

US 20120059275A1

(19) **United States**

(12) **Patent Application Publication**
Fagin et al.

(10) **Pub. No.: US 2012/0059275 A1**
(43) **Pub. Date: Mar. 8, 2012**

(54) **METHOD FOR LAPAROSCOPIC NERVE DETECTION AND MAPPING**

(75) Inventors: **Randy Fagin**, Austin, TX (US); **Jon Schiff**, Austin, TX (US); **Jann Bonfils-Rasmussen**, Leander, TX (US)

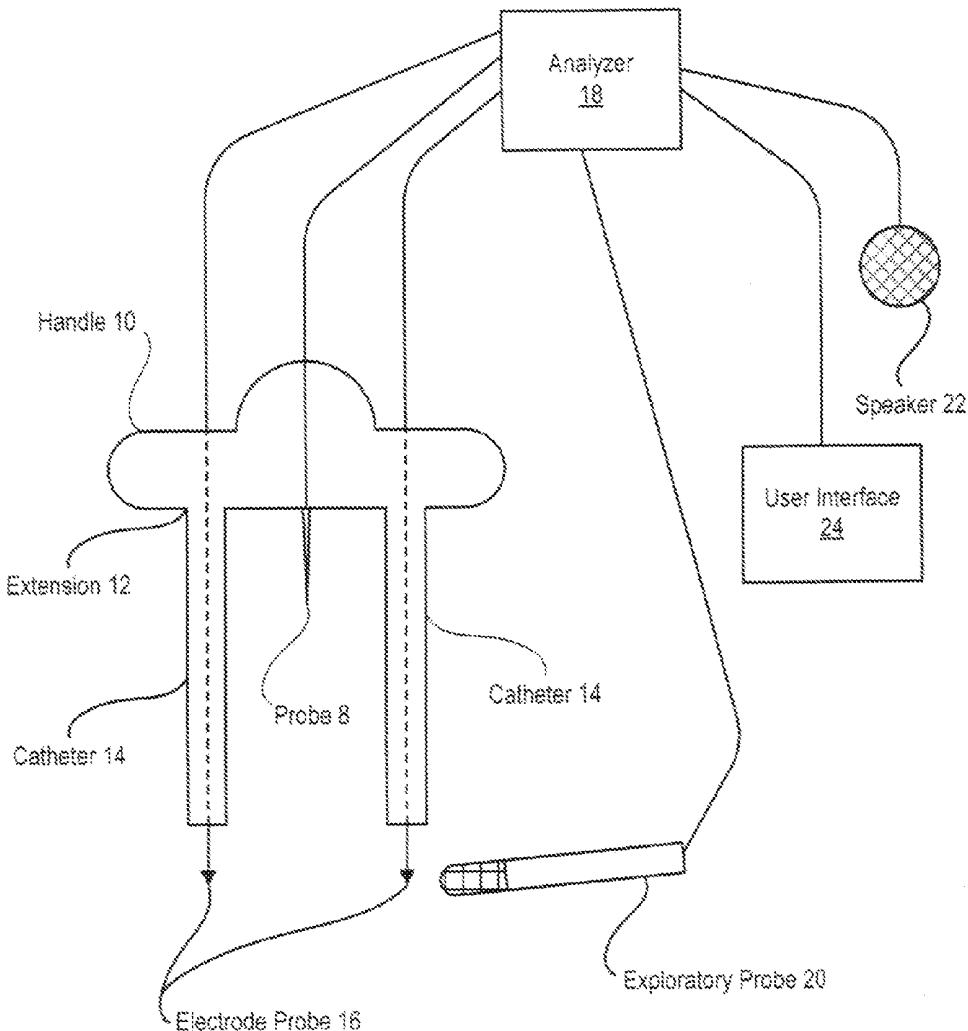
(73) Assignee: **ProPep Surgical, LLC**, Austin, TX (US)

