various embodiments, in use, end effector 40 may be inserted into a patient via a trocar to a desired position and orientation relative to an anatomical structure within the patient. Two layers of tissue of the anatomical structure are then captured between jaws 42, 44 by squeezing trigger 24 toward pistol grip 22. Such layers of tissue may be part of the same natural lumen defining anatomical structure, such as, for example, blood vessel, portion of gastrointestinal tract, portion of reproductive system, etc., in a patient. In various embodiments, one tissue layer may comprise the top portion of a blood vessel and the other tissue layer may comprise the bottom portion of the blood vessel, along the same region of length of the blood vessel. In various embodiments, the fluid path through the blood vessel before use of electrosurgical instrument 10 may be perpendicular to the longitudinal axis defined by end effector 40. The lengths of jaws 42, 44 may be oriented perpendicular to or at least generally transverse to the length of the blood vessel. As described above, flanges 62, 66 cammingly act to pivot jaw 44 toward jaw 42 when firing beam 60 is actuated distally by squeezing trigger 24 toward pistol grip 22.

In various embodiments, with tissue layers captured between jaws 42, 44, firing beam 60 may continue to advance distally by the user squeezing trigger 24 toward pistol grip 22. As firing beam 60 advances distally, distal blade 64 simultaneously severs the clamped tissue layers, resulting in separated upper layer portions being apposed with respective separated lower layer portions. This results in a blood vessel being cut in a direction that is generally transverse to the length of the blood vessel. It should be understood that the presence of flanges 62, 66 immediately above and below jaws 42, 44, respectively, may help keep jaws 42, 44 in a closed and tightly clamping position. In particular, flanges 62, 66 may help maintain a significantly compressive force between jaws 42, 44. With severed tissue layer portions being compressed between jaws 42, 44, electrode surfaces 50, 52 may be activated with bipolar RF energy by the user depressing activation button 26. In various embodiments, electrodes 50, 52 may be selectively

coupled with power source 80, for example by the user depressing button 26, such that electrode surfaces 50, 52 of jaws 42, 44 are activated with a common first polarity while firing beam 60 is activated at a second polarity that is opposite to the first polarity. Thus, a bipolar RF current flows 5 between firing beam 60 and electrode surfaces 50, 52 of jaws 42, 44 through the compressed regions of severed tissue layer portions. In various embodiments, electrode surface 50 has one polarity while electrode surface 52 and firing beam 60 both have the other polarity. Bipolar RF energy may be delivered by power source 80 to thermally weld the tissue layer portions on one side of firing beam 60 together and the tissue layer portions on the other side of firing beam 60 together.

In certain circumstances, the heat generated by activated 15 electrode surfaces 50, 52 can denature the collagen within the tissue layer portions and, in cooperation with compressive force provided by jaws 42, 44, the denatured collagen can form a seal within the tissue layer portions. Thus, the severed ends of the natural lumen defining anatomical 20 structure are hemostatically sealed shut, such that the severed ends will not leak bodily fluids. In various embodiments, electrode surfaces 50, 52 may be activated with bipolar RF energy before firing beam 60 begins to translate distally and thus before the tissue is even severed. For 25 example, such timing may be provided in versions where button 26 serves as a mechanical lockout relative to trigger 24 in addition to serving as a switch between power source 80 and electrode surfaces 50, 52.

While several of the teachings below are described as 30 variations to electrosurgical instrument 10, it should be understood that various teachings below may also be incorporated into various other types of devices. By way of example only, in addition to being readily incorporated into electrosurgical instrument 10, various teachings below may 35 be readily incorporated into the devices taught in any of the references cited herein, other types of electrosurgical devices, alternative energy modality devices, surgical staplers, surgical clip appliers, and tissue graspers, among various other devices. Other suitable devices into which the 40 following teachings may be incorporated will be apparent to those of ordinary skill in the art in view of the teachings herein.

In various embodiments, the surgical instrument may comprise a two stage clamping mechanism configured to 45 provide a higher clamp force to part the muscular layer of a blood vessel and a lower clamp force to seal across the adventitia. Without wishing to be bound to any particular theory, it is believe that the lower clamp force facilitates the proper heating rate to generate a higher strength seal across 50 the adventitia layers relative to the higher clamp force.

In various embodiments, as shown in FIG. 5, trigger 24 may be movable relative to hand piece 20 between an unactuated position and one or more actuated positions. In various embodiments, trigger 24 is movable through a first 55 range of motion from an unactuated position 1 to a first actuated position 2. In various embodiments, the first range of motion may be from an unactuated position 1 to position 3 and/or position 4, and from position 3 and/or position 4 to first actuated position 2. In various embodiments, trigger 24 60 is movable through a second range of motion from the first actuated position 2 to a second actuated position 3. In various embodiments, trigger 24 is movable through a third range of motion from the second actuated position 3 to the unactuated position 1. In various embodiments, trigger 24 is 65 movable through a fourth range of motion from the unactuated position 1 to the third actuated position 4. In various

12

embodiments, trigger 24 is movable through a fifth range of motion from the third actuated position 4 to the unactuated position 1. In various embodiments, the second actuated position 3 and third actuated position 4 may be the same or different

In various embodiments, as described above, jaws 42, 44 may apply compressive force, or coaptation force, to tissue captured therebetween. In various embodiments, jaws 42, 44 may apply a first compressive force when trigger 24 is in the first actuated position 2, a second compressive force when trigger 24 is in the second actuated position 3, and a third compressive force when trigger 24 is in the third actuated position 4. In various embodiments, referring to FIG. 5, jaws 42, 44 may be in a closed position characterized by a first compressive force when trigger 24 is in the first actuated position. In various embodiments, jaws 42, 44 may be in a closed position characterized by a second compressive force when trigger 24 is in the second actuated position. In various embodiments, jaws 42, 44 may be in a closed position characterized by a third compressive force when trigger 24 is in the third actuated position. In various embodiments, jaws 42, 44 may be in an open position when trigger 24 is in the unactuated position.

In various embodiments, the first compressive force, second compressive force, and third compressive force may be different. In various embodiments, the first compressive force may be greater than the second compressive force. In various embodiments, the second compressive force may be greater than or equal to the third compressive force. In various embodiments, the first compressive force, second compressive force, and third compressive force may be individually selected from up to about 10 pounds per square inch ("psi"), such as, for example, about 1 psi to about 10 psi, about 2 psi to about 8 psi, about 3 psi to about 5 psi, and about 4 psi to about 6 psi. In various embodiments, the first compressive force may be about 4 psi to about 6 psi and the second compressive force may be about 2 psi to about 4 psi. In various embodiments, the first compressive force may be about 6 psi and the second compressive force may be about 4 psi. In various embodiments, the first compressive force may be about 4 psi and the second compressive force may be about 2 psi. In various embodiments, the first compressive force may be about 3 psi to about 5 psi and the second compressive force may be about 1 psi to about 3 psi. In various embodiments, the first compressive force may be about 5 psi and the second compressive force may be about 3 psi. In various embodiments, the first compressive force may be about 3 psi and the second compressive force may be about 1 psi. In various embodiments, jaws 42, 44 may not apply compressive force to the tissue when trigger 24 is in the unactuated position.

