(19)中华人民共和国国家知识产权局

(12)发明专利申请

(10)申请公布号 CN 110090046 A (43)申请公布日 2019.08.06

(21)申请号 201910286699.5

(22)申请日 2019.04.10

(71)申请人 江苏省人民医院(南京医科大学第 一附属医院)

地址 210029 江苏省南京市广州路300号

(72)**发明人** 陈欢欢 张浩 游伟 陈玉梅 页其星 顾经宇 王玉成 杨涛

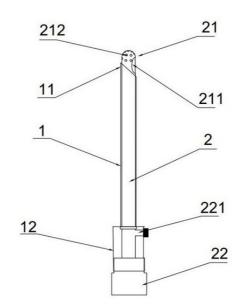
(74)专利代理机构 南京科知维创知识产权代理 有限责任公司 32270

代理人 杜依民

(51) Int.CI.

A61B 10/02(2006.01)

A61B 17/34(2006.01)


权利要求书1页 说明书4页 附图2页

(54)发明名称

一种改进的甲状腺穿刺装置

(57)摘要

本发明提供一种改进的甲状腺穿刺装置,包括穿刺外鞘和穿刺芯,穿刺芯可拆卸地固定在穿刺外鞘内部,中空结构的穿刺芯包括功能端和尾端,功能端为圆钝的端部,功能端的侧壁上开设有切割孔,尾端上设有伸缩结构,伸缩结构固定在穿刺芯上并用以控制穿刺芯伸缩;当伸缩结构伸展,功能端伸出穿刺外鞘;当伸缩结构收缩,功能端缩回穿刺外鞘内部。本发明的穿刺芯可以手动控制伸缩,穿刺外鞘用以穿刺,穿刺芯在进行反复戳刺时可以保护动脉不会被尖锐的穿刺外鞘误伤。穿刺芯的功能端上开设有切割孔,切割孔位于功能端的侧壁上,可以一次取出更多的样本,并且不会被堵塞,有利于更加顺利地取到样本

- 1.一种改进的甲状腺穿刺装置,其特征在于:包括穿刺外鞘和穿刺芯,所述穿刺芯可拆卸地固定在所述穿刺外鞘内部,所述穿刺外鞘包括固定端和穿刺端,所述固定端用以与所述穿刺芯连接,所述穿刺端为斜面;中空结构的所述穿刺芯包括功能端和尾端,所述功能端为圆钝的端部,所述功能端的侧壁上开设有切割孔,所述尾端与所述固定端之间可拆卸地连接,所述尾端上设有伸缩结构,所述穿刺芯通过手动调节所述伸缩结构在所述穿刺外鞘中伸缩;当所述伸缩结构处于伸展状态,所述功能端伸出所述穿刺外鞘;当所述伸缩结构处于收缩状态,所述功能端缩回所述穿刺外鞘内部。
- 2.如权利要求1所述的改进的甲状腺穿刺装置,其特征在于:所述穿刺端的外壁光滑, 所述穿刺端的内壁上一体设有盘旋向上的螺旋状条纹。
- 3. 如权利要求1所述的改进的甲状腺穿刺装置,其特征在于:所述切割孔的外侧壁的边缘平滑并且向内凹陷,所述切割孔的内侧壁的边缘向所述切割孔的中心处延伸并且呈锯齿状。
- 4.如权利要求1所述的改进的甲状腺穿刺装置,其特征在于:所述切割孔的内侧设有阀门,所述阀门的开关连接于所述尾端。
- 5.如权利要求1所述的改进的甲状腺穿刺装置,其特征在于:所述穿刺芯的所述尾端设有注射口或是连通的注射支管。
- 6. 如权利要求1所述的改进的甲状腺穿刺装置,其特征在于:所述功能端上开设有注射 孔,所述注射孔的数量为至少2个。
- 7.如权利要求6所述的改进的甲状腺穿刺装置,其特征在于:所述注射孔均匀地开设在所述功能端的头部或是侧壁上。
- 8. 如权利要求1所述的改进的甲状腺穿刺装置,其特征在于:所述伸缩结构包括手动开关和固定连杆,所述手动开关位于所述穿刺外鞘的外侧壁上并可在所述外侧壁上上下滑动,所述固定连杆的两端分别固定连接在所述手动开关和所述穿刺芯上;当上/下滑动所述手动开关,所述固定连杆随之上/下滑动,并且所述穿刺芯随所述固定连杆回缩/伸展,所述功能端回缩/伸出所述穿刺外鞘。
- 9. 如权利要求1所述的改进的甲状腺穿刺装置,其特征在于:所述甲状腺穿刺装置还包括穿刺支架,所述穿刺支架可拆卸地安装在超声探头上,所述穿刺芯支架用以夹持套接的所述穿刺外鞘和所述穿刺芯,所述穿刺外鞘和所述穿刺芯与超声平面位于同一平面内。

