



US009295485B2

(12) **United States Patent**  
**Conlon et al.**

(10) **Patent No.:** **US 9,295,485 B2**  
(45) **Date of Patent:** **Mar. 29, 2016**

(54) **LOADER FOR EXCHANGING END EFFECTORS IN VIVO**

(75) Inventors: **Sean P. Conlon**, Loveland, OH (US);  
**James T. Spivey**, Cincinnati, OH (US);  
**Kevin M. Huey**, Cincinnati, OH (US);  
**Rudolph H. Nobis**, Mason, OH (US)

(73) Assignee: **Ethicon Endo-Surgery, Inc.**, Cincinnati, OH (US)

(\*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 455 days.

(21) Appl. No.: **12/576,565**

(22) Filed: **Oct. 9, 2009**

(65) **Prior Publication Data**

US 2011/0087266 A1 Apr. 14, 2011

(51) **Int. Cl.**

*A61B 17/00* (2006.01)  
*A61B 17/3201* (2006.01)  
*A61B 17/29* (2006.01)  
*A61B 17/32* (2006.01)  
*A61B 18/14* (2006.01)

(52) **U.S. Cl.**

CPC ..... *A61B 17/3201* (2013.01); *A61B 17/29* (2013.01); *A61B 17/320092* (2013.01); *A61B 18/1442* (2013.01); *A61B 2017/00296* (2013.01); *A61B 2017/00473* (2013.01); *A61B 2018/1495* (2013.01)

(58) **Field of Classification Search**

CPC .... A61B 17/29; A61B 17/94; A61B 17/3201; A61B 18/1442; A61B 2017/00473; A61B 2017/00296; A61B 2018/1495; A61B 2017/00477; A61B 2017/0053  
USPC ..... 606/1, 99, 104, 105.5, 86 A, 169, 606/205-207, 170, 180

See application file for complete search history.

(56) **References Cited**

**U.S. PATENT DOCUMENTS**

|             |         |             |
|-------------|---------|-------------|
| 3,043,309 A | 7/1962  | McCarthy    |
| 3,358,676 A | 12/1967 | Frei et al. |
| 3,710,399 A | 1/1973  | Hurst       |
| 3,893,448 A | 7/1975  | Brantigan   |
| 3,906,217 A | 9/1975  | Lackore     |

(Continued)

**FOREIGN PATENT DOCUMENTS**

|               |         |  |
|---------------|---------|--|
| DE 10149421   | 4/2003  |  |
| EP 1709900 B1 | 10/2006 |  |

(Continued)

**OTHER PUBLICATIONS**

International Search Report dated Mar. 21, 2011, International Application No. PCT/US2010/051812.


(Continued)

*Primary Examiner* — Amy R Weisberg

(57) **ABSTRACT**

A surgical device for use in combination with a percutaneous elongate shaft defining a longitudinal axis. The shaft comprises a distal end and a proximal end, the distal end comprising an attachment mechanism. A surgical end effector is selectively attachable in vivo and detachable in vivo to the attachment mechanism of the percutaneous elongate shaft. A percutaneous elongate loader comprises an articulating distal end. The distal end comprises a tube with an opening at the distal tip, the tube being dimensioned to receive the surgical end effector. The distal end further comprises an engagement feature capable of frictionally holding the surgical end effector in the tube during in vivo attachment to and in vivo detachment from the percutaneous elongate shaft.

**13 Claims, 11 Drawing Sheets**



| (56)                  | References Cited                    |                 |         |                          |  |  |
|-----------------------|-------------------------------------|-----------------|---------|--------------------------|--|--|
| U.S. PATENT DOCUMENTS |                                     |                 |         |                          |  |  |
| 3,988,535 A           | 10/1976 Hickman et al.              | 7,066,879 B2    | 6/2006  | Fowler et al.            |  |  |
| 4,047,136 A           | 9/1977 Satto                        | 7,083,579 B2    | 8/2006  | Yokoi et al.             |  |  |
| 4,063,561 A           | 12/1977 McKenna                     | 7,122,028 B2    | 10/2006 | Looper et al.            |  |  |
| 4,099,192 A           | 7/1978 Aizawa et al.                | 7,125,403 B2    | 10/2006 | Julian et al.            |  |  |
| 4,278,077 A           | 7/1981 Mizumoto                     | 7,169,104 B2    | 1/2007  | Ueda et al.              |  |  |
| 4,384,584 A           | 5/1983 Chen                         | 7,199,545 B2    | 4/2007  | Oleynikov et al.         |  |  |
| 4,585,282 A           | 4/1986 Bosley                       | 7,211,094 B2    | 5/2007  | Gannoe et                |  |  |
| 4,597,390 A           | 7/1986 Mulholland et al.            | 7,241,290 B2    | 7/2007  | Doyle et al.             |  |  |
| 4,655,746 A           | 4/1987 Daniels et al.               | 7,297,142 B2    | 11/2007 | Brock                    |  |  |
| 5,052,402 A *         | 10/1991 Bencini et al. .... 600/564 | 7,331,967 B2    | 2/2008  | Lee et al.               |  |  |
| 5,053,043 A           | 10/1991 Gottesman et al.            | 7,429,259 B2    | 9/2008  | Cadeddu et al.           |  |  |
| 5,201,743 A           | 4/1993 Haber et al.                 | 7,448,993 B2    | 11/2008 | Yokoi et al.             |  |  |
| 5,282,806 A           | 2/1994 Haber et al.                 | 7,559,887 B2    | 7/2009  | Dannan                   |  |  |
| 5,286,255 A           | 2/1994 Weber                        | 7,566,331 B2    | 7/2009  | Looper et al.            |  |  |
| 5,308,357 A           | 5/1994 Lichtman                     | 7,604,642 B2    | 10/2009 | Brock                    |  |  |
| 5,314,424 A           | 5/1994 Nicholas                     | 7,651,471 B2    | 1/2010  | Yokoi et al.             |  |  |
| 5,330,502 A           | 7/1994 Hassler et al.               | 7,666,181 B2 *  | 2/2010  | Abou El Kheir .... 606/1 |  |  |
| 5,352,219 A           | 10/1994 Reddy                       | 7,678,043 B2    | 3/2010  | Gilad                    |  |  |
| 5,392,917 A           | 2/1995 Alpern et al.                | 7,691,103 B2    | 4/2010  | Fernandez et al.         |  |  |
| 5,417,203 A           | 5/1995 Tovey et al.                 | 7,691,126 B2    | 4/2010  | Bacher                   |  |  |
| 5,441,059 A           | 8/1995 Dannan                       | 7,699,835 B2    | 4/2010  | Lee et al.               |  |  |
| 5,468,250 A           | 11/1995 Paraschac et al.            | 7,722,599 B2    | 5/2010  | Julian et al.            |  |  |
| 5,502,698 A           | 3/1996 Mochizuki                    | 7,841,980 B2    | 11/2010 | Minosawa et al.          |  |  |
| 5,507,297 A           | 4/1996 Slater et al.                | 7,862,553 B2    | 1/2011  | Ewaschuk                 |  |  |
| 5,507,774 A           | 4/1996 Holmes et al.                | 7,894,882 B2    | 2/2011  | Mullick et al.           |  |  |
| 5,540,648 A           | 7/1996 Yoon                         | 7,901,398 B2    | 3/2011  | Stanczak et al.          |  |  |
| 5,562,655 A           | 10/1996 Mittelstadt et al.          | 8,012,154 B2    | 9/2011  | Livneh                   |  |  |
| 5,578,052 A           | 11/1996 Koros et al.                | 8,021,358 B2    | 9/2011  | Doyle et al.             |  |  |
| 5,593,402 A           | 1/1997 Patrick                      | 8,038,612 B2    | 10/2011 | Paz                      |  |  |
| 5,613,937 A           | 3/1997 Garrison et al.              | 8,052,636 B2    | 11/2011 | Moll et al.              |  |  |
| 5,618,303 A           | 4/1997 Marlow et al.                | 8,057,502 B2    | 11/2011 | Maliglowka et al.        |  |  |
| 5,632,764 A           | 5/1997 Beideman et al.              | 8,088,062 B2    | 1/2012  | Zwolinski                |  |  |
| 5,716,326 A           | 2/1998 Dannan                       | 8,114,098 B2    | 2/2012  | Kimura et al.            |  |  |
| 5,718,714 A           | 2/1998 Livneh                       | 8,128,643 B2    | 3/2012  | Aranyi et al.            |  |  |
| 5,722,988 A           | 3/1998 Weishaupt                    | 8,133,254 B2    | 3/2012  | Dumbauld et al.          |  |  |
| 5,762,255 A           | 6/1998 Chrisman et al.              | 8,182,414 B2    | 5/2012  | Handa et al.             |  |  |
| 5,782,748 A           | 7/1998 Palmer et al.                | 8,187,166 B2    | 5/2012  | Kuth et al.              |  |  |
| 5,792,165 A           | 8/1998 Klieman et al.               | 8,353,897 B2    | 1/2013  | Doyle et al.             |  |  |
| 5,810,865 A           | 9/1998 Koscher et al.               | 8,377,044 B2    | 2/2013  | Coe et al.               |  |  |
| 5,810,877 A           | 9/1998 Roth et al.                  | 8,397,335 B2    | 3/2013  | Gordin et al.            |  |  |
| 5,881,615 A *         | 3/1999 Dahl et al. .... 81/490      | 8,398,544 B2    | 3/2013  | Altamirano               |  |  |
| 5,893,875 A           | 4/1999 O'Connor et al.              | 8,409,076 B2    | 4/2013  | Pang et al.              |  |  |
| 5,928,263 A           | 7/1999 Hoogendoorn                  | 8,475,361 B2    | 7/2013  | Barlow et al.            |  |  |
| 5,980,455 A           | 11/1999 Daniel et al.               | 8,518,024 B2    | 8/2013  | Williams et al.          |  |  |
| 6,024,748 A           | 2/2000 Manzo et al.                 | 8,545,519 B2    | 10/2013 | Aguirre et al.           |  |  |
| 6,059,719 A           | 5/2000 Yamamoto et al.              | 8,636,648 B2    | 1/2014  | Gazdzinski               |  |  |
| 6,099,537 A           | 8/2000 Sugai et al.                 | 8,721,529 B2    | 5/2014  | Hess et al.              |  |  |
| 6,126,359 A           | 10/2000 Dittrich et al.             | 8,721,539 B2    | 5/2014  | Shohat et al.            |  |  |
| 6,159,200 A           | 12/2000 Verdura et al.              | 8,747,394 B2    | 6/2014  | Belson et al.            |  |  |
| 6,273,882 B1          | 8/2001 Whittier et al.              | 8,758,391 B2    | 6/2014  | Swayze et al.            |  |  |
| 6,309,397 B1 *        | 10/2001 Julian et al. .... 606/130  | 8,764,735 B2    | 7/2014  | Coe et al.               |  |  |
| 6,315,789 B1          | 11/2001 Cragg                       | 8,845,661 B2    | 9/2014  | D'Arcangelo et al.       |  |  |
| 6,419,688 B1          | 7/2002 Bacher et al.                | 8,939,997 B2    | 1/2015  | Martinez et al.          |  |  |
| 6,471,172 B1          | 10/2002 Lemke et al.                | 8,979,891 B2    | 3/2015  | McLawhorn et al.         |  |  |
| 6,589,211 B1          | 7/2003 MacLeod                      | 2001/0051766 A1 | 12/2001 | Gazdzinski               |  |  |
| 6,595,984 B1          | 7/2003 DeGuillebon                  | 2002/0128645 A1 | 9/2002  | Messerly                 |  |  |
| 6,626,824 B2          | 9/2003 Ruegg et al.                 | 2002/0177843 A1 | 11/2002 | Anderson et al.          |  |  |
| 6,635,071 B2          | 10/2003 Boche et al.                | 2003/0114731 A1 | 6/2003  | Cadeddu et al.           |  |  |
| 6,663,641 B1          | 12/2003 Kovac et al.                | 2004/0093039 A1 | 5/2004  | Schumert                 |  |  |
| 6,666,875 B1          | 12/2003 Sakurai et al.              | 2004/0152941 A1 | 8/2004  | Asmus et al.             |  |  |
| 6,723,043 B2          | 4/2004 Kleeman et al.               | 2004/0267254 A1 | 12/2004 | Manzo et al.             |  |  |
| 6,770,081 B1          | 8/2004 Cooper et al.                | 2005/0033354 A1 | 2/2005  | Montalvo et al.          |  |  |
| 6,776,165 B2          | 8/2004 Jin                          | 2005/0119640 A1 | 6/2005  | Sverduk et al.           |  |  |
| 6,814,742 B2          | 11/2004 Kimura et al.               | 2005/0131396 A1 | 6/2005  | Stanczak et al.          |  |  |
| 6,827,712 B2          | 12/2004 Tovey et al.                | 2005/0131457 A1 | 6/2005  | Douglas et al.           |  |  |
| 6,860,878 B2          | 3/2005 Brock                        | 2005/0215983 A1 | 9/2005  | Brock                    |  |  |
| 6,869,395 B2          | 3/2005 Page et al.                  | 2005/0250984 A1 | 11/2005 | Lam et al.               |  |  |
| 6,884,213 B2          | 4/2005 Raz et al.                   | 2005/0272972 A1 | 12/2005 | Iddan                    |  |  |
| 6,916,314 B2          | 7/2005 Schneider et al.             | 2005/0272974 A1 | 12/2005 | Iddan                    |  |  |
| 6,936,003 B2          | 8/2005 Iddan                        | 2005/0273139 A1 | 12/2005 | Krauss et al.            |  |  |
| 6,942,674 B2 *        | 9/2005 Belef et al. .... 606/142    | 2005/0288555 A1 | 12/2005 | Bimmoeller               |  |  |
| 6,986,738 B2          | 1/2006 Glukhovsky et al.            | 2006/0079933 A1 | 4/2006  | Hushka et al.            |  |  |
| 6,994,708 B2          | 2/2006 Manzo                        | 2006/0184161 A1 | 8/2006  | Maahs et al.             |  |  |
| 7,039,453 B2          | 5/2006 Mullick et al.               | 2006/0190035 A1 | 8/2006  | Hushka et al.            |  |  |
| 7,042,184 B2          | 5/2006 Oleynikov et al.             | 2006/0258905 A1 | 11/2006 | Kaji et al.              |  |  |
|                       |                                     | 2007/0010709 A1 | 1/2007  | Reinschke                |  |  |
|                       |                                     | 2007/0049966 A1 | 3/2007  | Bonadio et al.           |  |  |
|                       |                                     | 2007/0073247 A1 | 3/2007  | Ewaschuk                 |  |  |
|                       |                                     | 2007/0093792 A1 | 4/2007  | Julian et al.            |  |  |

