

US 20120136372A1

(19) **United States**

(12) **Patent Application Publication**
Amat Girbau et al.

(10) **Pub. No.: US 2012/0136372 A1**
(43) **Pub. Date: May 31, 2012**

(54) **ROBOTIC SYSTEM FOR LAPAROSCOPIC SURGERY**

(30) **Foreign Application Priority Data**

May 22, 2009 (ES) P200901313

(75) Inventors: **Josep Amat Girbau**, Barcelona (ES); **Alicia Casals Gelpí**, Barcelona (ES); **Manel Frigola Bourdon**, Barcelona (ES)

Publication Classification

(51) **Int. Cl.**
A61B 19/00 (2006.01)

(52) **U.S. Cl.** **606/130**

(73) Assignee: **Universitat Politècnica De Catalunya**, Barcelona (ES)

ABSTRACT

(21) Appl. No.: **13/321,802**

(22) PCT Filed: **May 20, 2010**

(86) PCT No.: **PCT/ES2010/000224**

§ 371 (c)(1),
(2), (4) Date: **Jan. 13, 2012**

It comprises a supporting structure in which at least one arm is slidably attached. Each arm comprises first and second members hinged to each other. The first member is rotatably hinged to the supporting structure and it can be rotated about a longitudinal axis and the second member may receive a joint having at least two degrees of freedom for attaching a tool. The longitudinal axis of the first member is substantially perpendicular to an axis joining the first member and the second member to each other. A simplified architecture is obtained allowing for accurate and efficient spatial movement of the tool holding arm.

