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SYSTEM AND METHOD FOR THE EVALUATION OF OR
IMPROVEMENT OF MINIMALLY INVASIVE SURGERY
SKILLS

CROSS-REFERENCE OF RELATED APPLICATION

[0001] This application claims priority to U.S. Provisional Application No.
61/410,150, filed November 4, 2010, the entire contents of which are hereby incorporated by
reference.

[0002] This invention was made with Government support under Grant No.

IR21EB009143-01A1 awarded by NIH and Grant Nos. 0941362, and 0931805 awarded by

the National Science Foundation. The U.S. Government has certain rights in this invention.

BACKGROUND

1. Field of Invention

[0003] The field of the currently claimed embodiments of this invention relates to
systems, methods and software for at least one of the evaluation of or the improvement of

skills to perform minimally invasive surgery.
2. Discussion of Related Art

[0004] In recent years, there have been significant advances in many surgical
procedures including minimally invasive surgical procedures. However, along with these
advances, more and more complex surgical instruments and tools and combined surgical
equipment require skill in both the operation of the tools and equipment, as well as
performing the particular surgical task. Previously, very little had been known about the

structure of technical surgical skill, its acquisition independent of surgical task and technique,
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or what level of variability existed among experienced practitioners. Yet, it is well-accepted
that technical surgical skill is a crucial element in the outcome of many surgical procedures.
Indeed, death due to iatrogenic causes is estimated to be 44,000 to 98,000 cases per year
(Kohn L, ed, Corrigan J, ed, Donaldson M, ed.; To Err Is Human: Building a Safer Health
System; National Academy Press; 1999). A separate study (Zhan C, Miller M. Excess length
of stay, charges, and mortality attributable to medical injuries during hospitalization; J4MA4;
Vol. 290(14):1868-1874, 2003) reports over 32,000 mostly surgery-related deaths. Some
portion of this is due to technical errors. It is unclear what additional impact technical skill
has on surgical outcomes and morbidity. At the same time, new pressures to reduce the
hours that residents work, and on health care costs overall demand increased efficiency in the
teaching of surgical skill (Fletcher, K, Underwood W. Davis, S, Mangrulkar, R, McMahon,
L, Saint, S; Effects of work hour reduction on residents' lives - a systematic review; JAMA;

Vol.294(9), pp.1088-1100, 2005).

[0005] The complex minimally invasive surgical systems now in wide use require
substantial training for the surgeon to develop the necessary skills. However, current training
systems merely encourage the trainee to perform the same tasks over and over to achieve a
better score. Therefore, there remains a need for improved systems and methods for at least

one of the evaluation of or the improvement of skills to perform minimally invasive surgery.
SUMMARY

[0006] A system to assist in at least one of the evaluation of or the improvement of
skills to perform minimally invasive surgery according to some embodiments of the current
invention includes a minimally invasive surgical system, a video system arranged to record at
least one of a user’s interaction with the minimally invasive surgical system or tasks
performed with the minimally invasive surgical system, and a data storage and processing
system in communication with the minimally invasive surgical system and in communication
with the video system. The minimally invasive surgical system provides at least one of
motion data, ergonomics adjustment data, electrical interface interaction data or mechanical
interface interaction data of at least a component of the minimally invasive surgical system in

conjunction with time registered video signals from the video system. The data storage and
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processing system processes the at least one of motion data, ergonomics adjustment data,
electrical interface interaction data or mechanical interface interaction data to provide a
performance metric in conjunction with the time registered video signals to be made

available to an expert for evaluation.

[0007] A method for evaluating and assisting in the improvement of minimally
invasive surgical skills according to some embodiments of the current invention includes
recording, in a tangible medium, at least one of motion data, ergonomics adjustment data,
electrical interface interaction data or mechanical interface interaction data of at least a
component of a minimally invasive surgical system while in use; recording, in a tangible
medium, video of at least the component of the minimally invasive surgical system in
conjunction with the recording at least one of motion data, ergonomics adjustment data,
electrical interface interaction data or mechanical interface interaction data to provide time
registered video signals; and processing the at least one of motion data, ergonomics
adjustment data, electrical interface interaction data or mechanical interface interaction data
on a data processing system to provide a performance metric in conjunction with the time-

registered video signals to be made available to an expert for evaluation.

[0008] A tangible machine-readable storage medium according to some embodiments
of the current invention includes stored instructions, which when executed by a data
processing system, causes the data processing system to perform operations that include
receiving at least one of motion data, ergonomics adjustment data, electrical interface
interaction data or mechanical interface interaction data of at least a component of a
minimally invasive surgical system; receiving non-transient, time-registered video signals of
at least the component of the minimally invasive surgical system in conjunction with the at
least one of motion data, ergonomics adjustment data, electrical interface interaction data or
mechanical interface interaction data; and processing the at least one of motion data,
ergonomics adjustment data, electrical interface interaction data or mechanical interface
interaction data on the data processing system to provide a performance metric in
conjunction with the non-transient, time-registered video signals to be made available to an

expert for evaluation.
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BRIEF DESCRIPTION OF THE DRAWINGS

[0009] Further objectives and advantages will become apparent from a consideration

of the description, drawings, and examples.

[0010] Figure 1 is a schematic illustration of a system to assist in at least one of the
evaluation of or the improvement of skills to perform minimally invasive surgery according

to an embodiment of the current invention.

[0011] Figure 2 is a schematic illustration of a system to assist in at least one of the
evaluation of or the improvement of skills to perform minimally invasive surgery according

to an embodiment of the current invention.

[0012] Figure 3 is a schematic illustration of robotic surgery system that can be
adapted to include a system to assist in at least one of the evaluation of or the improvement
of skills to perform minimally invasive surgery according to an embodiment of the current

invention.

[0013] Figure 4 shows a training board that can be used with a system to assist in at
least one of the evaluation of or the improvement of skills to perform minimally invasive

surgery according to an embodiment of the current invention.

[0014] Figure 5 shows Cartesian position plots of the da Vinci left-hand manipulator,
with identified surgical sub-tasks, during the performance of a four-throw suturing task for an

expert surgeon.

[0015] Figure 6 shows Cartesian position plots of the da Vinci left-hand manipulator,
with identified surgical sub-tasks, during the performance of a four-throw suturing task for an

novice surgeon.

[0016] Figure 7 is a functional block diagram of a system used to recognize

elementary tasks according to an embodiment of the current invention.

[0017] Figure 8 shows a comparison of automatic segmentation of robot-assisted

surgical motion with manual segmentations. Note that most errors occur at the transitions.



WO 2012/060901 PCT/US2011/035627

[0018] Figures 9A and 9B are plots illustrating how two features derived from
Hidden Markov Model segmentation of task trials can be used to discriminate between an
“intermediate” and “expert” user. Figure 9A shows that the expert, as expected, performs the
tasks in a manner that more closely matches the ideal model than the intermediate user, with
the exception of sub-task A, which has too few data points for a reliable estimate. Figure 9B
shows that the amount of time spent in the different sub-tasks differs significantly between
the expert and intermediate. With certain sub-tasks, such as positioning the needle (B), the
expert spends considerably less time than the intermediate user. However, in others, such as
pulling the suture (D), the expert is more careful and performs it in a more consistent manner

(time).

[0019] Figure 10 shows an archival system configuration with the da Vinci system
(left), and Inanimate training pods for the first module of robotic surgery training (right),

according to an embodiment of the current invention.

[0020] Figure 11 shows Master and Camera workspaces used by experts (left, top
and bottom), and a novice (right, top and bottom) respectively, according to an embodiment

of the current invention.

[0021] Figures 12a-12h show learning curves based on time, master handle distance,
and master handle volumes, and OSATS structured assessment measurements for individual
tasks, and over all four tasks. Note the OSATS score scale has been inverted, and that

experts task metrics appear in the bottom lower corner of the charts.

[0022] Figure 13 shows projection of suturing instrument Cartesian velocity in 3
dimensions using PCA, according to an embodiment of the current invention. The blue
observations are the expert trials, the green surgical trainees, and the brown the non-clinical

UseErs.

DETAILED DESCRIPTION
[0023] Some embodiments of the current invention are discussed in detail below. In

describing embodiments, specific terminology is employed for the sake of clarity. However,
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the invention is not intended to be limited to the specific terminology so selected. A person
skilled in the relevant art will recognize that other equivalent components can be employed
and other methods developed without departing from the broad concepts of the current
invention. All references cited anywhere in this specification, including the Background and
Detailed Description sections, are incorporated by reference as if each had been individually

incorporated.

[0024] Figure 1 is a schematic illustration of a system 100 to assist in at least one of
the evaluation of or the improvement of skills to perform minimally invasive surgery. The
system 100 has a minimally invasive surgical system 102, a video system 104 arranged to
record at least one of a user’s interaction with the minimally invasive surgical system or tasks
performed with the minimally invasive surgical system, and a data storage and processing
system 106 that is in communication with the minimally invasive surgical system 102 and in
communication with the video system 104. In the example of Figure 1, the minimally
invasive surgical system 102 is a robotic surgery system and the video system 104 can be
incorporated into the robotic system. However, in other embodiments, the video system 104
can also be arranged separately with one or more cameras. The video system 104 can also
include one or more stereo cameras in some embodiments of the current invention. In Figure
1, only the surgeon’s console of the robotic surgery system 102 is shown. The robotic
surgery system 102 can include additional components, such as shown in Figures 2 and 3, for
example. Figure 3 also shows a view of the surgeon’s, or master, console including a partial

view of master handles.

