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A system and method for automated image analysis which
may enhance, for example, capsule endoscopy diagnosis. The
system and methods may reduce the time required for diag-
nosis, and also help improve diagnostic consistency using an
interactive feedback tool. Furthermore, the system and meth-
ods may be applicable to any procedure where efficient and
accurate visual assessment of a large set of images is required.
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SYSTEM AND METHOD FOR AUTOMATED
DISEASE ASSESSMENT IN CAPSULE
ENDOSCOPY

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] This application claims priority to U.S. Provisional
Application No. 61/223,585 filed Jul. 7, 2009, the entire
content of which is hereby incorporated by reference.

FEDERAL FUNDING

[0002] This invention was made with U.S. Government
support of Grant No. 5R21EB008227-02, awarded by
National Institutes of Health. The U.S. Government has cer-
tain rights in this invention.

BACKGROUND
[0003] 1. Field of Invention
[0004] The current invention relates to systems and meth-

ods of processing images from an endoscope, and more par-
ticularly automated systems and methods of processing
images from an endoscope.

[0005] 2. Discussion of Related Art

[0006] The contents of all references, including articles,
published patent applications and patents referred to any-
where in this specification are hereby incorporated by refer-
ence.

[0007] There have been several capsules developed for
“blind” collection of diagnostic data in the GI tract. For
example the Medtronic Bravo (recently acquired by GIVEN)
has been developed to make simple chemical measurements
(e.g. pH). The clinical utility of these capsules has been lim-
ited due to the lack of accurate anatomical localization and
visualization. More recent wireless Capsule Endoscopy (CE)
allows visual imaging access into the gastrointestinal (GI)
tract, especially the small bowel. A disposable CE capsule
system, for example, consists of a small color camera, light-
ing electronics, wireless transmitter, and a battery. The first
small bowel capsule (the PillCam small bowel (SB) M2A,
GIVEN Imaging Inc.) measured 26 mm in length and 11 mm
in diameter. Similarly sized competing capsules (e.g. the
clinically approved Olympus EndoCapsule) have since been
introduced. Prototype capsules still under development
include new features such as active propulsion and wireless
power transmission, and are designed for imaging the small
bowel, the stomach, and the colon.

[0008] Wireless Capsule Endoscopy (CE) allows visual
imaging access into the gastrointestinal (GI) tract. A CE
system FIG. 1, 110 and 120 (G. Iddan, G. Meron, A.
Glukhovsky, and P. Swain, “Wireless capsule endoscopy,”
Nature, vol. 405, no. 6785, pp. 417, 2000) includes a small
color camera, light source, wireless transmitter, and a battery
in a capsule only slightly larger than a common vitamin pill.
The capsule is taken orally, and is propelled by peristalsis
along the small intestine. It transmits approximately 50,000
images over the course of 8 hours, using radio frequency
communication. The images may be stored on an archiving
device, consisting of multiple antennae and a portable storage
system, attached to the patient’s abdomen for the duration of
the study. Upon completion, the patient may return the col-
lecting device to the physician who transfers the accumulated
data to the reviewing software on a workstation for assess-
ment and interpretation. Due to limitations in the power sup-
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ply of the capsule, image resolution (576x576) as well as the
video framerate (2 fps) are low. This makes evaluation of data
a tedious and time consuming (usually 1-2 hours) process.
Clinicians typically require more than one view of a pathol-
ogy for evaluation. The current software (Given Imaging,
“Given imaging Itd.,” http://www.givenimaging.com, March
200) may allow for consecutive frames to be viewed simul-
taneously. However, due to the low frame rate, neighboring
images may not necessarily contain the same areas of interest
and the clinician is typically left toggling between images in
the sequence, thus making the process even more time con-
suming.

[0009] Unlike endoscopy, CE is a non-invasive outpatient
procedure. Upon completion of an examination, the patient
returns the collecting device to the physician who transfers
the accumulated data to the reviewing software on a worksta-
tion for assessment and interpretation.

[0010] The capsule analysis software from the manufactur-
ers includes features for detecting luminal blood, image struc-
ture enhancement, simultaneous multiple sequential image
views, and variable rate of play-back of the collected data.
Blood and organ boundary detection have been a particular
focus of interest.

[0011] The typical CE study reading time is reported to be
one to two hours. In addition to being a tedious and time
consuming process, detection rates may also vary among
clinicians, especially for early stage pathology. Features for
reducing assessment time, including variable rate video play-
back and multiple simultaneous image frame views (1-4),
have been investigated both by capsule manufacturers and in
the literature. However, these have proven to be of limited
benefit.

[0012] As CE grows in popularity and as miniaturized sen-
sors and imagers improve, there will be a commensurate
growth in the amount of CE data that must be evaluated. There
is thus a corresponding need to improve the effectiveness,
efficiency, and quality of CE diagnosis by reducing reading
time and complexity, and by improving accuracy and consis-
tency of assessment of CE studies. There is a clear role and
need for computational support methods, including machine
learning and computer vision, to improve off-line analysis
and facilitate more accurate and consistent diagnosis.

SUMMARY

[0013] Anautomated method of processing images from an
endoscope according to an embodiment of the current inven-
tion includes receiving one or more endoscopic images by an
image processing system, processing each of the endoscopic
images with the image processing system to determine
whether at least one attribute of interest is present in each
image that satisfies a predetermined criterion, and classifying
the endoscopic images into a reduced set of images each of
which contains at least one attribute of interest and a remain-
der set of images each of which is free from the attribute.

[0014] An endoscopy system according to an embodiment
ofthe current invention includes an endoscope and a process-
ing unit in communication with the endoscope. The process-
ing unit includes executable instructions for detecting an
attribute of interest. In response to receiving a plurality of
endoscopic images from the endoscope and based on the
executable instructions, the processing unit performs a deter-
mination of whether at least one attribute of interest is present
in each image that satisfies a predetermined criterion and the
processing unit performs a classification of the plurality of
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endoscopic images into a reduced set of images each of which
contains at least one attribute of interest and a remainder set of
images each of which is free from at least one attribute of
interest.

[0015] Inyet another embodiment of the current invention,
a computer readable medium stores executable instructions
for execution by a computer having memory. The medium
stores instructions for receiving one or more endoscopic
images, processing each of the endoscopic images to deter-
mine whether at least one attribute of interest is present in
each image that satisfies a predetermined criterion, and clas-
sifying the endoscopic images into a reduced set of images
each of which contains at least one attribute of interest and a
remainder set of images each of which is free from at least one
attribute of interest.

BRIEF DESCRIPTION OF THE DRAWINGS

[0016] The invention may be better understood by reading
the following detailed description with reference to the
accompanying figures, in which:

[0017] FIG. 1 depicts conventional endoscopy imaging
devices;

[0018] FIG. 2 depicts illustrative images from endoscopy
imaging devices;

[0019] FIG. 3 depicts illustrative images from endoscopy
imaging devices showing Crohn’s disease lesions of increas-
ing severity;

[0020] FIG. 4 depicts illustrative images from endoscopy
imaging devices;

[0021] FIG. 5 depicts illustrative images from endoscopy
imaging devices with a region of interest highlighted;
[0022] FIG. 6 depicts an illustrative CE image represented
by 6 DCD prominent colors, and an edge intensity image with
2x2 sub-blocks for EHD filters;

[0023] FIG. 7 depicts an illustrative graph showing
Boosted Registration Results;

[0024] FIG. 8 depicts an example of information flow in an
embodiment of the current invention;

[0025] FIG. 9 depicts illustrative images from endoscopy
imaging devices showing the same lesion in different images
and a ranking of lesion severity;

[0026] FIG. 10 depicts illustrative images from endoscopy
imaging devices where the images are ranked in increasing
severity;

[0027] FIG. 11 depicts illustrative images from endoscopy
imaging devices where the images are ranked in increasing
severity;

[0028] FIG. 12 depicts an expanded view of feature extrac-
tion according to an embodiment of the current invention;
[0029] FIG. 13 depicts illustrative lesion images and the
effect of using adaptive thresholds on the edge detectors
responses;

[0030] FIG. 14 depicts an illustrative information flow dia-
gram that may be used in implementing an embodiment of the
present invention;

[0031] FIG. 15 depicts an example of a computer system
that may be used in implementing an embodiment of the
present invention;

[0032] FIG. 16 depicts an illustrative imaging capture and
image processing and/or archiving system according to an
embodiment of the current invention;

[0033] FIG. 17 depicts an illustrative metamatching proce-
dure that may be used in implementing an embodiment of the
current invention;
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[0034] FIG. 18 depicts an illustrative screen shot of a user
interface application that may be used in implementing an
embodiment of the present invention;

[0035] FIG. 19 depicts a sample graph showing estimated
ranks vs. feature vector sum (Z, f) for simulated data;
[0036] FIG. 20 depicts disc images sorted (left to right) by
estimated ranks;

[0037] FIG. 21 depicts illustrative endometrial images;
[0038] FIG. 22 depicts a table showing sample SVM accu-
racy rates; and
[0039] FIG. 23 depicts a table showing sample SVM recall
rates.

DETAILED DESCRIPTION
[0040] Some embodiments of the current invention are dis-

cussed in detail below. In describing embodiments, specific
terminology is employed for the sake of clarity. However, the
invention is not intended to be limited to the specific termi-
nology so selected. A person skilled in the relevant art will
recognize that other equivalent components can be employed
and other methods developed without departing from the
broad concepts of the current invention.

[0041] All references cited herein are incorporated by ref-
erence as if each had been individually incorporated.

[0042] In one embodiment of the invention an automated
method of processing images from an endoscope is disclosed.
The method may include receiving endoscopic images and
processing each of the endoscopic images to determine
whether an attribute of interest is present in each image that
satisfies a predetermined criterion. The method may also
classify the endoscopic images into a set of images that con-
tain at least one attribute of interest and a remainder set of
images which do not contain an attribute of interest.

[0043] FIG. 2 depicts some sample images of the GI tract
using CE. InFIG. 2, 210 depicts a Crohn’s lesion, 220 depicts
normal villi, 230 shows bleeding obscuring details of the GI
system, and 240 shows air bubbles.

[0044] Crohn’s disease (CD) is an inflammatory bowel dis-
ease (IBD) that develops when individuals with a genetic
predisposition are exposed to environmental triggers. Cur-
rently, the environmental triggers are poorly defined. CD can
affect any part of the gastrointestinal tract (upper GI tract,
small bowel and/or colon), although it more frequently
affects the ileum and/or the colon. The mucosal inflammation
is characterized by discrete, well-circumscribed (“punched-
out”) erosions and ulcers. More severe mucosal disease
progresses to submucosal inflammation, leading to compli-
cations, such as strictures, fistulae and perforation. In FIG. 3,
310, 320, 330, and 340 depict images of CD lesions of
increasing severity as also shown in FIG. 9,920, 930, and 940.
[0045] The quality of CE images may be highly variable
due to its peristalsis propulsion, complexity of GI structures
and contents of the GI tract, as well as limitations of the
disposable imager itself 110, 120. As aresult, only arelatively
small percentage of images actually contribute to the clinical
diagnosis. Recent research has focused on developing meth-
ods for reducing the complexity and time needed for CE
diagnosis by removing unusable images or detecting images
of interest. Recent methods of using color information and
applying it on data from 3 CE studies to isolate “non-inter-
esting” images containing excessive food or fecal matter or
air bubbles (Md. K. Bashar, K. Mori, Y, Suenaga, T. Kitasaka,
Y. Mekada, “Detecting Informative Frames from Wireless
Capsule Endoscopic Video Using Color and Texture Fea-
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tures”, in Proc MICCAI, Springer Lecture Notes In Computer
Science (LNCS), vol. 5242, pp. 603-611, 2008). These meth-
ods have been compared with Gabor and discrete wavelet
feature methods. Others describe a method for analyzing
motion detected between the frames using principal compo-
nent analysis to create higher order motion data (L. Igual, S.
Segui, J. Vitria, F. Azpiroz, and P. Radeva, “Eigenmotion-
Based Detection of Intestinal Contractions”, in Proc. CAIP,
Springer LNCS, vol. 4673, pp. 293-300, 2007). They then use
relevance vector machine (RVM) methods to classify con-
traction sequences.

[0046] Some have applied expectation maximization (EM)
clustering on a dataset of around 15,000 CE images for blood
detection (S. Hwang, I. Oh, J. Cox, S. J. Tang, H. F. Tibbals.
“Blood detection in wireless capsule endoscopy using expec-
tation maximization clustering”, in Proc. SPIE, Vol. 6144.
2006). A blood detection method has been reported (Y. S.
Jung, Y. H. Kim, D. H. Lee, J. H. Kim, “Active Blood Detec-
tion in a High Resolution Capsule Endoscopy using Color
Spectrum Transformation” in Proc. International Conference
on BioMedical Engineering and Informmatics, pp. 859-862,
2008). The capsule analysis software from a manufacturer
also includes a feature for detecting luminal blood. Also
presented is a method for detecting GI organ boundaries
(esophagus, stomach, duodenum, jejunum, ileum and colon)
using energy functions (J. Lee, J. Oh, S. K. Shah, X. Yuan, S.
J. Tang, “Automatic Classification of Digestive Organs in
Wireless Capsule Endoscopy Videos”, in Proc. SAC’07,
2007). In addition, other groups have investigated improving
CE diagnosis (M. Coimbra, P. Campos, J. P. Silva Cunha;
“Topographic segmentation and transit time estimation for
endoscopic capsule exams”, in Proc. IEEE ICASSP, 2006; D.
K. Iakovidisa, D. E. Maroulisa, S. A, Karkanis; “An intelli-
gent system for automatic detection of gastrointestinal
adenomas in video endoscopy”, Computers in biology and
medicine; M. M. Zheng, S. M. Krishnan, M. P. Tjoa; “A
fusion-based clinical decision support for disease diagnosis
from endoscopic images”, Computers in biology and medi-
cine,vol.35pp.259-274,2005; J. Berens, M. Mackiewicz, D.
Bell. “Stomach, intestine and colon tissue discriminators for
wireless capsule endoscopy images”, in Proc. SPIE Confi-
rence on Medical Imaging, vol. 5747, pp. 283-290, 2005; H.
Vu, T. Echigo, R. Sagawa. K. Yagi, M. Shiba, K. Hiiguchi, T.
Arakawa, Y. Yagi “Contraction Detection in Small Bowel
from an Image Sequence of Wireless Capsule Endoscopy”, in
Proc. MICCAI, LNCS, vol. 4791, pp. 775-783, 2007).

[0047] Methods for statistical classification, including
motion data into surgical gestures using LDA, Support Vector
Machines, and Hidden Markov models, and applying these
and other statistical learning algorithms to a variety of com-
puter vision problems may be helpful (Lin, H. C., I. Shafran,
T. Murphy, A. M. Okamura, D. D. Yuh, G. D. Hager: “Auto-
matic Detection and Segmentation of Robot-Assisted Surgi-
cal Motions” in Proc. MICCAI, LNCS, vol. XYZW, pp. 802-
810, 2005; L. Lu, G. D. Hager, L. Younes, “A Three Tiered
Approach for Articulated Object Action Modeling and Rec-
ognition”, Advances in Neural Information Processing Sys-
tems, vol. 17, pp. 841-848, 2005. L. Lu, K. Toyama, G. D.
Hager, “A Two Level Approach for Scene Recognition”, in
Proc. IEEE Conference on Computer Vision and Pattern Rec-
ognition, pp. 688-695, 2005).

[0048] One embodiment of the invention includes a tool for
semi-automated, quantitative assessment of pathologic find-
ings, such as, for example, lesions that appear in Crohn’s
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disease of the small bowel. Crohn’s disease may be charac-
terized by discrete, identifiable and well-circumscribed
(“punched-out™) erosions and ulcers. More severe mucosal
disease predicts a more aggressive clinical course and, con-
versely, mucosal healing induced by anti-inflammatory thera-
pies is associated with improved patient outcomes. Auto-
mated analysis may begin with the detection of abnormal
tissue.

[0049] In one embodiment of the invention, automated
detection of lesions and classification are performed using
machine learning algorithms, Traditional classification and
regression techniques may be utilized as well as rank learning
or Ordinal regression. The application of machine learning
algorithms to image data may involve the following steps: (1)
feature extraction, (2) dimensionality reduction, (3) training,
and (4) validation.

Feature Extraction

[0050] One embodiment of this invention includes (1) rep-
resent the data in a format where inherent structure is more
apparent (for the learning task), (2) reduce the dimensions of
the data, and (3) create a uniform feature vector size for the
data (i.e., for example, images of different sizes will still have
a feature vector of the same size). Images exported from CE
for automated analysis may suffer from compression arti-
facts, in addition to noise resulting from the wireless trans-
mission. Methods used for noise reduction include linear and
nonlinear filtering and dynamic range adjustments such as
histogram equalization (M. Sonka, V. Hlavac, and R. Boyle.
Image Processing, Analysis, and Machine Vision. Thomson-
Engineering, 2007).

[0051] One embodiment of this invention include wide
range of color, edge, texture and visual features, such as those
used in the literature for creation of higher level representa-
tions of CE images as described in the following. Coimbra et
al. use MPEG-7 visual descriptors as feature vectors for their
topographic segmentation system (M. Coimbra, P. Campos,
and J. P. S. Cunha. Topographic segmentation and transit time
estimation for endoscopic capsule exams. In Proceedings of
IEEE International Conference on Acoustics, Speech and
Signal Processing, volume 2, pages I1-1I, May 2006; BS Man-
junath, JR Ohm, VV Vasudevan, and A Yamada. Color and
texture descriptors. IEEE Transactions on circuits and sys-
tems for video technology, 11(6):703-715, 2001). Lee et al.
utilize hue, saturation and intensity (HSI) color features in
their topographic segmentation system (J. Lee, J. Oh, S. K.
Shah, X. Yuan, and S. J. Tang. Automatic classification of
digestive organs in wireless capsule endoscopy videos. In
SAC ’07: Proceedings of the 2007 ACM symposium on
Applied computing, pages 1041-1045, New York, N.Y., USA,
2007. ACM). Vu et al. use edge features for contraction detec-
tion (H. Vu, T. Echigo, R. Sagawa, K. Yagi, M. Shiba, K.
Higuchi, T. Arakawa, and Y. Yagi. Contraction detection in
small bowel from an image sequence of wireless capsule
endoscopy. In Proceedings of MICCAI Lecture Notes in
Computer Science, volume 4791, pages 775-783, 2007).
Color and texture features are used by Zheng et al. in their
decision support system (M. M. Zheng, S. M. Krishnan, and
M. P. Tjoa. A fusion-based clinical decision support for dis-
ease diagnosis from endoscopic images. Computers in Biol-
ogy and Medicine, 35(3):259-274, 2005). Color histograms
are also utilized along with MPEG-7 visual descriptors,
Haralick texture features, and a range of other features (S.
Bejakovic, R. Kumar, T. Dassopoulos, G. Mullin, and G.
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Hager. Analysis of crohns disease lesions in capsule endos-
copy images. In International Conference on Robotics and
Automation, ICRA, pages 2793-2798, May 2009; R. Kumar,
P. Rajan, S. Bejakovic, S. Seshamani, G. Mullin, T. Dasso-
poulos, and G. Hager. Learning disease severity for capsule
endoscopy images. In IEEE ISBI 2009, accepted, 2009; S.
Seshamani, P. Rajan, R. Kumar, H. Girgis, G. Mullin, T.
Dassopoulos, and G. D. Hager. A boosted registration frame-
work for lesion matching. In Medical Image Computing and
Computer Assisted Intervention (MICCAI), accepted, 2009;
S. Seshamani, R. Kumar, P. Rajan, S. Bejakovic, G. Mullin, T.
Dassopoulos, and G. Hager. Detecting registration failure. In
IEEE ISBI 2009, accepted, 2009).