In various embodiments, electrosurgical instrument 10 may comprise a trigger assembly configured to actuate end effector 40 to provide variable compressive force to tissue captured between jaws 42, 44 when trigger 24 is in the first actuated position, second actuated position, and/or third actuated position, as described in greater detail below. In various embodiments, the trigger assembly may be configured to limit the compressive force to a first compressive force when trigger 24 is in the first actuated position and limit the compressive force to a second compressive force when trigger 24 is in the second actuated position. In various embodiments, the trigger assembly may be configured to limit the compressive force to a third compressive force when trigger 24 is in the third actuated position.

In various embodiments, electrosurgical instrument 10 may comprise a trigger assembly configured to actuate end

effector 40 to provide variable compressive force to tissue captured between jaws 42, 44 through the first range of motion, second range of motion, and/or third range of motion, as described in greater detail below. In various embodiments, the trigger assembly may be configured to 5 limit the compressive force to a first compressive force through the first range of motion and limit the compressive force to a second compressive force through the second range of motion. In various embodiments, the trigger assembly may be configured to limit the compressive force to a 10 third compressive force through the fourth range of motion.

In various embodiments, the trigger assembly may comprise one or more detent features and/or other kind of feature(s) to provide an audible and/or tactile indication of the angular position of end effector about the longitudinal 15 axis defined by sheath. Referring to FIG. 16, in various embodiments, trigger 1024 may be pivotally attached to hand piece 1020. Trigger 1024 may comprise a living hinge 1054. In various embodiments, the living hinge may provide an audible and/or tactile indication to the user. For example, 20 a trigger 1024 may be squeezed toward a pistol grip 1022 to actuate an end effector (not shown). The living hinge may provide the audible and/or tactile indication when trigger 1024 is in an actuated position. Various examples of devices comprising audible and/or tactile indicators are described in 25 U.S. patent application Ser. No. 12/842,565, filed Jul. 23, 2010, entitled "ELECTROSURGICAL CUTTING AND SEALING INSTRUMENT", now U.S. Pat. No. 9,011,437, the disclosure of which is incorporated by reference herein.

In various embodiments, in use, end effector 40 may be 30 inserted into a patient via a trocar to a desired position and orientation relative to an anatomical structure within the patient. In various embodiments, the user may operate trigger 24 through the first range of motion to capture two layers of tissue of the anatomical structure 42, 44 when the 35 anatomical structure has a diameter greater than about 3 mm. As described above, flanges 62, 66 cammingly act to pivot jaw 44 toward jaw 42 when firing beam 60 is actuated distally by squeezing trigger 24 from the unactuated position to the first actuated position. Jaws 42, 44 may apply the first 40 compressive force to the layers of tissue captured therebetween when trigger 24 is in the first actuated position. In various embodiments, the first compressive force may compress the anatomical structure such that the inner layers of the anatomical structure are extruded and separated and only 45 the outer layer of the anatomical structure is between jaws 42, 44. In various embodiments, activation button 26 may serve as a mechanical lockout against trigger 24 such that a bipolar RF current may not flow to electrode surfaces 50, 52 when trigger 24 is in the first actuated position.

In various embodiments, the user may operate trigger 24 through the second range of motion to sever the clamped tissue layers between jaws 42, 44 and thermally weld the severed tissue layers. As described above, distal blade 64 severs the clamped tissue layers as firing beam 60 continues 55 to advance distally by the user squeezing trigger 24 from the first actuated position to the second actuated position. Jaws 42, 44 may apply the second compressive force to the layers of tissue captured therebetween when trigger 24 is in the second actuated position. In various embodiments, the sec- 60 ond compressive force may allow the inner severed tissue layer portions directly contact each other. With jaws 42, 44 applying the second compressive force to the severed tissue layer portions, electrode surfaces 50, 52 are activated with bipolar RF energy by the user depressing activation button 65 26. As described above, a bipolar RF current flows between firing beam 60 and electrode surfaces 50, 52 through the

14

compressed regions of severed tissue layer portions to thermally welds the tissue layer portions on one side of firing beam 60 together and the tissue layer portions on the other side of firing beam 60 together. In various embodiments, the inner severed tissue layer portions of the anatomical structure may be thermally welded to each other. In various embodiments, activation button 26 may serve as a mechanical lockout against trigger 24 such that a bipolar RF current may not flow to electrode surfaces 50, 52 unless trigger 24 is in the second actuated position and button 26 is being pressed simultaneously.

In various embodiments, in use, end effector 40 may be inserted into a patient via a trocar to a desired position and orientation relative to an anatomical structure within the patient. In various embodiments, the user may operate trigger 24 through the third range of motion to capture two layers of tissue of the anatomical structure 42, 44 when the anatomical structure has a diameter up about 3 mm. As described above, flanges 62, 66 cammingly act to pivot jaw 44 toward jaw 42 when firing beam 60 is actuated distally by squeezing trigger 24 from the unactuated position to the third actuated position. The user may continue to operate trigger 24 through the third range of motion to sever the clamped tissue layers between jaws 42, 44 and thermally weld the severed tissue layers. As described above, distal blade 64 severs the clamped tissue layers as firing beam 60 continues to advance distally by the user squeezing trigger 24 from the first actuated position to the third actuated position. Jaws 42, 44 may apply the third compressive force to the layers of tissue captured therebetween when trigger 24 is in the third actuated position.

With jaws 42, 44 applying the third compressive force to the severed tissue layer portions, electrode surfaces 50, 52 are activated with bipolar RF energy by the user depressing activation button 26. As described above, a bipolar RF current flows between firing beam 60 and electrode surfaces 50, 52 through the compressed regions of severed tissue layer portions to thermally welds the tissue layer portions on one side of firing beam 60 together and the tissue layer portions on the other side of firing beam 60 together. In various embodiments, activation button 26 may serve as a mechanical lockout against trigger 24 such that a bipolar RF current may not flow to electrode surfaces 50, 52 unless button trigger is in the third actuated position and button 26 is being pressed simultaneously.

As described above, in various embodiments, electrosurgical instrument 10 may comprise a trigger assembly operable to control jaws 44, 42 to thereby selectively compress tissue between jaws 42, 44 at various compressive forces. Various embodiments, of the trigger assembly and other components of hand piece 20 are described in greater detail below, while further examples will be apparent to those of ordinary skill in the art in view of the teachings herein.