[0025] Although many of the particular examples in this specification will refer to a
robotic surgery system as a possible minimally invasive surgery system, the general concepts
of the current invention are not limited to that particular example. For example, other
laparoscopic systems that do not employ a robotic system are intended to be included in the
general scope of the current invention. Minimally invasive surgery systems may include

endoscopes, catheters, trocars and/or a variety of associated tools, for example.

[0026] The minimally invasive surgical system 102 provides at least one of motion

data, ergonomics adjustment data, electrical interface interaction data or mechanical interface
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interaction data of at least a component of the minimally invasive surgical system 100 in
conjunction with time-registered video signals from the video system. The term “motion
data” is intended to broadly include any data upon which one can determine a translational
motion and/or rotational motion from at least one moment in time to another moment in time.
For example, sensors such as, but not limited to, linear accelerometers and gyroscopes can
provide position and orientation information of an object of interest. In addition, the position
and orientation of an object at one moment in time and the position and orientation of the
object at another moment in time can also provide motion data. However, the term “motion
data” is not limited to only these examples. For example, in the case of a robotic minimally
invasive surgery system, the motions of the tool arms, etc. are known since the sensors in the

robotic system directly measure and report these motions.

[0027] The data storage and processing system 106 processes the at least one of
motion data, ergonomics adjustment data, electrical interface interaction data or mechanical
interface interaction data to provide a performance metric in conjunction with the time-
registered video signals to be made available to an expert for evaluation. The term “expert”
is intended to refer to a person who has a predetermined minimum level of knowledge and
skill in the relevant surgical techniques and/or to an expert system (e.g., computerized
system) that utilizes such information from said person to be considered proficient by a
person versed in the surgical subject, and/or qualified to operate on humans in the surgical
specialty by established standards. An expert system, as used herein, can also include

information from more than one expert.

[0028] The data storage and processing system can be a combined system such as a
laptop computer, a personal computer and/or a work station. The data storage system can
also have separate data and storage components and/or multiple such components in
combination. The data processor system can also include data storage arrays and/or
multiprocessor data processors, for example. The data storage and processor system can also
be a distributed system, either locally or over a network, such as a local area network or the
internet. In addition, the components of the system 100 can be electrical or optical

connections, wireless connections and can include local networks as well as wide area
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networks and/or the internet, for example. The minimally invasive surgical system 102 can

include one or more surgical tool, for example.

[0029] In some embodiments, the minimally invasive surgical system 102 can be a
tele-operated robotic surgery system that includes master handles and the motion data can
include motion data of the master handles. In some embodiments, the minimally invasive
surgical system 102 can be a tele-operated robotic surgery system that has a console that
contains the master handles and the motion data can include a configuration of at least one of

ergonomics, workspace, and visualization aspects of the console.

[0030] The system 100 can further include a display system 108 that is in
communication with the data storage and processing system 106 to display the performance
metric in conjunction with the time-registered video signals to be made available to the
expert for evaluation. The display system can include any suitable display device such as,
but not limited to, a CRT, LCD, LED and/or plasma display, for example. The display can
be locally connected to the data storage and processing system 106, or can be remote over a
network or wireless connection, for example. The display system 108 can also display the
information from the data storage and processing system 106 either contemporaneously or
later than the user’s session. The system 100 can further include a second display system
(not shown) that is in communication with the data storage and processing system 106 to
display the expert evaluation in conjunction with the time registered video to the user. The
second display system can include any suitable display device such as, but not limited to, a
CRT, LCD, LED and/or plasma display, for example. The second display system can also be
local or remote and display in real time or at a later time. The system 100 is not limited to
one or two display systems and can have a greater plurality of display systems, as desired for

the particular application.

[0031] The system 100 can further include an input device that is in communication
with the data storage and processing system 106 to receive expert evaluation from the expert
in correspondence with the performance metric and the time-registered video. The input
device can be a key board, a mouse, a touch screen, or any other suitable data input

peripheral device. The system 100 can also include a plurality of data input devices. The
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input device can be locally connected or can be connected to the data storage and processing

system 106 over a network, such as, but not limited to, the internet.

[0032] In an embodiment of the current invention, the data storage and processing
system 106 can be further configured to analyze task performances and provide automated
evaluation and expert evaluation together with task video. The automated evaluation can
include learning curves of task performance based on configurable task metrics according to
some embodiments of the current invention. According to some embodiments of the current
invention, the data storage and processing system 106 can be further configured to allow for
specific aspects of the automated evaluation to be hidden from review to prevent introduction
of bias or a focus on numerical aspects of the automated evaluation by a user, such as a
trainee. The automated evaluation can include task-specific feedback for a subsequent, such
as the next, training session according to some embodiments of the current invention. The
automated evaluation can include specific objective feedback for both a mentor and the
trainee, with the feedback for the mentor being different from the feedback to the trainee
according to some embodiments of the current invention. The objective feedback can
include task steps in which the trainee is identified to be deficient, according to some
embodiments of the current invention. The objective feedback to the mentor can include a
summary of trainee progress, learning curves, population-wide trends, comparison of the
trainee to other trainees, training system limitations, supplies and materials status, and system
maintenance issues, according to some embodiments of the current invention. The
automated evaluation can be used to vary a training task complexity, according to some
embodiments of the current invention. The automated evaluation can be used to vary a
frequency of training, according to some embodiments of the current invention. The
automated evaluation can be used to select training tasks for the next training session,

according to some embodiments of the current invention.

[0033] According to some embodiments of the current invention, the processing
system can be configured to perform methods for statistical analysis of skill classification,
including identification of proficiency and deficiency. The skill classification can be binary,
for example. For example, but not limited to, indicating (1) proficient, or (2) needs more

training. In other embodiments, the skill classification can be multi-class or ordinal. For
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example, but not limited to: (1) novice, (2) intermediate, (3) proficient, (4) expert.
According to some embodiments of the current invention, the skill classification can be based
on at least one of a task statistic or a metric of skill. According to some embodiments of the

current invention, the skill classification can be based on multiple classification methods.

[0034] According to some embodiments of the current invention, the man-machine
interaction, ergonomics, and surgical task skills classification can be performed separately.
According to some embodiments of the current invention, separate metrics of man-machine
interaction, ergonomics and surgical task skills can be computed. According to some
embodiments of the current invention, separate training tasks and difficulty levels can be

used for man-machine interaction, ergonomics and surgical task skills.

[0035] Another embodiment of the current invention is directed to a method for
evaluating and assisting in the improvement of minimally invasive surgical skills. The
method includes recording, in a tangible medium, at least one of motion data, ergonomics
adjustment data, electrical interface interaction data or mechanical interface interaction data
of at least a component of a minimally invasive surgical system while in use. The method
also includes recording, in a tangible medium, video of at least the component of the
minimally invasive surgical system in conjunction with the recording at least one of motion
data, ergonomics adjustment data, electrical interface interaction data or mechanical interface
interaction data to provide time registered video signals. The method further includes
processing the at least one of motion data, ergonomics adjustment data, electrical interface
interaction data or mechanical interface interaction data on a data processing system to
provide a performance metric in conjunction with the time-registered video signals to be
made available to an expert for evaluation. The data processing can be, or can include

portions of, the data storage and processing system 106 described above, for example.

[0036] Another embodiment of the current invention is directed to a tangible,
machine-readable storage medium that has stored instructions, which when executed by a
data processing system, causes the data processing system to perform operations. The
operations include receiving at least one of motion data, ergonomics adjustment data,

electrical interface interaction data or mechanical interface interaction data of at least a

10
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component of a minimally invasive surgical system; receiving non-transient, time-registered
video signals of at least the component of the minimally invasive surgical system in
conjunction with the at least one of motion data, ergonomics adjustment data, electrical
interface interaction data or mechanical interface interaction data; and processing the at least
one of motion data, ergonomics adjustment data, electrical interface interaction data or
mechanical interface interaction data on the data processing system to provide a performance
metric in conjunction with the non-transient, time-registered video signals to be made

available to an expert for evaluation.

EXAMPLES

[0037] The following examples are applications of some specific embodiments of the
current invention. These are not intended to limit the general scope of the invention, which is

defined by the claims.

[0038] Availability of new technology now affords us methods of measuring the
completeness and effectiveness of technical skills during training that was not available in

the past.

[0039] One of the difficulties in studying surgical skill is the instrumentation
necessary to acquire precise measurements of tool use and tool motion during surgery. In
this regard, the Intuitive Surgical da Vinci robotic surgery system provides a standardized,
well-instrumented “laboratory” for studying surgical procedures in clinical operative settings.
In contrast to simulated or instrumented real surgical environments, it allows surgical
motions and clinical events to be recorded undisturbed and unmodified by experimental
sensors and tools via its application programming interface (API). There are over 1700
installed da Vinci systems as of late 2010. Robotic radical prostatectomies are now the
dominant modality of operation for removal of prostates with cancer, and conservative
estimates of the total number of various procedures performed robotically are in several tens
of thousands in the United States, and nearly a hundred thousand worldwide. The da Vinci,

even though it is the only commercial robotic surgery system, is now widely available and

11
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operating at a clinical volume that makes the investigation of skill development a significant
issue in quality of care. From a broader perspective, recording and analyzing such data
provides a unique opportunity to study the fundamental structure and acquisition of technical

skill for the broader practice of medicine in a non-invasive, cost-effective manner.

