US007207990B2 ### (12) United States Patent Lands et al. (10) Patent No.: US 7,207,990 B2 (45) **Date of Patent:** *Apr. 24, 2007 ## (54) LAPAROSCOPIC BIPOLAR ELECTROSURGICAL INSTRUMENT (75) Inventors: Michael John Lands, Clearwater, FL (US); Stephen Wade Lukianow, Boulder, CO (US); Donald Robert Loeffler, Louisville, CO (US); James Steven Cunnigham, Boulder, CO (US); Kate Ryland Lawes, Superior, CO (US); Daniel Lee Trimberger, II, Greeley, CO (US); Mathew Erle Mitchell, Boulder, CO (US); Jenifer Serafin Kennedy, Boulder, CO (US) (73) Assignee: **Sherwood Services Ag**, Schaffhausen (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days. This patent is subject to a terminal dis- claimer. (21) Appl. No.: 11/169,927 (22) Filed: Jun. 29, 2005 #### (65) Prior Publication Data US 2006/0009764 A1 Jan. 12, 2006 #### Related U.S. Application Data (63) Continuation of application No. 10/243,274, filed on Sep. 13, 2002, now Pat. No. 6,960,210, which is a continuation of application No. 09/591,330, filed on Jun. 9, 2000, now Pat. No. 6,451,018, which is a continuation of application No. 08/970,472, filed on Nov. 14, 1997, now Pat. No. 6,228,083. (51) **Int. Cl.** *A61B 18/14* (2006.01) ### (56) References Cited #### U.S. PATENT DOCUMENTS | 371,664 A | 10/1887 | Brannan et al. | |-------------|---------|------------------| | 702,472 A | 6/1902 | Pignolet | | 728,883 A | 5/1903 | Downes | | 1,586,645 A | 6/1926 | Bierman | | 2,002,594 A | 5/1935 | Wappler et al. | | 2,011,169 A | 8/1935 | Wappler | | 2,031,682 A | 2/1936 | Wappler et al. | | 2,176,479 A | 10/1939 | Willis | | 2,305,156 A | 12/1942 | Grubel | | 2,632,661 A | 3/1953 | Cristofv | | 2,668,538 A | 2/1954 | Baker | | 2,796,065 A | 6/1957 | Kapp | | 3,459,187 A | 8/1969 | Pallotta | | 3,643,663 A | 2/1972 | Sutter | | 3,651,811 A | 3/1972 | Hildebrandt et a | | 3,862,630 A | 1/1975 | Balamuth | | 3,866,610 A | 2/1975 | Kletschka | | 3,911,766 A | 10/1975 | Fridolph et al. | | 3,920,021 A | 11/1975 | Hiltebrandt | | 3,921,641 A | 11/1975 | Hulka | | 3,938,527 A | 2/1976 | Rioux et al. | | 3,952,749 A | 4/1976 | Fridolph et al. | | 4,005,714 A | 2/1977 | Hiltebrandt | | 4,074,718 A | 2/1978 | Morrison, Jr. | | 4,088,134 A | 5/1978 | Mazzariello | | 4,165,746 A | 8/1979 | Burgin | | 4,300,564 A | 11/1981 | Furihata | | 4,370,980 A | 2/1983 | Lottick | | 4,416,276 A | 11/1983 | Newton et al. | | 4,452,246 A | 6/1984 | Bader et al. | | 4,492,231 A | 1/1985 | Auth | | 4,552,143 A | 11/1985 | Lottick | | 4,574,804 A | 3/1986 | Kurwa | | 4,597,379 A | 7/1986 | Kihn et al. | | 4,600,007 A | 7/1986 | Lahodny et al. | | 4,655,216 A | 4/1987 | Tischer | | 4,657,016 A | 4/1987 | Garito et al. | | 4,662,372 A | 5/1987 | Sharkany et al. | | 4,671,274 A | 6/1987 | Sorochenko | | 4,685,459 A | 8/1987 | Xoch et al. | | D295,893 S | 5/1988 | Sharkany et al. | | D273,073 3 | 3/1700 | Sharkany et al. | # US 7,207,990 B2 Page 2 | D295,894 | S | 5/1988 | Sharkany et al. | 5,496,317 | Α | 3/1996 | Goble et al. | |-----------|---|---------|---------------------|-----------|---|---------|-----------------------| | 4,763,669 | | 8/1988 | Jaeger | 5,496,347 | A | 3/1996 | Hashiguchi et al. | | 4,827,929 | | 5/1989 | Hodge | 5,499,997 | | 3/1996 | | | 4,887,612 | | | Esser et al. | 5,509,922 | | 4/1996 | • | | 4,938,761 | | 7/1990 | | 5,514,134 | | | Rydell et al. | | 4,985,030 | | | Melzer et al. | 5,527,313 | | | Scott et al. | | 5,007,908 | | 4/1991 | | 5,531,744 | | | Nardella et al. | | 5,026,370 | | 6/1991 | • | 5,536,251 | | | Evard et al. | | 5,099,840 | | | Goble et al. | 5,540,684 | | | Hassler, Jr. | | | | 5/1992 | | | | | Parins et al. | | 5,116,332 | | | | 5,540,685 | | | | | 5,147,357 | | | Rose et al. | 5,540,715 | | | Katsaros et al. | | 5,151,102 | | | Xamiyama et al. | 5,558,672 | | | Edwards et al. | | 5,176,695 | | | Dulebohn | 5,569,241 | | | Edwards | | 5,190,541 | | | Abele et al. | 5,569,243 | | | Kortenbach et al. | | 5,197,964 | | 3/1993 | | 5,571,100 | | | Goble et al. | | 5,215,101 | | | Jacobs et al. | 5,573,424 | | 11/1996 | | | 5,217,457 | | | Delahuerga et al. | 5,573,535 | | 11/1996 | | | 5,217,458 | A | 6/1993 | | 5,582,611 | A | | Tsukagoshi et al. | | 5,219,354 | A | 6/1993 | Choudhury et al. | 5,585,896 | A | | Yamazaki et al. | | 5,244,462 | A | | Delahuerga et al. | 5,590,570 | Α | 1/1997 | LeMaire, Ill et al. | | 5,250,047 | A | 10/1993 | Rydell | 5,601,601 | A | 2/1997 | Tal et al. | | 5,258,006 | A | 11/1993 | Rydell et al. | 5,603,711 | A | 2/1997 | Parins et al. | | 5,261,918 | A | 11/1993 | Phillips et al. | 5,603,723 | A | 2/1997 | Aranyi et al. | | 5,275,615 | | 1/1994 | Rose | 5,626,578 | Α | 5/1997 | | | 5,277,201 | | 1/1994 | | 5,626,609 | | | Zvenyatsky et al. | | 5,282,799 | | 2/1994 | | 5,630,833 | | | Katsaros et al. | | 5,290,286 | | 3/1994 | • | 5,637,110 | | | Pennybacker et al. | | 5,304,203 | | | El-Mallawany et al. | 5,643,294 | | | Tovey et al. | | 5,308,357 | | | Lichtman | 5,647,869 | | | Goble et al. | | | | | Lichtman | | | | Levine et al. | | 5,318,589 | | | | 5,647,871 | | | | | 5,324,289 | | 6/1994 | ~~ | 5,649,959 | | | Hannam et al. | | 5,330,471 | | 7/1994 | | 5,658,281 | | 8/1997 | | | 5,334,183 | | | Wuchinich | 5,662,667 | | | Knodel | | 5,334,215 | | 8/1994 | | 5,667,526 | | 9/1997 | | | 5,336,221 | A | | Anderson | 5,674,220 | | | Fox et al. | | 5,342,359 | A | 8/1994 | • | 5,681,282 | A | 10/1997 | Eggers et al. | | 5,342,381 | A | 8/1994 | Tidemand | 5,693,051 | A | 12/1997 | | | 5,342,393 | A | 8/1994 | Stack | 5,695,522 | A | 12/1997 | LeMaire, Ill et al. | | 5,352,222 | A | 10/1994 | Rydell | 5,700,261 | A | 12/1997 | Brinkerhoff | | 5,354,271 | A | 10/1994 | Voda | 5,702,390 | A | 12/1997 | Austin et al. | | 5,356,408 | A | 10/1994 | Rydell | 5,707,369 | A | 1/1998 | Vaitekunas et al. | | 5,366,477 | Α | | LeMarie, Ill et al. | 5,709,680 | | 1/1998 | Yates et al. | | 5,383,897 | | | Wholey | 5,716,366 | | 2/1998 | | | 5,389,098 | | | Tsuruta et al. | 5,720,744 | | | Eggleston et al. | | 5,389,104 | | | Hahnen et al. | 5,727,428 | | | LeMaire, Ill et al. | | 5,391,166 | | 2/1995 | | 5,735,848 | | | Yates et al. | | 5,391,183 | | | Janzen et al. | 5,743,906 | | | Parins et al. | | 5,403,312 | | | Yates et al. | 5,755,717 | | | Yates et al. | | 5,411,519 | | | Tovey et al. | 5,766,130 | | | Selmonosky | | | | | • | | | | • | | 5,411,520 | | | Nash et al. | 5,766,166 | | | Hooven | | 5,413,571 | | | Katsaros et al. | 5,766,170 | | | Eggers | | 5,415,657 | | | Taymor-Luria | 5,769,849 | | | Eggers | | 5,422,567 | | | Matsunaga | 5,776,128 | | | Eggers | | 5,423,810 | | | Goble et al. | 5,776,130 | | | Buysse et al. | | 5,425,739 | A | 6/1995 | | 5,779,701 | A | | McBrayer et al. | | 5,429,616 | A | 7/1995 | Schaffer | 5,792,137 | Α | 8/1998 | Carr et al. | | 5,431,674 | A | 7/1995 | Basile et al. | 5,792,177 | A | 8/1998 | Kaseda | | 5,437,292 | A | 8/1995 | Kipshidze et al. | 5,797,938 | A | 8/1998 | Paraschac et al. | | 5,438,302 | A | 8/1995 | Goble | 5,797,958 | A | 8/1998 | Yoon | | 5,441,517 | A | 8/1995 | Kensey et al. | 5,800,449 | A | 9/1998 | Wales | | 5,443,463 | | 8/1995 | Stern et al. | 5,810,808 | | 9/1998 | Eggers | | 5,443,464 | | | Russell et al. | 5,810,811 | | | Yates et al. | | 5,443,480 | | | Jacobs et al. | 5,814,043 | | | Shapeton | | 5,445,638 | | | Rydell et al. | 5,817,093 | | | Williamson, IV et al. | | 5,445,658 | | | Durrfeld et al. | 5,820,630 | | 10/1998 | | | | | | Goble et al. | 5,820,030 | | | Buysse et al. | | 5,451,224 | | | | | | | • | | 5,456,684 | | | Schmidt et al. | 5,827,279 | | | Hughett et al. | | 5,458,598 | | | Feinberg et al. | 5,827,281 | | 10/1998 | | | 5,460,629 | | | Shlain et al. | 5,833,690 | | | Yates et al. | | 5,462,546 | | 10/1995 | | 5,843,080 | | | Fleenor et al. | | 5,472,443 | | | Cordis et al. | 5,849,022 | | 12/1998 | | | 5,478,351 | | | Meade et al. | 5,853,412 | | | Mayenberger | | 5,484,436 | A | 1/1996 | Eggers et al. | 5,876,401 | A | 3/1999 | Schulze et al. | | | | | | | | | | # US 7,207,990 B2 Page 3 | 7 001 141 A | | | | | | | |---|--|--|---|---|---
