

US007435260B2

(12) **United States Patent**
Ferree

(10) **Patent No.:** **US 7,435,260 B2**
(45) **Date of Patent:** **Oct. 14, 2008**

(54) **USE OF MORPHOGENETIC PROTEINS TO TREAT HUMAN DISC DISEASE**

(76) Inventor: **Bret A. Ferree**, 1238 Cliff Laine Dr., Cincinnati, OH (US) 45208

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 133 days.

(21) Appl. No.: **10/876,792**

(22) Filed: **Jun. 25, 2004**

(65) **Prior Publication Data**

US 2004/0230310 A1 Nov. 18, 2004

Related U.S. Application Data

(63) Continuation-in-part of application No. 10/171,283, filed on Jun. 13, 2002, now Pat. No. 6,755,863, which is a continuation-in-part of application No. 09/688, 716, filed on Oct. 16, 2000, now Pat. No. 6,454,804, which is a continuation-in-part of application No. 09/638,726, filed on Aug. 14, 2000, now Pat. No. 6,340,369, and a continuation-in-part of application No. 09/415,382, filed on Oct. 8, 1999, now Pat. No. 6,419,704.

(60) Provisional application No. 60/159,488, filed on Oct. 14, 1999, provisional application No. 60/148,913, filed on Aug. 13, 1999.

(51) **Int. Cl.**
A61F 2/44 (2006.01)

(52) **U.S. Cl.** **623/17.11**

(58) **Field of Classification Search** ... **623/17.11-17.16, 623/925; 606/91**

See application file for complete search history.

(56) **References Cited**

U.S. PATENT DOCUMENTS

2,677,369 A	5/1954	Knowles	128/92
3,366,975 A	2/1968	Pangman	3/36
3,426,364 A	2/1969	Lumb	3/1
3,551,560 A	12/1970	Thiele	424/95
3,593,342 A	7/1971	Niebauer	3/1
3,648,294 A	3/1972	Shahrestani	3/1
3,855,638 A	12/1974	Pilliar	3/1
3,867,728 A	2/1975	Substad et al.	3/1
3,875,595 A	4/1975	Froning	3/1
3,883,902 A	5/1975	Lynch	3/36
4,229,839 A	10/1980	Schwemmer	3/1.91
4,294,753 A *	10/1981	Urist	530/395
4,309,777 A	1/1982	Patil	3/1.91
4,349,921 A	9/1982	Kuntz	3/1
4,663,358 A	5/1987	Hyon et al.	521/64
4,707,872 A	11/1987	Hessel	5/451
4,714,469 A	12/1987	Kenna	623/17
4,759,766 A	7/1988	Buettner-Janz et al.	623/17
4,772,287 A	9/1988	Ray et al.	623/17
4,801,299 A	1/1989	Brendel et al.	623/16.11
4,863,477 A	9/1989	Monson	623/17
4,874,389 A	10/1989	Downey	623/17
4,904,260 A	2/1990	Ray et al.	623/17

4,911,718 A	3/1990	Lee et al.	623/17
4,917,704 A	4/1990	Frey et al.	623/17
4,932,969 A	6/1990	Frey et al.	623/17
4,946,378 A	8/1990	Hirayama et al.	623/17
5,002,576 A	3/1991	Fuhrmann et al.	623/17
5,047,055 A	9/1991	Bao et al.	623/17
5,071,437 A	12/1991	Steffee	623/17
5,108,438 A	4/1992	Stone	623/17
5,123,926 A	6/1992	Pisharodi	623/17
5,171,280 A	12/1992	Baumgartner	623/17
5,171,281 A	12/1992	Parsons et al.	623/17
5,192,326 A	3/1993	Bao et al.	623/17
5,246,458 A	9/1993	Graham	623/17
5,258,031 A	11/1993	Salib et al.	623/17
5,258,043 A	11/1993	Stone	623/66
5,314,477 A	5/1994	Marnay	623/17
5,320,644 A	6/1994	Baumgartner	623/17
5,370,697 A	12/1994	Baumgartner	623/17
5,375,823 A	12/1994	Navas	267/17
5,401,269 A	3/1995	Buttner-Janz et al.	623/17
5,425,773 A	6/1995	Boyd et al.	623/17

(Continued)

OTHER PUBLICATIONS

Carriers That Concentrate Native Bone Morphogenetic Protein in Vivo K. De Groot, Ph.D. *Tissue Engineering* vol. 4, No. 4, 1998.*

(Continued)

Primary Examiner—Suzette J Gherbi

(74) *Attorney, Agent, or Firm*—Gifford, Krass, Sprinkle, Anderson & Citkowski, P.C.