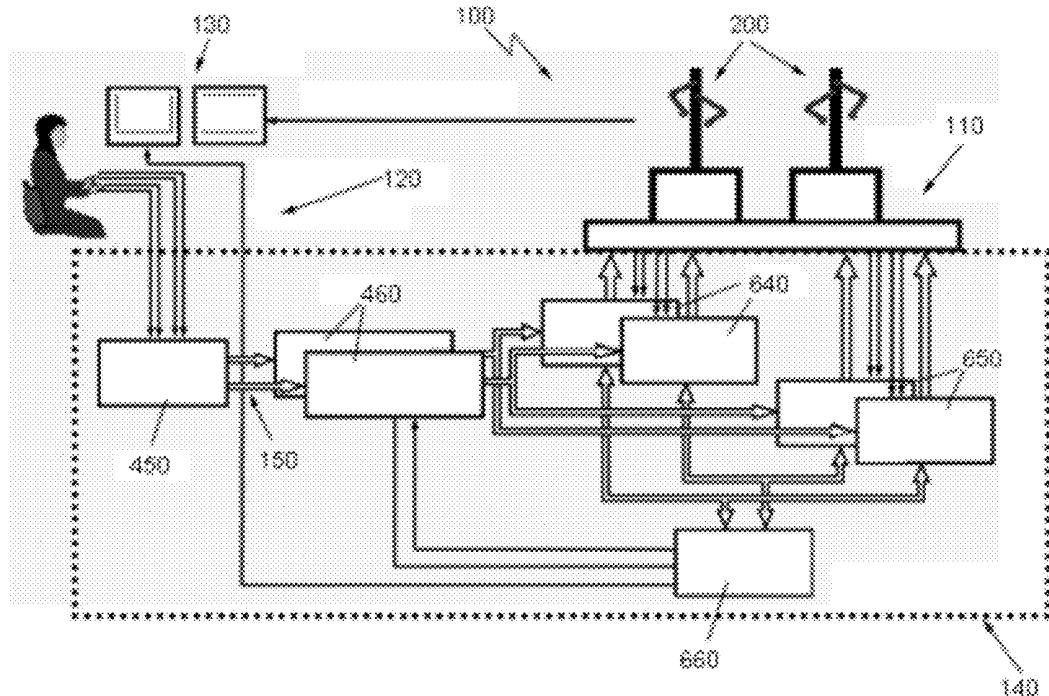
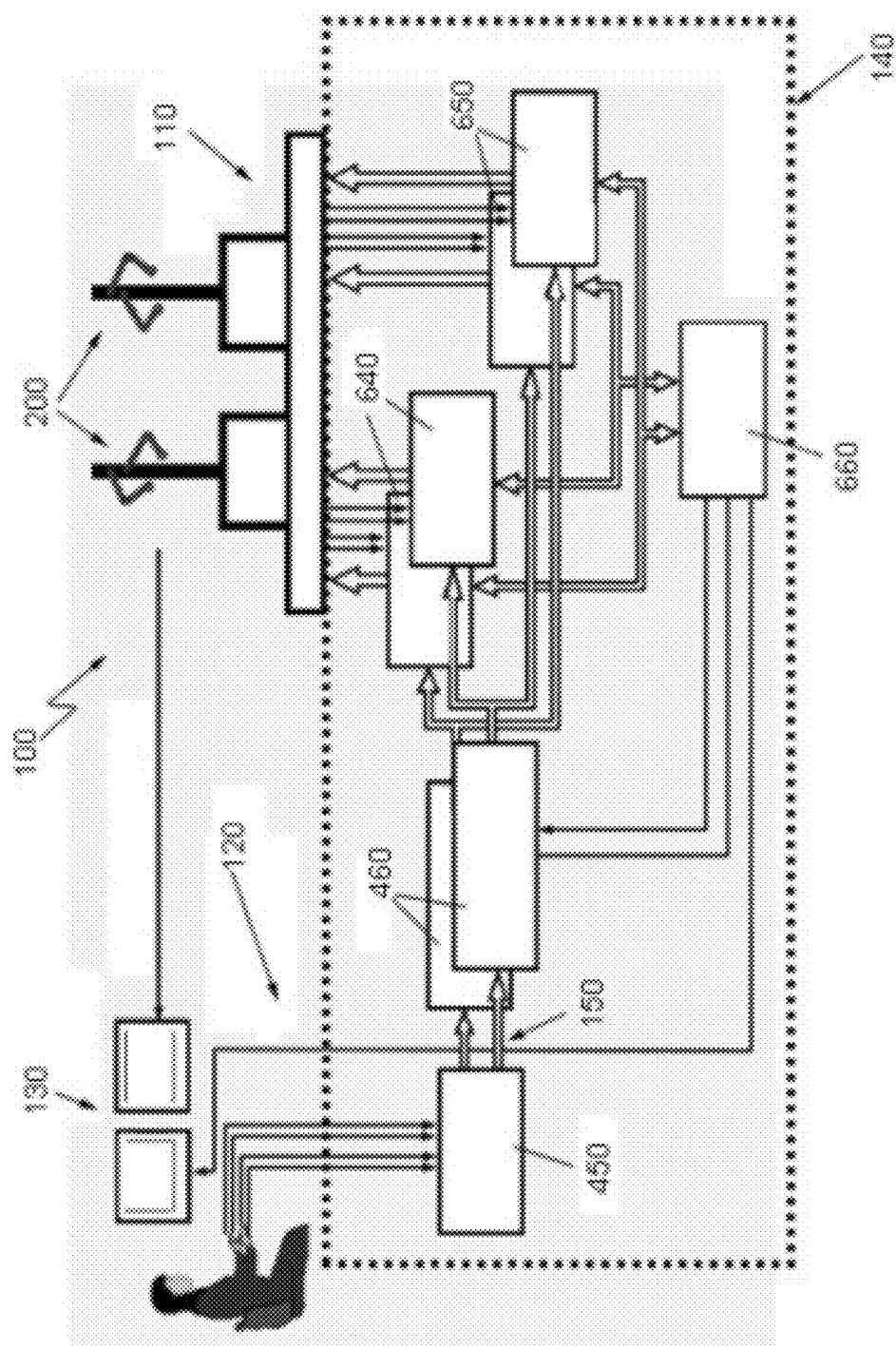