As described above, in various embodiments, firing beam 60 may be advanced distally by squeezing trigger 24 toward pistol grip 22 to the actuated position; while firing beam 60 may be retracted proximally by releasing trigger 24 and/or by actively moving trigger 24 away from pistol grip 22 to the unactuated position. In various embodiments, the trigger assembly may comprise a yoke to couple trigger 24 to firing beam 60. In various embodiments, the trigger assembly may further comprise a link arm to couple trigger 24 to firing beam 60. Of course, firing beam 60 may be moved in any other suitable fashion.

In various embodiments, an electrosurgical instrument may generally comprise a shaft comprising a proximal end and a distal end, an end effector extending from the distal

end of the shaft, wherein the end effector is operable to grasp tissue, a hand piece extending from the proximal end, wherein the hand piece comprises a pistol grip and a trigger assembly extending from the hand piece, wherein the trigger assembly comprises a trigger movable relative to the pistol grip between an unactuated position and a first actuated position and a second actuated position, wherein the trigger is operable to control the end effector to selectively grasp tissue at a first compressive force when the trigger is in the first actuated position and a second compressive force when the trigger is in the second actuated position.

In various embodiments, referring to FIGS. 6 and 7, electrosurgical instrument 110 may generally comprise a bypass latch or over-center mechanism configured to define a bypass pathway 113 for trigger 124. In various embodiments, hand piece 120 comprises pistol grip 122, bypass latch leaf spring 111, and a trigger assembly comprising trigger 124 pivotally attached to yoke 138. Trigger 124 may comprise extension arm 125 comprising slot 113 defining a bypass pathway. One end of bypass latch leaf spring 111 may be fixedly attached to hand piece 120 and the free end of bypass latch leaf spring 111 may be disposed in slot 113. As shown in FIG. 7, the free end of bypass latch leaf spring 111 engages a first portion of slot 113 when trigger 124 is in 25 the unactuated position 1, a second portion of slot 113 when trigger 124 is in the first actuated position 2, and a third portion of slot 113 when trigger 124 is in the second actuated position 3

In use for tissues having large diameters or thicknesses, bypass latch leaf spring 111 may be configured to pass through the first actuated position 2 and release to or near the second actuated position 3 when electrosurgical instrument 110 is activated to seal the tissue between jaws (not shown). In this way, the user crushes the tissue at the first actuated position 2 such that the inner tissue layers may be extruded laterally before end effector (not shown) is activated to cut and coagulate the outer tissue layers at the second actuated position 3. In use for tissues have small diameters, bypass 40 latch leaf spring 111 may be configured to pass directly to the third actuated position 4 when electrosurgical instrument 110 is activated to capture, cut, and/or seal the tissue between jaws (not shown). Without wishing to be bound to any particular theory, it is believed that electrosurgical 45 instruments according to the present disclosure may utilize substantially similar power and clamp force to coagulate larger blood vessels as current ultrasonic shear devices use to coagulate smaller blood vessels.

In various embodiments, referring to FIGS. 8A-G, hand 50 piece 220 may generally comprise yoke 238 longitudinally slideable relative to hand piece 220, trigger 224 slideably attached to yoke 238 and rotationally attached to hand piece 220, and link arm 236 fixedly attached to yoke 238 and rotationally attached to hand piece 220. Link arm 236 may 55 comprise slot 233. Trigger 224 may be coupled to link arm 236 by trigger pin 216. One end of trigger pin 216 may be disposed in slot 233. In various embodiments, slot 233 may comprise a radial feature configured to act as a cam and trigger pin 216 may be configured to act as a cam follower. 60 In various embodiments, slot 233 may comprise a first portion and a second portion. In various embodiments, the first portion of slot 233 may comprise a radial feature and the second portion of slot 233 may comprise a longitudinal feature. For example, as shown in FIG. 8A, slot 233 may comprise an L-shape wherein the first portion of slot 233 a extends proximally and radially from a plane including the

16

longitudinal axis of hand piece 220, and the first portion of slot 233 extends parallel to the plane including the longitudinal axis of hand piece 220.

In use, referring to FIGS. 8A-G, when trigger 224 moves from an unactuated position (FIG. 8A) through the first range of motion (FIGS. 8B, 8C) to the first actuated position (FIG. 8C), trigger pin 216 slides along the first portion of slot 233 to convert the movement of trigger 224 into proximal linear movement of yoke 238. Trigger 224 may continue to move from the first actuated position through a second range of motion (FIG. 8D) to the second actuated position (FIG. 8D) when trigger pin 216 slides along a second portion of slot 233 to convert the movement of trigger 224 into distal linear movement of yoke 238. In various embodiments, yoke 238 may travel a first distance through the first range of motion and a second distance through a second range of motion. In various embodiments, the first distance may be greater than or equal to the second distance. In various embodiments, the difference between the first distance and second distance may decrease the compressive force applied to captured tissue from the first compressive force to the second compressive force.

As shown in FIG. 7, the free end of bypass latch leaf spring 111 engages a first portion of slot 113 when trigger 124 is in the unactuated position 1, a second portion of slot 113 when trigger 124 is in the first actuated position 2, and a third portion of slot 113 when trigger 124 is in the second actuated position 3.

In use for tissues having large diameters or thicknesses, bypass latch leaf spring 111 may be configured to pass through the first actuated position 2 and release to or near the second actuated position 3 when electrosurgical instrument 110 is activated to seal the tissue between jaws (not shown). In this way, the user crushes the tissue at the first actuated position 2 such that the inner tissue layers may be extruded laterally before end effector (not shown) is activated to cut

In various embodiments, the trigger assembly may comprise mechanical assistance to trigger 24 as it approaches the end of its return stroke. In various embodiments, it may also be desirable to provide a substantially constant amount of resistance to the user squeezing trigger during the entire range of motion such that the resistance forces encountered by the user are not substantially greater during certain stages of the firing stroke and return stroke.

In various embodiments, referring to FIGS. 9A-G, hand piece 320 may generally comprise yoke 338 longitudinally slideable relative to hand piece 320, trigger 324 slidingly attached to yoke 338 and rotationally attached to hand piece 320, and link arm 336 pivotally attached to yoke 338 and rotationally attached to trigger 324. Trigger 324 may be coupled to link arm 336 by trigger pin 316 as described above. In various embodiments, trigger 324 may be configured to act as a cam and slot 333 and link 336 may comprise a projection configured to act as a cam follower 337. In various embodiments, link 336 may comprise projection 337 to engage portion 325 of trigger 324 comprising trigger pin **316**. In various embodiments, projection **337** may engage a first portion of trigger 324 when trigger 324 is in the first actuated position and a second portion of trigger 324 when trigger 324 is in the second actuated position. In various embodiments, projection 337 may comprise an angled surface. For example, as shown in FIG. 9A, projection 337 may comprise a pentagon-shape including an angled surface 337a. In various embodiments, angled surface 337a of projection 337 may engage a first portion 325 of trigger 324

when trigger 324 is in the first actuated position and a second portion 326 of trigger 324 when trigger 324 is in the second actuated position.