[0040] Robotic laparoscopic or minimally invasive surgery has become an
established standard of care in several areas of surgical practice. In particular, robotic surgery
has made great strides in urology (Elhage O, Murphy D, et al, Robotic urology in the United
Kingdom: experience and overview of robotic-assisted cystectomy, Journal of Robotic
Surgery, 1(4), pp.235-242, 2008; Thaly R, Shah K, Patel VR, Applications of robots in
urology, Journal of Robotic Surgery, 1(1), pp3-17, 2007; Kumar R, Hemal AK, Menon M,
Robotic renal and adrenal surgery: Present and future. BJU International, 96(3), pp.244-249,
2005), gynecology (Boggess JF, Robotic surgery in gynecologic oncology: evolution of a
new surgical paradigm; Journal of Robotic Surgery, 1(1), pp.31-37, 2007), and cardiac
surgery (Rodriguez E, Chitwood WR, Outcomes in robotic cardiac surgery, Journal of
Robotic Surgery, 1(1), pp19-23, 2007). Since its initial clinical approvals in the United
States in 2000, the da Vinci robotic surgery system (Intuitive Surgical Inc. Sunnyvale, CA)
has emerged as a widely accepted leader in minimally invasive robotic surgery platforms
with over 1700 systems installed in 2010, up from over 700 systems in 2007, and around 500
in 2006. The community of robotically trained clinicians is now several thousand strong, and
publishes widely, including in journals such as Journal of Robotic Surgery, focused
specifically on robotic surgery. Intuitive Surgical has recently developed a residency
program for robotic surgery in collaboration with several leading training institutions to

improve surgical training and increase the number of trained clinicians rapidly.

[0041] Robotic Surgery Applications: Prostate cancer is a highly prevalent disease;
1 in 6 men are expected to be diagnosed with it during their lifetime. The gold standard of
care is radical retropubic prostatectomy. Benefits such as reduced pain, trauma and shorter
recovery times led to establishment of laparoscopic techniques, but it is a complex procedure
to perform minimally invasively. Common side effects of radical prostatectomy include
erectile dysfunction and incontinence which also have psychological implications for the

patient, apart from loss of function. Robotic surgery has gained wide acceptance in such

12
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complex procedures. Of the 75000 radical prostatectomies performed in the USA every year
for the treatment of prostate cancer (Shuford MD, Robotically assisted laparoscopic radical
prostatectomy: a brief review of outcomes, Proc. Baylor University Medical Center, 20(4),
pp354-356, 2007), the da Vinci is expected to have performed a majority (total over 50000
worldwide) in 2007 (Intuitive Surgical Inc, Presentation at the JP Morgan Healthcare
Conference, website:htip://www.intuitivesurgical.com, accessed December 2007) to become
the dominant treatment for localized prostate cancer, up from 18,000 procedures performed
using it in 2005 and 8500 in 2004 (Shuford). Recently presented large population and long-
term studies (Badani KK, Kaul S, Menon M, Evolution of robotic radical prostatectomy:
assessment after 2766 procedures, Cancer, 110(9), pp.1951-8, 2007) have shown comparable
or favorable performance of robotic methods. Robotic hysterectomies (Boggess; Diaz-
Arrastia C, Jurnalov C et al., Laparoscopic hysterectomy using a computer-enhanced surgical
robot, Surgical Endoscopy, 16(9), pp.1271-1273, 2002) and complex gynecological
procedures are gaining wider acceptance and may soon follow prostatectomies as the

dominant procedure modality.

[0042] A large number of cardiac procedures including coronary artery bypass
grafting (Rodriguez, et al; Novick RJ, Fox SA, Kiaii BB, et al., Analysis of the learning
curve in telerobotic beating heart coronary artery bypass grafting: A 90 patient experience,
Annals of Thoracic Surgery, 76, pp.749-753, 2003; Kappert U, Cichon R, Schneider J, et al,
Closed-chest coronary artery surgery on the beating heart with the use of a robotic system,
Journal of Thoracic and Cardiovascular Surgery, 120(4),pp.809-811, 2000), atrial septal
defect closure (Reichenspurner H, Boehm DH, Welz A, et al., 3D-video and robot-assisted
minimally invasive ASD closure using the Port-Access techniques, Heart Surgery Forum,
1(2), pp.104-106, 1998), and transmyocardial laser revascularization (Yuh DD, Simon BA,
Fernandez-Bustamante A, et al, Totally endoscopic robot-assisted transmyocardial
revascularization, Journal of Thoracic and Cardiovascular Surgery, 130(1), pp.120-124,
2005) have been performed with the da Vinci. While the urology successes have not yet
been replicated in all cardiac procedures due to the motion of the beating heart, physical
constraints of the chest cavity, and drastic consequences of surgical error or delays in access,

some cardiac procedures such as mitral valve repair (Rodriguez, et al; Chitwood WR,

13
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Current status of endoscopic and robotic mitral valve surgery. Annals of Thoracic Surgery,
79(6), pp.S2248-S2253, 2005) are becoming more prevalent. Improved technology,
including methods and tools for stabilization may make other robotic cardiac procedures

more common in the future.

[0043] Robotic procedures have also been performed in pediatrics (Sinha CK,
Haddad M, Robot-assisted surgery in children: current status, Journal of Robotic Surgery,
1(4), pp.243-246, 2008), neurological surgery (Bumm K, Wurm J, Rachinger J, et al, An
automated robotic approach with redundant navigation for minimally invasive extended
transsphenoidal skull base surgery. Minimally Invasive Neurosurgery, 48(3), pp.159-164,
2005), and gastrointestinal surgery (Ballantyne GH, Telerobotic gastrointestinal surgery:
phase 2-safety and efficacy, Surgical Endoscopy, 21(7), pp.1054-1062, 2007) among several
other surgical specialties. With other surgical platforms and tools in development, robotic

surgery is likely to continue expanding its presence in surgical procedures.

[0044] The da Vinci Robotic Surgery System: The Da Vinci robotic surgery
system includes a surgeon's console with a pair of master manipulators and their control
systems, a patient cart with a set of patient side manipulators, and a cart housing the stereo
endoscopic vision equipment (Figures 1-3). A variety of easily removable surgical
instruments can be attached to the patient side manipulators, and can be manipulated from
the master manipulators at the surgeon’s console. Recent versions of the da Vinci can have
four slave manipulators, with one dedicated to holding the stereo endoscopic camera. The
slave manipulators can be activated to move in response to the motion of the master
manipulators by using the foot pedals and switches on surgeon’s console. The scaling of
motion between the master manipulators and their corresponding slave motions can be
adjusted using the buttons at the surgeon’s console. With the instrument degrees of freedom
included, the slave robots can have up to seven degrees of freedom, allowing greater

dexterity at the tip than the human wrist.

[0045] Robotic Surgery Limitations: The da Vinci is the only robotic surgery
system commercially available. In addition to its substantial system cost (around 1.3 million

US dollars) and maintenance expense (more than a hundred thousand US dollars per year)
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the cost of the disposable surgical tools is also known to be in thousands of dollars per
procedure. As with any new technology, publications have noted a significant learning
curve, with extensive laboratory practice required for clinical proficiency (Chitwood, et al;
Novic, et al; Yohannes P, Rotariu P, Pinto P, et al, Comparison of robotic versus

laparoscopic skill: is there a difference in the learning curve?, Urology, 60, pp.39-45, 2002).

[0046] da Vinci Application Programming Interface (API): Complementary to its
surgical uses, the da Vinci robotic system also provides a well instrumented robotic
laboratory for measurement and assessment of various aspects of surgery and surgical
training. The API (DiMaio, S, and Hasser, C, The da Vinci research interface, Workshop on
Systems and Architectures for Computer Assisted Interventions, MICCAI 2008, Midas
Journal, http://hdl.handle.net/10380/1464, accessed 11/2008) provides access to motion
parameters of the camera, the instruments, and the master handles. The API, which operates
(and can be enabled or disabled) independently of the clinical use, is an Ethernet interface
that provides transparent access to motion vectors including joint angles, Cartesian position
and velocity, gripper angle, and joint velocity and torque data. In addition, high quality time
synchronized video can be acquired from the vision system for the stereo endoscopic
channels. The da Vinci API also streams several clinical and system events, as they occur.
This includes events to signal change of tools, start or end of master controlled surgical
instrument motion, reconfiguration of master or slave workspace (master-clutch or slave-
clutch), changes in camera field of view, among others. The API can be configured to stream
data at various rates (typically up to 100Hz) providing new manipulator data at better than

common video acquisition rates.