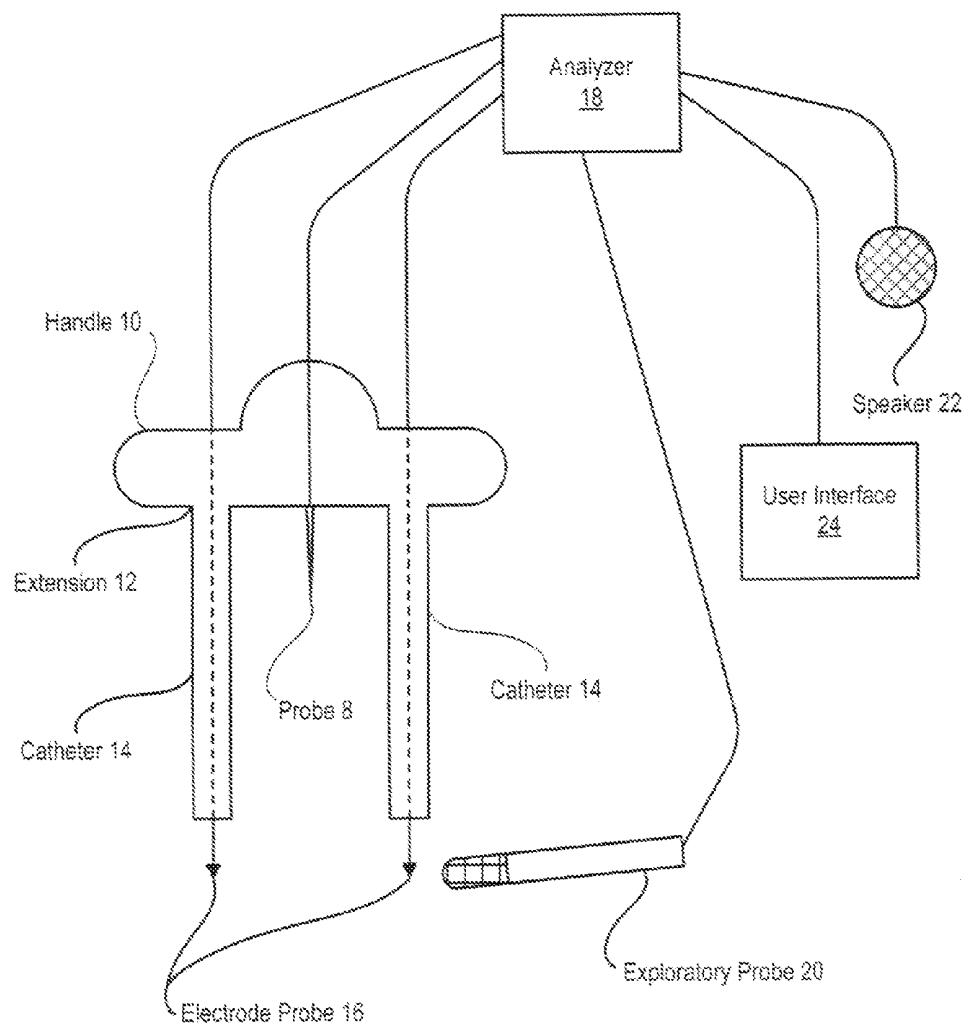
(21) Appl. No.: **13/290,035**

(22) Filed: **Nov. 4, 2011**

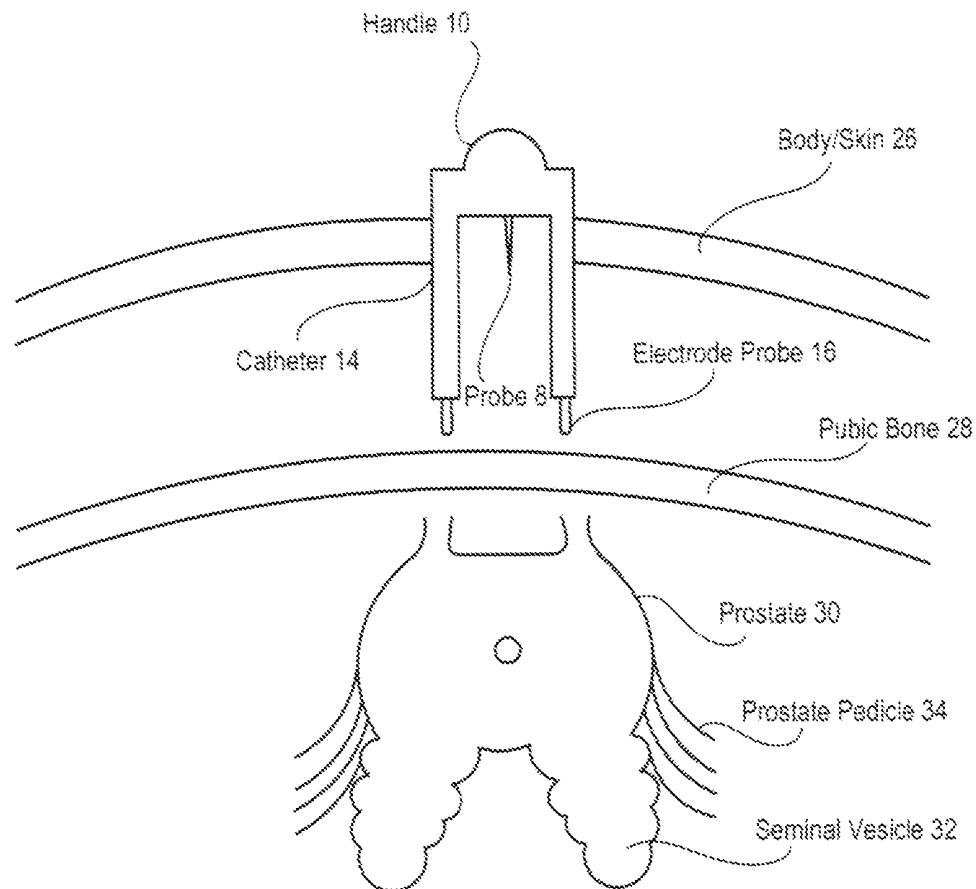
Related U.S. Application Data

(62) Division of application No. 11/745,505, filed on May 8, 2007, now Pat. No. 8,083,685.