(57) **ABSTRACT**

Bone morphogenetic proteins (BMPs) are introduced into an affected intervertebral disc without the inclusion of disc cells. The inventions applies to all known and yet-to-be developed or discovered BMPs, including BMP-1, -2, -3, -4, -5, -6, -7, -8, -9, -10, . . . BMPn. The BMP(s) may be obtained from natural and/or recombinant sources. The BMP(s) may be introduced using any surgical technique, including percutaneous or laparoscopic approaches. As one delivery mechanism, a passageway may be formed through the annulus, with the substances then being introduced through the passageway. Alternatively, a carrier may be sewn or otherwise adhered to the inside or outside of the existing annulus using standard surgical procedures. Additional therapeutic substances such as culture medium, growth factors, differentiation factors, hydrogels, polymers, antibiotics, anti-inflammatory medications, or immunosuppressive medications could be introduced in conjunction with the BMP(s).

14 Claims, No Drawings

U.S. PATENT DOCUMENTS

5,441,508 A	8/1995	Gazielly et al.	606/151	6,755,863 B2	6/2004	Ferree
5,458,642 A	10/1995	Beer et al.	623/17	6,793,677 B2	9/2004	Ferree
5,464,439 A	11/1995	Gendler	623/16.11	2001/0024823 A1	9/2001	Vulkicevic et al.
5,507,813 A *	4/1996	Dowd et al.	623/23.63	2002/0082697 A1*	6/2002	Damien
5,514,180 A	5/1996	Heggeness et al.	623/17.11	2003/0100108 A1	5/2003	Altaman et al.
5,534,028 A	7/1996	Bao et al.	623/17	2003/0144197 A1	7/2003	Zheng et al.
5,534,030 A	7/1996	Navarro et al.	623/17	2003/0212456 A1	11/2003	Lipschitz et al.
5,545,229 A	8/1996	Parsons et al.	623/17.11	2003/0215426 A1	11/2003	French et al.
5,556,431 A	9/1996	Buttner-Janz	623/17	2003/0228292 A1	12/2003	Gazit et al.
5,609,635 A	3/1997	Michelson	623/17	2004/0054414 A1*	3/2004	Trieu et al.
5,645,596 A	7/1997	Kim et al.	623/17	2004/0062753 A1	4/2004	Rezania et al.
5,645,597 A	7/1997	Krapiva	623/17	2004/0064192 A1	4/2004	Bubb
5,674,294 A	10/1997	Bainville et al.	623/17	2004/0220101 A1	11/2004	Ferree
5,674,296 A	10/1997	Bryan et al.	623/17	2004/0220102 A1	11/2004	Ferree
5,683,465 A	11/1997	Shinn et al.	623/17	2004/0230390 A1*	11/2004	DiMauro et al.
5,702,450 A	12/1997	Bisserie	623/17	2004/0236327 A1*	11/2004	Paul et al.
5,711,960 A	1/1998	Shikinami	424/426	2004/0236328 A1*	11/2004	Paul et al.
5,716,416 A	2/1998	Lin	623/17	2004/0244806 A1	12/2004	Ferree
5,782,830 A *	7/1998	Farris	606/61	2005/0119754 A1*	6/2005	Trieu et al.
5,800,549 A	9/1998	Bao et al.	623/17	2008/0014179 A1	1/2008	Ferree
5,824,093 A	10/1998	Ray et al.	623/17			
5,824,094 A	10/1998	Serhan et al.	623/17			
5,865,845 A	2/1999	Thalgott	623/17			
5,865,846 A	2/1999	Bryan et al.	623/17			
5,888,226 A	3/1999	Rogozinski	623/17			
5,893,889 A	4/1999	Harrington	623/17			
5,899,941 A	5/1999	Nishijima et al.	623/17			
5,928,284 A	7/1999	Mehdizadeh	623/17			
5,964,807 A	10/1999	Gan et al.	623/17.11			
5,972,368 A *	10/1999	McKay	424/423			
5,976,186 A	11/1999	Bao et al.	623/17.16			
5,980,504 A *	11/1999	Sharkey et al.	604/510			
6,022,376 A	2/2000	Assell et al.	623/17.16			
6,090,112 A	7/2000	Zucherman et al.	606/61			
6,110,210 A	8/2000	Norton et al.	623/17.16			
6,113,639 A	9/2000	Ray et al.	623/17.16			
6,132,465 A	10/2000	Ray et al.	623/17.16			
6,146,420 A	11/2000	McKay	623/17.11			
6,187,048 B1	2/2001	Milner et al.	623/17.12			
6,224,630 B1 *	5/2001	Bao et al.	623/17.16			
6,231,615 B1	5/2001	Preissman	623/23.73			
6,245,107 B1	6/2001	Ferree	623/17.11			
6,332,779 B1	12/2001	Boyce et al.	433/215			
6,340,369 B1	1/2002	Ferree	623/17.11			
6,344,058 B1	2/2002	Ferree				
6,352,557 B1	3/2002	Ferree				
6,371,988 B1 *	4/2002	Pafford et al.	623/17.11			
6,419,702 B1	7/2002	Ferree				
6,423,095 B1 *	7/2002	Van Hoeck et al.	623/17.16			
6,428,576 B1 *	8/2002	Haldimann	623/17.16			
6,454,804 B1	9/2002	Ferree				
6,558,390 B2 *	5/2003	Cragg	606/80			
6,620,196 B1 *	9/2003	Trieu	623/17.16			
6,645,247 B2	11/2003	Ferree				
6,648,918 B2	11/2003	Ferree				
6,648,919 B2	11/2003	Ferree				
6,648,920 B2	11/2003	Ferree				
6,685,695 B2	2/2004	Ferree				