FIG.1

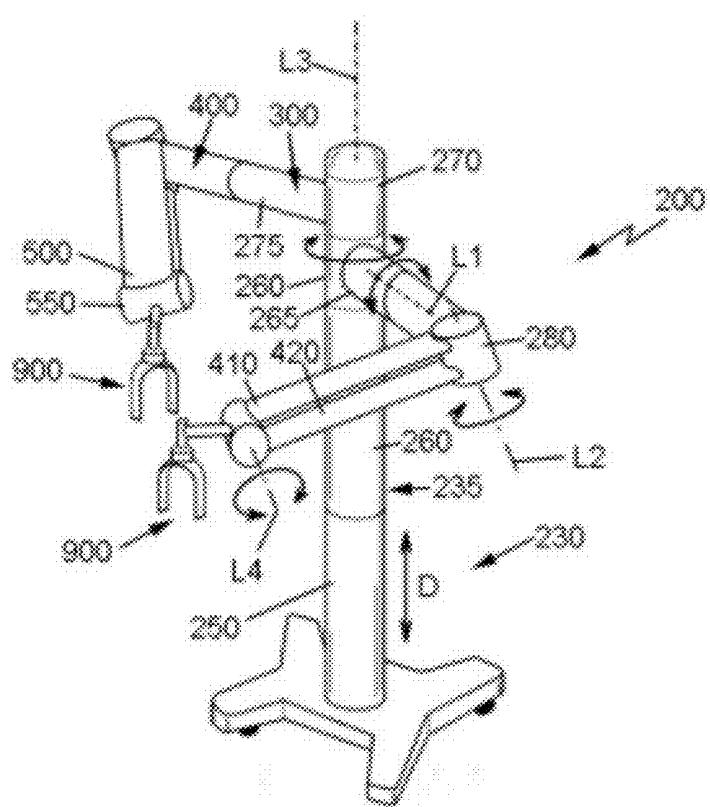
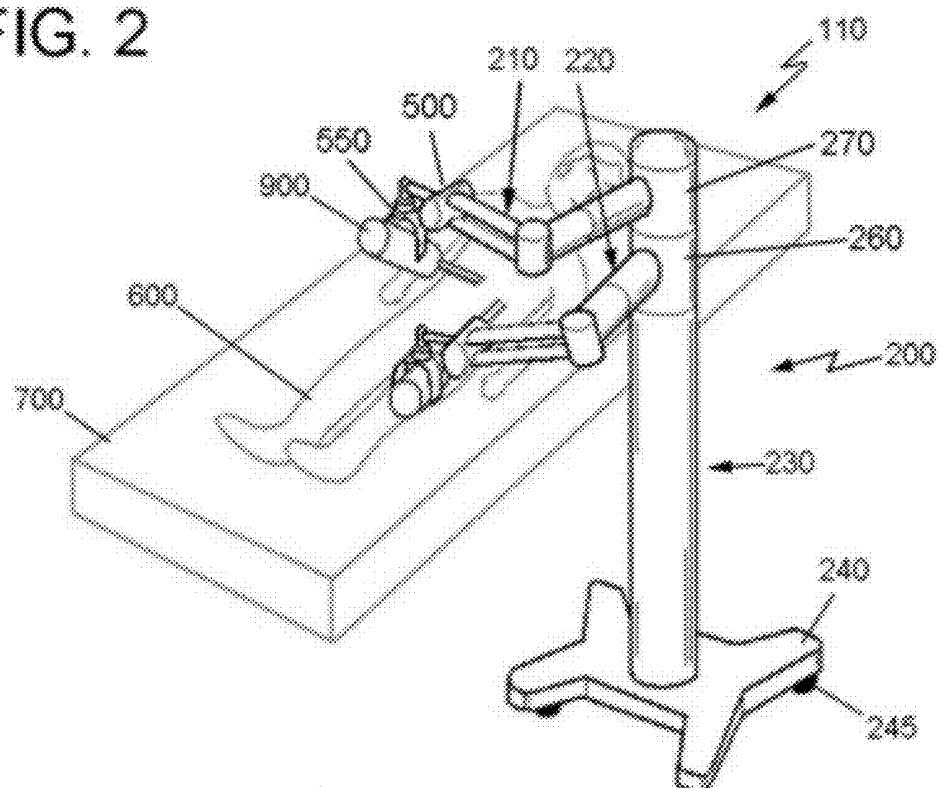
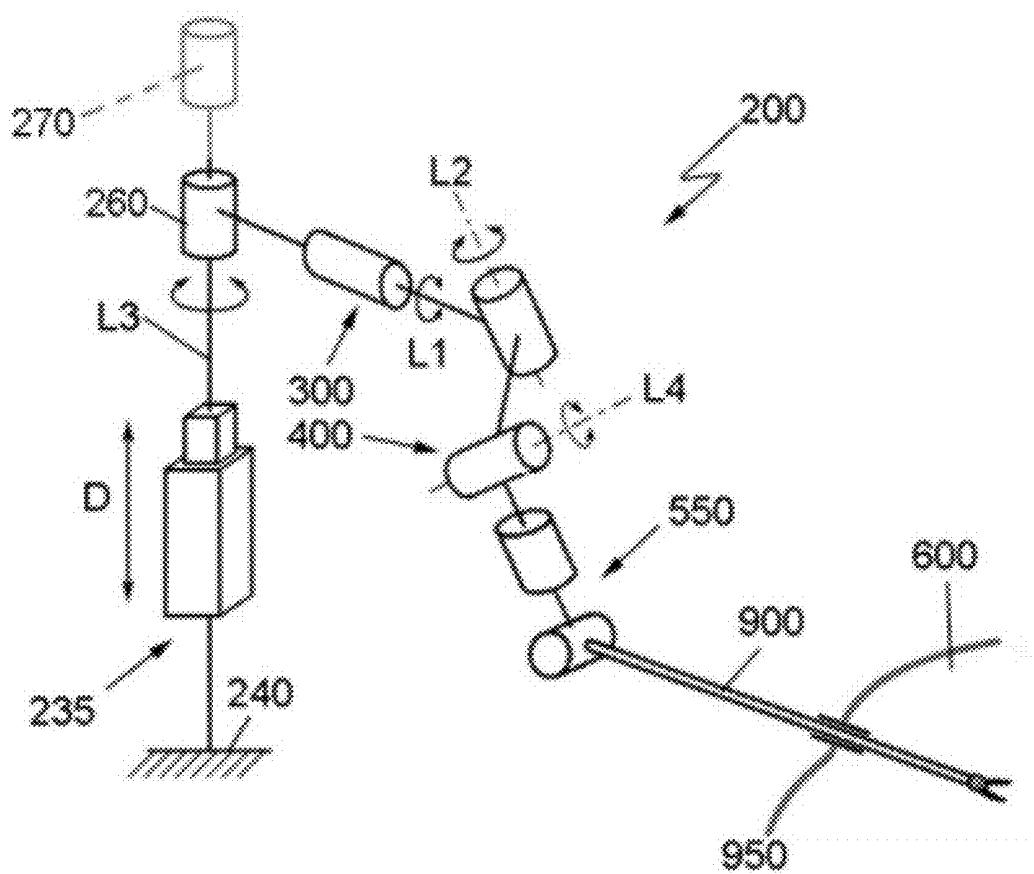