(56)

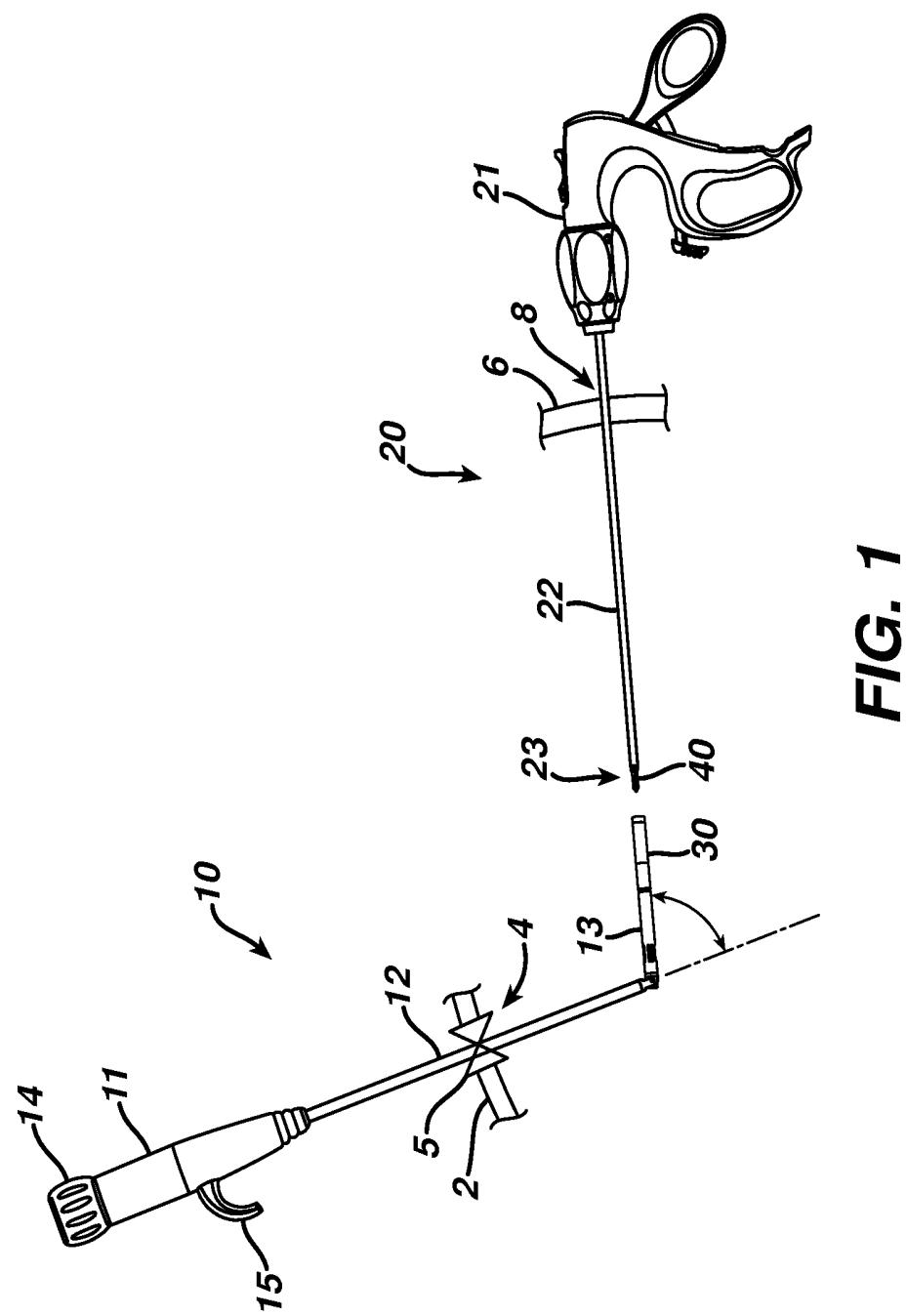
## References Cited

## U.S. PATENT DOCUMENTS

2007/0123748 A1 5/2007 Meglan  
 2007/0270651 A1 11/2007 Gilad et al.  
 2008/0004656 A1 1/2008 Livneh  
 2008/0015413 A1 1/2008 Barlow et al.  
 2008/0015552 A1 1/2008 Doyle et al.  
 2008/0045003 A1 2/2008 Lee et al.  
 2008/0140090 A1 6/2008 Aranyi et al.  
 2008/0142005 A1 6/2008 Schnell  
 2008/0154299 A1 6/2008 Livneh  
 2008/0242939 A1 10/2008 Johnston  
 2008/0243106 A1\* 10/2008 Coe et al. .... 606/1  
 2008/0287926 A1 11/2008 Abou El Kheir  
 2009/0005638 A1 1/2009 Zwolinski  
 2009/0171147 A1 7/2009 Lee et al.  
 2009/0209947 A1 8/2009 Gordin et al.  
 2010/0198248 A1 8/2010 Vakharia  
 2010/0249700 A1 9/2010 Spivey  
 2011/0040322 A1 2/2011 Major  
 2011/0087265 A1\* 4/2011 Nobis et al. .... 606/205  
 2011/0087266 A1 4/2011 Conlon et al.  
 2011/0087267 A1\* 4/2011 Spivey et al. .... 606/205  
 2011/0208007 A1 8/2011 Shohat et al.  
 2011/0230869 A1 9/2011 Altamirano  
 2011/0288560 A1 11/2011 Shohat et al.  
 2012/0078291 A1 3/2012 Nobis et al.  
 2012/0083778 A1 4/2012 McGaughan et al.  
 2012/0083826 A1 4/2012 Chao et al.  
 2012/0289773 A1 11/2012 Joshi et al.  
 2012/0316575 A1 12/2012 Farin et al.  
 2014/0005474 A1 1/2014 Farin et al.  
 2014/0066711 A1 3/2014 Farin et al.  
 2014/0088637 A1 3/2014 Parihar et al.

## FOREIGN PATENT DOCUMENTS

JP 2005/261734 A 9/2005  
 WO WO 2008/015666 A2 2/2008  
 WO 2010/114634 A1 10/2010  
 WO 2011/044353 A1 4/2011  
 WO WO 2012/035524 A2 3/2012  
 WO WO 2012/040183 A1 3/2012  
 WO WO 2012/112622 A3 8/2012  
 WO WO 2012/126967 A2 9/2012  
 WO WO 2013/007764 A2 1/2013  
 WO WO 2013/048963 A2 4/2013  
 WO WO 2014/052177 A1 4/2014


## OTHER PUBLICATIONS

U.S. Appl. No. 12/576,546, filed Oct. 9, 2009.  
 U.S. Appl. No. 12/576,578, filed Oct. 9, 2009.  
 U.S. Appl. No. 12/873,829, filed Sep. 1, 2010.  
 U.S. Appl. No. 12/889,454, filed Sep. 24, 2010.

U.S. Appl. No. 12/889,458, filed Sep. 24, 2010.  
 U.S. Appl. No. 13/249,790, filed Sep. 30, 2011.  
 U.S. Appl. No. 13/779,211, filed Feb. 27, 2013.  
 U.S. Appl. No. 13/779,235, filed Feb. 27, 2013.  
 U.S. Appl. No. 13/779,254, filed Feb. 27, 2013.  
 U.S. Appl. No. 13/832,496, filed Mar. 15, 2013.  
 U.S. Appl. No. 13/627,177, filed Sep. 26, 2012.  
 U.S. Appl. No. 13/627,192, filed Sep. 26, 2012.  
 U.S. Appl. No. 13/627,211, filed Sep. 26, 2012.  
 International Search Report, International Application No. PCT/US2011/050198, Mar. 2, 2012.  
 International Search Report, International Application No. PCT/US2011/05237, Dec. 12, 2011.  
 International Search Report, International Application No. PCT/US2012/056900, Apr. 3, 2013.  
 Co-Owned U.S. Appl. No. 14/302,734, filed Jun. 12, 2014.  
 Co-Owned U.S. Appl. No. 14/557,588, filed Dec. 2, 2014.  
 Co-Owned U.S. Appl. No. 12/413,479, filed Mar. 27, 2009 (now US20100249700).  
 Co-Owned U.S. Appl. No. 12/617,998, filed Nov. 13, 2009 (now US2011/0115891).  
 Co-Owned U.S. Appl. No. 12/576,529, filed Oct. 9, 2009.  
 Co-Owned U.S. Appl. No. 12/879,310, filed Sep. 10, 2010 (now US2012/0065627).  
 Co-Owned U.S. Appl. No. 12/576,514, filed Oct. 9, 2009 (now Issued 8,623,011).  
 Co-Owned U.S. Appl. No. 12/904,280, filed Oct. 14, 2010 (now US2012/0095298).  
 Co-Owned U.S. Appl. No. 12/900,132, filed Oct. 7, 2010 (now US2012/0089093).  
 Co-Owned U.S. Appl. No. 12/873,845, filed Sep. 1, 2010 (now US2012/0053406).  
 Co-Owned U.S. Appl. No. 12/902,531, filed Oct. 12, 2010 (now US2012/0088965).  
 International Preliminary Report dated Mar. 5, 2013; International Application No. PCT/US2011/050198.

International Preliminary Report dated Apr. 11, 2012; International Application No. PCT/US2010/051812.  
 International Preliminary Report dated Mar. 26, 2013; International Application No. PCT/US2011/052327.  
 International Preliminary Report dated Apr. 1, 2014; International Application No. PCT/US2012/056900.  
 International Search Report dated May 28, 2014; International Application No. PCT/US2014/015738.  
 International Search Report dated Dec. 20, 2013; International Application No. PCT/US2013/060803.  
 International Preliminary Report dated Mar. 31, 2015; International Application No. PCT/US2013/060803.  
 International Preliminary Report dated Sep. 1, 2015, International Application No. PCT/US2014/015738.  
 Co-owned U.S. Appl. No. 14/840,779 filed Aug. 31, 2015.