OTHER PUBLICATIONS

Carriers That Concentrate Native Bone Morphogenetic Protein in Vivo; K. De Groot, Ph.D Tissue Engineering vol. 4, Nov. 4, 1998.*
 Proceedings 14th Annual Meeting North American Spine Society, Oct. 1999.
 Proceedings 13th Annual Meeting North American Spine Society, Oct. 1998.
 S. Breit, S. Wahl; "TGF- β and Related Cytokines in Inflammation," 2001.
 S. Vukicevic, K. Sampath; "Bone Morphogenetic Proteins," 2002.
 S. Yoon, K. Kim, J. Li, J. Park, T. Akamaru, W. Elmer, W. Hutton; "The Effect of Bone Morphogenetic Protein-2 on Rat Intervertebral Disc Cells in Vitro," SPINE, vol. 28, No. 16, pp. 1173-1780.
 Padgett, et al.; "Human BMP Sequences Can Confer Normal Dorsal-Ventral Patterning in the Drosophila Embryo," Proc. Natl. Acad. Sci., 90, 2905-2909.
 Paramore, C. et al.; "The Safety of OP-1 for Lumbar Fusion with Compression—a Canine Study," Neurosurgery, vol. 44, No. 5, May 1999, pp. 1151-1155.
 D. Kim, S. Moon, H. Kim, U. Kwon, M. Park, K. Han, S. Hahn, H. Lee, "Bone Morphogenetic Protein-2 Facilities Expression of Chondrogenic, not Osteogenic, Phenotype of Human Intervertebral Disc Cells," SPINE, vol. 28, No. 24, pp. 2679-2684.
 T. Gründer, C. Gaissmaier, J. Fritz, R. Stoop, P. Hortschansky, J. Mollenhauer, W. Aicher, "Bone morphogenetic protein (BMP)-2 enhances the expression of type II collagen and aggrecan in chondrocytes embedded in alginate beads," OsteoArthritis and Cartilage, 2004, 12, pp. 559-567.
 M. Kawakami, H. Hashizume, T. Matsumoto, Y. Enyo, M. Okada, M. Yoshida, Safety of Epidural Administration of Osteogenic Protein-1 (OP-1/BMP-7), SPINE, vol. 32, No. 13, pp. 1388-1393.
 Masuda, Y. Imai, M. Okuma, C. Muehleman, K. Nakagawa, K. Akeda, E. Thonar, G. Andersson, H. An, "Osteogenic Protein-1 Injection into a Degenerated Disc Induces the Restoration of Disc Height and Structural Changes in the Rabbit Anular Puncture Model," SPINE, vol. 31, No. 7, pp. 742-754.