[0052] In one embodiment of the invention, a Dominant
Color Descriptor (DCD) is used which clusters neighboring
colors into a small number of clusters. This DCD feature
vector may include the dominant colors, and their variances,
and for edges the Edge Histogram Descriptor (EHD) may be
used which uses 16 non-overlapping bins, for example, accu-
mulating edges in the 0%, 45+, 90+, 135+ directions and
non-directional edges for a total of 80 bins. FIG. 6 shows
images 610 and 630 and their DCD 620 and EHD 640 recon-
structions. In an embodiment MPEG-7 Homogeneous Tex-
ture Descriptor (HTD), and Haralick statistics may be used.
HTD may use a bank of Gabor filters containing 30 filters, for
example, which may divide the frequency space into 30 chan-
nels (6 sections in the angular directionx5 sections in the
radial direction), for example. Haralick statistics may include
measures of energy, entropy, maximum probability, contrast,
inverse difference moment, correlation, and other statistics.
Also color histograms (RGB, HSI, and Intensity), and other
image measures extracted from CE images as feature vectors
may be used.

Dimensionality Reduction

[0053] One embodiment of the invention includes dimen-
sionality reduction. When several types of feature vectors are
combined, feature data is still usually high-dimensional and
may contain several redundancies. Dimensionality reduction
may involve the conversion of the data into a more compact
representation. Dimensional reduction may allow the visual-
ization of data, greatly aiding in understanding the problem
under consideration. For example, through data visualization
one can determine the number of clusters in the data or if the
classes are linearly or non-linearly separable. Also, the elimi-
nation of redundancies and reduction in size of the data vector
may greatly reduce the complexity of the learning algorithm
applied to the data. Examples of reduction methods used in an
embodiment of the invention include, but are not limited to,
Kohonen Self Organizing Maps, Principal Component
Analysis, Locally Linear Embedding, and Isomap (T.
Kohonen, Self-organization and associative memory: 3rd edi-
tion. Springer-Verlag New York, Inc., New York, N.Y., USA,
1989; H. Schneiderman and T. Kanade. Probabilistic model-
ing of local appearance and spatial relationships for object
recognition. In Computer Vision and Pattern Recognition,
1998. Proceedings of the IEEE Computer Society Confer-
ence on, pages 45-51, July 1998; Matthew Turk and Alex
Pentland. Eigenfaces for recognition, Journal of Cognitive
Neuroscience, 3(1):71-86, 1991; Sam T. Roweis and
Lawrence K. Saul. Nonlinear Dimensionality Reduction by
Locally Linear Embedding, Science, 290(5500):2323-2326,
2000; Joshua B. Tenenbaum, Vin de Silva, and John C. Lang-
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ford. A Global Geometric Framework for Nonlinear Dimen-
sionality Reduction. Science, 290(5500): 2319-2323, 2000)

Training

[0054] One embodiment of the invention includes machine
learning or training including the following. There may be
two main paradigms in machine learning: supervised learning
and unsupervised learning. In supervised learning, each point
in the data set may be associated with a label while training.
In unsupervised learning, labels are not available while train-
ing but other statistical priors such as the number of expected
classes may be assumed. Supervised statistical learning algo-
rithms include Artificial Neural Networks (ANN), Support
Vector Machines (SVM), and Linear Discriminant Analysis
(LDA) (Christopher M. Bishop. Pattern Recognition and
Machine Learning (Information Science and Statistics)
Springer, August 2006; M. T. Coimbra and J. P. S. Cunha.
Mpeg-7 visual descriptors contributions for automated fea-
ture extraction in capsule endoscopy. IEEE Transactions on
Circuits and Systems for Video Technology, 16(5):628-637,
May 2006; F Vilarino, P Spyridonos, O Pujol, J Vitria, and P
Radeva. Automatic detection of intestinal juices in wireless
capsule video endoscopy. In ICPR ’06: Proceedings of the
18th International Conference on Pattern Recognition, pages
719-722, Washington, D.C., USA, 2006. IEEE Computer
Society). For unsupervised learning, common methods may
include algorithms such as the k-means and the EM (David A.
Forsyth and Jean Ponce. Computer Vision: A Modern
Approach. Prentice Hall, August 2002; J. A. Lasserre, C. M.
Bishop, and T. P. Minka. Principled hybrids of generative and
discriminative models In Computer Vision and Pattern Rec-
ognition, 2006 IEEE Computer Society Conference on, vol-
ume 1, pages 87-94, June 2006; Zhuowen Tu. Probabilistic
boosting-tree: learning discriminative models for classifica-
tion, recognition, and clustering. In Computer Vision, 2005.
ICCV 2005. Tenth IEEE International Conference on, vol-
ume 2, pages 1589-1596, October 2005). One can apply
supervised learning algorithms to solve classification and
regression problems. Data clustering may be a classic unsu-
pervised learning problem. Two powerful methods for
improving classifier performance include boosting and bag-
ging (Christopher M. Bishop. Pattern Recognition and
Machine Learning (Information Science and Statistics).
Springer, August 2006). Both may be methods of using sev-
eral classifiers together to “vote” for a final decision. Combi-
nation rules include voting, decision trees, and linear and
nonlinear combinations of classifier outputs. These
approaches also provide the ability to control the tradeoff
between precision and accuracy through changes in weights
or thresholds. These methods naturally lend themselves to
extension to large numbers of localized features.

Validation

[0055] One embodiment of the invention includes valida-
tion of the automated system as described in the following
paragraph. During training, the accuracy of the learner may
be measured by the training error. However, a small training
error does not guarantee a small error on unseen data. An
over-fitting problem during training may occur when the cho-
sen model may be more complex than needed, and may result
in data memorization and poor generalization. A learning
algorithm should be validated on an unseen portion of the
data. A learning algorithm that generalizes well may have
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testing error similar to the training error. When the amount of
labeled data is large, the data may be partitioned into three
sets. The algorithm may be trained on one partition and vali-
dated on another partition. The algorithm parameters may be
adjusted during training and validation. The training and the
validation steps may be repeated until the learner performs
well on both of the training and the validation sets. The
algorithm may also be tested on the third partition (Christo-
pher M. Bishop. Pattern Recognition and Machine Learning
(Information Science and Statistics) Springer, August 2006).
With limited labeled data, as is often the case in medical
imaging, K-fold cross-validation method is often employed
(Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern
Classification (2nd Edition). Wiley-Interscience, 2000). The
K-fold method may divide the labeled dataset into K random
partitions of about the same size, and trains the learner on K-1
of those portions, Validation may be performed on the
remaining partition and the entire process may be repeated
while leaving out a different partition each time. Typical
values of K are on the order of 10. When K is equal to the
number of data points, the validation may be referred to as the
leave-one-out technique. The final system may be trained on
the entire dataset. Although the exact accuracy of that system
cannot be computed, it is expected to be close to, and more
accurate than the system tested by the K-fold cross validation.

[0056] In one embodiment of the invention, support vector
machines (SVM) are used to classify CE images into those
containing lesions, normal tissue, and food, bile, stool, air
bubbles, etc. (extraneous matter) (S. Bejakovic, R. Kumar, T.
Dassopoulos, G. Mullin, and G. Hager. Analysis of crohns
disease lesions in capsule endoscopy images. In International
Conference on Robotics and Automation, ICRA, pages 2793-
2798, May 2009). DCD and variances, Haralick features,
EHD, and HTD feature vectors may be in one embodiment of
the invention and used directly as feature vectors for binary
classification (e.g., for example, lesion/nonlesion).

[0057] In one embodiment of the invention, given a region
of interest (ROI), the system determines whether or not a
match is found by automatic registration to another frame is
truly another instance of the selected ROI. The embodiment
may use the following. Using a general discriminative learn-
ing model, an ROI pair may be associated with a set of metrics
(e.g., but not limited to, pixel, patch, and histogram based
statistics) and train a classifier that may discriminate misreg-
istrations from correct registrations using, for example, ada-
boost (R. E. Schapire and Y. Singer. Improved boosting algo-
rithms using confidence-rated predictions. In Computational
learning theory, pages 80-91, 1998; Richard O. Duda, Peter E.
Hart, and David G. Stork. Pattern Classification (2nd Edi-
tion). Wiley-Interscience, 2000). The classifier may be
extended with Haralick features and MPEG-7 descriptors
discussed above to create a meta registration technique to
boost the retrieval rate (S. Seshamani, P. Rajan, R. Kumar, H.
Girgis, G. Mullin, T. Dassopoulos, and G. D. Hager. A
boosted registration framework for lesion matching. In Medi-
cal Image Computing and Computer Assisted Intervention
(MICCALI), accepted, 2009). After region matching using, for
example, five different standard global registration methods
(e.g., but not limited to, template matching, mutual informa-
tion, two weighted histogram methods, and SIFT), the trained
classifier may be applied to determine if any of the matches
are correct. The correct matches are then ranked using ordinal
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regression to determine the best match. Experiments have
shown that the meta-matching method outperforms any
single matching method.

[0058] In one embodiment of the invention a severity
assessment is accomplished through the following. A semi-
automatic framework to assess the severity of Crohn’s lesions
may beused (R. Kumar, P. Rajan, S. Bejakovic, S. Seshamani,
G. Mullin, T, Dassopoulos, and G. Hager. Learning disease
severity for capsule endoscopy images. In IEEE ISBI 2009,
accepted, 2009) The severity rank may be based on pairwise
comparisons among representative images. Classification
and ranking, have been formulated as problems of learning a
map from a set of features to a discrete set of label, for
example, for face detection [3], object recognition [4], and
scene classification (B. S. Lewis. Expanding role of capsule
endoscopy in inflammatory bowel disease. World Journal of
Gastroenterology, 14(26):4137-4141, 2008; R Eliakim, D
Fischer, and A Suissa. Wireless capsule endoscopy is a supe-
rior diagnostic tool in comparison to barium follow through
and computerized tomography in patients with suspected
crohn’s disease, European J Gastroenterol Hepatol, 15:363-
367,2003; I Chermesh and R Eliakim. Capsule endoscopy in
crohn’s disease—indications and reservations 2008 Journal
of Crohn’s and Colitis, 2:107-113, 2008). In one embodiment
ranking may be treated as a regression problem to find a
ranking function between a set of input features and a con-
tinuous range of ranks or ssessment. Assuming a known rela-
tionship < (e.g. global severity rating
mild<moderate<severe) on a set of Images I, a real-valued
ranking function R may be computed such that [ <I &P
= R(L)<R(,). The ranking function may be based on
empirical statistics of the training set. A preference pair (X, y
) EP, where P is the transitive closure of P, may be thought of
as a pair of training examples for a binary classifier. For
example, given,

0 eP
B(p)={ ?

1 otherwise

A classifier C may be trained such that for any pEE
CUL)-Bx3))

@, 1)-1-B({x))

Using the classifier directly above, a continuous valued rank-
ing may be easily produced as R()=2,_,”"C(L, I)/n. R may be
the fraction of values of the training set that are “below” I
based on the classifier. Thus, R may also be the empirical
order statistic of I relative to the training set. The formulation
above may be paired with nearly any binary classification
algorithm, SVM, color histograms of annotated regions of
interest, and the global severity rating (Table I) may also be
used.

TABLE 1
Surrounding
Ulcer Inflammation
Image  Sur- Pres/  Sur- Sever- Global
LesionID ID/ROI face Depth  Abs. face ity Rating
<4 super- present <4  mild mild

ficial
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TABLE I-continued

Surrounding
Ulcer Inflammation
Image  Sur- Pres./ Sur- Sever-  Global
LesionID ID/ROI face Depth  Abs. face ity Rating
Ya-Ys  inter- absent  Y4-Y%% moder- moder-
mediate ate ate
>ls deep >i5 severe  severe
[0059] In one embodiment of the invention machine learn-

ing applications are utilized for image analysis. For example,
color information in data from images may be used to isolate
“non-interesting” images containing excessive food, fecal
matter or air bubbles (Md. K. Bashar, K. Mori, Y. Suenaga, T.
Kitasaka, and Y. Mekada. Detecting informative frames from
wireless capsule endoscopic video using color and texture
features. In Proc MICCAI, Springer Lecture Notes In Com-
puter Science (LNCS), volume 5242, pages 603-611, 2008).
This may be accomplished, for example, through Gabor and
Discrete Wavelet based features methods. Principal Compo-
nent Analysis may be used to detect motion between the
image frames to create higher order motion data, and then to
use the Relevance Vector Machines (RVM) method to clas-
sify contraction sequences (L. Igual, S. Segui, J. Vitria, F.
Azpiroz, and P. Radeva. Figenmotion-Based Detection of
Intestinal Contractions. In Proc. CAIP, Springer Lecture
Notes In Computer Science (LNCS), volume 4673, pages
293-300, 2007). Also, applying Expectation Maximization
(EM) clustering on the image dataset for blood detection (S.
Hwang, J. H. Oh, J. Cox, S. J. Tang, and H. F. Tibbals. Blood
detection in wireless capsule endoscopy using expectation
maximization clustering. In Proceedings of SPIE, pages 577-
587. SPIE, 2006). And blood detection methods using for
example, color spectrum transformation (Y. S. Jung, Y. H.
Kim, D. H. Lee, and J. H. Kim. Active blood detection in a
high resolution capsule endoscopy using color spectrum
transformation. In Proc. BMEI, volume 1, pages 859-862,
2008). Methods for detecting GI organ boundaries (e.g., but
not limited to, esophagus, stomach, duodenum, jejunum,
ileum and colon) using, for example, energy functions (J. Lee,
J. Oh, S. K. Shah, X. Yuan, and S. J. Tang. Automatic classi-
fication of digestive organs in wireless capsule endoscopy
videos. In SAC ’07: Proceedings of the 2007 ACM sympo-
sium on Applied computing, pages 1041-1045, New York,
N.Y., USA, 2007. ACM). Use SVM to segment the GI tract
boundaries (M. Coimbra, P. Campos, and J. P. S. Cunha.
Topographic segmentation and transit time estimation for
endoscopic capsule exams. In Proceedings of IEEE Interna-
tional Conference on Acoustics, Speech and Signal Process-
ing, volume 2, pages II-1I, May 2006; M. T. Coimbra and J. P.
S. Cunha. Mpeg-7 visual descriptors contributions for auto-
mated feature extraction in capsule endoscopy. IEEE Trans-
actions on Circuits and Systems for Video Technology, 16(5):
628-637, May 2006). In addition, other groups have
contributed to improving CE diagnosis (E. Susilo, P. Valdas-
tri, P. Menciassi, and P. Dario. A miniaturized wireless control
platform for robotic capsular endoscopy using advanced
pseudokernel approach. Sensors and Actuators A: Physical,
In Press, Corrected Proof, 2009; J. L. Toennies and R. J. III
Webster. A wireless insufflation system for capsular endo-
scopes. ASME Journal of Medical Devices, accepted, 2009;
P. Valdastri, A. Menciassi, and P. Dario. Transmission power
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requirements for novel zigbee implants in the gastrointestinal
tract. Biomedical Engineering, IEEE Transactions on, 55(6):
1705-1710, June 2008; M. Coimbra, P. Campos, and J. P. S.
Cunha. Topographic segmentation and transit time estimation
for endoscopic capsule exams. In Proceedings of IEEE Inter-
national Conference on Acoustics, Speech and Signal Pro-
cessing, volume 2, pages II-II, May 2006.; F Vilarino, P
Spyridonos, O Pujol, J Vitria, and P Radeva. Automatic detec-
tion of intestinal juices in wireless capsule video endoscopy.
In ICPR °06: Proceedings of the 18th International Confer-
ence on Pattern Recognition, pages 719-722, Washington,
D.C., USA, 2006. IEEE Computer Society).

[0060] Other methods used may include motion data, and
using LDA, SVM, and Hidden Markov models as well as
statistical learning methods and Ordinal regression S. Beja-
kovic, R. Kumar, T. Dassopoulos, G. Mullin, and G. Hager.
Analysis of crohns disease lesions in capsule endoscopy
images. In International Conference on Robotics and Auto-
mation, ICRA, pages 2793-2798, May 2009; T. Dassopoulos,
R. Kumar, S. Bejakovic, P. Rajan, S. Seshamani, G. Mullin,
and G. Hager. Automated detection and assessment of crohns
disease lesions in images from wireless capsule endoscopy. In
Digestive Disease Week 2009, poster of distinction 2009; R.
Kumar, P. Rajan, S. Bejakovic, S. Seshamani, G. Mullin, T.
Dassopoulos, and G. Hager. Learning disease severity for
capsule endoscopy images. In IEEE ISBI 2009, accepted,
2009; S. Seshamani, P. Rajan, R. Kumar, H. Girgis, G. Mullin,
T. Dassopoulos, and G. D. Hager. A boosted registration
framework for lesion matching. In Medical Image Comput-
ing and Computer Assisted Intervention (MICCAI),
accepted, 2009; S. Seshamani, R. Kumar, P. Rajan, S. Beja-
kovic, G. Mullin, T. Dassopoulos, and G. Hager. Detecting
registration failure. In IEEE ISBI 2009, accepted, 2009; OS
Lin, JJ Brandabur, DB Schembre, M S Soon, and RA Koza-
rek. Acute symptomatic small bowel obstruction due to cap-
sule impaction. Gastrointestinal Endoscopy, 65(4):725-728,
2007; CE Reiley, T Akinbiyi, D Burschka, D C Chang, AM
Okamura, and DD Yuh. Effects of visual force feedback on
robot-assisted surgical task performance. J. Thorac. Cardio-
vasc. Surg., 135(1):196-202, 2008; CE Reiley, H C Lin, B
Varadarajan, B Vagvolgyi, S Khudanpur, DD Yuh, and GD
Hager. Automatic recognition of surgical motions using sta-
tistical modeling for capturing variability. Studies in health
technology and informatics, 132:396, 2008).