\* cited by examiner



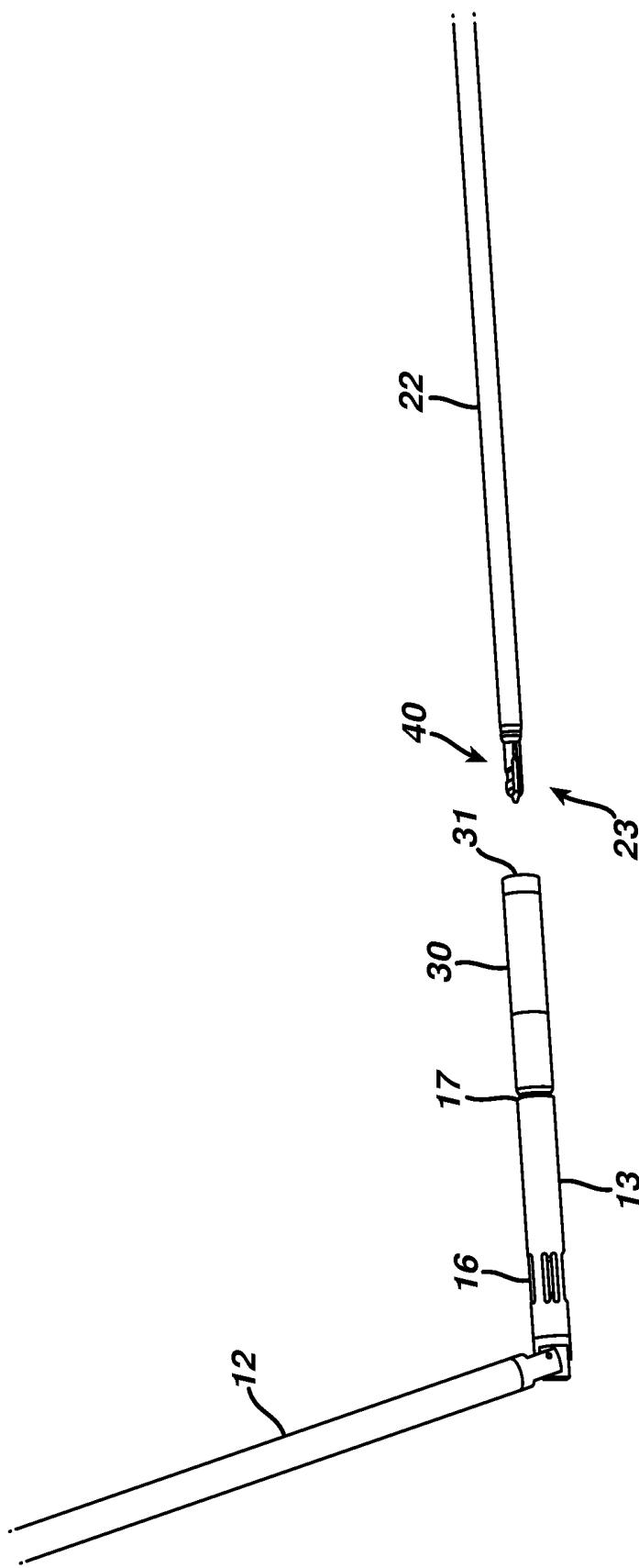



FIG. 2



FIG. 3

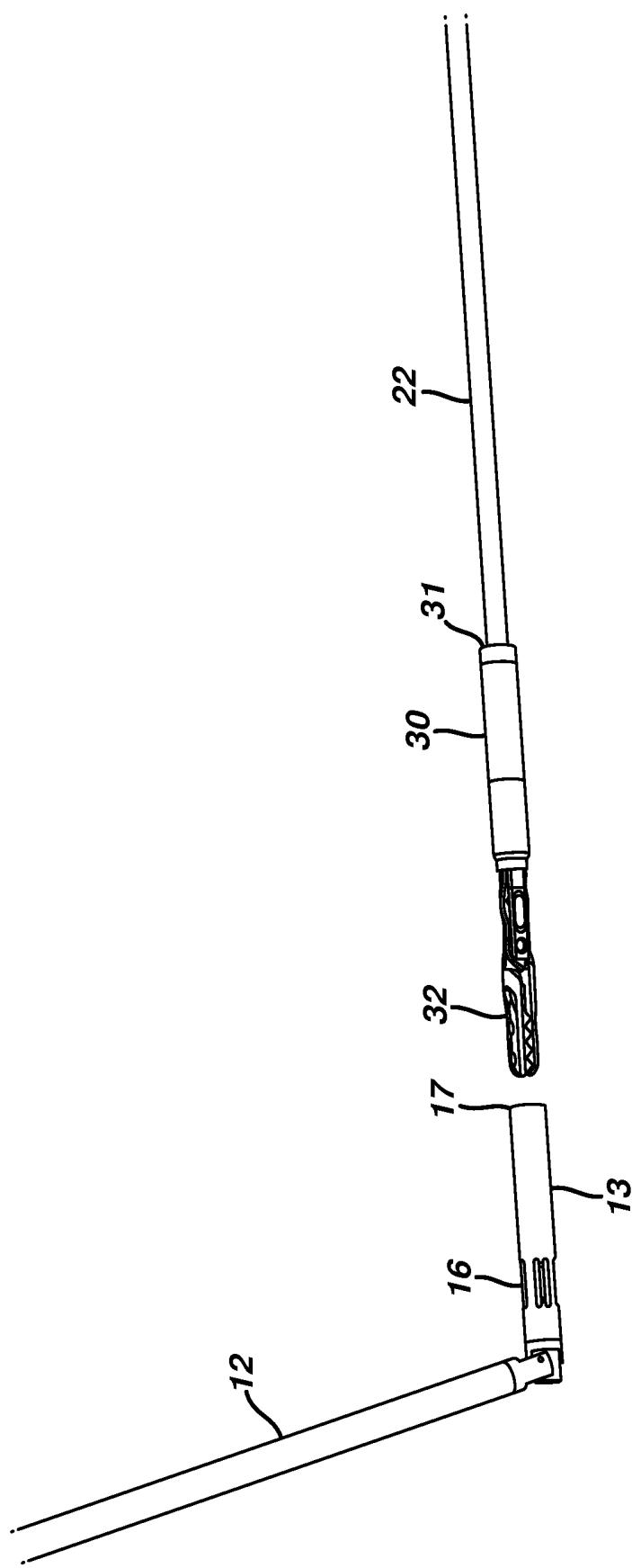
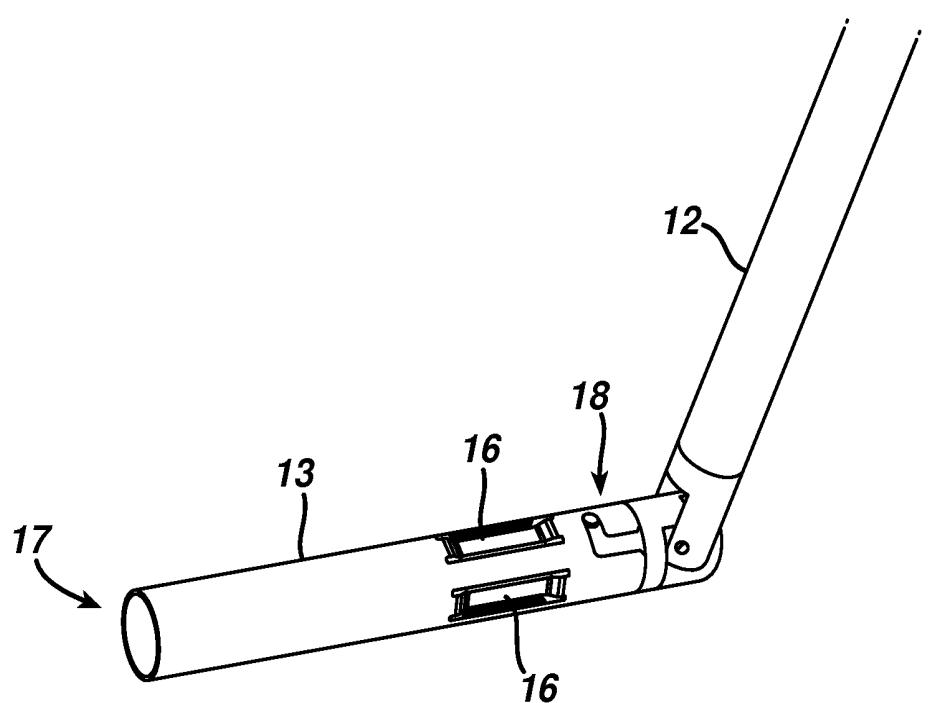




