

US008734469B2

(12) United States Patent

Pribanic et al.

(10) Patent No.: US 8,734,469 B2

(45) **Date of Patent:** May 27, 2014

(54) SUTURE CLIP APPLIER

(75) Inventors: Russell Pribanic, Roxbury, CT (US); Stanislaw Marczyk, Stratford, CT (US)

(73) Assignee: Covidien LP, Mansfield, MA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 321 days.

(21) Appl. No.: 12/897,868

(22) Filed: Oct. 5, 2010

(65) **Prior Publication Data**

US 2011/0087242 A1 Apr. 14, 2011

Related U.S. Application Data

- (60) Provisional application No. 61/250,894, filed on Oct. 13, 2009.
- (51) **Int. Cl. A61B 17/10** (2006.01)
- (52) **U.S. Cl.**USPC **606/142**; 606/136; 606/143; 606/232
- (58) **Field of Classification Search**USPC 606/139, 142, 143, 151, 157, 158, 213, 606/232; 623/23.72

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

3,120,230) A	2/1964	Skold
3,638,84	7 A	2/1972	Noiles et al.
4,242,902	2 A	1/1981	Green
4,296,75	1 A	10/1981	Blake, III et al.
4,372,310	5 A	2/1983	Blake, III et al.
4,408,603	3 A	10/1983	Blake, III et al.

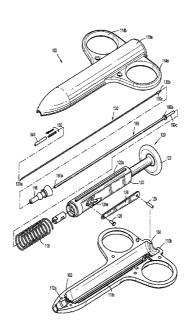
11/1984	Becht
11/1984	Failla et al.
12/1984	Hrouda
12/1984	Di Giovanni et al
1/1985	Menges et al.
1/1985	Green
2/1985	Cerwin et al.
(Con	tinued)
	11/1984 12/1984 12/1984 1/1985 1/1985 2/1985

FOREIGN PATENT DOCUMENTS

DE	20 2009 006113	7/2009
EP	0 085 931 A2	8/1983
	(Cont	inued)

OTHER PUBLICATIONS

Extended European Search Report corresponding to EP 10252079.8, date of mailing is Mar. 17, 2011; date of completion of Search is Mar. 8, 2011 (3 Pages).


(Continued)

Primary Examiner — Corrine M McDermott Assistant Examiner — Jing Ou

(57) ABSTRACT

Suture clip appliers, suture clips and methods of their use for securing sutures during an endoscopic or laparoscopic procedure are provided, wherein the method includes the steps of providing a suture clip applier having a working tip configured to retain and fire a suture clip; providing a suture clip having a biased closed configuration; loading the suture clip into the working tip of the clip applier; translating the suture clip distally relative to the working tip to a first position wherein the suture clip is splayed open; inserting a suture into the opened suture clip; and translating the suture clip distally relative to the working tip such that the suture clip is ejected from the working tip and biased to the closed configuration to close on and to retain the suture.

15 Claims, 9 Drawing Sheets

(56)	Referen	ices Cited	5,059,202			Liang et al.
U.	S. PATENT	DOCUMENTS	5,062,846 5,078,731	A	1/1992	Oh et al. Hayhurst
4 500 024 4	2/1095	DiGiovanni et al.	5,084,057 5,100,416			Green et al. Oh et al.
4,500,024 A 4,509,518 A		McGarry et al.	5,100,420	A	3/1992	Green et al.
4,512,345 A		Green Klieman et al.	5,104,394 5,104,395			Knoepfler Thornton et al.
4,522,207 A 4,532,925 A		Blake, III	5,112,343	A	5/1992	Thornton
4,534,351 A		Rothfuss et al.	5,122,150 5,127,915		6/1992	Puig Mattson
4,545,377 A 4,549,544 A		Cerwin et al. Favaron	5,129,885			Green et al.
4,556,058 A	12/1985	Green	5,156,608 5,160,339			Troidl et al. Chen et al.
4,557,263 A 4,562,839 A	12/1985 1/1986	Green Blake, III et al.	5,163,945			Ortiz et al.
4,572,183 A	2/1986	Juska	5,171,247			Hughett et al.
4,576,165 A 4,576,166 A		Green et al. Montgomery	5,171,249 5,171,250		12/1992	Stefanchik Yoon
4,590,937 A	5/1986	Deniega	5,171,251	A	12/1992	Bregen et al.
4,598,711 A 4,602,631 A		Deniega Funatsu	5,171,252 5,171,253			Friedland Klieman
4,611,595 A		Klieman et al.	5,192,288	A	3/1993	Thompson et al.
4,612,932 A		Caspar et al. Green et al.	5,197,970 5,199,566			Green et al. Ortiz et al.
4,616,650 A 4,616,651 A		Golden	5,201,746	A	4/1993	Shichman
4,624,254 A		McGarry et al.	5,201,900 5,207,691			Nardella Nardella
4,637,395 A 4,646,740 A		Caspar et al. Peters et al.	5,207,692			Kraus et al.
4,647,504 A	3/1987	Kimimura et al.	5,217,473		6/1993	Yoon Garvey, III et al.
4,658,822 A 4,660,558 A		Kees, Jr. Kees, Jr.	5,219,353 5,246,450			Thornton et al.
4,662,373 A		Montgomery	5,269,792			Kovac et al.
4,662,374 A 4,671,278 A	5/1987 6/1987	Blake, III	5,281,228 5,282,807			Wolfson Knoepfler
4,671,282 A		Tretbar	5,282,808	A	2/1994	Kovac et al.
4,674,504 A		Klieman et al. Kees, Jr.	5,282,832 5,289,963			Toso et al. McGarry et al.
4,681,107 A 4,696,396 A		Samuels	5,290,299	A	3/1994	Fain et al.
4,702,247 A		Blake, III et al.	5,300,081 5,304,183			Young et al. Gourlay et al.
4,706,668 A 4,712,549 A	11/1987 12/1987		5,306,280		4/1994	Bregen et al.
4,733,664 A	3/1988	Kirsch et al.	5,306,283 5,312,426			Conners Segawa et al.
4,733,666 A 4,759,364 A		Mercer, Jr. Boebel	5,330,442	A		Green et al.
4,765,335 A	8/1988	Schmidt et al.	5,330,487 5,340,360		7/1994 8/1994	Thornton et al. Stefanchik
4,777,949 A 4,777,950 A	10/1988 10/1988	Perlin Kees, Jr.	5,342,373			Stefanchik et al.
4,796,625 A	1/1989	Kees, Jr.	5,354,304		10/1994	
4,799,481 A 4,815,466 A		Transue et al. Perlin	5,354,306 5,366,458			Garvey, III et al. Korthoff et al.
4,817,604 A	4/1989	Smith, III	5,366,459		11/1994	
4,821,721 A 4,822,348 A		Chin et al. Casey	5,368,600 5,382,253			Failla et al. Hogendijk
4,827,930 A		Kees, Jr.	5,382,254	A	1/1995	McGarry
4,834,096 A 4,850,355 A		Oh et al. Brooks et al.	5,382,255 5,383,881		1/1995 1/1995	
4,854,317 A		Braun	5,395,375	A	3/1995	Turkel et al.
4,856,517 A		Collins et al.	5,395,381 5,403,327		3/1995 4/1995	Thornton et al.
4,929,239 A 4,929,240 A		Braun Kirsch et al.	5,409,498	A	4/1995	Braddock et al.
4,931,058 A		Cooper	5,413,584 5,423,835		5/1995 6/1995	Schulze Green
4,932,955 A 4,934,364 A		Merz et al. Green	5,425,740	A	6/1995	Hutchinson, Jr.
4,943,298 A	7/1990	Fujita et al.	5,431,667 5,431,668			Thompson Burbank, III et al.
4,957,500 A 4,966,603 A		Liang et al. Focelle et al.	5,431,669		7/1995	Thompson
4,967,949 A	11/1990	Sandhaus	5,439,468		8/1995	
4,983,176 A 4,988,355 A		Cushman et al. Leveen et al.	5,441,509 5,447,513			Davison et al 606/143
5,002,552 A	3/1991	Casey	5,449,365		9/1995	
5,026,379 A 5,030,224 A	6/1991 7/1991	Yoon Wright et al.	5,462,555 5,462,558		10/1995 10/1995	
5,030,224 A 5,030,226 A		Green et al.	5,464,416	A	11/1995	Steckel
5,032,127 A		Frazee et al.	5,474,566 5,474,567		12/1995	
5,035,692 A 5,047,038 A		Lyon et al. Peters et al.	5,474,567 5,474,572			Stefanchik et al. Hayhurst
5,049,152 A	9/1991	Simon	5,487,746	A	1/1996	Yu et al.
5,049,153 A 5,053,045 A		Nakao et al. Schmidt et al.	5,501,693 5,509,920			Gravener Phillips
3,033,043 A	10/1991	schindt et al.	5,505,520	Α	1 /1330	тишрь

