

US00RE46977E

(19) **United States**
 (12) **Reissued Patent**
 James et al.

(10) **Patent Number:** **US RE46,977 E**
 (45) **Date of Reissued Patent:** **Aug. 7, 2018**

(54) **FLOW GUIDE**(71) Applicant: **Endoguard Limited**, Bury St.

Edmunds, Suffolk (GB)

(72) Inventors: **Adam Graham James**, London (GB);
Jie Chen, Sidcup (GB); **Anthony Arthur Wills**, London (GB)(73) Assignee: **Endoguard Limited** (GB)(21) Appl. No.: **14/688,584**(22) Filed: **Apr. 16, 2015****Related U.S. Patent Documents**

Reissue of:

(64) Patent No.: **8,419,624**
 Issued: **Apr. 16, 2013**
 Appl. No.: **12/902,570**
 Filed: **Oct. 12, 2010**

U.S. Applications:

(63) Continuation of application No. 14/688,150, filed on Apr. 16, 2015, now Pat. No. 46,062, which is an application for the reissue of Pat. No. 8,419,624.

(30) **Foreign Application Priority Data**

Oct. 12, 2009 (GB) 0917857.5

(51) **Int. Cl.**
A61B 1/12 (2006.01)(52) **U.S. Cl.**
 CPC **A61B 1/126** (2013.01); **A61B 1/127** (2013.01)(58) **Field of Classification Search**
 CPC A61B 1/126; A61B 1/127
 USPC 600/157, 156, 153, 169, 175
 See application file for complete search history.

(56)

References Cited

U.S. PATENT DOCUMENTS

3,835,842 A	9/1974	Iglesias
4,576,146 A	3/1986	Kawazoe et al.
4,633,855 A	1/1987	Baba
4,667,656 A	5/1987	Yabe
4,770,163 A	9/1988	Ono et al.
5,125,394 A	6/1992	Chatenever et al.
5,167,220 A	12/1992	Brown
5,201,908 A	4/1993	Jones
5,207,213 A	5/1993	Auhll et al.
5,217,001 A	6/1993	Nakao et al.
5,237,984 A	8/1993	Williams, III et al.
5,313,934 A	5/1994	Wiita et al.
5,339,800 A	8/1994	Wiita et al.
5,348,555 A	9/1994	Zinnanti

(Continued)

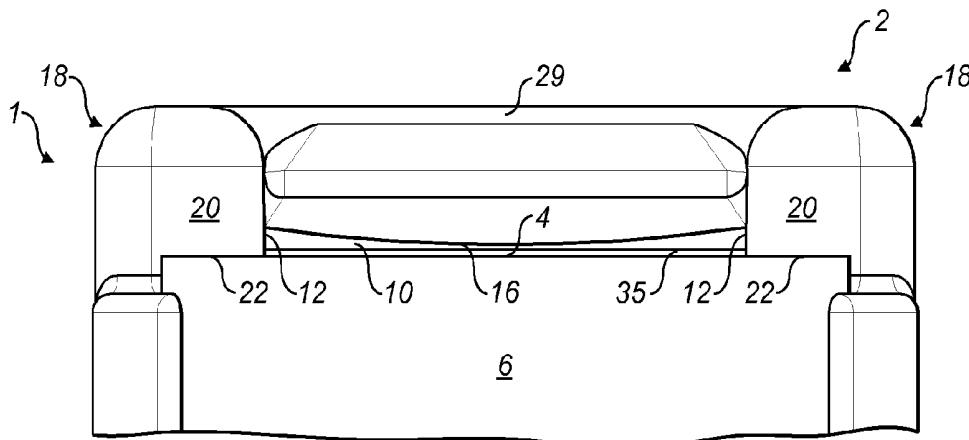
FOREIGN PATENT DOCUMENTS

CA	2582352	9/2007
CN	1486666	4/2004

(Continued)

OTHER PUBLICATIONS

Vision Sciences, "ENT Slide-On EndoSheath System," 2007, one page.


US 5,772,579, 06/1998, Reisdorf et al. (withdrawn)

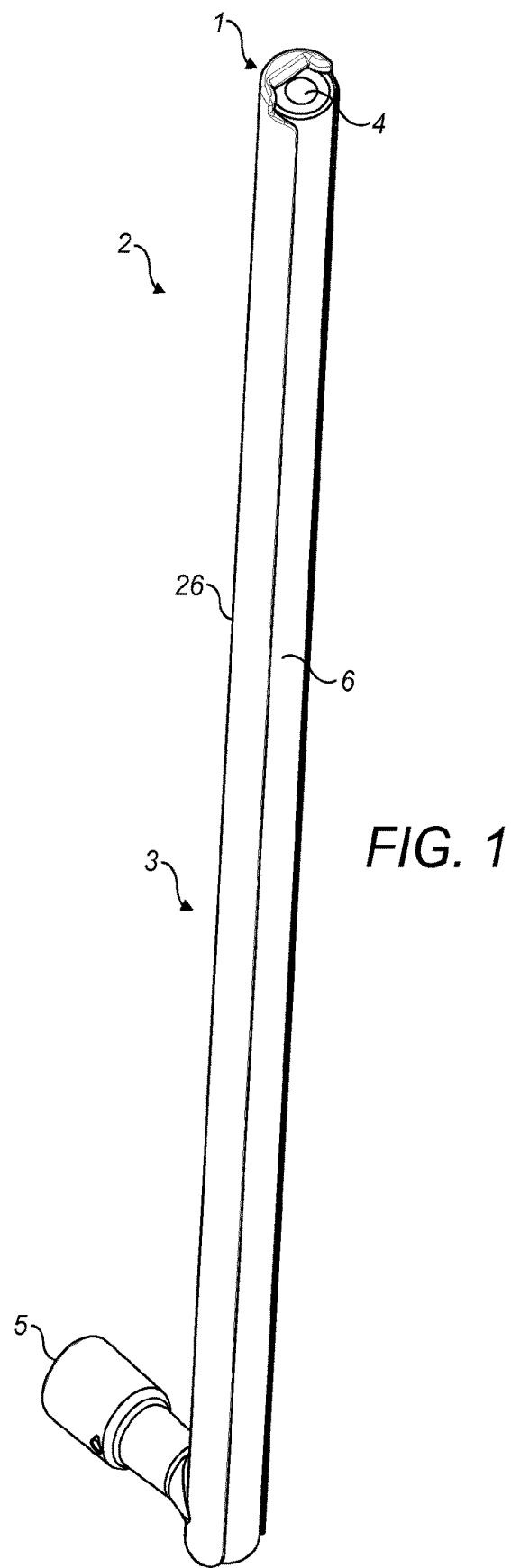
Primary Examiner — Beverly M Flanagan

(74) Attorney, Agent, or Firm — Price Heneveld LLP

(57) **ABSTRACT**

A flow guide directs a fluid flow across a surface of a device, for example a lens surface of an endoscope, in a controlled manner to facilitate flow attachment to the surface. Embodiments include features that impart a non-uniform velocity profile and/or include guide surfaces for facilitating flow attachment and/or coverage.

31 Claims, 8 Drawing Sheets


US RE46,977 E

Page 2

(56)	References Cited		2009/0247830	A1*	10/2009	Miyamoto	A61B 1/12
	U.S. PATENT DOCUMENTS					600/157	
5,392,766 A	2/1995	Masterson et al.	2009/0247831	A1*	10/2009	Miyamoto et al.	600/157
5,402,768 A	4/1995	Adair	2009/0253964	A1*	10/2009	Miyamoto	600/157
5,413,092 A	5/1995	Williams, III et al.	2009/0253965	A1	10/2009	Miyamoto	
5,419,309 A	5/1995	Biehl					
5,483,951 A	1/1996	Frassica et al.					
5,514,084 A	5/1996	Fisher					
5,518,502 A	5/1996	Kaplan et al.					
5,575,756 A	11/1996	Karasawa et al.					
5,637,075 A	6/1997	Kikawada					
5,651,757 A	7/1997	Meckstroth					
5,685,823 A *	11/1997	Ito et al.	600/127	EP	1462060	11/2006	2/2007
5,725,477 A *	3/1998	Yasui et al.	600/127	EP	1803388	7/2007	
5,725,478 A	3/1998	Saad		EP	2106739	10/2009	
5,894,369 A	4/1999	Akiba et al.		EP	1259858	3/2011	
6,110,103 A	8/2000	Donofrio		JP	53108459	9/1978	
6,126,592 A	10/2000	Proch et al.		JP	62143013	6/1987	
6,231,596 B1	5/2001	Collins		JP	1204637	8/1989	
6,309,347 B1	10/2001	Takahashi et al.		JP	6098854	4/1994	
6,409,657 B1 *	6/2002	Kawano	600/157	JP	6237889	8/1994	
6,416,462 B1	7/2002	Tovey et al.		JP	7095953	4/1995	
6,447,446 B1	9/2002	Smith et al.		JP	7246187	9/1995	
6,695,773 B1	2/2004	Dahlinger		JP	9138358	5/1997	
6,699,185 B2 *	3/2004	Gminder et al.	600/157	JP	2001258824	9/2001	
6,712,757 B2 *	3/2004	Becker et al.	600/121	JP	2000083890	10/2001	
6,755,782 B2	6/2004	Ogawa		JP	2002238906	8/2002	
6,767,322 B1	7/2004	Futatsugi et al.		JP	2002301026	10/2002	
7,341,556 B2 *	3/2008	Shalman	600/157	JP	2003204928	7/2003	
7,811,228 B2 *	10/2010	Adams	600/121	JP	2003210388	7/2003	
8,047,215 B1 *	11/2011	Sasaki	134/95.2	JP	2004267255	9/2004	
8,062,213 B2 *	11/2011	Jerjomin	A61B 1/121	JP	200388490	10/2004	
			600/127	JP	2007244796	9/2007	
8,439,829 B2 *	5/2013	Miyamoto	A61B 1/00091	JP	2007252559	10/2007	
			600/121	WO	8705795	10/1987	
2005/0234297 A1	10/2005	Devierre et al.		WO	9210969	7/1992	
2006/0020165 A1 *	1/2006	Adams	A61B 1/00094	WO	0189371	11/2001	
			600/121	WO	2004016299	2/2004	
2006/0173244 A1 *	8/2006	Boulais et al.	600/156	WO	2006129472	7/2006	
2007/0225556 A1	9/2007	Ortiz et al.		WO	2008062594	5/2008	
2008/0188715 A1 *	8/2008	Fujimoto	600/157	WO	2008153841	12/2008	
2008/0277853 A1	11/2008	Menn					
2008/0319266 A1	12/2008	Poll et al.					