FIG. 2**FIG. 3**

FIG. 4

ROBOTIC SYSTEM FOR LAPAROSCOPIC SURGERY

TECHNICAL FIELD

[0001] A robotic system for holding and handling a surgical tool or instrument for surgery, particularly for minimally invasive laparoscopic surgery is herein disclosed. The present robotic system comprises a supporting structure to which one or more arms that can be remotely operated from a tele-operation station are slidably attached.

[0002] Each of said arms attached to the supporting structure is configured as an articulated assembly comprising two elements. Both elements are hinged to each other and, in turn, the first member can be rotated relative to the supporting structure.

BACKGROUND ART

[0003] The present robotic system finds general application in the field of robotic surgery and particularly in the field of minimally invasive surgery. In minimally invasive surgery smaller incisions are made as compared to those in conventional surgery that require a very precise operation of the surgical tool. Through these incisions surgical operations are carried out, including introducing of vision cameras (laparoscopy) for obtaining images of internal organs and transmitting them to a television monitor through which the surgeon can be guided to perform such surgical procedures.

[0004] These surgical procedures through robotic surgery are performed remotely by using tele-operation stations connected to a robotic system via dedicated communication lines.

[0005] Robotic systems include architectures designed to behave like a human arm, allowing a robot arm to be arranged in different positions. These architectures are formed by one or several arms mounted on a supporting structure and formed by hinged members so they can be moved properly in the space to operate a tool, terminal organ or end effector, such as a gripper or other device to perform surgical operations. Movement is driven by commands that are remotely received through the tele-operation station.