(56)	Referen	aces Cited	5,849,019 A	12/1998	
II S	DATENT	DOCUMENTS	5,858,018 A 5,861,005 A		Shipp et al. Kontos
0.3.	FAILINI	DOCUMENTS	5,868,759 A	2/1999	
5,514,149 A		Green	5,868,761 A		Nicholas
5,520,701 A	5/1996	Lerch Kuntz et al.	5,876,410 A 5,895,394 A	3/1999 4/1999	Kienzle et al.
5,522,823 A 5,527,318 A		McGarry	5,897,565 A	4/1999	
5,527,319 A	6/1996		5,904,693 A		Dicesare
5,527,320 A		Carruthers et al.	5,913,862 A 5,918,791 A		Ramsey et al. Sorrentino et al.
5,542,949 A 5,547,474 A	8/1996 8/1996	Kloeckl	5,921,996 A		Sherman
5,569,274 A	10/1996	Rapacki et al.	5,921,997 A		Fogelberg et al.
5,571,121 A	11/1996		5,928,251 A 5,938,667 A		Aranyi Peyser
5,575,802 A 5,582,615 A		McQuildin et al. Foshee et al.	5,951,574 A		Stefanchik et al.
5,584,840 A		Ramsey et al.	5,972,003 A		Rousseau
5,591,178 A		Green et al.	5,976,159 A 5,993,465 A		Bolduc et al. Shipp et al.
5,593,414 A 5,593,421 A	1/1997	Shipp et al.	6,004,335 A		Vaitekunas et al.
5,601,573 A		Fogelberg et al.	6,017,358 A		Yoon et al.
5,601,574 A		Stefanchik et al.	RE36,720 E 6,059,799 A	5/2000	Green Aranyi
5,607,436 A 5,618,291 A	3/1997 4/1997	Thompson Thompson	6,099,536 A	8/2000	
5,618,306 A		Roth et al.	6,099,537 A		Sugai et al.
5,620,452 A	4/1997		6,139,555 A 6,210,418 B1		Hart et al. Storz et al.
5,626,585 A 5,626,586 A		Mittelstadt Pistl et al.	6,217,590 B1		Levinson
5,626,592 A		Phillips	6,228,097 B1		Levinson et al.
RE35,525 E		Stefanchik et al.	6,241,740 B1 6,258,105 B1	6/2001	Davis Hart et al.
5,634,930 A 5,643,291 A	6/1997 7/1997	Thornton et al.	6,261,302 B1		Voegele et al.
5,645,551 A		Green	6,273,898 B1	8/2001	Kienzle et al.
5,645,553 A		Kolesa	6,277,131 B1	8/2001 10/2001	Kalikow
5,649,937 A 5,653,720 A		Bito et al. Johnson et al.	6,306,149 B1 6,318,619 B1	11/2001	
5,662,676 A		Koninckx	6,322,571 B1	11/2001	Adams
5,662,679 A		Voss et al.	6,350,269 B1		Shipp et al. Kienzle et al.
5,665,097 A 5,676,676 A	9/1997 10/1997	Baker et al.	6,352,541 B1 6,391,035 B1		Appleby et al.
5,681,330 A		Hughett et al.	6,423,079 B1	7/2002	Blake, III
5,683,405 A	11/1997	Yacoubian et al.	6,428,548 B1		Durgin et al.
5,695,502 A	12/1997 12/1997		6,440,144 B1 6,461,363 B1		Bacher Gadberry et al.
5,695,505 A 5,697,938 A		Jensen et al.	6,464,710 B1	10/2002	Foster
5,700,270 A	12/1997	Peyser	6,494,886 B1		Wilk et al. Hooven et al.
5,700,271 A 5,702,048 A	12/1997 12/1997	Whitfield Eberlin	6,517,536 B2 6,520,972 B2	2/2003	
5,709,706 A		Kienzle et al.	6,527,786 B1	3/2003	
5,713,911 A		Racenet	6,537,289 B1 6,546,935 B2		Kayan et al 606/158 Hooven
5,713,912 A 5,720,756 A	2/1998 2/1998		6,551,333 B2	4/2003	Kuhns et al.
5,722,982 A		Ferreira et al.	6,569,171 B2		DeGuillebon et al.
5,725,537 A	3/1998		6,579,304 B1 6,599,298 B1		Hart et al. Forster et al.
5,725,538 A 5,725,542 A	3/1998 3/1998		6,602,252 B2	8/2003	Mollenauer
5,733,295 A	3/1998	Back et al.	6,607,540 B1		Shipp 606/143
5,755,726 A	5/1998		6,613,060 B2 6,626,916 B1		Adams et al. Yeung et al.
5,766,189 A 5,769,857 A		Matsuno Reztzov et al.	6,626,922 B1	9/2003	Hart et al.
5,772,673 A	6/1998	Cuny	6,648,898 B1	11/2003	
5,776,146 A 5,776,147 A *		Sackier et al. Dolendo 606/142	6,652,538 B2 6,652,539 B2		Kayan et al. Shipp et al.
5,779,718 A	7/1998		6,673,083 B1	* 1/2004	Kayan et al 606/143
5,779,720 A	7/1998	Walder-Utz et al.	6,676,659 B2		Hutchins et al.
5,782,844 A 5,788,698 A		Yoon et al. Savornin	6,679,894 B2 RE38,445 E	2/2004	Damarati Pistl
5,792,149 A	8/1998		6,695,854 B1	2/2004	Kayan
5,792,150 A	8/1998	Pratt	6,706,057 B1		Bidoia et al.
5,797,922 A 5,810,853 A	8/1998 9/1998	Hessel et al.	6,716,226 B2 6,723,109 B2		Sixto, Jr. et al. Solingen
5,810,855 A 5,817,116 A		Takahashi et al.	6,743,240 B2		Smith et al.
5,827,306 A	10/1998	Yoon	6,773,438 B1	8/2004	Knodel et al.
5,833,695 A	11/1998		6,773,440 B2		Gannoe et al.
5,833,696 A 5,833,700 A		Whitfield Fogelberg et al.	6,776,783 B1 6,776,784 B2	8/2004 8/2004	Frantzen et al 606/151
5,843,097 A	12/1998	Mayenberger et al.	6,780,195 B2	8/2004	
5,843,101 A	12/1998	Fry	6,793,663 B2	9/2004	Kneifel et al.
5,846,255 A	12/1998	Casey	6,793,664 B2	9/2004	Mazzocchi et al.

(56)	Referen	nces Cited	7,316,696 B2 7,326,223 B2		Wilson, Jr. et al. Wilson, Jr.
U.S	S. PATENT	DOCUMENTS	7,329,266 B2	2/2008	Royse et al.
			7,331,968 B2 7,338,503 B2		Arp et al. Rosenberg et al.
6,802,848 B2 6,814,742 B2		Anderson et al. Kimura et al.	7,357,805 B		Masuda et al.
6,818,009 B2		Hart et al.	7,552,853 B2	2* 6/2009	Mas et al 227/175.1
6,821,273 B2	11/2004	Mollenauer	7,637,917 B2 7,695,482 B2		Whitfield Viola
6,821,284 B2 6,824,547 B2		Sturtz et al. Wilson, Jr. et al.	7,093,482 B2 7,717,926 B2		Whitfield
6,824,548 B2		Smith et al.	7,819,886 B	2 10/2010	Whitfield
6,835,199 B2	12/2004	McGuckin, Jr. et al.	7,905,890 B2		Whitfield
6,835,200 B2 6,837,893 B2	12/2004	Laufer et al.	7,988,027 B2 8,011,550 B2		
6,837,893 B2		Pugsley, Jr. et al.	8,011,555 B2	9/2011	Tarinelli
6,837,895 B2	1/2005	Mayenberger	8,016,178 B2		Olson Aldrich
6,840,945 B2 6,843,794 B2		Manetakis et al. Sixto, Jr. et al.	8,021,375 B2 8,021,378 B2		Sixto, Jr.
6,849,078 B2	2/2005	Durgin et al.	8,056,565 B2	11/2011	Zergiebel
6,849,079 B1	2/2005	Blake, III et al.	8,070,760 B2 8,083,668 B2		
6,853,879 B2 6,869,435 B2		Sunaoshi Blake, III	8,088,061 B2		
6,869,436 B2		Wendlandt	8,091,755 B2	1/2012	Kayan
6,889,116 B2			8,097,004 B2		Wild 606/142 Aranyi
6,896,682 B1 6,905,503 B2		McClellan et al. Gifford, III et al.	8,128,643 B2 8,142,451 B2		Boulnois
6,911,032 B2		Jugenheimer et al.	8,157,149 B2	4/2012	Olson
6,911,033 B2	6/2005	de Guillebon et al.	8,157,151 B2		Ingmanson
6,913,607 B2 6,916,327 B2		Ainsworth et al. Northrup, III et al.	8,216,257 B2 8,236,012 B2		Huitema Molitor
6,923,818 B2	8/2005	Muramatsu et al.	8,246,634 B2	8/2012	Huitema
6,939,356 B2	9/2005	Debbas	8,246,635 B2		Huitema
6,942,674 B2		Belef et al. Buelna	8,262,679 B2 8,267,944 B2		Nguyen Sorrentino
6,942,676 B2 6,945,978 B1			8,267,945 B2	9/2012	Nguyen
6,945,979 B2	9/2005	Kortenbach et al.	8,267,946 B2		Whitfield
6,949,107 B2		McGuckin, Jr. et al.	8,282,655 B2 8,328,822 B2		Whitfield Huitema
6,953,465 B2 6,955,643 B2		Dieck et al. Gellman et al.	8,336,556 B2	2 12/2012	Zergiebel
6,959,852 B2	11/2005	Shelton, IV et al.	8,348,130 B2		
6,960,218 B2		Rennich	8,357,171 B2 8,371,491 B2		Whitfield Huitema
6,960,221 B2 6,962,594 B1		Ho et al. Thevenet	8,382,773 B2		Whitfield
6,963,792 B1	11/2005	Green	8,403,945 B2		Whitfield
6,964,363 B2 6,964,668 B2		Wales et al. Modesitt et al.	8,403,946 B2 8,409,222 B2		Whitfield Whitfield
6,966,875 B1		Longobardi	8,409,223 B2	4/2013	Sorrentino
6,966,917 B1	11/2005	Suyker et al.	8,419,752 B2 8,430,892 B2		Sorrentino Bindra
6,966,919 B2 6,969,391 B1		Sixto, Jr. et al. Gazzani	8,444,660 B		Adams
6,972,023 B2		Whayne et al.	8,465,502 B2	6/2013	Zergiebel
6,972,027 B2	12/2005	Fallin et al.	8,475,473 B2 8,480,688 B2		Vandenbroek Boulnois
6,973,770 B2 6,974,462 B2		Schnipke et al.	8,486,091 B2		Sorrentino
6,974,466 B2		Ahmed et al.	8,491,608 B2	7/2013	Sorrentino
6,974,475 B1			8,496,673 B2 8,506,580 B2		Nguyen Zergiebel
6,981,505 B2 6,981,628 B2		Krause et al.	8,512,357 B2		Viola
6,991,635 B2		Takamoto et al.	8,523,882 B2	9/2013	Huitema
7,052,504 B2		Hughett	8,529,585 B2 8,529,586 B2		Jacobs Rosenberg
7,056,330 B2 7,108,703 B2		Gayton Danitz et al.	8,529,588 B		Ahlberg
7,144,402 B2	12/2006	Kuester, III	8,545,486 B2	2 10/2013	Malkowski
7,175,648 B2		Nakao	8,579,918 B2 8,585,717 B2		Whitfield Sorrentino
7,179,265 B2 7,207,997 B2		Manetakis et al. Shipp et al.	8,603,109 B2		
7,211,091 B2		Fowler et al.	2001/0047178 A		
7,211,092 B2		Hughett	2002/0068947 A 2002/0082618 A		Kuhns et al. Shipp et al.
7,214,230 B2 7,214,232 B2		Brock et al. Bowman et al.	2002/0082018 A 2002/0087169 A		Brock et al.
7,223,271 B2	5/2007	Muramatsu et al.	2002/0087170 A	7/2002	Kuhns et al.
7,223,272 B2	5/2007	Francese et al.	2002/0099388 A		Mayenberger
7,232,445 B2 7,261,724 B2		Kortenbach et al. Molitor et al.	2002/0120279 A 2002/0128668 A		Deguillebon et al. Manetakis et al.
7,261,724 B2 7,261,725 B2		Binmoeller	2002/0128000 A 2002/0177859 A	11/2002	Monassevitch et al.
7,264,625 B1	9/2007	Buncke	2002/0198537 A	12/2002	Smith et al.
7,288,098 B2		Huitema et al.	2002/0198538 A		Kortenbach et al.
7,297,149 B2 7,316,693 B2		Vitali et al. Viola	2002/0198539 A 2002/0198540 A		Sixto, Jr. et al. Smith et al.
.,510,055 152	1, 2000				