一种改进的甲状腺穿刺装置

技术领域

[0001] 本发明涉及医疗器械领域,尤其涉及一种改进的甲状腺穿刺装置。

背景技术

[0002] 甲状腺结节是指在甲状腺内的肿块,可随吞咽动作随甲状腺而上下移动,是临床常见的病症,可由多种病因引起。临床上有多种甲状腺疾病,如甲状腺退行性变、炎症、自身免疫以及新生物等都可以表现为结节。甲状腺结节可以单发,也可以多发,多发结节比单发结节的发病率高,但单发结节甲状腺癌的发生率较高。

[0003] 近年来,随着高频高分辨力超声技术的快速发展,超声对甲状腺结节的检出率和诊断率有了极大的提高,已成为临床首选的检查手段。甲状腺超声影像报告和数据系统诊断4类(包括4A、4B、4C)的结节,其恶性率为5%-90%,对这类可疑恶性结节进行穿刺活检常常能明确其病理性质,目前已在临床广泛开展,为临床进一步诊治提供依据。

[0004] 超声引导下甲状腺结节细针穿刺活检,具有实时动态成像、操作方便简单、安全性较高等特点,可准确地引导穿刺针进入靶结节,并动态监测穿刺过程,因此,其穿刺结果具有极高的诊断准确性。此外,甲状腺穿刺还可以通过局部给药对囊性甲状腺结节等进行治疗。

[0005] 但是目前在进行超声引导下甲状腺结节细针穿刺活检的时候,由于甲状腺结节靠近静脉以及动脉,并且多数甲状腺结节体积较小,在穿刺时一不小心会损伤动脉或是静脉,尤其是动脉,损伤之后易造成甲状腺出血,血肿,甚而压迫气管,食管等,给病人的身体造成一定的损伤。此外,目前的活检一般是用针尖带出,取活检的样本较少,并且很多时候需要多次穿刺,给病人带来额外的身体负担。

发明内容

[0006] 本发明的目的是为了解决现有技术中存在的缺点,而提出的一种改进的甲状腺穿刺装置。

[0007] 为实现上述目的,本发明采用了如下技术方案:

一种改进的甲状腺穿刺装置,包括穿刺外鞘和穿刺芯,所述穿刺芯可拆卸地固定在所述穿刺外鞘内部,所述穿刺外鞘包括固定端和穿刺端,所述固定端用以与所述穿刺芯连接,所述穿刺端为斜面;中空结构的所述穿刺芯包括功能端和尾端,所述功能端为圆钝的端部,所述功能端的侧壁上开设有切割孔,所述尾端与所述固定端之间可拆卸地连接,所述尾端上设有伸缩结构,所述穿刺芯通过手动调节所述伸缩结构来实现在所述穿刺外鞘中伸缩;当所述伸缩结构处于伸展状态,所述功能端伸出所述穿刺外鞘;当所述伸缩结构处于收缩状态,所述功能端缩回所述穿刺外鞘内部。

[0008] 优选地,所述穿刺短的外壁光滑,所述穿刺端的内壁上一体设有盘旋向上的螺旋状条纹。

[0009] 优选地,所述切割孔的外侧壁的边缘平滑并且向内凹陷,所述切割孔的内侧壁的

边缘向所述切割孔的中心处延伸并且呈锯齿状。

[0010] 优选地,所述切割孔的内侧设有阀门,所述阀门的开关连接于所述尾端。

[0011] 优选地,所述穿刺芯的所述尾端设有注射口或是连通的注射支管。

[0012] 优选地,所述功能端上开设有注射孔,所述注射孔的数量为至少2个。

[0013] 优选地,所述注射孔均匀地开设在所述功能端的头部或是侧壁上。

[0014] 优选地,所述伸缩结构包括手动开关和固定连杆,所述手动开关位于所述穿刺外鞘的外侧壁上并可在所述外侧壁上上下滑动,所述固定连杆的两端分别固定连接在所述手动开关和所述穿刺芯上;当上/下滑动所述手动开关,所述固定连杆随之上/下滑动,并且所述穿刺芯随所述固定连杆回缩/伸展,所述功能端回缩/伸出所述穿刺外鞘。

