

(11)

EP 2 316 361 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention
of the grant of the patent:
10.07.2013 Bulletin 2013/28

(51) Int Cl.:
A61B 17/34 (2006.01)

(21) Application number: **11154547.1**

(22) Date of filing: **13.05.2003**

(54) **Cone tip obturator**

Obturator mir Kegelspitze

Obturateur à pointe conique

(84) Designated Contracting States:
DE FR GB

• **Wixey, Matthew A.**
Dana Point, CA 92629 (US)

(30) Priority: **16.05.2002 US 381469 P**

(74) Representative: **Fitchett, Stuart Paul**
Saunders & Dolleymore LLP
European Patent Attorneys
9 Rickmansworth Road
Watford
WD18 0JU (GB)

(43) Date of publication of application:
04.05.2011 Bulletin 2011/18

(56) References cited:
WO-A-00/54648 WO-A-96/10361
WO-A-03/026512 US-A- 3 817 251
US-A- 5 342 382 US-A- 5 662 673
US-A- 5 817 061

(62) Document number(s) of the earlier application(s) in
accordance with Art. 76 EPC:
03753017.7 / 1 503 677

(73) Proprietor: **Applied Medical Resources**
Corporation
Rancho Santa Margarita, CA 92688 (US)

(72) Inventors:
• **Taylor, Scott**
Mission Viejo, CA 92692 (US)

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

DescriptionBackground of the InventionField of the Invention

[0001] This invention generally relates to trocar systems including obturators and, more specifically, to blunt cone tip obturators.

Discussion of the Prior Art

[0002] Trocar systems have been of particular advantage in facilitating less invasive surgery across a body wall and within a body cavity. This is particularly true in the case of the abdominal surgery where trocars have provided working channels across the abdominal wall to facilitate the use of instruments within the abdominal cavity.

[0003] The trocar systems of the past typically include a cannula, which defines the working channel, and an obturator which is used to place the cannula across the abdominal wall. The obturator is inserted into the working channel of the cannula and then pushed through the abdominal wall with a penetration force of sufficient magnitude to result in penetration of the abdominal wall. Once the cannula is in place, the obturator can be removed.

[0004] In the past, obturators have been developed with an intent to provide a reduction in the force required for penetration. Sharp blades have typically been used to enable the obturator to cut its way through the abdominal wall. While the blades have facilitated a reduced penetration force, they have been of particular concern once the abdominal wall has been penetrated. Within the abdominal cavity, there are organs which need to be protected against any puncture by an obturator.

[0005] In some cases, shields have been provided with the obturators in order to sense penetration of the abdominal wall and immediately shield the sharp blades.

[0006] These shielding systems have been very complex, have required a large amount of time to deploy, and have generally been ineffective in protecting the organs against the sharp blades.

[0007] Blunt-tip obturators have been contemplated with both symmetrical and asymmetrical designs. While the blunt tip tends to inhibit damage to interior organs, it also tends to increase the penetration force associated with the obturator. Thus, there is a need in the art for an improved bladeless obturator that reduces the force required to place the obturator across the abdominal wall.

[0008] Document WO-03/026512 which is a document falling under Article 54(3) EPC discloses a bladeless obturator. Document WO-00/54648 discloses an obturastor having a conical tip with side blades and a blunt end.

Summary of the Invention

[0009] In accordance with the present invention, there

is provided a surgical obturator adapted to penetrate at least two consecutive layers of muscle tissue including a first layer of muscle tissue having fibers oriented in a first direction and a second layer of muscle tissue having fibers oriented in a second direction, the obturator comprising: an elongate shaft extending along an axis between a proximal end and a distal end; and a bladeless tip disposed at the distal end of the shaft; the tip having an outer surface extending distally to a blunt end (62);

the outer surface including a pair of side surfaces separated by intermediate surfaces defining a rectangle in radial cross-sections of the tip; wherein the outer surface is configured such that the rectangle at the distal end of the tip is in a more parallel alignment with the second direction of orientation of fibers of the second layer of muscle tissue after penetration of the first layer of muscle tissue along the first direction of orientation of fibers, characterized in that the outer surface further includes a conical surface extending distally to the blunt end.

[0010] The blunt tip obturator of the invention is similar to that described in international application No. PCT/US02/06759, published as WO-03/026512, but further including a cone at its distal tip with conical surfaces extending distally to the blunt end, the cone having characteristics that reduce the force required to penetrate the abdominal wall. The addition of the cone also reduces the tendency for the abdominal wall and the peritoneum to deflect or "tent" during insertion of the obturator. The blunt cone tip obturator of the invention penetrates and

twists radially from a distal end to a proximal end of the tip. The blunt cone tip obturator facilitates insertion with a reduced penetration force as the user moves the tip back and forth radially while applying an axial penetration force. The blunt cone tip obturator can be directed and inserted between the fibers and then rotated to provide increased penetration and fiber separation.

[0011] These and other features and advantages of the invention will become more apparent with a discussion of preferred embodiments in reference to the associated drawings.

Description of the Drawings**[0012]**

FIG. 1 illustrates side views of a trocar system including a cannula with associated valve housing, and an obturator with a blunt cone tip extending through the working channel of the cannula to facilitate placement across the abdominal wall;

FIG. 2 is a side elevation view of the blunt cone tip of a preferred embodiment of the invention;

FIG. 3 is a side elevation view of the blunt cone tip taken along line 3-3 of FIG. 2;

FIG. 4 is an end view taken along line 4-4 of FIG. 2;

FIG. 5 is a radial cross-section view taken along line 5-5 of FIG. 2;

FIG. 6 is a radial cross-section view taken along line

6-6 of FIG. 2;

FIG. 7 is a radial cross-section view taken along line 7-7 of FIG. 2;

FIG. 8 is a radial cross-section view taken along line 8-8 of FIG. 2;

FIG. 9 is a radial cross-section view taken along line 9-9 of FIG. 2; and

FIG. 10 is a schematic view illustrating each of the FIGS. 4-9 super-imposed to facilitate an understanding of the blunt cone tip and its twisted configuration.