* cited by examiner

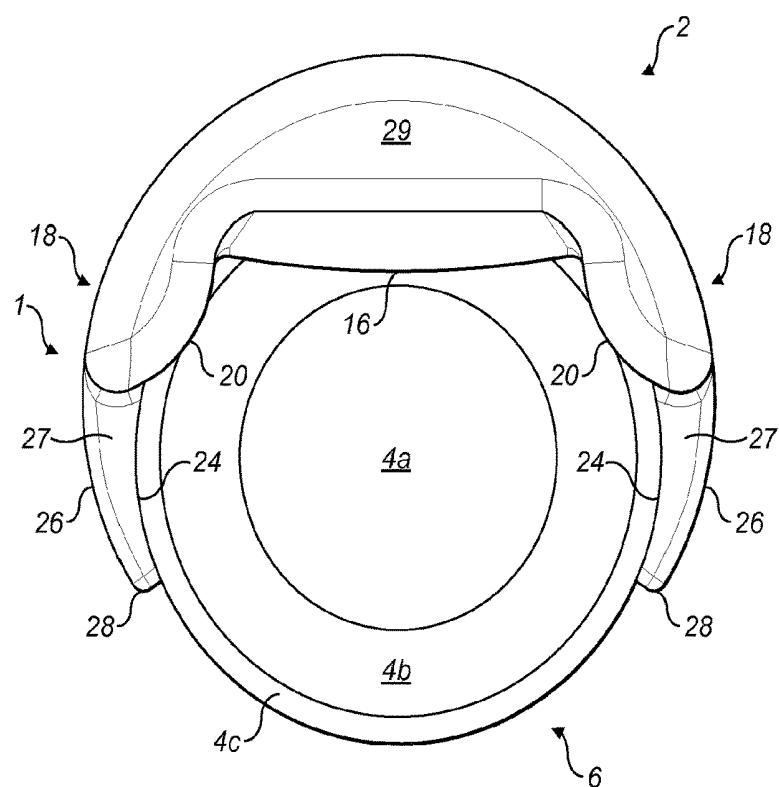


FIG. 2

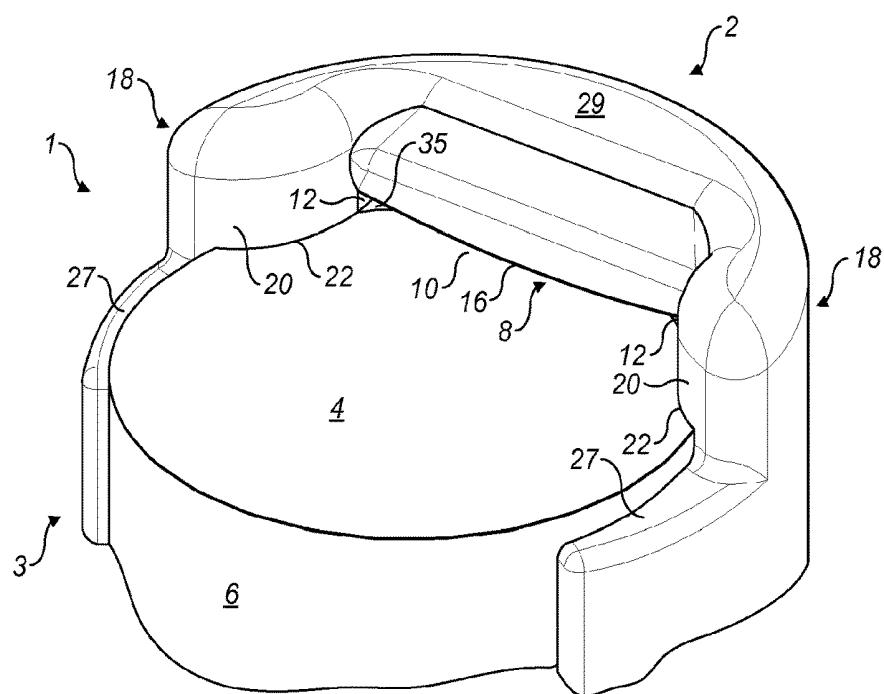


FIG. 3

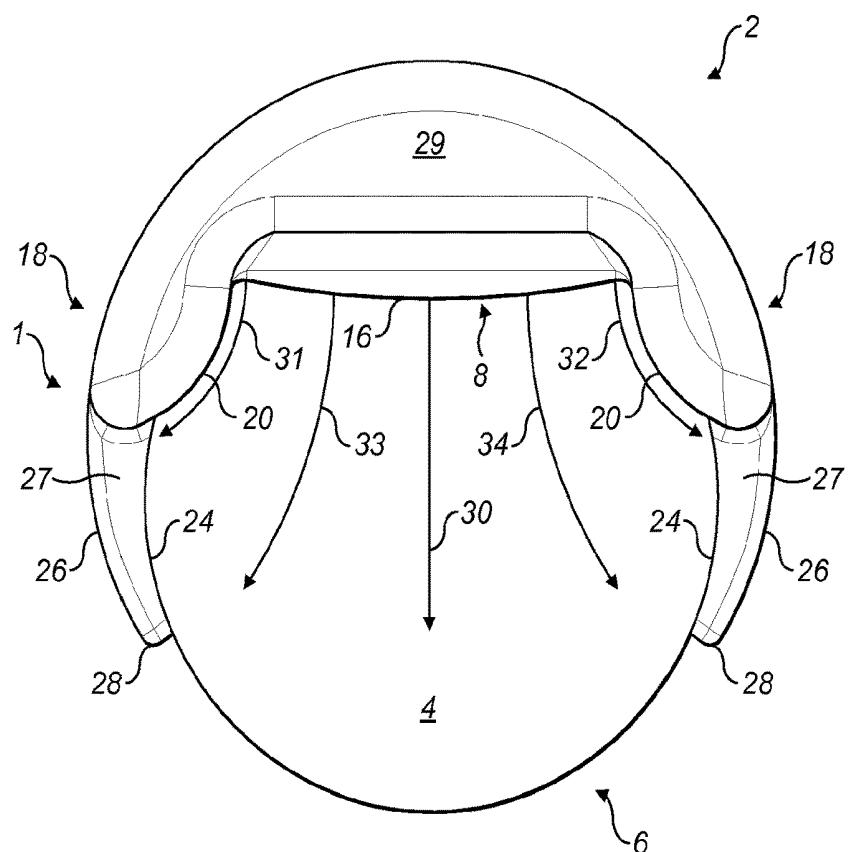


FIG. 4



FIG. 5

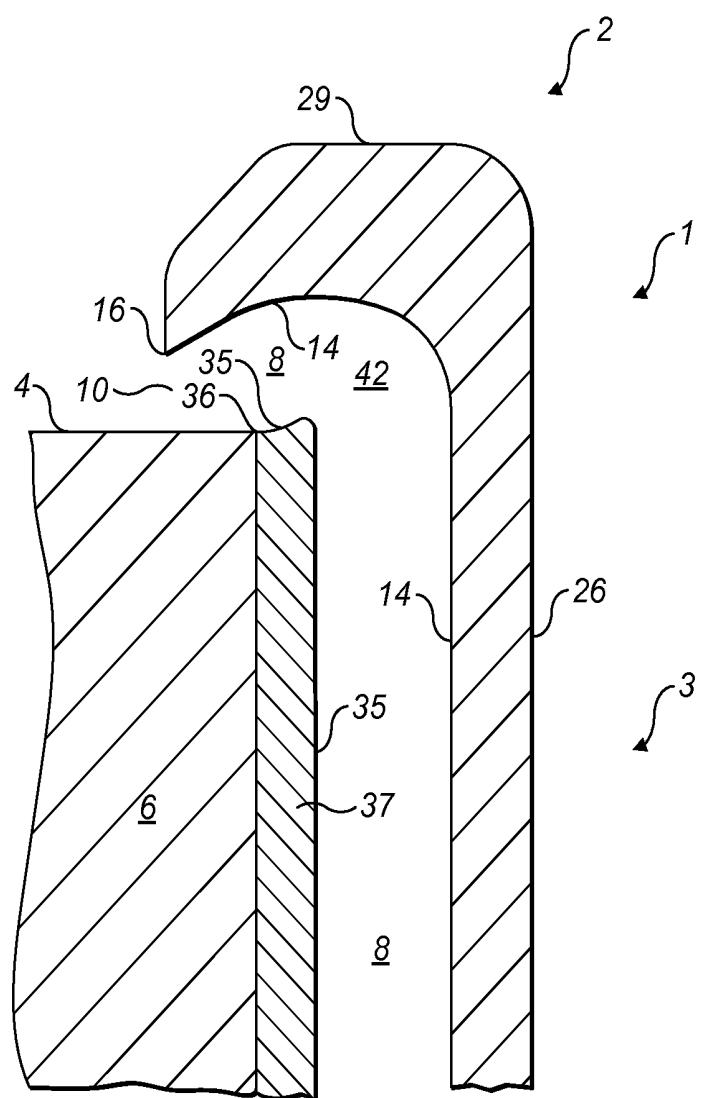


FIG. 6

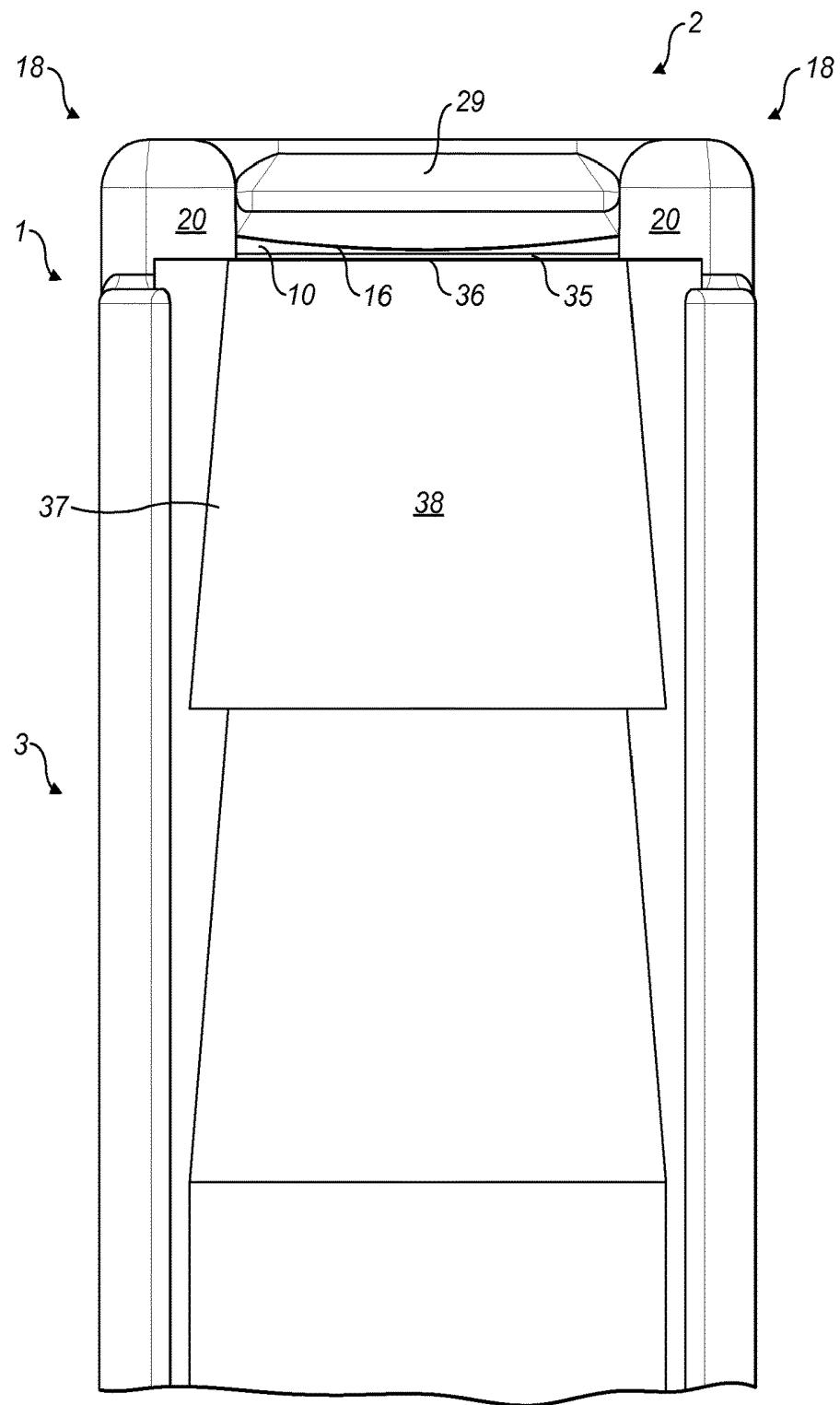


FIG. 7

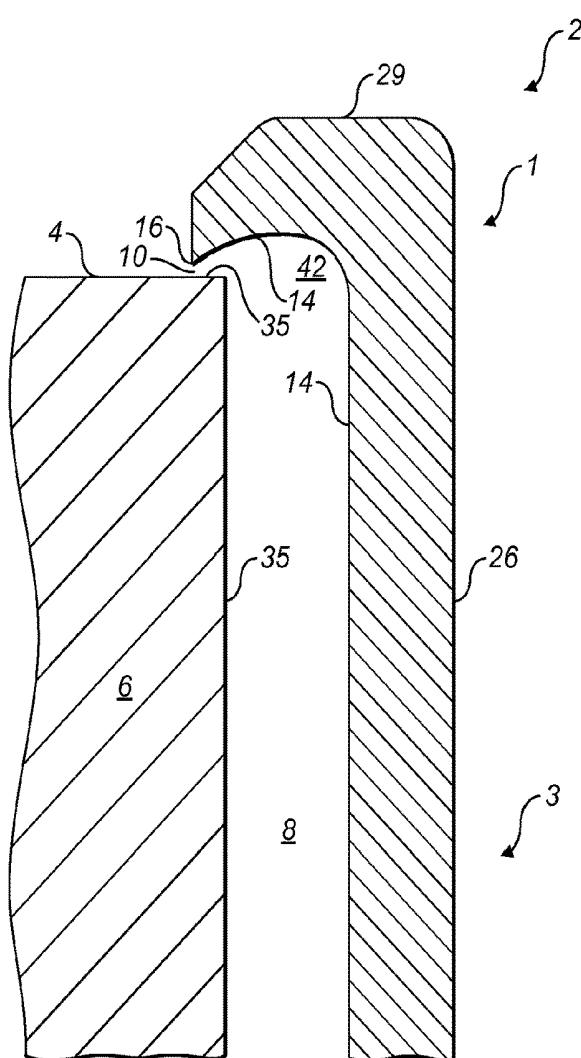


FIG. 8

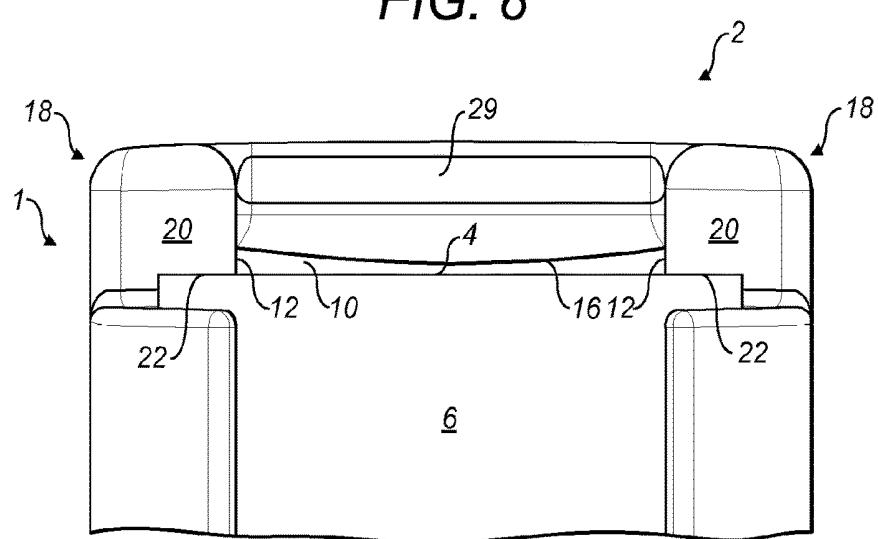


FIG. 9

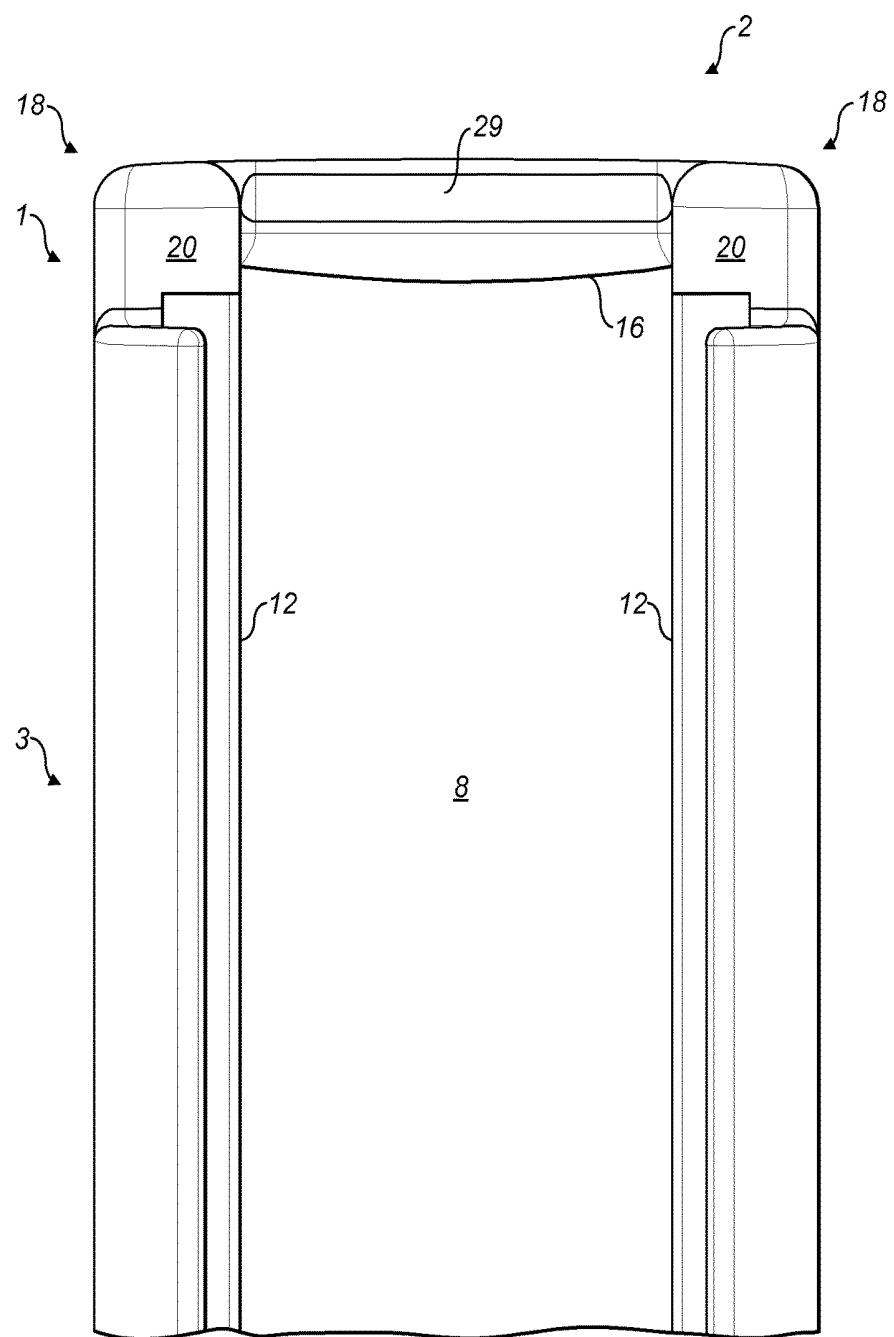


FIG. 10

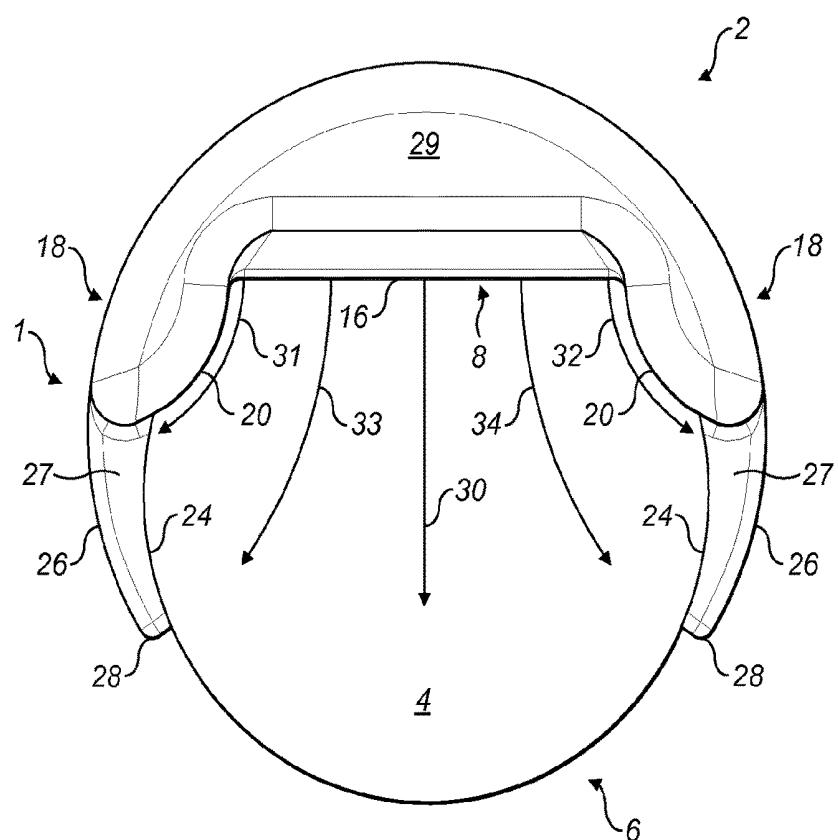


FIG. 11

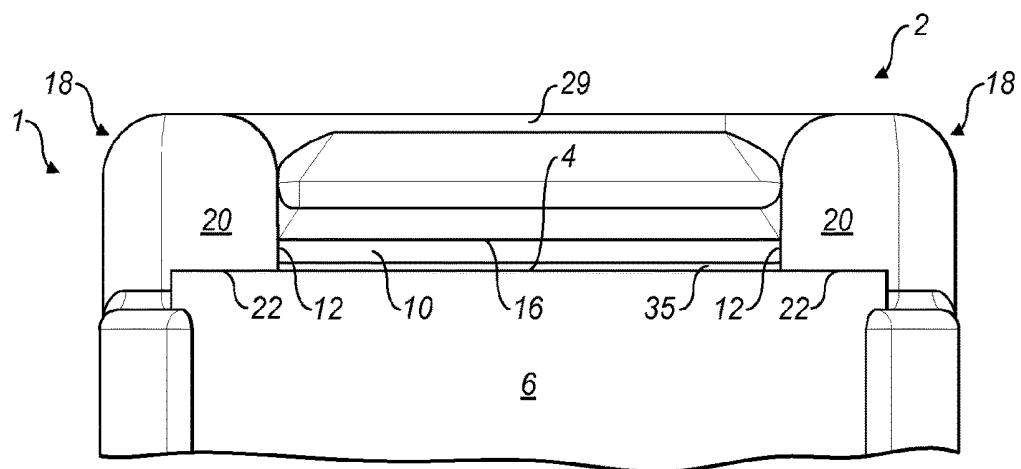


FIG. 12

1
FLOW GUIDE

Matter enclosed in heavy brackets [] appears in the original patent but forms no part of this reissue specification; matter printed in italics indicates the additions made by reissue; a claim printed with strikethrough indicates that the claim was canceled, disclaimed, or held invalid by a prior post-patent action or proceeding.

CROSS-REFERENCE TO RELATED APPLICATION

[This] Notice: More than one reissue application has been filed for the reissue of U.S. Pat. No. 8,419,624. The reissue application numbers are Ser. No. 14/688,150 and the present application. This application is a continuation reissue application of application Ser. No. 14/688,150, which is an application for reissue of U.S. Pat. No. 8,419,624. U.S. Pat. No. 8,419,624, was filed as U.S. application Ser. No. 12/902,570 on Oct. 12, 2010, which application claims priority to Application No. 0917857.5 filed on Oct. 12, 2009 in Great Britain.

FIELD OF THE INVENTION

The present invention relates to a flow guide for directing a fluid flow across a surface of a device in a controlled manner. Particularly, but not exclusively, the device is an endoscope and the surface comprises a surface of a lens or other optical surface.

The present invention will be discussed in relation to the optics of an endoscope and, in particular, with reference to that of a laparoscope, but by no means is it exclusive to these devices. It can also encompass commercial or other medical optic instrumentation as well as other devices.

BACKGROUND OF THE INVENTION

Endoscopes are used in minimally invasive surgery (MIS) by surgeons to permit remote visualisation and navigation within a body cavity inside a patient. They act as the eyes of the surgeon whilst a surgical procedure, tissue manipulation or diagnostic investigation is undertaken. One type of endoscope is a laparoscope for abdominal MIS, which is used in speciality areas such as laparoscopic general surgery including upper and lower gastrointestinal surgery, gynaecology, obesity surgery (bariatric surgery) and Urology, as well as other surgical sectors utilising a rigid scope or semi rigid scope, including thoracic and pulmonary, ENT, and neurological surgery.

Minimally invasive surgery (MIS), often referred to as “keyhole surgery” as well as Minimum Access Surgery (MAS) is defined as a surgical method using small abdominal skin incisions (or no abdominal skin incisions, in which case a natural orifice is used in conjunction with an internal incision) compared with classic open surgical procedures that require large incisions. In MIS, a special access port called a cannula is inserted into the skin incision through which a miniature camera is introduced into the body and transmits images to a video monitor, thereby allowing the physician to visualise, diagnose and, if necessary, treat a variety of conditions.

MIS is already an integrated part of daily surgical activity in surgical centres around the world. Many procedures are now performed by this “keyhole” approach using an appropriate endoscope, or by reduced open surgery (such as

2

mini-open or laparoscopically assisted procedures or hand assisted laparoscopic surgery or single incision laparoscopic surgery), where the skin incision is reduced compared with only a few years ago. The development of these MIS approaches is rapidly on-going and development of new techniques that will aid patients and society because of reduced complications, patient morbidity and hospital stay compared with the corresponding “old” methods will continue to drive the majority of procedures to MIS.