[0015] 优选地,所述甲状腺穿刺装置还包括穿刺支架,所述穿刺支架可拆卸地安装在超声探头上,所述穿刺芯支架用以夹持套接的所述穿刺外鞘和所述穿刺芯,所述穿刺外鞘和所述穿刺芯与超声平面位于同一平面内。

[0016] 与现有技术相比,本发明的有益效果为:

本发明将穿刺装置分成双层结构,外层的穿刺外鞘用于穿刺,内层的穿刺芯是可自动伸缩的结构,在穿刺进甲状腺之后,可以自动弹出,在进行反复戳刺进行取样活检时,可以保护动脉不会被尖锐的穿刺外鞘误伤,从而给病人带来额外的伤害。

[0017] 穿刺芯的功能端上开设有切割孔,切割孔位于功能端的侧壁上,相较于之前用针尖反复戳刺带出活检样本,切割孔位于侧面,开设的面积较针尖更大,可以一次取出更多的样本,并且位于穿刺芯侧面的切割孔在进入腺体内之前不会被堵塞,有利于更加顺利地取到样本。

[0018] 当发现病人的甲状腺结节钙化时,用普通的穿刺芯戳刺,不仅比较艰难,还容易堵塞穿刺芯孔,给后面取样造成困难,往往需要长时间多次操作,本发明可以在穿刺进钙化的甲状腺结节后,利用穿刺芯将堵住穿刺外鞘的钙化物顶出穿刺外鞘,保持畅通。

附图说明

[0019] 图1为一种改进的甲状腺穿刺装置的结构示意图:

图2为固定在穿刺针支架上的一种改进的甲状腺穿刺装置的结构示意图。

具体实施方式

[0020] 为使对本发明的目的、构造、特征、及其功能有进一步的了解,兹配合实施例详细说明如下。

[0021] 请结合参照图1和图2,本发明提供了一种改进的甲状腺穿刺装置,包括穿刺外鞘1和穿刺芯2,穿刺芯2可拆卸地固定在穿刺外鞘1内部,穿刺外鞘1包括固定端11和穿刺端12,固定端11用以与穿刺芯2连接,穿刺端12为斜面;中空结构的穿刺芯2包括功能端21和尾端22,功能端21为圆钝的端部,功能端21的侧壁上开设有切割孔211,尾端22与固定端11之间可拆卸地连接,尾端22上设有伸缩结构221,穿刺芯2通过手动调节伸缩结构221来实现在穿刺外鞘1中伸缩;当伸缩结构221处于伸展状态,功能端21伸出穿刺外鞘1;当伸缩结构221处于收缩状态,功能端21缩回穿刺外鞘1内部。

[0022] 穿刺外鞘1用于穿刺,在穿刺时,通过手动调节伸缩结构221使穿刺芯2收缩在穿刺

外鞘1中,这时尖锐的穿刺端12进行穿刺。在穿刺成功,穿刺外鞘进入甲状腺内之后,通过手动调节伸缩结构221使穿刺芯2伸出到穿刺外鞘1的外部,穿刺芯2的功能端21是圆钝的端部,在取样本时多次戳刺的过程中可以保护动脉和静脉等不被穿刺外鞘1戳刺,避免病人遭受不必要的伤害。穿刺芯2的功能端21上设有切割孔211,切割孔211位于侧壁,在穿刺过程中缩在穿刺外鞘1中,不会被堵塞,也不会被填充除样本外的其他人体组织,并且设在侧面的切割孔211相对常用的穿刺芯2针尖来说,一次可以切割到更多的样本,并且可以防止在抽出病人体外的过程中发生组织脱落的情况,可以在很大程度上避免二次甚至多次穿刺,减轻病人的身体负担。