[0047] Robotic Surgery Training: Robotic surgery orientation is performed using
training pods such as the Chamberlain group robotic surgery training pods shown in Figure 4.
Training pods are available for all basic surgery skills such as cutting, suturing, and knot
tying. Orientation is usually followed by surgery on closed models, and finally on animal
models. After achieving proficiency on animal models, a surgeon is proctored and mentored

during their first several human surgeries.
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[0048] Prior Work in Skill Modeling and Assessment Using Automated
Methods: We are not aware of similar specific studies focusing on development of system
operation and operator skills during surgical training. These skills also constitute a portion of
skills required for clinical proficiency. Laparoscopic simulation and surgery training have
used analysis of motion parameters in the past. This includes motion analysis using systems
such as MIST-VR laparoscopic trainer (Gallagher A. G, Richie K., McClure M., McGuigan
J.; Objective Psychomotor Skills Assessment of Experienced, Junior, and Novice
Laparoscopists with Virtual Reality; World Journal of Surgery; Vol. 25 (11), pp. 1478-1483,
2001), or the electromagnetic tracker based Imperial College Surgical Assessment Device
(ICSAD) (Darzi A, Mackay S, Skills assessment of surgeons, Surgery,131(2), pp.121-124,
2002) for measurement of surgical performance or acquisition of surgical skills. These
studies often rely on a manual interpretation of recorded video data by an expert physician.
Objective Structured Assessment of Technical Skills (OSATS) (Moorthy K, Munz Y, et al,
Objective assessment of technical skills in surgery. BMJ, 327, pp.1032-1037, 2003) based on
motion data have also been performed based on daVinci API data (Hernandez JD, Bann SD,
et al, Qualitative and quantitative analysis of the learning curve of a simulated surgical task
on the da Vinci system, Surgical Endoscopy, 18, pp.372-378, 2004) and have included an
element of manual expert evaluation. QOur group and collaborators (Verner L, Oleynikov D,
et al, Measurements of the level of expertise using flight path analysis from da Vinci robotic
surgical system, Medicine Meets Virtual Reality, 94, 2003; Lin HC, Shafran I, Yuh DD,
Hager GD, Vision-Assisted Automatic Detection and Segmentation of Robot-Assisted
Surgical Motions, Medicine Meets Virtual Reality, 2006) have also used the da Vinci API

data for automatic segmentation and analysis of surgical motions.

[0049] A real need still exists for objective surgical training (Reznick RK; Teaching
and testing technical skills; Am J Surg, Vol. 165, pp.358-361, 1993; Reznick RK, and
MacRae H; Teaching surgical skills-changes in the wind; New England Journal of Medicine;
vol. 355(25); pp.2664-2669, 2006). The skills learned on a bench top model in a classroom
need to be identified and their transfer to real procedures validated in the operating room.
Ericsson (Ericsson, KA, Krampe, RT, and Tesch-Romer, C; The role of deliberate practice in

the acquisition of expert performance; Psychological Review, Vol 100(3), 363-406, 1993)
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argues that most surgeons do not reach true expertise and that there is a need for deliberate
practice and feedback. There is a large body of published studies, including some from our
group, that employ new technology (G Gallagher A. G, Richie K., McClure M., McGuigan
J.; Objective Psychomotor Skills Assessment of Experienced, Junior, and Novice
Laparoscopists with Virtual Reality; World Journal of Surgery; Vol. 25 (11), pp. 1478-1483,
2001; Gallagher AG, Satava RM, Virtual reality as a metric for the assessment of
laparoscopic psychomotor skills, Surgical Endoscopy, 16(2), pp.1746-1752, 2002; Lin HC,
Shafran 1, Yuh DD, Hager GD, Vision-Assisted Automatic Detection and Segmentation of
Robot-Assisted Surgical Motions, Medicine Meets Virtual Reality, 2006; C. E. Reiley, T.
Akinbiyi, D. Burschka, A. M. Okamura, C. Hasser, D. Yuh; Evaluation of Surgical Tasks
using Sensory Substitution in Robot-Assisted Surgical Systems; The Journal of Thoracic and
Cardiovascular Surgery; Vol. 135, Issue 1, pp.196-202, 2008) to automatically analyze,
model and assess surgical skills, training and transfer. These studies report that experienced
surgeons perform surgical tasks significantly faster, more consistently, with lower error rates,
and have more efficient movements of the surgical instruments. Some of these objective
metrics are difficult to measure without extensive intrusion on surgical practice or without
the use of additional technology. Measurement of others, such as efficiency of movement, is

just not possible without such aids.

[0050] Rationale and Significance of this Work: Our prior work and other
published art shows that modern statistical learning and classification techniques, applied to
large quantities of recorded data, have the potential to revolutionize training and assessment
in surgery. Indeed, this is very similar to the revolution experienced by speech processing
when a similar paradigm shift toward statistical modeling occurred. Clearly, the results of
this study will be applicable to robotic surgery, where such data sets offer the additional
possibly of many forms of ergonomic and mechanisms efficiency studies. The acquired data
will facilitate studies that will also have broader implications for our understanding of the
practice of surgery. The techniques and insights gained from this data will provide guidance
on the development of teaching and assessment methodologies for traditional laparoscopic

methods and may eventually even have implications for traditional open surgery.

17



WO 2012/060901 PCT/US2011/035627

EXAMPLE 1

[0051] In the following example according to an embodiment of the current
invention, we used the da Vinci robotic system extensively for modeling and evaluating
human surgical task performance. This included integration of new technology (Leven J,
Burschka D, Kumar R, et al, DaVinci Canvas: A Telerobotic Surgical System with
Integrated, Robot-Assisted, Laparoscopic Ultrasound Capability, Medical Image Computing
and Computer Assisted Intervention, Springer Lecture Notes in Computer Science, 4190,
pp811-818, 2005; Burschka D, Corso JJ, et al, Navigating Inner Space: 3-D Assistance for
Minimally Invasive Surgery. Robotics and Autonomous System, 2005), development of new
architectures (Hanly EJ, Miller BE, Kumar R, et al, Mentoring console improves
collaboration and teaching in surgical robotics, Journal of Laparoendoscopic and Advanced
Surgical Techniques; 16(5), pp445-451, 2006), as well as studies of human-robot interaction
(C. E. Reiley, T. Akinbiyi, D. Burschka, A. M. Okamura, C. Hasser, D. Yuh; Evaluation of
Surgical Tasks using Sensory Substitution in Robot-Assisted Surgical Systems; The Journal
of Thoracic and Cardiovascular Surgery; Vol. 135, Issue 1, pp.196-202, 2008; Hanley, et al.;
Lin HC, Shafran I, Yuh DD, Hager GD, Vision-Assisted Automatic Detection and
Segmentation of Robot-Assisted Surgical Motions, Medicine Meets Virtual Reality, 2006,
Lin HC, Shafran I, et al, Towards Automatic Skill Evaluation: Detection and Segmentation
of Robot-Assisted Surgical Motions, Computer Aided Surgery, 11(5), pp.220-230, 2006; Lin
HC, Shafran |, et al, Automatic detection and segmentation of robot-assisted surgical
motions. Medical Image Computing and Computer Assisted Intervention, Springer Lecture
Notes in Computer Science, 4190, pp.802-810, 2005). We have also studied statistical
modeling of user motion and/or force data, the effectiveness of robotic guidance on speed
and accuracy of surgical tasks, and of various modalities of information feedback. Se also

the following:

e Voros, S, and Hager, G; Towards "real-Time" Tool-Tissue Interaction Detection
in Robotically Assisted Laparoscopy; IEEE International Conference on

Biomedical Robotics and Biomechatronics, pp. 562-567, 2008;
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e Kitagawa M, Dokko D, Okamura AM, Yuh DD, Effect of sensory substitution on
suture manipulation forces for robotic surgical systems, Journal of Thoracic and

Cardiovascular Surgery, 129, pp.151-158, 2005;

e Kitagawa M, Dokko D, Okamura AM, et al, Effect of sensory substitution on
suture manipulation forces for surgical teleoperation, Medicine Meets Virtual

Reality 12, pp 157-163, 2004;

e Kitagawa M, Okamura AO, Bethea BT, et al, Analysis of suture manipulation
forces for teleoperation with force feedback, Medical Image Computing and
Computer Assisted Intervention, Springer Lecture Notes in Computer Science,

2488, pp.155-162, 2002;

e Bethea BT, Okamura AM, Kitagawa M, et al, Application of haptic feedback to
robotic surgery, Journal of Laparoendoscopic and Advance Surgical Techniques,

14(3), 191-195, 2004; and

e Moorthy K, Munz Y, et al, Objective assessment of technical skills in surgery.

BMJ, 327, pp.1032-1037, 2003.
Data recording with the da Vinci Robot

[0052] We have developed a PC based software solution for data recording from the
da Vinci systems according to some embodiments of the current invention. The application
acquires data from the da Vinci API at a configurable rate. These quantitative measurements
include tool, camera and master handle motion vectors including joint angles, velocity, and
torque, Cartesian position and velocity, gripper angle, and synchronized stereo video data
(“procedure data”). Data collected is synchronized across manipulators and video channels
and time-stamped before archival. This example is compatible with the Intuitive Surgical’s
proprietary API library. The proprietary da Vinci API client application only captures

motion vectors and initially produced text log files.

[0053] In addition, we have developed several task boards for use in structured data

collection, an example of which is shown in Figure 4. Each of the task boards is designed to
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be highly replicable. Thus far, boards have been designed for suturing, knot tying and needle
passing. Data has been collected from laboratory (task board) settings, animal surgeries, and
live human surgeries at both Johns Hopkins University and Intuitive Surgical, Inc. To date,
over 40 surgical recordings have been acquired. Over a 100 training recordings have also

been performed with over 30 users including trainees and experts.