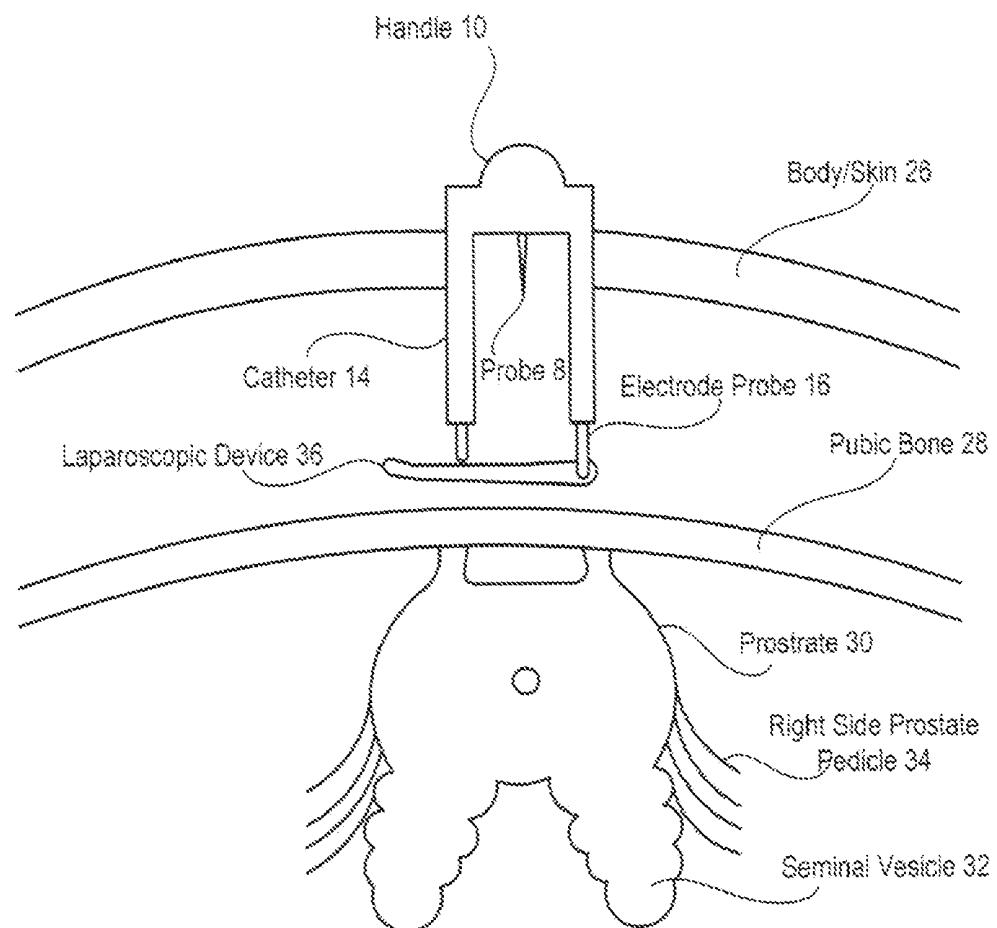

Publication Classification

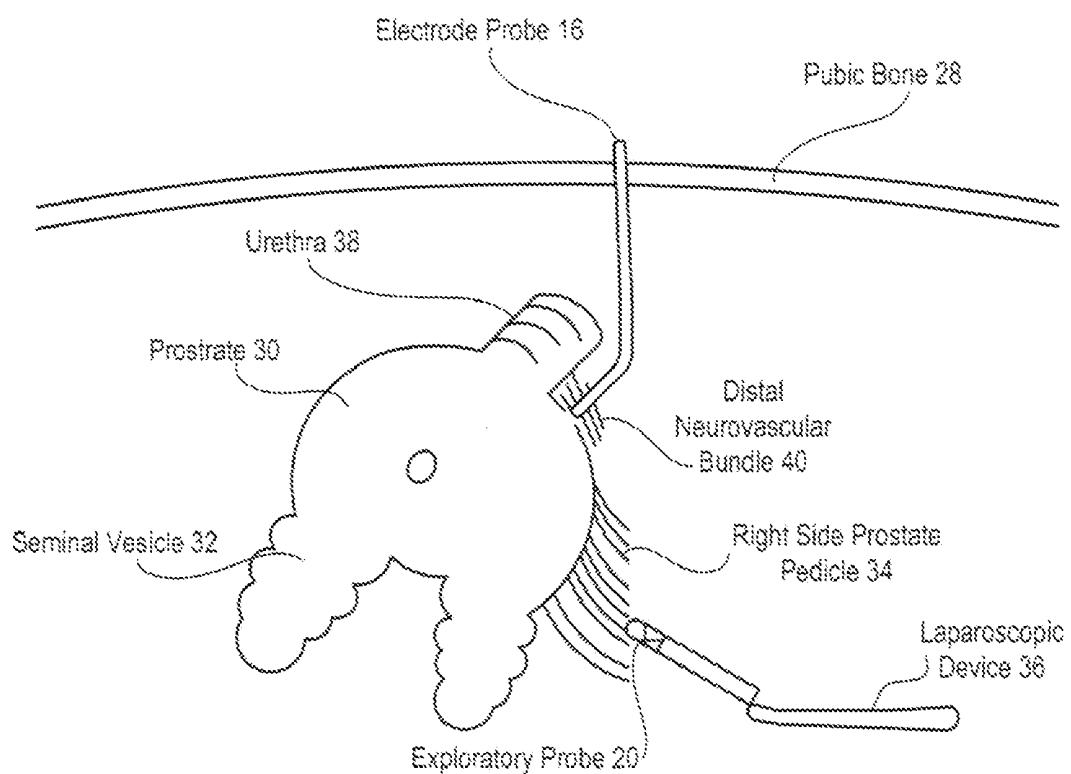

(51) **Int. Cl.**
A61B 5/053 (2006.01)

(52) **U.S. Cl.** **600/547**


(57) **ABSTRACT**

A surgical method aids identification of nerves in a body to help prevent damage to the nerves during surgery to the body proximate the nerves. An electrode introduced to within a body cavity through a catheter is placed proximate a nerve within the body cavity by a laparoscopic or robotic device. An exploratory probe placed in the body cavity is selectively placed along a presumed pathway of the nerve to provide an electrical signal through the nerve to the electrode. An analyzer interfaced with the electrode analyzes the electrical signal received at the electrode to determine the proximity of the exploratory probe to the nerve, allowing mapping of the nerve pathway through the body cavity.