FIG. 4



**FIG. 4A**

FIG. 5

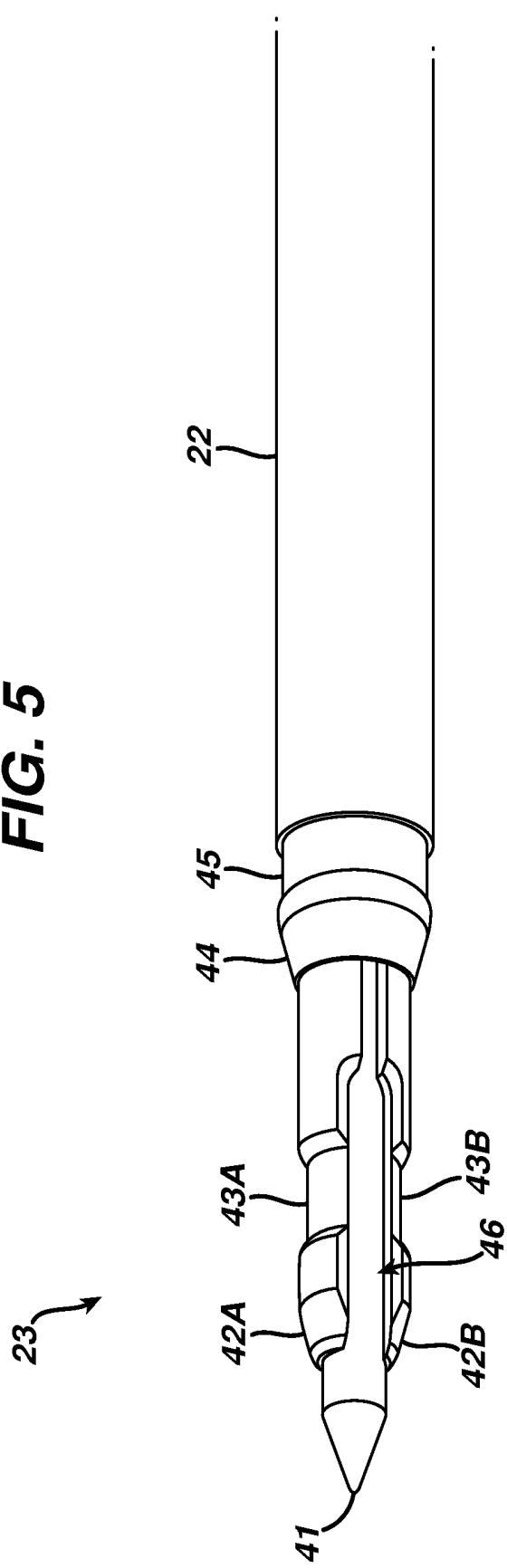



FIG. 6

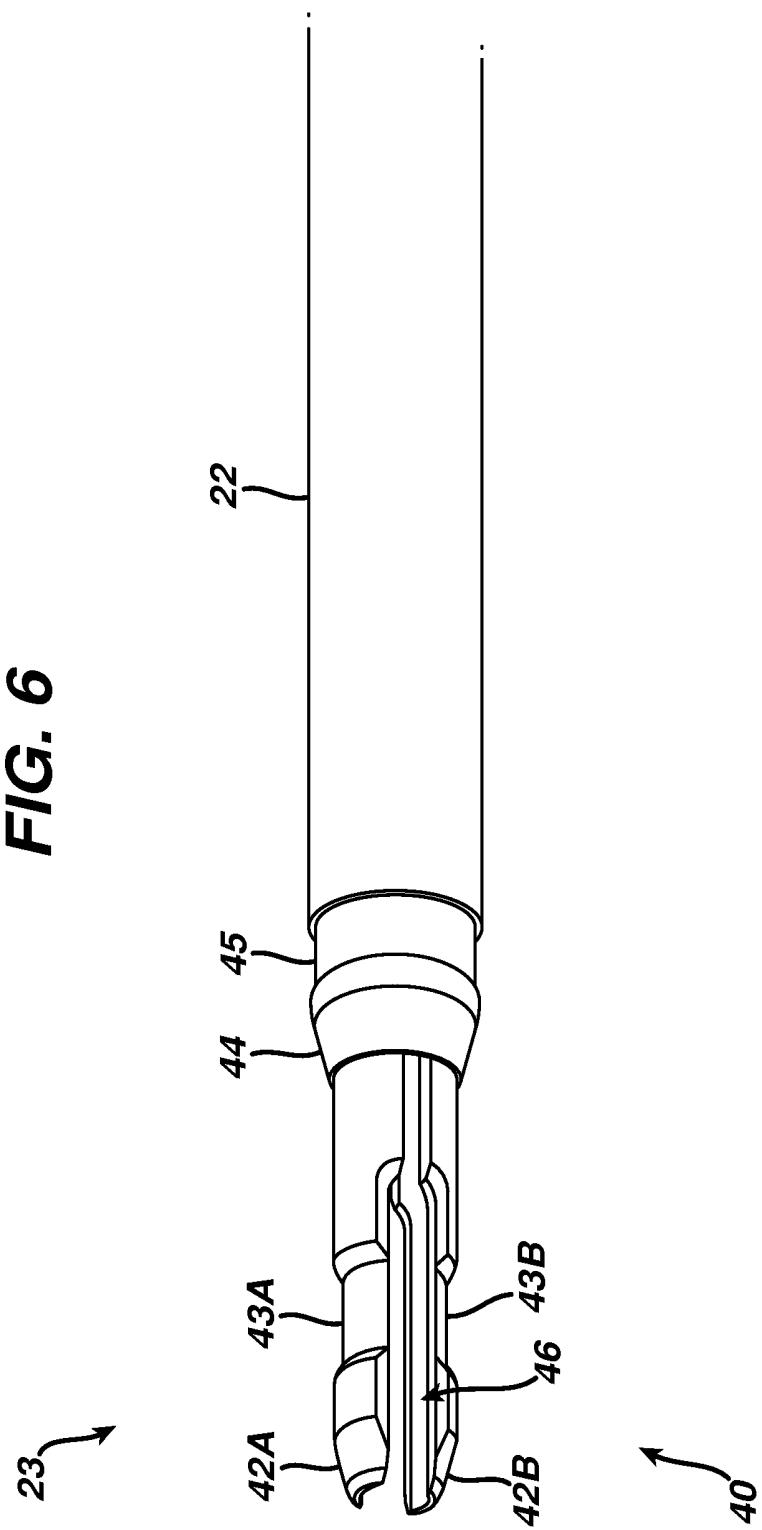



FIG. 8

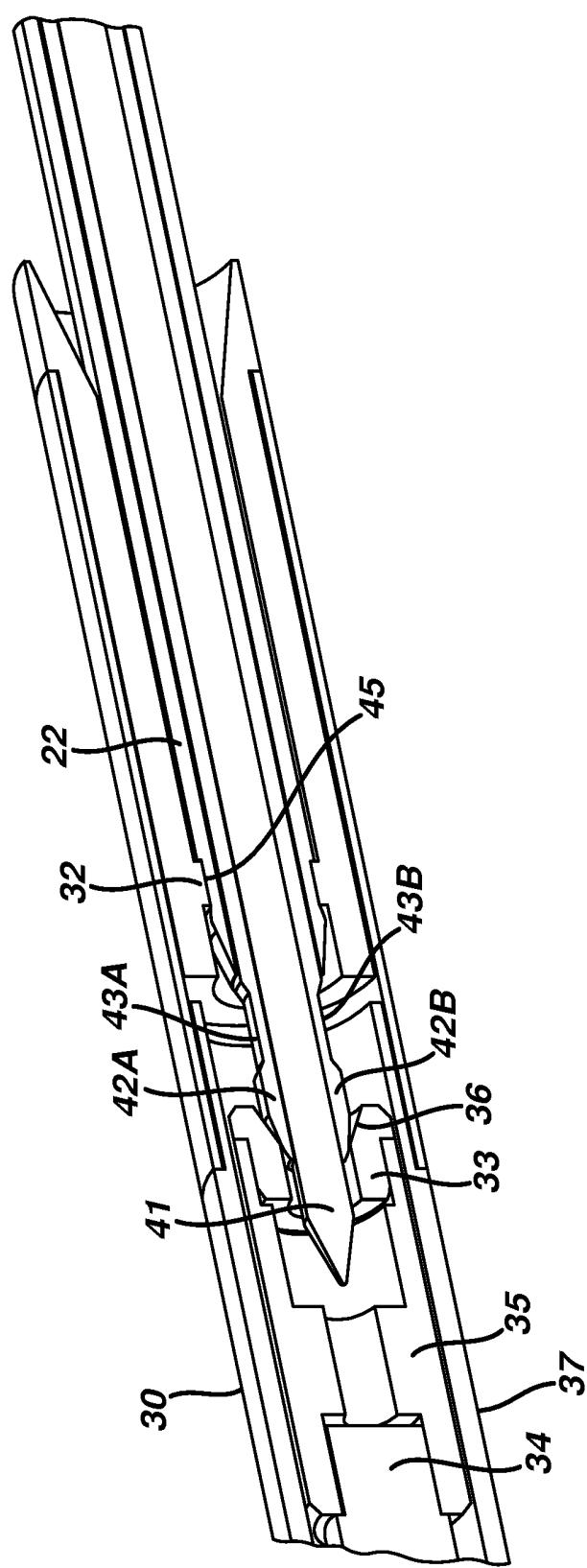
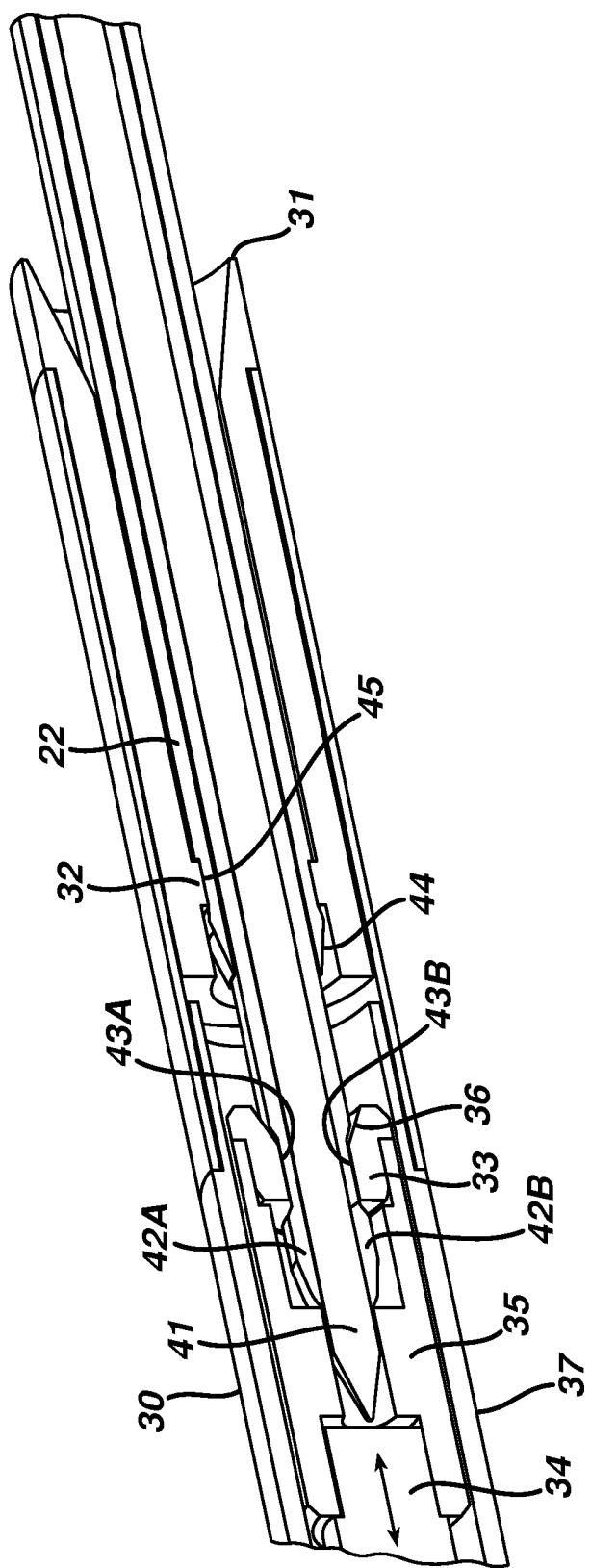