In use, referring to FIGS. 9A-G, when trigger 324 moves from an unactuated position (FIG. 9A) through the first 5 range of motion to the first actuated position (FIG. 9B), a first portion of angled surface 337a of projection 337 engages a first portion of trigger 324 to convert the movement of trigger 324 into proximal linear movement of yoke 338. Trigger 324 may continue to move from the first 10 actuated position through a second range of motion (FIG. 9C) to the second actuated position (FIG. 9D) when a second portion of angled surface 337a of projection 337 engages a second portion of trigger 324 to convert the movement of trigger 324 into distal linear movement of yoke 338. As 15 shown in FIG. 9C, in various embodiments, the second portion of angled surface 337a may comprise a complementary angle to the second portion of trigger 324. The complementary surface of trigger 324 may contact the complementary surface of projection 337a when trigger 324 moves 20 from the first actuated position through the second range of motion to the second actuated position. As described above, in various embodiments, yoke 338 may travel a first distance through the first range of motion and a second distance through a second range of motion such that the difference 25 between the first distance and second distance may decrease the compressive force applied to captured tissue from the first compressive force to the second compressive force. As described above, the user may release trigger 324, and the spring (not shown) may return trigger 324 to an unactuated 30 position. When trigger 324 moves from the second actuated position (FIG. 9E) through the third range of motion (FIG. 9F) to the unactuated position (FIG. 9G), in various embodiments, trigger 324 may be coupled to link arm 336 by trigger pin 316 disposed in slot 333 to prevent trigger 324 from over 35 travel and locking.

In various embodiments, referring to FIGS. 10A-D, hand piece 420 may generally comprise yoke 438 longitudinally slideable relative to hand piece 420, trigger 424 pivotally attached to yoke 338, and link arm 436 pivotally attached to 40 yoke 438. Trigger 424 may be coupled to link arm 436 by trigger pin 416 disposed in trigger slot 417. Trigger 424 may comprise a surface comprising relief notch 425 configured to act as a cam and link arm 436 may comprise a projection 437 configured to act as a cam follower. A return spring (not 45 shown) may be coupled to yoke 438 by pin (not shown) configured to resiliently bias yoke 438 distally and projection 437 of link arm 436 to contact the surface of trigger 424. In various embodiments, projection 437 of link arm 436 may engage the surface of trigger 424 lacking relief notch 425 50 when trigger 424 is in the first actuated position and engage relief notch 425 when trigger 424 is in the second actuated position. In various embodiments, projection 437 of link arm 438 may comprise a complementary shape to relief notch 425. For example, as shown in FIG. 10D, projection 437 of 55 link arm 438 may comprise a complementary shape to relief

In use, referring to FIGS. 10A-D, when trigger 424 moves from an unactuated position (FIG. 10A) through the first range of motion to the first actuated position (FIGS. 10B and 60 10C), projection 437 of link arm 438 engages a surface of trigger 424 lacking relief notch 425 to compress return spring (not shown) and convert the movement of trigger 424 into proximal linear movement of yoke 438. Trigger 424 may continue to move from the first actuated position 65 through a second range of motion to the second actuated position (FIG. 10D) when projection 437 of link arm 438

18

engages relief notch 425 to decompress return spring (not shown), and to convert the movement of trigger 424 into distal linear movement of yoke 438. In various embodiments, trigger pin 417 may contact a first portion of trigger slot 417 when trigger 424 is in the first actuated position. Trigger pin 417 may slide along trigger slot 417 through the second range of motion to a second portion of trigger slot 417 when trigger 423 is in the second actuated position. As described above, in various embodiments, yoke 438 may travel a first distance through the first range of motion and a second distance through a second range of motion such that the difference between the first distance and second distance may decrease the compressive force applied to captured tissue from the first compressive force to the second compressive force. In various embodiments, as shown in FIG. 10D, the second distance may relate to the depth of relief notch 425 and/or length of trigger slot 417. As described above, the user may release trigger 424, and trigger pin 416 may slide along trigger slot 417 to the first portion of trigger slot 417, and projection 437 of link are 438 may rotate out of relief notch 425 to return trigger 324 to an unactuated position.

In various embodiments, referring to FIGS. 11A-C, hand piece 520 may generally comprise yoke 538 longitudinally slideable relative to hand piece 520, trigger 524 pivotally attached to yoke 538, and link arm 536 pivotally attached to yoke 538. In various embodiments, hand piece 520 may comprise a handle shroud slot 544. Trigger 524 may be coupled to link arm 536 by trigger pin 516 disposed in trigger slot 517. Link arm 537 may comprise a projection comprising a link pin 537. Link pin 537 may be disposed in handle shroud slot 544. In various embodiments, link pin 537 may slide along handle shroud slot 544. As discussed above, a return spring (not shown) may be coupled to yoke 538 by pin (not shown) configured to resiliently bias yoke 538 distally. In various embodiments, link pin 537 may contact a first portion of handle shroud slot 544 when trigger 524 is in the first actuated position and a second portion of handle shroud slot 544 when trigger 524 is in the second actuated position.

In use, referring to FIGS. 11A-C, when trigger 524 moves from an unactuated position (FIG. 11A) through the first range of motion to the first actuated position (FIG. 11B), link pin 537 slides along slot 544 to compress return spring (not shown) and convert the movement of trigger 524 into proximal linear movement of yoke **538**. As shown in FIG. 11B, link pin 537 may engage a first portion of slot 544 when trigger 524 is in the first actuated position. Trigger 524 may continue to move from the first actuated position through a second range of motion to the second actuated position (FIG. 11C) when link pin 537 continues to travel along slot 544 to decompress return spring (not shown), and to convert the movement of trigger 524 into distal linear movement of yoke 538. As shown in FIG. 11B, link pin 537 may engage a second portion of slot 544 when trigger 524 is in the second actuated position. As described above, in various embodiments, yoke 538 may travel a first distance through the first range of motion and a second distance through a second range of motion such that the difference between the first distance and second distance may decrease the compressive force applied to captured tissue from the first compressive force to the second compressive force. In various embodiments, as shown in FIG. 11C, the second distance may relate to the configuration of slot 544 and/or length of trigger slot 517. As described above, the user may release trigger 524, and trigger pin 516 may slide along trigger slot 517, link pin 537 may slide along slot 544 to the

first portion of slot 544 to return trigger 524 to an unactuated position. In various embodiments, slot 544 may prevent trigger 524 from over travel and locking.