Figure 1

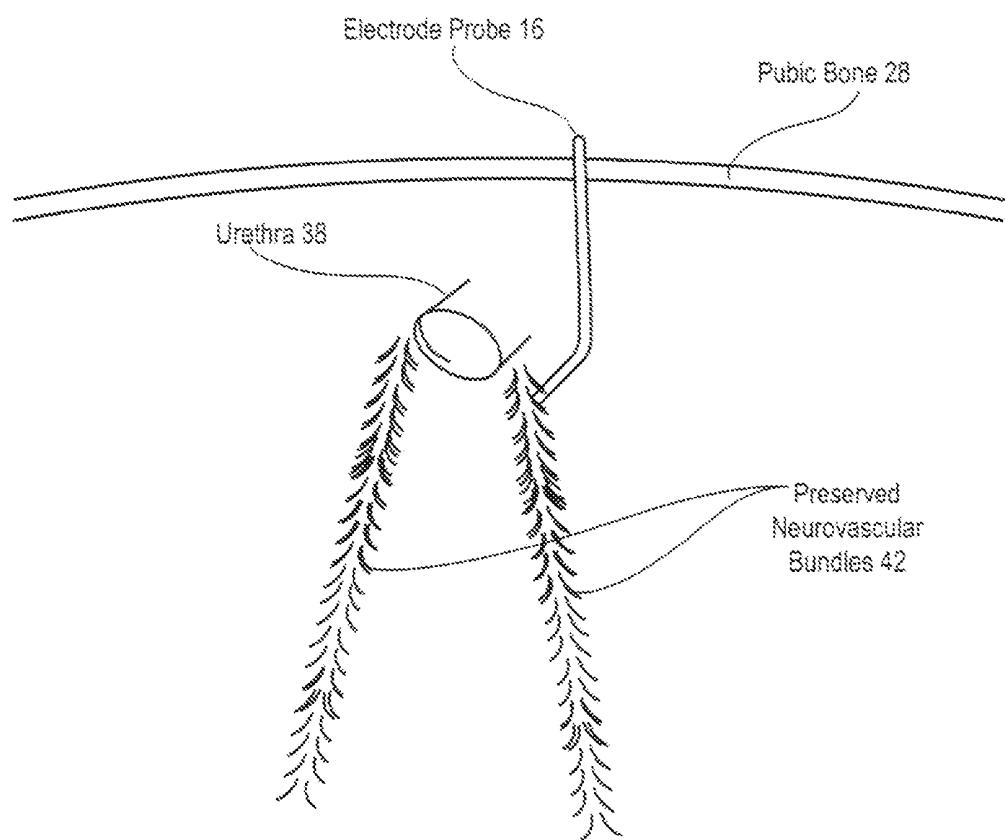

Figure 2

Figure 3

Figure 4

Figure 5

METHOD FOR LAPAROSCOPIC NERVE DETECTION AND MAPPING

CROSS REFERENCE TO RELATED APPLICATION

[0001] This application is a divisional patent application which relies upon and claims the benefit of the filing date of pending application U.S. Ser. No. 11/745,505, System and Method of Laparoscopic Nerve Detection, filed May 8, 2007.

BACKGROUND OF THE INVENTION

[0002] 1. Field of the Invention

[0003] The present invention relates in general to the field of laparoscopic surgery, and more particularly to a method for detection and mapping of internal nerve tissue.

[0004] 2. Description of the Related Art

[0005] Traditionally, surgery on internal body parts is performed by cutting an incision in the skin to access the internal body parts. Such open surgery entails a number of known risks including infection, inadvertent damage to other organs and structures, scarring, and loss of blood. In an effort to reduce some of these risks and improve patient outcomes surgeons have developed laparoscopic, and more recently robotic, techniques to perform surgery. Robotic surgery is essentially an advanced type of laparoscopic surgery in which the arms that enter the body cavity are robotically controlled instead of manually controlled. During a laparoscopic or robotic surgery, small incisions are made in the skin through which 5-12 millimeter access ports are placed. These ports serve as doorways through which small working instruments and a camera can be placed. The camera creates a magnified view of the internal organs that the surgeon sees on a monitor or console. Such less invasive laparoscopic and robotic surgeries typically have reduced side effects for the patient to allow a more rapid and complete recovery.

[0006] One example where laparoscopic and robotic surgery has gained acceptance with positive results is for the accomplishment of a radical prostatectomy. Conventionally, a radical prostatectomy is performed by cutting an incision at the base of the pelvic bone to gain access to the prostate. Once visible, the prostate is cut from the surrounding tissue and removed. Because the area around the prostate is rich in nerves and muscles that support sexual and urinary functions, a radical prostatectomy can cause severe side effects, including sexual dysfunction and incontinence. For example, up to half of conventionally-performed radical prostatectomies result in permanent erectile dysfunction. In contrast, a radical laparoscopic or robotic prostatectomy has the potential for far fewer side effects. In part, laparoscopic and robotic prostatectomies tend to have fewer side effects because the procedure affords the surgeon improved vision and in the case of robotics in particular, more dexterous tools as well. In the case of robotic surgery the improved vision and dexterity of the tools permits a skilled surgeon to better preserve sexual function nerves with as few as ten per cent of patients being impotent as a result.