[0006] Each of said arms is an articulated structure comprising several members hinged to each other and rotatably mounted to the supporting structure. One example of robot arm architecture with articulated members is the robot known as Scara, with freedom of movement in the X and Y axes, although they are limited in their movements in the vertical axis Z, where simple and short-distance procedures are usually performed.

[0007] The limitations of these architectures are typically overcome through an intensive use of complex electronics and mechanisms in order to provide a robotic system suitable for minimally invasive surgery. This involves an undesirably costly robotic system due to complexity as a whole.

[0008] Document US2003208186 describes a robotic mechanism with three degrees of freedom comprising a supporting structure to which an arm is slidably attached vertically. The arm comprises a first member and a second member hinged to each other. The first member is in turn hinged to the supporting structure and by means of it a tool can be positioned. However, such architecture has the disadvantage that it does not allow the tool to be properly positioned in order to insert it by a surgical instrument (trocar).

[0009] Document U.S. Pat. No. 5,762,458 refers to a system for performing minimally invasive cardiac surgery procedures. This system comprises articulated arms adapted to handle a tool in space. Said arms have several degrees of freedom and, in one embodiment, they are provided with three motor driven joints (that can be driven in displacement and rotation), two passive joints and one motor driven joint that can be rotated for driving a tool placed at the arm end. This robotic system has the disadvantage that it does not allow for a fully effective positioning of the tool through the incision in the patient.

SUMMARY

[0010] A robotic system for laparoscopic surgery, particularly but not exclusively, for minimally invasive surgery is disclosed. The present robotic system has a substantially simpler construction than robotic systems used for the same purpose so far. In addition to the structural simplicity of the robotic system provided herein, the present robotic system for laparoscopic surgery has a particular architecture capable of properly positioning a tool, terminal organ or end effector, such as a gripper or device to perform surgical operations, with high mobility for being properly introduced through an incision in the patient.

[0011] The present robotic system for minimally invasive laparoscopic surgery comprises a supporting structure comprising a vertical column around which longitudinal axis arms can be rotated. The column may be mounted on a stationary platform that is preferably provided with wheels for ease of movement if necessary. One or more robotic arms are slidably attached vertically to the column. In the event that more than one robotic arm is provided on the supporting structure, said arms are attached such that they can be slidably displaced vertically in order to adjust their height from the ground and therefore allowing a surgical tool to be effectively positioned in a proper position.

[0012] Each of the arms of the robotic system comprises a first member and a second member. Both the first and second members are hinged to each other through a shaft or joint. On the other hand, the first member of the arm is rotatably mounted on the supporting structure and, in turn, said first member is adapted to be rotated about its longitudinal axis. Particularly, the first member of the arm is rotatably mounted on an extension integral with the supporting structure.

[0013] The second member of the robotic arm is adapted to receive a joint with at least two passive degrees of freedom at one end thereof for attaching a surgical tool or instrument. In the event that more than one robotic arm is provided, the arms can be rotated independently of each other around the longitudinal axis of the supporting structure. This architecture provides a significantly simplified assembly.

[0014] In some embodiments said joint having at least two degrees of freedom for attaching a tool may have three degrees of freedom, such as a gimbal-type joint. One-axis stability (usually in the axis of the tool or instrument direction) and spatial movement suitable for operations of the tool through the incision in the patient by introducing two passive degrees of freedom in the system are thus achieved.

[0015] Thus, the assembly is provided with a total of five degrees of freedom (four plus the supporting structure vertical displacement for positioning and manoeuvrability of the tool) so the tool can be always positioned in the direction

defined by the penetration site into the cavity made in the patient (for example, the abdominal cavity) through the trocar.

[0016] In one embodiment, the longitudinal axis of the first member of the robotic arm can be at least substantially perpendicular to the joint axis of the first member and the second member.

[0017] The second member of the arm may comprise two rods arranged substantially parallel to each other and separated by a distance suitable for providing therein and hinged thereto one end of the first member of the arm. This allows collision free rotation of the first and the second members of the robotic arm.