In various embodiments, referring to FIGS. 14A-C, hand piece 620 may generally comprise yoke 638 longitudinally 5 slideable relative to hand piece 620, trigger 624 slideably attached to yoke 638 and pivotally attached to hand piece 620, and link arm 636 pivotally attached to yoke 638 and trigger 624. In various embodiments, referring to FIGS. 12 and 13, hand piece 620 may comprise slot 644 comprising first portion 644a and second portion 644b, and yoke 638 may comprise notch 617 comprising first portion 617a and second portion 617b. Rear yoke pin 618 may link hand piece 620, link arm 636, and yoke 638. A first end of rear yoke pin 618 may be disposed in slot 644 and a second end of rear yoke pin may be disposed in notch 617. In various embodiments, a first end of the rear yoke pin may engage a first portion 644a of slot 644 when the trigger is in the first actuated position, an upward step of slot 644 between first 20 portion 644a and second portion 644b when the trigger is moved through a second range of motion, and a second portion 644b of slot 644 when the trigger is in the second actuated position. In various embodiments, the upward step may comprise an angled portion of the first portion 644a of 25 slot 644. In various embodiments, a second end of the rear yoke pin may engage a first portion 617a of notch 617 when the trigger is in the first actuated position and second portion **617***b* when the trigger is in the second actuated position.

In use, referring to FIGS. 14A-C, when trigger 624 moves 30 from an unactuated position (FIG. 14A) through the first range of motion to the first actuated position (FIG. 14B), the first end of the rear yoke pin may slide along the first portion 644a of slot 644 to convert the movement of trigger 624 into proximal linear movement of yoke 638. The second end of 35 the rear yoke pin may rest in the first portion 617a of notch 617 when the trigger moves from an unactuated position through the first range of motion to the first actuated position. The first actuated position is illustrated in FIG. 14B. Trigger 624 may continue to move from the first 40 actuated position through a second range of motion to the second actuated position (FIG. 14C) when the first end of the rear yoke pin slides along the upward step of slot 644 to the second portion 644b of slot 644 and the second end of the rear yoke pin may move from the first portion 617a to the 45 second portion 617b of notch 617 to convert the movement of trigger 624 into distal movement of yoke 638. In various embodiments, yoke 638 may travel in an upward, distal direction when the first end of the rear yoke pin slides along the upward step of slot **644** and a linear distal direction when 50 the first end of the rear yoke pin slides along the second portion 644b of slot 644. In various embodiments, the angular movement yoke 638 along slot 644 relative to the longitudinal axis and/or the movement of the rear yoke pin in notch 617 during the second range of motion may provide 55 an audible and/or tactile indication to the user that trigger (not shown) is in the second actuated position. As discussed above, a return spring (not shown) may be coupled to yoke 638 by pin (not shown) configured to resiliently bias yoke 638 distally. As described above, the user may release the 60 trigger, and the first end of the rear yoke pin may slide along slot 644 from the second portion 644b to the first portion 644a of slot 644 and the second end of the rear yoke pin may move from the second portion 617b to the first portion 617a of notch 617 to return the trigger to an unactuated position. 65 In various embodiments, slot 644 may prevent the trigger from over travel and locking.

20

In various embodiments, referring to FIGS. 15A-K, hand piece 720 may generally comprise yoke 738 longitudinally slideable relative to hand piece 720, trigger 724 pivotally attached to yoke 738, and link arm 736 fixedly attached to yoke 738. Link arm 736 may comprise slot 733. Trigger 724 may comprise trigger slot 717. Trigger 724 may be coupled to link arm 736 by trigger pin 716. Trigger pin 716 may be disposed in link pin 732. One end of trigger pin 716 may be disposed in trigger slot 717. One end of link pin 732 may be disposed in trigger slot 717 and the other end of link pin 732 may be disposed in slot 733. In various embodiments, slots 717, 733 may be configured to act as a cam and trigger pin 716 and link pin 732 may be configured to act as a cam follower. In various embodiments, slots 716, 733 may individually comprise a first portion and a second portion. In various embodiments, the first portion of slot 733 may comprise an angled feature and the second portion of slot 733 may comprise a vertical feature relative to the longitudinal axis. For example, as shown in FIG. 15A, the first portion of slot 733 may extend distally and vertically from a plane including the longitudinal axis of hand piece 220, and the second portion of slot 733 may extend perpendicular parallel to the plane including the longitudinal axis of hand piece 220.

In use, referring to FIGS. 15A-K, when trigger 724 moves from an unactuated position (FIG. 15A) through the first range of motion (FIGS. 15B, 15C) to the first actuated position, link pin 732 slides along the first portion of slot 733 to convert the movement of trigger 724 into proximal linear movement of yoke 738. In various embodiments, link pin 732 may contact a first portion of trigger slot 717 when trigger 724 is in the unactuated position and first actuated position. In various embodiments, trigger pin 717 may not move in trigger slot 716 when trigger 724 moves through the first range of motion. The first actuated position is illustrated in FIG. 15D. Trigger 724 may continue to move from the first actuated position through a second range of motion (FIG. 15E, 15F) to the second actuated position when trigger pin 716 slides along a second portion of slots 717, 733 to convert the movement of trigger 724 into distal linear movement of yoke 738. The second actuated position is illustrated in FIG. 15G. As described above, in various embodiments, yoke 738 may travel a first distance through the first range of motion and a second distance through a second range of motion such that the difference between the first distance and second distance may decrease the compressive force applied to captured tissue from the first compressive force to the second compressive force. In various embodiments, as shown in FIGS. 15D, 15G, the second distance may relate to the length of trigger slot 717.

Referring to FIGS. 15G-K, when trigger 724 moves from the second actuated position (FIG. 15G) through the third range of motion (FIGS. 15H-J) to the unactuated position (FIG. 15K), a spring (not shown) may return trigger 724 to an unactuated position where it is pivoted away from the longitudinal axis. In various embodiments, referring to FIGS. 15H and 15I, the user may release trigger 724, and trigger pin 716 may slide along the second portion of slot 733 to the first portion of slot 733 while remaining stationary in the second portion of trigger slot 717. Referring to FIG. 15J, when trigger pin 716 contacts the first portion of slot 733, trigger pin 716 may slide along the second portion of trigger slot 717 to the first portion of slot 717. As trigger 724 continues to rotate away from the longitudinal axis, link pin 732 slides along the first portion of slots 733 to convert the movement of trigger 724 into distal linear movement of yoke 738. The unactuated position is illustrated in FIG. 15K.

In various embodiments, at least one of slots 717, 733 may prevent trigger 724 from over travel and locking.