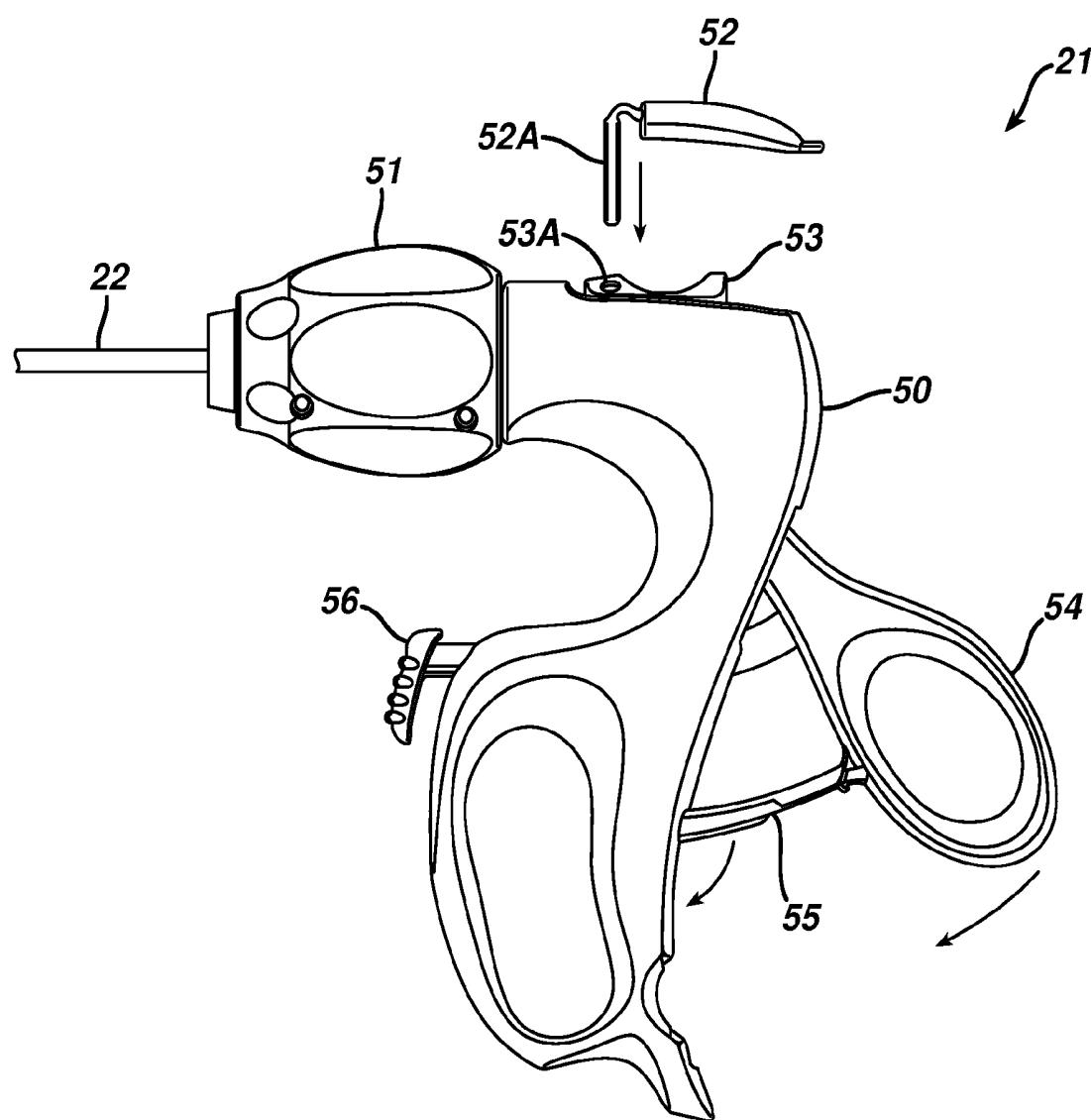
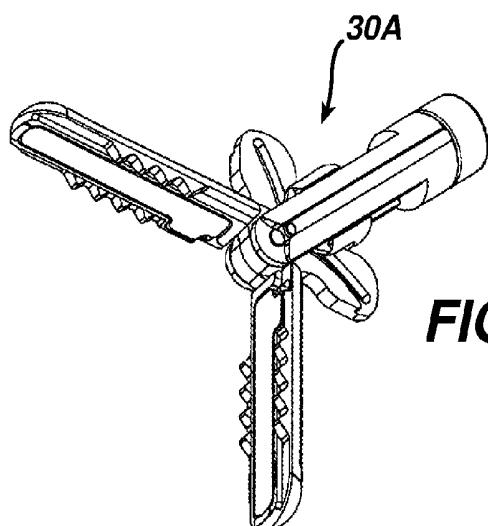
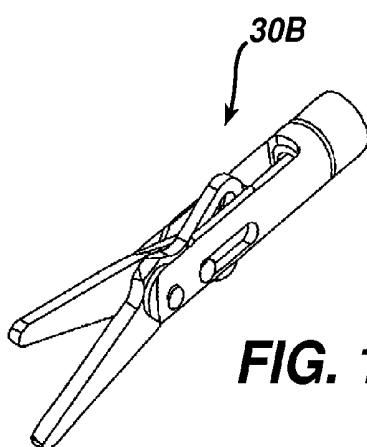
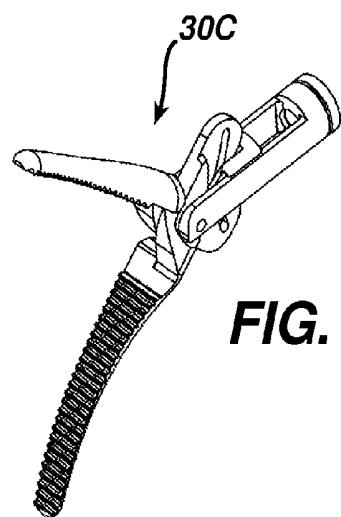
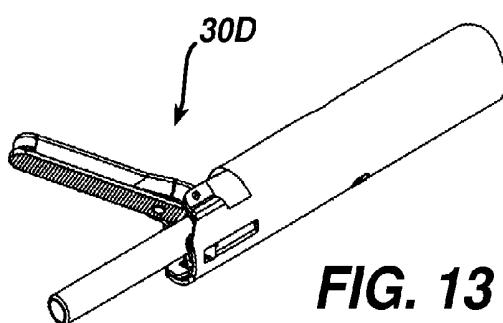