[0018] Other objects, advantages and features of the present robotic system for minimally invasive laparoscopic surgery will be apparent from the description of a preferred embodiment. This description is given by way of non-limitative example and it is illustrated in the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0019] In the drawings,

[0020] FIG. 1 is a diagram of a tele-operation system fitted with the present robotic system;

[0021] FIG. 2 is a perspective view of one embodiment of the present robotic system comprising a two-arm structure;

[0022] FIG. 3 is a perspective view of one embodiment of the present robotic system, and

[0023] FIG. 4 is a diagrammatic view of the kinematic chain of the robotic system where the degrees of freedom are shown.

DESCRIPTION OF ONE PREFERRED EMBODIMENT

[0024] A tele-operation system 100 for performing minimally invasive laparoscopic surgery is shown in the figures. The tele-operation system 100 comprises a workstation 110 having two robotic systems 200 according to one embodiment and a tele-operation station 120 for operation and control of the robotic system 200. The tele-operation station 120 includes a three-dimensional control system 130 for displaying the workplace scene with a desired magnification factor (zoom) and a perspective that can be controlled through the movements of one of the available arms.

[0025] The operator's control commands can be converted by the tele-operation station 120 into the operation of the robotic system 200 enhancing the manual operator's capabilities and operations can be controlled for more reliability. This allows the articulated robotic arms 210, 220 of the robotic system 200 to be gesturally operated and controlled through the movements of the operator's arms. The movements that the operator is capable to perform with his/her two hands can be applied to any of the arms 210, 220, at will, with the help of auxiliary actuating pedals (not shown). The robotic arms 210, 220 of the robotic system 200 (shown in FIG. 3) can be electrically actuated for locating and positioning each of the tools, terminal organs or end effectors 900 (such as grippers or surgical devices suitable for performing operations).

[0026] The link between tele-operation station 120 and the robotic system 200 is performed through a control unit 140. The control unit 140 is configured by a computer network that allow for real time control of the path of the robotic arms 210, 220 and positioning of surgical tools 900 controlled by the

arms 210, 220, so that they all times conform with the movements of the operator's commands. The control unit 140 also performs movement coordination in order to avoid collisions between the arms 210, 220, and monitoring and correcting of the paths thereof according to operator's predefined criteria. The control unit 140 allows the operation with floating reference axes, which are reset in position and orientation at the operator's will in order to facilitate operation of the task in the vertical field position, although the operation is performed within the abdominal capacity of the patient 600 in other positions. It also allows the scale factor to be changed in order to adjust centimetre movements in the actuation station into millimetre movements as necessary. Such unit 140 further allows restraints on the workload of each of the arms 210, 220 to be defined in order to increase safety of patient 600. Through the unit 140 it is also possible to display the usable working space of the arms 210, 220 in order to facilitate initial proper positioning thereof over the operating table 700 and over the patient 600.

[0027] The signal 150 received from the tele-operation station 120 through magnetic position sensors 450 provides information 460 about the paths of the tools 900. Other position detection means, such as potentiometric or inertial sensors are also possible. This allows operator's movement capability to be facilitated as well as the mechanical constraints of most common 6D actuators to be avoided. A control 640 of the robotic system 200 and a control 650 of the tools 900 as well as a control 660 to avoid collisions are thus made possible.

[0028] The workstation 110 comprises one or more robotic system 200 according to one embodiment. FIG. 3 shows one of said robotic systems 200 in detail. As it can be seen, each robotic system 200 comprises two arms 210, 220 mounted on a common supporting structure 230. Each arm 210, 220 has a load capacity such that forces up to 2.5 Kg can be applied and it is adapted to operate alongside the operating table 700, on either side thereof, or simultaneously using both of them, one on each side of the operating table 700. The arms 210, 220 of the robotic system 200 can be moved in space to cover an appropriate minimum working volume. The working volume is defined by a set of points where the tool 900 of each arm 210, 220 can be positioned, and corresponds to the volume enclosed by the surfaces determined by the points accessed by the tool 900 with its structure fully extended and fully retracted. In the structure of the embodiment, the minimum working volume corresponds to a hemisphere of radius 50 cm arranged centred on the same fixed centre but adjustable in height, and with accuracies of better than 1 mm.