[0023] 优选地,穿刺端12的外壁光滑,穿刺端12的内壁上一体设有盘旋向上的螺旋状条纹。当病人的甲状腺结节钙化时,表面过于坚硬,普通穿刺需要多次尝试寻找钙化薄弱区域并且用力穿刺,即使穿刺成功,也会大概率地发生穿刺芯2的针尖被钙化物堵住的情况,这样可以抽取或带出的组织样本就更少,将穿刺外鞘1的穿刺端12内壁设置成带有螺旋状条纹的结构,在穿刺过程中,可以将针尖抵住钙化结构并且旋转,这样可以钻开钙化部位,相对于直接施力进行强硬穿刺,依靠螺旋状条纹旋转穿刺外鞘1钻进钙化的甲状腺内的方法更加省力,可以更好地保护穿刺外鞘1,防止穿刺外鞘1由于用力过度而变形;此外,本发明的双层结构,即穿刺芯2固定在穿刺外鞘1内部的结构,也有利于保证穿刺外鞘1在穿刺过程中不变形,有利于医生顺利操作。

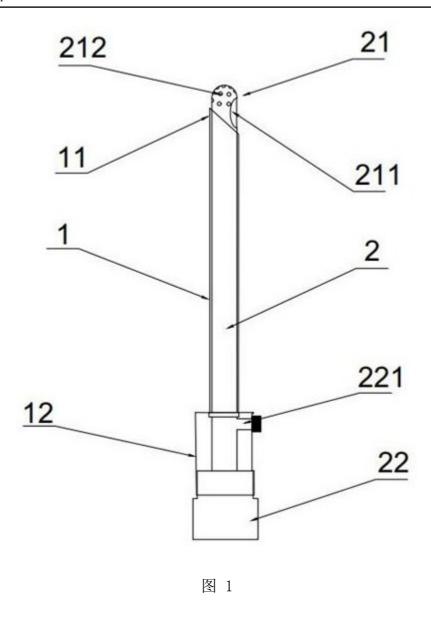
[0024] 优选地,切割孔211的外侧壁的边缘平滑并且向内凹陷,切割孔211的内侧壁的边缘向切割孔211的中心处延伸并且呈锯齿状。外侧壁边缘平滑且向内凹陷,在反复戳刺过程中不会刮伤病人的腺体或是其他组织,并且向内凹陷,有利于组织样本自行流入穿刺芯2内,穿刺芯2的内侧壁边缘呈锯齿状,可以更好地将组织样本刮入穿刺芯2中。

[0025] 优选地,切割孔211的内侧设有阀门,阀门的开关连接于尾端22。在使用时,收集到足够的组织样本后,可以将阀门关闭,如此切割孔211被关闭,组织样本被储存在穿刺芯2中,可以将组织液封存,在抽离病人的甲状腺时不会勾连到其他非样本组织,有利于保持组织的纯净,有利于后期的检测结果的准确性。

[0026] 在一实施例中,穿刺芯2的尾端22设有注射口或是连通的注射支管,可以从注射口或是支管中向甲状腺的腺体内注射药物。优选地,功能端21上开设有注射孔212,注射孔212的数量为至少2个。更进一步地,注射孔212均匀地开设在功能端21的头部或是侧壁上,有利于药物更加均匀地弥散,可以使得药物的效果更好,并且多个注射孔212均匀分布,相比从针尖注入,药物注射时压强更小,效果也更好。

[0027] 在一实施例中,伸缩结构221包括手动开关和固定连杆,手动开关位于穿刺外鞘1的外侧壁上并可在外侧壁上上下滑动,固定连杆的两端分别固定连接在手动开关和穿刺芯2上;当上/下滑动手动开关,固定连杆随之上/下滑动,并且穿刺芯2随固定连杆回缩/伸展,功能端回缩/伸出穿刺外鞘。上述结构简单,在使用时可以对穿刺芯2的伸缩状态进行直接的控制,相较于其他复杂的结构,可以减小操作失误的可能性,并且术者操作方便,不妨碍穿刺过程中其他操作,实用性强。

[0028] 优选地,甲状腺穿刺装置还包括穿刺支架,穿刺支架可拆卸地安装在超声探头上,穿刺芯2支架用以夹持套接的穿刺外鞘1和穿刺芯2,穿刺外鞘1和穿刺芯2与超声平面位于同一平面内。由于超声可以显示的影像是一个扇形平面,超声影像捕捉到结节后即可显示