10 The endoscope used in laparoscopy is called a laparoscope and is comprised of an elongated, typically cylindrical, shaft containing optical elements such as a camera, lighting provisions such as an optical fibre bundle and other equipment. During laparoscopy procedures, laparoscopes 15 are used to visualise the target anatomy. In laparoscopy, the laparoscope is inserted through a cannula or port, which has been introduced through a small incision, next to the umbilicus (belly button) in the patient to access the abdominal cavity. The abdominal cavity is generally insufflated via this 20 port (although other ports can be used) with medical grade carbon dioxide, or another suitable gas, via an insufflator device in order to expand or distend the abdominal cavity by elevating the abdominal wall and hence creating an operating space or environment. Insufflators for general surgical 25 use within theatres are programmed to activate on and off to maintain and optimise the set pressure within the patient's abdominal cavity.

During a laparoscopic procedure, there are four main requirements for a surgeon or practitioner: continuous 30 operative vision, maintained operative control, safety and time efficiency. The laparoscope or endoscope lens in an MIS procedure is the surgeon's “eyes” and the optics regularly become soiled by peritoneum or other bodily fluid, blood, aerosol fat, tissue particulate, smoke, debris or condensation, all of which impair the surgeon's vision (via an external monitor/screen). These various soiling components 35 are disturbed by various instruments introduced into the abdominal cavity via working ports, such as electro-cautery coagulation devices, laparoscopic scissors, ultrasonic coagulation cutting devices, suction-irrigation devices and many others. Since these instruments are a crucial part of MIS and laparoscopic procedures, in general, they will remain as the 40 main source of lens contamination. As a result of this contamination, visualisation via the laparoscope optics is regularly diminished and impaired.

Currently, the “gold standard” for soil removal and lens 45 cleaning requires the laparoscope to be removed from the patient's abdominal cavity. The offending contamination is removed with a sterile swab, then the laparoscope optics are washed in hot sterile saline, then excess saline is removed with another clean swab and finally the lens is coated with a sterile anionic-surfactant (such as Fog Reduction Elimination Device (F.R.E.D.) or ClearIt™ anti-fog solution). From the moment of diminished visualisation, the scope is 50 removed and an immediate stop in the surgical procedure occurs. During this period, the patient can be exposed to increased risk since the surgeon can no longer see the operating field. In other words, the surgeon is blinded. Further to this, there is an interruption in surgeon workflow 55 and an increase in surgical theatre time and time of the patient being under general anaesthesia. Removal of the laparoscope for cleaning can occur up to 5-10 times per hour and the process of cleaning typically takes 40-60 seconds, thereby adding 3-10 minutes per hour of operative time and patient time under general anaesthesia. However, more 60 importantly, the surgeon's workflow and concentration is broken, compromising patient safety. The safety issues

associated with removing the laparoscope for cleaning are well understood and attempts have been made to solve this problem in the past. These attempts have been inadequate at solving the myriad of problems associated with cleaning the lens in-situ.

SUMMARY OF THE INVENTION

In one aspect of the invention, there is provided a flow guide for directing a fluid flow across a surface of a device, the flow guide including a locating arrangement for locating the device with respect to the flow guide such that the surface is disposed generally in a first plane defined along first and second mutually perpendicular directions, and a channel for guiding the fluid flow, the channel having sides spaced with respect to each other in the first direction, the flow guide also including a respective limb extending from each of the sides generally in the second direction, each limb defining a limb guide surface extending generally in a third direction perpendicular to the first and second directions and being convex in a plane parallel to the first plane to cause fluid flow from the channel to diverge in the first direction as it flows across the surface of the device.