Description of the Invention

[0013] A trocar system is illustrated in FIG. 1 and is designated by reference numeral 10. This system includes a cannula 12, defining a working channel 14, and a valve housing 16. The system 10 also includes an obturator 18 having a shaft 21 extending along an axis 23. A handle 25 is disposed at a proximal end of the shaft at 21 while a blunt cone tip 27 is disposed at a distal end of the shaft 21. The shaft 21 of the obturator 18 is sized and configured for disposition within the working channel 14 of the cannula 12. With this disposition, the obturator 18 can be directed to penetrate a body wall such as the abdominal wall to provide the cannula 12 with access across the wall and into a body cavity, such as the peritoneal or abdominal cavity. The blunt cone tip 27 serves to direct the obturator 18 through the abdominal wall and the peritoneum, and can be removed with the obturator 18 once the cannula 12 is operatively disposed with the working channel 14 extending into the abdominal cavity.

[0014] In order to facilitate penetration of the abdominal wall by the trocar system 10, a penetration force, represented by an arrow 34, is typically applied along the axis 23. It can be appreciated that the force required to penetrate the abdominal wall drops significantly once the wall is penetrated. Further application of the force 34, even for an instant of time, can result in injury to organs within the cavity. Where the obturators of the past have included blades facilitating penetration of the abdominal wall, these blades have been particularly threatening and detrimental to the interior organs.

[0015] Consequently, in accordance with the present invention, the tip 27 is provided with a blunt cone configuration. Blunt tips have been used in the past to reduce any potential for damage to interior organs. However, these blunt tips have increased the amount of force 34 required for penetration of the abdominal wall. The blunt cone tip 27 of the present invention takes into account the anatomical configuration of the abdominal wall with an improved structural design and method of insertion.

[0016] To fully appreciate these aspects of this invention, it is helpful to initially discuss the anatomy associated with the abdominal wall. The abdominal wall typically includes a skin layer and a series of muscle layers. The muscle layers are each defined by muscle fibers that extend generally parallel to each other in a direction that is different for each of the layers. For example, fibers of

a first muscle layer and a second muscle layer may extend in directions that are 45 degrees off of each other.

[0017] Having noted the directional nature of the muscle fibers, it can be appreciated that such a structure is most easily penetrated by an obturator having a blunt cone tip. The blunt cone tip also has a rectangular and twisted configuration so as to provide better movement between the muscle layers. That is, the blunt cone tip is capable of being moved generally parallel to and between the fibers associated with a particular muscle layer. As a result, the obturator of the present invention reduces the penetration force 34 required to push the obturator 18 through a particular layer.

[0018] As described earlier, the fibers of the muscle layers may be oriented at different angles to each other such that proper alignment of the tip 27 for penetration of one layer may not necessarily result in proper alignment for penetration of the next layer. For at least this reason, the obturator 18 has a blunt cone tip 27 to direct the obturator 18 through the different layers and a rectangular configuration that is twisted slightly so that penetration of a first layer begins to rotate the distal end of the blunt cone tip 27 into proper orientation for penetration of the next layer.

[0019] The twisted configuration of the blunt cone tip 27 also causes the blunt cone tip 27 to function with the mechanical advantage of a screw thread. With this configuration, a preferred method of placement requires that the user grip the handle 25 of the obturator 18 and twist it about the axis 23. This twisting motion in combination with the screw configuration of the blunt cone tip 27 converts radial movement into forward movement along the axis 23. Thus, the user applies both a forwardly directed force as well as a radial force to move the trocar system 10 in a forward direction. Since all of the force supplied by the user is not directed axially along the arrow 34, this concept avoids the tendency of prior trocar systems to jump forward upon penetration of the abdominal wall.

[0020] The twisted configuration of the blunt cone tip 27 is most apparent in the side elevation views of FIGS. 2 and 3. In this embodiment, the blunt cone tip 27 comprises generally of eight surfaces: two opposing surfaces 50 and 52, separated by two side surfaces 54 and 56, two end surfaces 58 and 59, a conical surface 60 formed in surfaces 50 and 52 around axis 23 and extending beyond end surfaces 58 and 59, and a blunt surface 62. A plane drawn through the axis 23 would show the tip 27 to be composed of two symmetrical halves.

[0021] The surfaces 50 and 52, side surfaces 54 and 56, and conical surface 60 generally define the cross section of the blunt cone tip 27 from blunt surface 62 to proximal end 61. This configuration can best be appreciated with reference to the cross section views of FIGS. 4-9. In FIG. 4, the distal end of the blunt cone tip 27 is shown with a circle 64 having the smallest circular area and a rectangle 63 having the greatest length-to-width ratio. The rectangle 63 has a twisted, S-shaped configuration at end surfaces 58 and 59.

[0022] As views are taken along progressive proximal cross sections, it can be seen that the circle 64 becomes larger and the rectangle 63 becomes less twisted, and the width increases relative to the length of the rectangle 63. The spiral nature of the blunt cone tip 27 is also apparent as the circle 64 and rectangle 63 move counter-clockwise around the axis 23. This is perhaps best appreciated in a comparison of the circle 64 and the rectangle 63 in FIG. 6 relative to that in FIG. 5. With progressive proximal positions, the circle 64 begins to expand with increasing circular area and the rectangle 63 begins to widen with a reduction in the ratio of length to width. The long sides of the rectangle 63 also tend to become more arcuate as they approach a more rounded configuration most apparent in FIGS. 8 and 9. That is, the circle 64 and the rounded rectangle 63 become more concentric with progressive proximal positions. Furthermore, the circle 64 expands at a lesser rate than the rectangle 63, which eventually absorbs the circle 64 as shown in FIGS. 8 and 9. In these figures, it will also be apparent that the rotation of the rectangle 63 reaches a most counterclockwise position and then begins to move clockwise. This is best illustrated in FIGS. 7-9. This back and forth rotation results from the configuration of the side surfaces 54 and 56, which in general are U-shaped as best illustrated in FIGS. 2 and 3.

[0023] The ratio of the length to width of the rectangle 63 is dependent on the configuration of the side surfaces 54 and 56, which define the short sides of the rectangle 63 as well as the configuration of the surfaces 50 and 52, which define the long sides of the rectangle 63. Again with reference to FIGS. 2 and 3, it can be seen that the side surfaces 54 and 56 are most narrow at the end surfaces 58 and 59. As the side surfaces 54 and 56 extend proximally, they reach a maximum width near the point of the most counterclockwise rotation, shown generally in FIG. 8, and then reduce in width as they approach the proximal end 61. Along this same distal to proximal path, the surfaces 50 and 52 transition from a generally flat configuration at the end surfaces 58 and 59 to a generally rounded configuration at the proximal end 61.