FIG. 7



***FIG. 9***

**FIG. 10****FIG. 11****FIG. 12****FIG. 13**

## LOADER FOR EXCHANGING END EFFECTORS IN VIVO

## BACKGROUND

The present invention relates in general to surgical devices and procedures, and more particularly to minimally invasive surgery.

Surgical procedures are often used to treat and cure a wide range of diseases, conditions, and injuries. Surgery often requires access to internal tissue through open surgical procedures or endoscopic surgical procedures. The term "endoscopic" refers to all types of minimally invasive surgical procedures including laparoscopic, arthroscopic, natural orifice intraluminal, and natural orifice transluminal procedures. Endoscopic surgery has numerous advantages compared to traditional open surgical procedures, including reduced trauma, faster recovery, reduced risk of infection, and reduced scarring. Endoscopic surgery is often performed with an insufflatory fluid present within the body cavity, such as carbon dioxide or saline, to provide adequate space to perform the intended surgical procedures. The insufflated cavity is generally under pressure and is sometimes referred to as being in a state of pneumoperitoneum. Surgical access devices are often used to facilitate surgical manipulation of internal tissue while maintaining pneumoperitoneum. For example, trocars are often used to provide a port through which endoscopic surgical instruments are passed. Trocars generally have an instrument seal, which prevents the insufflatory fluid from escaping while an instrument is positioned in the trocar.

While surgical access devices are known, no one has previously made or used the surgical devices and methods in accordance with the present invention.

## BRIEF DESCRIPTION OF DRAWINGS

While the specification concludes with claims which particularly point out and distinctly claim the invention, it is believed the invention will be better understood from the following description taken in conjunction with the accompanying drawings illustrating some non-limiting examples of the invention. Unless otherwise indicated, the figures are not necessarily drawn to scale, but rather to illustrate the principles of the invention.

FIG. 1 depicts surgical procedure with an instrument and loader holding an end effector;

FIG. 2 depicts a close-up view of the distal ends of the instrument and loader in FIG. 1;

FIG. 3 depicts an instrument being inserted into an end effector;

FIG. 4 depicts an instrument attached to an end effector being withdrawn from a loader;

FIG. 4A depicts a loader with removable distal end;

FIG. 5 depicts an isometric close-up view of the distal end of an instrument in a locked position;

FIG. 6 depicts an isometric close-up view of the distal end of an instrument in an unlocked position;

FIG. 7 depicts an isometric cross-sectional view of the distal end of an instrument attached to an end effector;

FIG. 8 depicts an isometric cross-sectional view of the distal end of an instrument attached to an end effector in a pushed-off configuration;

FIG. 9 depicts an instrument handle;

FIG. 10 depicts a bi-polar jawed end effector;

FIG. 11 depicts a cutting shears end effector;

FIG. 12 depicts a Maryland dissector end effector; and FIG. 13 depicts an ultrasonic shears end effector;

## DETAILED DESCRIPTION

As shown in FIG. 1, instrument (20) comprises an elongate shaft (22) passing through an incision (8) of a tissue wall (6). A loader (10) comprises an elongate shaft (12) passing through an incision (4) of a tissue wall (2). The surgical end effector (30) is selectively attachable in vivo and detachable in vivo to the attachment mechanism (40) located at the distal end (23) of the instrument (20). In this example, the end effector is a jawed tissue grasper, but a variety of other end effectors could be also be used. The end effector (30) may be loaded ex vivo into the distal end (13) of the shaft (12), and then introduced into the surgical field through the incision (4). The loader (10) holds the end effector (30) during the in vivo attachment to and in vivo detachment from the instrument (20). The loader (10) and instrument (20) each includes ex vivo handles (11, 21) attached to the proximal ends of the shafts (12, 22) that enable surgeons to use the devices.