[0029] In the embodiment shown in FIGS. 2 and 3, the supporting structure 230 comprises a vertical column 235 fixed on a platform 240 having lockable wheels 245 for ease of movement. The platform 240 comprises a lower section 250 and two upper sections 260, 270, rotatably mounted to each other and to the lower section 250. The lower portion 250 of the supporting structure 230 is secured to the platform 240 for holding the robotic system 200 during operation. The upper sections 260, 270 of column 235 are mounted so that they can slide vertically according to the vertical direction indicated at D, that is, substantially perpendicular to the platform 240 of the supporting structure 230. The vertical linear displacement D of the upper sections 260, 270 allows the height of the robotic arms 210, 220 to the ground to be adjusted independently and thus the proper positioning of the tool 900.

[0030] For simplicity in the description the structure of one of the arms **210** of the robotic system **200** will be described below, although it will be understood that each of said arms **210, 220** has the same or a technically equivalent configuration.

[0031] The robotic arm **210** of the system described according to one embodiment comprises two members **300, 400** hinged to each other.

[0032] The first member **300** is an elongated body that is mounted on the supporting structure **230** so that it can be rotated about a longitudinal axis **L1** of the first member **300**. More specifically, this first member **300** is rotatably mounted on an extension **265** integral with the upper section **260** (the other robot arm **220** is rotatably mounted on the extension **275** corresponding to the upper section **270**). The first member **300** can be thus rotated relative to the extension **265** of the upper section **260** of the robotic arm **210** around the longitudinal axis **L1** and both arms **210, 220** can be rotated independently around the longitudinal axis **L3** of the supporting structure **230**, that is, the column **235**.

[0033] The second member **400** of the robotic arm **210** is hinged to the first member **300** of the robotic arm **210** via a joint **280** so that they can be rotated about an axis **L2**, as it can be seen in FIG. 3. The longitudinal axis **L1** of the first member **300** is substantially perpendicular to the axis **L2** of the joint **280** of the first member **300** and the second member **400**.

[0034] As it can be seen, the second articulated member **400** is formed with two rods **410, 420**, which in the embodiment of the figures has an elliptical cross section. It will be understood, however, that the two rods **410, 420** may have other different geometries. The two rods **410, 420** are arranged parallel to each other spaced at a given distance in order to allow the second member **400** to be joined to one end of the first member **300** while preventing both members **300, 400**, of the arm **210** from colliding with each other when rotating around axis **L2** of the joint **280** arranged on a common end of both rods **410, 420** of the arm **210**.

[0035] The opposite end **500** of both rods **410, 420** of the arm **210** is adapted for attaching of a surgical tool or instrument **900** through a pivot axis **L4**. The pivot axis **L4** avoids collisions between the tool **900** and the rods **410, 420** of the second member **400** of the arm **210, 220**. A mechanical joint **550** is provided at end **500** which allows the positioning of the tool **900** within the working space to be controlled in an appropriate manner for the operations through the incision in the patient **600**. This mechanical joint **550** is a joint having two or more degrees of freedom adapted for attaching of the surgical tool or instrument **900**. In the embodiment of the figures, the mechanical joint **550** is a joint having three degree of freedom, such as a gimbal-type joint. This allows two additional passive degrees of freedom to be introduced as well as one-axis stability (usually the positioning axis of tool **900**) to be provided. The tool **900** can be therefore positioned always in a direction defined by the penetration site **950** into the cavity performed in the patient **600** (e.g. abdominal cavity), as shown in FIG. 4.

[0036] A manual adjustment fastening member for the trocars may be provided. This fastening member comprises a suspension member that may be manually attached to the supporting structure **230**. At one end thereof two elements secured to this suspension member are supported through two

manually lockable ball joints that allow the respective trocars to be fastened through a gimbal-type joint for reducing efforts performed with the surgical instrument or tool **900** on the patient's abdomen **600**.

[0037] FIG. 4 schematically shows the kinematic chain of the mechanical structure of one embodiment of the present robotic system **200**. As shown, each arm **210, 220** of the system **200** is an open kinematic chain of the D-G-G-G-G+ gimbal type with five degrees of freedom allowing for relative movement of the different elements **235, 300, 400, 900** between each two consecutive links of the structure.