(56) Ref	ferences Cited	2006/0009792 A1		Baker et al.
II S DATI	ENT DOCUMENTS	2006/0020270 A1 2006/0020271 A1		Jabba et al. Stewart et al.
0.5. TATI	ENT DOCUMENTS	2006/0047305 A1		Ortiz et al.
2002/0198541 A1 12/2	2002 Smith et al.	2006/0047306 A1		Ortiz et al.
	2003 Wilson, Jr. et al.	2006/0064117 A1		Aranyi et al.
	2003 Green	2006/0079115 A1 2006/0079912 A1	4/2006 4/2006	Whitfield et al.
	2003 Manetakis 2003 de Guillebon et al.	2006/0079913 A1	4/2006	Whitfield et al.
	2003 Sancoff et al.	2006/0085015 A1		Whitfield et al.
	2003 Bolduc et al.	2006/0100649 A1	5/2006 5/2006	
	2003 Blake, III 2003 Kerr	2006/0111731 A1 2006/0129170 A1		Royce et al.
	2003 Kell 2003 Huitema	2006/0163312 A1		Viola et al.
	2003 Gayton	2006/0173470 A1		Oray et al.
	2004 Manetakis et al.	2006/0178683 A1 2006/0184182 A1		Shimoji et al. Aranyi et al.
	2004 Hughett 2004 Hughett	2006/0194182 A1 2006/0190013 A1	8/2006	
	2004 Pier	2006/0195125 A1		Sakakine et al.
2004/0153100 A1 8/2	2004 Ahlberg et al.	2006/0200179 A1		Barker et al.
	2004 Aranyi	2006/0217749 A1 2006/0224170 A1	10/2006	Wilson, Jr. et al.
	2005 Durgin et al. 2005 Lehman et al.	2006/0235437 A1		Vitali et al.
2005/0090837 A1 4/2	2005 Sixto, Jr. et al.	2006/0235438 A1		Huitema et al.
	2005 Sixto, Jr. et al.	2006/0235439 A1 2006/0235440 A1*		Molitor et al. Huitema et al 606/142
	2005 Wellman et al. 2005 Wellman et al.	2006/0235441 A1		Huitema et al.
	2005 Weithfall et al. 2005 Manetakis et al.	2006/0235442 A1		Huitema
2005/0101975 A1 5/2	2005 Nguyen et al.	2006/0235443 A1		Huitema et al.
	2005 Nakao	2006/0235444 A1 2006/0259045 A1		Huitema et al. Damarati
	2005 Litscher et al. 2005 Morales et al.	2006/0259049 A1		Harada et al.
	2005 Starksen et al.	2006/0264987 A1	11/2006	
	2005 Starksen et al.	2006/0271072 A1 2007/0016228 A1	1/2006	Hummel et al.
2005/0107871 A1 5/2 2005/0113847 A1 5/2	2005 Realyvasquez et al. 2005 Gadberry et al.	2007/0010228 A1 2007/0021761 A1		Phillips
	2005 Reydel et al.	2007/0023476 A1	2/2007	Whitman et al.
2005/0119673 A1 6/2	2005 Gordon et al.	2007/0023477 A1		Whitman et al.
	2005 Shipp	2007/0027458 A1 2007/0034669 A1		Sixto, Jr. et al. De La Torre et al.
	2005 Smith et al. 2005 Kimura et al.	2007/0038233 A1		Martinez et al.
	2005 Young et al.	2007/0049947 A1		Menn et al.
	2005 Peterson et al.	2007/0049948 A1 2007/0049949 A1		Menn et al. Manetakis
	2005 Williams et al. 2005 Bertolero et al.	2007/0049950 A1		Theroux et al.
	2005 Wales	2007/0049951 A1	3/2007	
	2005 Chan	2007/0049953 A2		Shimoji et al.
	2005 Hughett 2005 Hunter	2007/0073314 A1 2007/0083218 A1	4/2007	Gadberry et al. A. Morris
	2005 Hulkel 2005 Gerbi et al.	2007/0093856 A1	4/2007	Whitfield
	2005 Viola	2007/0106314 A1	5/2007	
	2005 Weller et al.	2007/0112365 A1 2007/0118155 A1		Hilal et al. Goldfarb et al.
	2005 Weller et al. 2005 Nakao 606/142	2007/0118161 A1		Kennedy et al.
	2005 Valdevit et al.	2007/0118163 A1		Boudreaux et al.
	2005 Vandenbroek et al.	2007/0118174 A1 2007/0123916 A1	5/2007	Chu Maier et al.
	2005 Gadberry et al. 2005 Aranyi	2007/0142848 A1		Ainsworth et al.
	2005 Manyo 2005 Manzo	2007/0142851 A1	6/2007	Sixto et al.
2005/0228416 A1 10/2	2005 Burbank et al.	2007/0149988 A1		Michler et al.
	2005 Wixey et al. 2005 Buckman et al.	2007/0149989 A1 2007/0162060 A1	7/2007	Santilli et al. Wild
	2005 Anderson	2007/0185504 A1		Manetakis et al.
	2005 Yawata et al.	2007/0191868 A1		Theroux et al.
	2005 Ginn et al.	2007/0213747 A1 2007/0250080 A1		Monassevitch et al. Jones et al.
	2005 Theroux et al. 2005 Smith et al.	2007/0265640 A1		Kortenbach et al.
	2005 Arp et al.	2007/0276417 A1		Mendes, Jr. et al.
2005/0277953 A1 12/2	2005 Francese et al.	2007/0282355 A1		Brown et al.
	2005 Smith et al. 2005 Palmer et al.	2007/0288039 A1 2007/0293875 A1	12/2007	Aranyı Soetikno et al.
	2005 Faimer et al. 2005 Francese et al.	2008/0004636 A1		Walberg et al.
	2005 Levinson	2008/0004637 A1	1/2008	Klassen et al.
	2005 Kammerer et al.	2008/0004639 A1		Huitema et al.
	2005 Bourque et al. 2006 Whayne et al.	2008/0015615 A1 2008/0027465 A1		Molitor et al. Vitali et al.
	2006 Whayne et al. 2006 Rosenberg et al.	2008/0027465 A1 2008/0027466 A1		Vitali et al.
	2006 Gambale et al.	2008/0045981 A1		Margolin et al.
2006/0009790 A1 1/2	2006 Blake, III et al.	2008/0051808 A1	2/2008	Rivera et al.

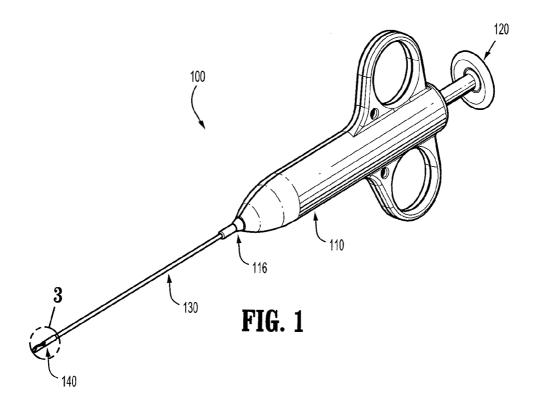
(56) Referen	nces Cited	WO WO 2008/118928 A2 10/2008 WO WO 2008/127968 10/2008					
U.S. PATENT DOCUMENTS		WO WO 2008/127968 A2 10/2008					
2008/0065119 A1 3/2008 2008/0243145 A1* 10/2008	Damarati Viola Whitfield et al	OTHER PUBLICATIONS European Search Report corresponding to EP 05810218.7, mailed on May 20, 2011; completed on Apr. 18, 2011; 3 pages.					
2010/0057107 A1 3/2010 2010/0274262 A1 10/2010	Sorrentino Sorrentino Schulz et al.	European Search Report corresponding to EP 05807612.6, mailed on May 20, 2011; completed on May 2, 2011; 3 pages. Extended European Search Report corresponding to EP 10251737.2					
2011/0137323 A1 6/2011	Pribanic Malkowski Zergiebel Menn	mailed on May 20, 2011; completed on May 9, 2011; 4 pages. The extended European Search Report corresponding to European Application No. EP 12 16 2288.0, completed Jun. 4, 2012 and mailed					
2011/0245847 A1 10/2011 2012/0029534 A1 2/2012		Jul. 7, 2012; (6 Pages). The extended European Search Report corresponding to European Application No. EP 12 16 5891.8, completed Jun. 12, 2012 and					
2012/0123446 A1 5/2012 2012/0197269 A1 8/2012	Sorrentino Aranyi Zammataro	mailed Jun. 20, 2012; (6 Pages). The extended European Search Report corresponding to European Application No. EP 12 16 4955.2, completed Aug. 23, 2012 and					
2012/0330326 A1 12/2012	Zammataro	mailed Sep. 4, 2012; (5 Pages). The extended International Search Report corresponding to European Application No. 07 25 3905.9, completed Jan. 29, 2008; mailed					
2013/0131697 A1 5/2013 2013/0165952 A1 6/2013	Hartoumbekis Whitfield Malkowski	Feb. 7, 2008; (7 Pages). The partial International Search Report corresponding to European Application No. EP 07 25 3807.7, completed Jul. 23, 2008; mailed Aug. 1, 2008; (3 pages).					
2013/0172912 A1 7/2013 2013/0190779 A1 7/2013	Rockrohr Whitfield Whitfield Whitfield	International Search Report corresponding to International Application No. PCT/US08/58185, completed Sep. 4, 2008; mailed Sep. 9, 2008; (2 Pages).					
2013/0274767 A1 10/2013 2013/0289583 A1 10/2013	Sorrentino Zergiebel Hartoumbekis	International Search Report corresponding to International Application No. PCT/US08/59859, completed Sep. 14, 2008, mailed Sep. 18, 2008; (2 Pages).					
2013/0310849 A1 11/2013	Sorrentino Malkowski	The Extended European Search Report corresponding to European Application No. 07 25 3807.7, completed Nov. 7, 2008; mailed Nov. 26, 2008; (11 Pages).					
EP 0 086 721	NT DOCUMENTS 8/1983	The extended European Search Report corresponding to European Application No. EP 09252049.3, completed Dec. 11, 2009; mailed Jan. 12, 2010; (3 Pages).					
EP 0 089 737 A1 EP 0 324 166 A2 EP 0 392 750 A1 EP 0 409 569 A1	9/1983 7/1989 10/1990 1/1991	The Extended European Search Report corresponding to European Application No. EP 09252050.1, completed Dec. 23, 2009; mailed Jan. 21, 2010; (3 Pages).					
EP 0 598 529 A2 EP 0 769 275 A1 EP 0 685 204 A1	5/1994 5/1994 12/1995	The extended European Search Report corresponding to European Application No. EP 09252031.9, completed Dec. 21, 2009; mailed Jan. 28, 2010; (3 Pages). The extended European Search Report corresponding to European					
EP 0 732 078 A2 EP 0 755 655 A2 EP 0 769 274 EP 0 769 274 A1	9/1996 1/1997 4/1997 4/1997	Application No. EP 09252052.7, completed Nov. 16, 2009; mailed Nov. 24, 2009; (3 Pages). The extended European Search Report corresponding to European					
EP 0 769 275 A1 EP 0 834 286 A1 EP 1 317 906 A1	4/1997 4/1998 6/2003	Application No. EP 09252053.5, completed Nov. 24, 2009; mailed Dec. 1, 2009; (3 Pages). The extended European Search Report corresponding to European					
EP 1 609 427 A1 EP 1 712 187 EP 1 712 191 A2 EP 1 757 236	12/2005 10/2006 10/2006 2/2007	Application No. EP 09252054.3, completed Jan. 7, 2010; mailed Jan. 22, 2010; (3 Pages). Extended European Search Report corresponding to European Appli-					
EP 1 813 199 A1 EP 1 908 423 EP 1 908 423 A2	8/2007 4/2008 4/2008	cation No. 09252056.8, completed Jan. 8, 2010; mailed Feb. 5, 2010; (3 Pages). Extended European Search Report corresponding to European Appli-					
EP 1 913 881 A1 EP 2 229 895 A1 EP 2 332 471 JP 2003 033361 A	4/2008 9/2010 6/2011 2/2003	cation No. EP 10250497.4, completed May 4, 2010; mailed May 12, 2010; (6 Pages). "Salute II Disposable Fixation Device", Technique Guide—					
WO WO 03/086207 WO WO 03/092473 WO WO 2005/091457 A1	10/2003 11/2003 9/2005	Laparoscopic and Open Inguinal and Ventral Hernia Repair; Davol, A Bard Company, 2006; (7 Pages). European Search Report corresponding to European Application No. EP 05 80 2686.5, completed Jan. 9, 2012; mailed Jan. 18, 2012; (3					
WO WO 2006/042076 WO WO 2006/042076 A2 WO WO 2006/042084 A2	4/2006 4/2006 4/2006	Pages). The extended European Search Report corresponding to European Application No. EP 12 15 1313.9, completed Mar. 20, 2012 and					
WO WO 2006/042110 WO WO 2006/042110 A2 WO WO 2006/042141 WO WO 2006/135479 WO WO 2008/118928	4/2006 4/2006 4/2006 12/2006 10/2008	mailed Apr. 12, 2012; (5 Pages). The extended European Search Report corresponding to European Application No. EP 12 16 1291.5, completed Apr. 24, 2012 and mailed May 4, 2012; (5 Pages).					