[0007] Although laparoscopic and robotic surgery has shown promising potential in reducing erectile dysfunction as a side effect of prostate gland removal, erectile dysfunction does still occur. In some instances, erectile dysfunction after a laparoscopic or robotic prostatectomy cannot be prevented due to Wallerian degeneration of nerves after even a slight injury. However, in some cases erectile dysfunction results

from inadvertent damage done to the neurovascular bundle (NVB) that supports erectile function because the NVB is not where the surgeon expects. Direct visualization and appearance of the presumed NVB has not traditionally been a good indicator of preserved erectile nerves. The NVB travels from the base of the prostate where it joins with the bladder, to the apex (the portion where the urethra enters the penis). These nerves travel on opposing sides in a symmetrical fashion on the outside of the prostate capsule on its undersurface at the four and eight o'clock positions. Previous attempts at nerve monitoring, during radical prostatectomy used electrical stimulation along the NVB with measurement of the signal in the cavernous bodies via a measurement of intracavernous pressures, i.e., muscle response to electrical stimulation. This method is not time efficient and recent studies have indicated that outcomes are inconsistent with the intraoperative findings.

SUMMARY OF THE INVENTION

[0008] Therefore a need has arisen for a rapid and precise system and method which aids in the detection and mapping of nerves during laparoscopic surgery.

[0009] In accordance with the present invention, a system and method are provided which substantially reduce the disadvantages and problems associated with previous methods and systems for performing laparoscopic surgery with reduced risk of damage to internal nerves, such as laparoscopic prostate removal with reduced risk of damage to erectile nerves. A probe inserted through the body surface with a catheter and into a body cavity is accessible by a laparoscopic device for placement proximate a nerve. A second probe placed along a presumed pathway of the nerve completes an electrical circuit with the first probe through the nerve so that an electrical signal communicates between the probes. Analysis of the electrical signal supports mapping of the approximate nerve pathway through the body cavity.