---| | 5,891,141 A | 4/1999 | | 6,425,896 | В1 | 7/2002 | Baltschun et al. | | 5,891,142 A | 4/1999 | Eggers et al. | 6,440,144 | B1 | 8/2002 | Bacher | | 5,893,863 A | 4/1999 | | 6,443,970 | В1 | 9/2002 | Schulze et al. | | 5,893,875 A | | O'Connor et al. | 6,451,018 | | | Lands et al. | | 5,902,301 A | 5/1999 | | 6,458,128 | | | Schulze | | | | _ | | | | | | 5,906,630 A | | Anderhub et al. | 6,458,130 | | | Frazier et al. | | 5,908,420 A | 6/1999 | Parins et al. | 6,464,702 | B2 | 10/2002 | Schulze et al. | | 5,913,874 A | 6/1999 | Berns et al. | 6,464,704 | B2 | 10/2002 | Schmaltz et al. | | 5,921,984 A | 7/1999 | Sutcu et al. | 6,511,480 | | 1/2003 | Tetzlaff et al. | | 5,935,126 A | 8/1999 | | 6,585,735 | | | Frazier et al. | | | | | | | | | | 5,944,718 A | | Dafforn et al. | 6,602,252 | | 8/2003 | Mollenauer | | 5,951,549 A | 9/1999 | Richardson et al. | 6,620,161 | B2 | 9/2003 | Schulze et al. | | 5,954,720 A | 9/1999 | Wilson et al. | 6,626,901 | B1 | 9/2003 | Treat et al. | | 5,961,514 A | 10/1999 | Long et al. | 6,652,521 | B2 | 11/2003 | Schulze | | 5,976,132 A | 11/1999 | | 6,660,072 | | 12/2003 | | | | 11/1999 | | | | 1/2004 | Strul | | 5,984,939 A | | | 6,682,527 | | | | | 5,989,277 A | | LeMaire, lll et al. | 6,682,528 | | | Frazier et al. | | 6,004,335 A | 12/1999 | Vaitekunas et al. | 6,695,840 | B2 | 2/2004 | Schulze | | 6,010,516 A | 1/2000 | Hulka | 6,726,686 | B2 | 4/2004 | Buysse et al. | | 6,024,741 A | 2/2000 | Williamson et al. | 6,733,498 | | | Paton et al. | | 6,024,744 A | | Kese et al. | 6,743,229 | | 6/2004 | | | | | | | | | • | | 6,033,399 A | 3/2000 | | 6,770,072 | | 8/2004 | Truckai et al. | | 6,039,733 A | 3/2000 | Buysse et al. | D496,997 | | | Dycus et al. | | 6,041,679 A | 3/2000 | Slater et al. | D499,181 | S | 11/2004 | Dycus et al. | | 6,050,996 A | 4/2000 | Schmaltz et al. | 6,860,880 | B2 | 3/2005 | Treat et al. | | 6,053,914 A | | Eggers et al. | 6,926,716 | | 8/2005 | Baker et al. | | | | | , , | | 8/2005 | | | 6,053,933 A | | Balazs et al. | 6,929,644 | | | Truckai et al. | | D424,694 S | | Tetzlaff et al. | 6,942,662 | | 9/2005 | Goble et al. | | D425,201 S | 5/2000 | Tetzlaff et al. | 6,960,210 | B2 | 11/2005 | Lands et al. | | RE36,795 E | 7/2000 | Rvdell | 2002/0013583 | A1 | 1/2002 | Camran et al. | | 6,083,223 A | 7/2000 | • | 2002/0099372 | | 7/2002 | Schulze et al. | | 6,086,586 A | | | | | | | | | | Hooven | 2002/0107517 | | | Witt et al. | | 6,090,107 A | | Borgmeier et al. | 2002/0111624 | | | Witt et al. | | 6,096,037 A | 8/2000 | Mulier et al. | 2002/0188294 | A1 | 12/2002 | Couture et al. | | 6,099,550 A | 8/2000 | Yoon | 2003/0014052 | A1 | 1/2003 | Buysse et al. | | 6,102,909 A | 8/2000 | Chen et al. | 2003/0014053 | A1 | | Nguyen et al. | | 6,110,171 A | 8/2000 | | 2003/0018331 | | | Dycus et al. | | , , | | | | | | • | | 6,113,596 A | | Hooven et al. | 2003/0018332 | | 1/2003 | | | 6,113,598 A | 9/2000 | | 2003/0032956 | ΑI | | Lands et al. | | H1904 H | 10/2000 | Yates et al. | 2003/0069571 | A1 | 4/2003 | Treat et al. | | 6,126,658 A | 10/2000 | Baker | 2003/0078578 | A1 | 4/2003 | Truckai Csaba et al. | | 6,152,923 A | 11/2000 | Rvan | 2003/0109875 | A 1 | 6/2003 | Tetzlaff et al. | | 6,174,309 B1 | | Wrublewski et al. | 2003/0139741 | | 7/2003 | Goble et al. | | | | | | | | | | 6,179,834 B1 | | Buysse et al. | 2003/0139742 | | 7/2003 | Wampler et al. | | 6,179,837 B1 | 1/2001 | Hooven | 2003/0158549 | A1 | 8/2003 | Swanson | | 6,183,467 B1 | 2/2001 | Shapeton et al. | 2003/0181910 | A 1 | 0/2002 | | | 6,187,003 B1 | 2/2001 | | 2003/0101710 | Δ 1 | 9/2003 | Dycus et al. | | | | _ * . | | | | | | | 2/2001 | Buysse et al. | 2003/0199869 | A1 | 10/2003 | Johnson et al. | | 6,190,386 B1 | 2/2001
2/2001 | Buysse et al.
Rydell | 2003/0199869
2003/0216732 | A1
A1 | 10/2003
11/2003 | Johnson et al.
Truckai et al. | | 6,190,386 B1
6,193,718 B1 | 2/2001
2/2001
2/2001 | Buysse et al.
Rydell
Kortenbach et al. | 2003/0199869
2003/0216732
2003/0220637 | A1
A1
A1 | 10/2003
11/2003
11/2003 | Johnson et al.
Truckai et al.
Truckai et al. | | 6,190,386 B1
6,193,718 B1
6,206,877 B1 | 2/2001
2/2001
2/2001
3/2001 | Buysse et al.
Rydell
Kortenbach et al.
Kese et al. | 2003/0199869
2003/0216732
2003/0220637
2003/0229344 | A1
A1
A1
A1 | 10/2003
11/2003
11/2003
12/2003 | Johnson et al.
Truckai et al.
Truckai et al.
Dycus et al | | 6,190,386 B1
6,193,718 B1
6,206,877 B1
6,224,593 B1 | 2/2001
2/2001
2/2001
3/2001
5/2001 | Buysse et al.
Rydell
Kortenbach et al.
Kese et al.
Ryan et al. | 2003/0199869
2003/0216732
2003/0220637
2003/0229344
2003/0236325 | A1
A1
A1
A1
A1 | 10/2003
11/2003
11/2003
12/2003
12/2003 | Johnson et al.
Truckai et al.
Truckai et al.
Dycus et al
Bonora | | 6,190,386 B1
6,193,718 B1
6,206,877 B1 | 2/2001
2/2001
2/2001
3/2001 | Buysse et al.
Rydell
Kortenbach et al.
Kese et al.
Ryan et al. | 2003/0199869
2003/0216732
2003/0220637
2003/0229344 | A1
A1
A1
A1
A1 | 10/2003
11/2003
11/2003
12/2003 | Johnson et al.
Truckai et al.
Truckai et al.
Dycus et al
Bonora | | 6,190,386 B1
6,193,718 B1
6,206,877 B1
6,224,593 B1 | 2/2001
2/2001
2/2001
3/2001
5/2001 | Buysse et al.
Rydell
Kortenbach et al.
Kese et al.
Ryan et al. | 2003/0199869
2003/0216732
2003/0220637
2003/0229344
2003/0236325 | A1
A1
A1
A1
A1
A1 | 10/2003
11/2003
11/2003
12/2003
12/2003 | Johnson et al.
Truckai et al.
Truckai et al.
Dycus et al
Bonora | | 6,190,386 B1
6,193,718 B1
6,206,877 B1
6,224,593 B1
6,228,080 B1
6,228,083 B1 | 2/2001
2/2001
2/2001
3/2001
5/2001
5/2001 | Buysse et al. Rydell Kortenbach et al. Kese et al. Ryan et al. Gines Lands et al. | 2003/0199869
2003/0216732
2003/0220637
2003/0229344
2003/0236325
2003/0236326
2004/0030330 | A1
A1
A1
A1
A1
A1 | 10/2003
11/2003
11/2003
12/2003
12/2003
12/2003
2/2004 | Johnson et al. Truckai et al. Truckai et al. Dycus et al Bonora Bonora Brassell et al. | | 6,190,386 B1
6,193,718 B1
6,206,877 B1
6,224,593 B1
6,228,080 B1
6,228,083 B1
6,267,761 B1 | 2/2001
2/2001
2/2001
3/2001
5/2001
5/2001
7/2001 | Buysse et al. Rydell Kortenbach et al. Kese et al. Ryan et al. Gines Lands et al. Ryan | 2003/0199869
2003/0216732
2003/0220637
2003/0229344
2003/0236325
2003/0236326
2004/0030330
2004/0030332 | A1
A1
A1
A1
A1
A1
A1 | 10/2003
11/2003
11/2003
12/2003
12/2003
12/2004
2/2004 | Johnson et al. Truckai et al. Truckai et al. Dycus et al Bonora Bonora Brassell et al. Knowlton et al. | | 6,190,386 B1
6,193,718 B1
6,206,877 B1
6,224,593 B1
6,228,080 B1
6,228,083 B1
6,267,761 B1
6,270,508 B1 | 2/2001
2/2001
2/2001
3/2001
5/2001
5/2001
5/2001
7/2001
8/2001 | Buysse et al. Rydell Kortenbach et al. Kese et al. Ryan et al. Gines Lands et al. Ryan Klieman et al. | 2003/0199869
2003/0216732
2003/0220637
2003/0229344
2003/0236325
2003/0236326
2004/0030330
2004/0030332
2004/0049185 | A1
A1
A1
A1
A1
A1
A1
A1 | 10/2003
11/2003
11/2003
12/2003
12/2003
12/2003
2/2004
2/2004
3/2004 | Johnson et al. Truckai et al. Truckai et al. Dycus et al Bonora Bonora Brassell et al. Knowlton et al. Latterell et al. | | 6,190,386 B1
6,193,718 B1
6,206,877 B1
6,224,593 B1
6,228,080 B1
6,228,083 B1
6,267,761 B1
6,270,508 B1
6,273,887 B1 | 2/2001
2/2001
2/2001
3/2001
5/2001
5/2001
5/2001
7/2001
8/2001 | Buysse et al. Rydell Kortenbach et al. Kese et al. Ryan et al. Gines Lands et al. Ryan Klieman et al. Yamauchi et al. | 2003/0199869
2003/0216732
2003/0220637
2003/0229344
2003/0236325
2003/0236326
2004/0030330
2004/0030332
2004/0049185
2004/0082952 | A1
A1
A1
A1
A1
A1
A1
A1
A1 | 10/2003
11/2003
11/2003
12/2003
12/2003
12/2003
2/2004
2/2004
3/2004
4/2004 | Johnson et al. Truckai et al. Truckai et al. Dycus et al Bonora Bonora Brassell et al. Knowlton et al. Latterell et al. Dycus et al. | | 6,190,386 B1
6,193,718 B1
6,206,877 B1
6,224,593 B1
6,228,080 B1
6,228,083 B1
6,267,761 B1
6,270,508 B1
6,273,887 B1
6,277,117 B1 | 2/2001
2/2001
2/2001
3/2001
5/2001
5/2001
5/2001
7/2001
8/2001 | Buysse et al. Rydell Kortenbach et al. Kese et al. Ryan et al. Gines Lands et al. Ryan Klieman et al. | 2003/0199869
2003/0216732
2003/0220637
2003/0229344
2003/0236325
2003/0236326
2004/0030330
2004/0030332
2004/0049185 | A1
A1
A1
A1
A1
A1
A1
A1
A1 | 10/2003
11/2003
11/2003
12/2003
12/2003
12/2003
2/2004
2/2004
3/2004
4/2004
5/2004 | Johnson et al. Truckai et al. Truckai et al. Dycus et al Bonora Bonora Brassell et al. Knowlton et al. Latterell et al. Dycus et al. Dycus et al. | | 6,190,386 B1
6,193,718 B1
6,206,877 B1
6,224,593 B1
6,228,080 B1
6,228,083 B1
6,267,761 B1
6,270,508 B1
6,273,887 B1 | 2/2001
2/2001
2/2001
3/2001
5/2001
5/2001
5/2001
7/2001
8/2001
8/2001 | Buysse et al.