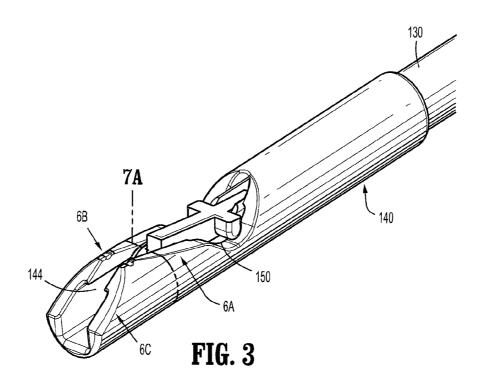
(56) References Cited

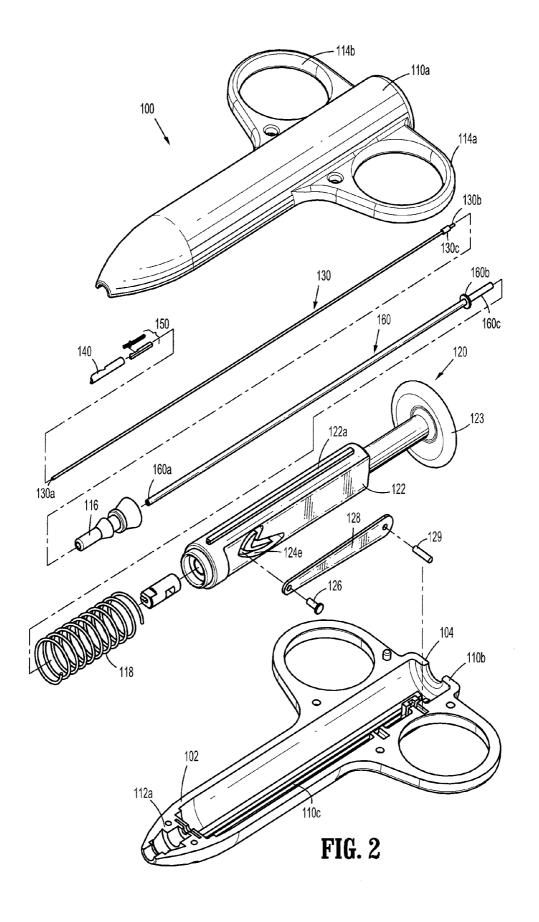
OTHER PUBLICATIONS

The extended European Search Report corresponding to European Application No. EP 12 18 6401.1, completed Nov. 22, 2012 and mailed Nov. 30, 2012; (7 Pages).

The extended European Search Report corresponding to European Application No. EP 12 18 6448.2, completed Nov. 28, 2012 and mailed Dec. 10, 2012; (6 Pages).


The extended European Search Report corresponding to European Application No. EP 12 19 1706.6, completed Dec. 19, 2012 and mailed Jan. 8, 2013; (6 Pages).


The extended European Search Report corresponding to European Application No. EP 11 25 0754.6, completed Oct. 22, 2012 and mailed Oct. 31, 2012; (6 Pages).


The extended European Search Report corresponding to European Application No. EP 11250214.1, completed May 25, 2011; mailed Jun. 1, 2011; (3 Pages).

Extended European Search Report corresponding to EP 12 19 8745. 7, completed Mar. 19, 2013 and mailed Apr. 11, 2013; (8 pp). Extended European Search Report corresponding to EP 12 15 2989. 5, completed Apr. 9, 2013 and mailed Apr. 18, 2013; (9 pp). Extended European Search Report corresponding to EP 08 73 2820,9, completed Jul. 2, 2013 and mailed Jul. 9, 2013; (10 pp). Extended European Search Report corresponding to EP 12 19 1706. 6, completed Dec. 19, 2012 and mailed Jan. 8, 2013; (6 pp). Extended European Search Report corresponding to EP 13 172008.8, completed Aug. 14, 2013 and mailed Aug. 28, 2013; (8 pp).

* cited by examiner

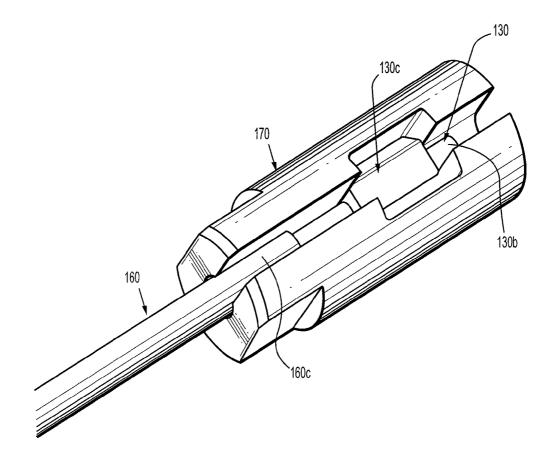
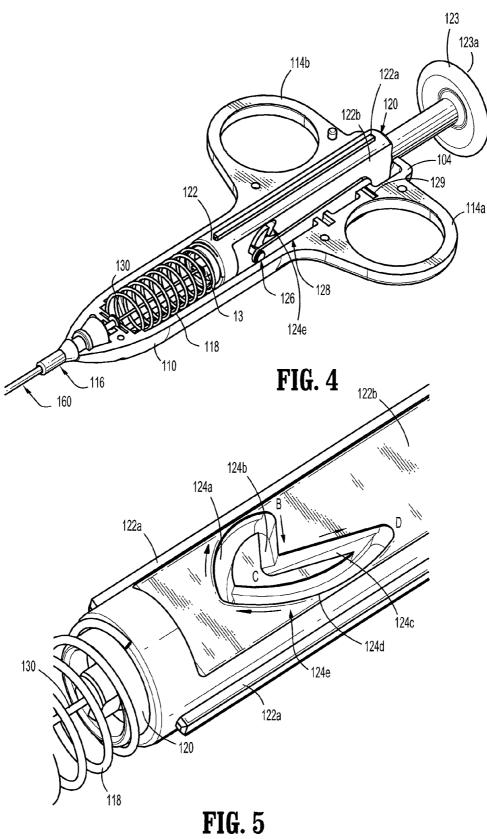
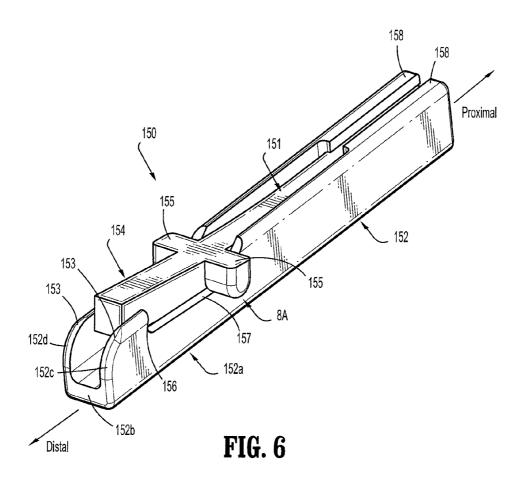