[0010] More specifically, a handle has first and second catheters, the catheters providing a path for inserting first and second electrode probes through a body and into a body cavity. The electrode probes extend through the catheter and into the body cavity to be accessible for manipulation by a laparoscopic or robotic device. The laparoscopic or robotic device extends the electrode probe into the body cavity for coupling proximate a selected nerve. Through a laparoscopic channel an exploratory probe is placed at various locations along a presumed nerve pathway, the exploratory probe applying a predetermined electrical signal that travels through the nerve to the electrode probe. An analyzer interfaces with the electrode probe provides an indication of the proximity of the exploratory probe to the nerve, such as an audible sound or visually-depicted signal that varies in intensity with the intensity of the electrical signal received at the electrode probe. Placement of the exploratory probe at various points along the presumed nerve pathway allows a mapping of the approximate actual nerve pathway by noting the points at which the electrical signal is relatively strongest. Being able to avoid the approximated nerve pathway while dissecting within the body cavity helps to reduce the risk of nerve damage.

[0011] The present invention provides a number of important technical advantages. One example of an important technical advantage is that nerve pathways internal to the body are detectable during laparoscopic and robotic surgery to help the surgeon avoid inadvertent damage to the nerves. Detection of

nerve pathways is rapid and precise by variable signals, such as an audible tone or visual signal that reflect the proximity of a probe to the nerve pathway. Monitoring of nerve pathways is made possible throughout a surgical procedure with readily accessible probes managed with laparoscopic or robotic tools. Probe pairs provide convenient monitoring where nerves serve an area of interest, such as the pair of NVBs that travel from the four and eight o'clock positions under the prostate gland.

[0012] Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] The present invention may be better understood, and its numerous objects, features and advantages made apparent to those skilled in the art by referencing the accompanying drawings. The use of the same reference number throughout the several figures designates a like or similar element.

[0014] FIG. 1 depicts one embodiment of a system for identifying nerve pathways within a body cavity;

[0015] FIG. 2 depicts insertion of a dual electrode probe with a dual catheter through a body surface and into a body cavity;

[0016] FIG. 3 depicts positioning of an electrode probe with a laparoscopic device to couple to the body within the body cavity proximate a nerve;

[0017] FIG. 4 depicts an exploratory probe providing an electrical current along a presumed pathway of the nerve to map the nerve pathway;

[0018] FIG. 5 depicts a postoperative position of the nerve pathway after removal of a prostate gland.

DETAILED DESCRIPTION

[0019] Selectively applying electrical current through a nerve within a body cavity allows a surgeon to map the position of the nerve's pathway through the body cavity. By having an approximate map of the nerve pathway, the surgeon is able to dissect regions of the body near the nerve with a reduced risk of damage to the nerve. Thus, for instance, cancerous portions of the body are surgically removed by selecting dissection points as distal to the nerve as is practical. One example of a dissection presented below is the dissection of a prostate gland from within the abdominal cavity using laparoscopic or robotic techniques. Identification of the neuromuscular bundle (NVB) that supports erectile function helps to preserve those nerves that support erectile function after removal of the prostate gland. Repeated probing along the presumed pathway of the NVB proximate to the prostate gland maps the approximate location of the NVB, allowing the surgeon to select dissection points that reduce the risk of damage to the NVB. Although a prostate dissection is presented as an exemplary use of the mapping of a nerve pathway through a body cavity, other types of surgeries may benefit from application of the disclosed laparoscopic nerve mapping procedure. In addition, the use of electrode probes supports mapping of nerve pathways that are sometimes found both inside and outside of the body's skin surface.

[0020] Referring now to FIG. 1, one embodiment of a system for identifying nerve pathways within a body cavity is depicted. A handle 10 has a probe 8 and two extensions 12, each extension having an integrated catheter 14. Handle 10 and catheters 14 provide a pathway for travel of an electrode probe 16 exposed at the end of each catheter 14. Electrode probes 16 are interfaced through a wire or other communication device with an analyzer 18 so that electrical signals, such as voltage and current levels, detected at each electrode probe are communicated to analyzer 18. Probe 8 provides patient grounding when catheters 14 are inserted into the body by interfacing with analyzer 18 through a ground wire. Analyzer 18 interfaces with an exploratory probe 20 and selectively sends a predetermined electrical signal to exploratory probe 20, such as a predetermined current. The electrical signal is passed by exploratory probe 20 to the body of a surgery subject proximate a presumed nerve pathway and received by an electrode probe 16 coupled to the body at a point also proximate the presumed nerve pathway. Because nerve tissue conducts an electrical current better than other body tissues, the relative strength of the electrical signal recorded at an electrode probe 16 will increase as exploratory probe 20 is placed closer to the nerve to which the electrode probe 16 is proximately coupled. Thus, by moving exploratory probe 20 along the presumed nerve pathway, analyzer 18 approximately maps the actual nerve pathway based upon the strength of the signal recorded at electrode probe 16 for each position of exploratory probe 20.