In another aspect of the invention, there is provided a flow guide for guiding a fluid flow longitudinally along a device and directing the fluid flow across a transverse end surface of the device, the flow guide including: an inner surface that defines a space for receiving the device, a locating arrangement for locating the device with respect to the flow guide such that the transverse end surface of the device is disposed generally in a transverse plane fixed relative to the flow guide, and a channel for guiding the fluid flow longitudinally along the device and directing the fluid flow across the transverse end surface of the device, the channel having an inner and outer channel surface facing each other, the inner channel surface being closer to the space, wherein the inner channel surface extends through the transverse plane and an end portion of the inner channel surface meets the inner surface at an edge located substantially in the transverse plane and is disposed at a first acute angle to the transverse plane, and wherein the outer channel surface extends through the transverse plane and an end portion of the outer channel surface is disposed at a second acute angle to the transverse plane to direct the fluid flow towards the transverse plane.

In another aspect of the invention, there is provided a flow guide for guiding a fluid flow longitudinally along a device and directing the fluid flow across a transverse end surface of the device, the flow guide comprising a first portion and a second portion manufactured as a separate part from the first portion, wherein the first portion and the second portion cooperatively define: an inner surface that defines a space for receiving the device, a locating arrangement for locating the device with respect to the flow guide such that the transverse end surface of the device is disposed generally in a transverse plane, and a channel for guiding the fluid flow longitudinally along the device and directing the fluid flow across the transverse end surface of the device, the channel having an inner and outer channel surface facing each other, the inner channel surface being closer to the space, wherein an end portion of the inner channel surface meets the inner surface at an edge, the edge being located substantially in the transverse plane, wherein the outer channel surface extends through the transverse plane and an end portion of the outer channel surface is arranged to direct the fluid flow towards

or substantially parallel to the transverse plane, wherein the second portion can be an insert for insertion into the first portion.

In some embodiments, one or more of the above aspects are combined.

In some embodiments, the flow guide is for guiding and directing the fluid flow to clear an end surface of the device. In some embodiments, the device is an endoscope and the end surface comprises the surface of the optics (such as a lens surface). The flow guide allows the surface of the lens to be cleaned of any biological or foreign material that becomes attached to the lens during surgery. The lens can therefore be cleaned without the endoscope having to be removed from the patient and this ensures that the surgeon can visualise the surgical site at all times.

In some embodiments, the flow guide comprises limbs, each of which has a convex limb guide surface that causes the fluid flow to diverge across the end surface in a controlled manner. This allows a relatively high-speed fluid flow, which is a generally parallel flow as it exits a channel in the flow guide, to diverge rapidly so that the flow covers a larger proportion of the end surface than it would be able to cover if the limbs were not present.

In some embodiments, an outlet defined by the flow guide and the end surface at the exit of the channel is narrower at its centre than at its edges. This causes the fluid flow to be at a higher speed through the centre of the outlet than at its edges and in doing so creates a fluid flow gradient. The slower fluid flow near the edges travels slowly enough to be able to attach to the limb guide surfaces, which cause the flow to diverge. The fluid flow near the centre of the outlet does not need to attach to a limb guide surface, and therefore is allowed to travel faster. Moreover, the non-uniform speed profile itself facilitates flow divergence even in embodiments where there are no limbs as described above.

In some embodiments, the flow guide is arranged to longitudinally guide the flow along the device and direct the flow across a transverse end surface of the device such that the fluid flow attaches to the end surface after leaving the outlet. This ensures that a large proportion of the fluid flow will act to dislodge any unwanted particles on the end surface, rather than not attaching and flowing away from the end surface, which would be of little or no use in cleaning the surface. Surface attachment is aided, for example, by a specifically shaped corner feature defined by an inner channel surface of the flow guide adjacent the end surface, which facilitates the prevention of flow separation.

In some embodiments, the flow guide is a single, retrofit, attachment for use on a standard device, such as a laparoscope. The attachment is of a simple construction and is therefore inexpensive to produce. This makes it suitable for being used as a disposable attachment. A non-disposable attachment would have to be thoroughly cleaned, freed from particulate contamination and re-sterilised between each surgical procedure.

In some embodiments, the flow guide is manufactured as two separate parts, with each part defining some of the geometric features of the flow guide. For example, the flow guide may have a separately manufactured (e.g. moulded) main portion and an insert for insertion into the main portion, thereby simplifying the manufacture of each part and allowing better manufacturing tolerances to be achieved.

In some embodiments, the flow guide is configured such that a portion of the device or endoscope extends longitudinally clear beyond a lowered portion of the flow guide transversely opposite the outlet. This enables the flow across

the end surface to clear the end surface more efficiently at its edges, thereby facilitating cleaning of the end surface. In other words, in these embodiments, there is a gap between the lowered portion and the plane in which the end surface is disposed in use. For example, the lowered portion may extend on each side of the outlet or any other guide arrangements adjacent the outlet, such as the limbs described above. The lowered portion may extend over the entire remaining perimeter of the flow guide, whether the flow guide completely encloses the device or encloses it only partially.

In some embodiments, the flow guide is arranged to fully enclose the device along a perimeter while in others it is arranged to only partially enclose it, for example with wings extending on either side of the outlet. In both cases, these embodiments are arranged to hold the device securely, preventing relative movement transversely but allowing the device to be slidably inserted into the flow guide.

In some embodiments, the flow guide is integrally formed with a laparoscope (or, generally, an endoscope). This ensures that the flow guide is permanently in position and can be used at any time when the device is being used.

In some embodiments, the flow guide has an inner surface that defines a space for receiving the device when the device is slid longitudinally into the space. In some embodiments, the inner surface encloses more than half of a transverse perimeter of the device, which acts to secure the device with respect to the flow guide. In some embodiments, when the device is inserted into the flow guide, the transverse end surface of the device protrudes longitudinally beyond parts of the inner surface.

In some embodiments, the flow guide comprises a first portion and a second portion manufactured as a separate part from the first portion, for example, as an insert for insertion into the first portion, the first portion and the second portion cooperatively defining the channel. In some embodiments, the first portion and the second portion have been moulded with separate moulds. In some embodiments, the inner channel surface, the edge and at least a portion of the inner surface are defined by the insert. In some embodiments, the outer channel surface is defined by the first portion.

In some embodiments, an edge of the outer channel surface is convex in a plane perpendicular to the transverse plane to define an outlet of non-uniform height relative to the transverse plane, thereby imparting a non-uniform velocity profile to fluid constrained to flow between the edge of the outer channel surface and the transverse plane.

In some embodiments, the locating arrangement includes a base of a limb disposed generally in the transverse plane for stopping the transverse end surface of the device, thereby defining the transverse plane. In some embodiments, the flow guide includes a respective limb extending transversely from each side of the edge, each limb defining a limb guide surface extending generally longitudinally and being convex in a plane parallel to the transverse plane to cause fluid flow from the channel to diverge in the plane parallel to the transverse plane as it flows across the transverse end surface of the device.

In some embodiments, the locating arrangement includes a base of the limb disposed generally in the first plane and arranged to rest against the surface of the device so that the limb guide surfaces extend in the third direction from the surface of the device.

In some embodiments, the inner channel surface has a crest above the transverse plane, and a projection of the crest onto the transverse plane is closer to a line defined by the intersection of the inner channel surface and the transverse plane than it is to the edge. In some embodiments, a

longitudinal portion of the inner channel surface extends only partially along the space.

In some embodiments, the end portion of the inner channel surface is arranged to form a substantially continuous surface with the transverse end surface of the device.

In some embodiments, the inner channel surface extends through the transverse plane and the end portion of the inner channel surface meets the inner surface at the edge and is disposed at a first acute angle to the transverse plane, and the end portion of the outer channel surface is disposed at a second acute angle to the transverse plane to direct the fluid flow towards the transverse plane.

In some embodiments, the second acute angle is different from the first acute angle, for example, with the second acute angle being larger than the first acute angle. In some embodiments, the mean of the first and second acute angles is approximately 20°. In some embodiments, the first acute angle is approximately 15° and the second acute angle is approximately 26°.

In some embodiments, the channel comprises a chamber between a portion of the channel adjacent the edge and a longitudinal portion of the channel extending longitudinally along the space, the chamber being shaped to turn the fluid flow from flowing longitudinally along the longitudinal portion of the channel to flowing generally transversely through the portion of the channel adjacent the edge. In some embodiments, the chamber is shaped to turn the flow through an angle of approximately 110°. In other embodiments, the chamber is shaped to turn the flow through an angle of approximately 124°. In some embodiments, the chamber has a larger cross-sectional flow area than the portion of the channel adjacent the edge. In some embodiments, the chamber has a larger cross-sectional flow area than the longitudinal portion of the channel adjacent the chamber.

In some embodiments, the flow guide has an inlet at an end of the flow guide longitudinally spaced from the edge, wherein the inlet has a larger cross-sectional flow area than the channel adjacent the edge. In some embodiments, the cross-sectional flow area of the inlet is larger than the cross-sectional flow area of an outlet defined between an end of the outer channel surface and the transverse plane. In some embodiments, the cross-sectional flow area of the inlet is larger than the cross-sectional flow area of the outlet by a factor of approximately six. In some embodiments, the factor is approximately 15. In some embodiments, the factor is at least 6, at least 10, or at least 15. In some embodiments, the channel is continuous and has no internal obstructions to fluid flow.

In some embodiments, the cross-sectional flow area of the channel decreases from the inlet to an entrance of the chamber.

In some embodiments, the cross-sectional flow area of the chamber increases after the entrance.

In some embodiments, the end portions of the inner and outer channel surfaces are for directing the fluid flow so that, when the transverse end surface of the device is disposed generally in the transverse plane, the fluid flow attaches to the transverse end surface of the device and flows across it.

In some embodiments, the inner channel surface, the edge and at least a portion of the inner surface are defined by the second portion. In some embodiments, the locating arrangement is defined by the first portion. In some embodiments, the second portion extends only partially along the space.

In some embodiments, the edge of the outer channel surface is symmetrical about a third plane perpendicular to

the first and second planes. In some embodiments, the edge of the outer channel surface is curved.

In some embodiments, each of the limb guide surfaces is generally curved in a plane defined by the first and second directions.

In some embodiments, the edge of the outer channel surface is convex in a plane defined by the first and second directions.

In some embodiments, the flow guide is arranged to direct the fluid flow at an angle of approximately 20° to the first plane.

In some embodiments, the channel has an inner channel surface extending in the first direction between the sides of the channel, the inner channel surface generally facing the outer channel surface. In some embodiments, the inner channel surface is shaped to form a substantially continuous surface with the surface of the device when the device is secured to the flow guide. In some embodiments, an inner channel surface facing the outer channel surface is defined by the device when the device is located such that the surface is disposed in the first plane.

In some embodiments, the device is substantially cylindrical and the surface is an end surface of the device, wherein the flow guide is arranged to define a portion of the channel longitudinally along the device for guiding the fluid flow longitudinally along the device.

In some embodiments, a longitudinal portion of the flow guide comprises an inner surface and an outer surface, the inner surface and outer surface being connected to form two tips so that the device is only partially enclosed by the longitudinal portion. In some embodiments, a distal tip surface is defined between the inner surface and the outer surface adjacent each tip, the distal tip surfaces being in a plane parallel to the first plane but not coplanar with the first plane, such that the surface of the device protrudes longitudinally beyond the distal tip surfaces when the surface of the device is disposed in the first plane.

In another aspect of the invention, there is provided an optical device comprising a transverse end surface including a lens or optical window and a flow guide as described above for guiding a fluid flow longitudinally along the device and directing the fluid flow across the transverse end surface of the device, wherein the flow guide is integrally formed with the device or detachable from the device.

In some embodiments, the device is substantially cylindrical and the surface is an end surface of the device. In some embodiments, the device is an optical device and the surface includes a lens or optical window of the device. In some embodiments, the device is a medical device, or an endoscope, or a laparoscope.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention are now described by way of example only and with reference to the accompanying drawings, in which:

FIG. 1 depicts a view from a raised perspective of a flow guide attached to the full length of a laparoscope (endoscope), with an end surface (optics) of the laparoscope in view;

FIG. 2 depicts a face-on or top view of a distal end surface of the laparoscope with the flow guide attached to it;

FIG. 3 depicts a view from a raised perspective of a distal end portion of embodiments of the flow guide attached to the laparoscope;

FIG. 4 depicts a face-on or top view of the distal end surface of the laparoscope with the flow guide of these embodiments attached to it;

FIG. 5 depicts a side view of the distal end portion of the flow guide of these embodiments from the plane of the distal end surface of the laparoscope;

FIG. 6 depicts a cross-section of part of the distal end portion of the flow guide of these embodiments and part of the laparoscope when the flow guide is attached to the laparoscope;

FIG. 7 depicts a side view of the distal end portion of the flow guide of these embodiments without the laparoscope, showing an insert positioned in the flow guide;

FIG. 8 depicts a cross-section of part of the distal end portion of the flow guide of other embodiments and part of the laparoscope when the flow guide is attached to the laparoscope;

FIG. 9 depicts a side view of the distal end portion of the flow guide of these embodiments from the plane of the distal end surface of the laparoscope.

FIG. 10 depicts a side view of the distal end portion of the flow guide of these embodiments without the laparoscope;

FIG. 11 depicts a face-on or top view of the distal end surface of the laparoscope with alternative embodiments of the flow guide attached to it; and

FIG. 12 depicts a side view of the distal end portion of other alternative embodiments of the flow guide from the plane of the distal end surface of the laparoscope.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENT

With reference to FIG. 1, a flow guide 2 is attached to a laparoscope 6, which is generally cylindrical or rod-shaped. The flow guide 2 is for guiding a fluid flow longitudinally along the laparoscope 6 and directing the fluid flow across a substantially flat distal end surface 4 of the laparoscope 6. The flow guide 2 is arranged to promote laminar flow of the fluid across the end surface 4 of the laparoscope 6. The flow guide 2 comprises a longitudinal portion 3 for guiding the fluid flow in a longitudinal direction along the shaft of the laparoscope 6, a distal end portion 1 for directing the fluid flow across the end surface 4 to clean the end surface 4 and an inlet 5 at an opposite end. The end surface 4 (shown in more detail in FIG. 2) is disposed generally in a transverse plane. (i.e. a plane, perpendicular to the longitudinal direction, that is fixed relative to the flow guide 2) and comprises a lens 4a, optical window, or other surface of the laparoscope 6, surrounded by a fibre optic bundle 4b, which acts as a light source.