[0061] FIG. 14 depicts an illustrative information flow dia-
gram 1400 to facilitate the description of concepts of some
embodiments of the current invention. Anatomy 1410 is the
starting point for the information flow as it may be the image
source, such as, a GI track. An imager is shown in 1420 that
takes a still image or video from anatomy 1410 through
imaging tools such as 110, 120, and 130. Such imaging tools
include for example, a wireless capsule endoscopy device, a
flexible endoscope, a flexible borescope, a video borescope, a
rigid borescope, a pipe borescope, a GRIN lens endoscope,
contact hysteroscope, and/or a fibroscope.

[0062] Once the image data is taken by the imager 1420, the
image data may flow to be archived for later offline analysis as
shown in 1425. From 1425, the image data may flow to 1440
for statistical analysis. Alternatively, the image data could
flow from the imager 1420 via 1430, as a real-time feed for
statistical analysis 1440. Once the data is provided for statis-
tical analysis in 1440, the system may perform feature extrac-
tion 1450.
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[0063] Once in feature extraction 1450, feature vectors and
localized descriptors may include generic descriptors such as
measurements (e.g., but not limited to, color, texture, hue,
saturation, intensity, energy, entropy, maximum probability,
contrast, inverse difference moment, and/or correlation) color
histograms (e.g., but not limited to, intensity, RBG color,
and/or HSI), image statistics (e.g., but not limited to, pixel,
and ROI color, intensity, and/or their gradient statistics),
MPEG-7 visual descriptors (e.g., but not limited to, dominant
color descriptor, edge histogram descriptor and/or its kernel
weighted versions, homogeneous texture descriptor), and
texture features based on Haralick statistics, as well as com-
binations of these descriptors. Also localized feature descrip-
tors using spatial kernel weighting and three methods for
creating kernel-weighted features may be used. Uniform grid
sampling, grid sampling with multiple scales, and local
mode-seeking using mean-shift may be used to allow the
kernels to settle to a local maximum of a given objective
function. Various objective functions may be applied, includ-
ing those that seek to match generic lesion templates. Post-
processing some of these features may also be used, for
example, sorting based on feature entropy or similarity to a
template. Feature extraction 1450 may also be used to filter
any normal or unusable data from image data which may
provide only relevant frames for diagnostic purposes. Feature
extraction 1450 may include removing unusable images from
further consideration. Images may be considered unusable if
they contain extraneous image data such as air bubbles, food,
fecal matter, normal tissue, non-lesion, and/or structures.
[0064] An expanded view of the feature extraction 1450
may be seen in F1G. 12, where a lesion 1220 has been detected
on an image 1210 from an imager 1420, 110, 120, 130.
Legion region 1220 may then be processed 1230. 1240 may
include processing by an adapted dominant color descriptor
(DCD) which may represent the large number of colors in an
image by few representative colors which may be obtained by
clustering the original colors in the image. The MPEG 7
Dominant Color Descriptor is the standard DCD. In an
embodiment of the invention the DCD may differs form the
MPEG-7 specification in that (i) the spatial coherency of each
cluster is computed and (ii) the DCD includes the mean and
the standard deviation of all colors in the image.

[0065] The lesion image 1220 may be processed by an
adapted edge histogram descriptor (EHD) 1250 which may
be an MPEG-7 descriptor that provides a spatial distribution
of'edges in an image. In an embodiment of the invention the
MPEG-7 EHD implementation is modified by adaptive
removal of weak edges. Image 1300 of FIG. 13 shows sample
lesion images and the effect of using adaptive thresholds on
the edge detectors responses.

[0066] The lesion image 1220 may be further processed in
1260 using image histogram statistics. This representation
computes the histogram of the grayscale image and may
populate the feature vector with, for example, the following
values: Mean, Standard Deviation, Second moment, Third
moment, Uniformity, Entropy.

[0067] From 1450, the data may flow to classification 1460.
Once in classification 1460, meta-methods such as boosting
and bagging methods may be used for aggregation of infor-
mation from a large number of localized features. Standard
techniques, e.g. voting, weighted voting, and adaboost may
be used to improve classification accuracy. Temporal consis-
tency in the classification of images may be used. For
example, nearly all duplicate views of a lesion within a small
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temporal window. Bagging methods may be used to evaluate
these sequences of images. Once an image is chosen to con-
tain a lesion, a second classification procedure may be per-
formed on its neighbors with, for example, parameters appro-
priately modified to accept positive results with weaker
evidence. Sequential Bayesian analysis may also be used.
Views identified to be duplicates may be presented to, for
example, a clinician at the same time. Classification 1460
may include supervised machine learning and/or unsuper-
vised machine learning. Classification 1460 may also include
statistical measures, machine learning algorithms, traditional
classification techniques, regression techniques, feature vec-
tors, localized descriptors, MPEG-7 visual descriptors, edge
features, color histograms, image statistics, gradient statis-
tics, Haralick texture features, dominant color descriptors,
edge histogram descriptors, homogeneous texture descrip-
tors, spatial kernel weighting, uniform grid sampling, grid
sampling with multiple scales, local mode-seeking using
mean shift, generic lesion templates, linear discriminate
analysis, logistic regression, K-nearest neighbors, relevance
vector machines, expectation maximation, discrete wavelets,
and Gabor filters. Classification 1460 may also use meta
methods, boosting methods, bagging methods, voting,
weighted voting, adaboost, temporal consistency, performing
a second classification procedure on data neighboring said
localized region of interest, and/or Bayesian analysis.

[0068] From 1460, the data may flow to severity assessment
1470. A severity of a located lesion or other attribute of
interest may be calculated using a severity scale (e.g., but not
limited to global severity rating shown in table I, mild, mod-
erate, severe). The extracted features may be processed to
extract feature vectors summarizing appearance, shape, and
size of the attribute of interest. Additionally overall lesion
severity may be more effectively computed from component
indications (e.g., for example, level of inflammation, lesion
size, etc.) than directly from image feature descriptions. This
may be accomplished through a logistic regression (LR) that
performs severity classification from attribute of interest
component classifications To compute overall severity, LR,
Generalized Linear Models as well as support vector regres-
sion (SVR) may be used. The assessment may include calcu-
lating a score, a rank, a structured assessment comprising of
one or more categories, a structured assessment on a Likert
scale, and/or a relationship with one or more other images
(where the relationship may be less severe or more severe).

[0069] Prior to completing the statistical analysis an overall
score based on the image data may be produced. The score
may include a Lewis score, a Crohn’s Disease Endoscopy
index of Severity, a Simple Endoscopic Score for Crohn’s
Disease, a Crohn’s Disease Activity Index, or another rubric
based on image appearance attributes. The appearance
attributes may include lesion exudates, inflammation, color,
and/or texture.

[0070] Once the statistical analysis 1440 is complete,
selected data, which may include a reduced set of imaging
data as well as information produced during statistical analy-
sis 1440 (e.g., but not limited to feature extraction 1450,
classification 1460 of attributes of interest, and severity
assessments 1470 of the attributes of interest, and score) this
may be presented to a user for study at 1480. The user may
analyze the information at 1490. If desired, the user may
provide relevance feedback 1495 which is received by 1440
to improve future statistical analysis. Relevance feedback
1495 may be used to provide rapid retraining and re-ranking
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of cases, which may greatly reducing the time needed to train
the system for new applications. The relevance feedback may
include a change in said classification, a removal of the image
from said reduced set of images, a change in an ordering of
said reduced set of images, an assignment of an assessment
attribute, and/or an assignment of a measurement. Once the
relevance feedback is received by 1440 the system may be
trained. The training may include using artificial neural net-
works, support vector machines, and/or linear discriminant
analysis.

Image Analysis

[0071] Analyzing CE images may require creation of
higher level representations from the color, edge and texture
information in the images. In one embodiment of the inven-
tion, various methods for extracting color, edge and texture
features may be used including using edge features for con-
traction detection. Color and texture features have been used
in a decision support system (M. M. Zheng, S. M. Krishnan,
M. P. Tjoa; “A fusion-based clinical decision support for
disease diagnosis from endoscopic images”, Computers in
biology and medicine, vol. 35 pp. 259-274, 2005). Some have
used MPEG-7 visual descriptors as feature vectors for topo-
graphic segmentation systems (M, Coimbra, P. Campos, J. P.
Silva Cunha; “Topographic segmentation and transit time
estimation for endoscopic capsule exams”, in Proc. IEEE
1CASSP, 2006). While others have focused on hue, saturation
and intensity (HSI) color features in their topographic seg-
mentation systems (J. Lee, J. Oh, S. K. Shah, X. Yuan, S. J.
Tang, “Automatic Classification of Digestive Organs in Wire-
less Capsule Endoscopy Videos”, in Proc. SAC°07, 2007).

Extraction

[0072] Oneembodiment of the invention may use MPEG-7
visual descriptors and Haralick texture features. This may
include MATLAB adaptation of dominant color (DCD),
homogeneous texture (HTD) and edge histogram (EHD)
descriptors from the MPEG-7 reference software.

Dominant Color Descriptor (DCD)

[0073] Since Crohn’s disease lesions often contain exu-
dates and inflammation surrounding the lesion that is signifi-
cantly different than normal color distributions, color space
features may be used for their detection. The DCD may clus-
ter the representative colors to provide a compact represen-
tation of the color distribution in an image. The DCD may
also compute color percentages, variances, and a measure of
spatial coherency.

[0074] The DCD descriptor may cluster colors in LUV
space with a generalized Lloyd algorithm, for example. These
clusters may be iteratively used to compute the dominant
colors by, for example, minimizing the distortion within the
color clusters. When the measure of distortion is high enough,
the algorithm may introduce new dominant colors (clusters),
up to a certain maximum (e.g., for example, 8). For example,
FIG. 6 shows a sample CE image 610 and its corresponding
image constructed from 6 dominant colors 620.

[0075] There may be a number of user-configurable param-
eters that can affect the output of the descriptor. The algorithm
may iterate until the percentage change in distortion reaches
a threshold (e.g., for example, 1%). Dominant color clusters
may be split using a minimum distortion change (e.g., for
example, 2%), and the maximum number of colors used (e.g.,
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for example, 8. For use with CE images, we may bin the
percents of dominant colors, and variances into 243 bins to
create feature vectors instead of using unique color and vari-
ance values in feature vectors for statistical analysis.

Homogeneous Texture, Descriptor (HTD)

[0076] The homogeneous texture descriptor is one of three
texture descriptors in the MPEG-7 standard. It may provide a
“quantitative characterization of texture for similarity-based
image-to-image matching.” The HTD may be computed by
applying Gabor filters of different scale and orientation to an
image. For reasons of efficiency, the computation may be
performed in frequency space: both the image and the filters
may be transformed using the Fourier transform. The Gabor
filters may be chosen in such a way to divide the frequency
space into 30 channels, for example, the angular direction
being divided into six equal sections of 30 degrees, while the
radial direction is divided into five sections on an octave scale.
[0077] The mean response and the response deviation may
be calculated for each channel (each Gabor filter) in the
frequency space, and these values form the features of the
HTD. In addition, the HTD may also calculate the mean and
deviation of the whole image in image space.

Haralick Texture Features

[0078] Haralick texture features may be used for image
classification (Haralick, R. M., K. Shanmugan, and 1. Din-
stein; Textural Features for Image Classification, IEEE Trans-
actions on Systems, Man, and Cybernetics, 1973, pp. 610-
621). These features may include angular moments, contrast,
correlation, and entropy measures, which may be computed
from a co-occurrence matrix. In one embodiment of the
invention, to reduce the computational complexity, a simple
one-pixel distance co-occurrence matrix may be used.

Edge Histogram Descriptor (EHD)

[0079] The MPEG-7 edge histogram descriptor may cap-
ture the spatial distribution of edges. Four directions (0, 45,
90, and 135) and non-directional edges may be computed by
subdividing the image into 16 non-overlapping blocks. Each
of the 16 blocks may be further subdivided into sub-blocks,
and the five edge filters are applied to each sub-block (typi-
cally 4-32 pixels). The strongest responses may then be
aggregated into a histogram of edge distributions for the 16
blocks. For example, FIG. 6 shows a lesion image 630 and the
corresponding combined edge responses using a sub-block
size of four 640.

EXAMPLES

[0080] in one embodiment, support vector machines
(SVM) may be used to classify CE images into lesion (L),
normal tissue, and extraneous matter (food, bile, stool, air
bubbles, etc). FIG. 4 depicts example normal tissue 410; air
bubbles 420; floating matter, bile, food, and stool 430; abnor-
malities such as bleeding, polyps, non-Chrohn’s lesions,
darkening old blood 440; and rated lesions from severe, mod-
erate, to mild 450. In addition to lesions other attributes of
interest may include blood, bleeding, inflammation, mucosal
inflammation, submucosal inflammation, discoloration, an
erosion, an ulcer, stenosis, a stricture, a fistulae, a perforation,
an erythema, edema, or a boundary organ

[0081] SVM has been used previously to segment the GI
tract boundaries in CE images (M. Coimbra, P. Campos, J. P.
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Silva Cunha; “Topographic segmentation and transit time
estimation for endoscopic capsule exams”, in Proc. IFEE
1CASSP, 2006). SVM may use a kernel function to transform
the input data into a higher dimensional space. The optimi-
zation may then estimate hyperplanes creating classes with
maximum separation. One embodiment may use quadratic
polynomial kernel functions using feature vectors extracted
above. One embodiment may not use higher order polynomi-
als as it may not significantly improve the results.

[0082] Inone embodiment, dominant colors and variances
may be binned into 24"3 bins used as feature vectors for DCD
instead of using unique color and variance values in feature
vectors. Haralick features, edge histograms, and homogenous
texture features may be used directly as feature vectors. Fea-
ture vectors may be cached upon computation for later use.
[0083] In one study, SVM classification was performed
using only 10% of the annotated images for training. The
cross-validation was performed by training using images
from ninw studies, followed by classification of the images
from the remaining study.

[0084] The study computed the traditional accuracy rates
for each study, where

A Correct_classifications
ceuraCy = f—————————
y Total_number of _images

As well as computing the sensitivity,

Correct_classifications in_this_class
Recall =

Total_anotated images in_this_class

[0085] For example, SVM analysis of images from study 2
(asample of 188 lesion images, 1231 normal images, and 266
extraneous images, for a total of 1685 images), and using a
sample of 10% for training achieved classification rates of
95% for lesions, 90% for normal tissue, and 93% for extra-
neous matter. Over the 10 studies lesions could be detected
with an accuracy rate of 96.5%, normal tissues 87.5% and
extraneous matter 87.3% using dominant color information
alone. FIG. 22 contains a table with the accuracy results, and
FIG. 23 contains a table with the sensitivity results for the
tests performed.

[0086] Cross validation was also performed using images
from 9 of the studies for training, and the remaining dataset
for validation. The results appear in cross-validation rows in
FIG. 22 and FIG. 23. Cross-validation for DCD features was
not performed. The full results appear in FIG. 22 and FIG. 23.

[0087] In one embodiment, classification based upon the
color descriptor performed superior to edge, and texture
based features. For lesions, this may be expected given the
color information contained in exudates, the lesion, and the
inflammation. The color information in the villi may also be
distinct from the food, bile, bubbles, and other extraneous
matter. Color information may also be less affected due to
imager noise, and compression.

[0088] One embodiment may use entire CE images for
computing edge and texture features. Classification perfor-
mance based on edge and texture feature may suffer due use
of whole images, imager limitations, fluids in the intestine,
and also compression artifacts. This may be mitigated by CE
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protocols that require patients to control food intake before
the examination, which may improve the image quality.
[0089] The variety of extraneous matter and its composi-
tion features for this class computed over entire images may
not provide a true reflection of the utility of edge and texture
features. In another embodiment the CE images may be seg-
mented into individual classes (lesions, lumen, tissue, extra-
neous matter, and their sub-classes), and then computation of
the edge and texture features may be performed. Appropriate
classes (lesion, inflammation, lumen, normal tissue, food,
bile, bubbles, extraneous matter, other abnormalities), instead
of'using entire CE images for training and validating statisti-
cal methods may be used.

Learning Disease Severity

[0090] Classification and ranking, formulated as problems
of learning a map from a set of feature to a discrete set of
labels, have been applied widely in computer vision applica-
tions for face detection (P. Voila and M. Jones, “Robust real-
time face diction [J],” International Journal of Computer
Vision, vol. 57, no. 2, pp. 137-154, 2004), object recognition
(A. Opelt, A. Pinz, M. Fussenegger, and P. Auver, “Generic
Object Recognition with Boosting,” IEEE PAMI, pp. 416-
431, 2006), and scene classification (R. Fergus, L. Fei-Fei, P.
Perona, and A. Zisserman, “Learning object categories from
google’s image search,” in Proc. ICCY, 2005, pp. 1816-1823).
Alternatively, ranking may be viewed as a regression problem
to find a ranking function between a set of input features and
a continuous range of ranks or assessment. This form has
gained recent interest in many areas such as learning prefer-
ences for movies (http://www.netflixprize.com), or learning
ranking functions for web pages (e.g., but not limited to,
google page rank).

[0091] Learning ranking functions may require manually
assigning a consistent ranking scale to a set of training data.
Although the scale may be arbitrary, what is of interest is the
consistent ordering of the sequence of images; a numerical
scale is only one of the possible means of representing this
ordering. Ordinal regression tries to learn a ranking function
from a training set of partial order relationships. The learned
global ranking function then seeks to respect these partial
orderings while assigning a fixed rank score to each indi-
vidual image or object. Both Machine learning (J. Furnkranz
and E. Hullermeier, “Pairwise Preference Learning and
Ranking,” Lec. Notes in Comp. Sc., pp. 145-156, 2003; R.
Herbrich, T. Graepel, and K. Obermayer, Regression Models
for Ordinal Data. A Machine Learning Approach, Technische
Universitat Berlin, 1999) and content based information
retrieval (S. Tong and E. Chang, “Support vector machine
active learning for image retrieval,” in Proc, of 9th ACM Int.
conf. on Multimedia. ACM New York, N.Y., USA, 2001, pp.
107-118) have sought to obtain mapping functions assigning
preference or ranking scores. In one embodiment of the
invention selective sampling techniques and SVMs with user
provided sparse partial ordering in combination with image
feature vectors automatically generated from a training set of
images may be used.

[0092] Consider a vector of training images Z ={I,, L, ...
L,}. A subset of I have an associated preference relationship
<.Let P ={(x,y)II,<L}. Let P denote the transitive closure
of P . We may require that (x, x)&P, thus disallowing incon-
sistent preferences. A goal may be to compute a real-valued
ranking function R such that
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L<LEP= R(I)<R(,)

[0093] In this embodiment, “rank” will refer to a real-val-
ued measure on a linear scale, and “preference” will denote a
comparison among objects. Given a numerical ranking on n
items, O(n?) preference relationships may be generated.
Likewise, given a categorization of n items into one of m bins
on a scale (e.g. mild, moderate, or severe lesion), it may be
possible to generate O(n?) preferences. Thus, this formula-
tion may subsumes both scale classification and numerical
regression.