[0021] The surgical system depicted by FIG. 1 is built from material adapted for use by laparoscopic and robotic devices to support mapping of nerve pathways through a body cavity. For example, handle 10, catheters 16 and electrode probes 16 are built as an integrated unit for one time use and disposal. For instance, handle 10 is formed from non-conductive hard plastic and catheters 14 are integrated in the handle housing and made of Teflon-coated stainless steel. Electrode probes 16 are thin, insulated wires which have a length sufficient to reach the desired area within the body cavity when grabbed by a laparoscopic or robotic device and pulled from the end of catheter 14 to the desired area. As an example of dimensions that suffice for a prostatectomy, the cannula length of catheters 14 extending from handle 10 is approximately between 45 mm and 65 mm and the distance between the cannula lengths of catheters 14 is approximately 20 mm. Electrode probes 16 are, for example, recording electrodes suitable for manipulation by a laparoscopic robotic arm under direct laparoscopic vision, such as with an extendable length of approximately 50 cm from the end of catheter 14. Analyzer 18 interfaces with a speaker 22, which outputs an auditory signal having an interval and intensity related to the strength of the electrical response detected at electrode probe 16. Thus, for example, a surgeon maps a nerve pathway by listening to the intensity of the auditory response output at speaker 22 and comparing the auditory responses of different positions of exploratory probe 20. Alternatively, a user interface 24 provides visual analysis of the nerve pathway as well as control over the signal provided at exploratory probe 20.

[0022] Referring now to FIG. 2, insertion of a dual electrode probe with a dual catheter through a body surface and into a body cavity is depicted. Handle 10 engages the body skin 26 to insert catheters 14 into the abdominal cavity suprapublicly. Catheters 14 provide a pathway through body skin 26 to provide access to electrode probes 16 within an abdominal cavity. The pubic bone 28 sits above the prostate 30 and

seminal vesicles 32 within the abdominal cavity. Dissection of prostate 30 requires cutting at the prostate pedicle 34 through which neurovascular bundles (NVBs) travel that support erectile function. During laparoscopic or robotic surgery, laparoscopic devices or robotic devices, such as robotic arms, are inserted into the abdominal cavity to allow dissection of prostate 30.

[0023] Referring now to FIG. 3, positioning of an electrode probe with a laparoscopic device to couple to the body within the body cavity proximate a nerve is depicted. Each catheter 14 allows safe insertion of self-contained recording electrode probe 16 where the probes 16 are visible to laparoscopic vision while simultaneously grounding the body through probe 8. Under direct laparoscopic vision, a laparoscopic device or robotic device 36 grabs electrode probe 16 to move probe 16 to a desired location proximate a nerve of interest. Laparoscopic device 36 advances the probe 16 on the right hand side to a position proximate the NVB on the right hand side of prostate 30 and advances the probe 16 on the left hand side to a position proximate the NVB on the left hand side of prostate 30. Probes 16 temporarily couple to the body so that they remain in position until removed by laparoscopic device 36.

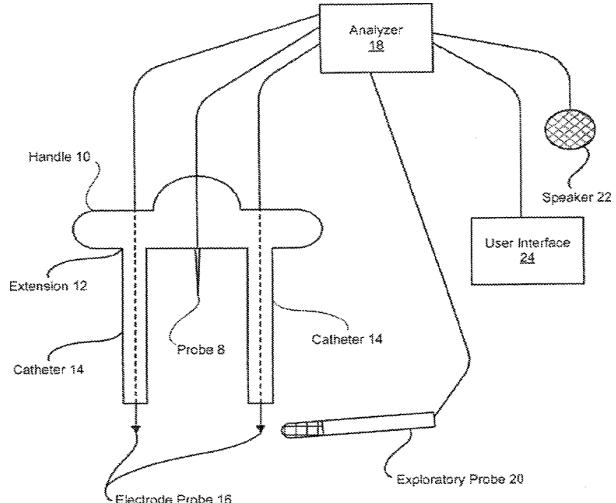
[0024] Referring now to FIG. 4, an exploratory probe 20 providing an electrical current along a presumed pathway of the nerve to map the nerve pathway is depicted. Electrode probe 16 attaches at the apex of prostate 30 near where the urethra enters the penis. The position at the apex of prostate 30 is a consistent position for the distal NVB just before it enters into the penis. Electrode probe 16 is of appropriate length to attach at the apex of prostate 30 and is pre-fabricated into handle 10 and catheter 14 to make connection of the recording probe to the body simple and reliable. Once probe 16 is connected to the body at the consistent location of the NVB, electrical stimulation is achieved by delivering a low stimulation current through an exploratory probe 20, such as a laparoscopic or robotic bipolar instrument. The NVB (e.g. erectile nerves) is stimulated more or less depending on the proximity of the exploratory probe. Initial searching for the nerve is performed at relatively high stimulus intensities, such as about 3.5 milliamp, or even possibly as high as 10 milliamp of current. Searching is performed by placing exploratory probe 20 at several places around the presumed pathway of the nerve and listening for an auditory response from the speaker as well as a visual confirmation on user interface 24 as provided by analyzer 18 that reflects the strength of the electrical signal received at probe 16. Once the nerve's general pathway is mapped, the stimulus intensity provided at exploratory probe 20 is reduced, such as to a level of one-half a milliamp, to map the nerve's location more precisely.