[0054] We also continue to acquire task performance data using our data collection
system and task boards. Recently, we have added new motion and video data from
laparoscopic surgery training procedures collected at the Johns Hopkins Simulation Center to
our archive. To validate unattended data collection, this data was collected over multiple
sessions with no engineering team member present during the experiments. Our data
collection environment also supports remote management using the underlying operating

system tools.
Analysis of System Operation during da Vinci Procedures

[0055] We are not aware of any systematic analysis of operator performance in
robotic surgery procedures, investigating factors such as the amount of operating time used
only for adjusting the camera field of view. A preliminary study shows camera control to be
a very frequently used mode, consuming a clinically significant amount of total operating
time. System operation data was archived using the API and post-processed to obtain
statistics for the number of mode changes into camera control, and the amount of time used
during camera control mode. Data in Table 1 from three da Vinci prostatectomy procedures
shows that it might be easily greater than 5% of the operating time. Further, field of view
changes are invoked very frequently, several times every minute. Additional procedure time

used to reposition the masters before or after camera control was not included here.

[0056] Table 1: Endoscopic camera motion during minimally invasive surgical

procedures with da Vinci surgical robots

Measure Procedure #1 Procedure #2  Procedure #3
Surgeon Experience Level Experienced  Experienced Novice
Total Time 62 min35sec 74min2sec 120 min 35 sec
Time used for camera control 4 min 38sec 4 min 35 sec 7 min 14 sec
Num Camera Control events 560 542 558
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Camera control per minute 8.949 7.321 4628
Minimum event time (sec) 0.238 0.218 0.194
Maximum event time (sec) 2.883 2.375 7.393
Mean event time (sec) 0.497 0.507 0.778
Median event time (sec) 0.421 0.464 0.677
[0057] These findings, which need to be validated with larger studies, indicate system

operation tasks easily consume clinically significant portions of the total operating time.
There are several similar system operation tasks (for example, master repositioning, and
instrument exchange) that similarly contribute significantly to the total operating time. It is
therefore important to understand development of system and operation skills in robotic

surgery users.
Statistical Models of Suturing Using the da Vinci Robot

[0058] We have developed statistical models of operator motion for specific surgical
tasks. To focus on the central objective of detecting and segmenting sub-tasks, we created a
simplified experimental paradigm predicated on performing a suturing task with the da Vinci
system by three users; the users’ skill-levels were rated as “expert,” “intermediate,” and
“novice.” Each user performed about 15 trials, where each trial consisted of four throws,

with eight identifiable sub-tasks:

Motion Description

Reach for needle (gripper open)

position needle (holding needie)

Insert needle/push needle through tissue
Move to middle with needle (left hand)
Move to middle with needle (right hand)
Pull suture with left hand

Pull suture with right hand

Orient needle with two hands

QO IND O BN —

[0059] For each trial, the collected data consisted of 78 motion variables acquired at a
10 Hz rate from the da Vinci API. The master console’s left- and right-hand manipulator
motions were each tracked by 25 variables, while the left- and right- robotic instrument arms
were each tracked by 14 variables. Each trial contained about 600 such motion variables, in

addition to the synchronous video data.
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[0060] Examining the Cartesian positions of the da Vinci left-hand manipulator, the
four suture throws performed by the expert user in the suturing task can be easily discerned
(Figures 5 and 6), suggesting that an automated methods might be able to distinguish this

task with good accuracy.

[0061] We designed an automatic statistical system capable of identifying the sub-
task being performed in real-time using the da Vinci APL. This statistical system was trained
using a set of examples. To test the system, we divided the collected data into fraining and
testing sets, where the training motion data was assimilated using machine learning
techniques and recognition accuracy measured on the festing motion data. To improve the
statistical significance of the results, we rotated the data that went into training and testing

sets about 15 times (i.e., 15-fold cross-validation) and measured the mean accuracies.

[0062] Our task recognition system (Figure 7) can be divided into two parts: one that

processes the input features, and the other that builds a classifier using these features.

[0063] The dynamic ranges of different motion parameters (i.e., position, velocity,
rotation, and acceleration) are significantly different. It is well-known from the machine
learning literature that these differences can adversely impact motion recognition. To
account for this, these parameters were normalized to have zero mean and unit variances.
Furthermore, the 78 motion control and monitor variables from the da Vinci API contain
redundancies that could impair the performance of the back-end classifier. This calls for the
use of a dimension reduction mechanism; and in the context of classification, Linear

Discriminant Analysis (LDA) provides a reasonable solution.

[0064] Modeling task sequences is difficult, since the number of possible sequences
increases exponentially with task length. To develop task models that can be tracked, certain
independence assumptions need to be made. These assumptions allow models to represent
local phenomena with low variance. However, for most real-world processes, an observation
at any given time is highly influenced by its context. One simple way of dealing with this is
to append the observation vector at any given time with frames from its context. Here, we do
this by appending each feature vector with those from its neighbors. The processed features

were then entered into two different automatic detection and segmentation techniques. First,
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we used a simple Bayesian classifier which modeled the frames at each time instance
independently using a multivariate Gaussian distribution (Figure 8). Second, we tried an
alternative approach using HMMs to model the sequential nature of the signal through a

hidden state sequence.

[0065] Results and Discussion: We found that the motion signals in our system
were distinct enough to allow both Bayesian classification and HMM techniques to work
equally well. Further, we found that accuracy of labeling is comparable when we use only
the rigid body motion of the tools (thus making the representation of the data independent of
the da Vinci kinematics). An analysis of the predicted labels showed that the errors occurred
mostly at the transitions between sub-tasks. To a certain extent, this could also be attributed
to small inconsistencies in human annotation; it is hard to determine precisely when a sub-
task ends and the next begins when the transition occurs smoothly. Allowing a tolerance of
+/- 0.2 seconds, we obtained accuracy rates over 92%. We also investigated an alternative
strategy using Support Vector Machines (SVMs), which have provided superior performance
in a number of applications. SVMs can easily accommodate large dimensional spaces with
redundant information. Therefore, we applied SVMs directly after computing the local
contextual information. We found that SVMs provided an additional gain in accuracy of

about 0.5%; an accuracy of about 93% was achieved.
Automated Surgical Skill Evaluation

[0066] The sub-task segmentation of defined surgical tasks, as described above,
provides a mechanism for computing a rich set of features for building an automatic surgical
skill evaluation system. In an example, we examined two simple features which can be
computed automatically, to understand the issues in developing such an evaluation system.
This study was conducted with data collected from users at two different skill levels: 12
trials by an “intermediate” user and 15 trials by an “expert” user. An HMM was trained
using the data from the expert user and was subsequently used to segment the motion data
acquired from the intermediate user. Similarly, the task trials performed by the expert user
were also segmented in each of the 15 trials. The trial being segmented was held-out from

the training data to make certain that there was no overlap between the training and testing
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data. In this way, all of the surgical task trials were automatically segmented into five
discrete sub-tasks, obtained by collapsing the eight sub-tasks described above (some sub-

tasks with few data points were folded into others).

[0067] Prior studies have suggested that the amount of time spent in performing a
task is a good indicator of surgical skill. This feature can be computed automatically from
each task trial. Additionally, a second feature can be computed that measures how well a
given performance matches the stylized “ideal” model derived from expert performances of
the task. These two features were computed for the five sub-tasks and subsequently pooled
for the two skill levels. The different distributions of the two features, in terms of mean and
standard deviation, clearly show that these features can be used to discriminate (Figure 9)

between the two skill levels.
Multi-User Trials

[0068] An example on surgical gesture recognition comprised 35 trials from seven
subjects (Table 2) performing surgical suturing task on bench top models using phantom
tissue. Validation experiments were done using da Vinci surgeons and non-surgeons on the
robot-assisted system. We applied the recognition and segmentation technique of various
statistical methods including Gaussian Mixture Models, 3-state Hidden Markov Models, and
supervised and unsupervised Maximum Likelihood Linear Regression (MLLR) to test the
robustness of the motion recognition algorithm of a variety of users. Success was defined by
comparing the accuracy of the automatically labeled data with frame by frame manually
labeled data. This shows an improvement using user specific models like MLLR to account

for larger data sets.

Table 2: Gesture recognition in multi-user trials

Subject LDA (%) GMM (%) 2-state HMM Supervised MLLR Unsupervised MLLR

(%) (%) (%)
0 68.91 67.9 66.8 70.4 69.8
1 64.09 63.2 64.6 68.6 66.5
2 59.95 60.4 59.4 61.2 62.3
3 67.52 70.6 72.8 75.6 75.4
4 63.94 67.5 66.7 69.3 69.1
5 76.82 72.7 71.2 75.8 73.1
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6 69.27 70.2 71.9 75.7 76.2
Average 67.21 67.49 67.62 70.94 70.34
[0069] Preliminary assessments of the surgical motion similarity between these bench

top models and live surgery show that the recognition algorithm learned from the bench top
model had on average much lower recognition rates of 20% for suturing, 21% for needle

passing, and 17% for knot tying when tested against three trials of live surgical models

[0070] Analysis of Tool Tissue Interaction: We have applied these techniques to
the problem of spotting tool-tissue interaction in API data recorded during training surgeries
performed on animal models. We found that we were able to recognize cases where tools
interacted with ties with an overall accuracy of 76% (85% true positives, 31% false positives,
(Voros, S, and Hager, G; Towards "real-Time" Tool-Tissue Interaction Detection in
Robotically Assisted Laparoscopy; /EEE International Conference on Biomedical Robotics
and Biomechatronics, pp. 562-567,2008)). In as yet unpublished work, we have increased
these percentages to over 90% using a nearest-neighbor classifier. These early results are

very encouraging in this challenging environment.