[0094] In one embodiment, a preference pair ( X, y) €P can
be thought of as a pair of training examples for a binary
classifier. Let us define

0 peP
B(p) = .
1 otherwise

[0095] In another embodiment, a classifier C may be
trained such that for any p&P
i, L,=B(xy)) 1.
@, 1)-1-B({xy)) 2.

Given such a classifier, a continuous valued ranking may be
produced as

n

RU=Y CUiD/n

i=1

That is, R is the fraction of values of the training set that are
“below” I based on the classifier. Thus, R is also the empirical
order statistic of I relative to the training set. The formulation
above can be paired with nearly any binary classification
algorithm.

[0096] In one embodiment, SVMs may be used in combi-
nation with feature vectors extracted from the CE images. An
I, may be represented by a feature vector f.. As training
examples may require pairs of images, let f; ; represent the
vector concatenation of f; and f,. The training set may then
consist of the set 7 ={<f, , 0>, <f, ;, 1>I(k, j)EP}. The result
of performing training on 7 may bea classifier which, given
a pair of images, may determine their relative order.

[0097] For example, random vectors in R* with the follow-
ing preference rule: f; < f, ifand only if 2f, <=f,. The rank-
ing function & obtained from an SVM classifier trained on
200 samples is plotted versus Zf in FIG. 19. The training set
included all available feature vectors, and achieved a 0%
misclassification rate.

[0098] As asecond example, consider a set of 100 synthetic
images of disks of varying thickness an example shown in
FIG. 20. Each image may be 131x131 and gray scale, with the
disc representing the only non-zero pixels, consecutive
images differing by 0.5 pixels in disc thickness. For images Ii
and Ij, the underlying ranking function is thickness(i)<thick-
ness(j)=1<]j. Using, for example, a 10 bin intensity histo-
grams as the feature vector, a SVM classifier using radial
basis functions produces a ranking function % that correctly
orders (0% misclassification) the discs FIG. 20 using only
O(n) pairwise relationships.

Embodiment

[0099] Inone embodiment, lesions as well as data for other
classes for interest may be selected and assigned a global
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ranking (e.g., for example, mild, moderate, or severe) based
upon the size, and severity of lesion and any surrounding
inflammation, for example. Lesions may be ranked into three
categories: mild, moderate or severe disease. FIG. 5, 510
shows a typical Crohn’s disease lesion with the lesion high-
lighted. As a lesion may appear in several images, data rep-
resenting 50 seconds, for example, of recording time around
the selected image frame may also be reviewed, annotated,
and exported as part of a sequence. In addition, a number of
extra image sequences not containing lesions may be
exported as background data for training of statistical meth-
ods.

[0100] Global lesion ranking may be used to generate the
required preference relationships. For example, over 188,000
pairwise relationships may be possible in a dataset of 600
lesion image frames that have been assigned a global ranking
of mild, moderate or severe by a clinician, assuming
mild<moderate<severe. In one embodiment, a small number
of images may be used to initiate training, and an additional
number to iterate for improvement of the ranking function.
Previous work on machine learning has generally made use of
some combination of color and texture features. SIFT is not
very suitable for our wireless endoscopy images, due to lack
of sufficient number of SIFT features in these images (D. G.
Lowe, “Object recognition from local scale-invariant fea-
tures,” in Proc. ICCV. Kerkyra, Greece, 1999, vol. 2, pp.
1150-1157). A variety of feature vectors including, for
example edge, color, and texture features, MPEG-7 visual
descriptors, and hue, saturation and intensity features have
been published specifically for analysis of wireless capsule
endoscopy images (Y. Liu, D. Zhang, G. Lu, and W. Y. Ma.,
“A survey of content based image retrieval with high-level
semantics,” Pattern Recognition, vol. 40, no. 1, pp. 262-282,
2007; M. Coimbra, P. Campos, and JPS Cunha, “Topographic
Segmentation and Transit Time Estimation for Endoscopic
Capsule Exams,” in Proc. ICASSP, 2006, vol. 2; Jeongkyu
Lee, JungHwan Oh, Subodh Kumar Shah, Xiaohui Yuan, and
Shou Jiang Tang, “Automatic classification of digestive
organs in wireless capsule endoscopy videos,” in SACO7,
2007). In one embodiment, improvement of accuracy of the
ranking function may be shown with increasing number of
pairwise preferences.

[0101] In another embodiment, on n+100 images, starting
with only O(n) training relationships, and SVM classifier
using radial basis functions as before, we obtain only O(n2)
mismatches using the generated ranking function R after the
first iteration. A mismatch is any pair of images where R(Ix)<
or >R(ly) and Ix> or <ly The number of mismatches drops
exponentially over 4 iterations where the training set is
increased by m=max (1000, mismatches) pairwise relation-
ships.

TABLE II
Metric Iter. 2 Iter. 3 Iter. 4
Mean 0.1133 0.0182 0.0024
Std. Dev 0.3055 0.0915 0.0106
Metric Iter. 1 Iter. 2 Iter. 3 Iter. 4
Training size 100 1100 1972 2116
mismatches 1286 436 77 3
[0102] FIG. 11, 1110 and 1120 show an example of a

ranked images data set. Table II shows, for example, changes
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in ranks for images, and number of mismatches during each
iteration. Both the mean and standard deviation of rank
change for individual images decreases monotonously over
successive iterations. Table IT also shows the decreasing num-
ber of mismatches over successive iterations. The ranking
function may converge after a few iterations, with the changes
in rank becoming smaller closer to the convergence. FIG. 10,
1000 depicts 500 lesion images that may be similarly ranked.

Boosted Registration Framework for Lesion Matching

[0103] Minimally invasive diagnostic imaging methods
such as flexible endoscopy, and wireless capsule endoscopy
(CE) often present multiple views of the same anatomy.
Redundancy and duplication issues are particularly severe in
the case of CE, where peristalsis propulsion may lead to
duplicate information for several minutes of imaging. This
may be difficult to detect, since each individual image cap-
tures only a small portion of anatomical surface due to limited
working distance of these devices, providing relatively little
spatial context. Given the relatively large anatomical surfaces
(e.g. the GI tract) to be inspected, it is important to identify
duplicate information as well as present all available views of
anatomical and disease views to the clinician for improving
consistency, efficiency and accuracy of diagnosis and assess-
ment.

[0104] The problem of image duplication has been com-
monly formulated as a detection problem Taylor, C. J., Coo-
per, D. H., Graham, J.: Training models of shape from sets of
examples. In: In Proc. British Machine Vision Conference,
Springer-Verlag (1992) 9-18 where a classifier is trained to
learn the visual properties of the chosen object category (i.e.
lesions). This process typically requires feature extraction to
generate a low dimensional representation of image content,
followed by classifier training to distinguish the desired
object model(s) (Viola, P., Jones, M.: Rapid object detection
using a boosted cascade of simple features. In: CVPR *01:
Proceedings of the 2001 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR ’01).
(2001) 511-518). For CE, appearance modelling has been
used for blood detection (Jung, Y. S., Kim, Y. H., Lee, D. H.,
Kim, J. H.: Active blood detection in a high resolution capsule
endoscopy using color spectrum transformation. In: BMEI
’08: Proceedings of the 2008 International Conference on
BioMedical Engineering and Informatics, Washington, D.C.,
USA, IEEE Computer Society (2008) 859-862; Hwang, S.,
Oh, J., Cox, J., Tang, S. J., Tibbals, H. F.: Blood detection in
wireless capsule endoscopy using expectation maximization
clustering. Volume 6144., SPIE (2006) 61441P; Li, B., Meng,
M. Q. H.: Computer-based detection of bleeding and ulcer in
wireless capsule endoscopy images by chromaticity
moments. Comput. Biol. Med. 39(2) (2009) 141-147) topo-
graphic segmentation (Cunha, J., Coimbra, M, Campos, P.,
Soares, J.: Automated topographic segmentation and transit
time estimation in endoscopic capsule exams. 27(1) (January
2008) 19-27) and lesion classification (Bejakovic, S., Kumar,
R., Dassopoulos, T., Mullin, G., Hager, G.: Analysis of
crohn’s disease lesions in capsule endoscopy images. In:
IEEE ICRA. (2009 (accepted)). However, generic detection
may be different than matching an instance of a model to
another instance.

[0105] Inoneembodiment of the invention, the problem of
detecting repetitive lesions may be addressed as a registration
and matching problem. A registration method may evaluate
an objective function or similarity metric to determine a loca-
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tion in the target image (e.g., for example, a second view)
where a reference view (e.g., for example, a lesion) occurs.
Once a potential registration is computed, a decision function
may be applied to determine the validity of the match. In one
embodiment of the invention a trained statistical classifier is
used that makes a decision based on the quality of a match
between two regions of interest (ROIs) or views of the same
lesion, rather than the appearance of the features representing
an individual ROI.

[0106] Decision functions for registration and matching
have traditionally been designed by thresholding various
similarity metrics. The work of Szeliski et al (Szeliski, R.:
Prediction error as a quality metric for motion and stereo. In:
ICCV °99: Proceedings of the International Conference on
Computer Vision-Volume 2, Washington, D.C., USA, IEEE
Computer Society (1999) 781) and Stewart et al (Yang, G.,
Stewart, C., Sofka, M., Tsai, C. L.: Registration of challeng-
ing image pairs: Initialization, estimation, and decision. Pat-
tern Analysis and Machine Intelligence, IEEE Transactions
on) are examples of such problem formulations. In many
cases, a single, unique global threshold may not exist; but, the
determination of an adaptive threshold is a challenging prob-
lem. Alternatively, Chen et al (Chen, X., Chain, T. J.: Learn-
ing feature distance measures for image correspondences. In:
CVPR ’05: Proceedings of the 2005 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition
(CVPR’05)—Volume 2, Washington, D.C., USA, IEEE
Computer Society (2005) 560-567) introduce a new feature
vector that represents images using an extracted feature set.
However, this approach still requires the same similarity met-
ric across the entire feature set. By contrast, we present a
generalizable framework that incorporates multiple matching
algorithms, a classification method trained from registration
data, and a regression based ranking system to choose the
highest quality registration.

Boosted Registration

[0107] The objective function for a registration method
may be based upon the invariant properties of the data to be
registered. For example, histograms are invariant to rotation,
whereas pixel based methods are generally not. Feature based
methods may be less affected by changes in illumination and
scale. Due to large variation in these invariance properties
within endoscopic studies, a single registration method may
not be appropriate for registration of this type of data. Instead,
one embodiment may use multiple independent registration
methods, each may be more accurate in a different subset of
the data, and a global decision function that may use a range
of similarity metrics to estimate a valid match. Multiple
acceptable estimates are may be ranked using a ranking func-
tion to determine the best result. FIG. 8, 800 depicts an
example information flow in an exemplarily embodiment. For
example, given an ROI R, in an image i and a target image I,
the registration function T(R,, [)= R, maps R, to R;. The
similarity metric relating the visual properties of R; and R,
may be defined as d(R,, R)). Using a set of registration func-
tions ¥ =T,(R, I);i=1 ... n and estimated or annotated ROIs
R, ... R, the decision function D may determine which
estimates are correct matches.
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1, if d(Ri, R} <y
DR, R) =1 |

otherwise

Decision Function Design:

[0108] In one embodiment, the decision function may be
designed by selection of a set of metrics to represent a regis-
tration and application of a thresholding function on each
metric to qualify matches. Although false positive rates can be
minimized by such a method, the overall retrieval rate may be
bounded by the recall rate of the most sensitive metric. An
integrated classifier that distinguishes registrations based on a
feature representation populated by a wide range of metrics
may be likely to outperform such thresholding. In one exem-
plarily embodiment, an ROI R, the following notation may be
used in representing appearance features. Starting with pixel
based features. The intensity band of the image may be
denoted as R,. The Jacobian of the image may be denoted
R~[R,, R ] where R, and R, may be the vectors of spatial
derivatives at all image pixels. Condition numbers and the
smallest eigen values of the Jacobian may be denoted as R
and R respectively. The Laplacian of the image is denoted
as R; ,». Following this, histogram based features may be
defined as: Rygpr, Ry and Ryop for RGB histograms,
gaussian weighted intensity histograms and gaussian
weighted color histograms respectively. Also, MPEG-7 fea-
tures: Ry, (Edge Histogram Descriptors), R, (Haralick
Texture descriptors) and Ry, (Homogeneous Texture
Descriptors). Given two images I, and I, where A isan ROl in
1, with center x and Bis an ROl in R, a feature vector may be
generated for a pair of regions A and B populated with the
metrics shown in table 111, for example. The decision function
may then be trained to distinguish between correct and incor-
rect matches using any standard classification method. We
use support vector machines (SVM) (Vapnik, V. N.: The
nature of statistical learning theory. Springer-Verlag New
York, Inc., New York, N.Y., USA (1995)) in our experiments.

TABLE III

Metric Name Formula
RMS (rms) 1

(;2ca-B02)
RMS Shuffle 1

(— Y shuffle(A,, B,)]

n

Ratio of Condition Numbers min(A ¢, Bye)/max(A e, Byc)

Ratio of Smallest Eigen Values
Laplacian Shuffle Distance

Weighted Histogram Bhattacharya
Distance

RGB Histogram Bhattacharya Distance
Edge Histogram Manhattan Distance

min(A sz, Bz)/max(Azz, B )
shuffle(Az4p, BLsp)
sqrt(Apzr, Byz)

sqrt(Args — Broa)
2(Azup - Beap)

Haralick Descriptor Canberra Distance | Atiar — Biiar |

| Anar + Bhar |

HTD Shuffle Distance
Forward Backward check

shuffle(Ayrp, Byrp)
1x = T(Ip, Ly T I X))
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The Ranking Function:

[0109] In yet another embodiment of the invention, the
registration selection may be treated as an ordinal regression
problem (Herbrich, R., Graepel, T., Obermayer, K.: Regres-
sion Models for Ordinal Data: A Machine Learning
Approach. Technische Universitat Berlin (1999)). Given a
feature set corresponding to correctly classified registrations,
F={f,, . . ., fo} and a set of N distances from the true
registrations; a set of preference relationships may form
between the elements of F. The set of preference pairs P may
be defined as, P={(x, y)If,<f,}. In one embodiment, a con-
tinuous real-valued ranking function K is computed such that,
F.=5,EP=K(f)<K(F,). A preference pair (x, y)EP may
be considered a pair of training examples for a standard
binary classifier. A binary classifier C may be trained such
that,

0, if x,y)eP

1 otherwise

C(Fy, Fy) ={

C(F,, F)=1-C(F,, F,)

[0110] Given such a classifier, the rank may be computed
as, K(F)==,_,” C(F, F,)/n where K may be the fraction of the
training set that are less preferred to F based on the classifier.
Thus, for example, K orders F relative to the training set.
Support Vector Machines (SVM) may be used for binary
classification. Let f, represent the metrics or features of reg-
istration and f, ; represent the vector concatenation of f, and
¥, The training set, Train={<f, , 0>, <f, .., 1ZI(i, j)EP} may
be used to train an SVM. For classification, each vector may
be paired in the test set with all the vectors in the training set
and the empirical order statistics K(F) described above may
be used for enumerating the rank.

Training Data

[0111] GivenanROIR and asetofimages Z =I:i=1...N,
one embodiment may build a dataset of pairs of images rep-
resenting correct and incorrect matches of a global registra-
tion. First computed may be the correct location of the center
of the corresponding ROI in ¥ Through manual selection
followed by a local optimization, for example. This set of
locations may be denoted as X=X,: i=1 ... N. Next, any global
registration method T may be selected and applied between R
and eachimageintheset I to generate a set of estimated ROI
center locations X'=X,": i=1 ... N and pairs ® ={R, R;: i=1 .
.. }. The pairs may be designated a classification y (correct or
incorrect matches) by thresholding on the [.2 between X, and
X', for example. This may be referenced as the ground truth
distance. The training set T may contain all registered pairs
and their associated classifications.

Experiments

[0112] Oneembodiment of the invention was tested using a
CE study database which contained selected annotated
images containing Crohn’s Disease (CD) lesions manually
selected by our clinical collaborators. These images provided
the ROIs for our experiments. A lesion may occur in several
neighboring images, and these selected frames form a lesion
set. FIG. 9, 910 shows an example of a lesion set. In these
experiments, 150x150 pixel ROIs were selected. Various
lesion sets contained between 2 and 25 image frames. Regis-
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tration pairs were then generated for every ROI in the lesion
set, totaling 266 registration pairs.

[0113] In this embodiment, registration methods spanning
the range of standard techniques for 2d registration were
used. These include SIFT feature matching, a mutual infor-
mation optimization, weighted histograms (grayscale and
color) and template matching. For each of these methods, a
registration to estimate a registered location was performed,
resulting in a total of 1330 estimates (5 registration methods
per ROI-image pair). The ground truth for these estimates was
determined by thresholding the L2 distance described above,
and it contains 581 correct (positive examples) and 749 incor-
rect (negative examples) registrations.

[0114] In this embodiment, for every registration estimate,
we compute the registered ROI for the training pair. The
feature vector representing this registration estimate is then
computed as described in section 2. We then train the decision
function using all registration pairs in the dataset. The perfor-
mance of this integrated classifier was evaluated using a
10-fold cross-validation. FIG. 7 shows the result on training
data, including comparison with the ROC curves of indi-
vidual metrics used for feature generation. The true positive
rate is 96 percent and the false negative rate is 8 percent.
[0115] Inthisembodiment, for nregistrations, atotal of nC,
preference pairs can be generated. A subset of this data may
be used as the input to the ranking model. Features used to
generate a training pair may include the difference between
Edge Histogram descriptors and the difference between the
dominant color descriptors. Training may be initiated with a
random selection of n=200. This estimate may then be
improved by iteration and addition of preference pairs at
every step. Training may be conducted using an SVM model
with aradial basis kernel. At each iteration, the dataset may be
divided into training and test sets. A classifier may be trained
and preference relationships may be predicted by classifying
vectors paired with all training vectors, Relative ranks within
each set may be determined and pair mismatch rates may then
be calculated. A mismatch may be any pair of registrations
where K(F)>K(F,)and F <F or K(F,)<K(F,)and F,>F . The
training mis-classification rate may be the percentage of con-
tradictions between the true and predicted preference rela-
tionships in the training set. Table IV shows an example rank
metrics for each iteration.
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correct. Finally, the last row in sample table V shows the
number of true positives (i.e., the number of correctly classi-
fied matches that are consistent with the ground truth classi-
fication). The last column in sample table V shows the per-
formance of the boosted registration. The number of
registrations retrieved by the boosted framework may be
greater than any single registration method. A range of n-fold
validations may be performed on the same dataset for n rang-
ing from 2—(the number of image pairs) (where n=2 divides
the set into two halves and n=number of image pairs may be
the leave one out validation). FIG. 7, 720 shows an example of
the percentage of true positives retrieved (which is the ratio of
true positives of the boosted registration to the number of
correct ground truth classifications) by each individual regis-
tration method and the boosted classifier (e.g., cyan). The
boosted registration may outperforms many other methods.
FIG. 7, 710 show the ROC Curves of all metrics used indi-
vidually overlaid with the integrated classifier (Green X).