Rydell Kortenbach et al. Kese et al. Ryan et al. Gines Lands et al. Ryan Klieman et al. Yamauchi et al. | 2003/0199869
2003/0216732
2003/0220637
2003/0229344
2003/0236325
2003/0236326
2004/0030330
2004/0030332
2004/0049185
2004/0082952 | A1
A1
A1
A1
A1
A1
A1
A1 | 10/2003
11/2003
11/2003
12/2003
12/2003
12/2003
2/2004
2/2004
3/2004
4/2004 | Johnson et al. Truckai et al. Truckai et al. Dycus et al Bonora Bonora Brassell et al. Knowlton et al. Latterell et al. Dycus et al. Dycus et al. | | 6,190,386 B1
6,193,718 B1
6,206,877 B1
6,224,593 B1
6,228,080 B1
6,228,083 B1
6,267,761 B1
6,270,508 B1
6,273,887 B1
6,277,117 B1
6,280,458 B1 | 2/2001
2/2001
2/2001
3/2001
5/2001
5/2001
5/2001
7/2001
8/2001
8/2001
8/2001 | Buysse et al. Rydell Kortenbach et al. Kese et al. Ryan et al. Gines Lands et al. Ryan Klieman et al. Yamauchi et al. Tetzlaff et al. Boche et al. | 2003/0199869
2003/0216732
2003/0220637
2003/0229344
2003/0236325
2003/0236326
2004/0030330
2004/0030332
2004/0049185
2004/0082952
2004/0087943
2004/0115296 | A1
A1
A1
A1
A1
A1
A1
A1
A1
A1 | 10/2003
11/2003
11/2003
12/2003
12/2003
12/2003
2/2004
2/2004
3/2004
4/2004
5/2004
6/2004 | Johnson et al. Truckai et al. Truckai et al. Dycus et al Bonora Bonora Brassell et al. Knowlton et al. Latterell et al. Dycus et al. Dycus et al. Dycus et al. Duffin | | 6,190,386 B1
6,193,718 B1
6,206,877 B1
6,224,593 B1
6,228,080 B1
6,228,083 B1
6,267,761 B1
6,270,508 B1
6,273,887 B1
6,277,117 B1
6,280,458 B1
6,283,961 B1 | 2/2001
2/2001
2/2001
3/2001
5/2001
5/2001
5/2001
7/2001
8/2001
8/2001
8/2001
9/2001 | Buysse et al. Rydell Kortenbach et al. Kese et al. Ryan et al. Gines Lands et al. Ryan Klieman et al. Yamauchi et al. Tetzlaff et al. Boche et al. Underwood et al. | 2003/0199869
2003/0216732
2003/0220637
2003/0229344
2003/0236325
2003/0236326
2004/030330
2004/0030332
2004/0049185
2004/0082952
2004/0087943
2004/0115296
2004/0116924 | A1
A1
A1
A1
A1
A1
A1
A1
A1
A1 | 10/2003
11/2003
11/2003
12/2003
12/2003
12/2003
2/2004
2/2004
3/2004
4/2004
5/2004
6/2004 | Johnson et al. Truckai et al. Truckai et al. Dycus et al Bonora Bonora Brassell et al. Knowlton et al. Latterell et al. Dycus et al. Dycus et al. Duffin Dycus et al. | | 6,190,386 B1
6,193,718 B1
6,206,877 B1
6,224,593 B1
6,228,080 B1
6,228,083 B1
6,267,761 B1
6,270,508 B1
6,273,887 B1
6,277,117 B1
6,280,458 B1
6,283,961 B1
D449,886 S | 2/2001
2/2001
2/2001
3/2001
5/2001
5/2001
5/2001
7/2001
8/2001
8/2001
8/2001
9/2001
10/2001 | Buysse et al. Rydell Kortenbach et al. Kese et al. Ryan et al. Gines Lands et al. Ryan Klieman et al. Yamauchi et al. Tetzlaff et al. Boche et al. Underwood et al. Tetzlaff et al. | 2003/0199869
2003/0216732
2003/0220637
2003/0229344
2003/0236325
2003/0236326
2004/0030330
2004/0030332
2004/0049185
2004/0082952
2004/0087943
2004/0115296
2004/0116924
2004/0116979 | Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al | 10/2003
11/2003
11/2003
12/2003
12/2003
12/2003
2/2004
2/2004
3/2004
4/2004
5/2004
6/2004
6/2004
6/2004 | Johnson et al. Truckai et al. Truckai et al. Dycus et al Bonora Bonora Brassell et al. Knowlton et al. Latterell et al. Dycus et al. Dycus et al. Duffin Dycus et al. Truckai et al. | | 6,190,386 B1
6,193,718 B1
6,206,877 B1
6,224,593 B1
6,228,080 B1
6,228,083 B1
6,267,761 B1
6,270,508 B1
6,273,887 B1
6,277,117 B1
6,280,458 B1
6,283,961 B1
D449,886 S
6,322,561 B1 | 2/2001
2/2001
2/2001
3/2001
5/2001
5/2001
5/2001
7/2001
8/2001
8/2001
8/2001
9/2001
10/2001
11/2001 | Buysse et al. Rydell Kortenbach et al. Kese et al. Ryan et al. Gines Lands et al. Ryan Klieman et al. Yamauchi et al. Tetzlaff et al. Boche et al. Underwood et al. Tetzlaff et al. Eggers et al. | 2003/0199869
2003/0216732
2003/0220637
2003/0229344
2003/0236325
2003/0236326
2004/0030330
2004/0030332
2004/049185
2004/087943
2004/0115296
2004/0116924
2004/0116979
2004/0122423 | Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al | 10/2003
11/2003
11/2003
12/2003
12/2003
12/2003
2/2004
2/2004
4/2004
4/2004
6/2004
6/2004
6/2004
6/2004 | Johnson et al. Truckai et al. Truckai et al. Dycus et al Bonora Bonora Brassell et al. Knowlton et al. Latterell et al. Dycus et al. Dycus et al. Duffin Dycus et al. Truckai et al. Dycus et al. Dycus et al. | | 6,190,386 B1
6,193,718 B1
6,206,877 B1
6,224,593 B1
6,228,080 B1
6,228,083 B1
6,267,761 B1
6,270,508 B1
6,273,887 B1
6,277,117 B1
6,280,458 B1
6,283,961 B1
D449,886 S
6,322,561 B1
6,334,860 B1 | 2/2001
2/2001
2/2001
3/2001
5/2001
5/2001
5/2001
7/2001
8/2001
8/2001
8/2001
9/2001
10/2001
11/2001
1/2002 | Buysse et al. Rydell Kortenbach et al. Kese et al. Ryan et al. Gines Lands et al. Ryan Klieman et al. Yamauchi et al. Tetzlaff et al. Boche et al. Underwood et al. Tetzlaff et al. Eggers et al. Dorn | 2003/0199869
2003/0216732
2003/0220637
2003/0229344
2003/0236325
2003/0236326
2004/003033
2004/0030332
2004/004/034082952
2004/0082952
2004/0115296
2004/0116924
2004/0116979
2004/0122423
2004/0143263 | Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al | 10/2003
11/2003
11/2003
12/2003
12/2003
2/2004
2/2004
3/2004
4/2004
5/2004
6/2004
6/2004
6/2004
6/2004
7/2004 | Johnson et al. Truckai et al. Truckai et al. Dycus et al Bonora Bonora Brassell et al. Knowlton et al. Latterell et al. Dycus et al. Dycus et al. Dycus et al. Duffin Dycus et al. Truckai et al. Dycus et al. Schechter et al. | | 6,190,386 B1
6,193,718 B1
6,206,877 B1
6,224,593 B1
6,228,080 B1
6,228,083 B1
6,267,761 B1
6,270,508 B1
6,277,317 B1
6,280,458 B1
6,283,961 B1
D449,886 S
6,322,561 B1
6,334,860 B1
6,334,861 B1 | 2/2001
2/2001
2/2001
3/2001
5/2001
5/2001
5/2001
8/2001
8/2001
8/2001
8/2001
9/2001
10/2001
11/2001
1/2002
1/2002 | Buysse et al. Rydell Kortenbach et al. Kese et al. Ryan et al. Gines Lands et al. Ryan Klieman et al. Yamauchi et al. Tetzlaff et al. Boche et al. Underwood et al. Tetzlaff et al. Eggers et al. Dorn Chandler et al. | 2003/0199869
2003/0216732
2003/0220637
2003/0229344
2003/0236325
2003/0236326
2004/0030330
2004/0030332
2004/049185
2004/087943
2004/0115296
2004/0116924
2004/0116979
2004/0122423 | Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al | 10/2003
11/2003
11/2003
12/2003
12/2003
2/2004
2/2004
3/2004
4/2004
6/2004
6/2004
6/2004
6/2004
7/2004
7/2004 | Johnson et al. Truckai et al. Truckai et al. Dycus et al Bonora Bonora Brassell et al. Knowlton et al. Latterell et al. Dycus et al. Dycus et al. Dycus et al. Truckai et al. Truckai et al. Dycus et al. Buysse et al. Buysse et al. | | 6,190,386 B1
6,193,718 B1
6,206,877 B1
6,224,593 B1
6,228,080 B1
6,228,083 B1
6,267,761 B1
6,270,508 B1
6,273,887 B1
6,277,117 B1
6,280,458 B1
6,283,961 B1
D449,886 S
6,322,561 B1
6,334,860 B1 | 2/2001
2/2001
2/2001
3/2001
5/2001
5/2001
5/2001
8/2001
8/2001
8/2001
8/2001
9/2001
10/2001
11/2001
1/2002
1/2002 | Buysse et al. Rydell Kortenbach et al. Kese et al. Ryan et al. Gines Lands et al. Ryan Klieman et al. Yamauchi et al. Tetzlaff et al. Boche et al. Underwood et al. Tetzlaff et al. Eggers et al. Dorn | 2003/0199869
2003/0216732
2003/0220637
2003/0229344
2003/0236325
2003/0236326
2004/003033
2004/0030332
2004/004/034082952
2004/0082952
2004/0115296
2004/0116924
2004/0116979
2004/0122423
2004/0143263 | Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
A | 10/2003
11/2003
11/2003
12/2003
12/2003
2/2004
2/2004
3/2004
4/2004
5/2004
6/2004
6/2004
6/2004
6/2004
7/2004 | Johnson et al. Truckai et al. Truckai et al. Dycus et al Bonora Bonora Brassell et al. Knowlton et al. Latterell et al. Dycus et al. Dycus et al. Dycus et al. Duffin Dycus et al. Truckai et al. Dycus et al. Schechter et al. | | 6,190,386 B1
6,193,718 B1
6,206,877 B1
6,224,593 B1
6,228,080 B1
6,228,083 B1
6,270,508 B1
6,273,887 B1
6,277,117 B1
6,280,458 B1
6,283,961 B1
D449,886 S
6,322,561 B1
6,334,860 B1
6,334,861 B1
6,350,264 B1 | 2/2001
2/2001
2/2001
3/2001
5/2001
5/2001
5/2001
7/2001
8/2001
8/2001
8/2001
8/2001
10/2001
11/2001
1/2002
1/2002
2/2002 | Buysse et al. Rydell Kortenbach et al. Kese et al. Ryan et al. Gines Lands et al. Ryan Klieman et al. Yamauchi et al. Tetzlaff et al. Boche et al. Underwood et al. Tetzlaff et al. Eggers et al. Dorn Chandler et al. Hooven | 2003/0199869
2003/0216732
2003/0220637
2003/0229344
2003/0236325
2003/0236326
2004/0030330
2004/0030332
2004/0049185
2004/0087943
2004/0115296
2004/0116924
2004/0116979
2004/0122423
2004/0143263
2004/0147925
2004/0162557 | Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
A | 10/2003
11/2003
11/2003
12/2003
12/2003
2/2004
2/2004
3/2004
4/2004
6/2004
6/2004
6/2004
6/2004
7/2004
7/2004
8/2004 | Johnson et