[0024] In the progressive views of FIGS. 5-7, the circle 64 is further designated with a lower case letter a, b or c, respectively; similarly, the rectangle 63 is further designated with a lower case letter a, b, c, d or e, respectively, in FIGS. 5-9. In FIG. 10, the circles 64, 64a-64c and the rectangles 63, 63a-63e are superimposed on the axis 23 to show their relative sizes, shapes and angular orientations.

[0025] A preferred method of operating the trocar system 10 benefits significantly from this preferred shape of the blunt cone tip 27. With a conical configuration at the distal point and a rectangular configuration at a distal portion of the tip, the tip 27 appears much like a flathead screwdriver having a cone at its tip. Specifically, the blunt tip includes a conical structure extending outward from the end surfaces 58 and 59 that serves to direct the obturator through the abdominal wall and peritoneum. The

cone tip has a radius of approximately 0.64 mm (0.025"). The incorporation of the cone onto the rectangular configuration reduces the insertion force required to traverse the abdominal wall. An advantage of the obturator of the invention is it provides a safer and more controlled entry of the abdominal cavity.

[0026] It is preferable that the lengths of the end surfaces 58 and 59 are aligned parallel with the fibers of each muscle layer. With this shape, the blunt cone tip can be used to locate or pinpoint a desired location and penetrate the abdominal wall. A simple back and forth twisting motion of the blunt cone tip tends to separate the fibers along natural lines of separation, opening the muscle layer to accept the larger diameter of the cannula 12. By the time the first layer is substantially penetrated, the conical and twisted configuration of the blunt cone tip 27 directs and turns the rectangle 63 more into a parallel alignment with fibers in the next layer. Again, the blunt cone tip facilitates penetration, and the twisting or dithering motion facilitates an easy separation of the fibers requiring a significantly reduced penetration and insertion force along the arrow 34.

[0027] It should be further noted that the blunt cone tip 27 is bladeless and atraumatic to organs and bowel within the peritoneal or abdominal cavity. The blunt cone tip 27 also minimizes tenting of the peritoneum and allows for a safe entry. The device is typically used in conjunction with the cannula 12 to create an initial entryway into the peritoneal cavity. The obturator 18 is first inserted through the valve housing 16 and into the cannula 12. The entire trocar system 10 is then inserted through the abdominal wall and into the peritoneal cavity. Once the cannula 12 is properly placed, the obturator 18 can be removed.

[0028] The invention facilitates a unique method of penetrating and separating tissue and could apply to any object with a blunt cone tip and generally flat sides. When inserted into the peritoneum the blunt cone tip requires very little area to move safely between tissue and muscle fibers. The device can then be rotated in alternating clockwise and counterclockwise directions while the downward penetration force is applied. When rotated in alternating directions, the tissue is moved apart and a larger opening is created for a profile of greater cross sectional area to follow. This process continues with safety as the device enters the peritoneal cavity and moves to its operative position.

[0029] When the cannula 12 is ultimately removed, the size of the opening left in the tissue is minimal. Importantly, this opening is left sealed due to a dilating effect caused by the mere separation of fibers. Since there are no blades or sharp edges to cut muscle fiber, the healing process is significantly shortened.

[0030] The obturator 18 can be constructed as a single component or divided into multiple components such as the shaft 21 and the blunt cone tip 27. If the obturator 18 is constructed as a single component, it may be constructed of either disposable or reusable materials. If the

obturator 18 is constructed as two or more components, each component can be made either disposable or reusable as desired for a particular configuration. In a preferred embodiment, the obturator is constructed as a single component made from a reusable material such as metal (e.g., stainless steel) or an autoclavable polymer to facilitate re-sterilization.

[0031] In another embodiment of the invention, the blunt cone tip 27 can be coated or otherwise constructed from a soft elastomeric material. In such a case, the material could be a solid elastomer or composite elastomer/polymer.

[0032] The shaft 21 of the obturator 18 could be partially or fully flexible. With this configuration, the obturator 18 could be inserted through a passageway containing one or more curves of virtually any shape. A partially or fully flexed obturator 18 could then be used with a flexible cannula 12 allowing greater access to an associated body cavity.

[0033] The obturator 18 could also be used as an insufflation needle and provided with a passageway and valve to administer carbon dioxide or other insufflation gas to the peritoneal cavity. The obturator 18 could also be used with an insufflation needle cannula, in which case removal of the obturator 18 upon entry would allow for rapid insufflation of the peritoneal cavity.

[0034] It will be understood that many modifications can be made to the disclosed embodiments without departing from the scope of the invention as claimed.

Claims

1. A surgical obturator (18) adapted to penetrate at least two consecutive layers of muscle tissue including a first layer of muscle tissue having fibers oriented in a first direction and a second layer of muscle tissue having fibers oriented in a second direction, the obturator comprising:

an elongate shaft (21) extending along an axis (23) between a proximal end and a distal end; and
a bladeless tip (27) disposed at the distal end of the shaft (21); the tip (27) having an outer surface extending distally to a blunt end (62); the outer surface including a pair of side surfaces (54, 56) separated by intermediate surfaces (50, 52) defining a rectangle (63) in radial cross-sections of the tip (27);

wherein the outer surface is configured such that the rectangle at the distal end of the tip is in a more parallel alignment with the second direction of orientation of fibers of the second layer of muscle tissue after penetration of the first layer of muscle tissue along the first direction of orientation of fibers, and wherein the outer surface further includes a conical surface (60) ex-

tending distally to the blunt end (62).

2. The surgical obturator of claim 1 wherein in successive proximal cross-sections, the rectangle (63) rotates in a first direction.
3. The surgical obturator of claim 2 wherein in successive proximal cross-sections, the rectangle (63) then rotates in a second direction.
4. The surgical obturator of claim 1 wherein the rectangle (63) comprises a pair of long sides defined by the intermediate surfaces (50, 52) and a pair of short sides defined by the side surfaces (54, 56).
5. The surgical obturator of claim 4 wherein in successive proximal cross-sections of the tip (27), a radial line from the axis (23) to a midpoint of one of the short sides rotates about the axis (23) in a first direction.
6. The surgical obturator of claim 5 wherein the radial line then rotates about the axis (23) in a second direction opposite to the first direction.
7. The surgical obturator of claim 4 wherein the long sides become more arcuate in successive proximal cross-sections of the tip (27).
8. The surgical obturator of claim 4 wherein the short sides become more arcuate in successive proximal cross-sections of the tip (27).
9. The surgical obturator of claim 1 wherein the width of the rectangle (63) increases in successive proximal cross-sections of the tip (27).
10. The surgical obturator of claim 1 wherein the rectangle (63) is twisted along the tip (27).
11. The surgical obturator of claim 1 wherein the tip (27) is transparent and the shaft (21) is adapted to receive a laparoscope.
12. The surgical obturator of claim 1 further including a passageway for delivering insufflation gas from the proximal end to the distal end.