TABLEV
Tem-
plate Intensity HSV Boosted
Match- Mutual Weighted Weighted Registra-

Type ing Sift Info  Histogram Histogram tion
Ground 165 122 54 111 129 266
Truth
Classi- 129 62 25 75 77 188
fier
True 106 59 10 46 47 188
Positives
[0117] Inone embodiment of the invention, a boosted reg-

istration framework for the matching of lesions in capsule
endoscopic video may be used. This generalized approach
may incorporate multiple independent optimizers and an inte-
grated classifier combined with a trained ranker to select the
best correct match from all registration results. This method
may outperform the use of any one single registration
method. In another embodiment, this may be extended to
hierarchical sampling where a global registration estimate
may be computed without explicit application of any particu-
lar optimizer.

TABLE IV
Tterl Iter2 Iter3 Iter4 Iter> Iter6 Iter7 Iter8

No: of pairs 300 600 900 1200 1500 1800 2100 2400
Train mis-classification rate 0.001 0.014 0.016 0.015 0.018 0.017 0.017 0.017
Train pair mismatch rate 0.16 0.18 0.17 0.16 0.16 0.16 0.16 0.15
Test pair mismatch rate 0.32 0.38 0.32 0.26 0.38 0.32 0.35 0.27
Test rank mean 0.53 0.69 0.55 00.35 0.69 0.55 0.61 0.44
Test rank std dev 0.14 0.15 0.20 0.28 0.19 0.23 0.21 0.29

[0116] Inoneembodiment, the boosted registration frame-
work may be applied to all image pairs. For each pair, all 5
registration methods, for example, may be applied to estimate
matching ROIs. For example, the first row of table V shows
the number of correct registrations evaluated using the
ground truth distance. Features may then be extracted for all
registrations and the integrated classifier, as described above,
may be applied. A leave one out cross-validation may be
performed for each ROI-image pair. The second row of table
V shows the number of matches that the classifier validates as

A Meta Method for Image Matching: Two Applications

[0118] Image registration involves estimation of a transfor-
mation that relates pixels or voxels in one image with another
one. There are generally two types of image registration
methods: image based (direct) and feature based. Image
based methods (Simon Baker, Ralph Gross, and lain Mat-
thews, “Lucas-kanade 20 years on: A unifying framework:
Part 4,” International Journal of Computer Vision, vol. 56, pp.
221-255, 2004; Gregory D. Hager and Peter N. Belhumeur,
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“Efficient region tracking with parametric models of geom-
etry and illumination,” IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, vol. 20, pp. 1025-1039, 1998)
utilize every pixel or voxel in the image to compute the
registration whereas feature based methods (Ali Can, Charles
V. Stewart, Badrinath Roysam, and Howard L. Tanenbaum,
“A feature-based technique for joint linear estimation ofhigh-
order image-to-mosaic transformations: Mosaicing the
curved human retina,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 24, no. 3, pp. 412-419, 2002)
use a sparse set of corresponding image features for this. Both
methods use a matching function or matcher that quantifies
the amount of similarity between images for an estimated
transformation. Examples of matchers include: Sum of
Squared Differences (SSD), Normalized Cross Correlation
(NCC), Mutual Information (MI), Histogram Matchers, etc.

[0119] Each matcher has a set of properties that make it
well suited for registration of certain types of images. For
example, Normalized Cross Correlation can account for
changes in illumination between images, histogram based
matchers are invariant to changes in rotation between images,
and so on. These properties are typically referred to as invari-
ance properties (Remco C. Veltkamp, “Shape matching:
Similarity measures and algorithms,” in SMI ’01: Proceed-
ings of the International Conference on Shape Modeling &
Applications, Washington, D.C., USA, 2001, p. 188, IEEE
Computer Society). Matchers are typically specialized to deal
with only a small set of properties in order to balance the
trade-off between robustness to invariance and accuracy.

[0120] Many applications contain data that require only a
few known properties to be accounted for. In such cases, it is
easy to select the matcher that has the appropriate invariance
property. However, the properties of medical image data are
usually unpredictable and this makes it difficult to select a
specific matcher. For example, 910 of FIG. 9 shows a
sequence of images from a capsule endoscope containing the
same anatomical region of interest. By observing just a few
images from this dataset, we can already note variations in
illumination, scale and orientation. In the case where we are
interested in registration of anatomical regions across all
these invariance properties, selecting a robust and accurate
matcher for the task is very difficult.

[0121] Oneapproachto addressing this problem isto utilize
a matching function that combines matchers with different
invariance properties. For example, Wu et al. (Jue Wu and
Albert Chung, “Multi-modal brain image registration based
on wavelet transform using sad and mi,” in Proc. Int’1 Work-
shop on Medical Imaging and Augmented Reality. 2004, vol.
3150, pp. 270-277, Springer) use the Sum of Absolute Dif-
ferences (SAD) and Mutual Information (MI) for multi-
modal brain image registration. Yang et al. (Gehua Yang and
Charles V. Stewart, “Covariance-driven mosaic formation
from sparsely-overlapping image sets with application to reti-
nal image mosaicing,” in Proc. IEEE Conf. Computer Vision
and Pattern Recognition, 2004, pp. 804-810) use a feature
based method where covariance matrices of transformation
parameters and the Mahalanobis distance between the feature
sets are used for matching retinal images. More recently,
Atasoy et al. (Selen Atasoy, Ben Glocker, Stamatia
Giannarou, Diana Mateus, Alexander Meining, Guang-
Zhong Yang, and Nassir Navab, “Probabilistic region match-
ing in narrow-band endoscopy for targeted optical biopsy,” in
Proc. Int’l Conf. on Medical Image Computing and Computer
Assisted Intervention, 2009, pp. 499-506) propose an MRF-
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based matching technique that incorporates region based
similarities and spatial correlations of neighboring regions,
applied to Narrow-Band Endoscopy for Targeted Optical
Biopsy. However, for a dataset with several properties to
account for, developing an appropriate matching function is a
complex task.

[0122] Metamatching (S. Seshamani, P. Rajan, R. Kumar,
H. Girgis, G. Mullin, T. Dassopoulos, and G. D. Hager, “A
meta registration framework for lesion matching,” in Int’l
Conf. on Medical Image Computing and Computer Assisted
Intervention, 2009, pp. 582-589) offers an alternative
approach to addressing this problem. A metamatching system
consists of a set of matchers and a decision function. Given a
pair of images, each matcher estimates corresponding regions
between the two images. The decision function then deter-
mines if any of these estimates contain similar regions (either
visually and/or semantically, depending on the task). This
type of approach may be generic enough to allow for simple
matching methods with various invariance properties to be
considered. In addition, it may also increase the chance of
locating matching regions between images. However, this
method relies on a decision function that can accurately
decide when two regions match.

[0123] Inoneembodimentofthe invention, a trained binary
classifier as a decision function is used for determining when
two images match. A thorough comparison of the use of
standard classifiers: Nearest neighbors, SVMs, LDA and
Boosting with several types of region descriptors may be
performed. In another embodiment, a metamatching frame-
work based on a set of simple matchers and these trained
decision functions may be used. The strength of the embodi-
ment is demonstrated with registration of complex medical
datasets using very simple matchers (such as template match-
ing, SIFT, etc), Applications considered may include Crohn’s
Disease (CD) lesion matching in capsule endoscopy and
video mosaicking in hysteroscopy. In the first application, the
embodiment may perform global registration and design a
decision function that may distinguish between semantically
similar and dissimilar images of lesions. In the second appli-
cation, the embodiment may considers the scenario of finer
registrations for video mosaicking and the ability to train a
decision function that can distinguish between correct and
incorrect matches at a pixel level, for example.

[0124] The design of a decision function may be basedona
measure (or set of measures) that quantifies how well an
image matches another image. This type of measure may be
called a similarity metric (Hugh Osborne and Derek Bridge,
“Similarity metrics: A formal unification of cardinal and non-
cardinal similarity measures,” in Proc. Int’l Conf. on Case-
Based Reasoning. 1997, pp. 235-244, Springer). Matching
functions (e.g., for example, NCC, Mutual information, etc)
are often used as similarity metrics. For example, Szeliski
(Richard Szeliski, “Prediction error as a quality metric for
motion and stereo,” in Proc. IEEE Int’l Conf. on Computer
Vision, 1999, pp. 781-788) uses the RMS (and some of its
variants) for error prediction in motion estimation. Kybic et
al. (Jan Kybic and Daniel Smutek, “ITmage registration accu-
racy estimation without ground truth using bootstrap,” in Int’1
Workshop on Computer Vision Approaches to Medical Image
Analysis, 2006, pp. 61-72) introduce the idea of bootstrap-
based uncertainty metrics to evaluate the quality of pixel-
based image registration. Yang et al. (Gehua Yang, Charles V.
Stewart, Michal Sofka, and Chia-Ling Tsai, “Registration of
challenging image pairs: Initialization, estimation, and deci-
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sion,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 29, no. 11, pp. 1973-1989, 2007) use a
generalized bootstrap ICP algorithm to align images and
apply three types of metrics: an accuracy estimate, a stability
estimate and consistency of registration estimate. Here, a
match is qualified as correct only if all three estimates fall
below a certain threshold. Adaptive thresholding techmques
(X-T Dai, L Lu, and G Hager, “Real-time video mosaicing
with adaptive parameterized warping,” in IEEE Conf. Com-
puter Vision and Pattern Recognition, 2001, Demo Program)
have also been proposed for performing registration qualifi-
cation. All these methods work as threshold based binary
classifiers. One disadvantage of this approach may be that
threshold selection is a manual process. Also, in the case
where several metrics are used, a hard voting scheme is often
used, where a match is qualified as correct only if it satisfies
threshold conditions of all metrics. This may lead to the
problem of either large numbers of false negatives (i.e., cor-
rect matches which are qualified as wrong) if the thresholding
is too strong or false positives (incorrect matches that are
qualified as correct).

[0125] Recently the area of distance metric learning (Liu
Yang and Rong Jin, “Distance metric learning: A comprehen-
sive survey,” Tech. Rep., 2006) has shown a considerable
amount of interest in applying learning for the design of
pairwise matching decision functions. Unlike threshold
based techniques, the metric learning problem may involve
selection of a distance model and learning (either supervised
or unsupervised) parameters that distinguish between similar
and dissimilar pairs of points. One problem may be super-
vised distance metric learning, where the decision function is
trained based on examples of similar and dissimilar pairs of
images.

[0126] There may be two broad groups of supervised met-
ric learning, global metric learning and local metric learning.
Global methods may consider a set of data points in a feature
space and model the distance function as a Mahalanobis
distance between points. Then, using points whose pairwise
similarity may be known, the covariance matrix (of the
Mabhalanobis distance) may be learned using either convex
optimization techniques (Eric P. Xing, Andrew Y. Ng,
Michael I. Jordan, and Stuart Russell, “Distance metric learn-
ing, with application to clustering with side information,” in
Advances in Neural Information Processing Systems. 2002,
pp- 505-512, MIT Press) or probabilistic approaches (Liu
Yang and Rong Jin, “Distance metric learning: A comprehen-
sive survey,” Tech. Rep., 2006). Local distance metrics (Liu
Yang, Rong Jin, Lily Mummert, Rahul Sukthankar, Adam
Goode, Bin Zheng, Steven C. H. Hoi, and Mahadev Satya-
narayanan, “A boosting framework for visuality-preserving
distance metric learning and its application to medical image
retrieval,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no.
1, pp. 30-44, 2010; Zhihva Zhang, James T. Kwok, and Dit-
Yan Yeung, “Parametric distance metric learning with label
information,” in Proc. Int’1 Joint Conf. on Artificial Intelli-
gence, 2003, pp. 1450-1452; Kai Zhang, Ming Tang, and
James T. Kwok, “Applying neighborhood consistency for fast
clustering and kernel density estimation,” in Proc. IEEE
Conf. on Computer Vision and Pattern Recognition, 2005, pp.
1001-1007) attempt to learn metrics for the KNN classifier by
finding feature weights adapted to individual test samples in
a database.

[0127] Some of the early work in metric learning for medi-
cal image registration includes that of Leventon et al.
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(Michael E. Leventon, W. Eric, and W. Eric L. Grimson,
“Multi-modal volume registration using joint intensity distri-
butions,” in Int’] Conf. on Medical Image Computing and
Computer Assisted Intervention. 1998, pp. 1057-1066,
Springer) and Sabuncu et al (Mert R. Sabuncu and Peter
Ramadge, “Using spanning graphs for efficient image regis-
tration,” IEEE Transactions on Image Processing, vol. 17,
2008). These methods are based on learning an underlying
joint distribution from a training set. A new registration is
then evaluated by computing its joint distribution and opti-
mizing a cost function, (such as a divergence function) with
the learned data. The above mentioned methods are all based
on generative models. More recently, discriminative tech-
niques have also been applied for learning similarity metrics
within certain imaging domains. Zhou et al. (Shaohua Kevin
Zhou, Bogdan Georgescu, Dorin Comaniciu, and Jie Shao,
“Boostmotion: Boosting a discriminative similarity function
for motion estimation,” in Proc. IEEE Conf. Computer Vision
and Pattern Recognition. 2006, pp. 1761-1768, IEEE Com-
puter Society) apply Logitboost to learn matches for motion
estimation in echocardiography. Muenzing et al. (Sascha E.
A. Muenzing, Keelin Murphy, Brain van Ginneken, and
Josien P. W. Pluim, “Automatic detection of registration
errors for quality assessment in medical image registration,”
in Proc. SPIE Conf. on Medical Imaging, 2009, vol. 7259, p.
72590K) apply SVMs to learn matches for registration of
lung CT. Seshamani et al (S. Seshamani, R. Kumar, P. Rajan,
S. Bejakovic, G. Mullin, T. Dassopoulos, and G. Hager,
“Detecting registration failure,” in Proc. IEEE international
Symposium of Biomedical Imaging, 2009, pp. 726-729)
apply Adaboost to learn matches in capsule endoscopy. All
these methods are supervised and are used in conjunction
with one registration method to simply eliminate matches that
are incorrect.

[0128] Oneembodiment ofthe invention matches lesions in
CE images. Automated matching of regions of interest may
reduce evaluation time. An automated matching system may
allow for the clinician to select a region of interest in one
image and use this to find other instances of the same region
to present back to the clinician for evaluation. Crohns disease,
for example, may affect any part of the gastrointestinal tract
and may be characterized by discrete, well-circumscribed
(punched-out) erosions and ulcers 910 of FIG. 9. However,
since the capsule imager FIG. 1, 110 and 120 is not control-
lable, there may be a large variation in the appearance of CD
lesions in terms of illumination, scale and orientation. In
addition, there may also be a large amount of background
variation present in the GI tract imagery. Metamatching may
be used to improve match retrieval for this type of data.
[0129] Asopposed to CE, contact hysteroscopy enables the
early diagnosis of uterine cancer to be performed as an in-
office procedure. A contact hysteroscope 130 of FIG. 1 con-
sists of a rigid shaft with a probe at its tip, which may be
introduced via the cervix to the fundus of the uterus. The
probe may feature a catadioptric tip that allows visualization
of' 360 degrees of the endometrium perpendicular to the opti-
cal axis. The detail on the endometrial wall captured by this
device may be significantly higher compared to traditional
hysteroscopic methods and may allow for cancerous lesions
to be detected at an earlier stage. However, the field of view
captured by any single image frame may be only about 2 mm.
2110 of FIG. 21 shows an example raw image from a contact
hysteroscope.
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[0130] Mosaicking consecutive video frames captured
from a hysteroscopic video sequence may provide improved
visualization for the clinician. Video mosaicking may gener-
ate an environment map from a sequence of consecutive
images acquired from a video. The procedure may involve
registering images, followed by resampling the images to a
common coordinate system so that they may be combined
into a single image. For contact hysteroscopic mosaicking,
one embodiment uses direct registration of images (S. Sesha-
mani, W. Lau, and G. Hager, “Real-time endoscopic mosa-
icking,” in Int’l Conf. on Medical Image Computing and
Computer Assisted Intervention, 2006, vol. 9, pp. 355-363; S.
Seshamani, M. D. Smith, J. J. Corso, M. O. Filipovich, A.
Natarajan, and G. D. Hager, “Direct Global Adjustment
Methods for Endoscopic Mosaicking,” in Proc. SPIE Conf.
on Medical Imaging, 2009, p. 72611D) with large areas of
overlap (e.g., for example, more than 80 percent overlap
between images being registered). This procedure may rely
on an initial gross registration estimate (to, for example, the
closest pixel), followed by subpixel optimization. Although
the motion may be small between consecutive frames, it is not
necessarily consistent since the endoscopic imager may be
controlled manually. FIG. 21, 2120 and 2130 show two
examples of endometrial mosaics generated with frame-to-
frame estimates of corresponding regions. It can be noted that
due to the lack of features in these images, there are several
incorrect estimates which may affect the overall visualiza-
tion. Metamatching may be used to generate a set of match
estimates and may decide which one (if any) is suitable for the
visualization.

Overview of Metamatching

[0131] FIG. 17 depicts an overview of a metamatching
procedure 1700. In 1700, the input to the algorithm include a
region I and image J. (T, ...T,) are the set of matchers which
compute an estimate of'a region corresponding to I in J. These
estimates J, ... J, are then combined with I to generate match
pairs p; . . . p,,. These pairs are then represented with feature
vectors p, . . . p,, and finally input to a decision function D
which estimates the labels y, . . .y,, that corresponds to each
pair.

[0132] The objective of metamatching may be as follows:
Given a region I and image J, find a region within J which
corresponds to region I. An example metamatching system is
shown in 2100 of FIG. 21, which uses a set of matchers and a
decision function to perform this task. Metamatcher may be
defined as: Y ={7 , D} where 7 may be a set of n matchers:
¥ ={T,,...T,} and D may be a decision function. Given I
and J, each matcher T,€7 estimates a region which corre-
sponds to I: T,(, )= I Every I’ together with I forms a
match pair (I, J**) thus generating a set: P={p,Ip,=(I, 1), i=1
...n}. A representation function f is then applied to each pair
to generate a feature vector p for each pair: p,=f(p,).

The decision function D may then use these pair representa-
tions to estimate which of these match pairs are correct
matches. If none of the match pairs are qualified as correct,
the metamatching algorithm may determine that there is no
match present for region I in image J. If one is correct, the
algorithm may conclude that a correct match has been found.
If more than one match pair may be qualified as correct, one
of the matches may be chosen. In one embodiment of the
invention, we use SVM based ordinal regression to rank
matches and select the best match. However, in most cases, a
selection algorithm may not be required since matches which
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have been retrieved by T,’s and qualified as correct by D are
likely to be the same result. One embodiment of this invention
is focused on the problem of optimizing the performance of
the decision function D with respect to the matchers. This
performance may be defined as the harmonic mean of the
system which evaluates the system in terms of both recall and
precision.