In various embodiments, a surgical instrument may be configured to apply a compressive force to captured tissue. As described above, for example, jaws may be apply a 5 compressive force to tissue captured therebetween. In various embodiments, referring to FIGS. 17A-H, the compressive force may comprise an opposing compressive force and/or a rolling compressive force. As shown in FIGS. 17A-D, the inner and outer layers of a vessel may remain 10 adhered when subjected to opposing compressive force and energy is applied to the tissue. The adventitia layer may retract under heat resulting in an inner muscle layer bond. The inner muscle layer bond may be weaker than an adventitia-adventitia bond. In various embodiments, jaws 15 may apply opposing compressive force and rolling compressive force to mechanically separate the inner and outer vessel layers when jaws close. As shown in FIGS. 17E-H, the inner and outer layers of the vessel may separate when subject to opposing compressive force and rolling compres- 20 sive force. The separated inner muscle layer may retract before the adventitia layer, and thereby, an adventitia-adventitia bond may be formed when energy is applied to the tissue. The separation of the inner muscle layer may reduce the occurrence of the adventitia layer retracting during 25 sealing by allowing the inner muscle layer to retract inside the vessel as heat begins to build. In various embodiments, sealing and/or welding compressed and rolled tissue layers may form a stronger adventitia-adventitia bond relative to sealing and/or welding compressed tissue layers.

Referring to FIGS. 18A and 18B, in various embodiments, end effector 840 may comprise first jaw 842 and second jaw 844. Second jaw 844 is longitudinally slideable relative to shaft 830; while first jaw 842 pivots relative to shaft 830, toward and away from second jaw 844. First jaw 35 842 and second jaw 844 may comprise a plurality of teeth serrations 846. The teeth serrations 846 may allow tissue to be grasped, manipulated, coagulated, and/or cut without slipping between jaws 842, 844. In various embodiments, hand piece 820 may comprise connector base 835 config- 40 ured to retract second jaw 844 relative to shaft 830. Referring to FIGS. 19A and 19B, connector base 835 and second jaw 844 may be resiliently biased to a distal position by spring 838. As shown in the insert in FIG. 19A, jaw 842 may not extend to the tip of jaw 844. Connector base is config- 45 ured to cam against a ramp features in hand piece 820 to retract second jaw 844 relative to shaft 830 when firing beam is retracted to a proximal position. Hand piece 820 may include stop members 880 located proximal to connector base 835 and spring 838. As shown in FIG. 19B, stop 50 member 880 is configured to engage a proximal face of connector base 835 when firing beam advances distally to close jaws 842, 844. This camming capability may facilitate use of end effector 840 to separate layers of tissue, such as, for example, the adventitia layer and inner muscle layers of 55 a vessel. As shown in the insert in FIG. 19B, jaw 844 may move proximally to contact the tip of jaw 842 in the closed position. In various embodiments, longitudinal movement of the actuator may provide pivoting of first jaw 842 relative to shaft 830 and relative to second jaw 844 and retraction of 60 second jaw 844 relative to shaft 830.

In various embodiments, a surgical instrument may generally comprise a shaft comprising a proximal end and a distal end; an ultrasonic waveguide at least partially positioned within the shaft, the waveguide having a proximal 65 end and a distal end; an ultrasonically actuated blade positioned at the distal end of the waveguide; a clamp arm

22

assembly pivotally connected to the distal end of the shaft, wherein the clamp arm assembly comprises at least two camming members rotationally attached to a clamp arm, wherein the clamp arm is movable between an open position and a closed position relative to the blade to compress tissue intermediate the clamp arm and blade when in the closed position, and wherein the at least two camming members rotate in opposite directions when the clamp arm moves from the open position and a closed position. In various embodiments, the at least two camming members may selectively compress tissue at a first compressive force when a first portion of the camming member contacts tissue and a second compressive force when a second portion of the camming member contacts tissue. In various embodiments, the first compressive force may be different from the second compressive force. In various embodiments, the first compressive force may be greater than or equal to the second compressive force. It may be contemplated to combine the aforementioned configuration with alternative energy modalities or combinations thereof as mentioned earlier in this specification.

In various embodiments, referring to FIG. 20, an end effector 910 may comprise clamp arm assembly 941 to grip tissue and/or compress tissue against ultrasonic blade 964. Clamp arm assembly 941 may be pivotally attached to the distal end of shaft 930 by pivot pin 943. In various embodiments, clamp arm assembly 941 pivots relative to blade 964, toward and away from blade 964. As described above, actuators (not shown) may extend through sheath 932 and be joined with clamp arm 941 and at pivotal coupling 943 such that longitudinal movement of the actuator through shaft 930 provides pivoting of clamp arm 941 relative to shaft 930 and relative to blade 964. Of course, clamp arm 941 may instead have any other suitable kind of movement and may be actuated in any other suitable fashion. In various embodiments, clamp arm assembly may comprise at least one camming member 942, 944 rotationally attached to clamp arm 941. Each the camming member 942, 944 may independently rotate in one of a clockwise direction and a counter clockwise direction relative to shaft 930 and blade 964 when clamp arm 941 is moved from the open position to the closed position. In various embodiments, camming members 942, 944 may rotate in opposite directions. In various embodiments, the camming members 942, 944 may rotate in the same direction. In various embodiments, camming members 942, 944 may rotate simultaneously. In various embodiments, camming members 942, 944 may rotate separately.

In various embodiments, clamp arm 941 may comprise actuating pin 917 for rotating camming member 944 relative to waveguide 964. Actuating pin 917 may be located at a proximal end of camming member 944. Actuating pin 917 may operatively engage with notch 916 of shaft 930 when clamp arm 941 pivots to rotate camming member 944. For example, actuating pin 917 may engage notch 916 when clamp arm 941 pivots toward blade 964 to rotate camming member 944 counterclockwise. Actuating pin 917 may engage notch 916 when clamp arm 941 pivots away from blade 964 to rotate camming member 944 clockwise. In various embodiments, each camming member 942, 944 may comprise actuating pin to individually engage with a corresponding notch in shaft 930. In various embodiments, camming member 944 may comprise actuating pin 917 to engage with notch 916 of shaft 930 and gears (not shown) to operatively engage with gears (not shown) of at least one other camming member 942, 944 such that rotational movement of camming member 944 rotates camming member

942. Of course, camming members 942, 944 may instead have any other suitable kind of movement and may be actuated in any other suitable fashion.

In various embodiments, the camming member may selectively compress tissue at a first compressive force when 5 a first portion of the camming member contacts tissue and a second compressive force when a second portion of the camming member contacts tissue, wherein the first compressive force is different from the second compressive force. In various embodiments, the first compressive force is 10 greater than the second compressive force. In various embodiments, referring to FIGS. 21A and 21B, camming members 942, 944 may comprise a generally circumferential tissue T contacting surface comprising at least one protrusion 942a, 944a. The protrusions 942a, 944a may extend 15 above the surface of the camming members 942, 944, respectively. In various embodiments, protrusion 942a, 944a may comprise a curved portion of a generally comma-shape. In various embodiments, camming members 942, 944 may selectively compress tissue T at a first compressive force 20 when a first portion of camming member 942, 944 comprising protrusion 942a, 944a contacts tissue T and a second compressive force when a second portion of the camming member 942, 944 lacking the protrusion contacts tissue T. In various embodiments, the camming members 942, 944 may 25 contact the tissue T and rotationally engage the tissue T to shear and/or scrape any calcification on the external and/or internal surfaces of the tissue T.