[0038] Apart from the prismatic joint (vertical translational movement **D**), the four joints according to axes **L1, L2, L3** and **L4** are motor driven with the displacement **D** being shared by the two arms **210, 220**.

[0039] Although embodiments of the present robotic system have been described in the specification and illustrated in the accompanying drawings, the robotic system is susceptible of several changes without departing from the scope of protection defined in the following claims.

1. A robotic system for laparoscopic surgery comprising:
a supporting structure; and,
at least one arm; the at least one arm being slidably attached
to said supporting structure, said at least one arm comprising:
a first member and
a second member;
the first and second members being hingedly joined to
each other, and,
the first member being rotatably hinged on the support-
ing structure, and,
the first member is being adapted to be rotated around a
longitudinal axis of the first member and
the second member is being adapted to receive a joint
having at least two degrees of freedom for attaching a
tool.

2. A robotic system as claimed in claim 1, wherein said longitudinal axis of the first member is at least substantially
perpendicular to a joint axis for the hinged joining of the first
member and the second member to each other.

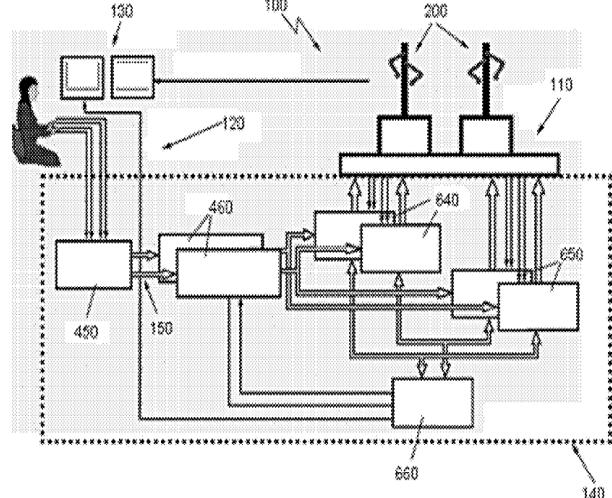
3. A robotic system as claimed in claim 1, wherein the supporting structure comprises a vertical column having a vertical column longitudinal axis around which vertical column longitudinal axis the at least one arms can be rotated.

4. A robotic system as claimed in claim 1, wherein the joint having at least two degrees of freedom for attaching a tool is a gimbal-type joint.

5. A robotic system as claimed in claim 1, wherein the second member consists of two parts to which the first mem-
ber of the arm is hinged.

6. A robotic system as claimed in claim 1 comprising at
least two of said at least one arms each of said at least two
arms being hinged on said supporting structure.

7. A robotic system as claimed in claim 6, wherein said at
least two arms can be rotated independently of each other
around the longitudinal axis of the supporting structure.


8. A robotic system as claimed in claim 1, wherein the first
member is rotatably mounted on an extension integral with
the supporting structure.

* * * * *

专利名称(译)	腹腔镜手术机器人系统		
公开(公告)号	US20120136372A1	公开(公告)日	2012-05-31
申请号	US13/321802	申请日	2010-05-20
[标]申请(专利权)人(译)	加泰罗尼亚理工大学		
申请(专利权)人(译)	UPC		
当前申请(专利权)人(译)	UPC		
[标]发明人	AMAT GIRBAU JOSEP CASALS GELPI ALICIA FRIGOLA BOURDON MANEL		
发明人	AMAT GIRBAU, JOSEP CASALS GELPI, ALICIA FRIGOLA BOURDON, MANEL		
IPC分类号	A61B19/00		
CPC分类号	A61B2019/2223 A61B19/2203 A61B34/37 A61B34/30		
优先权	2009001313 2009-05-22 ES		
其他公开文献	US9119653		
外部链接	Espacenet USPTO		

摘要(译)

它包括支撑结构，其中至少一个臂可滑动地连接。每个臂包括彼此铰接的第一和第二构件。第一构件可旋转地铰接到支撑结构，并且第一构件可绕纵向轴线旋转，第二构件可接收具有至少两个自由度的接头，用于附接工具。第一构件的纵向轴线基本垂直于将第一构件和第二构件彼此连接的轴线。获得了简化的结构，允许工具保持臂的精确和有效的空间移动。