Patentansprüche

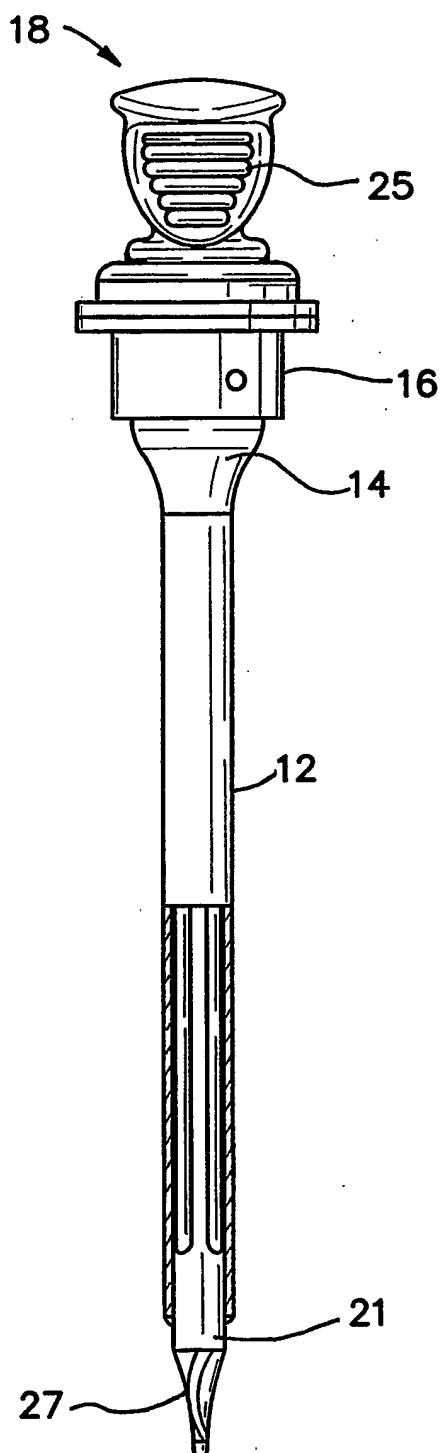
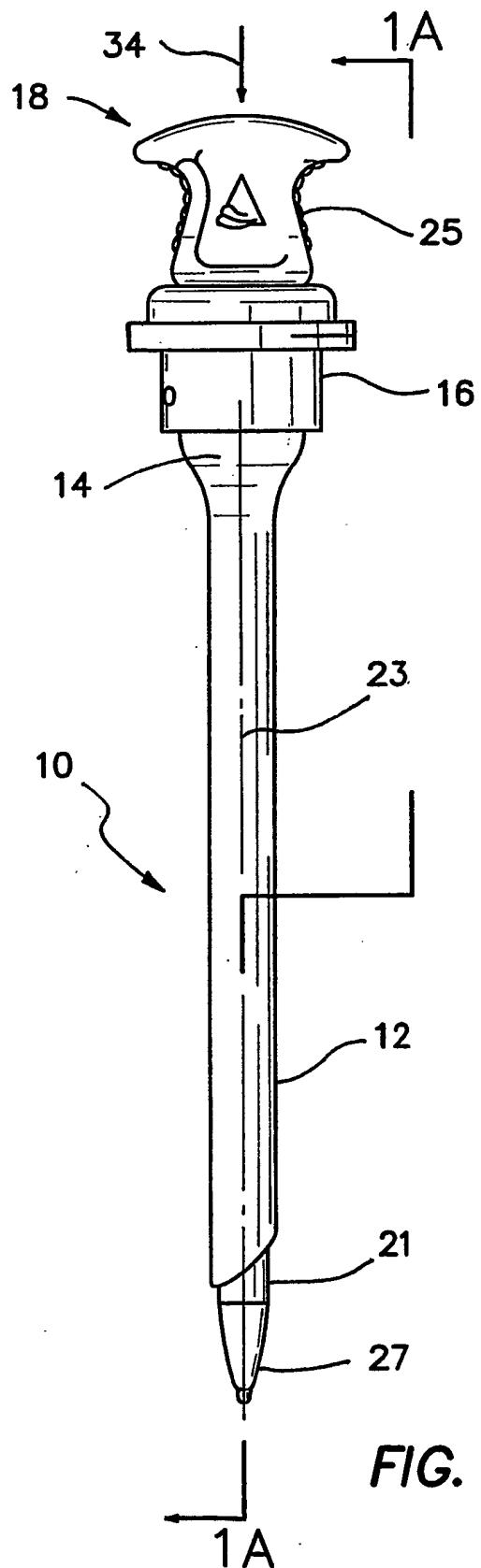
1. Chirurgischer Obturator (18), der so adaptiert wurde, dass er mindestens zwei aufeinander folgende Schichten von Muskelgewebe penetriert, einschließlich einer ersten Schicht Muskelgewebe, das Fasern hat, die in einer ersten Richtung ausgerichtet sind, und einer zweiten Schicht von Muskelgewebe, die Fasern hat, die in einer zweiten Richtung ausge-