While various embodiments described above include a pistol grip, it should be understood that the foregoing 30 teachings may be readily applied to devices having various other kinds of grips. By way of example only, a variation of trigger and cam lever may be provided in accordance with the above teachings in a device having a scissor grip. Various examples of devices comprising a scissor grip is described 35 in U.S. patent application Ser. No. 13/426,084, filed Mar. 21, 2012, entitled "ENERGY-BASED SCISSORS DEVICE" now U.S. Pat. No. 8,974,447, the disclosure of which is incorporated by reference herein. Other kinds of grips that may be combined with the above teachings will be apparent 40 to those of ordinary skill in the art. Furthermore, a variation of trigger and cam lever may be readily incorporated into devices having various other kinds of end effectors, including but not limited to tissue graspers, tissue retrieval pouch deploying instruments, surgical staplers, ultrasonic surgical 45 instruments, etc.

It should also be understood that any of the devices described herein may be modified to include a motor or other electrically powered device to drive an otherwise manually moved component. Various examples of such modifications 50 are described in U.S. Patent Application Publication No. 2012/0116379, entitled "MOTOR DRIVEN ELECTROSURGICAL DEVICE WITH MECHANICAL AND ELECTRICAL FEEDBACK", published May 10, 2012, now U.S. Pat. No. 9,161,803, the disclosure of which is incorporated 55 by reference herein. Various other suitable ways in which a motor or other electrically powered device may be incorporated into any of the devices herein will be apparent to those of ordinary skill in the art in view of the teachings herein.

It should also be understood that any of the devices 60 described herein may be modified to contain most, if not all, of the required components within the medical device itself. More specifically, the devices described herein may be adapted to use an internal or attachable power source instead of requiring the device to be plugged into an external power 65 source by a cable. Various examples of how medical devices may be adapted to include a portable power source are

24

disclosed in U.S. Provisional Application Ser. No. 61/410, 603, filed Nov. 5, 2010, entitled "ENERGY-BASED SUR-GICAL INSTRUMENTS", the disclosure of which is incorporated by reference herein. Various other suitable ways in which a power source may be incorporated into any of the devices herein will be apparent to those of ordinary skill in the art in view of the teachings herein.

The devices disclosed herein may be designed to be disposed of after a single use, or they may be designed to be used multiple times. In either case, however, the device may be reconditioned for reuse after at least one use. Reconditioning may include a combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, the device may be disassembled, and any number of particular pieces or parts of the device may be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, the device may be reassembled for subsequent use either at a reconditioning facility, or by a surgical team immediately prior to a surgical procedure. Those of ordinary skill in the art will appreciate that the reconditioning of a device may utilize a variety of different techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of this appli-

Preferably, the various embodiments of the devices described herein will be processed before surgery. First, a new or used instrument is obtained and if necessary cleaned. The instrument can then be sterilized. In one sterilization technique, the instrument is placed in a closed and sealed container, such as a plastic or TYVEK® bag. The container and instrument are then placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or high-energy electrons. The radiation kills bacteria on the instrument and in the container. The sterilized instrument can then be stored in the sterile container. The sealed container keeps the instrument sterile until it is opened in the medical facility. Other sterilization techniques can be done by any number of ways known to those skilled in the art including beta or gamma radiation, ethylene oxide, and/or

Although the various embodiments of the devices have been described herein in connection with certain disclosed embodiments, many modifications and variations to those embodiments may be implemented. For example, different types of end effectors may be employed. Also, where materials are disclosed for certain components, other materials may be used. Furthermore, according to various embodiments, a single component may be replaced by multiple components, and multiple components may be replaced by a single component, to perform a given function or functions. The foregoing description and following claims are intended to cover all such modification and variations.

Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated materials does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth

herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.

What is claimed is:

- 1. A surgical instrument, comprising:
- a shaft comprising a proximal end and a distal end;
- an ultrasonic waveguide at least partially positioned within the shaft, the waveguide having a proximal end and a distal end;
- an ultrasonically actuated blade positioned at the distal 10 end of the waveguide; and
- a clamp arm assembly pivotally connected to the distal end of the shaft, wherein the clamp arm assembly comprises at least two camming members rotationally attached to a clamp arm, wherein the clamp arm is 15 movable between an open position and a closed position relative to the blade to compress tissue intermediate the clamp arm and the blade when in the closed position, wherein the at least two camming members rotate relative to the clamp arm to separate tissue layers 20 when the clamp arm moves between the open position and the closed position, wherein the at least two camming members selectively compress the tissue at a first rolling compressive force when a first portion of the camming members contact the tissue and a second 25 rolling compressive force when a second portion of the camming members contact the tissue, wherein the first rolling compressive force is greater than the second rolling compressive force, and wherein the at least two camming members each comprise:
 - a circumferential surface comprising the first portion and the second portion, wherein the first portion comprises a protrusion, and wherein the protrusion compresses the tissue at the first rolling compressive force.
- 2. The surgical instrument of claim 1, wherein the at least two camming members independently rotate relative to each other when the clamp arm moves between the open position and the closed position.
- 3. The surgical instrument of claim 1, wherein the at least 40 two camming members simultaneously rotate relative to each other when the clamp arm moves between the open position and the closed position.
- 4. The surgical instrument of claim 1, wherein the at least two camming members rotate in one of the same direction 45 of the camming members comprises an actuating member and the opposite direction when the clamp arm moves between the open position and the closed position.
- 5. The surgical instrument of claim 1, wherein separating the tissue layers comprises separating an adventitia layer from a muscular layer without compromising the adventitia 50 laver.
 - **6**. A surgical instrument, comprising:
 - a shaft comprising a proximal end and a distal end;
 - an ultrasonic waveguide at least partially positioned within the shaft, the waveguide having a proximal end 55 and a distal end:
 - an ultrasonically actuated blade positioned at the distal end of the waveguide; and
 - a clamp arm assembly pivotally connected to the distal end of the shaft, wherein the clamp arm assembly 60 comprises at least two camming members rotationally attached to a clamp arm, wherein the clamp arm is movable between an open position and a closed position relative to the blade to compress tissue intermediate the clamp arm and the blade when in the closed 65 position, wherein the at least two camming members rotate relative to the clamp arm to separate tissue layers

26

when the clamp arm moves between the open position and the closed position, wherein the at least two camming members selectively compress the tissue at a first rolling compressive force when a first portion of the camming members contact the tissue and a second rolling compressive force when a second portion of the camming members contact the tissue, wherein the first rolling compressive force is greater than the second rolling compressive force, wherein the first rolling compressive force is sufficient to separate a muscular layer of the tissue from an adventitia layer of the tissue, and wherein the second rolling compressive force is sufficient for application of ultrasonic energy to cut the tissue and to seal the tissue via an adventitia-adventitia