FIG. 2A

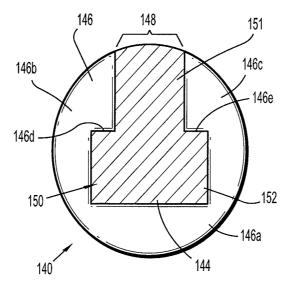
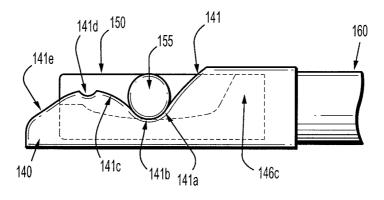
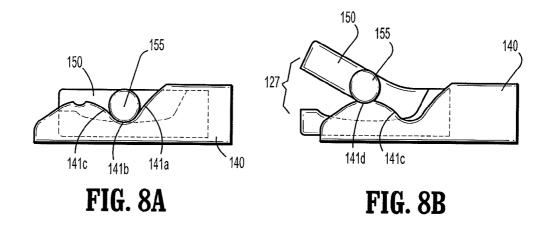
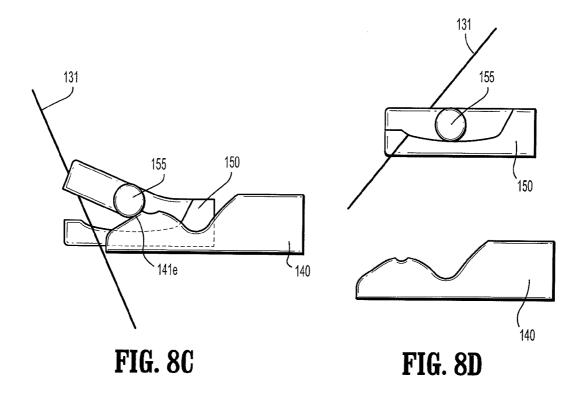
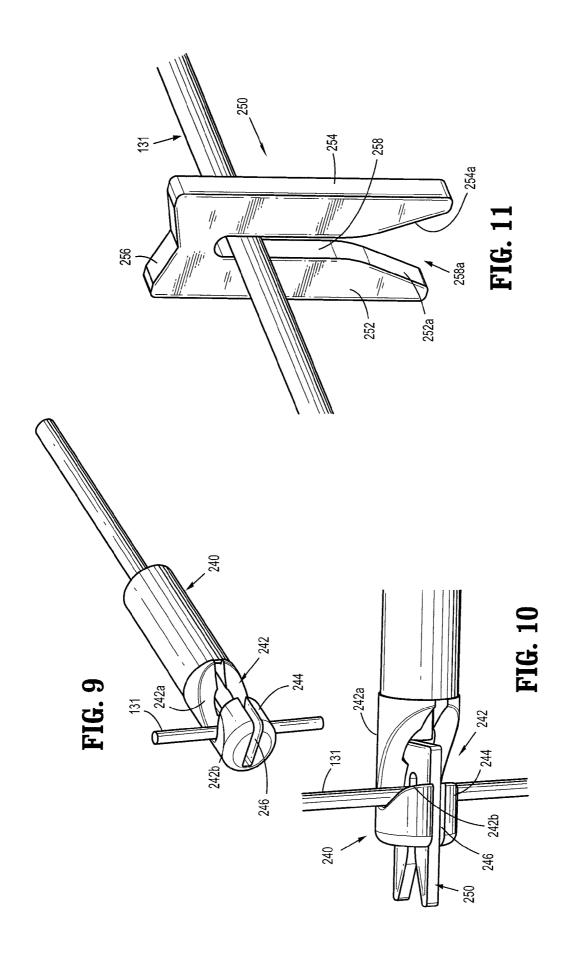
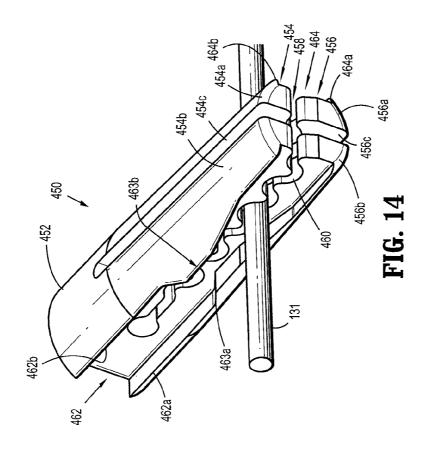
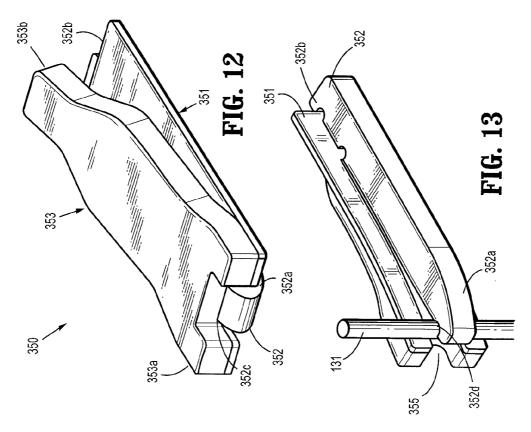


FIG. 7A


FIG. 7B

1 SUTURE CLIP APPLIER

CROSS-REFERENCE TO RELATED APPLICATIONS

The present application claims the benefit of and priority to U.S. Provisional Application Ser. No. 61/250,894, filed on Oct. 13, 2009, the entire content of which is incorporated herein by reference.

BACKGROUND

1. Technical Field

The present disclosure relates to a device for use in a surgical procedure. More particularly, the present disclosure relates to a surgical suture clip applier adapted for securing sutures during an endoscopic or laparoscopic procedure.

2. Background of Related Art

In surgical operations it is well known that surgical sutures are applied to repair the body tissue. Such sutures generally are of the non-absorbable or the absorbable type and are generally applied with the use of surgical needles. If the sutures are non-absorbable, they may or may not be removed after an estimated predetermined healing period has passed. 25 Absorbable sutures are absorbed gradually over time by coming in contact with moisture in the human body.

In many surgical procedures, application of sutures generally involves knotting or tying the suture after it is applied to the body tissue in order to retain its position with respect to the tissue and to maintain the tissue in the repaired position. In cases where the surgeon has full access to the operative site by virtue of a large incision, knotting the suture or applying knotting or equivalent devices is relatively simple due to the access provided by the incision.

In endoscopic and laparoscopic procedures, on the other hand, large incisions are avoided. In laparoscopic procedures surgery is performed in the interior of the abdomen through a small incision; in endoscopic procedures surgery is performed in any hollow viscus of the body through narrow endoscopic tubes inserted through small entrance wounds in the skin. Laparoscopic and endoscopic procedures generally require that any instrumentation inserted into the body be sealed, i.e., provisions must be made to ensure that gases do 45 not enter or exit the body through the laparoscopic or endoscopic incision as, for example, in surgical procedures in which the surgical region is insufflated. Moreover, laparoscopic and endoscopic procedures often require the surgeon to act on organs, tissues, and vessels far removed from the 50 incision, thereby requiring that instruments to be used in such procedures generally be both long and narrow.

In laparoscopic and endoscopic procedures surgical sutures are generally applied by directing and manipulating needled sutures through an aperture in the body or through 55 elongated narrow tubes known as cannulae with the assistance of specially designed needle graspers, needle drivers, and the like. However, tying the sutures in such procedures can be relatively difficult due to the limited access afforded to the surgeon through the narrow tubes. In particular, since 60 biocompatible, preferably bioabsorbable, sutures are generally used in such procedures it would be desirable to have available a cinching device and system that facilitates tying the sutures through the tubes in a manner to retain their position in the body tissue at least until the healing process is 65 in full progress. The use of the term "endoscopic" herein contemplates endoscopic as well as laparoscopic procedures.

2 SUMMARY

The present disclosure relates to surgical suture clip appliers, suture clips and methods of their use for securing sutures during an endoscopic or laparoscopic procedure.

According to an aspect of the present disclosure, a suture clip applier is provided and includes a housing; an elongated plunger slidably supported in the housing, the plunger having a distal end portion disposed within the housing and a proxi-10 mal end portion extending from a proximal end of the housing; a hollow tube extending distally from the housing and defining a lumen therethrough; an actuation member having a distal end extending into the hollow tube and a proximal end operatively engaged with the plunger; and a working tip coupled to a distal end of the hollow tube. The working tip has a substantially U-shaped transverse cross-sectional profile defining a channel having a base wall and a pair of spaced apart side walls. The working tip defines a lower contact surface along an internal face of the base wall, and an upper contact surface defined along an upper end surface of each side wall. The upper contact surface of each side wall includes a distal recess formed near a distal end of thereof and a proximal recess formed proximal of the distal recess; and an internal retaining surface on both side walls parallel to the base wall. In use, the distal end of the actuation member is configured to engage a suture clip loaded into the working tip.

The plunger may define a race formed in a surface thereof. The race may include a plurality of portions each defining a cam surface of varying depth. The clip applier may include a rocker arm having a distal end portion and proximal end portion. The rocker arm may have a follower pin extending therefrom near the distal end portion thereof and a retaining pin near the proximal end portion thereof. The rocker arm may be pivotally attached to the housing by the retaining pin and the follower pin may be slidably disposed within the race of the plunger to modulate the motion of the plunger and actuation member.

The race may define four interconnected cam portions, with each cam portion having a start position and an end position, and each cam is deepest at its respective start position and shallowest at its respective end position.

The rocker arm may be elastically deformable laterally from the plunger thereby providing a biasing force upon the follower pin and plunger relative to the body.

The clip applier may further include finger loops extending from the housing.

The actuation member may be configured to transmit axial translative forces to the suture clip.

The clip applier may further include a biasing member disposed within the housing and providing a proximal bias upon the plunger relative to the housing. The biasing member may be a coil spring.

The distal recess and the proximal recess, formed in each vertical side wall, may be interconnected by a camming surface.

According to another aspect of the present disclosure, a suture clip for selective attachment to a suture is provided and includes an elongated flexible beam having a distal end portion, a proximal end portion, a top surface and a bottom surface, the flexible beam further including a pair of arms extending laterally therefrom; and an elongated rigid channel, wherein the elongated rigid channel has a substantially U-shaped transverse cross-sectional profile with a horizontal base wall and vertical side walls having a distal end portion and proximal end portion, wherein each vertical side wall defines a holding step formed in an upper edge thereof. The flexible beam and the channel are coupled to one another at

their proximal end portions; and the pair of arms of the flexible beam are in registration with a corresponding holding step framed in the upper edge of the vertical side walls.

A proximal end portion of the pair of vertical side walls of the channel of the suture clip may include inwardly projecting lips for retaining the proximal end portion of the beam within the channel. The proximal end portions of the beam and channel may be adhesively coupled to one another.

The pair of arms of the flexible beam may project beyond the pair of vertical side walls of the channel.

According to a further aspect of the present disclosure, a suture clip applier system is provided and includes a suture clip applier for filing a suture clip onto a suture. The clip applier includes a housing; an elongated plunger slidably supported in the housing, the plunger having a distal end portion disposed within the housing and a proximal end portion extending from a proximal end of the housing; a hollow tube extending distally from the housing and defining a lumen therethrough; an actuation member having a distal end 20 extending into the hollow tube and a proximal end operatively engaged with the plunger; and a working tip coupled to a distal end of the hollow tube. The working tip has a substantially U-shaped transverse cross-sectional profile defining a channel having a base wall and a pair of spaced apart side 25 walls. The working tip defines a lower contact surface along an internal face of the base wall, and an upper contact surface defined along an upper end surface of each side wall. The upper contact surface of each side wall includes a distal recess formed near a distal end thereof and a proximal recess formed 30 proximal of the distal recess; and an internal retaining surface on both side walls parallel to the base wall. The distal end of the actuation member is configured to engage a suture clip loaded into the working tip

The suture clip applier system further includes a suture clip 35 loadable into and deployable from the working tip. The suture clip includes an elongated flexible beam having a distal end portion, a proximal end portion, a top surface and a bottom surface, the flexible beam further including a pair of arms extending laterally therefrom; and an elongated rigid channel, 40 wherein the elongated rigid channel has a substantially U-shaped transverse cross-sectional profile with a horizontal base wall and vertical side walls having a distal end portion and proximal end portion, wherein each vertical side wall defines a holding step formed in an upper edge thereof. The 45 flexible beam and the channel are coupled to one another at their proximal end portions. The pair of arms of the flexible beam are in registration with a corresponding holding step formed in the upper edge of the vertical side walls; and, in use, as the suture clip is urged in a distal direction relative to the 50 working tip, the flexible beam is splayed apart from the channel to open the suture clip for receipt of a suture therein.

The plunger of the clip applier defines a race formed in a surface thereof, the race includes a plurality of portions each defining a cam surface of varying depth; and the clip applier 55 includes a rocker arm having a distal end portion and proximal end portion, the rocker arm has a follower pin extending therefrom near the distal end portion thereof and a retaining pin near the proximal end portion thereof. The rocker arm is pivotally attached to the housing by the retaining pin and the 60 follower pin is slidably disposed with in the race of the plunger to modulate the motion of the plunger and actuation member.