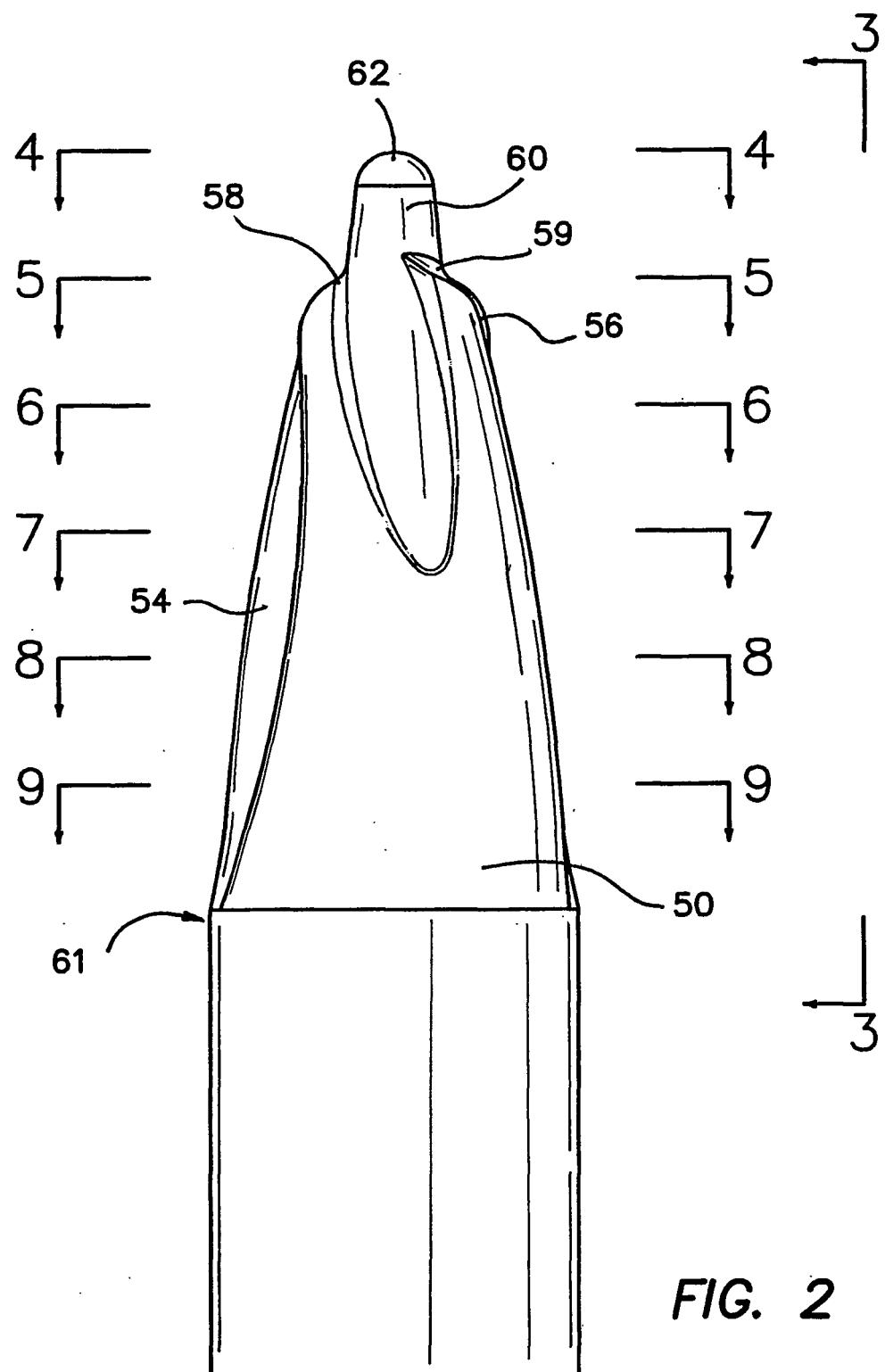
richtet sind, wobei der Obturator Folgendes umfasst:

eine längliche Welle (21), die sich an einer Achse (23) entlang zwischen einem proximalen Ende und einem distalen Ende erstreckt, und eine klingenlose Spitze (27), die am distalen Ende der Welle (21) angeordnet ist, wobei die Spitze (27) eine Außenfläche hat, die sich distal zu einem stumpfen Ende (62) erstreckt, wobei die Außenfläche ein Paar Seitenflächen (54, 56) beinhaltet, die durch Zwischenflächen (50, 52) getrennt sind, und die ein Rechteck (63) in radialen Querschnitten der Spitze (27) definiert, wobei die Außenfläche so konfiguriert ist, dass das Rechteck am distalen Ende der Spitze mehr in einer parallelen Ausrichtung ist, wobei die zweite Richtung der Orientierung der Fasern der zweiten Schicht von Muskelgewebe, nach Penetration der ersten Schicht von Muskelgewebe an der ersten Richtung der Orientierung der Fasern entlang ist, und wobei die Außenfläche ferner eine konische Oberfläche (60) beinhaltet, die sich distal zum stumpfen Ende (62) erstreckt.

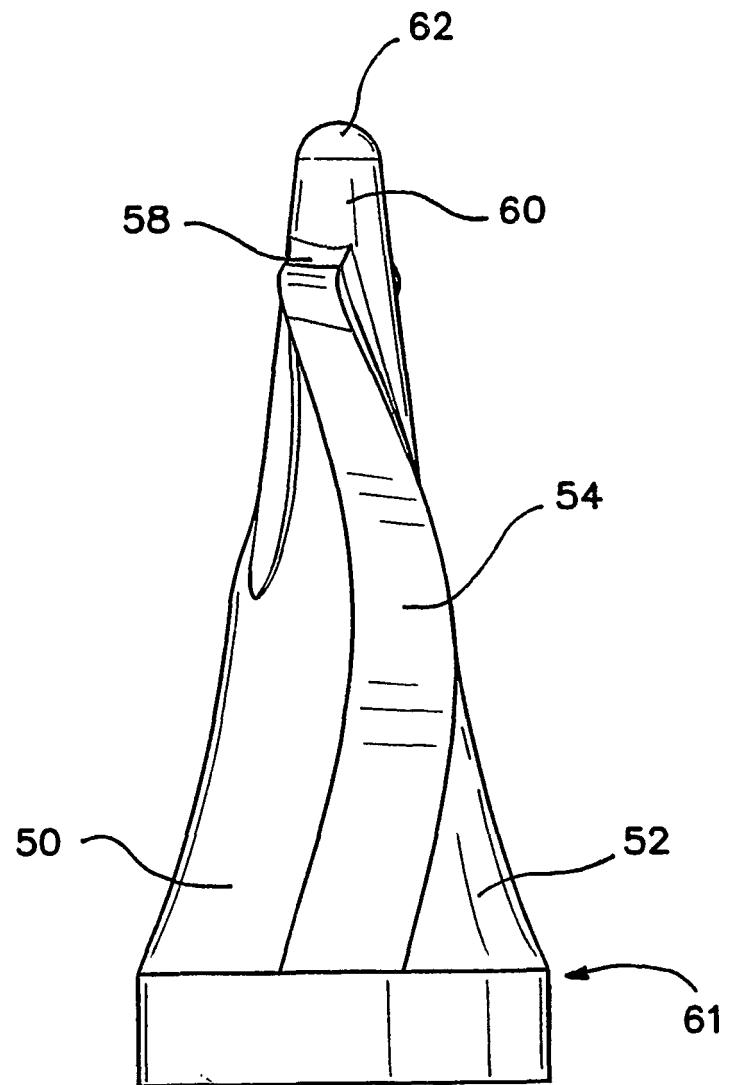
2. Chirurgischer Obturator nach Ansprache 1, wobei sich in aufeinanderfolgenden proximalen Querschnitten das Rechteck (63) in einer ersten Richtung dreht.
3. Chirurgischer Obturator nach Ansprache 2, wobei sich in aufeinanderfolgenden proximalen Querschnitten das Rechteck (63) dann in einer zweiten Richtung dreht.
4. Chirurgischer Obturator nach Anspruch 1, wobei das Rechteck (63) ein Paar lange Seiten umfasst, die von den Zwischenflächen (50, 52) und einem Paar kurzer Seiten von den Seitenflächen (54, 56) definiert werden.
5. Chirurgischer Obturator nach Anspruch 4, wobei in aufeinanderfolgenden proximalen Querschnitten der Spitze (27), eine radiale Linie von der Achse (23) zu einer Mitte von einer der kurzen Seiten in einer ersten Richtung um die Achse (23) dreht.
6. Chirurgischer Obturator nach Anspruch 5, wobei sich die radiale Linie dann um die Achse (23) in einer zweiten Richtung gegenüber der ersten Richtung dreht.
7. Chirurgischer Obturator nach Anspruch 4, wobei die langen Seiten in den aufeinanderfolgenden proximalen Querschnitten der Spitze (27) bogenförmiger werden.
8. Chirurgischer Obturator nach Anspruch 4, wobei die kurzen Seiten in den aufeinanderfolgenden proxima-