[0025] Referring now to FIG. 5, a postoperative position of the nerve pathway after removal of a prostate gland is depicted. Throughout dissection of the prostate, exploratory probe 20 is used to re-map and confirm the position of the preserved NVB 42. The objective is to confirm the location of the NVB so that tissue may be selectively preserved or removed depending on the aggressiveness of the cancer. Although the example presents preservation of nerves in the NVB during a prostatectomy, other types of nerves may be identified and preserved within the abdominal cavity or other body cavities.

[0026] As various modifications could be made to the exemplary embodiments, as described above with reference

to the corresponding illustrations, without departing from the scope of the invention, it is intended that all matter contained in the foregoing description and shown in the accompanying drawings shall be interpreted as illustrative rather than limiting. Thus, the breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims appended hereto and their equivalents.

What is claimed is:


1. A method for identifying an internal nerve pathway within a body cavity, the method comprising:
inserting a first probe into the body cavity through a catheter;
placing the first probe proximate to the nerve within the body cavity;
selectively placing a second probe proximate to the nerve;
running an electrical signal along the nerve between the first and second probes; and
analyzing the electrical signal to identify the nerve pathway within the body cavity.
2. The method of claim 1 wherein the body cavity comprises an abdominal cavity and wherein inserting a first probe further comprises inserting the first probe into the abdominal cavity suprapublicly.
3. The method of claim 2 wherein placing the probe proximate to the nerve further comprises placing the probe with a laparoscopic device disposed in the body cavity.
4. The method of claim 3 wherein placing the probe proximate to the nerve further comprises placing the probe at a neurovascular bundle proximate to the apex of a prostate gland.
5. The method of claim 4 wherein selectively placing a second probe further comprises:
placing the second probe at a first position;
placing the second probe at a second position; and
comparing the analyzed electrical signal at the first and second positions to determine whether the first or second position is closer to the nerve.
6. The method of claim 3 wherein the laparoscopic device comprises a robotic device.
7. The method of claim 1 wherein running an electrical signal further comprises:
running a first electrical current having a first intensity to identify a first nerve pathway; and
running a second electrical current having a second intensity of less than the first intensity along the identified nerve pathway to further identify the nerve pathway.
8. The method of claim 7 wherein the first electrical current comprises approximately at least 3.5 milliamp and the second electrical current comprises approximately one-half of one milliamp.
9. The method of claim 1 further comprising:
dissecting an area within the body cavity proximate to the nerve by reference to the identified nerve pathway.
10. The method of claim 1 wherein analyzing the electrical signal to identify the nerve pathway within the body cavity further comprises emitting an audible sound indicating the amount of current flowing between the first and second probes.

* * * * *

专利名称(译)	腹腔镜神经检测和映射的方法		
公开(公告)号	US20120059275A1	公开(公告)日	2012-03-08
申请号	US13/290035	申请日	2011-11-04
[标]申请(专利权)人(译)	PROPEP手术		
申请(专利权)人(译)	PROPEP手术 , LLC		
当前申请(专利权)人(译)	PROPEP手术 , LLC		
[标]发明人	FAGIN RANDY SCHIFF JON BONFILS RASMUSSEN JANN		
发明人	FAGIN, RANDY SCHIFF, JON BONFILS-RASMUSSEN, JANN		
IPC分类号	A61B5/053		
CPC分类号	A61B5/04001 A61B2019/2211 A61B19/2203		
其他公开文献	US10045704		
外部链接	Espacenet USPTO		

摘要(译)

外科手术方法有助于识别身体中的神经，以帮助防止在靠近神经的身体手术期间对神经的损害。通过导管引入体腔内的电极通过腹腔镜或机器人装置放置在体腔内的神经附近。放置在体腔中的探针探针沿着假定的神经通路选择性地放置，以通过神经向电极提供电信号。与电极接口的分析仪分析在电极处接收的电信号以确定探测探针与神经的接近度，允许神经通路穿过体腔。