The race may define four interconnected cam portion, with each cam portion having a start position and an end position 65 and each cam is deepest at its respective start position and shallowest at its respective end position.

4

The rocker arm of the clip applier may be elastically deformable laterally from the plunger thereby providing a biasing force upon the follower pin and plunger relative to the body.

The clip applier may further include a biasing member disposed within the housing and providing a proximal bias upon the plunger relative to the housing. The distal recess and the proximal recess formed in each vertical side wall may be interconnected by a camming surface.

A proximal end portion of the pair of vertical sides walls of the channel of the suture clip may include inwardly projecting lips for retaining the proximal end portion of the beam within the channel. The pair of arms of the suture clip may project beyond the pair of vertical side walls of the channel thereof.

According to yet another aspect of the present disclosure, a method of securing a suture through an incision is provided. The method includes the steps of providing a suture clip applier having a working tip configured to retain and fire a suture clip; providing a suture clip having a biased closed configuration; loading the suture clip into the working tip of the clip applier; translating the suture clip distally relative to the working tip to a first position wherein the suture clip is splayed open; inserting a suture into the opened suture clip; and translating the suture clip distally relative to the working tip such that the suture clip is ejected from the working tip and biased to the closed configuration to close on and to retain the suture.

According to still another embodiment of the present disclosure, a method of securing a suture through an incision is provided and includes the steps of providing a suture clip applier having a working tip, and providing a suture clip. The working tip of the suture clip has a substantially U-shaped transverse cross-sectional profile defining a channel having a base wall and a pair of spaced apart side walls. The working tip defines a lower contact surface along an internal face of the base wall; and an upper contact surface defined along an upper end surface of each side wall. The upper contact surface of each side wall includes a distal recess formed near a distal end of thereof and a proximal recess formed proximal of the distal recess; and an internal retaining surface projecting inwardly from both side walls of the channel. The suture clip includes an elongated flexible beam having a distal end portion, a proximal end portion, a top surface and a bottom surface, the flexible beam further including a pair of aims extending laterally therefrom; and an elongated rigid channel. The elongated rigid channel of the suture clip has a substantially U-shaped transverse cross-sectional profile with a horizontal base wall and a pair of spaced apart vertical side walls having a distal end portion and a proximal end portion. Each vertical side wall of the suture clip defines a holding step formed in an upper edge thereof. The flexible beam and the channel of the clip are coupled to one another at their proximal end portions; and the pair of arms of the flexible beam are in registration with a corresponding holding step formed in the upper edge of the vertical side walls of the channel of the clip.

The method further includes the steps of loading a suture clip into the working tip such that the vertical side walls of the clip channel abut the retaining surface of the working tip, and the laterally extending arms of the flexible beam rest in the proximal recess of the working tip; and translating the suture clip distally relative to the working tip such that the laterally extending arms of the suture clip are translated from the proximal recess of the working tip channel to the distal recess of the working tip while the clip channel is retained by the internal retaining surfaces of the working tip such that the distal ends of the flexible beam and the channel of the suture

-

clip are separated to define an opening, and so that the distal end of the suture clip protrudes from the working tip.

The method further includes the steps of inserting a suture into the opening of the suture clip; and translating the suture clip distally relative to the working tip such that the suture clip is ejected from the working tip and the flexible beam and the channel of the clip are biased toward one another to close on and retain the suture.

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure will be more fully appreciated as the same becomes better understood from the following detailed description when considered in connection with the following drawings, in which:

FIG. 1 is a perspective view of a clip applier according to an embodiment of the present disclosure;

FIG. 2 is a perspective view, with the parts separated, of the clip applier of FIG. 1;

FIG. **2**A is an enlarged perspective view illustrating the ²⁰ connection of a crimp of an actuating member in a set screw;

FIG. 3 is an enlarged perspective view of the indicated area of detail of FIG. 1, illustrating a clip loaded in a distal end of the clip applier;

FIG. **4** is a perspective cut-away view of the clip applier of ²⁵ FIG. **1**, illustrated with a body half-section removed therefrom:

FIG. 5 is an enlarged view of the proximal end portion of the suture clip applier of FIG. 3;

FIG. **6** is an enlarged perspective view of a suture clip ³⁰ according to an embodiment of the present disclosure, for use in the clip applier of FIGS. **1-5**;

FIG. 7A is an enlarged cross-sectional view of the working tip and clip according to section A of FIG. 2;

FIG. 7B is a side view of the working tip and clip of FIG. 2; 35 FIGS. 8A-D are schematic illustrations showing a sequence of operation of the clip applier of FIGS. 1-5;

FIG. 9 is a perspective view of a clip applier according to another embodiment of the present disclosure including a hook-shaped working tip for use with a flat suture clip;

FIG. 10 is a perspective view of the hook-shaped working tip illustrating an attachment of the suture clip to a suture;

FIG. 11 is a perspective view of the suture clip shown secured upon a suture;

FIG. 12 is a perspective view of another embodiment of a 45 spring clip according to the present disclosure and shown in its neutral position;

FIG. 13 is a perspective view of the suture clip of FIG. 12 shown on a suture; and

FIG. **14** is a perspective view of a suture clip according to 50 yet another embodiment of the present disclosure.

DETAILED DESCRIPTION OF THE EMBODIMENTS

While embodiments of the present disclosure are susceptible to various modifications and alternative constructions, certain illustrated embodiments thereof have been shown in the drawings and will be described below in detail. It should be understood, however, that there is no intention to limit the 60 embodiments of the present disclosure to the specific form disclosed, but, on the contrary, the embodiments are intended to cover all modifications, alternative constructions, and equivalents falling within the spirit and scope of the present disclosure as defined in the claims.

While various embodiments of the invention are described herein, it is to be distinctly understood that this invention is 6

not limited thereto but may be variously embodied to practice within the scope of the following claims. The present invention may be understood more readily by reference to the following detailed description of the invention taken in connection with the accompanying drawing figures, which form a part of this disclosure. It is to be understood that this invention is not limited to the specific devices, methods, conditions or parameters described and/or shown herein, and that the terminology used herein is for the purpose of describing particular embodiments by way of example only and is not intended to be limiting of the claimed invention.

The present disclosure relates to devices and methods for applying suture clips in an endoscopic, endoluminal, laparoscopic, or other surgical setting. Throughout the following description, the term "proximal," will refer to the end of a device or system that is closest to the operator, while the term "distal" will refer to the end of the device or system that is farthest from the operator.

With reference to FIGS. 1-7B, a clip applier, in accordance with the present disclosure, is generally designated as 100. Clip applier 100 includes a body or housing 110, a plunger 120 disposed substantially within body 110, a hollow outer tube 160 extending from and operatively supported by body 110, a working tip 140 supported on at a distal end of outer tube 160 and configured for operation on or with a suture clip 150, and an actuation member 130 extending through body 110 and hollow outer tube 160 and coupled at a proximal end thereof to plunger 120.

With reference to FIGS. 1, 2 and 4, body 110 is a hollow, elongated, annular member with a distal end portion 102 and proximal end portion 104 defining a longitudinal axis. The distal end portion 102 of body 110 has a frustoconical profile which narrows to define a distal opening 112a which is coincident with the exterior circumference of and supports a proximal end 160b of outer tube 160. As seen in FIG. 2, body 110 may be formed in a pair of half-sections 110a, 110b that are joined to one another using know techniques in the art, such as, for example, gluing, welding, fastening and the like.

As shown in FIGS. 1 and 2, it is contemplated that a substantially frustoconical, hollow strain relief 116, substantially composed of a complaint material, is disposed or supported at a distal end portion 102 of body 110. Strain relief 116 is configured to permit outer tube 160 to pass therethrough in order to provide a bias to outer tube 160 in order to help maintain outer tube in substantially parallel relation with the longitudinal axis.

With further reference to FIGS. 1, 2 and 4, a proximal end portion 104 of body 110 further includes opposing co-planar annular projections defining finger engaging loops 114a, 114b.

With reference to FIG. 4, plunger 120 is an elongated substantially cylindrical member defining a distal body portion 122 disposed within body 110 and a proximal end portion 123 projecting from the proximal end portion 104 of body 110. Distal body portion 122 of plunger 120 has a pair of opposed, protruding, longitudinally extending rails 122a (see FIG. 5) configured to be slidably retained within a complementary recess 110c (only one recess shown in FIG. 2) formed in an internal face of body half 110b of body 110 so as to facilitate linear translation along the longitudinal axis of body 110.

Proximal end portion 123 of plunger 120 protrudes from body 110. Proximal end portion 123 of plunger 120, which protrudes from body 110, defines an actuation portion 123a which may be configured to be actuated by an operator's thumb, linear actuator, or other linear motion device known in the art.

Clip applier 100 includes a biasing member 118 disposed within body 110 and retained between the distal end of plunger 120 and an internal distal surface of body 110. Biasing member 118 may be an elastically deformable helical coil which provides a biasing force upon plunger 120 relative to 5 body 110.

With reference to FIGS. 4 and 5, one or more sides of distal body portion 122 of plunger 120 are flattened to define a surface 122b. Further, distal body portion 122 includes an audible/tactile feedback member defined by a race 124e formed in surface 122b of distal body portion 122. Race 124e includes a series of cam channels 124a-124d, each defining stepped or sloping cam surfaces 125a-125d. The depth of cam channels 124a-124d is such that they are deepest at the furthest counter-clockwise point along their respective paths. 15 Race 124e accommodates a follower pin 126 that is coupled to and projects traversely from an end of a rocker arm 128 which is itself pivotally connected to body 110 by a proximal pin 129. Rocker arm 128 may be in the form of a biasing member, such as a leaf spring, to thereby exert a force upon 20 follower pin 126 relative to body 110 so as to bias follower pin 126 against sloping cam surfaces 125a-125d of race 124e which provides control of the plunger stop positions as further detailed below.

The motion of plunger 120, actuating member 130 and clip 25 150 are modulated by the travel of follower pin 126 through race 124e. Plunger 120, actuating member 130, and clip 150 cannot be displaced until the proximal end portion 123 of plunger 120 is translated distally relative to body 110 by the operator, with sufficient force to overcome the biasing forces of biasing member 118 and rocker arm 128 and displace follower pin 126 along cam surfaces 125a-125d of race 124e. When plunger 120 is so actuated, follower pin 126 is caused to travel clockwise through the aforementioned cams. As follower pin 126 translates along a particular cam channel 35 124a-124d, respective cam surface 125a-125d urges follower pin 126 out of race 124e and exerts a biasing force on rocker arm 128. As follower pin 126 passes from one cam channel 124a-124d to an adjacent cam channel 124a-124d, across the step defined between adjacent cam surfaces 125a-125d, the 40 bias force of the rockers arm 128 drive follower pin 126 against a cam surface 125a-125d, thereby creating an audible/ tactile indication to the user. An audible/tactile indication may be provided for each stage of the firing sequence.