len Querschnitten der Spitze (27) bogenförmiger werden.



- 5 9. Chirurgischer Obturator nach Anspruch 1, wobei sich die Breite des Rechtecks (63) in aufeinanderfolgenden proximalen Querschnitten der Spitze (27) erhöht.
- 10 10. Chirurgischer Obturator nach Anspruch 1, wobei das Rechteck (63) an der Spitze (27) entlang gedreht wurde.
- 15 11. Chirurgischer Obturator nach Anspruch 1, wobei die Spitze (27) transparent ist und die Welle (21) so adaptiert ist, dass sie ein Laparoskop aufnimmt.
- 20 12. Chirurgischer Obturator nach Anspruch 1, der ferner einen Durchgang zur Bereitstellung von Insufflationsgas vom proximalen Ende zum distalen Ende beinhaltet.


Revendications

- 25 1. Obturateur chirurgical (18) adapté de manière à pénétrer dans au moins deux couches consécutives de tissu musculaire incluant une première couche de tissu musculaire dont les fibres sont orientées dans un premier sens et une seconde couche de tissu musculaire dont les fibres sont orientées dans un second sens, ludit obturateur comprenant :
 - un corps allongé (21) s'étendant le long d'un axe (23) entre une extrémité proximale et une extrémité distale ; et
 - un embout sans lame (27) disposé à l'extrémité distale du corps (21) ; l'embout (27) ayant une surface externe s'étendant distalement jusqu'à une extrémité distale mousse (62) ; la surface externe incluant une paire de surfaces latérales (54, 56) séparées par des surfaces intermédiaires (50, 52) définissant un rectangle (63) dans les sections transversales radiales de l'embout (27) ;
 - dans lequel la surface externe est configurée de manière à ce que le rectangle à l'extrémité distale de l'embout soit en un alignement plus parallèle avec le second sens d'orientation des fibres de la seconde couche de tissu musculaire après pénétration de la première couche de tissu musculaire le long du premier sens d'orientation des fibres, et dans lequel la surface externe inclut, en outre, une surface conique (60) s'étendant distalement jusqu'à l'extrémité mousse (62).
- 35 2. Obturateur chirurgical selon la revendication 1, dans lequel, dans les sections transversales proximales


successives, le rectangle (63) tourne dans un premier sens.

3. Obturateur chirurgical selon la revendication 2, dans lequel, dans les sections transversales proximales successives, le rectangle (63) tourne ensuite dans un second sens. 5
4. Obturateur chirurgical selon la revendication 1, dans lequel le rectangle (63) comprend une paire de côtés longs définis par les surfaces intermédiaires (50, 52) et une paire de côtés courts définis par les surfaces latérales (54, 56). 10
5. Obturateur chirurgical selon la revendication 4, dans lequel les sections transversales proximales successives de l'embout (27), une ligne radiale partant de l'axe (23) et allant jusqu'à un point milieu de l'un des côtés courts tourne autour de l'axe (23) dans un premier sens. 15 20
6. Obturateur chirurgical selon la revendication 5, dans lequel la ligne radiale tourne alors autour de l'axe (23) dans un second sens opposé au premier sens. 25
7. Obturateur chirurgical selon la revendication 4, dans lequel les côtés longs deviennent plus arqués dans les sections transversales proximales successives de l'embout (27). 30
8. Obturateur chirurgical selon la revendication 4, dans lequel les côtés courts deviennent plus arqués dans les sections transversales proximales successives de l'embout (27). 35
9. Obturateur chirurgical selon la revendication 1, dans lequel la largeur du rectangle (63) augmente dans les sections transversales proximales successives de l'embout (27). 40
10. Obturateur chirurgical selon la revendication 1, dans lequel le rectangle (63) est torsadé le long de l'embout (27). 45
11. Obturateur chirurgical selon la revendication 1, dans lequel l'embout (27) est transparent et le corps (21) est adapté de manière à recevoir un laparoscope. 50
12. Obturateur chirurgical selon la revendication 1, comprenant, en outre, un passage pour administrer un gaz d'insufflation de l'extrémité proximale vers l'extrémité distale. 55