- 7. A surgical instrument, comprising:
- a shaft comprising a proximal end and a distal end;
- an ultrasonic waveguide at least partially positioned within the shaft, the waveguide having a proximal end and a distal end;
- an ultrasonically actuated blade positioned at the distal end of the waveguide; and
- a clamp arm assembly pivotally connected to the distal end of the shaft, wherein the clamp arm assembly comprises at least two camming members rotationally attached to a clamp arm, wherein the clamp arm is movable between an open position and a closed position relative to the blade to compress tissue intermediate the clamp arm and the blade when in the closed position, wherein the at least two camming members rotate relative to the clamp arm to separate tissue layers when the clamp arm moves between the open position and the closed position, wherein the at least two camming members selectively compress the tissue at a first rolling compressive force when a first portion of the camming members contact the tissue and a second rolling compressive force when a second portion of the camming members contact the tissue, wherein the first rolling compressive force is greater than the second rolling compressive force, wherein the first portion comprises at least one protrusion, and wherein the at least one protrusion compresses the tissue at the first rolling compressive force.
- 8. The surgical instrument of claim 1, wherein at least one configured to operatively engage the shaft as the clamp arm moves from the open position to the closed position to rotate the at least one camming member relative to the clamp arm.
 - 9. A surgical instrument, comprising:
- a shaft comprising a proximal end and a distal end;
- an ultrasonic waveguide at least partially positioned within the shaft, the waveguide having a proximal end and a distal end;
- an ultrasonically actuated blade positioned at the distal end of the waveguide; and
- a clamp arm assembly pivotally connected to the distal end of the shaft, wherein the clamp arm assembly comprises at least two camming members rotationally attached to a clamp arm, wherein the clamp arm is movable between an open position and a closed position relative to the blade to compress tissue intermediate the clamp arm and the blade when in the closed position, wherein the at least two camming members rotate relative to the clamp arm to separate tissue layers when the clamp arm moves between the open position and the closed position, wherein at least one of the camming members comprises an actuating member

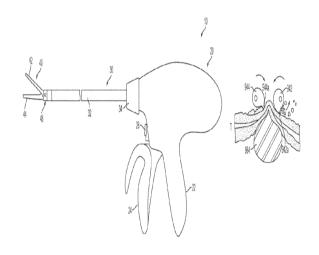
configured to operatively engage the shaft as the clamp arm moves from the open position to the closed position to rotate the at least one camming operatively engage the shaft as the clamp arm moves from the closed position to the open position to rotate the at least 5 one camming member relative to the clamp arm.

- 10. The surgical instrument of claim 6, wherein the at least two camming members independently rotate relative to each other when the clamp arm moves between the open position and the closed position.
- 11. The surgical instrument of claim 6, wherein the at least two camming members simultaneously rotate relative to each other when the clamp arm moves between the open position and the closed position.
- 12. The surgical instrument of claim 6, wherein the at 15 least two camming members rotate in one of the same direction and the opposite direction when the clamp arm moves between the open position and the closed position.
- 13. The surgical instrument of claim 6, wherein separating the tissue layers comprises separating an adventitia layer 20 from a muscular layer without compromising the adventitia layer.
- 14. The surgical instrument of claim 7, wherein the at least two camming members independently rotate relative to each other when the clamp arm moves between the open 25 position and the closed position.
- 15. The surgical instrument of claim 7, wherein the at least two camming members simultaneously rotate relative

28

to each other when the clamp arm moves between the open position and the closed position.

- 16. The surgical instrument of claim 7, wherein the at least two camming members rotate in one of the same direction and the opposite direction when the clamp arm moves between the open position and the closed position.
- 17. The surgical instrument of claim 7, wherein separating the tissue layers comprises separating an adventitia layer from a muscular layer without compromising the adventitia layer.
- 18. The surgical instrument of claim 9, wherein the at least two camming members independently rotate relative to each other when the clamp arm moves between the open position and the closed position.
- 19. The surgical instrument of claim 9, wherein the at least two camming members simultaneously rotate relative to each other when the clamp arm moves between the open position and the closed position.
- 20. The surgical instrument of claim 9, wherein the at least two camming members rotate in one of the same direction and the opposite direction when the clamp arm moves between the open position and the closed position.
- 21. The surgical instrument of claim 9, wherein separating the tissue layers comprises separating an adventitia layer from a muscular layer without compromising the adventitia layer.


* * * * *

专利名称(译)	末端执行器带有夹臂组件和刀片		
公开(公告)号	<u>US9743947</u>	公开(公告)日	2017-08-29
申请号	US14/963686	申请日	2015-12-09
[标]申请(专利权)人(译)	爱惜康内镜外科,LLC		
申请(专利权)人(译)	爱惜康内镜外科,LLC		
当前申请(专利权)人(译)	爱惜康内镜外科,LLC		
[标]发明人	PRICE DANIEL W MESSERLY JEFFREY D MALAVIYA PRASANNA BEETEL III ROBERT J DIETZ TIMOTHY G WITT DAVID A TURNER DOUGLAS J NORVELL DAVID K RUPP KIP M WEED III JOHN A FELDER KEVIN D HOUSER KEVIN L FRANER PAUL T FALLER CRAIG N DAVIS CRAIG T		
发明人	PRICE, DANIEL W. MESSERLY, JEFFREY D. MALAVIYA, PRASANNA BEETEL, III, ROBERT J. DIETZ, TIMOTHY G. WITT, DAVID A. TURNER, DOUGLAS J. NORVELL, DAVID K. RUPP, KIP M. WEED, III, JOHN A. FELDER, KEVIN D. HOUSER, KEVIN L. FRANER, PAUL T. FALLER, CRAIG N. DAVIS, CRAIG T.		
IPC分类号	A61B17/295 A61B17/32 A61B17/29 A61B18/14 A61B18/00 A61B90/00		
CPC分类号	A61B17/320092 A61B17/2909 A61B18/1445 A61B90/03 A61B2017/2913 A61B2017/2916 A61B2017 /2919 A61B2017/2926 A61B2017/320064 A61B2018/00202 A61B2018/1455 A61B2090/037 A61B2017 /320093 A61B2017/320094 A61B2017/320095 A61B2017/320097		
审查员(译)	CAREY, MICHAEL		
其他公开文献	US20160095617A1		
外部链接	Espacenet USPTO		

摘要(译)

外科手术器械的末端执行器通常可包括刀片,和夹持臂组件,夹持臂组件包括可相对于刀片在打开位置和关闭位置之间移动的夹持臂,以及至少一个可旋转地连接到夹持臂的凸轮构件,其中当夹紧臂从打开位置移动到关闭位置时,至少一个凸轮构件构造成相对于刀片旋转。