The flow guide 2 includes a channel 8 (visible in FIG. 6) through which fluid is able to flow. The channel 8 has an outlet 10 through which the fluid exits the channel 8 at the distal end portion 1 of the flow guide 2. In use, the flow guide 2 is located in a fixed position relative to the laparoscope 6. The flow guide 2 is attachable to the laparoscope 6 such that the fluid flow leaving the channel 8 through the outlet 10 is directed across the end surface 4 of the laparoscope 6.

The channel 8 comprises two sides 12 (visible in FIG. 5), which are spaced with respect to each other in a first direction parallel to the end surface 4. The two sides 12 face towards each other on opposite sides of the channel 8 and are connected by an outer channel surface 14 (visible in FIG. 6), which defines the outer surface of the channel 8 (i.e. the surface furthest from the laparoscope 6). At the distal end portion 1, the outer channel surface 14 faces generally

towards the end surface 4, and defines an outer edge 16 that extends substantially in the first direction between the two sides 12 and defines an outer limit of the outlet 10. An inner limit of the outlet 10 is defined, in some embodiments, by an inner channel surface 35 (described in detail below). In some embodiments, the inner limit of the outlet 10 is defined cooperatively by the inner channel surface 35 and by the end surface 4 itself, while in other embodiments, only one of these defines the inner limit of the outlet 10. Proximal to the outer edge 16, the outer channel surface 14 is substantially straight in a direction parallel to the intended direction of fluid flow. This helps to prevent the fluid flow from converging to a single point after it passes through the outlet 10.

At the opposite end of the flow guide 2 to the distal end portion 1 of the flow guide 2, the inlet 5 is formed in the flow guide 2. The inlet 5 allows fluid to flow into the portion of the channel 8 in the longitudinal portion 3 of the flow guide 2, to flow along the laparoscope 6 to a chamber 42 (described below), then to the portion of the channel 8 in the distal end portion 1 of the flow guide 2 and out through the outlet 10. In the portion of the channel 8 along the laparoscope 6, the fluid re-establishes laminar flow after it has passed through the inlet 5 as it travels along the laparoscope 6.

The cross-sectional flow area of the inlet 5 is larger than that of the outlet 10. (Throughout this description, the term 'cross-sectional flow area' refers to the cross-sectional area in a plane perpendicular to the intended direction of fluid flow.) These two cross-sectional flow areas differ by a factor of six, though in some embodiments the factor is different. The inlet 5 has a cross-sectional flow area of approximately 14.2 mm² and the outlet 10 has a cross-sectional flow area of approximately 2.4 mm². This difference in cross-sectional flow area causes the fluid flow to leave the outlet 10 at a generally higher speed than the speed at which it enters the inlet 5. This increased exit speed helps the fluid flow to have sufficient speed to attach to and dislodge any unwanted particles on the end surface 4 of the laparoscope 6.

In some embodiments, the inlet 5 at the opposite end of the flow guide 2 to the distal end portion 1 is positioned at an angle of approximately 15° with respect to the normal to the longitudinal axis of the laparoscope 6. The incoming fluid turns through an angle of approximately 75° as it flows from the inlet 5 into the channel 8 and towards the distal end of the channel 8. In some embodiments, the cross-sectional flow area of the inlet 5 is approximately 25 mm², more specifically 25.32 mm². The cross-sectional flow area of the inlet 5 is larger than that of the outlet 10. These two cross-sectional flow areas differ by a factor of approximately 15.

The inlet 5 is connected to a fluid supply (not shown). In some embodiments, the fluid that is received from the fluid supply is a gas, such as carbon dioxide. The gas flow that is manipulated and controlled by the flow guide 2 is used to clean the end surface 4 by dislodging any unwanted particles from it. The unwanted particles include biological or foreign material that becomes attached to the surface of the lens during surgery.

In some embodiments, the fluid that is received from the fluid supply is a liquid, and a jet of liquid is expelled through the outlet 10 across the end surface 4. In some embodiments, this jet of liquid is used to clean the end surface 4 in a similar manner as described above.

Referring to FIG. 2, which provides a more detailed view of the end surface 4 of the laparoscope 6, there are three main parts of the end surface 4 of the laparoscope 6. The lens 4a or optical window is in the centre. The lens 4a is

surrounded by the fibre optic bundle 4b, which is used to direct light away from the end surface 4 so that the laparoscope 6 can be used in an otherwise unlit environment. The fibre optic bundle 4b is surrounded by an outer cover 4c, which extends longitudinally along the outside of the laparoscope 6 and protects the inner parts of the laparoscope 6. Part of an outer surface of the outer cover 4c is in contact with an inner surface 24 of the flow guide 2. The details of the end surface 4 of the laparoscope 6 are omitted from subsequent Figures for the sake of clarity of presentation.

In some embodiments, the outer edge 16 of the outer channel surface 14 partially extends up to or partially over the lens 4a of the laparoscope 6 in the longitudinal direction. The proximity of the outlet 10 to the lens 4a ensures that fluid directed to flow over the lens 4a does so at a high speed and does not lose a significant amount of speed before reaching the lens 4a, as would happen if the outlet 10 were far from the lens 4a.

The longitudinal portion 3 of the flow guide 2 extends from the distal end portion 1 of the flow guide 2 along the shaft of the laparoscope 6 to its proximal end in a direction that is generally perpendicular to the end surface 4 of the laparoscope 6. The longitudinal portion 3 of the flow guide 2 comprises the inner surface 24 and an outer surface 26.

The inner surface 24 defines a space for receiving the laparoscope 6, and is shaped to enclose at least part of the laparoscope 6 to attach the flow guide 2 to the laparoscope 6. In some embodiments, when the flow guide 2 is attached to the laparoscope 6, the outer surface 26 substantially defines an arc of a circle in a plane parallel to the transverse plane. The outer surface 26 and inner surface 24 extend longitudinally along the axis of the laparoscope 6. The inner surface 24 and outer surface 26 are connected to form two tips 28, with one tip 28 at each end of the arc defined by the outer surface 26 so that the laparoscope is only partially enclosed by the longitudinal portion 3. The inner surface 24 wraps around more than half of the circumference of the laparoscope 6 to prevent the laparoscope 6 moving in a transverse direction relative to the flow guide 2.

With reference to FIG. 3, adjacent each tip 28, a distal tip surface 27 is defined between the inner surface 24 and the outer surface 26. The distal tip surfaces 27 are in a plane parallel to the transverse plane but are not coplanar with the transverse plane. Rather, they are a relatively small distance away from the transverse plane in the longitudinal portion 3 of the flow guide 2. In some embodiments, this distance is about 0.5 mm. When the laparoscope 6 is inserted into the flow guide 2, the end surface 4 of the laparoscope 6 protrudes longitudinally beyond the distal tip surfaces 27. Situating the distal tip surfaces 27 in this way means that the edge of the end surface 4 is clear from any obstructions so that particles on the end surface 4 can be moved off the end surface 4 by the fluid flow. Other than the parts that meet the distal tip surfaces 27, the remainder of the outer surface 26 extends longitudinally through the transverse plane.

In some embodiments, the tips 28 are substantially rigid and in order to position the laparoscope within the flow guide 2, the laparoscope 6 is slid longitudinally into the space for receiving the laparoscope 6. In other embodiments, the tips 28 are flexible and can be separated so that the laparoscope 6 can be inserted between them so that they exert a force on the laparoscope 6 to secure the laparoscope 6 relative to the flow guide 2. In other embodiments, the tips 28 are flexible and they exert a force on the laparoscope 6 to secure the laparoscope 6 relative to the flow guide 2, but the laparoscope 6 is inserted by being slid longitudinally into the space for receiving the laparoscope 6.

In some embodiments, the flow guide 2 holds the laparoscope 6 in place due to an elastic force on the laparoscope 6 when it is in the flow guide 2. The tips 28 are bent inwards such that they grip the laparoscope 6 when it is in the flow guide 2. In other embodiments, the elastic force is applied without the tips 28 being bent inwards.

The flow guide 2 also comprises two limbs 18. Each limb 18 extends from a respective one of the sides 12 of the channel 8 generally in a second direction, which is perpendicular to the first direction. The second direction is generally parallel to the direction of the fluid flow across the end surface 4 as it passes through the outlet 10. Each limb 18 comprises a limb guide surface 20, which extends generally in a third direction that is perpendicular to the end surface 4 and is perpendicular to the first and second directions. At the outlet 10, there is a smooth transition between each side 12 of the channel 8 and the respective limb guide surface 20. The limb guide surface 20 extends further in the third direction than the outlet 10, which is limited in its extent in the third direction by the outer channel surface 14. Each limb guide surface 20 also extends generally in the second direction away from the outlet 10. As each limb guide surface 20 extends in the second direction away from the outlet 10, it also extends in the first direction away from the opposing limb guide surface 20. The distance between the limb guide surfaces 20 along an imaginary line extending in the first direction therefore increases as the line moves in the second direction away from the outlet 10. The limb guide surfaces 20 therefore diverge as they extend in the second direction. The angle of divergence of each limb guide surface 20 with respect to the second direction increases with distance from the outlet 10. In other words, the limb guide surface 20 is convex. In some embodiments, proximal to the outlet 10, the limb guide surface 20 extends substantially in the second direction, whereas, distal to the outlet 10, the limb guide surface 20 is generally along the first direction. In some embodiments, the limb guide surface 20 is smoothly curved in a plane defined by the first and second directions. In some embodiments, the limb guide surface 20 is formed by a plurality of substantially flat surfaces, which are arranged side by side to form a generally curved approximation of the smoothly curved surface. Both types of surfaces can collectively be described as generally curved.

Each of the limbs 18 also comprises a base 22 (see FIG. 5). The bases 22 are shaped and disposed in the transverse plane so as to lie against a part of the end surface 4 of the laparoscope 6. Because the bases 22 rest against the end surface 4, this ensures that the limb guide surface 20 is in contact with the end surface 4 and extends in the third direction from the end surface 4. The location of the bases 22 also ensures that the outlet 10 is positioned correctly with respect to the end surface 4 so that the end surface 4 is disposed generally in the transverse plane. The bases 22 also act as stops, which hinder movement of the laparoscope 6 in the third (longitudinal) direction relative to the flow guide 2 beyond the transverse plane.

After curving away from the outlet 10, each of the limb guide surfaces 20 meets the outer surface 26. Each of the distal tip surfaces 27 extends from the respective tip 28 to a position coinciding in the longitudinal direction with the meeting point of the respective limb guide surface 20 and the outer surface 26.

In some embodiments, each limb guide surface 20 has a radius of curvature in a plane parallel to the end surface 4 of the laparoscope 6 of approximately 2.5 mm.

At the distal end portion 1 of the flow guide 2, a distal end surface 29 of the flow guide 2 extends from the outer edge

16 of the outer channel surface 14 away from the outlet 10 and meets with the outer surface 26 of the flow guide 2. Proximal to the outer edge 16 of the outer channel surface 14, the distal end surface 29 of the flow guide 2 extends generally in the third direction away from the outlet 10 (see FIG. 6). This helps to prevent the fluid flow from attaching to the distal end surface 29 as it passes through the outlet 10. As the distal end surface 29 extends away from the outlet, it also curves towards the outer surface 26 of the laparoscope 6. Proximal to the outer surface 26 of the flow guide 2, the distal end surface 29 of the flow guide 2 is substantially in a plane defined by the first and second directions, and is therefore perpendicular to the outer surface 26. As the limb guide surfaces 20 extend in the third direction away from the end surface 4 of the laparoscope 6, they meet with the distal end surface 29 of the flow guide 2. The distal end surface 29 of the flow guide 2 does not protrude in a plane defined by the first and second directions beyond the limb guide surfaces 20 or the outer edge 16 of the outer channel surface 14. This ensures that the distal end surface 29 of the flow guide 2 does not obstruct the uncovered parts of the end surface 4.

With reference to FIG. 4, which shows the distal end portion 1 of the flow guide 2 and the end surface 4 of the laparoscope, the fluid flow path across the end surface 4 is shown by five arrows. A first arrow 30 shows the path of fluid across the centre of the end surface 4. This part of the fluid flow has a substantially linear path in the second direction. A second arrow 31 and a third arrow 32 illustrate the fluid flow adjacent each of the limb guide surfaces 20. The fluid flow adjacent the respective limb guide surface 20 has a tendency to attach to the limb guide surface 20 believed to be due to the Coandă effect. The fluid flow adjacent the limb guide surface 20 therefore has a velocity characterised by the respective limb guide surface 20 (i.e. the fluid flow follows a generally curved path). This causes the fluid flow adjacent the limb guide surfaces 20 to diverge in the first direction such that the fluid flow as a whole flows across substantially the entire end surface 4, other than the parts of the end surface 4 that are behind the limb guide surfaces 20, i.e. those that are in contact with the bases 22 of the limbs 18. A fourth arrow 33 and a fifth arrow 34 show the fluid flow at two intermediate positions between the centre of the outlet 10 and the limb guide surfaces 20. The flow paths in these positions are also affected by the limb guide surfaces 20 so that they also curve away from the arrow 30, but to a lesser extent than the flow paths shown by arrows 31 and 32.

The limb guide surfaces 20 help the flow to spread out sufficiently to cover substantially the entire exposed surface of the lens. Without the limb guide surfaces 20, the fluid flow would not be able to diverge as much or as quickly and therefore the fluid flow would be less able to protect and clear the lens adequately.