al. Truckai et al. Truckai et al. Dycus et al Bonora Bonora Brassell et al. Knowlton et al. Latterell et al. Dycus et al. Dycus et al. Dycus et al. Truckai et al. Truckai et al. Dycus et al. Buysse et al. Buysse et al. | | 6,190,386 B1
6,193,718 B1
6,206,877 B1
6,224,593 B1
6,228,080 B1
6,228,083 B1
6,270,508 B1
6,273,887 B1
6,277,117 B1
6,280,458 B1
6,283,961 B1
D449,886 S
6,322,561 B1
6,334,860 B1
6,334,861 B1
6,350,264 B1
6,350,264 B1
6,352,536 B1 | 2/2001
2/2001
2/2001
3/2001
5/2001
5/2001
5/2001
8/2001
8/2001
8/2001
8/2001
10/2001
11/2001
1/2002
1/2002
2/2002
3/2002 | Buysse et al. Rydell Kortenbach et al. Kese et al. Ryan et al. Gines Lands et al. Ryan Klieman et al. Yamauchi et al. Tetzlaff et al. Boche et al. Underwood et al. Tetzlaff et al. Eggers et al. Dorn Chandler et al. Hooven Buysse et al. | 2003/0199869
2003/0216732
2003/0220637
2003/0229344
2003/0236325
2003/0236326
2004/0030330
2004/0030332
2004/0049185
2004/0087943
2004/0115296
2004/0116924
2004/0116979
2004/0122423
2004/0143263
2004/0147925
2004/0162557
2004/0176762 | Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
A | 10/2003
11/2003
11/2003
12/2003
12/2003
2/2004
2/2004
3/2004
4/2004
6/2004
6/2004
6/2004
6/2004
7/2004
7/2004
8/2004
9/2004 | Johnson et al. Truckai et al. Truckai et al. Dycus et al Bonora Bonora Brassell et al. Knowlton et al. Latterell et al. Dycus et al. Dycus et al. Dycus et al. Truckai et al. Truckai et al. Schechter et al. Buysse et al. Tetzlaff et al. Lawes et al. | | 6,190,386 B1
6,193,718 B1
6,206,877 B1
6,224,593 B1
6,228,080 B1
6,228,083 B1
6,267,761 B1
6,270,508 B1
6,273,887 B1
6,277,117 B1
6,280,458 B1
6,283,961 B1
D449,886 S
6,322,561 B1
6,334,860 B1
6,334,860 B1
6,350,264 B1
6,350,264 B1
6,352,536 B1
D457,958 S | 2/2001
2/2001
2/2001
3/2001
5/2001
5/2001
5/2001
8/2001
8/2001
8/2001
8/2001
10/2001
11/2001
1/2002
1/2002
2/2002
3/2002
5/2002 | Buysse et al. Rydell Kortenbach et al. Kese et al. Ryan et al. Gines Lands et al. Ryan Klieman et al. Yamauchi et al. Tetzlaff et al. Boche et al. Underwood et al. Tetzlaff et al. Eggers et al. Dorn Chandler et al. Hooven Buysse et al. Dycus et al. | 2003/0199869
2003/0216732
2003/0220637
2003/0229344
2003/0236325
2003/0236326
2004/0030330
2004/0030332
2004/0049185
2004/0087943
2004/0115296
2004/0116924
2004/0116979
2004/0122423
2004/0143263
2004/0147925
2004/0162557
2004/0176762
2004/0176762 | Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
A | 10/2003
11/2003
11/2003
12/2003
12/2003
12/2004
2/2004
3/2004
4/2004
5/2004
6/2004
6/2004
6/2004
6/2004
7/2004
8/2004
9/2004
9/2004 | Johnson et al. Truckai et al. Truckai et al. Dycus et al Bonora Bonora Brassell et al. Knowlton et al. Latterell et al. Dycus et al. Dycus et al. Dycus et al. Truckai et al. Truckai et al. Dycus et al. Truckai et al. Buysse et al. Tetzlaff et al. Lawes et al. Sarter et al. | | 6,190,386 B1
6,193,718 B1
6,206,877 B1
6,224,593 B1
6,228,080 B1
6,228,083 B1
6,267,761 B1
6,270,508 B1
6,273,887 B1
6,277,117 B1
6,280,458 B1
6,283,961 B1
D449,886 S
6,322,561 B1
6,334,860 B1
6,334,860 B1
6,350,264 B1
6,350,264 B1
6,352,536 B1
D457,958 S | 2/2001
2/2001
2/2001
3/2001
5/2001
5/2001
5/2001
8/2001
8/2001
8/2001
8/2001
10/2001
11/2002
1/2002
2/2002
3/2002
5/2002 | Buysse et al. Rydell Kortenbach et al. Kese et al. Ryan et al. Gines Lands et al. Ryan Klieman et al. Yamauchi et al. Tetzlaff et al. Boche et al. Underwood et al. Tetzlaff et al. Eggers et al. Dorn Chandler et al. Hooven Buysse et al. Dycus et al. Tetzlaff et al. | 2003/0199869
2003/0216732
2003/0220637
2003/0229344
2003/0236325
2003/0236326
2004/0030330
2004/0030332
2004/0049185
2004/0082952
2004/0115296
2004/0116924
2004/0116979
2004/01122423
2004/0143263
2004/0143263
2004/0147925
2004/0162557
2004/0176762
2004/0193153
2004/0225288 | Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
A | 10/2003
11/2003
11/2003
12/2003
12/2003
2/2004
2/2004
3/2004
4/2004
5/2004
6/2004
6/2004
6/2004
7/2004
7/2004
8/2004
9/2004
9/2004
11/2004 | Johnson et al. Truckai et al. Truckai et al. Dycus et al Bonora Bonora Brassell et al. Knowlton et al. Latterell et al. Dycus et al. Dycus et al. Dycus et al. Truckai et al. Truckai et al. Dycus et al. Truckai et al. Buysse et al. Tetzlaff et al. Lawes et al. Sarter et al. Buysse et al. Buysse et al. | | 6,190,386 B1 6,193,718 B1 6,206,877 B1 6,224,593 B1 6,228,080 B1 6,228,083 B1 6,270,508 B1 6,273,887 B1 6,277,117 B1 6,280,458 B1 6,283,961 B1 D449,886 S 6,322,561 B1 6,334,860 B1 6,334,860 B1 6,350,264 B1 6,350,264 B1 6,352,536 B1 D457,958 S D457,959 S 6,387,094 B1 | 2/2001
2/2001
2/2001
3/2001
5/2001
5/2001
5/2001
7/2001
8/2001
8/2001
8/2001
8/2001
10/2001
11/2001
1/2002
2/2002
3/2002
5/2002
5/2002 | Buysse et al. Rydell Kortenbach et al. Kese et al. Ryan et al. Gines Lands et al. Ryan Klieman et al. Yamauchi et al. Tetzlaff et al. Boche et al. Underwood et al. Tetzlaff et al. Eggers et al. Dorn Chandler et al. Hooven Buysse et al. Dycus et al. Tetzlaff et al. Eitenmuller | 2003/0199869
2003/0216732
2003/0220637
2003/0229344
2003/0236325
2003/0236326
2004/0030330
2004/0030332
2004/0049185
2004/0082952
2004/0115296
2004/0116924
2004/0116979
2004/01122423
2004/0143263
2004/0143263
2004/0147925
2004/0162557
2004/0176762
2004/0193153
2004/0225288
2004/0230189 | Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
A | 10/2003
11/2003
11/2003
12/2003
12/2003
12/2004
2/2004
3/2004
4/2004
5/2004
6/2004
6/2004
6/2004
6/2004
7/2004
8/2004
9/2004
9/2004
11/2004
11/2004 | Johnson et al. Truckai et al. Truckai et al. Dycus et al Bonora Bonora Brassell et al. Knowlton et al. Latterell et al. Dycus et al. Dycus et al. Dycus et al. Truckai et al. Dycus et al. Truckai et al. Dycus et al. Truckai et al. Buysse et al. Tetzlaff et al. Lawes et al. Sarter et al. Buysse et al. Keppel | | 6,190,386 B1
6,193,718 B1
6,206,877 B1
6,224,593 B1
6,228,080 B1
6,228,083 B1
6,267,761 B1
6,270,508 B1
6,273,887 B1
6,277,117 B1
6,280,458 B1
6,283,961 B1
D449,886 S
6,322,561 B1
6,334,860 B1
6,334,860 B1
6,350,264 B1
6,350,264 B1
6,352,536 B1
D457,958 S | 2/2001
2/2001
2/2001
3/2001
5/2001
5/2001
5/2001
7/2001
8/2001
8/2001
8/2001
8/2001
10/2001
11/2001
1/2002
2/2002
3/2002
5/2002
5/2002
6/2002 | Buysse et al. Rydell Kortenbach et al. Kese et al. Ryan et al. Gines Lands et al. Ryan Klieman et al. Yamauchi et al. Tetzlaff et al. Boche et al. Underwood et al. Tetzlaff et al. Eggers et al. Dorn Chandler et al. Hooven Buysse et al. Dycus et al. Tetzlaff et al. Eitenmuller Buysse et al. | 2003/0199869
2003/0216732
2003/0220637
2003/0229344
2003/0236325
2003/0236326
2004/030330
2004/0049185
2004/082952
2004/087943
2004/0115296
2004/0116924
2004/0116979
2004/01162422
2004/0143263
2004/0147925
2004/0162557
2004/0176762
2004/0193153
2004/0225288
2004/0230189
2004/0236325 | Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
A | 10/2003
11/2003
11/2003
12/2003
12/2003
2/2004
2/2004
3/2004
4/2004
5/2004
6/2004
6/2004
6/2004
7/2004
7/2004
8/2004
9/2004
9/2004
11/2004 | Johnson et al. Truckai et al. Truckai et al. Dycus et al Bonora Bonora Brassell et al. Knowlton et al. Latterell et al. Dycus et al. Dycus et al. Dycus et al. Truckai et al. Truckai et al. Dycus et al. Truckai et al. Buysse et al. Tetzlaff et al. Lawes et al. Sarter et al. Buysse et al. Buysse et al. | | 6,190,386 B1 6,193,718 B1 6,206,877 B1 6,224,593 B1 6,228,080 B1 6,228,083 B1 6,270,508 B1 6,273,887 B1 6,277,117 B1 6,280,458 B1 6,283,961 B1 D449,886 S 6,322,561 B1 6,334,860 B1 6,334,860 B1 6,350,264 B1 6,350,264 B1 6,352,536 B1 D457,958 S D457,959 S 6,387,094 B1 | 2/2001
2/2001
2/2001
3/2001
5/2001
5/2001
5/2001
7/2001
8/2001
8/2001
8/2001
8/2001
10/2001
11/2001
1/2002
2/2002
3/2002
5/2002
5/2002
6/2002 | Buysse et al. Rydell Kortenbach et al. Kese et al. Ryan et al. Gines Lands et al. Ryan Klieman et al. Yamauchi et al. Tetzlaff et al. Boche et al. Underwood et al. Tetzlaff et al. Eggers et al. Dorn Chandler et al. Hooven Buysse et al. Dycus et al. Tetzlaff et al. Eitenmuller | 2003/0199869
2003/0216732
2003/0220637
2003/0229344
2003/0236325
2003/0236326
2004/0030330
2004/0030332
2004/0049185
2004/0082952
2004/0115296
2004/0116924
2004/0116979
2004/01122423
2004/0143263
2004/0143263
2004/0147925
2004/0162557
2004/0176762
2004/0193153
2004/0225288
2004/0230189 | Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
A | 10/2003
11/2003
11/2003
12/2003
12/2003
12/2004
2/2004
2/2004
4/2004
5/2004
6/2004
6/2004
6/2004
6/2004
7/2004
7/2004
8/2004
9/2004
9/2004
11/2004
11/2004
11/2004 | Johnson et al. Truckai et al. Truckai et al. Dycus et al Bonora Bonora Brassell et al. Knowlton et al. Latterell et al. Dycus et al. Dycus et al. Dycus et al. Truckai et al.