Decision Function Design

[0133] An element of metamatching may be the use of a
decision function. In one embodiment, given a pair of regions
p={; J), a decision function D may be designed which can
determine whether these two regions correspond or not. More
formally, D may be a binary classification function whose
input is p and the desired output may be a variable y which
represents membership of pair p to the class of corresponding
regions which may be denoted C, or the class of non-corre-
sponding regions which may be denoted C,. One embodi-
ment selects y=1 to correspond to class C, and y=-1 to cor-
respond to class C,. The task of D may be to predict the output

y given p:

1, ifpe G

=D(p)=DU, N)={
y=D(p)=D( ){_l e

[0134] In one embodiment, given a set of pairs and their
associated labels, D may be trained using supervised learning
techniques to perform this binary classification task.

1) Training the Decision Function: Given a set of r pair
instances and their associated labels,

L A0y L1} g=1 .. 1)

In one embodiment each pair may be represented as an m
vector using some representation function f: p=f(p), fER ™
This may generate a training set:

i~ (P 10T 003 )EL trais 4=1 - - - 1}

[0135] In this embodiment, D may be trained using any
standard classifier to perform this binary classification. To
account for order invariance, D may be pairwise symmetric,
ie: D(LI)=D(J,]). There may be two ways of ensuring this
property, for example, using a pairwise symmetric represen-
tation, (e.g., for example, f(I, ))=f(J, I)) or using a pairwise
symmetric classification function.

Selection of Matchers

[0136] In one embodiment of the invention, the perfor-
mance of metamatching systems may be evaluated and com-
pared to determine a set of matchers that may be used in
conjunction with a decision function to obtain the best per-
formance. A common measure used to determine the perfor-
mance of a system (taking both the precision as well as recall
into consideration) may be the harmonic mean or F measure
(C. J. van Rijsbergen and Ph. D, Information Retrieval, But-
terworth, 1979). This value may be computed as follows:

2PxR
T P+R

F

where P may be the precision of the system and the R may be
the recall rate of the system. A higher F measure therefore
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may indicate better system performance. In one embodiment,
a metamatching system may include one matcher and a deci-
sion function: Y ={T,, D} This system may be presented a
set of r ROI-image sets:

{7, q=1...1}

One embodiment of the invention generates matches and
identifies the correct ones. The metamatcher may applies T
to each of the r ROI-image sets. For each ROI-image set
(I,.3,), T, may locate one prospective matching region J s,
This matching region together with the ROI (from the ROI-
image set) may form an ROI pair: (I, J,), which may
generate a total of r ROI pairs.

[0137] Each ROI pair (I, J,7*') may be assigned a ground
truth label y *, y *=1 when J " is similar to I, and -1
otherwise. The trained decision function D may then compute
alabel y,, for each ROI pair. A label of'y, =1 may indicate that
the pair may be qualified as similar by the decision function
and y,=-1 may indicate that the pair may be qualified as
dissimilar by the decision function.

[0138] Thus, given the ground truth labels y * and the
estimated labels y,, we may obtain four types of ROI pairs:
true positives, false positives, true negatives and false nega-
tives. Table VI shows an example four types of ROI pairs:

TABLE VI
Type Meaning
True Positive y¥*=landy=1
False Positive y¥=-landy=1
True Negative y¥*=-landy=-1
False Negative y*=1landy=-1

[0139] The number of ROI pairs that fall into each category
may be computed empirically. Each of these numbers may be
defined as: TP, =Number of true positives generated by T,
and D, FP,, =Number of False Positives generated by T, and
D, TN =Number of True Negatives generated by T, and D,
FN, =Number of False Negatives generated by T, and D. The
precision of the system may be computed as:

TP
P=—TL
TPy, + FPr,

In one embodiment, the system may be a matcher and clas-
sifier combination and the recall of the system may be defined
as follows:

R TPy, TPy,
T TPr +FPp + TNy +FNp, —  r

The total number of positives may be defined as:
POSy,=TPr+FPr,

The F measure may be written as:

. 2TPy,
L+ POSy,
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A metamatcher made up of n matchers and a decision func-
tion may be defined as:

T r={{1,...1,}D}

By definition, the metamatcher T” may locate a correct
match if any one of its matchers T, locates a correct match.
The number of true positives generated by this metamatcher
may be computed as:

TPyn = (TPpy, v TPpy v ... vV TPp,) =

n n

> TP = Y (TP ATPr)—... " (TP ATPr;A...ATPL)
=1

i<i=1 i<jon=1

where (TP A TPTj_) may be the number of True Positives that
are generated from matcher T, and matcher T; (the intersec-
tion) with D. Similarly, one may compute the total number of
positives as:

n
POSyn = (POSy, v POST, v ...V POST,) = % POSF, -
i=1

. .
> (POS APOS)—... > (POS APOSy; A...A POSE,)

i<j=1 i<jn=1

where (POS A POSTj) may be the number of Positives quali-
fied by D for the matches generated by matcher T, and
matcher T, (the intersection). The harmonic mean of this
metamatcher Y ” may be computed as:

2TPyn

Py = T pos,,

Selecting an Optimal Set of Matchers

[0140] Inanembodiment of the invention, the addition of a
new matcher may not always increase the performance of the
overall precision-recall system. This may be observed in the
equation directly above, where the number of true positives
(TP) is not increased but the number of positives classified by
the decision function (POS) does increase with the addition of
a new matcher. This depends on how well the decision func-
tion can classify matches generated by the new matcher. For
n prospective matchers, there may exist 2”1 possible types
of metamatchers that can be generated (with all combinations
of'matchers). This number grows exponentially with the num-
ber of matchers under consideration.

Representation Functions for a Match Pair

[0141] Inone embodiment, given a match pair p=(I, J), the
representation function f may generate w scalar or vector
subcomponents d, . .. d,,. These subcomponents may then be
stacked up to populate a feature vector p as follows:
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fpp=p=

d

dy, \
Each d; may contain similarity information between the two
images. For each d, there may be two choices to be made.
First, a choice of a region descriptor function R;. Second, a
choice of a similarity measure s between region descriptors of
Iand J: d=s(R,(I), R(J)). For an embodiment to satisfy the
pairwise symmetric property described earlier, the similarity
measure may also satisfy: s (R,(I), R(J))=d,=s (R,(J), R(D))

Selection of a Region Descriptor:

[0142] Almost all region descriptors are either structural or
statistical (Sami Brandt, Jorma Laaksonen, and Erkki Oja,
“Statistical shape features in content-based image retrieval,”
in Proc. IEEE Int’] Conf on Pattern Recognition, 2000, pp.
6062-6066) in nature, and some can be combinations of both.
In one embodiment of the invention the following features
may be applied:

Structural

[0143] Image Intensities: This descriptor may consist of
a vector containing the intensity values at all locations in
the image. For this descriptor to be used, two regions
may be resampled to the same size in order to be com-
parable.

[0144] Patch Based Mean Pixel: Here, the image may be
broken down into a fixed number of blocks and the mean
intensity value may be computed for each block. For
example, 16 blocks may be used and the image repre-
sentation may be a 16-vector.

[0145] Condition Numbers: The vector of spatial gradi-
ents containing values for each pixel I, and I, are first
computed and stacked to generate an NX2 Jacobian
matrix I;. The condition number of this Jacobian repre-
sents a measure of how well structured (in terms of
gradients) the region is (C. Harris and M. Stephens, “A
combined corner and edge detector,” in Proc. Fourth
Alvey Vision Conference, 1988, pp. 147-151).

[0146] Homogeneous Texture Descriptor (MPEG 7):
This descriptor may characterize properties of texture in
the region based on the assumption that texture may be
homogeneous in the region. The descriptor is a 62-vec-
tor resulting from features extracted from a bank of
orientation and scale-tuned Gabor filters (BS Manju-
nath, JR Ohm, VV Vasudevan, and A Yamada, “Color
and texture descriptors,” IEEE Transactions on circuits
and systems for videotechnology, vol. 11, no, 6, pp.
703-715,2001).

[0147] Gist features: This descriptor may represent the
dominant spatial structure of the region, and may be
based on a low dimensional representation called the
spatial envelope (Aude Oliva and Antonio Torralba,
“Modeling the shape of the scene: A holistic represen-
tation of the spatial envelope,” International Journal of
Computer Vision, vol. 42, pp. 145-175, 2001).

Statistical

[0148] Histograms: A histogram may be a representation
of the distribution of intensities or colors in an image,
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derived by counting the number of pixels of each of
given set of intensity or color ranges ina 2D or 3D space.

[0149] Invariant Moments: These may measure a set of
image statistics that are rotationally invariant. They may
include: mean, standard deviation, smoothness, third
moment, uniformity and entropy. In one embodiment of
the invention the implementation used of this descriptor
is from (Rafael C. Gonzalez, Richard E. Woods, and
Steven L. Eddins, Digital Image Processing Using MAT-
LAB, Gatesmark Publishing, 1st edition, 2004).

[0150] Haralick features: These may be a set of metrics
of the co-occurence matrix for an image, which may
measure the textural features of the image (R. M. Haral-
ick, Shanmugan K., and 1. Dinstein, “Textural features
for image classification,” IEEE Transactions on Sys-
tems, Man, and Cybernetics, vol. 3, no. 6, pp. 610-621,
1973).

Combined

[0151] Spatially Weighted Histograms: This may be a
histogram where pixels may be weighted by their loca-
tion. In one embodiment of the invention, pixels closer to
the center are weighed with a higher weight than pixels
at the outer edge of the region.

In one embodiment, except for the histogram and weighted
histogram measures, all other measures may be specified for
gray scale images. The color version may be computed by
applying the feature to each channel of the color image.

Similarity Measures
Scalar Functions

[0152] A distance metricis a scalar value that represents the
amount of disparity between two vectorial data points. Dis-
tance metrics are pairwise symmetric by definition and may
be used to populate a feature vector that may represent simi-
larity between images in the pair. The low dimensionality
provided by this

representation is one of its main advantages. However, in
some cases, the loss of information due to dimensional reduc-
tion may be a drawback for the type of classification as
applied in one embodiment of the invention. The range of
such metrics may fall into one of three categories:

[0153] Accuracy based metrics: These measures may
compute a specific cost function between the two
images. The measures may be those that are used for
optimization for computation of a registration. (e.g.:
SSD error, mutual information, etc).

[0154] Stability based metrics: These may measure how
stable the match is by computing local solutions.
Examples of such measures may include patch based
measures. (These may include metrics and statistics
computed between patch based region descriptors).

[0155] Consistency based metrics: These metrics may
compute how consistently the registration transforma-
tion computed the match. The forward backward check
(Heiko Hirschmller and Daniel Scharstein, “Evaluation
of cost functions for stereo matching.,” in CVPR. 2007,
IEEE Computer Society) used in stereo matching is an
example of this.

Each type of region descriptor described in the previous sec-
tion may have an appropriate set of meaningful metrics. The
region descriptors along with their associated metrics are
summarized in Table VII. The feature vector generated, for
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example, by using all of the region descriptors and metrics
shown in the table would be of length 9. For each type of
dataset (e.g., but not limited to, hysteroscopy and capsule
endoscopy), descriptor selection may be carried out by com-
puting ROC curves for using each metric separately as a
classifier.

TABLE VII

Metric (scalar)

SSD (Euclidean)

Ratio (smaller/larger)
HTD Shuftle Distance [31]

Region Descriptor (vector)

Image Intensities

Region Condition Numbers
Homogeneous Texture Descriptors

GIST features Euclidean

Patch Intensities (Grayscale and 3 color Euclidean

bands)

Histograms Bhattacharya Distance

Canberra Distance
Euclidean Distance
Bhattacharya Distance

Haralick Descriptors
Image Moments
Spatially Weighted Histograms

Vector Functions

[0156] In another embodiment, the similarity representa-
tions may be generated by computing element wise squared
difference of the values within each region descriptor as fol-
lows:

=5 R{((D) RN~ RD)-R)Y

Each of the d;’s representations may be the same length as the
region descriptors. One advantage of using this type of feature
descriptor may be the reduction of information loss. How-
ever, a drawback may be that the use of large region descrip-
tors and the increase in numbers of region descriptors may
cause the feature vectors generated to be of a very high
dimension.

Classification Methods for the Decision Function

[0157] In one embodiment with a set of matched pairs
represented as feature vectors, a classifier is computed that
may distinguish correct matches from incorrect ones. The
following standard classifiers may be used: Nearest Neigh-
bors (Christopher M. Bishop, Pattern Recognition and
Machine Learning (Information Science and Statistics),
Springer-Verlag New York, Inc., Secaucus, N.J., USA, 2006),
Support Vector Machines (Bernhard Scholkopf, Christopher
J. C. Burges, and Alexander J. Smola, Eds., Advances in
kernel methods: support vector learning, MIT Press, Cam-
bridge, Mass., USA, 1999; Vladimir N. Vapnik, The nature of
statistical learning theory, Springer-Verlag New York, Inc.,
New York, N.Y., USA, 1995), Linear Discriminant Analysis
and Boosting (P. Viola and M. Jones, “Robust real-time face
detection,” International Journal of Computer Vision, vol. 57,
no. 2, pp. 137-154, 2004).

Generating Training and Testing Pairs for Capsule Data

[0158] Inanexemplary embodiment of the invention using
capsule endoscopy, the dataset may consist of sets of images
containing the same region of interest. In one embodiment,
centers of corresponding regions of interest are manually
annotated. The set of N images in which the same region
appears is defined as: T ={1,, L, ... 1.} and the set of all the

annotated regions as & ,={I,, I, ... I} where I, is the region
extracted from the kth image I, in the set. Note that this index
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k (which refers to the image index) may be different from the
index i used above to denote the index of the matcher.
[0159] Every pair of ROIs (I, I,) in S, may form a match
pair. However, this may not be used as a training set since it
may not contain any negative examples. Instead, matchers
may be used to generate examples of positive and negative
match pairs.

[0160] For example, given a matcher T, a region I, and an
image I, we may compute an estimate of a corresponding
region: T(1,, )~ I, to generate a pair (I,, 1,”%). For a given
matcher, such pairs may be computed between every region in
the set S, and every image in T .

Labels may be generated for the pairs as follows. The Euclid-
ean distance between the center of I, and I, may be defined
as dist,,. The associated label y(I,, I,”%) for the pair (I, I,”%)
may be generated as:

1, if disyy <7y
T,lk)— _1

y( otherwise

Il

where y>0 may be a threshold selected for each training
model. The match data set generated by these N images in
which the same region appears may contain labeled pairs:

. B 70 _
Lca;mzz = {((’k’ L), y(lk,llT"k ) k=1 ... N, k# l}

Match datasets may be generated for all such sets of images
and combine them to form the full dataset. This full dataset
may be used for training and testing. Cross validation may be
performed to partition the data into independent training and
testing sets.

Generating Training and Testing Pairs for Endometrial Data

[0161] In an embodiment where endometrial imaging is
used, data may consist ofa video sequence where consecutive
images may be registered at a finer level. Hence, training data
may be obtained by generating positive and negative
examples by offsetting matching regions. This data may be
referred to as N-offset data. N-offset data may be generated
by sampling regions at various offsets from a manually anno-
tated center. Given £ and S, as described in the previous
section, we define a displaced region I, s a region in I, that
may be at a displacement of ¢ pixels from the manually
annotated region I,. The set of all regions at a particular
displacement value ¢ may be denoted as S_.

[0162] A training pair may be generated as (1,°, 1) (a
training pair may include an region from S). The set of all
training pairs generated by the set of images in which the
same region appears may be written as: P, ={(1°,
1)k, I=1:N} and may include two types of pairs in equal
numbers: (I,°, 1) where c<y and (I,°, 1) where ¢>y. This
may assure both positive and negative examples in the train-
ing set. The associated classifications for pairs may be com-
puted as in the previous section to generate the set of labelled
data:

L Endomenia W (GI) Y GO IAVEP Ergomenial}

In one embodiment, this is generated using all sets of images
in which the same region occurs and may combine them to
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form the fill training set. The testing set may be generated
using matchers, using the methodology described above to
generate L

capsules

Metamatching for Lesion Finding in Capsule Endoscopy

[0163] In one embodiment, lesions were selected and a
search for the corresponding region was performed on all
other images in the lesion set using the following four match-
ers: NCC template matching (Matcher 1), SIFT (Matcher 2),
weighted histogram matching (Matcher 3) and color
weighted histogram matching (Matcher 4). Each pair was
then represented using the scalar (metric) representation
functions and the vector (distance squared) representation
functions described above using the following region descrip-
tors: Homogeneous Texture, Haralick features, Spatially
weighted histograms, RGB histograms, Moments, Normal-
ized mean patch intensities, Normalized patch condition
numbers, Local Binary Patterns, GIST and Sum of Squared
Differences of Intensities (SSD).

Augmenting Capsule Endoscopy Diagnosis: A Similarity
Learning Approach

[0164] In one embodiment of the invention, the invention
improves on the diagnostic procedure of reviewing endo-
scopic images through two methods. First, diagnostic mea-
sures may be improved through automatic matching for locat-
ing multiple views of a selected pathology. Seshamani et al.
propose a meta matching procedure that incorporates several
simple matchers and a binary decision function that deter-
mines whether a pair of images are similar or not (Seshamani,
S., Rajan, P., Kumar, R., Girgis, H., Mullin, G., Dassopoulos,
T., Hager, G.: A meta registration framework for lesion
matching. In: MICCAI (2009) 582-589). The second diag-
nostic improvement may be the enhancement of CD lesion
scoring consistency with the use of a predictor which can
determine the severity of the lesion based on previously seen
examples. Both of these problems may be approached from a
similarity learning perspective. Learning the decision func-
tion for meta matching may be a similarity learning problem
(Chen, Y., Garcia, E. K., Gupta, M. R., Rahimi, A., Cazzanti,
L.: Similarity-based classification: Concepts and algorithms.
IJMLR 10 (March 2009) 747-776)). Lesion severity predic-
tion may be a multi-class classification problem which
involves learning semantic classes of lesions based on appear-
ance characteristics. Multi-class classification may also be
approached from a similarity learning approach as shown in
(Chen, Y., Garcia, E. K., Gupta, M. R., Rahimi, A., Cazzanti,
L.: Similarity-based classification: Concepts and algorithms.
JMLR. 10 (March 2009) 747-776; Cazzanti, L., Gupta, M. R.:
Local similarity discriminant analysis. In: ICML. (2007)). In
one embodiment of the invention, both problems are
approached as supervised pairwise similarity learning prob-
lems (Vert, J. P, Qiu, J., Noble, W. S.: A new pairwise kernel
for biological network inference with support vector
machines. BMC Bioinformatics 8(S-10) (2007); Kashima,
H., Oyama, S., Yamanishi, Y., Tsuda, K.: On pairwise kernels:
An efficient alternative and generalization analysis. In:
PAKDD. (2009) 1030-1037; Oyama, S., Manning, C. D.:
Using feature conjunctions across examples for learning pair-
wise classifiers In: ECML. (2004)).