FIG. 2

FIG. 3

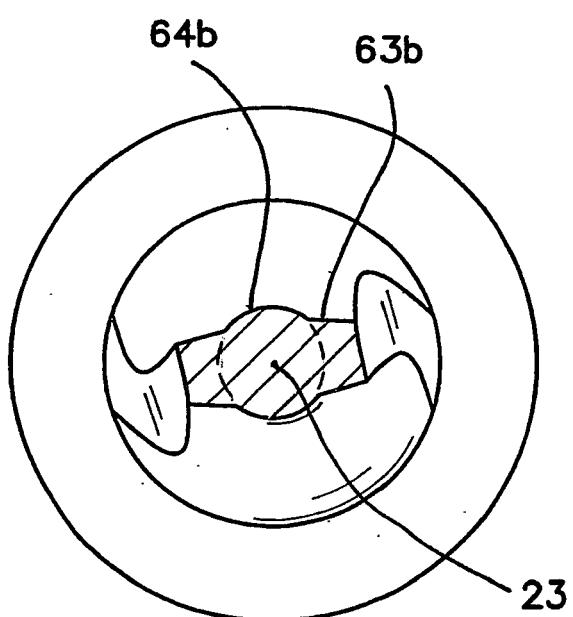
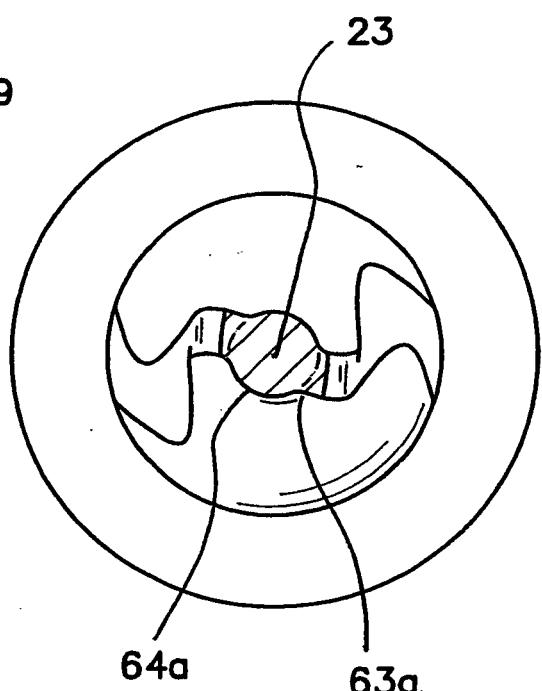
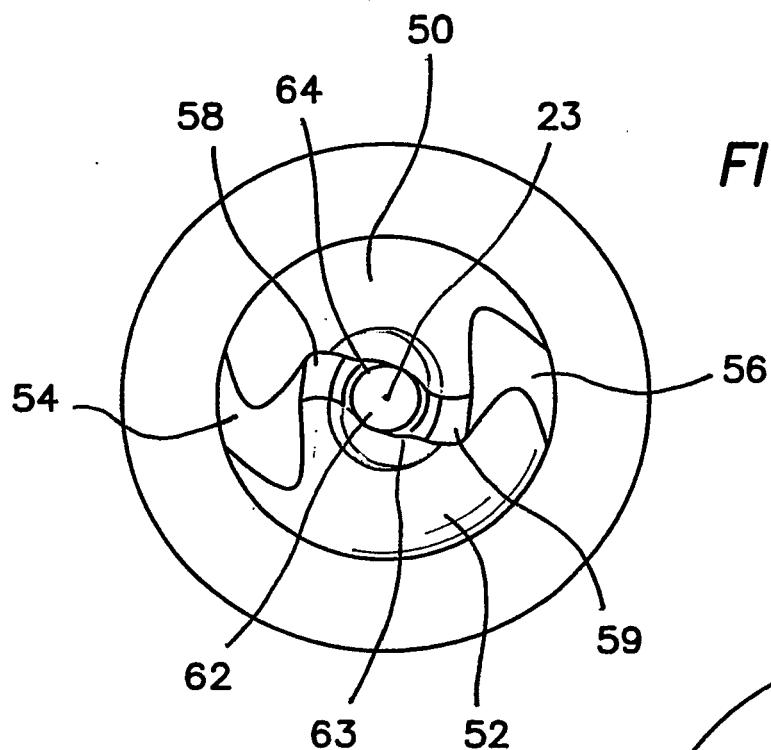
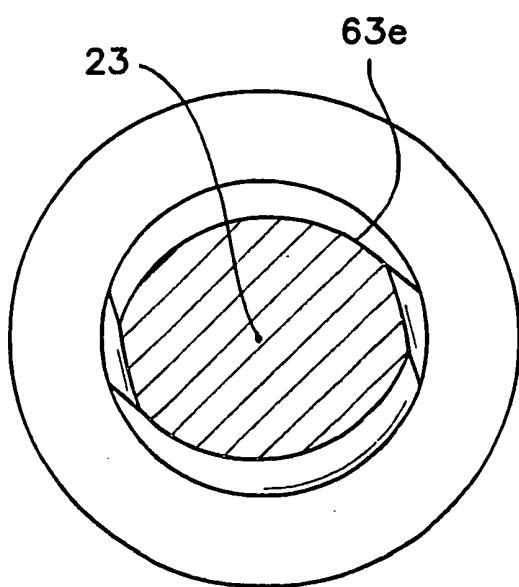
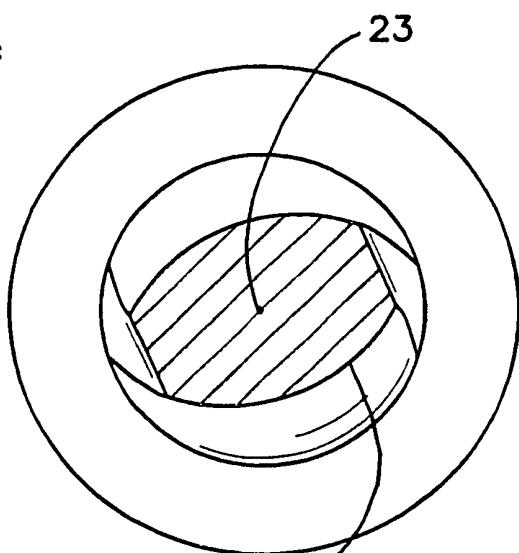
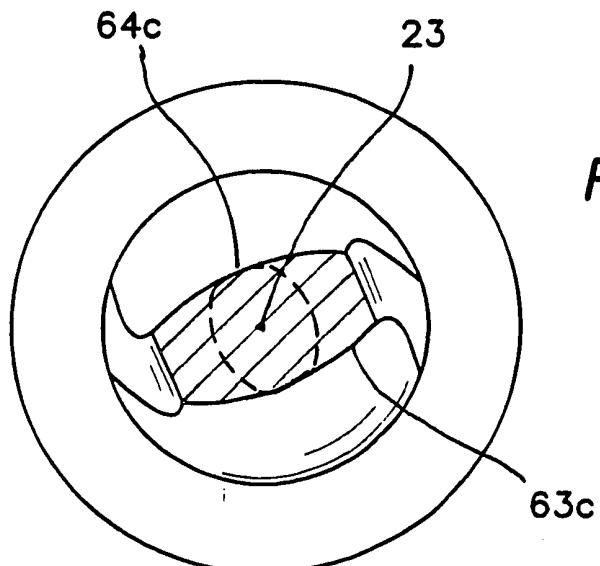