Dycus et al. Truckai et al. Dycus et al. Truckai et al. Buysse et al. Tetzlaff et al. Lawes et al. Sarter et al. Buysse et al. Keppel | | 6,190,386 B1 6,193,718 B1 6,206,877 B1 6,224,593 B1 6,228,080 B1 6,228,083 B1 6,267,761 B1 6,270,508 B1 6,273,887 B1 6,277,117 B1 6,280,458 B1 6,283,961 B1 D449,886 S 6,322,561 B1 6,334,860 B1 6,334,861 B1 6,334,861 B1 6,350,264 B1 6,352,536 B1 D457,958 S D457,959 S 6,387,094 B1 6,398,779 B1 6,402,747 B1 | 2/2001
2/2001
2/2001
3/2001
5/2001
5/2001
5/2001
7/2001
8/2001
8/2001
8/2001
8/2001
10/2001
11/2001
1/2002
2/2002
3/2002
5/2002
5/2002
6/2002
6/2002 | Buysse et al. Rydell Kortenbach et al. Kese et al. Ryan et al. Gines Lands et al. Ryan Klieman et al. Yamauchi et al. Tetzlaff et al. Boche et al. Underwood et al. Tetzlaff et al. Eggers et al. Dorn Chandler et al. Hooven Buysse et al. Dycus et al. Tetzlaff et al. Eitenmuller Buysse et al. | 2003/0199869
2003/0216732
2003/0220637
2003/0229344
2003/0236325
2004/030330
2004/030332
2004/049185
2004/082952
2004/087943
2004/0115296
2004/0116924
2004/0116979
2004/01162423
2004/0143263
2004/0147925
2004/0162557
2004/0162557
2004/0176762
2004/0193153
2004/0230189
2004/0236325
2004/0236325
2004/0243125 | Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
A | 10/2003
11/2003
11/2003
12/2003
12/2003
12/2004
2/2004
2/2004
4/2004
6/2004
6/2004
6/2004
6/2004
7/2004
7/2004
9/2004
9/2004
11/2004
11/2004
11/2004
12/2004 | Johnson et al. Truckai et al. Truckai et al. Dycus et al Bonora Bonora Brassell et al. Knowlton et al. Latterell et al. Dycus et al. Dycus et al. Dycus et al. Truckai et al. Dycus et al. Truckai et al. Dycus et al. Schechter et al. Buysse et al. Lawes et al. Sarter et al. Buysse et al. Keppel Tetzlaff et al. Dycus et al. Veppel Tetzlaff et al. Dycus et al. | | 6,190,386 B1 6,193,718 B1 6,206,877 B1 6,224,593 B1 6,228,080 B1 6,228,083 B1 6,267,761 B1 6,270,508 B1 6,273,887 B1 6,277,117 B1 6,280,458 B1 6,283,961 B1 D449,886 S 6,322,561 B1 6,334,860 B1 6,350,264 B1 6,350,264 B1 6,352,536 B1 D457,958 S D457,959 S 6,387,094 B1 6,402,747 B1 6,402,747 B1 6,409,728 B1 | 2/2001
2/2001
2/2001
3/2001
5/2001
5/2001
5/2001
5/2001
8/2001
8/2001
8/2001
9/2001
10/2001
11/2002
1/2002
2/2002
3/2002
5/2002
5/2002
6/2002
6/2002 | Buysse et al. Rydell Kortenbach et al. Kese et al. Ryan et al. Gines Lands et al. Ryan Klieman et al. Yamauchi et al. Tetzlaff et al. Boche et al. Underwood et al. Tetzlaff et al. Eggers et al. Dorn Chandler et al. Hooven Buysse et al. Dycus et al. Tetzlaff et al. Eitenmuller Buysse et al. Lindemann et al. Lindemann et al. Ehr et al. | 2003/0199869
2003/0216732
2003/0220637
2003/0229344
2003/0236325
2004/030330
2004/030332
2004/049185
2004/082952
2004/087943
2004/0115296
2004/0116979
2004/0116243
2004/0116257
2004/0147925
2004/0147925
2004/0162557
2004/0176762
2004/0193153
2004/0230189
2004/0236325
2004/0243125
2004/0249371 | Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
A | 10/2003
11/2003
11/2003
12/2003
12/2003
12/2003
2/2004
2/2004
4/2004
6/2004
6/2004
6/2004
6/2004
6/2004
7/2004
8/2004
9/2004
11/2004
11/2004
11/2004
12/2004 | Johnson et al. Truckai et al. Truckai et al. Dycus et al Bonora Bonora Brassell et al. Knowlton et al. Latterell et al. Dycus et al. Dycus et al. Dycus et al. Truckai et al. Dycus et al. Truckai et al. Buyses et al. Schechter et al. Buysse et al. Tetzlaff et al. Lawes et al. Sarter et al. Buysse et al. Keppel Tetzlaff et al. Dycus et al. Dycus et al. Dycus et al. Systematic et al. Dycus | | 6,190,386 B1 6,193,718 B1 6,206,877 B1 6,224,593 B1 6,228,080 B1 6,228,083 B1 6,267,761 B1 6,270,508 B1 6,273,387 B1 6,277,117 B1 6,280,458 B1 6,283,961 B1 D449,886 S 6,322,561 B1 6,334,860 B1 6,334,861 B1 6,350,264 B1 6,350,264 B1 6,350,264 B1 6,350,264 B1 6,350,264 B1 6,350,264 B1 6,350,795 B1 6,402,747 B1 6,402,747 B1 6,409,728 B1 H2037 H | 2/2001
2/2001
2/2001
3/2001
5/2001
5/2001
5/2001
5/2001
8/2001
8/2001
8/2001
8/2001
10/2001
11/2002
1/2002
2/2002
3/2002
5/2002
5/2002
6/2002
6/2002
6/2002
7/2002 | Buysse et al. Rydell Kortenbach et al. Kese et al. Ryan et al. Gines Lands et al. Ryan Klieman et al. Yamauchi et al. Tetzlaff et al. Boche et al. Underwood et al. Tetzlaff et al. Eggers et al. Dorn Chandler et al. Hooven Buysse et al. Dycus et al. Tetzlaff et al. Eitenmuller Buysse et al. Lindemann et al. Lindemann et al. Ehr et al. Yates et al. | 2003/0199869
2003/0216732
2003/0220637
2003/0229344
2003/0236325
2003/0236326
2004/030330
2004/0049185
2004/082952
2004/087943
2004/0115296
2004/0116924
2004/0116979
2004/0122423
2004/0143263
2004/0147925
2004/0162557
2004/0162557
2004/0162557
2004/0193153
2004/0230189
2004/0230189
2004/0236325
2004/0249371
2004/0249374 | Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
A | 10/2003
11/2003
11/2003
12/2003
12/2003
12/2003
2/2004
2/2004
4/2004
6/2004
6/2004
6/2004
6/2004
6/2004
7/2004
8/2004
9/2004
9/2004
11/2004
11/2004
11/2004
12/2004
12/2004 | Johnson et al. Truckai et al. Truckai et al. Truckai et al. Dycus et al Bonora Bonora Brassell et al. Knowlton et al. Latterell et al. Dycus et al. Dycus et al. Duffin Dycus et al. Truckai et al. Dycus et al. Schechter et al. Buysse et al. Tetzlaff et al. Lawes et al. Sarter et al. Buysse et al. Keppel Tetzlaff et al. Dycus et al. Dycus et al. Dycus et al. Truckai et al. Lawes et al. Lawes et al. Sarter et al. Dycus et al. Tetzlaff et al. | | 6,190,386 B1 6,193,718 B1 6,206,877 B1 6,224,593 B1 6,228,080 B1 6,228,083 B1 6,267,761 B1 6,270,508 B1 6,273,887 B1 6,277,117 B1 6,280,458 B1 6,283,961 B1 D449,886 S 6,322,561 B1 6,334,860 B1 6,350,264 B1 6,350,264 B1 6,352,536 B1 D457,958 S D457,959 S 6,387,094 B1 6,402,747 B1 6,402,747 B1 6,409,728 B1 | 2/2001
2/2001
2/2001
3/2001
5/2001
5/2001
5/2001
5/2001
8/2001
8/2001
8/2001
8/2001
10/2001
11/2002
1/2002
2/2002
3/2002
5/2002
5/2002
6/2002
6/2002
6/2002
7/2002 | Buysse et al. Rydell Kortenbach et al. Kese et al. Ryan et al. Gines Lands et al. Ryan Klieman et al. Yamauchi et al. Tetzlaff et al. Boche et al. Underwood et al. Tetzlaff et al. Eggers et al. Dorn Chandler et al. Hooven Buysse et al. Dycus et al. Tetzlaff et al. Eitenmuller Buysse et al. Lindemann et al. Lindemann et al. Ehr et al. | 2003/0199869
2003/0216732
2003/0220637
2003/0229344
2003/0236325
2004/030330
2004/030332
2004/049185
2004/082952
2004/087943
2004/0115296
2004/0116979
2004/0116243
2004/0116257
2004/0147925
2004/0147925
2004/0162557
2004/0176762
2004/0193153
2004/0230189
2004/0236325
2004/0243125
2004/0249371 | Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
A | 10/2003
11/2003
11/2003
12/2003
12/2003
12/2003
2/2004
2/2004
4/2004
6/2004
6/2004
6/2004
6/2004
6/2004
7/2004
8/2004
9/2004
9/2004
11/2004
11/2004
11/2004
12/2004
12/2004 | Johnson et al. Truckai et al. Truckai et al. Dycus et al Bonora Bonora Brassell et al. Knowlton et al. Latterell et al. Dycus et al. Dycus et al. Dycus et al. Truckai et al. Dycus et al. Truckai et al. Buyses et al. Schechter et al. Buysse et al. Tetzlaff et al. Lawes et al. Sarter et al. Buysse et al. Keppel Tetzlaff et al. Dycus et al. Dycus et al. Dycus et al. Systematic et al. Dycus | # US 7,207,990 B2 Page 4 | 2004/0254573 | A1 | 12/2004 | Dycus et al. | JР | 5-40112 | 2/1993 | |--------------|-------|---------|------------------|----|------------------------------|---------| | 2005/0004564 | A1 | 1/2005 | Wham et al. | JP | 06343644 A2 | 12/1994 | | 2005/0004568 | A1 | 1/2005 | Lawes et al. | JP | 07265328 A2 | 10/1995 | | 2005/0004570 | A1 | 1/2005 | Chapman et al. | JP | 08056955 A2 | 3/1996 | | 2005/0021025 | | | Buysse et al. | | | | | 2005/0021025 | | 1/2005 | | JP | 08252263 A2 | 10/1996 | | | | | • | JР | 09010223 A2 | 1/1997 | | 2005/0021027 | | 1/2005 | | JP | 11244298 A2 | 9/1999 | | 2005/0033278 | | | McClurken et al. | JP | 2000342599 A2 | 12/2000 | | 2005/0101951 | A1 | 5/2005 | Wham et al. | JP | 2000350732 A2 | 12/2000 | | 2005/0101952 | A1 | 5/2005 | Lands et al. | JP | | | | 2005/0107784 | A1 | 5/2005 | Moses et al. | | 2001008944 A2 | 1/2001 | | 2005/0107785 | A1 | 5/2005 | Dycus et al. | JP | 2001029356 A2 | 2/2001 | | 2005/0113818 | | 5/2005 | • | JP | 2001128990 A2 | 5/2001 | | 2005/0113819 | | | Wham et al. | RU | 4013867 | 10/1973 | | | | | | SU | 401367 | 11/1974 | | 2005/0113826 | | 5/2005 | Johnson et al. | WO | WO 92/06642 | 4/1992 | | 2005/0113827 | | | Dumbauld et al. | | | | | 2005/0113828 | A1 | 5/2005 | Shields et al. | WO | WO 94/06524 A | 4/1994 | | 2005/0119655 | A1 | 6/2005 | Moses et al. | WO | WO 94/08524 A | 4/1994 | | 2005/0149151 | A1 | 7/2005 | Orszulak et al. | WO | WO 95/02369 | 1/1995 | | 2006/0079891 | A1 | 4/2006 | Arts et al. | WO | WO 95/07662 | 3/1995 | | 2006/0161150 | | 7/2006 | | WO | WO 96/022056 | 7/1996 | | 2006/0167450 | | 7/2006 | Johnson et al. | | | | | | | | | WO | WO 96/13218 | 9/1996 | | 2006/0167452 | | | Moses et al. | WO | WO 97/00646 | 1/1997 | | 2006/0173452 | | | Buysse et al. | WO | WO 97/00647 | 1/1997 | | 2006/0189980 | A1 | 8/2006 | Johnson et al. | WO | WO 97/10764 | 3/1997 | | 2006/0189981 | A1 | 8/2006 | Dycus et al. | WO | WO 97/24073 | 7/1997 | | 2006/0190035 | A1 | 8/2006 | Hushka et al. | | | | | 2006/0217709 |
| | Couture et al. | WO | WO 97/24993 | 7/1997 | | 2006/0217769 | | | Odom et al. | WO | WO 98/27880 | 7/1998 | | 2000/0224136 | А1 | 10/2000 | Odom et al. | WO | WO 99/03407 | 1/1999 | | EO | DEIG | NI DATE | NT DOCUMENTS | WO | WO 99/03408 | 1/1999 | | гО | KEIO. | N FAIE. | NI DOCUMENTS | WO | WO 99/03409 | 1/1999 | | CA | 2104 | 123 | 2/1994 | | | | | | | | | WO | WO 99/12488 | 3/1999 | | DE | 2415 | | 10/1975 | WO | WO 99/40857 | 8/1999 | | DE | 8712 | | 3/1988 | WO | WO 99/40861 | 8/1999 | | DE | 29616 | 210 | 1/1997 | WO | WO 99/040861 | 8/1999 | | DE | 19608 | 716 | 4/1997 | WO | WO 99/51158 | 10/1999 | | DE | 19751 | 108 | 5/1999 | WO | WO 99/066850 | 12/1999 | | EP | 0364 | 216 A1 | 4/1990 | | | | | EP | | 230 A1 | 12/1992 | WO | WO 99/66850 A | 12/1999 | | EP | | 930 B1 | 5/1993 | WO | WO 00/24330 | 5/2000 | | EP | 0572 | | | WO | WO 00/24331 | 5/2000 | | | | | 12/1993 | WO | WO 00/41638 | 7/2000 | | EP | | 787 A1 | 3/1994 | WO | WO 00/53112 | 9/2000 | | EP | | 316 A1 | 11/1994 | | WO 00/33112