Referring again to FIG. 4, it can be seen that the outer edge 16 of the outer channel surface 14 is curved in a plane defined by the first and second directions and is convex in this plane. The centre of the outer edge 16 of the outer channel surface 14 extends further in the second direction than the parts of the outer edge 16 of the outer channel surface 14 that meet the sides 12 of the channel 8. The outer edge 16 is curved such that the fluid flow is perpendicular to the outer edge 16 as it flows through the outlet 10. This ensures that the fluid flow passes through the outlet 10 without being disrupted and it also helps the fluid flow to begin to diverge.

FIG. 5 shows a view of the distal end portion 1 of the flow guide 2 from a viewpoint in the plane of the end surface 4

of the laparoscope 6. It can be seen that the outlet 10 is defined by the two sides 12 of the channel 8, the outer edge 16 of the outer channel surface 14 and the end surface 4 of the laparoscope 6. The outer edge 16 of the outer channel surface 14 is curved in a plane defined by the first and third directions so that the gap between the outer edge 16 and the end surface 4 is smaller at the centre of the outer edge 16 than at the parts of the outer edge 16 adjacent the sides 12 of the channel 8. Adjacent the outer edge 16, the outer channel surface 14 itself is curved in the same way. The convex shape of the outer edge 16 ensures that fluid flows more quickly through the centre of the outlet 10 than through the parts of the outlet 10 adjacent one of the sides 12 of the channel 8. Fluid flowing above a certain speed through the outlet 10 adjacent a side 12 of the channel 8 would not attach to the limb guide surface 20 and would therefore continue in a path predominantly in the second direction and therefore not diverge across the end surface 4. The convex shape of the outer edge 16 in the plane defined by the first and third directions allows the average speed of flow to be increased while ensuring fluid attachment to the limb guide surfaces 20 due to the reduced flow speed in their vicinity relative to the flow speed at the centre. The velocity profile created by the outlet 10 aids flow attachment to the limb guide surfaces 20 but also causes flow divergence by itself. Fluid flow at the centre of the outlet 10 (along the first arrow 30 of FIG. 4) has a further distance to travel across the end surface 4, so the increased speed helps to keep the fluid flow attached to the end surface 4 across the entire end surface 4. The speed profile imparted by the convex shape of the outer edge 16 further helps divergence of the flow by itself (even in embodiments which do not have the limbs 18 defining limb guide surfaces 20) due to the friction between portions of the flow moving at different speeds.

In some embodiments, the outlet 10 is approximately 5.5 mm wide in the first direction. It is approximately 0.3 mm high in the third direction at the centre of the outlet 10 and approximately 0.7 mm high in the third direction adjacent each of the sides 12 of the channel 8. The outer edge 16 of the outer channel surface 14 forms an arc with a radius of approximately 9.5 mm.

In some embodiments, the cross-sectional flow area of the outlet 10 is approximately 1.7 mm^2 , more specifically 1.68 mm^2 . The outlet 10 is approximately 7 mm wide in the first direction. It is approximately 0.2 mm (more specifically 0.17 mm) high in the third direction at the centre of the outlet 10 and approximately 0.4 mm (more specifically 0.39 mm) high in the third direction adjacent each of the sides 12 of the channel 8. The outer edge 16 of the outer channel surface 14 forms an arc with a radius of approximately 28 mm, more specifically 27.51 mm.

At the distal end portion 1 of the flow guide 2, the channel 8 is arranged such that fluid flow is encouraged to attach to the end surface 4 as it leaves the channel 8 through the outlet 10. The attachment of the fluid flow to the end surface 4 ensures that the fluid flow is dedicated to removing unwanted particles from the surface of the lens. Any part of the fluid flow not attaching to the end surface 4 would flow away from the end surface 4 and be of little use in clearing the end surface 4.

FIG. 6 depicts a longitudinal cross-section of part of the distal end portion 1 and part of the longitudinal portion 3 of the flow guide 2 and part of the laparoscope 6, and FIG. 7 depicts a side view of the distal end portion 1 and part of the longitudinal portion 3 of the flow guide 2. With reference to these Figures, in accordance with some embodiments, an insert 37 is located on an inner aspect of the flow guide 2.

The insert 37 is manufactured separately from the remainder of the flow guide 2 (i.e. a main portion of the flow guide 2). In some embodiments, the insert 37 and main portion are separately moulded.

5 In some embodiments, the insert 37 defines the sides 12 of the channel 8 in the region of the longitudinal portion of the flow guide 2 in which the insert 37 is located. In other embodiments, the sides 12 of the channel in this region are defined by the main portion of the flow guide 2.

10 The insert 37 is arranged to be located at a location within the main portion of the flow guide 2 so that it extends between the sides 12 of the channel 8 and defines an inner channel surface 35, which is situated opposite and facing the outer channel surface 14 and extends from the distal end portion 1 partially along the longitudinal portion 3. The inner channel surface 35 is arranged to form a substantially continuous surface with the end surface 4 of the laparoscope 6. An inner edge 36 of the inner channel surface 35 adjacent the surface of the laparoscope 6 is therefore concave. The inner edge 36 is disposed substantially in the transverse plane. At the inner edge 36, the inner channel surface 35 meets an inner insert surface 38. The inner insert surface 38 is a surface of the insert 37 that is arranged to form a continuous surface with the inner surface 24 of the flow guide 2 when the insert is in its intended location. Thus, the inner insert surface 38 is in contact with the laparoscope 6 when the laparoscope 6 is located in its intended position within the flow guide 2, i.e. with its end surface 4 in the transverse plane.

15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 555 560 565 570 575 580 585 590 595 600 605 610 615 620 625 630 635 640 645 650 655 660 665 670 675 680 685 690 695 700 705 710 715 720 725 730 735 740 745 750 755 760 765 770 775 780 785 790 795 800 805 810 815 820 825 830 835 840 845 850 855 860 865 870 875 880 885 890 895 900 905 910 915 920 925 930 935 940 945 950 955 960 965 970 975 980 985 990 995 1000 1005 1010 1015 1020 1025 1030 1035 1040 1045 1050 1055 1060 1065 1070 1075 1080 1085 1090 1095 1100 1105 1110 1115 1120 1125 1130 1135 1140 1145 1150 1155 1160 1165 1170 1175 1180 1185 1190 1195 1200 1205 1210 1215 1220 1225 1230 1235 1240 1245 1250 1255 1260 1265 1270 1275 1280 1285 1290 1295 1300 1305 1310 1315 1320 1325 1330 1335 1340 1345 1350 1355 1360 1365 1370 1375 1380 1385 1390 1395 1400 1405 1410 1415 1420 1425 1430 1435 1440 1445 1450 1455 1460 1465 1470 1475 1480 1485 1490 1495 1500 1505 1510 1515 1520 1525 1530 1535 1540 1545 1550 1555 1560 1565 1570 1575 1580 1585 1590 1595 1600 1605 1610 1615 1620 1625 1630 1635 1640 1645 1650 1655 1660 1665 1670 1675 1680 1685 1690 1695 1700 1705 1710 1715 1720 1725 1730 1735 1740 1745 1750 1755 1760 1765 1770 1775 1780 1785 1790 1795 1800 1805 1810 1815 1820 1825 1830 1835 1840 1845 1850 1855 1860 1865 1870 1875 1880 1885 1890 1895 1900 1905 1910 1915 1920 1925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065 2070 2075 2080 2085 2090 2095 2100 2105 2110 2115 2120 2125 2130 2135 2140 2145 2150 2155 2160 2165 2170 2175 2180 2185 2190 2195 2200 2205 2210 2215 2220 2225 2230 2235 2240 2245 2250 2255 2260 2265 2270 2275 2280 2285 2290 2295 2300 2305 2310 2315 2320 2325 2330 2335 2340 2345 2350 2355 2360 2365 2370 2375 2380 2385 2390 2395 2400 2405 2410 2415 2420 2425 2430 2435 2440 2445 2450 2455 2460 2465 2470 2475 2480 2485 2490 2495 2500 2505 2510 2515 2520 2525 2530 2535 2540 2545 2550 2555 2560 2565 2570 2575 2580 2585 2590 2595 2600 2605 2610 2615 2620 2625 2630 2635 2640 2645 2650 2655 2660 2665 2670 2675 2680 2685 2690 2695 2700 2705 2710 2715 2720 2725 2730 2735 2740 2745 2750 2755 2760 2765 2770 2775 2780 2785 2790 2795 2800 2805 2810 2815 2820 2825 2830 2835 2840 2845 2850 2855 2860 2865 2870 2875 2880 2885 2890 2895 2900 2905 2910 2915 2920 2925 2930 2935 2940 2945 2950 2955 2960 2965 2970 2975 2980 2985 2990 2995 3000 3005 3010 3015 3020 3025 3030 3035 3040 3045 3050 3055 3060 3065 3070 3075 3080 3085 3090 3095 3100 3105 3110 3115 3120 3125 3130 3135 3140 3145 3150 3155 3160 3165 3170 3175 3180 3185 3190 3195 3200 3205 3210 3215 3220 3225 3230 3235 3240 3245 3250 3255 3260 3265 3270 3275 3280 3285 3290 3295 3300 3305 3310 3315 3320 3325 3330 3335 3340 3345 3350 3355 3360 3365 3370 3375 3380 3385 3390 3395 3400 3405 3410 3415 3420 3425 3430 3435 3440 3445 3450 3455 3460 3465 3470 3475 3480 3485 3490 3495 3500 3505 3510 3515 3520 3525 3530 3535 3540 3545 3550 3555 3560 3565 3570 3575 3580 3585 3590 3595 3600 3605 3610 3615 3620 3625 3630 3635 3640 3645 3650 3655 3660 3665 3670 3675 3680 3685 3690 3695 3700 3705 3710 3715 3720 3725 3730 3735 3740 3745 3750 3755 3760 3765 3770 3775 3780 3785 3790 3795 3800 3805 3810 3815 3820 3825 3830 3835 3840 3845 3850 3855 3860 3865 3870 3875 3880 3885 3890 3895 3900 3905 3910 3915 3920 3925 3930 3935 3940 3945 3950 3955 3960 3965 3970 3975 3980 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 4035 4040 4045 4050 4055 4060 4065 4070 4075 4080 4085 4090 4095 4100 4105 4110 4115 4120 4125 4130 4135 4140 4145 4150 4155 4160 4165 4170 4175 4180 4185 4190 4195 4200 4205 4210 4215 4220 4225 4230 4235 4240 4245 4250 4255 4260 4265 4270 4275 4280 4285 4290 4295 4300 4305 4310 4315 4320 4325 4330 4335 4340 4345 4350 4355 4360 4365 4370 4375 4380 4385 4390 4395 4400 4405 4410 4415 4420 4425 4430 4435 4440 4445 4450 4455 4460 4465 4470 4475 4480 4485 4490 4495 4500 4505 4510 4515 4520 4525 4530 4535 4540 4545 4550 4555 4560 4565 4570 4575 4580 4585 4590 4595 4600 4605 4610 4615 4620 4625 4630 4635 4640 4645 4650 4655 4660 4665 4670 4675 4680 4685 4690 4695 4700 4705 4710 4715 4720 4725 4730 4735 4740 4745 4750 4755 4760 4765 4770 4775 4780 4785 4790 4795 4800 4805 4810 4815 4820 4825 4830 4835 4840 4845 4850 4855 4860 4865 4870 4875 4880 4885 4890 4895 4900 4905 4910 4915 4920 4925 4930 4935 4940 4945 4950 4955 4960 4965 4970 4975 4980 4985 4990 4995 5000 5005 5010 5015 5020 5025 5030 5035 5040 5045 5050 5055 5060 5065 5070 5075 5080 5085 5090 5095 5100 5105 5110 5115 5120 5125 5130 5135 5140 5145 5150 5155 5160 5165 5170 5175 5180 5185 5190 5195 5200 5205 5210 5215 5220 5225 5230 5235 5240 5245 5250 5255 5260 5265 5270 5275 5280 5285 5290 5295 5300 5305 5310 5315 5320 5325 5330 5335 5340 5345 5350 5355 5360 5365 5370 5375 5380 5385 5390 5395 5400 5405 5410 5415 5420 5425 5430 5435 5440 5445 5450 5455 5460 5465 5470 5475 5480 5485 5490 5495 5500 5505 5510 5515 5520 5525 5530 5535 5540 5545 5550 5555 5560 5565 5570 5575 5580 5585 5590 5595 5600 5605 5610 5615 5620 5625 5630 5635 5640 5645 5650 5655 5660 5665 5670 5675 5680 5685 5690 5695 5700 5705 5710 5715 5720 5725 5730 5735 5740 5745 5750 5755 5760 5765 5770 5775 5780 5785 5790 5795 5800 5805 5810 5815 5820 5825 5830 5835 5840 5845 5850 5855 5860 5865 5870 5875 5880 5885 5890 5895 5900 5905 5910 5915 5920 5925 5930 5935 5940 5945 5950 5955 5960 5965 5970 5975 5980 5985 5990 5995 6000 6005 6010 6015 6020 6025 6030 6035 6040 6045 6050 6055 6060 6065 6070 6075 6080 6085 6090 6095 6100 6105 6110 6115 6120 6125 6130 6135 6140 6145 6150 6155 6160 6165 6170 6175 6180 6185 6190 6195 6200 6205 6210 6215 6220 6225 6230 6235 6240 6245 6250 6255 6260 6265 6270 6275 6280 6285 6290 6295 6300 6305 6310 6315 6320 6325 6330 6335 6340 6345 6350 6355 6360 6365 6370 6375 6380 6385 6390 6395 6400 6405 6410 6415 6420 6425 6430 6435 6440 6445 6450 6455 6460 6465 6470 6475 6480 6485 6490 6495 6500 6505 6510 6515 6520 6525 6530 6535 6540 6545 6550 6555 6560 6565 6570 6575 6580 6585 6590 6595 6600 6605 6610 6615 6620 6625 6630 6635 6640 6645 6650 6655 6660 6665 6670 6675 6680 6685 6690 6695 6700 6705 6710 6715 6720 6725 6730 6735 6740 6745 6750 6755 6760 6765 6770 6775 6780 6785 6790 6795 6800 6805 6810 6815 6820 6825 6830 6835 6840 6845 6850 6855 6860 6865 6870 6875 6880 6885 6890 6895 6900 6905 6910 6915 6920 6925 6930 6935 6940 6945 6950 6955 6960 6965 6970 6975 6980 6985 6990 6995 7000 7005 7010 7015 7020 7025 7030 7035 7040 7045 7050 7055 7060 7065 7070 7075 7080 7085 7090 7095 7100 7105 7110 7115 7120 7125 7130 7135 7140 7145 7150 7155 7160 7165 7170 7175 7180 7185 7190 7195 7200 7205 7210 7215 7220 7225 7230 7235 7240 7245 7250 7255 7260 7265 7270 7275 7280 7285 7290 7295 7300 7305 7310 7315 7320 7325 7330 7335 7340 7345 7350 7355 7360 7365 7370 7375 7380 7385 7390 7395 7400 7405 7410 7415 7420 7425 7430 7435 7440 7445 7450 7455 7460 7465 7470 7475 7480 7485 7490 7495 7500 7505 7510 7515 7520 7525 7530 7535 7540 7545 7550 7555 7560 7565 7570 7575 7580 7585 7590 7595 7600 7605 7610 7615 7620 7625 7630 7635 7640 7645 7650 7655 7660 7665 7670 7675 7680 7685 7690 7695 7700 7705 7710 7715 7720 7725 7730 7735 7740 7745 7750 7755 7760 7765 7770 7775 7780 7785 7790 7795 7800 7805 7810 7815 7820 7825 7830 7835 7840 7845 7850 7855 7860 7865 7870 7875 7880 7885 7890 7895 7900 7905 7910 7915 7920 7925 7930 7935 7940 7945 7950 7955 7960 7965 7970 7975 7980 7985 7990 7995 8000 8005 8010 8015 8020 8025 8030 8035 8040 8045 8050 8055 8060 8065 8070 8075 8080 8085 8090 8095 8100 8105 8110 8115 8120 8125 8130 8135 8140 8145 8150 8155 8160 8165 8170 8175 8180 8185 8190 8195 8200 8205 8210 8215 8220 8225 8230 8235 8240 8245 8250 8255 8260 8265 8270 8275 8280 8285 8290 8295 8300 8305 8310 8315 8320 8325 8330 8335 8340 8345 8350 8355 8360 8365 8370 8375 8380 8385 8390 8395 8400 8405 8410 8415 8420 8425 8430 8435 8440 8445 8450 8455 8460 8465 8470 8475 8480 8485 8490 8495 8500 8505 8510 8515 8520 8525 8530 8535 8540 8545 8550 8555 8560 8565 8570 8575 8580 8585 8590 8595 8600 8605 8610 8615 8620 8625 8630 8635 8640 8645 8650 8655 8660 8665 8670 8675 8680 8685 8690 8695 8700 8705 8710 8715 8720 8725 8730 8735 8740 8745 8750 8755 8760 8765 8770 8775 8780 8785 8790 8795 8800 8805 8810 8815 8820 8825 8830 8835 8840 8845 8850 8855 8860 8865 8870 8875 8880 8885 8890 8895 8900 8905 8910 8915 8920 8925 8930 8935 8940 8945 8950 8955 8960 8965 8970 8975 8980 8985 8990 8995 9000 9005 9010 9015 9020 9025 9030 9035 9040 9045 9050 9055 9060 9065 9070 9075 9080 9085 9090 9095 9100 9105 9110 9115 9120 9125 9130 9135 9140 9145 9150 9155 9160 9165 9170 9175 9180 9185 9190 9195 9200 9205 9210 9215 9220 9225 9230 9235 9240 9245 9250 9255 9260 9265 9270 9275 9280 9285 9290 9295 9300 9305 9310 9315 9320 9325 9330 9335 9340 9345 9350 9355 9360 9365 9370 9375 9380 9385 9390 9395 9400 9405 9410 9415 9420 9425 9430 9435 9440 9445 9450 9455 9460 9465 9470 9475 9480 9485 9490 9495 9500 9505 9510 9515 9520 9525 9530 9535 9540 9545 9550 9555 9560 9565 9570 9575 9580 9585 9590 9595 9600 9605 9610 9615 9620 9625 9630 9635 9640 9645 9