With reference to FIGS. 1 and 2, outer tube 160 of clip 45 applier 100 is a hollow elongated tubular member including a distal end portion 160a, a proximal end portion 160b, and a lumen extending therethrough. Actuation member 130 is slidably disposed at least partially within the lumen of outer tube 160. It is contemplated that outer tube 160 may be rigid or 50 flexible. It is further contemplated that outer tube 160 is a hollow tube with a substantially elliptical or rectilinear traverse cross-sectional profile.

With continued reference to FIGS. 1 and 2, actuation member 130 of clip applier 100 is a solid shaft like member 55 including a distal end portion 130a and a proximal end portion 130b. As mentioned above, distal end portion 130a of actuation member 130 extends through the lumen of outer tube 160, and proximal end portion 130b of actuation member 130 is connected or secured to distal body portion 122 of 60 plunger 120.

As seen in FIGS. 2, 2A, 4 and 5, clip applier includes a set screw 170 disposed in plunger 120 and secured to actuation member 130. In particular, set screw 170 defines a shaped cavity 170a configured to receive a stop or crimp 130c affixed 65 to proximal end 130b of actuation member 130, whereby set screw 170 is axially and rotatably fixed with respect to actua-

8

tion member 130. Additionally, a proximal end 160c of outer tube 160 is received and secured within a distal end of set screw 170. It is contemplated that proximal end 160c of outer tube 160 is threadably connected to set screw 170. In this manner, as set screw 170 is rotated with respected to outer tube 160, outer tube 160 is axially displaced relative to actuation member 130. In this manner, set screw 170 functions to enable fine tuning of the position of a distal tip or distal end portion 130a of actuation member 130 relative to distal end 160a of outer tube 160.

With reference to FIGS. 3 and 7A, working tip 140 of clip applier 100 is operatively supported at its proximal end portion 140a to a distal end 160a of outer hollow tube 160. Working tip 140 has a substantially centrally disposed lumen 144 having a transverse cross-sectional profile, at the distal end of working tip 140, that is configured to retain clip 150. The shape of working tip 140 is described in greater detail hereinbelow.

With reference to FIGS. 3, 7A and 7B, lumen 144 of working tip 140 is enclosed near a proximal end portion 140b thereof. Meanwhile, a distal end portion 140a of working tip 140 has been cut away to reveal or expose lumen 144, thereby defining a channel 146 having a pair of contact or cam surfaces 141 along which a cross beam 155 of suture clip 150 can travel, as will be described in greater detail below.

With reference to FIG. 7A, channel **146** of working tip **140** includes a base wall **146**a and a pair of upstanding side walls **146**b, **146**c. Each side wall **146**b, **146**c defines a respective ledge **146**d, **146**e, extending into lumen **146** and extending substantially along the length of working tip **140**.

With reference to FIG. 7B, upstanding side walls 146b, 146c have material removed therefrom defining a cam surface 141 along which traverse cross beams 155 of clip 150 can travel. Cam surface 141 includes, beginning with the proximal-most portion of the cam surface 141, a proximal shoulder 141a, a proximal retaining groove 141b, a medial incline 141c, a distal retaining groove 141d, and a distal ejection shoulder 141e.

As shown in FIG. 6, a suture clip 150, according to the present disclosure, includes a clip beam 151 connected to a clip channel 152. A distal end 152a of clip channel 152 has a substantially U-shaped traverse cross-sectional profile with a base wall 152b and a pair of spaced apart upstanding side walls 152c, 152d. The upstanding side walls 152c, 152d of clip channel 152 each have a rounded forward edge 153, a distal retaining step or shoulder 156, and a clip beam recess 157 cut into the upper surface thereof. Clip channel 152 is dimensioned for slidable reception in lumen 144 of working tip 140 such that upstanding side walls 152c, 152d of clip channel 152 are disposed beneath ledges 146d, 146e of side walls 146b, 146c of channel 146 of working tip 140.

Clip beam 151 has a pair of transverse cross beams 155 extending therefrom at a location disposed proximally from distal tip 154 of clip beam 153. When the components of clip 150 are assembled, clip beam 151 is disposed between upstanding side walls 152c, 152d of clip channel 152. Further, clip beam 151 and clip channel 152 are secured or coupled at their proximal ends and separable at their distal ends. The proximal ends of clip beam 151 and clip channel 152 are coupled to one another by retaining bends 158 extending from side walls 152c, 152d. It is contemplated that the proximal ends of clip beam 151 and clip channel 152 may be coupled by a pin, chemical adhesive, weld, or other coupling or laminating method known in the art.

It is contemplated that clip beam **151** is constructed of a flexible, resilient, spring-like-material urging or biasing the assembled clip into a "closed" configuration wherein the

Q

distance between the distal ends of the clip beam **151** and clip channel **152** is minimized. It is further contemplated that clip beam **151** may be substantially composed of a permanent material such as a metal (stainless steel or titanium) or a polymer, or a non-permanent material such as bio-absorbable ⁵ natural or manmade polymer.

Referring now to FIGS. 8A-8D, a method of using clip applier 100 and suture clip 150 is shown and will be discussed. Initially, as shown in FIG. 8A, a clip 150 is placed or loaded into the lumen 144 of the working tip 140 either by manually inserting clip 150 or by an automatic dispensing mechanism such that the proximal end of clip 150 abuts the distal end of the actuation member 130 and the lateral cross beams 155 of clip 150 rest within cam surfaces 141 of working tip 140. In particular, lateral cross-beams 155 of clip 150 rest in the nadir 141b of cam surfaces 141, between a proximal shoulder 141a and medial incline 141c of cam surface 141. In this initial configuration, plunger 122 is disposed at a proximal most position relative to body 110 such that follower pin 126 is disposed in a first cam channel portion 124a of race 124e (see FIG. 5).

Next, as shown in FIGS. **5** and **8**B, as plunger **120** is depressed (i.e., translated distally relative to body **110**), follower pin **126** is translated through race **124***e* from first cam channel portion **124***a* to second cam channel portion **124***b*. As follower pin **126** is translated from first cam channel portion **124***a* to second cam channel portion **124***b*, an audible/tactile indication is created, in the manner described above.

By depressing plunger 120 to translate plunger 120 distally, actuation member 130 is also translated distally which translates clip 150 distally such that cross-beam 155 is disposed upon distal retaining groove 141d of cam surfaces 141 of working tip 140. The translation of cross beam 155 to distal retaining groove 141d urges clip beam 151 away from beam channel 152 which is retained by ledges 146d, 146e. This separates distal beam tip 154 from clip channel 152 to define opening 127 exposing suture retaining step 156.

Next, as shown in FIG. 8C, clip applier 100 is maneuvered 40 to capture a suture 131 in opening 127 or a suture 131 is moved into opening 127. With suture 131 disposed within opening 127, plunger 120 is further depressed (i.e., translated distally relative to body 110), thereby translating follower pin **126** through race **124***e* from second cam channel portion **124***b* to third cam channel portion 124c. As follower pin 126 is translated from second cam channel portion 124b to third cam channel portion 124c, an audible/tactile indication is created, in the manner described above. As plunger 120 is further depressed, actuating member 130 is further translated in a distal direction thereby translating clip 150 distally until cross beams 155 are moved onto respecting distal ejection shoulders 141e of working tip 140, thus partially closing clip 150 (i.e., approximating clip beam 151 and clip channel 152) onto suture 131.

Next, as plunger 120 is fully depressed, follower pin 126 is translated from third cam channel portion 124c to fourth channel portion 124d. As follower pin 126 is translated from third cam channel portion 124c to fourth cam channel portion 60 124d, an audible/tactile indication is created, in the manner described above. As plunger 120 is fully depressed, actuating member 130 is fully translated in a distal direction to a distalmost portion of its stroke and ejecting clip 150 from the working tip 140. As clip 150 is fully ejected, suture 131 is 65 captured between clip beam 151 and clip channel 152 of clip 150.

10

Finally, as shown in FIG. 8D, after clip 150 has been ejected from working tip 140 of clip applier 100, clip 150 securely holds a suture 131 between clip channel 151 and clip beam 152.

Turning now to FIGS. 9-11, an embodiment of a suture clip 250 and a working tip 240 for a clip applier, according to another embodiment of the present disclosure, is shown and described. Working tip 240 has a substantially hook-like profile. In particular, with reference to FIG. 9, the hook-like profile of working tip 240 includes a transverse recess or notch 242 defined by a pair of coincident curved surfaces 242a, 242b, wherein recess 242 is angled or oriented so as to define a proximally extending hook 244. As shown in FIG. 9, working tip 240 further defines a longitudinally axially extending slot 246 configured and dimensioned to receive suture clip 250 therein.

As shown in FIG. 11, suture clip 250 has a substantially rectangular, flattened profile having a distal end portion and proximal end portion. Suture clip 250 includes a pair of spaced apart legs 252, 254 joined to one another by a crown or backspan 256. Legs 252, 254 are separated from one another to define a slot 258 therebetween. Each leg 252, 254 includes a respective angled surface 252a, 254a thereby defining a widened mouth or entry 258a of slot 258 for better receiving a suture 131 therein. A proximal end of slot 258 is dimensioned so as to cinch and retain suture 131 therein. Backspan 256 of suture clip 250 may have a generally V-shaped profile.

In use, as shown in FIGS. 9 and 10, with suture clip 250 loaded into slot 246 of working tip 240, such that mouth 258a of suture clip 250 is disposed proximal of notch 242 of working tip 240, a suture 131 is placed into notch 242 of working tip 240. Preferably, suture 131 is disposed at a base of notch 242. With suture 131 so positioned, an actuating member of the clip applier is manipulated to engage suture clip 250 and urge suture clip 250 in a distal direction. Suture clip 250 is translated distally such that suture is first received in mouth 258a and then advanced into the proximal end of slot 258 of suture clip 250. With suture clip 250 secured to suture 131, the actuation member of the clip applier may be retracted and working tip 240 may be disengaged from suture clip 250.

Turning now to FIGS. 12 and 13, another embodiment of a suture clip, according to the present disclosure, is generally designated as suture clip 350. Suture clip 350 includes a leaf spring 351, a beam 352, and a lever 353. The leaf spring 351 is fixably attached to a proximal end 352b of beam 352 by, for example, a weld. Meanwhile, leaf spring 351 is fixably attached to a distal end 353a of lever 353 by, for example, a weld. Beam 352 defines a traverse groove 352c formed near distal end 353a and being configured to receive a suture therein. It is further contemplated that the attachment of beam 352 to lever 353 and leaf spring 351 may be achieved using a pin, staple, chemical adhesive or other attachment method known in the art.