WO 01/17448 A | | | EP | 0624 | 348 A2 | 11/1994 | WO | | 3/2001 | | EP | 0650 | 701 A1 | 5/1995 | WO | WO 01/54604 | 8/2001 | | EP | 0694 | 290 A3 | 3/1996 | WO | WO 02/07627 | 1/2002 | | EP | 0717 | 966 A1 | 6/1996 | WO | WO 02/080783 | 10/2002 | | EP | | 437 A3 | 3/1997 | WO | WO 02/080784 | 10/2002 | | EP | | 922 A1 | 7/1998 | | | | | | | | | WO | WO 02/080785 | 10/2002 | | EP | | 209 A1 | 11/1998 | WO | WO 02/080786 | 10/2002 | | EP | | 169 A1 | 11/1998 | WO | WO 02/080793 | 10/2002 | | EP | | 046 A3 | 1/1999 | WO | WO 02/080794 | 10/2002 | | EP | 0923 | 907 A1 | 6/1999 | | | | | EP | 0986 | 990 A1 | 3/2000 | WO | WO 02/080795 | 10/2002 | | EP | 1034 | 747 A1 | 9/2000 | WO | WO 02/080796 | 10/2002 | | EP | | 748 A1 | 9/2000 | WO | WO 02/080797 | 10/2002 | | EP | | 807 A3 | 10/2000 | WO | WO 02/080798 | 10/2002 | | | | | | | | | | EP | | 746 A3 | 10/2000 | WO | WO 02/080799 | 10/2002 | | EP | | 278 A1 | 11/2000 | WO | WO 02/081170 | 10/2002 | | EP | | 719 A1 | 11/2000 | WO | WO 03/101311 | 12/2003 | | EP | 1053 | 720 A1 | 11/2000 | WO | WO 04/032777 | 4/2004 | | EP | 1055 | 399 A1 | 11/2000 | | | | | EP | | 400 A1 | 11/2000 | WO | WO 2004/032777 | 4/2004 | | EP | | 694 A1 | 3/2001 | WO | WO 04/052221 | 6/2004 | | | | | | WO | WO 2004/052221 | 6/2004 | | EP | | 944 A1 | 3/2001 | WO | WO 04/073490 | 9/2004 | | EP | | 926 A2 | 12/2001 | | | | | EP | 1330 | 991 A1 | 7/2003 | WO | WO 04/082495 | 9/2004 | | EP | 1486 | 177 A2 | 6/2004 | WO | WO 2004/073490 | 9/2004 | | EP | | 932 A1 | 5/2005 | WO | WO 2004/082495 | 9/2004 | | GB | | 430 A | 6/1989 | WO | WO 04/098383 | 11/2004 | | | | | | | | | | JP | | 068 | 9/1984 | WO | WO 2004/098383 | 11/2004 | | JР | 502 | 328 | 3/1992 | WO | WO 04/103158 | 12/2004 | | | | | | | | | WO WO 2004/103158 12/2004 #### OTHER PUBLICATIONS Sigel et al. "The Mechanism of Blood Vessel Closure by High Frequency Electrocoagulation" Surgery Gynecology & Obstetrics, Oct. 1965 pp. 823-831. Bergdahl et al. "Studies on Coagulation and the Development of an Automatic Computerized Bipolar Coagulator" J. Neurosurg, vol. 75, Jul. 1991, pp. 148-151. Kennedy et al. "High-burst-strength, feedback-controlled bipolar vessel sealing" Surgical Endoscopy (1998) 12: 876-878. Peterson et al. "Comparison of Healing Process Following Ligation with Sutures and Bipolar Vessel Sealing" Surgical Technology International (2001). Linehan et al. "A Phase 1 Study of the LigaSure Vessel Sealing System in Hepatic Surgery" Section of HPB Surger, Washington University School of Medicine, St. Louis MO, Presented at AHPBA, Feb. 2001. Johnson et al. "Evaluation of the LigaSure Vessel Sealing System in Hemorrhoidectomy" American College of Surgeons (ACS) Clinicla Congress Poster (2000). Sayfan et al. "Sutureless Closed Hemorrhoidectomy: A New Technique" Annals of Surgery vol. 234 No. 1 Jul. 2001 pp. 21-24. Heniford et al. "Initial Results with an Electrothermal Bipolar Vessel Sealer" Surgical Endoscopy (2000) 15:799-801. Heniford et al. "Initial Research and Clinical Results with an Electrothermal Bipolar Vessel Sealer" Oct. 1999. McLellan et al. "Vessel Sealing for Hemostasis During Pelvic Surgery" Int'l Federation of Gynecology and Obstetrics FIGO World Congress 2000, Washington, D.C. Levy et al. "Use of a New Energy-based Vessel Ligation Device During Vaginal Hysterectomy" Int'l Federation of Gynecology and Obstetrics (FIGO) World Congress 1999. Crawford et al. "Use of the LigaSure Vessel Sealing System in Urologic Cancer Surger" Grand Rounds in Urology 1999 vol. 1 Issue 4 pp. 10-17. Rothenberg et al. "Use of the LigaSure Vessel Sealing System in Minimally Invasive Surgery in Children" Int'l Pediatric Endosurgery Group (1PEG) 2000. Palazzo et al. "Randomized clinical trial of Ligasure versus open haemorrhoidectomy" British Journal of Surgery 2002, 89, 154-157. "Innovations in Electrosurgery" Sales/Product Literature; Dec. 31, 2000. LigaSure Vessel Sealing System, the Seal of Confidence In General, Gynecologic, Urologic, and Laparaoscopic Surgery Sales/Product Literature; Jan. 2004. Carbonell et al., "Comparison of theGyrus PlasmaKinetic Sealer and the Valleylab LigaSure Device in the Hemostasis of Small, Medium, and Large-Sized Arteries" Carolinas Laparoscopic and Advanced Surgery Program, Carolinas Medical Center, Charlotte, "Reducing Needlestick Injuries in the Operating Room" Sales/ Product Literature 2001. Chung et al., "Clinical Experience of Sutureless Closed Hemorrhoidectomy with LigaSure" Diseases of the Colon & Rectum vol. 46, No. 1 Jan. 2003. Strasberg et al., "Use of a Bipolar Vessel-Sealing Device for Parenchymal Transection During Liver Surgery" Journal of Gastrointestinal Surgery, vol. 6, No. 4, Jul./Aug. 2002 pp. 569-574. Paul G. Horgan, "A Novel Technique for Parenchymal Division During Hepatectomy" The American Journal of Surgery, vol. 181, No. 3, □Apr. 2001 pp. 236-237. W. Scott Helton, "LigaSure Vessel Sealing System: Revolutionary Hemostatis Product for General Surgery" Sales/Product Literature Michael Choti, "Abdominoperineal Resection with the LigaSure Vessel Sealing System and LigaSure Atlas 20 cm Open Instrument" Innovations That Work, \square Jun. 2003. Craig Johnson, "Use of the LigaSure Vessel Sealing System in Bloodless Hemorrhoidectomy" Innovations That Work, Mar. 2000. Muller et al., "Extended Left Hemicolectomy Using the LigaSure Vessel Sealing System" Innovations That Work, □Sep. 1999. Herman et al., "Laparoscopic Intestinal Resection With the LigaSure Vessel Sealing System: A Case Report" Innovations That Work, □ Feb. 2002. Carus et al., "Initial Experience With The LigaSure Vessel Sealing System in Abdominal Surgery" Innovations That Work, □Jun. 2002 Levy et al. "Randomized Trial of Suture Versus Electrosurgical Bipolar Vessel Sealing in Vaginal Hysterectomy" Obstetrics & Gynecology. vol. 102, No. 1, Jul. 2003. Levy et al., "Update on Hysterectomy—New Technologies and Techniques" OBG Management, Feb. 2003. Barbara Levy, "Use of a New Vessel Ligation Device During Vaginal Hysterectomy" FIGO 2000, Washington, D.C. McLellan et al. "Vessel Sealing For Hemostasis During Gynecologic Surgery" Sales/Product Literature 1999. Sengupta et al., "Use of a Computer-Controlled Bipolar Diathermy System in Radical Prostatectomies and Other Open Urological Surgery" ANZ Journal of Surgery (2001) 71.9 pp. 538-540. Olsson et al. "Radical Cystectomy in Females" Current Surgical Techniques in Urology, vol. 14, 1ssue 3, 2001. E. David Crawford "Use of a Novel Vessel Sealing Technology in Management of the Dorsal Veinous Complex" Sales/Product Lit- Jarrett et al., "Use of the LigaSure Vessel Sealing System for Peri-Hitar Vessels in Laparoscopic Nephrectomy" Sales/Product Literature 2000 E. David Crawford "Evaluation of a New Vessel Sealing Device in Urologic Cancer Surgery" Sales/Product Literature 2000. Joseph Ortenberg "LigaSure System in Laparoscopic 1st and 2nd Stage Orchiopexy" Innovations That Work, Nov. 2002. Koyle et al., "Laparoscopic Paloma Varicocele Ligation in Children and Adolescents" Pediatric Endosurgery & Innovative Techniques, vol. 6, No. 1, 2002 Dulemba et al. "Use of a Bipolar Electrothermal Vessel Sealer in Laparoscopically Assisted Vaginal Hysterectomy" Sales/Product Literature; Jan. 2004. Johnson et al. "Evaluation of a Bipolar electrothermal Vessel Sealing Device in Hemorrhoidectomy" Sales/Product Literature; Jan. 2004. Int'l Search Report PCT/US98/18640. Int'l Search Report PCT/US98/23950. Int'l Search Report PCT/US99/24869. Int'l Search Report PCT/US01/11218. Int'l Search Report PCT/US01/11340. Int'l Search Report PCT/US01/11420. Int'l Search Report PCT/US02/01890. Int'l Search Report PCT/US02/11100. Int'l Search Report PCT/US04/03436. Int'l Search Report PCT/US04/13273. Int'l Search Report PCT/US04/15311. Int'l Search Report EP 98944778. Int'l Search Report EP 98958575. Int'l Search Report EP 04027314. Int'l Search Report EP 04027479. Int'l Search Report EP 04027705. Int'l Search Report EP 04013772. Int'l Search Report EP 05013463.4 dated Sep. 28, 2005. Int'l Search Report EP 05019130.3 dated Oct. 18, 2005. Int'l Search Report EP 05020665.5 dated Feb. 16, 2006. Int'l Search Report EP 05020666.3 dated Feb. 17, 2006. Int'l Search Report EP 05021779.3 dated Jan. 18, 2006. Int'l Search Report EP 05021197.8 dated Jan. 31, 2006. Int'l Search Report EP 05021937.7 dated Jan. 13, 2006. Int'l Search Report—extended—EP 05021937.7 dated Mar. 6, Int'l Search Report EP 05023017.6 dated Feb. 16, 2006. Int'l Search Report EP 05021780.1 dated Feb. 9, 2006. Int'l Search Report EP 06002279.5 dated Mar. 22, 2006. Int'l Search Report PCT/US98/18640 dated Dec. 17, 1998. 1nt'l Search Report PCT/US98/23950 dated Dec. 29, 1998. Int'l Search Report PCT/US99/24869 dated Feb. 3, 2000. 1nt'l Search Report PCT/US01/11218 dated Aug. 3, 2001. International Search Report PCT/US01/11224 dated Nov. 13, 2001. Int'l Search Report PCT/US01/11340 dated Aug. 7, 2001. Int'l Search Report PCT/US01/11420 dated Oct. 8,
2001. Int'l Search Report PCT/US02/01890 dated Jul. 17, 2002. Int'l Search Report PCT/US02/11100 dated Jul. 9, 2002. Int'l Search Report PCT/US04/13273 dated Oct. 5, 2004. Int'l Search Report PCT/US04/13273 dated Nov. 22, 2004. Int'l Search Report PCT/US04/15311 dated Nov. 18, 2004. Int'l Search Report EP 98944778 dated Oct. 31, 2000. Int'l Search Report EP 98958575.7 dated Sep. 20, 2002. Int'l Search Report EP 04027314 dated Mar. 10, 2005. Int'l Search Report EP 04027479 dated Mar. 8, 2005. Int'l Search Report EP 04027705 dated Feb. 3, 2005. Int'l Search Report EP 04013772 dated Apr. 1, 2005. Primary Examiner—Lee S. Cohen #### (57) ABSTRACT A laparoscopic bipolar electrosurgical instrument can apply a large closure force between its jaws without damaging the small yoke assembly. The instrument comprises: a first jaw having a first flange with a first slot, and a second jaw having a second flange with a second slot, wherein the first and second jaws are located at a distal end of the instrument and comprise an electrically conductive material for conducting bipolar electrosurgical current therebetween; a yoke attached to a pushrod and positioned to electrically insulate the first flange from the second flange, the yoke having a first side facing the first flange and a second side facing the second flange, the yoke further comprising a first shoulder and a second shoulder, a first pin located on the first side and movably engaged with the first slot; a second pin located on the second side and movably engaged with the second slot; the first slot and the second slot shaped such that an angle, subtended by the first and second jaws, decreases with distal motion of the pushrod, and first and second cul-de-sacs positioned respectively in the first and second slots to relieve shear stresses on the first and second pins approximately when the first and second shoulders respectively engage the first and second flanges to provide a closure force between the first and second jaws. ### 8 Claims, 5 Drawing Sheets 1 ## LAPAROSCOPIC BIPOLAR ELECTROSURGICAL INSTRUMENT ## CROSS REFERENCE TO RELATED APPLICATIONS This application is a continuation of U.S. application Ser. No. 10/243,274 filed on Sep. 13, 2002 now U.S. Pat. No. 6,960,210 which is a continuation of U.S. application Ser. No. 09/591,330 filed on Jun. 9, 2000, now U.S. Pat. No. 10 6,451,018 which is a continuation of U.S. application Ser. No. 08/970,472 filed on Nov. 14, 1997, now U.S. Pat. No. 6,228,083, the entire contents of all of these applications are herein incorporated by reference in their entirety. #### FIELD OF THE INVENTION This relates to an electrosurgical instrument for performing laparoscopic surgical procedures, and more particularly to a laparoscopic electrosurgical instrument that is capable of grasping vessels and vascular tissue with sufficient force between two bipolar jaws to seal the vessel or vascular tissue. #### BACKGROUND OF THE DISCLOSURE Laparoscopic surgical instruments are used to perform surgical operation without making large incisions in the patient. The laparoscopic instruments are inserted into the patient through a cannula, or port that has been made with a