The tissue wall (2, 6) anatomies will vary based on the surgical procedure, but some non-limiting examples include percutaneous incisions into the abdomen, thorax, or pelvis. The incisions (4, 8) may be created with a cutting or puncturing instrument, and will typically be spaced from one another. The tissue walls (2, 6) may be the same or different anatomies. For instance, tissue walls (2, 6) may both be the abdominal wall. In another example, tissue wall (2) could be an organ (e.g., stomach, colon, esophagus, etc.) accessed through a natural orifice, while the incision (8) in tissue wall (6) could be percutaneous. In yet another example, incision (4) may provide access to the abdomen, while the incision (8) may provide access to the pelvis. If pneumoperitoneum is desired, the incisions may include instrument seals, such as those commonly found in trocars. In this example, the instrument seal (5) is schematically shown in incision (4) with the loader (10) passing through the seal (5), while the shaft (22) seals directly with the tissue wall (6) by virtue of the resilience of the tissue without the aid of a sealing device.

The loader shaft (12) in this embodiment is rigid and straight, but the shaft (12) could be curved or flexible, which would be beneficial for natural orifice transluminal introduction of the distal end (13) to the surgical field. The loader (10) may include an articulating distal end (13) controlled by the knob (14). The distal end (13) will typically be introduced and removed through the incision (4) in-line with the shaft (12), and then articulated in vivo to facilitate alignment between the end effector (30) and the shaft (22). The arm (15) is rigidly connected to the handle (11) to facilitate grasping of the handle and rotational orientation of the articulated distal end (13) about the shaft (12) axis. In this embodiment, the distal end (13) of the loader (10) comprises a tube opening at the distal tip (17). The tube is dimensioned to receive the end effector (30). The tube (30) includes an engagement feature (16) for holding the end effector (30). While the engagement feature (16) may vary, in this embodiment a plurality of leaf springs provide an interference fit with the end effector (30) to frictionally hold the end effector in the tube. In this embodiment, when the end effector (30) is loaded in the tube, the distal end (32) is positioned in the tube and the proximal end (31) extends from the tube opening (17). This arrangement prevents the jaws of the end effector from opening. After the distal end (23) of the instrument (20) is attached to the proximal end (31) of the end effector (30), the end effector (3) can be pulled from the distal end (13) of the loader (10).

FIG. 4A depicts an alternative embodiment of a loader (10) where the distal end (13) is selectively attachable and detach-

able to the shaft (22). As shown in this example, this feature is enabled with a bayonet connection (18), but other connections are also contemplated including snap connections, threaded connections, and the like. One advantage of this alternative embodiment is that different distal end (13) configurations may be used to hold end effectors that may not be accommodated by a single sized tube.

FIGS. 5 and 6 depict a detailed view of one embodiment of an attachment mechanism (40) located at the distal end (23) of the shaft (22). The attachment mechanism (40) comprises a mating feature on the shaft (22), which in this embodiment is a circumferential groove (45) positioned on the lateral surface of the shaft (22). The attachment mechanism (40) also comprises arms (42A, 42B) projecting distally from the distal end (44) of the shaft (22). The arms are axially slideable relative the shaft (22) and are resiliently deflectable medially into the gap (46). The arms each comprise a mating feature, which in this embodiment comprises a stepped lateral notch (43A, 43B). An elongate pin (41) is positioned medially relative the arms (42) and is axially slideable relative the arms (42) between a locked position preventing medial deflection of the arms (an example of which is shown in FIG. 5) and an unlocked position allowing medial deflection of the arms (an example of which is shown in FIG. 6). The pin (41) and arms (42) may each slide independently relative the shaft (22).

As shown in the embodiment of FIG. 5, the elongate pin (41) may include a pointed obturator tip. In this configuration the distal end (23) may be used to puncture through the tissue wall (6). The distal ends of the arms (42) and distal end (44) of the shaft (22) include tapered surfaces to facilitate passing through the incision (8).

FIG. 7 shows the attachment mechanism (40) attached to the end effector (30). The groove (45) of the shaft (22) mates the rib (32) of the end effector (30) preventing relative axial motion. The lateral grooves (43) of the arms (42) mate the ring (33) of the end effector (30) preventing relative axial motion. The rib (32) is rigidly connected to the outer housing (37) of the end effector (30), and the ring (33) is rigidly connected to the jaw actuator (34) via the coupling (35). Accordingly, axial movement of the arms (42) relative the shaft (22) will cause axial movement of the jaw actuator (34) relative the housing (37), thereby causing the jaws to open and close.

The following describes one method for attaching the end effector (30) to the shaft (22). The distal end (23) is introduced in into the proximal end (31) of the end effector (30) with the pin (41) in the unlocked position. As the arms (42) are advanced axially into the end effector (30), the chamfered lead (36) of the ring (33) medially deflects the arms (42) until the ring (33) is seated into the lateral notches (43). Simultaneously the shaft (22) advances axially into the end effector (30), and the tapered end (44) aligns the rib (32) to seat into the groove (45). In both cases, the surgeon will feel a tactile "snap" indicating proper engagement. Once fully seated in the end effector (30), the pin (41) may be slid to the locked position thereby attaching the end effector (30) to the instrument (20). Once attached, the surgeon may pull the end effector from the loader (10), and the loader (10) may then be removed from the surgical field. The surgeon may then manipulate tissue with the end effector (30) as needed for the surgical procedure.

FIG. 9 shows and example of the handle (21) for the instrument (20). The handle (21) includes a base (50). A knob (51) rotates the attachment mechanism (40) about the axis of the shaft (22), which will also rotate an attached end effector (30). The trigger (54) pivots relative the base (50) causing axial movement of the arms (42) and the pin (41) relative the shaft

(22). Operation of the trigger (54) will operate the jaws on an attached end effector (30). The latch (55) pivots relative the base (50) between a locked position (as shown in figure) to prevent operation of the trigger (54) and an unlocked position recessed in the base (50). During seating with the end effector (30), the latch (55) may be locked to maintain the same relative axial spacing of the corresponding the mating features (43, 45) as the mating features (33, 32), resulting in resulting in a single "snap" feedback. The trigger lock (56) can lock/unlock the trigger in/from its depressed position. An actuator (53), which in this embodiment is a slider, controls axial movement of the pin (51) relative the arms (42). The distal most position of the actuator (53) relative the base (as shown in the figure) places the pin (51) in its locked position, and the proximal most position places the pin (51) in its unlocked position. The pin lock (52) includes a pin (52A) which when inserted into the hole (53A) maintains the pin (41) and arms (42) in the extended and locked positions as shown in FIG. 5.

FIGS. 10-13 illustrate some non-limiting examples of alternative end effectors (30A-D) that may attached to the distal end (23) of the instrument (20). In addition to the loader (10) and instrument (20), all or a portion of the end effectors (30, 30A, 30B, 30C, 30D) may be bundled as part of a kit so the surgeon may interchange the attached end effector as needed for a surgical procedure. All the end effectors examples shown here have cooperating jaws; however, non-jawed end effectors could also be employed such as hook knives, snares, and the like. In the case of end effectors that require energy, appropriate energy transmission mechanisms known in the art should be added to the handle (21) and shaft (22). For instance, appropriate electrical connections can be added for the bi-polar forceps end effector (30A). Similarly, an ultrasonic transducer and waveguide can be added for the ultrasonic shears end effector (30D).

The following describes one method for using the devices during a laparoscopic surgical procedure. An instrument (20) is obtained and passed through incision (8). The incision (8) may be a percutaneous incision formed at least partially by a puncture formed with the obturator on the pin (41) in the configuration shown in FIG. 5. The pin lock (52) and latch (55) may be secured to the slider (53) and trigger (54), respectively. After the puncture, the pin lock (52) may be removed.

A loader (10) and end effector (30) are obtained. The end effector (30) may be selected from a plurality of end effectors provided in a kit. The end effector (30) is loading ex vivo into the distal end (13) of the loader (10). The distal end (13) of the loader (10) with the loaded end effector (30) is passed through incision (4). The second incision (4) may also be percutaneous incision spaced from the first incision (8), and may include passing the distal end (13) with the loaded end effector (30) through a trocar. The distal end (13) may be articulated to facilitate orientation between the proximal end (31) of the end effector (30) and the attachment mechanism (40). The actuator (53) is slid proximally to move the pin (41) to its unlocked position. The distal end (23) of the instrument (20) is advanced into the proximal end (31) of the end effector (30) until the respective mating features of the instrument (20) and end effector (30) are engaged. The actuator (53) may then be slid distally thus advancing the pin (41) to its locked position. The end effector (30) has now been attached in vivo to the instrument (20). The end effector (30) may then be pulled from the loader (10) and the latch (55) disengaged from the trigger (54). Tissue is then manipulated by actuating the trigger (54) of the handle (21) to operate the jaws of the end effector (30).

After completing the surgical procedure, the end effector (30) may be detached from the shaft (22). If previously removed, the loader (10) may be reintroduced through the incision (4) into the surgical field. The distal end (32) of the end effector (30) is seated into the distal end (13) of the loader (10), and the pin (41) moved to its unlocked position. The arms (42) are then proximally withdrawn from the ring (33) and the pin (41) is returned to the locked position. Accordingly, the device will be in the configuration depicted in FIG. 8. Distally advancing the arms (42) will push the ring (33) distally till the rib (32) unseats from the groove (45). This unseating may be facilitated by the jaws of the end effector (30) being held in a closed position by the tube in the loader distal end (13). The distal end (23) may then be withdrawn from the end effector (30) thus detaching the end effector (30) from the instrument (20). The end effector will be held in the loader (10) by virtue of the engagement feature (16). Removal of the loader (10) from the surgical field will remove the end effector (30). A different end effector may then be attached to the instrument (20), or the instrument (20) may be withdrawn from the surgical field.