[0071] Analysis of suturing in daVinci video: We have also analyzed video data
from 20 da Vinci suturing trials acquired without annotation (see Table 3). The analysis uses
HMM models with 18 states, with each state representing a surgical gesture or sub-gesture.
Each trial is labeled using the evolved HMM and best path for each of 20 trials through the
18 states determined. This provides a sequence of labels, where each label is a state in the
HMM. Variations in suturing resulting from differences in surgical technique or expertise
can then be identified by minimizing the edit distance (number of insertions, deletions, and
substitutions). Alignment of frames between 2 such trials may allow expert visual

comparisons of surgical technique and sub-gestures for a surgical task.

Table 3: Average edit distance between users of
varying skill levels.
Expert  Intermediate Novice

Expert 0. 38 0.51 0.61
Intermediate 0.51 0.42 0.62
Novice 0.61 0.62 0.65
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Multi Center Data Collection

[0072] Some embodiments of the current invention can be integrated into an
automatic measurement system in this multi-center residency program providing transparent
access to a larger number of robotic surgery trainees. As part of the preparation for the
residency program Intuitive Surgical held a workshop of the directors of some of the leading
robotic surgery training program in the United States that are also to be part of their pilot

program.

EXAMPLE 2
Introduction

[0073] Minimally-invasive cardiothoracic operations have been facilitated with new
surgical robotic technologies. Although there are over 1700 surgical robotic systems in
clinical use worldwide [1] by mid 2010, the application of robotics to cardiothoracic surgery
has not caught up with other surgical disciplines due largely to steep learning curves in
developing operational proficiency with surgical robotic platforms [2,3] coupled with
comparatively lower tolerances for technical error and delay. Specifically, the technical
challenges presented in performing precise and complex reconstructive techniques with
limited access and the longer cardiopulmonary bypass and aortic cross clamp times
associated with robot-assisted cardiac operations [2,3,4] have hampered widespread
acceptance of robotics in the cardiothoracic surgical community. Improved adoption and use
of robotic surgery technology will require improvements in both technology, and training

methods.

[0074] The traditional Halstedian principles of surgical training using a “see one, do

one, teach one” apprenticeship model are not wholly applicable to surgical robotic training.
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To develop clinical proficiency, effective training and practice strategies to familiarize
surgeons with new robotic technologies are required [2,3]. However, current robotic training
approaches lack uniform criteria for assessing and tracking technical and operational skills.
Establishing standard, objective, and automated skill measures leading to effective training
curricula and certification programs for robotic surgery will require: (1) a significant cohort
of robotic surgeons-in-training of similar skill that can be tracked longitudinally (e.g., one
year) during the acquisition of skills, (2) a set of standardized surgical tasks, (3) the ability to
acquire and analyze large volumes of motion data, and (4) consistent “ground truth”

assessment of the collected data by experts.

[0075] Published research in robotic surgery training has been limited to
quantification of skill measures from ab initio training [5,6] of relatively short duration.
Previous efforts to objectively quantify measures of skill on a limited number of trainees [7,
8] have also been predicated upon comparing trainees of varying skill levels (e.g.,
postgraduate year of training) with “expert” surgeons. These studies use the experimental
tasks for both training, and assessment. Robotic surgical systems require complex man-
machine interactions and art has also not differentiated between clinical task skills and

machine operational and technical skills.

[0076] We opted to take a new approach by developing a novel automated motion
recognition system capable of objectively differentiating between operational and technical
robotic surgical skills and longitudinally tracking trainees during skill development. We
establish multiple learning curves for each training step; provide comparative analysis of skill
development, and develop methods for feedback to effectively address skill deficiencies. We
also use our tasks as benchmark evaluations, not as training tasks. This is also the first
longitudinal multi-center study involving robotic surgical training and comprises the largest

trainee cohort to date.
Methods

[0077] The measurement of objective performance metrics in surgical training (i.e.,

efficiency of hand movement) has previously required instrumented prototype devices that
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are not widely available, interfere with surgical technique, and employ technologies that are
not commonly available or easily integrated into conventional surgical instrumentation e.g.
[9]. As a novel “transparent” alternative, we have developed new infrastructure to collect
motion and video data from robotic surgical training that does not require any special
instrumentation and holds the promise of a training environment that does not require on-site

supervision by an expert surgeon.
Data Collection:

[0078] Our motion data collection platform uses the da Vinci surgical robotic system.
Its Application Programming Interface (API [10]) provides a robust motion data set
containing 334 position and motion parameters. The API automatically streams motion
vectors including joint angles, Cartesian position and velocity, gripper angle, and joint
velocity and torque data for the master console manipulators, stereoscopic camera, and
instruments over an Ethernet connection to an encrypted archival workstation. The API also
streams several system events, including instrumentation changes, manipulator “clutching”,
and visual field adjustments. The API can provide faster motion data acquisition rates (up to
100 Hz) than those obtained with video recordings (typically up to 30Hz). In addition, high-
quality time-synchronized video can be acquired from the stereoscopic video system. Using
the data collection framework (Figure 1, left) 334 system variables were sampled at 50Hz
and stereoscopic video streams collected at 30Hz. This data was anonymized at source,
assigned a unique subject identifier, and archived in a database according to an approved IRB
protocol. For analysis, the archived data was further segmented into task or system operation
sequences. This process generated 20-25 GB of data per hour. No special training was
required to operate the archival workstation, which can be left connected in place, without

impacting surgical or other training use.

[0079] Experimental Tasks: Training data was collected in all stages of training. Our

training protocol was divided into different training modules:

[0080] Module I: System Orientation Skills: This training module is intended to
familiarize the trainee with basic system and surgical skills, including master console

clutching, camera control, manipulation scale change, retraction, suturing, tissue handling,
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bimanual manipulation, transaction, and dissection. Trainees already practice these basic
skills in current training regimes and they are appropriate for benchmarking. On a monthly
basis, we collected data from periodic benchmarking executions of four minimally invasive
surgical skills taken from the Intuitive Surgical robotic surgery training practicum [11].

These tasks (Figure 10, right) are:

e Manipulation: This task tests the subject’s system operation skills. It requires transfer of
four rings from the center pegs of the task pod to the corresponding outer peg, followed
by replacement of the rings to the inner pegs in sequence. Elementary task performance
measures include task completion times and task errors (e.g., dropped ring/peg, moving
instruments outside of field of view).

e Suturing: This task involves the repair of a linear defect with three 10cm lengths of 3-0
Vicryl suture. Elementary task performance measures include task completion times and
task errors (e.g., dropped needles, broken sutures, inaccurate approximation).

e Transection: This task involves cutting an “S” or circle pattern on a transection pod using
curved scissors while stabilizing the pod with the third arm. Elementary task performance
measures include task completion times and task errors (e.g., cutting outside of the
pattern).

e Dissection: The dissection task requires dissection of a superficial layer of the pod to
gain exposure to a buried vessel, followed by circumferential dissection to fully mobilize
the vessel. Task completion times and errors (e.g., damage to the vessel, incomplete
mobilization, and excessive dissection) are measured.

[0081] These orientation laboratories typically produced an hour of training data.
Upon successful acquisition of these basic skills, trainees were graduated to the second

module below. This work highlights analysis of the first training module.

29



WO 2012/060901 PCT/US2011/035627

[0082] Module II: Minimally-Invasive Surgical Skills: This module is intended to
familiarize the trainee with basic minimally invasive surgical (MIS) skills, including port
placement, instrument exchange, complex manipulation, and resolution of instrument

collisions.

[0083] Graduation between modules is based on the trainees reaching expert skill
levels, or upon completion of six months. We aim to continue to track our trainees to
proficiency wherever they practice limited only by access to their robotic systems for data

collection.
Recruitment and Status

[0084] 30 robotic surgical users (of a goal of 48) from three academic surgical
training programs (Johns Hopkins, Boston Children’s, U. Penn and Stanford) have been
recruited to participate in our ongoing study. Additional training centers and subjects are
being added as approval is received from IRBs and their training robots are activated for data
collection by the manufacturer of the robotic system (Intuitive Surgical, Inc.). Our subjects
were stratified according to four skill levels: novice, beginner, intermediate, and expert.
Novice trainees were defined as having no prior experience with the da Vinci robotic system.
Beginner trainees possessed only limited dry-lab experience and no clinical experience with
the da Vinci system. Intermediate trainees possessed limited clinical experience with the
robotic system. Expert users were comprised of faculty surgeons with clinical robotic
surgical practices. Performance data from each subject was collected at monthly intervals
throughout their training period. Expert surgeons provided two executions of the training
tasks to establish skill metrics. Here we analyze 4 expert users, and 8 other users of non-

expert skill levels.
Structured Assessment

[0085] To validate our framework’s construct, we applied Objective Structured
Assessment of Technical Skills (OSATS) [12, 13] evaluations for each task execution. The
OSATS global rating scale consists of six skill-related variables in operative procedures that

were graded on a five point Likert-like scale (i.e., 1 to 5). The middle and extreme points are
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explicitly defined. The six measured categories are: (1) Respect for Tissue (R), (2) Time &
Motion (TM), Instrument Handling (H), Knowledge of Instruments (K), Flow of procedure
(F), and Knowledge of procedure (KP). The “Use of Assistants™ category is not generally
applicable in the first training module, and was therefore not evaluated. A cumulative score
totally individual scores for each of the six categories is obtained (minimum score = 0,
maximum score = 30). OSATS evaluation construct has been previously validated in terms
of inter-rater variability and correlation with technical maturity [13, 14] and has been applied

in evaluating facility with robot-assisted surgery [15].
Automated Measures

[0086] There are at least two different types of automated measures that can be
computed from the longitudinal data we have acquired. The first are aggregated motion
statistics, task measures, and associated longitudinal assessments (i.e., learning curves). The
second include measures computed using statistical analysis for comparing technical skills of

trainees to that of expert surgeons.