Pairwise Similarity Learning

[0165] The pairwise similarity learning problem may be
considered as the following: given a pair of data points, deter-
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mine if these two points are similar, based on previously seen
examples of similar and dissimilar points. A function that
performs this task may be called a pairwise similarity learner
(PSL). A PSL is may be made up of two parts: a representation
function, and a classification. In addition, the PSL, may also
be required to be invariant to the ordering of pairs. One
method of assuring order invariance is by imposing a sym-
metry constraint on the representation function (Seshamani,
S., Rajan, P, Kumar, R., Girgis, H., Mullin, G., Dassopoulos,
T., Hager, G.: A meta registration framework for lesion
matching. In: MICCAL. (2009) 582-589). However, doing so
may introduce a loss of dimensionality and possibly a loss of
information that may be relevant for the classification task.
Order invariance of the PSL may also be ensured by imposing
symmetry constraints on the classifier. Such a classification
function may be referred to as a pairwise symmetric classifier.
Several SVM-based pairwise symmetric classifiers have been
proposed. Within the SVM framework, symmetry may be
imposed by ensuring that the kernel function satisfies order
invariance. In prior work concerning pairwise symmetric
classifiers, a pair may be described by only one type of feature
and the underlying assumption is that one distance metric
holds for the entire set of points. However, this assumption
may not hold when multiple features are used to describe
data. The area of Multiple Kernel Learning (Rakotomamonjy,
A.,Bach,F.R., Canu, S., Grandvalet, Y.: Simplemkl. JMLR 9
(2008); Varma, M., Babu, B. R.: More generality in e_cient
multiple kernel learning. In: ICML. (June 2009) 1065-1072;
(Gehler, P., Nowozin, S.: Let the kernel figure it out: Prin-
cipled learning of preprocessing for kernel classifiers. In:
CVPR. (2009)) has investigated several methods for combin-
ing features within the SVM framework. In one embodiment,
the invention uses a novel pairwise similarity classifier for
PSL using nonsymmetric representations with multiple fea-
tures.

Mathematical Formulation

[0166] Oneembodiment may include a pair of images (1,J)
and a set X consisting of m image descriptors (features).
Applying any X,E€X to each image in the pair may generate a
representation x=(x,, X,) where x, {X,(D} and x,={X,(D}. A
label y&{1, -1} may be associated with x, where y=1 may
imply a pair of similar images and y=—1 may imply a pair of
dissimilar images. The PSL problem may be written as fol-
lows: given a training set with n image pair representations
and their associated labels ¥, ={(x,m y)li=1...n}, compute
a classifier C that may predict the label of an unseen pair x:

I, if X represents a pair of similar images

€O = (01, 1) = {

—1 otherwise

Order invariance may require C((X,, X,))=C((X,, X,)). We
refer to this as the pairwise symmetric constraint. An SVM

trained on the set T may classify an unseen pair x=(x,, X,) as:

C®) = aiyiK&, %) + b
Yixp,yp)eT
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where b and ¢,’s may be learned from training examples and
K is a Mercer kernel. This classifier may satisfy the pairwise
symmetric constraint if K satisfies: K(x, x,)=K((x;, X,), (X;;,
X;) FK((X5, X;), (X;15 X;2))- Such a kernel may be referred to
as a pairwise symmetric kernel (PSK).

PSKs for One Descriptor

[0167] Mercer Kernels may be generated from other Mer-
cer Kernels by linear combinations (with positive weights) or
element wise multiplication (Cristianini, N., Shawe-Taylor,
J.: An Introduction to Support Vector Machines: and Other
Kernel-Based Learning Methods. Cambridge University
Press (2000)). This idea may be used to generate PSKs from
simpler Mercer Kernels. Assuming that we have two pairs:
(x;, X,) and (X3, x,) and a base mercer kernel K, which may
operate on a pair of points. A PSK (which may operate on two
pairs of points) may be computed by symmetrization of the
base kernel. Other work has shown that a second order PSK
called the MLPK may be introduced (Vert, J. P., Qiu, J.,
Noble, W. S.: A new pairwise kernel for biological network
inference with support vector machines. BMC Bioinformat-
ics 8(S-10) (2007)): K((x,, X)s (X5, %a)=(K(Xy, X5}HK (X1
x,)-K(x,, x,)-K(x,, X;))*. This kernel may be a linear com-
bination of all second order combinations of the four base
Mercer kernels. This kernel may be rewritten in terms of 3
PSKs as K=K, +2K,-2K; where:

K =K 23) K (00,24 (01, 50) K (05,%5)
K=K (31, %3)K (30, %4)+K (x1,%2)K (%2,%3)

K3=K(x1,x3) K1, %0)+K (x1,%3)K (3%5,%3) K, %2)K (%,
X4)+HK (%2, 4)K (%2,%3)

[0168] The MLPK kernel may be different from a second
order polynomial kernel due to the additional base kernels it
uses. A classifier trained with the MLPK kernel may be com-
parable to a classifier trained with a second order polynomial
kernel on double the amount of data (with pair orders
reversed). SVM complexity may be exponential in the num-
ber of training points (in the worst case) (Gértner, B., Giesen,
J., Jaggi, M.: An exponential lower bound on the complexity
of regularization paths. CoRR (2009)). Secondly, a larger
training dataset may generate more support vectors which
increase run time complexity (classification time). Thus, the
PSK may be greatly beneficial in the reduction of both train-
ing and classification time.

PSKs with More than One Descriptor

Inone embodiment, with one descriptor, 3 second order PSKs
(K, K, and K;) may be obtained. So, given a set of m descrip-
tors, we may generate a total of 3m second order PSKs:
Q={K,1i=1...3m}. The problem now becomes the follow-
ing: Givena set of PSKss find a weight vector d& % 3™ that can
generate a kernel K=27"d K, where d,&d, K;/E€Q. In one
embodiment, Simple Multiple Kernel Learning (Sim-
pleMKL) may be used for automatically learning these
weights (Rakotomamonjy, A., Bach, F. R., Canu, S., Grand-
valet, Y.; Simplemkl. JIMLR 9 (2008)). This method may
initialize the weight vector uniformly and may then perform
a gradient descent on the SVM cost function to find an opti-
mal weighting solution. A Generalized Pairwise Symmetric
Learning (GPSL) training algorithm, used in one embodi-
ment, is outlined below.

Input: Training set 7 ,, and m base kernels.

Output: Weight Vector d, ., SVM parameters o and b
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[0169] For each of the m features, compute K, K, and
K; (as described above) between all training pairs to
generate the set Q,,,,,,{K;li=1...3m}

[0170] Apply SimpleMKL to find a weight vectord,_,.

[0171] Learnthe SVM parameters o and b using a kernel
generated as a linear combination of kernels in Q using
dbest' _

To predict similarity of an unseen pair x:

[0172] Compute the set Q,,,, using the test point and
training examples.

[0173] Generate a linear combination of these kernels
using d,,-

[0174] Predict the similarity of the pair using the learned
oand b.

Multiclass Classification

[0175] The multiclass classification problem for images
may be as follows: given a training set consisting of k images
and their semantic labels Z ={(I,, 1)li=1 ...k, 1E{1...p}},
where I s are the images and 1 ;s are the labels belonging to one
of p classes, compute a classifier that may predict the label of
an unseen image . From a similarity learning approach, this
problem may be reformulated as a binary classification and
voting problem: given a training set of similar and dissimilar
images, compute the semantic label of a new unseen image 1.
This may require two steps: 1) Learning similarities, and 2)
Voting, to determine the label of an unseen image. One
embodiment may use the same method outlined in the GPSL
algorithm above for similarity learning. Voting may then be
performed by selection of n voters from each semantic class
who decide whether or not the new image is similar or dis-
similar to themselves. We refer to this algorithm as GPSL-
Vote:

[0176] Given I, compute a new training set consisting
of all combinations of pairs and their similarity labels:
¥ :{((Iia Ij)k’ y}r)l(lis 11‘)5 (I]s lj)e i ° Yke{ls -1 }} where
y=11if 1], and y,=-1 otherwise.

[0177] Train the G PSL using this set.

For a new image 1,

[0178] For each of the p semantic classes, select r repre-
sentative images: {I, . . . I,} where I(I,, y,) is such that
y,=p. This generates a set of q=pr images.

[0179] Compute a set of pairs by combining each repre-
sentative image with the new image I:{(I, 1,) ... (I, 1)}

[0180] Use the trained GPSL to predict which pairs are
similar.

[0181] For each semantic class, compute the number of
similar pairs.

[0182] Assign the new image I to the class with the
maximum number of votes.

Experiments

[0183] In one embodiment, each image in a pair may be
represented by a set of descriptors. For example, MPEG-7
Homogeneous Texture Descriptors (HTD) (Manjunath, B.,
Ohm, J., Vasudevan, V., Yamada, A.: Color and texture
descriptors. IEEE CSVT 11(6) (2001) 703-715), color
weighted histograms (WH) and patch intensities (PI). WHs
may be generated by dividing the color space into 11 bins, for
example, and populating a feature vector with points
weighted by their distance from the image center. PIs may be
generated by dividing the image into 16 patches, for example,
and populating a vector with the mean intensity in each patch.
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The number of histogram bins and patches may be deter-
mined empirically. A nonsymmetric pair may consist of two
sets of these descriptors stacked together. For the symmetric
representation, descriptors element-wise squared difference
may be carried out between the two sets. A chi-squared base
kernel may be used for WH and a polynomial base kernel of
order 1 may be used for the other two descriptors.

[0184] Experiments validate that MLPK with a non-sym-
metric representation is better than using a nonsymmetric
kernel with a symmetric representation. Further, with three
example algorithms for comparison: SVM with a base kernel,
SimpleMKL using MLPK generated from the same base
kernel (a total of m kernels) and GPSL (a total of 3m kernels
also calculated from the same base kernel). A 5-fold CV may
be applied to all three algorithms using all combinations of
the three descriptors. It was observed that GPSL outperforms
SVM with a base kernel in all cases. SimpleMLK with MLPK
also performs better than SVM with a base kernel in all cases,
except the HTD descriptor.

[0185] Experiments were also preformed for classifying
mild vs. severe lesions. For example, three types of features
were extracted: Haralick texture descriptor and Cross Corre-
lation responses of the blue and green bands with the same
bands of a template lesion image. Three classification experi-
ments were compared: SVM with each descriptor separately
(SVMSeparate) to directly classify lesion images, SVM with
all features combined by SimpleMKL (SVM-MKL) to
directly classify lesion images and finally with GPSLVote
(which uses pairwise similarity learning). CV in all cases was
performed on a “leave-two-out” basis, where the testing set
was made up of one image from each class. All other images
formed the training set. In the case of GPSL-Vote, the simi-
larity training dataset may be generated using all combina-
tions of pairs which are in the training set. It was observed that
the SVM-MKL algorithm does only as well as the best clas-
sifier. However, GPSL-vote may outperforms this, even for a
small dataset with a small number of features.

Exemplary Computer System

[0186] FIG. 15 depicts an illustrative computer system that
may be used in implementing an embodiment of the present
invention. Specifically, FIG. 15 depicts an embodiment of a
computer system 1500 that may be used in computing devices
such as, e.g., but not limited to, standalone or client or server
devices. FIG. 15 depicts an embodiment of a computer sys-
tem that may be used as client device, or a server device, etc.
The present invention (or any part(s) or function(s) thereof)
may be implemented using hardware, software, firmware, or
a combination thereof and may be implemented in one or
more computer systems or other processing systems. In fact,
in one embodiment, the invention may be directed toward one
or more computer systems capable of carrying out the func-
tionality described herein. An example of a computer system
1500 is shown in FIG. 15, depicting an embodiment of a block
diagram of an illustrative computer system useful for imple-
menting the present invention. Specifically, FIG. 15 illus-
trates an example computer 1500, which in an embodiment
may be, e.g., (but not limited to) a personal computer (PC)
system running an operating system such as, e.g., (but not
limited to) MICROSOFT® WINDOWS® NT/98/2000/XP/
Vista/Windows 7/etc. available from MICROSOFT® Corpo-
ration of Redmond, Wash., U.S.A. However, the invention is
not limited to these platforms. Instead, the invention may be
implemented on any appropriate computer system running
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any appropriate operating system. In one embodiment, the
present invention may be implemented on a computer system
operating as discussed herein. An illustrative computer sys-
tem, computer 1500 is shown in FIG. 15. Other components
ofthe invention, such as, e.g., (but not limited to) a computing
device, an imaging device, an imaging system, a communi-
cations device, a telephone, a personal digital assistant
(PDA), a personal computer (PC), a handheld PC, a laptop
computer, a netbook, client workstations, thin clients, thick
clients, proxy servers, network communication servers,
remote access devices, client computers, server computers,
routers, web servers, data, media, audio, video, telephony or
streaming technology servers, etc., may also be implemented
using a computer such as that shown in FIG. 15.

[0187] Thecomputer system 1500 may include one or more
processors, such as, e.g., but not limited to, processor(s) 1504.
The processor(s) 1504 may be connected to a communication
infrastructure 1506 (e.g., but not limited to, a communica-
tions bus, cross-over bar, or network, etc.). Processors 1504
may also include multiple independent cores, such as a dual-
core processor or a multi-core processor. Processors 1504
may also include one or more graphics processing units
(GPU) which may be in the form of a dedicated graphics card,
anintegrated graphics solution, and/or a hybrid graphics solu-
tion. Various illustrative software embodiments may be
described in terms of this illustrative computer system. After
reading this description, it will become apparent to a person
skilled in the relevant art(s) how to implement the invention
using other computer systems and/or architectures.

[0188] Computer system 1500 may include a display inter-
face 1502 that may forward, e.g., but not limited to, graphics,
text, and other data, etc., from the communication infrastruc-
ture 1506 (or from a frame buffer, etc., not shown) for display
on the display unit 1530.

[0189] The computer system 1500 may also include, e.g.,
but is not limited to, a main memory 1508, random access
memory (RAM), and a secondary memory 1510, etc. The
secondary memory 1510 may include, for example, (but is not
limited to) a hard disk drive 1512 and/or a removable storage
drive 1514, representing a floppy diskette drive, a magnetic
tape drive, an optical disk drive, a compact disk drive CD-
ROM, etc. The removable storage drive 1514 may, e.g., but is
not limited to, read from and/or write to a removable storage
unit 1518 in a well known manner. Removable storage unit
1518, also called a program storage device or a computer
program product, may represent, e.g., but is not limited to, a
floppy disk, magnetic tape, optical disk, compact disk, etc.
which may be read from and written to removable storage
drive 1514. As will be appreciated, the removable storage unit
1518 may include a computer usable storage medium having
stored therein computer software and/or data.

[0190] In alternative embodiments, secondary memory
1510 may include other similar devices for allowing com-
puter programs or other instructions to be loaded into com-
puter system 1500. Such devices may include, for example, a
removable storage unit 1522 and an interface 1520. Examples
of such may include a program cartridge and cartridge inter-
face (such as, e.g., but not limited to, those found in video
game devices), a removable memory chip (such as, e.g., but
not limited to, an erasable programmable read only memory
(EPROM), or programmable read only memory (PROM) and
associated socket, and other removable storage units 1522
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and interfaces 1520, which may allow software and data to be
transferred from the removable storage unit 1522 to computer
system 1500.

[0191] Computer 1500 may also include an input device
such as, e.g., (but not limited to) a mouse or other pointing
device such as a digitizer, and a keyboard or other data entry
device (none of which are labeled). Other input devices 1513
may include a facial scanning device or a video source, such
as, e.g., but not limited to, fundus imager, a retinal scanner, a
web cam, a video camera, or other camera.

[0192] Computer 1500 may also include output devices,
such as, e.g., (but not limited to) display 1530, and display
interface 1502. Computer 1500 may include input/output
(I/0) devices such as, e.g., (but not limited to) communica-
tions interface 1524, cable 1528 and communications path
1526, etc. These devices may include, e.g., but are not limited
to, a network interface card, and modems (neither are
labeled). Communications interface 1524 may allow soft-
ware and data to be transferred between computer system
1500 and external devices.

[0193] In this document, the terms “computer program
medium” and “computer readable medium” may be used to
generally refer to media such as, e.g., but not limited to
removable storage drive 1514, and a hard disk installed in
hard disk drive 1512, etc. These computer program products
may provide software to computer system 1500. Some
embodiments of the invention may be directed to such com-
puter program products. References to “one embodiment,”
“an embodiment,” “example embodiment,” “various embodi-
ments,” etc., may indicate that the embodiment(s) of the
invention so described may include a particular feature, struc-
ture, or characteristic, but not every embodiment necessarily
includes the particular feature, structure, or characteristic.
Further, repeated use of the phrase “in one embodiment,” or
“in an embodiment,” do not necessarily refer to the same
embodiment, although they may. In the following description
and claims, the terms “coupled” and “connected,” along with
their derivatives, may be used. It should be understood that
these terms are not intended as synonyms for each other.
Rather, in particular embodiments, “connected” may be used
to indicate that two or more elements are in direct physical or
electrical contact with each other. “Coupled” may mean that
two or more elements are in direct physical or electrical
contact. However, “coupled” may also mean that two or more
elements are not in direct contact with each other, but yet still
co-operate or interact with each other.

[0194] An algorithm is here, and generally, considered to
be a self-consistent sequence of acts or operations leading to
a desired result. These include physical manipulations of
physical quantities. Usually, though not necessarily, these
quantities take the form of electrical or magnetic data capable
of being stored, transferred, combined, compared, and other-
wise manipulated. It has proven convenient at times, princi-
pally for reasons of common usage, to refer to these data as
bits, values, elements, symbols, characters, terms, numbers or
the like. It should be understood, however, that all of these and
similar terms are to be associated with the appropriate physi-
cal quantities and are merely convenient labels applied to
these quantities.

[0195] Unless specifically stated otherwise, as apparent
from the following discussions, it is appreciated that through-
out the specification discussions utilizing terms such as “pro-
cessing,” “computing,” “calculating,” “determining,” or the
like, refer to the action and/or processes of a computer or
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computing system, or similar electronic computing device,
that manipulate and/or transform data represented as physi-
cal, such as electronic, quantities within the computing sys-
tem’s registers and/or memories into other data similarly
represented as physical quantities within the computing sys-
tem’s memories, registers or other such information storage,
transmission or display devices.

[0196] Ina similar manner, the term “processor” may refer
to any device or portion of a device that processes electronic
data from registers and/or memory to transform that elec-
tronic data into other electronic data that may be stored in
registers and/or memory. A “computing platform” may com-
prise one or more processors.

[0197] Embodiments of the present invention may include
apparatuses for performing the operations herein. An appa-
ratus may be specially constructed for the desired purposes,
or it may comprise a general purpose device selectively acti-
vated or reconfigured by a program stored in the device.
[0198] In yet another embodiment, the invention may be
implemented using a combination of any of, e.g., but not
limited to, hardware, firmware and software, etc.