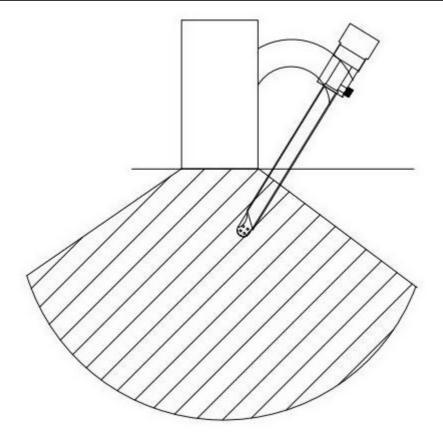

结节位置,但是因为穿刺芯2在刺入时经常由于针尖在超声影像上的显示强度不够,并且有时针尖和超声影像不在同一平面,导致超声影像无法同时捕捉到穿刺芯2的立体位置,穿刺芯2可能穿刺到结节的一侧或者穿刺过深,并不能保证扎到结节上。这样可以保证穿刺外鞘1和穿刺芯2的影像可以全部显示出来,相对于只显示针尖,更加清晰,有利于快速找寻到需要的部位进行穿刺。

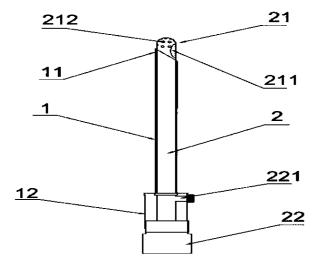
[0029] 由上所述,本发明将穿刺装置分成双层结构,外层的穿刺外鞘用于穿刺,内层的穿刺芯是可自动伸缩的结构,在穿刺进甲状腺之后,可以自动弹出,在进行反复戳刺进行取样活检时,可以保护动脉不会被尖锐的穿刺外鞘误伤,从而给病人带来额外的伤害。

[0030] 穿刺芯的功能端上开设有切割孔,切割孔位于功能端的侧壁上,相较于之前用针尖反复戳刺带出活检样本,切割孔位于侧面,开设的面积较针尖更大,可以一次取出更多的样本,并且位于穿刺芯侧面的切割孔在进入腺体内之前不会被堵塞,有利于更加顺利地取到样本。

[0031] 当发病人的甲状腺结节钙化时,用普通的穿刺芯戳刺,不仅比较艰难,还容易堵塞穿刺芯孔,给后面取样造成困难,往往需要长时间多次操作,本发明可以在穿刺进钙化的甲状腺结节后,利用穿刺芯将堵住穿刺外鞘的钙化物顶出穿刺外鞘,保持畅通。

[0032] 本发明已由上述相关实施例加以描述,然而上述实施例仅为实施本发明的范例。 必需指出的是,已揭露的实施例并未限制本发明的范围。相反地,在不脱离本发明的精神和 范围内所作的更动与润饰,均属本发明的专利保护范围。




图 2

专利名称(译)	一种改进的甲状腺穿刺装置			
公开(公告)号	CN110090046A	公开(公告)日	2019-08-06	
申请号	CN201910286699.5	申请日	2019-04-10	
申请(专利权)人(译)	江苏省人民医院(南京医科大学第一附属医院)			
当前申请(专利权)人(译)	江苏省人民医院(南京医科大学第一附属医院)			
[标]发明人	陈欢欢 张浩 游伟 陈玉梅 顾经宇 王玉成 杨涛			
发明人	陈欢欢 张浩 游伟 陈玉梅 贡其星 顾经宇 王玉成 杨涛			
IPC分类号	A61B10/02 A61B17/34			
CPC分类号	A61B10/0233 A61B17/3403 A61B2010/0225			
外部链接	Espacenet SIPO			

摘要(译)

本发明提供一种改进的甲状腺穿刺装置,包括穿刺外鞘和穿刺芯,穿刺芯可拆卸地固定在穿刺外鞘内部,中空结构的穿刺芯包括功能端和尾端,功能端为圆钝的端部,功能端的侧壁上开设有切割孔,尾端上设有伸缩结构,伸缩结构固定在穿刺芯上并用以控制穿刺芯伸缩;当伸缩结构伸展,功能端伸出穿刺外鞘;当伸缩结构收缩,功能端缩回穿刺外鞘内部。本发明的穿刺芯可以手动控制伸缩,穿刺外鞘用以穿刺,穿刺芯在进行反复戳刺时可以保护动脉不会被尖锐的穿刺外鞘误伤。穿刺芯的功能端上开设有切割孔,切割孔位于功能端的侧壁上,可以一次取出更多的样本,并且不会被堵塞,有利于更加顺利地取到样本。