* cited by examiner

USE OF MORPHOGENETIC PROTEINS TO TREAT HUMAN DISC DISEASE

REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of U.S. patent application Ser. No. 10/171,283, filed Jun. 13, 2002, now U.S. Pat. No. 6,755,863, which is a continuation-in-part of U.S. patent application Ser. No. 09/688,716, filed Oct. 16, 2000, now U.S. Pat. No. 6,454,804.

U.S. Pat. No. 6,454,804 claims priority from U.S. Provisional Patent Application Ser. No. 60/159,488, filed Oct. 14, 1999, and is a continuation-in-part of U.S. patent application Ser. No. 09/638,726, filed Aug. 14, 2000, now U.S. Pat. No. 6,340,369; and U.S. patent application Ser. No. 09/415,382, filed Oct. 8, 1999, now U.S. Pat. No. 6,419,704.

U.S. Pat. No. 6,340,369 claims priority from U.S. Provisional Patent Application Ser. No. 60/148,913, filed Aug. 13, 1999.

The entire content of each application and patent are incorporated herein by reference.

FIELD OF THE INVENTION

This invention relates generally to treating human disc disease, and more particularly, to the use of biological substances in conjunction with such treatments.

BACKGROUND OF THE INVENTION

Intervertebral discs provide mobility and a cushion between the vertebrae. At the center of the disc is the nucleus pulposus. The nucleus pulposus is surrounded by the annulus fibrosis, which is comprised of cells (fibrocyte-like and chondrocyte-like), collagen fibers, and non-fibrillar extracellular matrix. The components of the annulus are arranged in 15-25 lamellae around the nucleus pulposus. The fibers in the lamellae alternate their direction of orientation by 30 degrees between each-band.

The annulus fibrosis has three important functions. First, the annulus contains the nucleus pulposus. Second, the annulus fibrosis, with other ligaments, connects the vertebrae of the spine. Lastly, the annulus fibrosis helps to control movement between the vertebrae.

The fibers of the annulus can tear causing pain and possible extrusion of the nucleus pulposus. Extrusion of the nucleus pulposus is known as a disc herniation. Disc herniations can compress nerves or the spinal cord resulting in arm or leg pain and dysfunction. Surgery to repair disc herniations leaves a hole in the annulus fibrosis. The hole in the annulus acts as a pathway for additional material to protrude into a nerve, resulting in a recurrence of the herniation.

To date, the treatment of tears or defects of the annulus fibrosis has relied for the most part on eliminating the defective disc or disc function. This may be accomplished by fusing the vertebra on either side of the disc. In terms of replacement, prior-art techniques replace either the nucleus or the nucleus and annulus functions. My U.S. Pat. No. 6,245,107, and Patent Cooperation Treaty Application Ser. No. PCT/US/14708 describe methods and devices to occlude annular defects.

SUMMARY OF THE INVENTION

Certain of my co-pending patent applications and issued patents referenced above disclose the repair of tissues and organs by adding live cells to the extracellular matrix of

tissues or organs harvested to recently deceased human or animals. For example, with respect to intervertebral disc repair, fibrocytes, annulus fibrosis cells, cells that differentiate into annulus fibrosis cells, or cells that function like annulus fibrosis cells are harvested and combined with the extracellular matrix of the annulus fibrosis from a recently deceased human or animal to produce an engineered annulus fibrosis.