longitudinal portion 3 of the flow guide 2 to the distal end portion 1 of the flow guide 2. The channel 8 therefore extends through the transverse plane and then turns through an angle of more than 90°, about 110° in some embodiments, so that it is directed towards the transverse plane. The inner channel surface 35 extends in the third direction from the longitudinal portion 3 of the flow guide 2 to the distal end portion 1 and passes through the transverse plane. It curves smoothly through an angle of more than 90° (in some embodiments, approximately 105°, more specifically, approximately 105.1°) until it is disposed in the first angle towards the transverse plane. The remainder of the inner channel surface 35 defines an end portion of the inner channel surface 35 and is disposed at this angle until it reaches the inner edge 36. The part of the inner channel surface 35 that extends the furthest in the third direction defines a crest, which is closer in the second direction to the portion of the inner channel surface 35 along the longitudinal portion 3 of the flow guide 2 than to the inner edge 36. In other words, a projection of the crest onto the transverse plane is closer to a line defined by the intersection of the inner channel surface 35 and the transverse plane than it is to the inner edge 36. The shape of the inner channel surface 35 encourages the fluid flow to attach to it as it turns due to the Coanda effect, which helps the fluid flow to turn smoothly and reduces the likelihood of turbulent flow.

Similarly, the outer channel surface 14 extends in the third direction from the longitudinal portion 3 of the flow guide 2 to the distal end portion 1 and passes through the transverse plane. It curves smoothly through an angle of more than 90° (in some embodiments, approximately 116°, more specifically, 116.4°) until it is disposed at the second angle towards the transverse plane. The remainder of the outer channel surface 14 defines an end portion of the outer channel surface 14 and remains at this angle until it reaches the outer edge 16. Thus, the channel 8 defines the chamber 42 between the transverse plane and an end portion of the channel 8 adjacent the outlet 10.

Referring to the longitudinal portion 3 of the flow guide 2, a longitudinal portion of the channel 8 runs parallel to a longitudinal axis of the laparoscope 6. The fluid flow travels through the longitudinal portion of the channel 8 along the laparoscope 6 in the third direction and then reaches the chamber 42. In the chamber 42, the fluid flow is made to turn through approximately 124° as it flows through the channel 8, as described above. As the fluid flow leaves the chamber 42 it enters the end portion of the channel 8. The cross-sectional flow area of the end portion of the channel 8 decreases between the chamber 42 and the outlet 10. This causes the flow speed of the fluid to increase again before it passes through the outlet 10.

The cross-sectional flow area of the portion of the channel 8 along the laparoscope 6 decreases from the inlet 5 to an entrance to the chamber 42. The entrance to the chamber 42, in turn, has a smaller cross-sectional flow area than the chamber 42 itself. This causes the fluid flow speed to increase as it approaches the chamber 42 and then decrease as it enters the chamber 42, which means it is travelling at a decreased speed when it turns in the chamber 42.

Thus, between the inlet 5 and the outlet 10, the flow speed increases up to the chamber 42, then decreases in the chamber 42 to facilitate a smooth change of flow direction and then speeds up again towards the outlet 10 for an increased exit speed. A smooth change of direction facilitated by the speed profile of flow through the flow guide 2 facilitates the choking point of the fluid flow to remain at the outlet 10, and therefore helps to maintain maximum speed of

the fluid flow at the outlet 10. By ensuring a high speed at the outlet 10, in turn, the laparoscope 6 facilitates an improved flow attachment.

The outlet 10 is the locus of points beyond which the fluid flow is constrained only by the limb guide surfaces 20 and the surface 4 of the laparoscope 6. The outer limit of the outlet 10 is defined by the outer edge 16 of the outer channel surface 14. The inner limit of the outlet 10 is defined by a projection in the third direction of the outer edge 16 onto the end surface 4 of the laparoscope 6. All parts of the outer edge 16 of the outer channel surface 14 extend beyond the inner channel surface 35 in the second direction so that the inner limit of the outlet 10 is defined entirely by the end surface 4. In some embodiments, however, the central part of the outer edge 16 of the outer channel surface extends beyond the inner channel surface 35, but the parts of the outer edge 16 of the outer channel surface 14 adjacent each of the sides 12 of the channel 8 do not extend as far in the second direction as the inner channel surface 35. This causes the inner limit of the outlet 10 to be defined in part by the projection of the outer edge 16 onto the end surface 4 and in part by the projection of the outer edge 16 onto the inner channel surface 35.

In some embodiments, the flow guide 2 does not have the insert 37 or inner channel surface 35. The laparoscope 6 acts to define an equivalent of the inner channel surface 35 and, hence, the laparoscope 6 acts to define one side of the channel 8. These embodiments are now described with reference to FIGS. 8 to 10. It will be understood that the features of the above-described embodiments are equally applicable whether the insert 37 is present or not. In particular, regarding the features relating to the chamber 42, these apply to both kinds of embodiments, with an outer surface of the laparoscope 6 replacing, and acting as, the inner channel surface 35.

With reference to FIG. 8, corresponding to FIG. 6, the chamber 42 is defined at the end portion of the channel 8 adjacent the outlet 10 and the outer channel surface 14 is curved at this portion. The insert 37 is absent, leaving the laparoscope 6 to define the inner channel surface 35. The absence of the insert 37 allows the longitudinal portion 3 of the flow guide 2 between the outer surface 26 and the outer channel surface 14 to be thicker without increasing the radius of the flow guide 2, thus increasing its strength.

With reference to FIG. 9, which corresponds to FIG. 5, the absence of the insert 37 is visible just above and behind the laparoscope 6.

With reference to FIG. 10, which corresponds to FIG. 7, the two sides 12 of the channel 8 are equidistant along the longitudinal portion 3 of the flow guide 2, thus making the cross-sectional flow area of the channel 8 constant, rather than varying, along this portion. The two sides 12 of the channel 8 are approximately 7 mm apart. The cross-section of the flow guide 2 itself is therefore also constant along this portion. The cross-sectional flow area of the channel 8 is approximately 4.5 mm², more specifically 4.53 mm². The outer edge 16 of the outer channel surface 14 is curved in a similar manner to the embodiment described with respect to FIG. 5. In some embodiments, however, the two sides 12 are arranged as described above to provide a varying cross-section. In some embodiments, the cross-section of the channel 8 along the longitudinal portion 3 varies, in spite of the absence of the insert 37, as described above in relation to FIG. 7.

With reference to FIG. 11, in some alternative embodiments, the embodiments described above are modified such that the outer edge 16 of the outer channel surface 14 is not

curved in a plane defined by the first and second directions, so that the outer edge 16 of the outer channel surface 14 is in a plane defined by the first and third directions. This helps to create a parallel fluid flow through the outlet 10 in the second direction, so that the fluid flow does not begin to diverge until it begins to attach to the limb guide surfaces 20. The flow guide 2 is otherwise structured according to any of the embodiments described herein.

With reference to FIG. 12, in some further alternative embodiments, the embodiments described above are modified such that the outer edge 16 of the outer channel surface 14 is not curved in a plane defined by the first and third directions, so that the outer edge 16 of the outer channel surface 14 is in a plane defined by the first and second directions. This ensures that all parts of the fluid flow are at a constant speed through the outlet 10 as the height of the outlet 10 in the third direction does not vary. The flow guide 2 is otherwise structured according to any of the embodiments described herein.

It will be understood that the above description of specific embodiments of the invention is by way of example only and it is not intended to limit the scope of the invention. Many modifications of the described embodiments, some of which are now described, are envisaged and intended to be covered by the appended claims.

In some embodiments, the outer surface 26 and the inner surface 24 do not meet at the tips 28 but both extend fully around the device. The outer surface 26 and the inner surface 24 are therefore substantially cylindrical and fully enclose the laparoscope. As described above, the channel 8 may be fully or partially formed on all sides by the flow guide 2 or one side may be fully or partially provided by the laparoscope 6. Various embodiments of fluid conduits for endoscopes are disclosed in UK patent application GB 0911891.0, from which PCT application PCT/GB2010/001302 claims priority, both of which are incorporated herein by reference.

In some embodiments, the portion of the channel 8 along the laparoscope 6, the chamber 42 and the portion of the channel 8 adjacent the limbs 18 combine to form a continuous surface.

In some embodiments, the flow guide 2 is made of any suitable known and approved medical plastic such as Radel A; Polyethersulfone; Radel R; Polyphenylsulfone and related/modified polymers; Polyetheretherketone (PEEK); Polyether Ketone Ketone (PEKK); Polyphenylene; ValoxTM resins, for example based on Polyethyleneterephthalate (PET) or polybutyleneterephthalate (PBT); Polyethyleneterephthalate (PET); Polybutyleneterephthalate (PBT); Polycarbonates; Acrylonitrile Butadiene Btyrene (ABS); Polypropylene; Polyimides; and Polyacrylates. The flow guide 2 can also be manufactured, in some embodiments from metal, for example stainless steel metal (316L).

In some embodiments, the flow guide 2 is attachable to the laparoscope 6. In other embodiments, the flow guide 2 is integrally formed with the laparoscope 6. In some embodiments, the laparoscope 6 is a flexible or semi rigid endoscope, while in other embodiments, the laparoscope 6 is rigid.