Without limitation, the following describe some of the benefits and advantages of the foregoing devices and methods over the prior art. The end effector (30) may have a much larger diameter than the shaft (22); accordingly, the incision (8) can be smaller compared to more traditional laparoscopic instruments resulting in less pain and scarring, and quicker recovery. This also facilitates a small diameter shaft (22) (even less than 3 mm), thus potentially eliminating a trocar in the incision (8). The attachment mechanism (40) provides quick end effector (30) exchanges with the instrument (20), thus decreasing surgical time. The loader (10) also facilitates quick end effector (30) exchanges. A kit of multiple end effectors may reduce instrument costs by consolidating a single shaft (22) and handle (21) for all instruments. Many other benefits will be apparent to those skilled in the art.

Having shown and described various embodiments and examples of the present invention, further adaptations of the methods and devices described herein can be accomplished by appropriate modifications by one of ordinary skill in the art without departing from the scope of the present invention. Several of such potential modifications have been mentioned, and others will be apparent to those skilled in the art. For instance, the specific materials, dimensions, and the scale of drawings will be understood to be non-limiting examples. Accordingly, the scope of the present invention should be considered in terms of the following claims and is understood not to be limited to the details of structure, materials, or acts shown and described in the specification and drawings.

The invention claimed is:

1. A laparoscopic surgical kit, comprising:
  - a) a first percutaneous instrument comprising an elongate shaft comprising a distal end and a proximal end connected to a first actuator, the distal end comprising a mating feature;
  - b) a surgical end effector selectively attachable in vivo and detachable in vivo to the mating feature of the first percutaneous instrument;
  - c) a second percutaneous instrument comprising a distal end and a proximal end, a rigid shaft positioned between the proximal and distal ends and being spaced apart from the elongate shaft of the first percutaneous instrument, a second actuator on the proximal end, and a tube on the distal end selectively bendable at an angle relative to the rigid shaft, the tube having a distal opening and being dimensioned and adapted to selectively receive and

release the surgical end effector in vivo, the tube further comprising an engagement feature adapted to hold the end effector in the tube.

2. The laparoscopic surgical kit of claim 1, wherein the engagement feature frictionally holds the surgical end effector.

3. The laparoscopic surgical kit of claim 2, wherein the engagement feature comprises one or more leaf springs.

4. The laparoscopic surgical kit of claim 1, comprising a plurality of surgical end effectors each selectively attachable in vivo and detachable in vivo to the mating feature of the first percutaneous instrument.

5. The laparoscopic surgical kit of claim 4, comprising a plurality of surgical end effectors each selectively attachable in vivo and detachable in vivo to the mating feature of the first percutaneous instrument, and each sized to be received by the tube.

6. The laparoscopic surgical kit of claim 1, wherein the distal end of the second percutaneous instrument is selectively attachable and detachable.

7. The laparoscopic surgical kit of claim 1, wherein the surgical end effector comprises a distal tissue engaging feature and a proximal mating feature adapted to mate with the mating feature of the first percutaneous instrument, wherein when the surgical end effector is received into the tube, the distal tissue engaging feature is oriented proximally relative to the tube and the proximal mating feature is oriented distally relative to the tube.

8. The laparoscopic surgical kit of claim 7, wherein distal tissue engaging feature comprises a pair of jaws having an opened position and a closed position, and wherein when the surgical end effector is received into the tube the jaws are contained in the tube.

9. The laparoscopic surgical kit of claim 8, wherein the tube prevents the jaws from opening.

10. The laparoscopic surgical kit of claim 1, wherein the first actuator comprises a handle.

11. The laparoscopic surgical kit of claim 1, wherein the second actuator comprises a handle.

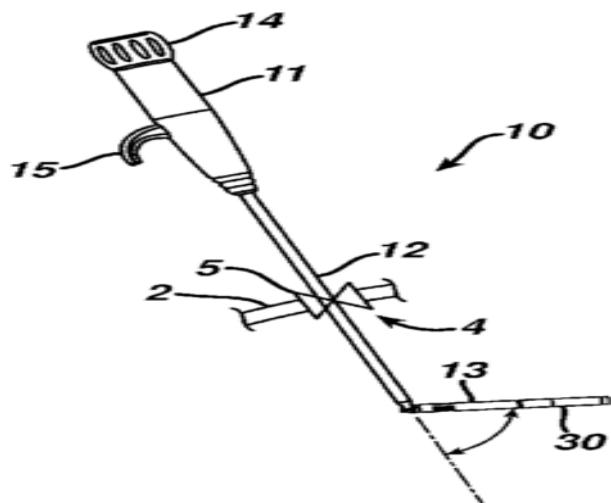
12. A laparoscopic surgical kit, comprising:

- a) a first percutaneous instrument comprising an elongate shaft comprising a distal end and a proximal end, the distal end comprising a mating feature;
- b) a surgical end effector selectively attachable in vivo and detachable in vivo to the first percutaneous instrument, the surgical end effector comprises a distal tissue engaging feature and a proximal mating feature adapted to mate with the mating feature of the first percutaneous instrument;
- c) a second percutaneous instrument comprising a proximal end and a distal end, a rigid shaft positioned between the proximal and distal ends, and a loading tube comprising a distal opening and closed proximal end connected to the distal end of the rigid shaft by an articulation joint that enables the loading tube to deflect at an angle relative to the rigid shaft, the loading tube being dimensioned and adapted to selectively receive and release the surgical end effector longitudinally through the distal opening such that the distal tissue engaging feature is oriented proximally relative to the loading tube and the proximal mating feature is oriented distally relative to the loading tube.

13. A laparoscopic surgical kit, comprising:

- a) a first percutaneous instrument comprising an elongate shaft comprising a distal end and a proximal end connected to a first actuator, the distal end comprising a mating feature;

- b) a surgical end effector selectively attachable in vivo and detachable in vivo to the mating feature of the first percutaneous instrument, the surgical end effector comprising a pair of jaws;
- c) a second percutaneous instrument comprising a distal end and a proximal end, a shaft positioned between the proximal and distal ends and being spaced apart from the elongate shaft of the first percutaneous instrument, a second actuator on the proximal end, and a tubular receiver on the distal end selectively bendable at an angle relative the shaft, the receiver being dimensioned and adapted to selectively receive and release the jaws of surgical end effector in vivo, the receiver further comprising an engagement feature adapted to hold the end effector in the receiver.


15

\* \* \* \* \*

|                |                                                                                                                                                                       |         |            |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------|
| 专利名称(译)        | 用于在体内交换末端执行器的装载器                                                                                                                                                      |         |            |
| 公开(公告)号        | <a href="#">US9295485</a>                                                                                                                                             | 公开(公告)日 | 2016-03-29 |
| 申请号            | US12/576565                                                                                                                                                           | 申请日     | 2009-10-09 |
| [标]申请(专利权)人(译) | 康伦SEAN P<br>斯皮维JAMES†<br>HUEY KEVIN中号<br>NOBIS鲁道尔夫^ h                                                                                                                 |         |            |
| 申请(专利权)人(译)    | 康伦SEAN P<br>斯皮维JAMES†<br>HUEY KEVIN中号<br>NOBIS鲁道尔夫^ h                                                                                                                 |         |            |
| 当前申请(专利权)人(译)  | 爱惜康内镜手术，INC.                                                                                                                                                          |         |            |
| [标]发明人         | CONLON SEAN P<br>SPIVEY JAMES T<br>HUEY KEVIN M<br>NOBIS RUDOLPH H                                                                                                    |         |            |
| 发明人            | CONLON, SEAN, P.<br>SPIVEY, JAMES, T.<br>HUEY, KEVIN, M.<br>NOBIS, RUDOLPH, H.                                                                                        |         |            |
| IPC分类号         | A61B17/00 A61B18/14 A61B17/32 A61B17/29 A61B17/3201                                                                                                                   |         |            |
| CPC分类号         | A61B17/3201 A61B17/29 A61B17/320092 A61B18/1442 A61B2017/00296 A61B2017/00473 A61B2018/1495 A61B17/00234 A61B2017/00238 A61B2017/00464 A61B2017/00477 A61B2017/320093 |         |            |
| 其他公开文献         | US20110087266A1                                                                                                                                                       |         |            |
| 外部链接           | <a href="#">Espacenet</a> <a href="#">USPTO</a>                                                                                                                       |         |            |

#### 摘要(译)

一种外科装置，其与限定纵向轴线的经皮细长轴结合使用。轴包括远端和近端，远端包括附接机构。外科端部执行器可在体内选择性地附接并且在体内可拆卸到经皮细长轴的附接机构。经皮细长装载器包括铰接远端。远端包括在远端尖端处具有开口的管，管的尺寸被设计成接收外科端部执行器。远端还包括接合特征，该接合特征能够在体内附接到经皮细长轴并且在体内从经皮细长轴分离时将外科端部执行器摩擦地保持在管中。