My issued U.S. Pat. No. 6,340,369, for example, discloses techniques whereby cultured cells are injected into an affected intervertebral disc. In the preferred embodiment, a transplanted nucleus is added to the patient's nucleus pulposus. Additional therapeutic substances may be added to the transplanted nucleus. For example, resorbable culture medium, tissue growth or differentiation factors (recombinant generated morphogenetic proteins (including BMPs), PDGF, TGF-.beta., EGF/TGF-.alpha., IGF-I, .beta.FGF), hydrogels, absorbable or nonresorbable synthetic or natural polymers (collagen, fibrin, polyglycolic acid, polylactic acid, polytetrafluoroethylene, etc.), antibiotics, anti-inflammatory medication, immuno-suppressive medications, etc. could be beneficial.

This invention extends these teachings through the introduction of substances, including the above-listed factors, into an affected disc without the inclusion of disc cells. In the preferred embodiments, bone morphogenetic proteins (BMPs), are introduced into an affected intervertebral disc without the inclusion of disc cells. The invention applies to all known and yet-to-be developed or discovered BMPs, including BMP-1, -2, -3, -4, -5, -6, -7, -8, -9, -10, . . . BMPn. The BMP(s) may be obtained from natural and/or recombinant sources.

The BMP(s) may be introduced using any surgical technique, including percutaneous or laparoscopic approaches. As one delivery mechanism, a passageway may be formed through the annulus, with the substances then being introduced through the passageway. Alternatively, a carrier may be sewn or otherwise adhered to the inside or outside of the existing annulus using standard surgical procedures.

Additional therapeutic substances such as culture medium, growth factors, differentiation factors, hydrogels, polymers, antibiotics, anti-inflammatory medications, or immuno-suppressive medications could be introduced in conjunction with the BMP(s).

DETAILED DESCRIPTION OF THE INVENTION

This invention resides in the introduction of substances, particularly bone morphogenetic proteins (BMPs), into an affected intervertebral disc without the inclusion of disc cells. The invention applies to all known and yet-to-be developed or discovered BMPs, including BMP-1, -2, -3, -4, -5, -6, -7, -8, -9, -10, . . . BMPn. The BMP(s) may be obtained from natural and/or recombinant sources.

Submitted with this application are references (scientific papers) that teach dosages and sources of the BMPs. The content of each of these references is incorporated herein by reference. These papers describe the use of BMPs in humans and animals to grow bone and articular cartilage. Others include summary BMP articles and articles that describe the effects of BMP on disc cells.

Applicable BMPs are becoming, increasingly commercially available. For example, rhBMP-2 may be obtained from Medtronic Sofamor Danek, Memphis Tenn. (known as INFUSE). Medtronic obtains the BMP from Genetics Institute, Cambridge Mass.

The substances may be introduced using any surgical technique, including percutaneous or laparoscopic approaches. As one delivery mechanism, a passageway may be formed through the annulus, with the substances then being introduced through the passageway. Alternatively, a carrier may be sewn or otherwise adhered to the inside or outside of the existing annulus using standard surgical procedures.

As one specific example, a sponge soaked with BMP-2 (or BMP-n) may be inserted into a disc to treat degenerative disc disease. For example, an absorbable collagen sponge, available from Integra Life Sciences, Plainsboro, N.J., could be soaked in a 1.5 mg rhBMP-2/ml sterile saline solution (available from Medtronic Sofamor Danek, Memphis, Tenn.) for 15 minutes before inserting the BMP impregnated sponge into the disc. Other doses of BMP would be acceptable; for example, doses from 0.04 micrograms to 32 mg of BMP, or higher or lower, could be used.

Other synthetic and natural carriers are acceptable, such as a polyactic/polyglycolic acid sponge. Examples include natural polymers of collagen, hyaluronans, chitosan, aliginate, and other animal or plant-derived polysaccharides. Examples of synthetic polymers include poly(alpha-hydroxy acids) such as polylactide, polyglycolide, and their copolymers, poly-anhydrides, polyphosphazenes, polypropylene fumarate, polyethylene glycol-PLA, poloxamers, and polyphosphate polymers.

Composites of natural materials, synthetic materials, or natural and synthetic impregnated materials could also be used as carriers. For example, composites of hyaluronan-impregnated PLA sponges, collagen-PLG-alginate, and PLGA-gelatin could be used. Alternatively, a slurry of the BMP, with or without a carrier, could be injected into the disc. As a further alternative, the BMP-2 or BMP-n could be inserted into a surgically created hole in the disc, or could be continuously infused from a pump. Pumps with remote reservoirs are well known to those skilled in the art.