In some embodiments, as the limb guide surfaces 20 extend from the sides 12 of the channel 8, they initially converge before they diverge as described above.

While the flow guide 2 described above is symmetrical about a plane defined by the second and third directions, which passes through the centre of the outlet 10, in other embodiments this is not the case.

In some embodiments, the fluid flow is a continuous flow, which creates a constant barrier protecting the end surface 4 from unwanted particles. In other embodiments, the fluid flow is a pulsed or intermittent flow, also of varying or stepped velocities, which is more effective in dislodging certain types of particles from the end surface 4.

In some embodiments, the first angle and the second angle are both the same, for example approximately 20°. In other embodiments, the first angle is approximately 0°, so that the portion of the inner channel surface 35 adjacent the limbs 18 is substantially in the transverse plane.

As described above, the outlet 10 is a single outlet. In other embodiments, the flow guide 2 provides a plurality of outlets.

15 In the embodiments described above, in the longitudinal portion 3 of the flow guide 2, the channel 8 defines a substantially straight path that is substantially parallel to the longitudinal axis of the laparoscope 6. However, in some embodiments, the channel 8 defines any curved or slanted path along the laparoscope 6, such as a helical path. The phrase 'longitudinally along' is intended to refer to any path with a component in the longitudinal direction. In some embodiments, the channel is arranged to direct the fluid flow in a curved or helical path across the end surface 4.

20 Although the specific description above has been made in terms of the flow guide 2 being attached to the laparoscope 6, it will be understood that the flow guide 2 can also be applied, with any necessary modifications, to cleaning a surface of any other device, in particular any optical surface of an optical device, more particularly a generally cylindrical device, for medical or non-medical uses. As well as for a laparoscope, some embodiments of the guide are suitable for use with other devices such as any other type of endoscope, scope or camera objective or any device with a surface that requires cleaning.

25 The above description is considered that of the preferred embodiment only. Modifications of the invention will occur to those skilled in the art and to those who make or use the invention. Therefore, it is understood that the embodiment shown in the drawings and described above is merely for illustrative purposes and not intended to limit the scope of the invention, which is defined by the following claims as interpreted according to the principles of patent law, including the doctrine of equivalents.

30 The invention claimed is:

35 [1. A flow guide for directing a fluid flow across a surface of an endoscope, the flow guide comprising:
a locating arrangement for locating the endoscope with respect to the flow guide such that the surface of the endoscope is disposed generally in a first plane defined along first and second mutually perpendicular directions;

40 a channel for directing the fluid flow, the channel having sides spaced with respect to each other in the first direction and extending in a third direction perpendicular to the first and second directions;

45 an outer channel surface extending between the sides of the channel; and

50 wherein an edge of the outer channel surface is convex-shaped to define an outlet of non-uniform height relative to the first plane, thereby imparting a non-uniform velocity profile to fluid constrained to flow between the edge of the outer channel surface and the first plane.]

55 [2. The flow guide of claim 1, wherein the edge of the outer channel surface is symmetrical about a third plane perpendicular to the first plane and a second plane defined by the first and third directions.]

[3. The flow guide of claim 1, wherein the edge of the outer channel surface is curved.]

[4. The flow guide of claim 1, wherein the outlet 10 is approximately 5.5 mm wide in the first direction.]

[5. The flow guide of claim 1, wherein the outlet is approximately 0.3 mm high in the third direction at the center of the outlet and approximately 0.7 mm high in the third direction at the sides of the outlet.]

[6. The flow guide of claim 1, wherein the edge of the outer channel surface forms an arc with a radius of approximately 9.5 mm.]

[7. The flow guide of claim 1, wherein the locating arrangement includes a base of a limb disposed generally in the first plane and arranged to rest against the surface of the endoscope.]

[8. The flow guide of claim 1, wherein the flow guide includes a respective limb extending from each of the sides generally in the second direction, each limb defining a limb guide surface extending generally in the third direction and being convex in a plane parallel to the first plane to cause fluid flow from the channel to diverge in the first direction as it flows across the surface of the endoscope.]

[9. The flow guide of claim 8, wherein the locating arrangement includes a base of the respective limb disposed generally in the first plane and arranged to rest against the surface of the endoscope so that the limb guide surfaces extend in the third direction from the surface of the endoscope.]

[10. The flow guide of claim 8, wherein each of the limb guide surfaces is generally curved in a plane defined by the first and second directions.]

[11. The flow guide of claim 1, wherein the edge of the outer channel surface is convex in a plane defined by the first and second directions.]

[12. The flow guide of claim 1, wherein the flow guide is arranged to direct the fluid flow at an angle of approximately 20° to the first plane.]

[13. The flow guide of claim 1, wherein the channel has an inner channel surface extending in the first direction between the sides of the channel, the inner channel surface generally facing the outer channel surface.]

[14. The flow guide of claim 13, wherein the inner channel surface is shaped to form a substantially continuous surface with the surface of the endoscope when the endoscope is secured to the flow guide.]

[15. The flow guide of claim 1, wherein the endoscope is substantially cylindrical and the surface of the endoscope is an end surface of the endoscope, wherein the flow guide is arranged to define a portion of the channel longitudinally along the endoscope for guiding the fluid flow longitudinally along the endoscope.]

[16. The flow guide of claim 15, wherein the channel comprises a chamber between the portion of the channel along the endoscope and a portion of the channel adjacent the edge of the outer channel surface, the chamber being shaped to turn the fluid flow from flowing along the endoscope to flowing across the end surface of the endoscope.]

[17. The flow guide of claim 16, wherein the chamber is shaped to turn the fluid flow through an angle of approximately 110°.]

[18. The flow guide of claim 16, wherein the chamber has a larger cross-sectional flow area than the portion of the channel adjacent the edge of the outer channel surface.]

[19. The flow guide of claim 16, wherein the cross-sectional flow area of the channel decreases from an inlet of the flow guide that is in fluidic communication with the channel to an entrance of the chamber.]

[20. The flow guide of claim 19, wherein the cross-sectional flow area of the chamber increases after the entrance.]

[21. The flow guide of claim 1, wherein the flow guide comprises an inlet in fluidic communication with the channel, the inlet having a larger cross-sectional flow area than the portion of the channel adjacent the edge of the outer channel surface.]

[22. The flow guide of claim 1, wherein the channel is continuous and has no internal obstructions to the fluid flow.]

[23. The flow guide of claim 1, wherein the flow guide is integrally formed with the endoscope or detachable from the endoscope.]

[24. The flow guide of claim 23, wherein the endoscope is substantially cylindrical and the surface of the endoscope is an end surface of the endoscope.]

[25. The flow guide of claim 23, wherein the surface of the endoscope includes a lens or optical window of the endoscope.]

[26. The flow guide of claim 23, in which the endoscope is a laparoscope.]

27. A flow guide for directing a fluid flow across a surface of a device, the flow guide comprising:

a locating arrangement for locating the device with respect to the flow guide such that the surface of the device is disposed generally in a first plane defined along first and second mutually perpendicular directions;

a channel for guiding the fluid flow, the channel having sides spaced with respect to each other in the first direction; and

a respective limb extending from each of the sides generally in the second direction, each limb defining a limb guide surface extending generally in a third direction perpendicular to the first and second directions and being convex in a plane parallel to the first plane to cause fluid flow from the channel to diverge in the first direction as it flows across the surface of the device.

28. The flow guide of claim 27, wherein each of the limb guide surfaces is generally curved in a plane defined by the first and second directions.

29. The flow guide of claim 27, wherein the channel has an outer channel surface extending in the first direction between the sides of the channel.

30. The flow guide of claim 29, wherein an edge of the outer channel surface is convex-shaped to define an outlet of non-uniform height relative to the first plane, thereby imparting a non-uniform velocity profile to fluid constrained to flow between the edge of the outer channel surface and the first plane.

31. The flow guide of claim 29, wherein an edge of the outer channel surface is convex in a plane defined by the first and second directions.

32. The flow guide of claim 29, wherein the flow guide is arranged to direct the fluid flow at an angle of approximately 20° to the first plane.

33. The flow guide of claim 29, wherein the channel has an inner channel surface extending in the first direction between the sides of the channel, the inner channel surface generally facing the outer channel surface.

34. The flow guide of claim 33, wherein the inner channel surface is shaped to form a substantially continuous surface with the surface of the device when the device is secured to the flow guide.

35. The flow guide of claim 29, wherein an inner channel surface facing the outer channel surface is defined by the device when the device is located such that the surface is disposed in the first plane.

36. The flow guide of claim 27, wherein the locating arrangement includes a respective base of each limb disposed generally in the first plane and arranged to rest against the surface of the device so that the limb guide surfaces extend in the third direction from the surface of the device.

37. The flow guide of claim 27, wherein the device is substantially cylindrical and the surface is an end surface of the device, wherein the flow guide is arranged to define a portion of the channel longitudinally along the device for guiding the fluid flow longitudinally along the device.

38. The flow guide of claim 37, wherein the channel comprises a chamber between the portion of the channel along the device and a portion of the channel adjacent the limbs, the chamber being shaped to turn the fluid flow from flowing along the device to flowing across the end surface of the device.

39. The flow guide of claim 38, wherein the chamber is shaped to turn the fluid flow through an angle of approximately 110°.

40. The flow guide of claim 38, wherein the chamber has a larger cross-sectional flow area than the portion of the channel adjacent the limbs.

41. The flow guide of claim 27, wherein the flow guide comprises an inlet in fluidic communication with the channel, which inlet has a larger cross-sectional flow area than the portion of the channel adjacent the limbs.

42. The flow guide of claim 41, wherein the cross-sectional flow area of the inlet is larger than the portion of the channel adjacent the limbs by a factor of at least 6.

43. The flow guide of claim 41, wherein the cross-sectional flow area of the channel decreases from the inlet to an entrance of the chamber.

44. The flow guide of claim 43, wherein the cross-sectional flow area of the chamber increases after the entrance.

45. The flow guide of claim 27, wherein the channel is continuous and has no internal obstructions to the fluid flow.

46. The flow guide of claim 27, wherein a longitudinal portion of the flow guide comprises an inner surface and an outer surface, the inner surface and outer surface being

connected to form two tips so that the device is only partially enclosed by the longitudinal portion.

47. The flow guide of claim 46, wherein a distal tip surface is defined between the inner surface and the outer surface adjacent each tip, the distal tip surfaces being in a plane parallel to the first plane but not coplanar with the first plane, such that the surface of the device protrudes longitudinally beyond the distal tip surfaces when the surface of the device is disposed in the first plane.

48. An optical device comprising a transverse end surface including a lens or optical window and a flow guide as claimed in claim 27 for guiding a fluid flow longitudinally along the device and directing the fluid flow across the transverse end surface of the device, wherein the flow guide is integrally formed with the device or detachable from the device.

49. The device of claim 48, wherein the device is substantially cylindrical and the surface is an end surface of the device.

50. The device of claim 48, wherein the device is a medical device.

51. The device of claim 48, in which the device is an endoscope.

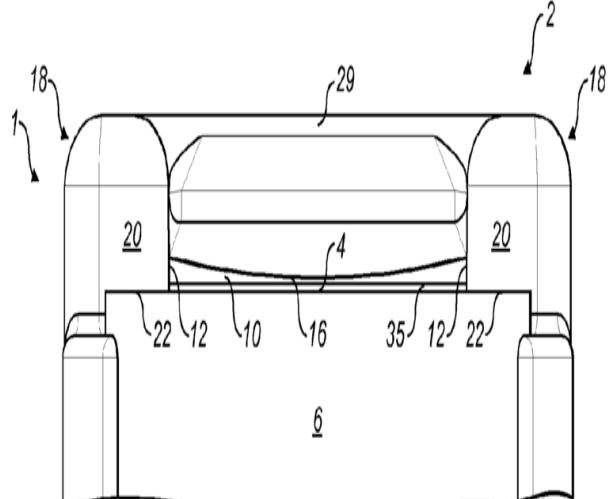
52. The device of claim 48, in which the device is a laparoscope.

53. The flow guide of claim 29, wherein an edge of the outer channel surface extends in a second plane defined by the first and third directions to define an outlet.

54. The flow guide of claim 53, wherein the edge of the outer channel surface is convex in the second plane such that the outlet has a non-uniform height relative to the first plane.

55. The flow guide of claim 53, wherein the edge of the outer channel surface is configured such that the outlet has a non-uniform height relative to the first plane.

56. The flow guide of claim 29, wherein an edge of the outer channel surface is arranged to define an outlet between the edge of the outer channel surface and the first plane.


57. The flow guide of claim 56, wherein the fluid flow from the channel passes through the outlet.

* * * * *

专利名称(译)	流程指南		
公开(公告)号	USR46977	公开(公告)日	2018-08-07
申请号	US14/688584	申请日	2015-04-16
[标]申请(专利权)人(译)	恩多加德公司		
申请(专利权)人(译)	ENDOGUARD有限公司		
当前申请(专利权)人(译)	ENDOGUARD有限公司		
[标]发明人	JAMES ADAM GRAHAM CHEN JIE WILLS ANTHONY ARTHUR		
发明人	JAMES, ADAM GRAHAM CHEN, JIE WILLS, ANTHONY ARTHUR		
IPC分类号	A61B1/12		
CPC分类号	A61B1/00091 A61B1/00135 A61B1/126 A61B1/3132 A61B1/121 A61B1/127		
优先权	2009017857 2009-10-12 GB		
外部链接	Espacenet USPTO		

摘要(译)

流动引导件以受控的方式引导流体流过装置的表面，例如内窥镜的镜片表面，以促进流动附着到表面。实施例包括赋予不均匀速度分布的特征和/或包括用于促进流动附接和/或覆盖的引导表面。