[0087] Motion Statistics and Task Measures: Table 2.1 shows the computed

elementary measures for the defined surgical task executions. Each of these measures is used

to derive an associated learning curve over the longitudinally collected data.

[0088] Table 2.1: Aggregate measures computed from longitudinal data: Experts
performed each task twice to reduce variability - sample task times (seconds, top), master
handle motion distances (meters. middle), and number of camera foot pedal events (counts,

bottom) are detailed for the training tasks in the first module.

Task ~ Task  Session Session Session Session Session
times(sec) il i il R 2R3 4 ERRe
Expert Suturing 348 322
Manipulation 238 238
Transection 133 149
Dissection 188 260
Trainee Suturing 454 588 255 289 279
Manipulation 867 577 311 282 442
Transection 107 196 76 103 126
Dissection 363 291 191 492 200
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- Motion (m) Task Session - Session Session  Session  Session
RE It L \ 1 2w 03 4 S
Expert Suturing 13.0 10.3
Manipulation  14.9 14.2
Transection 1.8 1.2
Dissection 3.2 6.6
Trainee Suturing 12.9 15.0 6.1 6.1 6.8
Manipulation ~ 27.8 17.8 15.1 16.5 21.1
Transection 1.7 1.6 0.5 1.1 1.1
Dissection 8.1 5.0 4.0 9.3 3.4
Events(count) Task Session Session Session Session Session
' 1 2 3 4 5
Expert Suturing 8 2
Manipulation 43 40
Transection 3 2
Dissection 0 2
Trainee Suturing 0 0 2 6 4
Manipulation 98 61 61 50 89
Transection 1 1 1 5 3
Dissection 5 7 4 7 5

[0089]

17, 18, 19] have previously used the da Vinci API motion data to develop statistical

Statistical Classification of Technical Skill: Our group and collaborators [16,

methodologies for the automatic segmentation and analysis of basic surgical motions for
quantitative assessment of surgical skills. Lin et al [16] used linear discriminant analysis
(LDA), to reduce the motion parameters to three or four dimensions, and Bayesian
classification to detect and segment basic surgical motions, termed “gestures”. Reiley et al
[19] used a Hidden Markov Model (HMM) approach for modeling gestures. These studies
report that experienced surgeons perform surgical tasks significantly faster, more
consistently, more efficiently, and with lower error rates [19,20]. We summarize assessment
of robotic system operational skills by using Support Vector machines (SVM) to cluster
dimensionally reduced data, revealing different levels of competence. A SVM transforms the
input data into a higher dimensional space using a kernel function, and an optimization step

then estimates hyperplanes separating the data with maximum separation.

Results
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[0090] Structured Assessment: Table 2.1 shows a clear separation between trainees

based on their system operational skills and clinical background, providing a validated

“ground truth” for assessing our automated methods.

[0091] Workspace Management: Maintaining a compact operative workspace is an

important robotic system operation skill. Expert robotic surgeons maintain an optimum field
of view for a given operative task, keeping the instruments within the field of view at all
times (Figure 11, bottom left) while trainees tend to zoom out to a broad field of view that is

not adjusted during the task performance (Figure 11, bottom right).

[0092] Figure 11 (top) graphically illustrates the differences in workspace usage
between trainees and expert robotic surgeons performing the manipulation task. The
trajectories represent master handle motion, and the enclosing volumes represent total
volumes used, and the volume enclosed by the positions of the master handles at the end of
master clutch adjustment. The workspace usage evolves to become closer to the expert
workspace usage as trainees learn to adjust their workspaces more efficiently. Expert task
executions also include regularly spaced camera clutch events to maintain the instruments in

the field of view.

[0093] We use master handle motion for computations here, as compared to
instrument tip motion reported in the literature since it better measures the operational skill
by capturing all the master motion required to adjust the master workspace, which is not
captured by instrument tip motion. We measure both the master distance, as well as the
volume in which the master handles were moved. Although not reported here, we do also
measure and analyze instrument motion statistics, as well as counts of other foot pedals,

instrument exchanges, and other system events.

[0094] Learning curves: Figures 12a-12h show learning curves derived from task

motion and times required to complete the defined surgical tasks and the corresponding
learning curves based on the corresponding expert OSATS structured assessments. ANOVA
(F=71.88 >223, F=51.02 > 237, and F =71.4 > 2.57 at o = 0.05 at 1, 3 and 5 months)
results are significant at 5% significance level indicating that the expected values for time,

OSATS, master motion, and master volumes differ significantly. Trainee performance
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improves with time as indicated by smaller task completion time, smaller volumes, shorter
motion, and correlated improved in OSATS scores. By comparison, expert measures had

very small variability in the two executions.

[0095] The computed measures (e.g. task times, total time, master motion, and master
volume) at 1,3 and 5 month intervals correlate with OSATS scores for the corresponding
sessions (p <0.05). For suturing, at month 1, the mean OSATS (M=77.58, V=527.35, N= 12),
and suturing time (M=466.29, V=39392.63, N=12) was significantly greater than zero, with
t(11)=-6.27, two-tail p = 6.07E-5, providing evidence that task completion time correlates

with ground truth assessment. Table 2.2 details the p-values for alpha=0.05.

[0096] Table 2.2: Two-tail p-vlaues (top) for pair-wise #-tests at 1, 3, and 5 months
time intervals, and (alpha = 0.05) for OSATS scores and suturing time (suturing), total time
(time), manipulation distance (manip), total task distance (distance), master handle volume in
dissection (dissec), and total master handle volume (volume). P-values for one-factor

analysis of variation (ANOVA) for all variables (bottom) at the same intervals.

P AIRWISE N OSATS/ OSATS/ OSATS/ OSATS/ ~ OSATS/  OSATS

 TEST - suturing - time  manipulation distance dissection /
e e i ‘ volume
1 12 6E-5 2.8E-5 9.9E-4 (N=8) 0.0014 1.5E-7 1.5E-7
3 6 0.0016 14E-4 0.0067 0.9303 8.4E-5 8.5E-5
5 3 0.0227 23E-4 0.0052 0.0043 8.4E-4 8.4E-4
ANOV N  P-value F F-critical
A R
1 12 8.4E-24 477 2.22
3 6 7.8E-20  90.5 2.37
5 3 2.5E-15 472.1 2.85
[0097] Skill Assessment: For a portion of the dataset (2 experts, 4 non-experts) we

clustered the motion data, first using principal component analysis (PCA) to reduce data
dimensions for Cartesian instrument velocities signals. We then trained a binary support
vector machine (SVM) classifier on a portion of the data, and used the trained classifier to
perform expert vs. rest binary classification. This methodology correctly stratified our

subjects according to their respective skill levels with 83.33% accuracy for the suturing task,
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and 76.25% accuracy for the manipulation task. Detailed automated analysis on this and

expanded datasets is being reported separately.
Discussion

[0098] Clinical skill measures should be a measure of the instrument-environment
interaction. While instrument motion is measured accurately using the sensors built into the
robots, the interaction and effects of tools with the environment (the patient or model), and
additional tools such as needles and sutures is not captured in the kinematic motion data. In
comparison to art, where the instrument motion has been primarily used as an indicator of
“clinical” skill, we focus on “operational” skills for robotic surgery systems. Robotic surgery
uses a complex man-machine interface, and it is the complexity of this interface that creates

long learning curves even for laparoscopically trained surgeons.

[0099] We describe a longitudinal study of robotic surgery trainees, including
preliminary assessment of both structured expert assessment (OSATS), as well as
automatically computed statistics and measure of skills. Operational skill effects can be
completely captured using the telemetry available from the robotic system, and with
appropriate tasks and measures, separate learning curves can be identified. In particular we
note very high agreement between structured assessment of task performance using OSATS
and master workspace measures (distance, volume, time) computed above. Additional
measures computed, but not described here, include camera motion effects, instrument
motion measures similar to the literature, learning curves based on system events, and

learning curves based on abnormal events, and reactions to abnormal events.

[00100] We perform longitudinal analysis to develop learning curves. This is an
essential exercise towards development of both training curricula, and metrics that are
discriminative of operational skill. As noted the measures of skill based on master
manipulation show large differences between experts and non-experts and convergence
towards the experts as training progresses. Ab initio training, where operational skills and

system orientation are most important, is only the first step in robotic surgery training.
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Additional modules of training upon completion of the first module add port constraints,

instrument collisions, and more complex tasks.