trocar. Typical sizes for cannulas range from three millimeters to twelve millimeters. Smaller cannulas are usually preferred, and this presents a design challenge to instrument manufacturers who must find ways to make surgical instruments that fit through the cannulas. Certain surgical procedures require cutting blood vessels or vascular tissue. This sometimes presents a problem for surgeons because it is difficult to suture blood vessels using laparoscopic tools. Very small blood vessels, in the range below two millimeters in diameter, can often be closed using standard electrosurgical techniques. If a larger vessel is severed, it may be necessary for the surgeon to convert the laparoscopic procedure into an open-surgical procedure and thereby abandon the benefits of laparoscopy. Several journal articles have disclosed methods for sealing small blood vessels using electrosurgery. An article entitled *Studies on Coaglation and the Development of an Automatic Computerized Bipolar Coagulator*. J. Neurosurg., Volume 75, July 1991, describes a bipolar coagulator which is used to seal small blood vessels. The article states that it was not possible to safely coagulate arteries with a diameter larger than 2 to 2.5 mm. A second article is entitled *Automatically Controlled Bipolar Electrocoagulation—"COA-COMP*", Neurosurg. Rev. (1984), pp. 187–190. This article describes a method for terminating electrosurgical power to the vessel so that charring of the vessel walls can be avoided. It hats been recently determined that electrosurgical methods may be able to seal larger vessels using an appropriate electrosurgical power curve, coupled with an instrument 60 capable of applying a large closure force to the vessel walls. It is thought that the process of coagulating small vessels is fundamentally different than electrosurgical vessel sealing. Coagulation is defined as a process of desiccating tissue wherein the tissue cells are ruptured and dried. Vessel 65 sealing is defined as the process of liquefying the collagen in the tissue so that it crosslinks and reforms into a fused 2 mass. Thus, coagulation of small vessels is sufficient to permanently close them. Larger vessels need to be sealed to assure permanent closure. It would be desirable to have a surgical tool capable of applying electrosurgical energy, capable of applying a large closure force to the vessel walls, and also capable of fitting through a cannula. A large closure force between the jaws typically requires a large moment about the pivot for each jaw. This presents a challenge because the first and second pins have a small moment arm with respect to the pivot of each jaw. A large force, coupled with a small moment arm, is undesirable because the large forces may shear the first and second pins. It is also undesirable to increase the moment arm of the first and second pins because the physical size of the yoke might not fit through a cannula. Several bipolar laparoscopic instruments are known. For example, U.S. Pat. No. 3,938,527 discloses a bipolar laparoscopic instrument for tubal cauterization. U.S. Pat. No. 5,250,047 discloses a bipolar laparoscopic instrument with a replaceable electrode tip assembly. U.S. Pat. No. 5,445,638 discloses a bipolar coagulation and cutting forceps with first and second conductors extending from the distal end. U.S. Pat. No. 5,391,166 discloses a bipolar endoscopic instrument having a detachable working end. U.S. Pat. No. 5,342,359 discloses a bipolar coagulation device. The present invention solves the problem of providing a large closure force between the jaws of a laparoscopic bipolar electrosurgical instrument, using a compact design that fits through a cannula, without risking structural failure 30 of the instrument yoke. #### SUMMARY OF THE INVENTION The present invention is an instrument for applying bipolar electrosurgical current to tissue in a laparoscopic operation with the added benefit of providing a large closure force between the instrument jaws. The large closure force may be particularly useful for vessel sealing operations. An advantage of the present invention is that tissue can be grasped and clamped with a relatively large closure force without damage to the yoke. The yoke is capable of transmitting the large closure force to the instrument jaws while being small enough to fit through a cannula. The laparoscopic bipolar electrosurgical instrument comprises first and second jaws having, respectively, first and second flanges with first and second slots. The instrument is electrically connected to an electrosurgical generator, and conducts bipolar electrosurgical current to the first and second jaws. A yoke is attached to a pushrod and positioned to electrically insulate the first flange from the second flanges. First and second pins on the yoke are designed to engage the first and second slots, respectively, in a camfollower arrangement that opens and closes the jaws with linear motion of the yoke. The yoke is preferably a "push yoke" which means that linear motion of the yoke in the direction of the distal end of the instrument will cause the jaws to close together. The yoke has first and second shoulders that are spaced apart from the first and second flanges until the jaws are in close arcuate proximity to each other. At that point, the first and second shoulders engage the first and second flanges, whereby further distal motion of the yoke applies a force to the first and second flanges that creates a moment about the pivot of each jaw. In general, the cam-follower arrangement of pins and slots may be designed to provide coarse motion of the jaws with relatively small forces. Large closure forces, once the jaws are relatively close together, may be obtained 3 by pressing the shoulders against the flanges. The first and second pins move into cul-de-sacs in the first and second slots to protect them from large shear stresses when the shoulders are applying relatively large forces to the flanges. Thus, the first and second pins may be made from an 5 electrically insulative material that is not designed to handle large shear stresses, large closure forces may be obtained, and the entire assembly may be compact and fit through a cannula A method of making the laparoscopic bipolar electrosurgical instrument is described, comprising the following steps: forming a first jaw having a first flange with a first slot, and a second jaw having a second flange with a second slot; attaching a yoke to a pushrod; electrically insulating the first flange from the second flange with the yoke; engaging first and second pins with the first and second slots; positioning first and second cul-de-sacs respectively in the first and second slots to relieve shear stresses on the first and
second pins at a subtended angle approximately wherein first and second shoulders engage the first and second flanges. #### BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a laparoscopic bipolar electrosurgical instrument. FIG. 2 is a perspective view of the distal end and jaws of the instrument in FIG. 1. FIG. 3 is an exploded view of the distal end shown in FIG. FIG. 4 is perspective view of the distal end of the $_{30}$ instrument with the jaws removed. FIG. 5 is another perspective of FIG. 4. FIG. 6 is a side view of an electrical spring contact. FIG. 7 is a front view of the spring contact shown in FIG. 6. ## DETAILED DESCRIPTION OF THE INVENTION A laparoscopic bipolar electrosurgical instrument 10 is 40 shown in FIG. 1. The instrument 10 has a proximal end 11 with a handle 14 for holding and manipulating the instrument 10. A distal end 12 on the instrument 10 is used for surgical manipulation of tissue. The instrument 10 comprises an elongate tube 13 that is sized to fit through a 45 cannula for laparoscopic operations, and in different embodiments may be sized to fit through either a five or seven millimeter cannula. A portion of the distal end 12 of the instrument 10 is shown in FIG. 2. A first jaw 15 and a second jaw 16 are 50 shown in an open position. An angle α is subtended by the jaws 15 and 16. Closing of the jaws 15 and 16 is defined as a reduction of the angle α subtended by the jaws 15 and 16. Similarly, opening of the jaws 15 and 16 is defined as an enlargement of the angle α . The angle α is zero when the 55 jaws 15 and 16 are closed together. The center of rotation for the first jaws 15 is at the first pivot 41, and the center of rotation for the second jaw 16 is at the second pivot 42. The first pivot 41 is located on an outer nose piece 32, and fits in a first pivot 42 is located on the first flange 18. The 60 second pivot 42 is located on an inner nose piece 31, and fits in a second pivot hole 44 located on the second flange 20. Pieces that comprise the distal end 12 of the instrument 10 are shown in an exploded view in FIG. 3. The first jaw 15 and the second jaw 16 are shown separated from a yoke 17. 65 The first jaw 15 has a first flange 18 and a first slot 19 therewithin. The second jaw 16 has a second flange 20 and 4 a second slot 21 therewithin. Each jaw 15 and 16 is preferably formed from a single piece of stainless steel or other electrically conductive material. Referring again to FIG. 3, the yoke 17 is attached to a pushrod 22. The yoke 17 is preferably formed from an electrically insulative material such as plastic. A first side 23 of the yoke 17 faces the first flange 18. A second side 24 of the yoke 17 faces the second flange 20. When the yoke 17 is positioned between the flanges 18 and 20, the yoke 17 also acts to electrically insulate the first jaw 15 from the second jaw 16. In this manner, bipolar electrosurgical current can be conducted through tissue grasped by the jaws 15 and 16 without short circuiting between the flanges 18 and 20. A first pin 25 is located on the first side 23 to movably engage with the first slot 19. Similarly, a second pin 26 is located on the second side 24 to movably engage with the second slot 21. Each pin and slot combination works as a cam-follower mechanical linkage. Motion of the pushrod 22 moves the yoke 17 causing pins 25 and 26 to slide within their respective slots 19 and 21. The slots 19 and 21 are angled with respect to the distal ends of the jaws 15 and 16 such that the jaws 15 and 16 move in an arcuate fashion toward and away from each other. The pins 25 and 26 are different from the pivots 41 and 42. The pins 25 and 26 provide a force against the walls of the slots 19 and 21, creating a moment about the pivots 41 and 42. The slots 19 and 21 are arranged such that distal motion of the pushrod 22 causes the jaws 15 and 16 to move together. Distal motion of the pushrod 22 is defined as motion in the direction of the distal end 12 of the instrument 10. Once the jaws 15 and 16 are closed together, the present invention holds the jaws 15 and 16 together with a compressive force on the pushrod 22. One of the advantages of this invention is that shear forces on the pins 25 and 26 can be offloaded to prevent mechanical failure when large forces are being transmitted to the jaws 15 and 16. Each slat 19 