[0199] FIG. 16 depicts an illustrative imaging capture and
image processing and/or archiving system 1600. 1600
includes an endoscope 110, 120, 130 that is capable of taking
endoscopic images and transmitting them to computing sys-
tem 1500. Different embodiments of the invention include
different endoscope devices including a wireless capsule
endoscopy device, a flexible endoscope, a contact hystero-
scope, a flexible borescope, a video borescope, a rigid bore-
scope, a pipe borescope, a GRIN lens endoscope, or a fibro-
scope. 1600 also includes a processing unit 1500. 1500 is a
computing system such as depicted in FIG. 15. 1500 may be
an image processing system and/or image archiving system
and is capable of receiving image data as input. 1600 may
include a storage device 1512, one or more processors 1504,
a display device 1530, and an input device 1513.

[0200] Inone embodiment of the invention, the processing
unit 1500 is capable of processing the received images. Such
processing includes detecting an attribute of interest, deter-
mining whether an attribute of interest is present in the images
based on a predetermined criterion, classifying a set of
images that contains at least one attribute of interest, and
classifying another set of images that does not contain at least
one attribute of interest. The attribute of interest may be a
localized region of interest that contains a disease relevant
visual attribute. The disease relevant visual attribute include
endoscopic images that include images of a lesion, a polyp,
bleeding, inflammation, discoloration, and/or stenosis.
[0201] The processing unit 1500 may also detect duplicate
attribute of interest in multiple endoscopic images. The pro-
cessing unit 1500 may identify an attribute of interest in a first
image that corresponds to an attribute of interest of a second
image. Once duplicates are identified, the processing unit
1500 may remove the duplicates from an image set.

[0202] The system 1600 displays result data on display
1530. The result data includes the classified images contain-
ing an attribute of interest. The system 1600 may allow rel-
evance feedback through an input device 1513. The relevance
feedback includes a change to the result data. The system
1600 will use the relevance feedback to train the classifiers.
Relevance feedback may include a change in said classifica-
tion, a removal of the image from said reduced set of images,
a change in an ordering of said reduced set of images, an
assignment of an assessment attribute, and/or an assignment
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of a measurement. The system 1600 training may be per-
formed using artificial neural networks, support vector
machines, and/or linear discriminant analysis.

[0203] The attribute of interest in the images may corre-
spond to some type of abnormality. The system 1600 will
perform an assessment of the severity of each said attribute of
interest. The assessment includes a score, a rank, a structured
assessment comprising of one or more categories, a struc-
tured assessment on a Likert scale, and/or a relationship with
one or more other images, wherein said relationship com-
prises less severe or more severe. The system 1600 may derive
an overall score for the image set containing at least one
attribute of interest based on the severity of each said region
of interest. The score may be based on the Lewis score, the
Crohn’s Disease Endoscopy Index of Severity, the Simple
Endoscopic Score for Crohn’s Disease, the Crohn’s Disease
Activity Index, and/or another rubric based on image appear-
ance attributes. The appearance attributes include lesion exu-
dates, inflammation, color, and/or texture.

[0204] The system 1600 may also identify images that are
unusable and remove those images from further processing.
The images may be unusable because they contain extraneous
particles in the image. Such extraneous information includes
air bubbles, food, fecal matter, normal tissue, non-lesion,
and/or structures.

[0205] The system 1600 may use supervised machine
learning, unsupervised machine learning, or both during the
processing of the images. The system 1600 may also use
statistical measures, machine learning algorithms, traditional
classification techniques, regression techniques, feature vec-
tors, localized descriptors, MPEG-7 visual descriptors, edge
features, color histograms, image statistics, gradient statis-
tics, Haralick texture features, dominant color descriptors,
edge histogram descriptors, homogeneous texture descrip-
tors, spatial kernel weighting, uniform grid sampling, grid
sampling with multiple scales, local mode-seeking using
mean shift, generic lesion templates, linear discriminate
analysis, logistic regression, K-nearest neighbors, relevance
vector machines, expectation maximation, discrete wavelets,
and/or Gabor filters. System 1600 may also use measure-
ments of color, texture, hue, saturation, intensity, energy,
entropy, maximum probability, contrast, inverse difference
moment, and/or correlation. System 1600 may also use meta
methods, boosting methods, bagging methods, voting,
weighted voting, adaboost, temporal consistency, performing
a second classification procedure on data neighboring said
localized region of interest, and/or Bayesian analysis.

[0206] In one embodiment, the images taken by the endo-
scope are images taken within a gastrointestinal track and the
attribute of interest includes an anatomic abnormality in the
gastrointestinal track. The abnormality comprises includes a
lesion, mucosal inflammation, an erosion, an ulcer, submu-
cosal inflammation, a stricture, a fistulae, a perforation, an
erythema, edema, blood, and/or a boundary organ.

[0207] In one embodiment, system 1600 receives and pro-
cesses images in real-time from the endoscope. This may be
the scenario where a surgeon or clinician is manually operat-
ing the endoscope. In another embodiment, system 1600 is
processing the images that are stored in a database of images.
This may be the scenario where a capsule endoscopic device
is transmitting images to data storage for later processing.
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[0208] FIG. 18 depicts an illustrative screen shot of a user
interface application 1800 designed to support review of
imaging data. The software should have, at least, the follow-
ing features:

[0209] Study Review: The ability to review, store, and
recall identified or de-identified studies (in randomized
and blind fashion). This may be either lesion thumbnails
(selected images) and associated data, or an entire CE
study as a single image stream.

[0210] Clinical Review: The ability to review, edit, and
export identified or de-identified clinical data relevant to
diagnosis.

[0211] Longitudinal Review: The ability to relate studies
linked together by the patient ID.

[0212] Study Annotation: The ability to annotate, review,
and export annotated information, including regions of
interest and landmarks.

[0213] Study Scoring: The ability to assign scores, using
multiple alphanumeric scoring methods including the
CDALI and the Lewis score, both individual lesions, and
a study as appropriate.

[0214] Assessment: The ability to automatically assess,
and manually adjust severity of lesions, and studies
using detection, classification, and severity rating meth-
ods

[0215] The current invention is not limited to the specific
embodiments of the invention illustrated herein by way
of example, but is defined by the claims. One of ordinary
skill in the art would recognize that various modifica-
tions and alternatives to the examples discussed herein
are possible without departing from the scope and gen-
eral concepts of this invention.

We claim:

1. An automated method of processing images from an
endoscope comprising:

receiving a plurality of endoscopic images by an image

processing system;

processing each of said plurality of endoscopic images

with said image processing system to determine whether
at least one attribute of interest is present in each image
that satisfies a predetermined criterion; and

classifying said plurality of endoscopic images into a

reduced set of images each of which contains at least one
attribute of interest and a remainder set of images each of
which is free from said attribute.

2. The automated method according to claim 1, where the
attribute of interest is a localized region of interest containing
a disease relevant visual attribute.

3. The automated method of claim 2, wherein said disease
relevant visual attribute comprises an image of: a lesion, a
polyp, bleeding, inflammation, discoloration, or stenosis.

4. The automated method according to claim 1, further
comprising:

processing said reduced set of images with said image

processing system to identify an attribute of interest in a
first image of said reduced set of images that corre-
sponds to an attribute of interest of a second image of
said reduced set of images.

5. The automated method according to claim 4, further
comprising;

classifying said reduced set of images into a non-redundant

set of images such that no attribute of interest of any one
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of said non-redundant set of images corresponds to an
attribute of interest of any other one of said non-redun-
dant set of images.

6. The method according to claim 1, further comprising:

displaying result data with said image processing system,

wherein said result data comprises an image from said
reduced set of images containing at least one attribute of
interest.

7. The method according to claim 6, further comprising:

receiving relevance feedback on said image processing

system from an observer of said result data, wherein said
relevance feedback comprises a change to said result
data; and

training said image processing system based on said

received relevance feedback.

8. The method according to claim 7, wherein said relevance
feedback includes one or more of the following:

a change in said classification,

a removal of the image from said reduced set of images,

a change in an ordering of said reduced set of images,

an assignment of an assessment attribute, and

an assignment of a measurement.

9. The method according to claim 7, wherein said training
comprises using at least one of the following:

artificial neural networks,

support vector machines, and

linear discriminant analysis.

10. The method according to claim 1, wherein said attribute
ofinterest corresponds to an abnormality, said method further
comprising:

assessing a severity of each said attribute of interest in said

reduced set of images containing at least one attribute of
interest using said image processing system.

11. The method according to claim 10, where said assess-
ing comprises calculating one of:

a score,

arank,

a structured assessment comprising of one or more catego-

ries,

a structured assessment on a Likert scale, and

arelationship with one or more other images, wherein said

relationship comprises less severe or more severe.

12. The method according to claim 10, further comprising:

deriving a score for said reduced set of images containing

at least one attribute of interest based on said severity of
each said region of interest using said image processing
system.

13. The method according to claim 12, wherein said score
comprises at least one of:

a Lewis score,

a Crohn’s Disease Endoscopy Index of Severity,

a Simple Endoscopic Score for Crohn’s Disease,

a Crohn’s Disease Activity index, and

a rubric based on image appearance attributes, wherein

said appearance attributes comprises one of: lesion exu-
dates, inflammation, color, and texture.

14. The method according to claim 1, further comprising:

prior to the first said processing, processing each of said

plurality of endoscopic images with said image process-
ing system to determine whether any of said plurality of
endoscopic images is unusable for further processing;
and

removing said unusable image from further processing.
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15. The method according to claim 14, wherein said unus-
able image comprises at least one image of:

air bubbles,

food,

fecal matter,

normal tissue,

non-lesion, and

structures.

16. The method according to claim 1, wherein said pro-
cessing each of said plurality of endoscopic images and clas-
sifying said plurality of endoscopic images comprises at least
one of: supervised machine learning and unsupervised
machine learning.

17. The method according to claim 1, wherein said pro-
cessing each of said plurality of endoscopic images com-
prises using at least one of:

statistical measures,

machine learning algorithms,

traditional classification techmques,

regression techniques,

feature vectors,

localized descriptors,

MPEG-7 visual descriptors,

edge features,

color histograms,

image statistics,

gradient statistics,

Haralick texture features,

dominant color descriptors,

edge histogram descriptors,

homogeneous texture descriptors,

spatial kernel weighting,

uniform grid sampling,

grid sampling with multiple scales,

local mode-seeking using mean shift,

generic lesion templates,

linear discriminate analysis,

logistic regression,

K-nearest neighbors,

relevance vector machines,

expectation maximation,

discrete wavelets, and

Gabor filters.

18. The method according to claim 1, wherein said prede-
termined criterion comprises a measurement of at least one
of

color,

texture,

hue,

saturation,

intensity,

energy,

entropy,

maximum probability,

contrast,

inverse difference moment, and

correlation.

19. The method according to claim 1, wherein said classi-
fying said plurality of endoscopic images comprises using at
least one of:

meta methods,

boosting methods,

bagging methods,

voting,
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weighted voting,

adaboost,

temporal consistency,

performing a second classification procedure on data
neighboring said localized region of interest, and

Bayesian analysis.

20. The method according to claim 1, wherein said endo-
scope comprises at least one of:

a wireless capsule endoscopy device,

an endoscope,

a flexible endoscope,

a contact hysteroscope,

a flexible borescope,

a video borescope,

a rigid borescope,

a pipe borescope,

a GRIN lens endoscope, and

a fibroscope.

21. The method according to claim 1, wherein,

said plurality of endoscopic images are images taken
within a gastrointestinal track; and

said attribute of interest comprises an anatomic abnormal-
ity in said gastrointestinal track.

22. The method according to claim 21, wherein said ana-

tomic abnormality comprises at least one of:

a lesion,

mucosal inflammation,

an erosion,

an ulcer,

submucosal inflammation,

a stricture,

a fistulae,

a perforation,

an erythema,

edema,

blood, and

a boundary organ.

23. The method according to claim 1, wherein said receiv-
ing a plurality of endoscopic images by an image processing
system comprises receiving said plurality of endoscopic
images from one of:

a database of images, and

in real-time from said endoscope.

24. An endoscopy system, comprising:

an endoscope;

a processing unit in communication with said endoscope,
said processing unit comprising executable instructions
for detecting an attribute of interest;

wherein said processing unit performs the following in
response to receiving a plurality of endoscopic images
from said endoscope based on said executable instruc-
tions:

a determination of whether at least one attribute of inter-
est is present in each image that satisfies a predeter-
mined criterion; and

a classification of said plurality of endoscopic images
into a reduced set of images each of which contains
said at least one attribute of interest and a remainder
set of images each of which is free from said at least
one attribute of interest.

25. The system of claim 24, where the attribute of interest
is a localized region of interest containing a disease relevant
visual attribute.
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26. The system of claim 25, wherein said disease relevant
visual attribute comprises an image of: a lesion, a polyp,
bleeding, inflammation, discoloration, or stenosis.

27. The system of claim 24, wherein said processing unit
further performs the following in response to receiving a
plurality of endoscopic images from said endoscope based on
said executable instructions:

anidentification of an attribute of interest in a first image of
said reduced set of images that corresponds to an
attribute of interest of a second image of said reduced set
of images.

28. The system of claim 27, wherein said processing unit
further performs the following in response to receiving a
plurality of endoscopic images from said endoscope based on
said executable instructions:

a classification of said reduced set of images into a non-
redundant set of images such that no attribute of interest
of any one of said non-redundant set of images corre-
sponds to an attribute of interest of any other one of said
non-redundant set of images.

29. The system of claim 24, further comprising:

a display device; and

wherein said processing unit further performs the follow-
ing in response to receiving a plurality of endoscopic
images from said endoscope based on said executable
instructions:

a display of result data on said display device, wherein
said result data comprises an image from said reduced
set of images containing at least one attribute of inter-
est.

30. The system of claim 29, further comprising:

an input device; and

wherein said processing unit further performs the follow-
ing in response to receiving a plurality of endoscopic
images from said endoscope based on said executable
instructions:

a receipt of relevance feedback, wherein said relevance
feedback comprises a change to said result data; and

a training of said processing unit based on said received
relevance feedback.

31. The system of claim 30, wherein said relevance feed-
back includes one or more of the following:

a change in said classification,

a removal of the image from said reduced set of images,

a change in an ordering of said reduced set of images,

an assignment of an assessment attribute, and

an assignment of a measurement.

32. The system of claim 30, wherein said training of said
processing unit comprises using at least one of the following:

artificial neural networks,

support vector machines, and

linear discriminant analysis.

33. The system of claim 24, wherein

said attribute of interest corresponds to an abnormality;
and

wherein said processing unit further performs the follow-
ing in response to receiving a plurality of endoscopic
images from said endoscope based on said executable
instructions:
an assessment of a severity of each said attribute of

interest in said reduced set of images containing at
least one attribute of interest.

34. The system of claim 33, where said assessment com-
prises calculating one of:
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a score,

arank,

a structured assessment comprising of one or more catego-
ries,

a structured assessment on a Likert scale, and

arelationship with one or more other images, wherein said
relationship comprises less severe or more severe.

35. The system of claim 33, wherein said processing unit
further performs the following in response to receiving a
plurality of endoscopic images from said endoscope based on
said executable instructions:

a derivation of a score for said reduced set of images
containing at least one attribute of interest based on said
severity of each said region of interest.

36. The system of claim 35, wherein said score comprises

at least one of:

a Lewis score,

a Crohn’s Disease Endoscopy Index of Severity,

a Simple Endoscopic Score for Crohn’s Disease,

a Crohn’s Disease Activity Index, and

a rubric based on image appearance attributes, wherein
said appearance attributes comprises one of: lesion exu-
dates, inflammation, color, and texture.

37. The system of claim 24, wherein said processing unit
further performs the following in response to receiving a
plurality of endoscopic images from said endoscope based on
said executable instructions:

an identification of each of said plurality of endoscopic
images to determine whether any of said plurality of
endoscopic images is unusable for further processing;
and

aremoval of said unusable image from further processing.

38. The system according to claim 37, wherein said unus-
able image comprises at least one image of:

air bubbles,

food,

fecal matter,

normal tissue,

non-lesion, and

structures.

39. The system of claim 24, wherein said determination of
whether at least one attribute of interest is present and said
classification of said plurality of endoscopic images com-
prises using at least one of: supervised machine learning and
unsupervised machine learning.

40. The system of claim 24, wherein said determination of
whether at least one attribute of interest is present comprises
using at least one of:

statistical measures,

machine learning algorithms,

traditional classification techmques,

regression techniques,

feature vectors,

localized descriptors,

MPEG-7 visual descriptors,

edge features,

color histograms,

image statistics,

gradient statistics,

Haralick texture features,

dominant color descriptors,

edge histogram descriptors,

homogeneous texture descriptors,

spatial kernel weighting,
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uniform grid sampling,

grid sampling with multiple scales,

local mode-seeking using mean shift,

generic lesion templates,

linear discriminate analysis,

logistic regression,

K-nearest neighbors,

relevance vector machines,

expectation maximation,

discrete wavelets, and

Gabor filters.

41. The system of claim 24, wherein said predetermined
criterion comprises a measurement of at least one of:

color,

texture,

hue,

saturation,

intensity,

energy,

entropy,

maximum probability,

contrast,

inverse difference moment, and

correlation.

42. The system according to claim 24, wherein said clas-
sification of said plurality of endoscopic images comprises
using at least one of:

meta methods,

boosting methods,

bagging methods,

voting,

weighted voting,

adaboost,

temporal consistency,

performing a second classification procedure on data

neighboring said localized region of interest, and

Bayesian analysis.

43. The system of claim 24, wherein said endoscope com-
prises one of:

a wireless capsule endoscopy device,

a flexible endoscope,

a contact hysteroscope,

a flexible borescope,

a video borescope,

a rigid borescope,

a pipe borescope,

a GRIN lens endoscope, and

a fibroscope.

44. The method according to claim 24, wherein,

said plurality of endoscopic images are images taken

within a gastrointestinal track; and

said attribute of interest comprises an anatomic abnormal-

ity in said gastrointestinal track.

45. The method according to claim 44, wherein said ana-
tomic abnormality comprises at least one of:

a lesion,

mucosal inflammation,

an erosion,

an ulcer,

submucosal inflammation,

a stricture,

a fistulae,

a perforation,

an erythema,
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edema,

blood, and

a boundary organ.

46. The method according to claim 24, wherein said receiv-
ing a plurality of images from said endoscope comprises
receiving images from one of:

a database of endoscopic images, and

in real-time from said endoscope.

47. A computer readable medium storing executable

instructions for execution by a computer having memory, the
medium storing instructions for:

28
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receiving a plurality of endoscopic images;

processing each of said plurality of endoscopic images to
determine whether at least one attribute of interest is
present in each image that satisfies a predetermined cri-
terion; and

classifying said plurality of endoscopic images into a
reduced set of images each of which contains said at
least one attribute of interest and a remainder set of
images each of which is free from said at least one
attribute of interest.
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