I claim:

1. A method treating human disc disease, comprising the steps of:
providing a slurry of a dose of a bone morphogenetic protein (BMP) and a carrier; and
introducing the slurry into an intervertebral disc through a passageway formed in an annulus of the vertebral disc.

2. The method of claim 1, further including the step of introducing the BMP through a percutaneous or laparoscopic procedure.

3. The method of claim 1, further including the step of adding one or more therapeutic substances to the dose of a BMP.

4. The method of claim 3, wherein the therapeutic substances include one or more of the following:

10 culture media, growth factors, differentiation factors, hydrogels, polymers, antibiotics, anti-inflammatory medications, or immunosuppressive medications.

5. The method of claim 1, wherein the dose is from 0.04 micrograms to 32 mg.

15 6. The method of claim 1, wherein the BMP is recombinantly generated BMP.

7. A method treating human disc disease, comprising:
providing a slurry of a dose of a recombinantly generated

bone morphogenetic protein and a carrier; and
introducing the slurry into an intervertebral disc.

20 8. The method of claim 7, further comprising introducing the recombinantly generated bone morphogenetic protein through a percutaneous or laparoscopic procedure.

9. The method of claim 7, further comprising adding one or more therapeutic substances to the dose of a recombinantly generated bone morphogenetic protein.

25 10. The method of claim 9, wherein the therapeutic substances include one or more of the following:

culture media, growth factors, differentiation factors, hydrogels, polymers, antibiotics, anti-inflammatory medications, or immunosuppressive medications.

11. The method of claim 7, wherein the dose is from 0.04 micrograms to 32 mg.

30 12. A method treating human disc disease, comprising:
providing a sponge carrier and a dose of a bone morphogenetic protein in contact with the sponge carrier; and
adhering the sponge carrier to the outside of an existing intervertebral disc annulus.

13. The method of claim 12, wherein the bone morphogenetic protein is recombinantly generated bone morphogenetic protein.

35 14. The method of claim 12, further comprising adding one or more therapeutic substances to the dose of a bone morphogenetic protein in contact with the sponge carrier.

* * * * *

专利名称(译)	使用形态发生蛋白治疗人类椎间盘疾病		
公开(公告)号	US7435260	公开(公告)日	2008-10-14
申请号	US10/876792	申请日	2004-06-25
[标]申请(专利权)人(译)	FERREE BRET一个		
申请(专利权)人(译)	费里布雷特A.		
当前申请(专利权)人(译)	ANOVA CORP.		
[标]发明人	FERREE BRET A		
发明人	FERREE, BRET A.		
IPC分类号	A61F2/44 A61B17/02 A61F2/00 A61F2/02 A61F2/28 A61F2/30 A61F2/46 A61L27/36 A61L27/38		
CPC分类号	A61F2/2846 A61F2/442 A61L27/3658 A61L27/3856 A61L27/54 A61F2002/2817 A61F2002/30062 A61F2002/444 A61F2002/4445 A61F2002/445 A61F2210/0004 A61F2310/00365 A61L2300/414 A61L2400/06 A61L2430/38		
优先权	60/159488 1999-10-14 US 60/148913 1999-08-13 US		
其他公开文献	US20040230310A1		
外部链接	Espacenet USPTO		

摘要(译)

将骨形态发生蛋白 (BMP) 引入受影响的椎间盘而不包括椎间盘细胞。本发明适用于所有已知的和尚未开发或发现的BMP , 包括BMP-1 , -2 , -3 , -4 , -5 , -6 , -7 , -8 , -9 , -10 , 。 BMPn。 BMP可以从天然和/或重组来源获得。可以使用任何手术技术引入BMP , 包括经皮或腹腔镜方法。作为一种输送机构 , 可以穿过环形通道形成通道 , 然后通过通道引入物质。或者 , 可以使用标准外科手术将载体缝合或以其他方式粘附到现有瓣环的内部或外部。可以与BMP一起引入其他治疗物质 , 例如培养基 , 生长因子 , 分化因子 , 水凝胶 , 聚合物 , 抗生素 , 抗炎药物或免疫抑制药物。