and 20 has a cul-de-sac 27 and 28, respectively, as shown in FIG. 3. The first cul-de-sac 27 is an enlargement of the first slot 19 near its distal end. The second cul-de-sac 28 is an enlargement of the second slot 21 near its distal end. The cam-follower motion of the pins 25 and 26 in the slots 19 and 21 will bring the pins 25 and 26 into their respective cul-de-sac 27 and 28. This position of the pins 25 and 26 leaves a very small moment arm between the pins 25 and 26 and the pivots 41 and 42. The yoke 17 has shoulders 29 and 30 that can provide a relatively large moment about the pivots 41 and 42 to effect a high closure force between the jaws 15 and 16 without a high shear forces on the pins 25 and 26, as described below. Once the pins 25 and 26 are in the cul-de-sacs 27 and 28, the force from the voke is transmitted to the flanges 18 and 20 by a first shoulder 29 and a second shoulder 30. The shoulders 29 and 30 abut the proximal end of the flanges 18 and 20 to cause the jaws 15 and 16 to close together. The pivots 41 and 42 are preferably made of metal and can withstand relatively high shear forces. In contrast, pins 25 and 26 are preferably made of plastic and will break under relatively high shear forces. Thus, the shoulders 29 and 30 provide a moment about the pivots 41 and 42, thereby avoiding the necessity of applying high shear forces to the pins 25 and 26 when the moment arm from the pins 25 and 26 would be small. There is an angle α at which the pins 25 and 26 enter their respective cul-de-sacs 27 and 28 and the shoulders 29 and 30 abut the flanges 18 and 20. The angle α at which the forgoing occurs is preferably around three The bipolar electrosurgical instrument 10 has first and second poles of alternating potential that are conducted along the instrument 10 and through tissue that is grasped between the jaws 15 and 16. The first pole is conducted from the proximal end 11 toward the distal end 12 along the 5 pushrod 22. The second pole is conducted from the proximal end 11 toward the distal end 12 along the tube 13. The outer surface of the tube 13 is preferably coated with an electrically insulative material. There is also preferably an electrically insulative barrier between the pushrod 22 and the 10 tube 13 to prevent short circuits in the instrument 10. In the preferred embodiment, the distal end of the instrument 10 comprises an inner nose piece 31 and an outer nose piece 32, as shown in FIG. 2. The inner nose piece 31 is electrically connected with the pushrod 22, while the outer 15 nose piece is electrically connected with the tube 13. The inner nose piece 31 and the outer nose piece 32 capture the yoke 17, along with the first and second flanges 18 and 20, as shown in FIG. 2. The yoke 17 moves axially, along an axis defined by the tube, in a space between the inner and outer 20 nose pieces 31 and 32. A spacer stake 33 maintains the separation of the nose pieces 31 and 32 at their distal ends. The nose pieces 31 and 32 provide lateral support for the flanges 18 and 20 to help ensure that the pins 25 and 26 remain within the slots 19 and 21. The preferred embodiment also comprises an inner insulator 34 and an outer insulator 35 for maintaining electrical insulation between the poles. The outer insulator 35 is seated between the tube 13 and the inner nose 31, as shown in FIGS. 2 and 4. The inner insulator 34 is seated between the 30 tube 13 and the pushrod 22. In this manner, the outer nose piece 32 can provide electrical continuity between the tube 13 and the second jaw 16, while the inner nose piece 34 can provide electrical continuity between the pushrod 22 and the first jaw 15. Since the pushrod 22 is slidably mounted within 35 claims that follow. the tube 13, the preferred embodiment has a spring contact 36, as shown in FIGS. 6 and 7, mounted on the pushrod 22 to maintain an electrical connection with the inner nose piece 34 during axial motion. The first and second jaws 15 and 16 each have ridges 37 40 and 38 at their distal ends that preferably nest together. The jaws 15 and 16 also have seal surfaces 39 and 40, as shown in FIG. 2. The width of the seal surfaces 39 and 40 is a parameter that affects the quality of the surgical outcome. The closure force between the jaws 15 and 16 varies along 45 the length of the seal surfaces 39 and 40, with the largest force at the distal tip and the smallest force at the proximal end of the seal surfaces 39 and 40. It has been found through experimentation that good vessel sealing results are obtained when the closure force in grams divided by the width in 50 millimeters is in the range of 400 to 650. Since the closure force varies with the length of the seal surfaces 39 and 40, it has been found to be advantageous to taper the width of the seal surfaces 39 and 40 along their length, with the widest width at the proximal end and the narrowest width at 55 the distal end. This design allows the jaws 15 and 16 to apply a relatively constant closure force per unit width, preferably 525 grams per millimeter width. A method of making a laparoscopic bipolar electrosurgical instrument 10 is also herein described. The method 60 comprises the step of forming a first jaw 15 having a first flange 18 with a first slot 19, and a second jaw 16 having a second flange 20 with a second slot 21. The jaws 15 and 16 are preferably formed in a casting process, although it is also possible to machine the jaws 15 and 16 from stock. The 65 casting process may include injecting powdered metal under pressure into a mold, and then applying heat. Other
steps in the method include attaching a yoke 17 to a pushrod 22, and electrically insulating the first flange 18 from the second flange 20 with the yoke 17. The yoke 17 is preferably an injection molded plastic part with features including a first shoulder 29 and a second shoulder 30. During assembly of the distal portion 6 the instrument 10, steps in the method include engaging a first pin 25 with the first slot 19, and engaging a second pin 26 with the second slot 21. The slots 19 and 21 are shaped such that a subtended angle α between the first and second jaws 15 and 16 decreases with distal motion of the pushrod 17, and the slots 19 and 20 are formed with cul-de-sacs 27 and 28 positioned to relieve shear stresses on the first and second pins 25 and **26** at the subtended angle α approximately wherein the first and second shoulders 29 and 30 engage the first and second flanges 18 and 20. Further steps in the method comprise: surrounding at least a portion of the pushrod 22 with an electrically conductive tube 13; electrically insulating the tube 13 from the pushrod 22; electrically connecting an inner nose piece 31 to the pushrod 22, and electrically connecting an outer nose piece 32 to the tube 13, wherein the inner nose piece 31 and the outer nose piece 32 capture the yoke 17 along with the first and second flanges 18 and 20 to conduct bipolar electrosurgical current to the first and second jaws 15 and 16. In the preferred embodiment, there is a step of electrically connecting the pushrod 22 and the inner nose piece 31 with a spring contact 36. The method of making the instrument 10, in some embodiments, includes the steps of tapering the width of the seal surfaces 39 and 40 along the length of each of the first and second jaws 15 and 16. While a particular preferred embodiment has been illustrated and described, the scope of protection sought is in the What is claimed is: - 1. A first and second jaw member assembly for use with a bipolar endoscopic instrument, comprising: - a first jaw member and a second jaw member; - a yoke which electrically insulates the a first jaw member and the a second jaw member during activation, the yoke including: - first and second pins which cooperate with an actuator to rotate a respective jaw member from a first position to a second position upon linear reciprocation of the yoke; and - first and second shoulder portions which are conformed to correspondingly abut a respective jaw member in the second position to offload forces on the first and second pins when said yoke is linearly reciprocated. - 2. The first and second jaw member assembly according to claim 1 wherein the first jaw member is adapted to be connected to a first electrical potential and the second jaw member is adapted to be connected to a second electrical potential. - 3. The first and second jaw member assembly according to claim 2 wherein the first and second jaw members are movable from a first position in spaced relation relative to one another to a second position wherein the first and second jaw members cooperate to conduct bipolar energy through tissue held therebetween. - 4. The first and second jaw member assembly according to claim 1 wherein the first and second shoulder portions offload pressure on the first and second pins during clamping and sealing of tissue. 7 - 5. The first and second jaw member assembly according to claim 1 further comprising: inner and outer nose pieces which are configured to capture the yoke and conduct bipolar electrosurgical energy to the first and second jaw members. - **6.** The first and second jaw member assembly according to claim 1 wherein the first and second jaw members each include ridges which correspondingly nest when the jaw members are disposed in the second position. 8 - 7. The first and second jaw member assembly according to claim 1 wherein each of the first and second jaw members includes a seal surface which is tapered along its respective length. - 8. The first and second jaw member assembly according to claim 7 wherein the closure force is approximately constant between the jaw members along the length thereof. * * * * * | 专利名称(译) | 腹腔镜双极电外科仪器 | | | |----------------|---|---------|------------| | 公开(公告)号 | <u>US7207990</u> | 公开(公告)日 | 2007-04-24 | | 申请号 | US11/169927 | 申请日 | 2005-06-29 | | [标]申请(专利权)人(译) | 地政MICHAELĴ LUKIANOW STEPHENW LOEFFLER DONALD - [R CUNNIGHAM JAMES小号 劳斯凯特 - [R TRIMBERGER DANIEL大号II 米切尔MATHEWê KENNEDY珍妮弗小号 | | | | 申请(专利权)人(译) | 地政MICHAELĴ LUKIANOW STEPHENW LOEFFLER DONALD - [R CUNNIGHAM JAMES小号 劳斯凯特 - [R TRIMBERGER DANIEL大号II 米切尔MATHEWê KENNEDY珍妮弗小号 | | | | 当前申请(专利权)人(译) | SHERWOOD SERVICES AG | | | | [标]发明人 | LANDS MICHAEL JOHN LUKIANOW STEPHEN WADE LOEFFLER DONALD ROBERT CUNNIGHAM JAMES STEVEN LAWES KATE RYLAND TRIMBERGER II DANIEL LEE MITCHELL MATHEW ERLE KENNEDY JENIFER SERAFIN | | | | 发明人 | LANDS, MICHAEL JOHN LUKIANOW, STEPHEN WADE LOEFFLER, DONALD ROBERT CUNNIGHAM, JAMES STEVEN LAWES, KATE RYLAND TRIMBERGER, II, DANIEL LEE MITCHELL, MATHEW ERLE KENNEDY, JENIFER SERAFIN | | | | IPC分类号 | A61B18/14 A61B18/12 | | | | CPC分类号 | A61B18/1445 | | | | 审查员(译) | COHEN , LEE S. | | | | 其他公开文献 | US20060009764A1 | | | | 外部链接 | Espacenet USPTO | | | 摘要(译) 腹腔镜双极电外科器械可在其钳口之间施加大的闭合力而不损坏小轭组件。该器械包括:第一钳口,具有带有第一槽的第一凸缘;以及第二钳口,具有带有第二槽的第二凸缘,其中第一和第二钳口位于器械的远端并包括导电材料用于在其间传导双极电外科电流;轭连接到推杆并且定位成使第一凸缘与第二凸缘电绝缘,轭具有面向第一凸缘的第一侧和面向第二凸缘的第二侧,轭还包括第一肩部和第二肩部,第一销位于第一侧并可移动地与第一槽接合;第二销位于第二侧并可移动地与第二槽接合;第一狭槽和第二狭槽成形为使得第一和第二钳口对向的角度随着推杆的远侧运动而减小,并且第一和第二穹顶分别定位在第一和第二狭槽中以减轻剪切应力大致当第一和第二肩部分别接合第一和第二凸缘时,在第一和第二销上,以在第一和第二夹爪之间提供闭合力。