As shown in FIG. 12, in its neutral configuration or at rest, leaf spring 351 maintains the distal ends 352a, 353a of beam 352 and lever 353 in contact with one another and maintains the proximal ends 352b, 353b of beam 352 and lever 353 separate from one another. With reference to FIG. 13, when a compressive force is applied to proximal ends 352b, 353b of beam 352 and lever 353, the distal ends 352c of beam 352 and lever 353 are separated from one another to open suture clip 350 and define a suture entry area 355. With suture clip 350 in an open condition, a suture 131 may be inserted through suture entry area 355 and captured into the suture retaining groove 352d of beam 352. Once the compressive force is

removed, leaf spring acts on beam 352 and lever 353 to close the suture retaining area 355 and secure the suture therebetween

Turning now to FIG. **14**, yet another embodiment of a suture clip, according to the present disclosure, is generally 5 designated as suture clip **450**. Suture clip **450** includes a backspan or crown **452** and a pair of spaced apart legs **454**, **456** extending therefrom, with each leg **454**, **456** being divided into a pair of spaced apart first and second legs **454***a*, **454***b*, and first and second legs **456***a*, **456***b*, respectively.

As seen in FIG. 14, first and second legs 454a, 454b of leg 454 are separated from one another by a relatively smooth longitudinally extending slot 454c. First and second legs 456a, 456b of leg 456 are separated from one another by a relatively smooth longitudinally extending slot 456c.

Further as seen in FIG. 14, first leg 454a of leg 454 and first leg 456a of leg 456 are separated from one another by a longitudinally extending slot 458 having an undulating or sinusoidal profile. Also, second leg 454b of leg 454 and second leg 456b of leg 456 are separated from one another by 20 a longitudinally extending slot 460 having an undulating or sinusoidal profile.

Suture clip **450** further includes a pair of longitudinally extending channels **462**, **464** formed in opposed outer surfaces thereof and extending along an entire length thereof. 25 Each channel **462**, **464** is defined by a pair of opposed ledges or shoulders **462***a*, **462***b* and **464***a*, **464***b*, respectively. Each ledge or shoulder **462***a*, **462***b* and **464***a*, **464***b* of respective channel **462**, **464** includes a respective cam surface **463***a*, **463***b* (the cam surfaces of ledge or shoulder **464***a*, **464***b* not 30 being visible in FIG. **14**) projecting towards one another.

As shown in FIG. 14 and as can be appreciated by one skilled in the art, suture clip 450 may be used with a clip applier that is configured to bias leg 454 and leg 456 apart from one another to receive a suture 131 therebetween. It is contemplated that as suture clip 450 is advanced in a distal direction relative to the clip applier that legs 454, 456 may be biased apart from one another as the cam surfaces 463a, 463b of legs 454b, 456b and the cam surfaces of legs 454a, 456a ride against a corresponding cam surface of the clip applier.

Although the illustrative embodiments of the present disclosure have been described herein with reference to the accompanying drawings, it is to be understood that the disclosure is not limited to those precise embodiments, and that various other changes and modifications may be effected 45 therein by one skilled in the art without departing from the scope or spirit of the disclosure.

Those skilled in the art, having the benefit of the teachings of the present invention as herein and above set forth, may effect modifications thereto. Such modifications are to be 50 construed as lying within the scope of the present invention, as defined by the appended claims.

Although specific features of the suture clip applier are shown in some of the drawings and not in others, this is for convenience only as each feature may be combined with any 55 or all of the other features in accordance with the aspects of the present disclosure. Other embodiments will occur to those skilled in the art and are within the following claims.

It is to be understood that the illustrated embodiments are for the purpose of example, and that numerous other configurations of wound dressing systems having a plurality of beads exist. Accordingly, the illustrated and described embodiments are not intended to limit the scope of the inventive subject matter only to those embodiments.

What is claimed is:

1. A suture clip applier, comprising:

a housing;

12

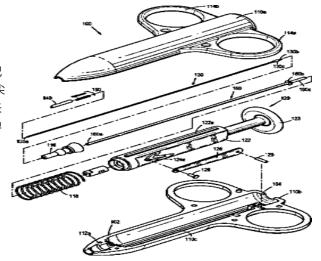
- an elongated plunger slidably supported in the housing, the plunger having a distal end portion disposed within the housing and a proximal end portion extending from a proximal end of the housing, wherein the plunger defines a race formed in a surface thereof, the race includes a plurality of portions each defining a cam surface of varying depth;
- a hollow tube extending distally from the housing and defining a lumen therethrough;
- an actuation member having a distal end extending into the hollow tube and a proximal end operatively engaged with the plunger;
- a working tip coupled to a distal end of the hollow tube, wherein the working tip has a substantially U-shaped transverse cross-sectional profile defining a channel having a base wall and a pair of spaced apart side walls, wherein the working tip defines:
 - a lower contact surface along an internal face of the base wall, and
 - an upper contact surface defined along an upper end surface of each side wall, wherein the upper contact surface of each side wall includes:
 - a distal recess formed near a distal end of thereof and a proximal recess formed proximal of the distal recess; and
 - an internal retaining surface on both side walls parallel to the base wall,
- wherein the distal end of the actuation member is configured to engage a suture clip loaded into the working tip; and
- a rocker arm having a distal end portion and proximal end portion, the rocker arm has a follower pin extending therefrom near the distal end portion thereof and a retaining pin near the proximal end portion thereof,
 - whereby the rocker arm is pivotally attached to the housing by the retaining pin and the follower pin is slidably disposed with in the race of the plunger to modulate the motion of the plunger and actuation member.
- of legs **454***b*, **456***b* and the cam surfaces of legs **454***a*, **456***a* ride against a corresponding cam surface of the clip applier. Although the illustrative embodiments of the present disclosure have been described herein with reference to the accompanying drawings, it is to be understood that the disression and the cam surfaces of legs **454***a*, **456***a* to the clip applier according to claim **1**, wherein the race defines four interconnected cam portion, with each cam portion having a start position and an end position and shallowest at its respective end position.
 - 3. The clip applier according to claim 1, wherein the rocker arm is elastically deformable laterally from the plunger thereby providing a biasing force upon the follower pin and plunger relative to the body.
 - 4. The clip applier according to claim 1, further comprising finger loops extending from the housing.
 - 5. The clip applier according to claim 1, wherein the actuation member is configured to transmit axial translative forces to the suture clip.
 - **6**. The clip applier according to claim **1**, further comprising a biasing member disposed within the housing and providing a proximal bias upon the plunger relative to the housing.
 - 7. The clip applier according to claim 6, wherein the biasing member is a coil spring.
 - **8**. The clip applier according to claim **1**, wherein the distal recess and the proximal recess formed in each vertical side wall are interconnected by a camming surface.
 - 9. A suture clip applier system, comprising:
 - a suture clip applier for filing a suture clip onto a suture, the clip applier including:
 - a housing;
 - an elongated plunger slidably supported in the housing, the plunger having a distal end portion disposed within the housing and a proximal end portion extend-

ing from a proximal end of the housing, the plunger defining a race formed in a surface thereof, the race including a plurality of portions each defining a cam surface of varying depth;

- a hollow tube extending distally from the housing and 5 defining a lumen therethrough;
- an actuation member having a distal end extending into the hollow tube and a proximal end operatively engaged with the plunger;
- a working tip coupled to a distal end of the hollow tube, wherein the working tip has a substantially U-shaped transverse cross-sectional profile defining a channel having a base wall and a pair of spaced apart side walls, wherein the working tip defines:
 - a lower contact surface along an internal face of the base wall, and
 - an upper contact surface defined along an upper end surface of each side wall, wherein the upper contact surface of each side wall includes:
 - a distal recess formed near a distal end thereof and a proximal recess formed proximal of the distal recess; and
 - an internal retaining surface on both side walls parallel to the base wall,
- wherein the distal end of the actuation member is configured to engage a suture clip loaded into the working tip; and
- a rocker arm having a distal end portion and proximal end portion, the rocker arm has a follower in extending therefrom near the distal end portion thereof and a retaining pin near the proximal end portion thereof,
 - whereby the rocker arm is pivotally attached to the housing by the retaining in and the follower in is slidably disposed with in the race of the plunger to modulate the motion of the plunger and actuation member; and
- a suture clip loadable into and deployable from the working tip, the suture clip including:
 - an elongated flexible beam having a distal end portion, a proximal end portion, a top surface and a bottom surface, the flexible beam further including a pair of arms extending laterally therefrom; and

14

- an elongated rigid channel, wherein the elongated rigid channel has a substantially U-shaped transverse cross-sectional profile with a horizontal base wall and vertical side walls having a distal end portion and proximal end portion, wherein each vertical side wall defines a holding step formed in an upper edge thereof;
- wherein the flexible beam and the channel are coupled to one another at their proximal end portions;
- wherein the pair of arms of the flexible beam are in registration with a corresponding holding step formed in the upper edge of the vertical side walls; and
- wherein, as the suture clip is urged in a distal direction relative to the working tip, the flexible beam is splayed apart from the channel to open the suture clip for receipt of a suture therein.
- 10. The suture clip applier system according to claim 9, wherein the race defines four interconnected cam portion, with each cam portion having a start position and an end position and each cam is deepest at its respective start position and shallowest at its respective end position.
- 11. The suture clip applier system according to claim 9, wherein the rocker arm of the clip applier is elastically deformable laterally from the plunger thereby providing a biasing force upon the follower pin and plunger relative to the body.
- 12. The suture clip applier system according to claim 9, wherein the clip applier further comprises a biasing member disposed within the housing and providing a proximal bias upon the plunger relative to the housing.
- 13. The suture clip applier system according to claim 9, wherein the distal recess and the proximal recess formed in each vertical side wall are interconnected by a camming surface.
- 14. The suture clip applier system according to claim 9, wherein a proximal end portion of the pair of vertical sides walls of the channel of the suture clip include inwardly projecting lips for retaining the proximal end portion of the beam within the channel.
- 15. The suture clip applier system according to claim 9, wherein the pair of arms of the suture clip project beyond the pair of vertical side walls of the channel thereof.


* * * * *

专利名称(译)	缝线夹应用程序			
公开(公告)号	US8734469	公开(公告)日	2014-05-27	
申请号	US12/897868	申请日	2010-10-05	
[标]申请(专利权)人(译)	柯惠有限合伙公司			
申请(专利权)人(译)	泰科医疗集团LP			
当前申请(专利权)人(译)	COVIDIEN LP			
[标]发明人	PRIBANIC RUSSELL MARCZYK STANISLAW			
发明人	PRIBANIC, RUSSELL MARCZYK, STANISLAW			
IPC分类号	A61B17/10			
CPC分类号	A61B2017/0488 A61B17/0487			
助理审查员(译)	OU , JING			
优先权	61/250894 2009-10-13 US			
其他公开文献	US20110087242A1			
外部链接	Espacenet USPTO			

摘要(译)

提供了缝合夹施加器,缝合夹以及它们在内窥镜或腹腔镜手术期间用于固定缝合线的方法,其中该方法包括提供缝合线施夹器的步骤,该缝线夹施加器具有构造成保持和点燃缝线夹的工作尖端;提供具有偏置闭合配置的缝合夹;将缝合夹装入夹具施工器的工作尖端;将缝合夹相对于工作尖端向远侧平移到第一位置,其中缝合夹张开;将缝合线插入打开的缝线夹中;并且将缝合夹相对于工作尖端向远侧平移,使得缝合夹从工作尖端弹出并偏置到闭合构型以闭合并保持缝合线。