FIG. 6

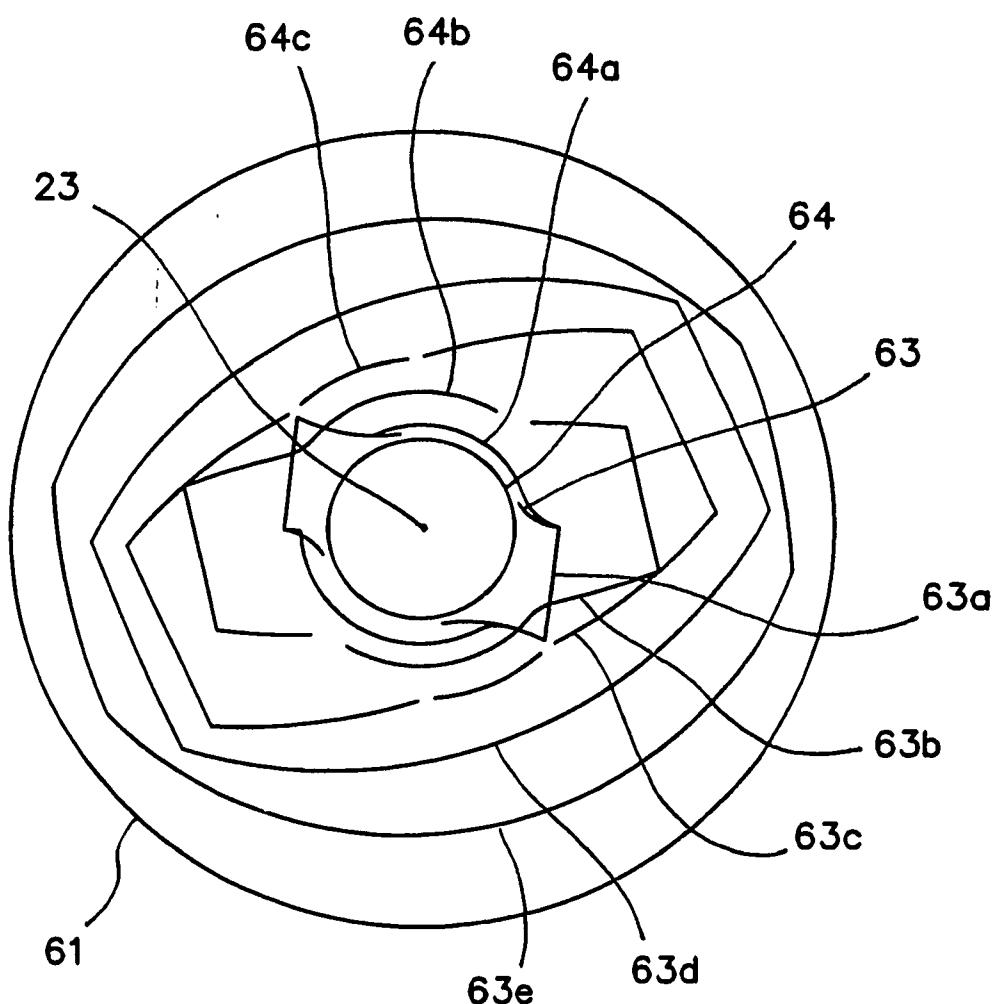
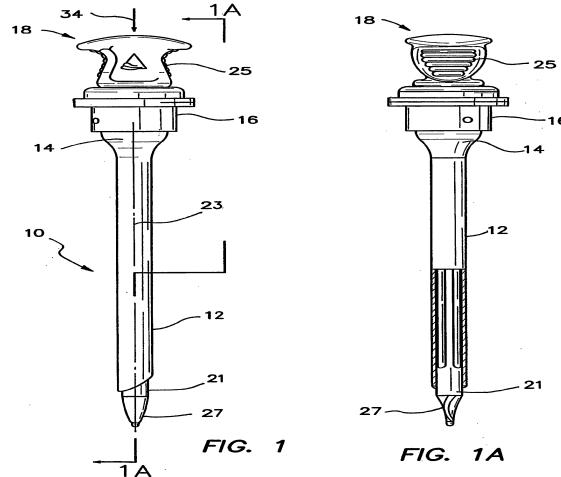


FIG. 10

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.


Patent documents cited in the description

- WO 03026512 A [0008] [0010]
- WO 0054648 A [0008]
- US 0206759 W [0010]

专利名称(译)	锥尖闭孔		
公开(公告)号	EP2316361B1	公开(公告)日	2013-07-10
申请号	EP2011154547	申请日	2003-05-13
[标]申请(专利权)人(译)	应用医疗资源		
申请(专利权)人(译)	应用医疗资源CORPORATION		
当前申请(专利权)人(译)	应用医疗资源CORPORATION		
[标]发明人	TAYLOR SCOTT WIXEY MATTHEW A		
发明人	TAYLOR, SCOTT WIXEY, MATTHEW A.		
IPC分类号	A61B17/34 A61B A61B17/00 A61B17/14 A61B17/32		
CPC分类号	A61B17/3417 A61B2017/320044 A61B2017/3456 A61B2017/346 A61B17/02 A61B17/3498 A61M13 /003		
优先权	60/381469 2002-05-16 US		
其他公开文献	EP2316361A1		
外部链接	Espacenet		

摘要(译)

一种外科闭塞器，包括沿着近端和远端之间的轴线延伸的细长轴，以及设置在所述轴的远端处的无刀片尖端，所述无叶片尖端具有形成在近端的外表面的锥形表面，所述外表面向远侧延伸到外表面。钝点，有一对侧面部分。侧部从钝点径向向外延伸，并且沿着轴线向近侧渐进位置。锥形表面便于插入具有减小的穿透力的闭塞器并且最小化体壁的隆起。锥形表面进一步促进体壁的不同层的分离，并提供层之间的尖端的适当对准。手术闭塞器可以由一次性或可重复使用的材料构成，例如金属或可高压灭菌的聚合物。