[00101] This analysis presented here uses only a portion of our data, and discusses
only some of the measures computed. Additional larger studies involving larger datasets and
alternative methods are currently underway. In ongoing work, we are also measuring
response times to errors, and their development curves as additional skill measures. Finally,
relatively simple statistical classification is reported here, with accuracies of greater than
80%, only to highlight the quality of our data. In ongoing work, we are also using alternative
supervised and unsupervised multi-class classification both for operation skills, as well as

surgical task skills.
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EXAMPLE 3

[00102] Minimally invasive surgery has seen a rapid transformation over the last two
decades with the introduction and approval of robotic surgery systems [1,2]. Continued
advancement in tools and techniques has established minimally invasive surgery as a
standard of care in many areas of surgical practice including abdominal [4], urologic [5],

otolaryngologic [6], and neurologic surgery [7], as well as cardiothoracic [3] surgery.

[00103] The increasing use of minimally invasive techniques has been motivated by
reduced pain and trauma, reduced blood loss, and shorter recovery times. Successes in
minimally invasive cardiac surgery have lagged behind those achieved with robotic
laparoscopic surgery in other specialties due to organ motion, the physical constraints of the
chest cavity, the consequences of surgical errors or excessive delay [8], as well as limited

mitigations available for a failure of the robotic device.

[00104] The da Vinci surgical system (Intuitive Surgical, Sunnyvale, CA) was initially
developed for minimally invasive cardiothoracic surgery. The robot, now in its third
generation, consists of three components: a surgeon console, a patient side cart consisting of
up to three robotic instrument manipulators and a robotic endoscope, and a vision cart
housing the endoscopic components and in the latest generation a computation engine. The
surgeon sits at the console and manipulates the master instrument handles, and the motions
are scaled and transformed into appropriate instrument motions. The robot instruments at the
tips contain greater precision and dexterity than human hands, and also reverse the motion

inversion inherent in laparoscopy around the access ports.

[00105] The da Vinci system is now the standard of care in complex urological
procedures. It has been used successfully to perform a growing number of cardiothoracic

surgeries [4] including coronary artery bypass grafting [9], atrial septal defect closure [10],
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transmyocardial laser revascularization [11], and mitral valve repairs [12]. Training remains
one of the major challenges in improving the adoption of robotic cardiothoracic surgery. The
latest generation of the robotic system (the Si) can have up to two surgeon’s consoles. It is
based on a prototype created by one of the authors (Kumar et al, Multi-user medical robotic
system for collaboration or training in minimally invasive surgical procedures, 2006), and is

aimed to address the training limitations of the previous generations.

[00106] Surgical training in academic medical centers remains predicated upon the
Halstedian “see one, do one, teach one” scheme in which interns and junior residents are
allowed to perform operations under the tutelage of a faculty surgeon. A mentor typically
adjusts the trainee’s participation based on his subjective confidence in the trainee’s abilities
and their understanding of the procedure. We have developed methods for acquisition of
detailed performance data, and objective measures of skill, that can allow greater
understanding of a trainee’s performance, and have the potential of greatly improving the

efficiency of the training process for both the mentor and the trainee.
Materials and Methods

[00107] We record all motion generated during a robotic surgery or training procedure
in an unhindered manner. Such recording previously needed devices could not be easily
incorporated into the surgical and training infrastructure [9] without impacting surgical or
training workflow. By comparison, the Application Programming Interface (API [10]) in the
da Vinci system permits the recording of instrument and hand motion and video data without
any modification of the procedure workflow, and using our system, without on-site

supervision.

[00108] Data Collection System: Our data collection system (Figure 1) is designed to

collect data primarily from the da Vinci surgical robotic system. The API streams 334
variables at rates of up to 100Hz containing Cartesian position and velocity, joint angles,
joint velocities, torque data, and events for all robotic arms and the console buttons and foot
pedals. This data is streamed over and Ethernet connection to a small portable workstation
where it is encrypted and archived. Along with this data; we also record high quality

synchronized video from the stereoscopic camera at real-time frame rates (30Hz).

40



WO 2012/060901 PCT/US2011/035627

[00109] This data is anonymized at the source, and stored in an archive according to a
Johns Hopkins Institutional Review Board protocol. Subjects are assigned unique identifiers
to permit longitudinal analysis, such as computation of learning curves. This process creates
20-25 Gigabytes (GB) of data per hour. The archiving workstation does not need any special

training to operate and can be left connected without affecting the system operation.

[00110] Experimental Tasks: Our ongoing protocol is aimed at assessing robotic

surgery training skills. It contains a set of minimally invasive surgery training tasks. The first
module of training (Figure 4) contains a manipulation task for system orientation, and
benchmarking tests of suturing, transection, and dissection skills performed approximately
monthly on training pods (The Chamberlain Group, Inc.) commonly used for robotic surgery

training [11].

[00111] The manipulation task involves moving rubber rings around the entire robotic
workspace. Subjects also perform interrupted suturing (3 sutures) along an I-defect using 8-
10cm length of Vicryl 3-0 suture, transect a pattern on a transection pod using the curved

scissors, and mobilize an artificial vessel buried in a gel phantom using blunt dissection.

[00112] In addition to the motion data, we also record the trainee’s practice hours
between these benchmarking sessions. Subjects are graduated after completing six
benchmarking sessions (approximately six month), or when performance measures indicate

task proficiency.

[00113] Recruitment and Status: Our subjects are robotic surgery residents and

fellows from four institutions - Johns Hopkins, Children’s Hospital, Boston, Stanford/VA
Hospitals, and University of Pennsylvania. Practicing clinicians are recruited to provide
ground truth data for computing proficiency levels of performance measures. Current

recruitment stands at 24 including 6 experts.

[00114] Expert Assessment: Expert surgeon collaborators provide an Objective

Structured Assessment of Technical Skills (OSATS) [12, 13] assessment of each recorded
trial. OSATS rating system has been validated in terms of inter-rater variability and

correlation with technical abilities [13, 14] in robotic surgery as well [15]. The OSATS
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rating scale contains task performance measures rated on a five point Likert-like scale (i.e. 1
to 5). We use six categories: 1) Respect for Tissue (R), 2) Time & Motion (TM), 3)
Instrument Handling (H), 4) Knowledge of Instruments (K), 5) Flow of procedure (F), and 6)
Knowledge of procedure (KP). _The ‘Use of Assistants’ category was not applicable in the
first module and was not included in the scoring. A total score (minimum=>5, maximum=30)

was calculated from the individual categories.

[00115] To understand the complexity of our data and initiate analysis, we first
collected data from two experts, two beginners, and two users with no clinical experience.
The non-clinical users were included in this experiment only to assess the utility of clinical
background in the training tasks. Table 3.2 shows the OSATS scores for the six subjects

participating in this experiment.

[00116] Table 3.2: The OSATS scores for the 6 users
‘Subjects Task R ™ - H K F KP - Total
Egpéni T Manipulation 3 i 4 3 3 3 23
Suturing 3 1 1 4 2 3 14
Expert2 Manipulation 3 3 3 3 3 3 18
Suturing 3 2 1 3 2 2 13
Beginnerl Manipulation 2 1 1 2 1 2 9
Suturing 1 1 1 I 1 1 6
Beginner2 Manipulation 2 2 1 2 1 2 10
Suturing I i I I l 2 7
Non-clinicall Manipulation 1 1 ! 1 1 1 6
Suturing 1 1 1 1 1 1 6
Non-clinical2 Manipulation 2 1 1 2 1 2 9
Suturing 2 1 1 2 1 2 9

42



WO 2012/060901 PCT/US2011/035627

[00117] Automated Assessment: We investigated two methods of performing

automated assessment - aggregated motion statistics and task performance measures,
differentiating experts and non-experts, in addition to the manual structured expert
assessment. Previous studies [6, 8] have used preliminary measures to identify skill with an
emphasis only on comparing users of different skill levels to the experts. Table 3.1 shows
elementary task performance measures like the task completion times, number of camera
events, number of clutch pedal events to adjust the workspace, total distance traveled by the

instruments, and the total motion of the camera.

[00118] Table 3.1: Average aggregate measures computed from two sessions: task
completion times (seconds, first column), number camera pedal events, number of clutch foot
pedal events, distance travelled by patient-side instruments (meters), distance travelled by the

camera (meters) are detailed for the training tasks in the first module.

'Subjeyzcts” Task - Time(sec) Camera Clutch - PSM (m) Cam (m)
events : ‘evént’s
Expertl Mani:pulation | 259 75 5 7.1 1.’16
Suturing 290 5 10 2.4 0.017
Expert2 Manipulation 250 88 2 7.0 1.33
Suturing 202 8 8 2.5 0.19
Beginnerl Manipulation 912 112 28 6.6 0.36
Suturing 914 2 40 6.4 0.22
Beginner2 Manipulation 405 43 26 7.7 0.85
Suturing 377 19 15 4.4 0.28
Non-clinicall Manipulation 499 95 46 9.0 0.91
Suturing 404 0 12 3.9 0
Non-clinical2 Manipulation 368 61 28 9.7 0.72
Suturing 612 1 19 4.6 0.04
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[00119] The motion data from the da Vinci APl has also been previously used to
classify skill using statistical machine learning methods. These studies [16, 19] have
primarily focused on recognizing the surgical task being performed. The motion data from
the API is a high dimensional (334 dimensions at up to 100 Hz), and we used dimensionality
reduction (Principal Component Analysis (PCA)) to project the data into a lower number of
dimensions. PCA uses an orthogonal linear transformation to transform data consisting of
correlated variables into a lower dimensional data consisting of uncorrelated variables to

discard redundant data.

[00120] The reduced data is classified into expert and non-expert classes using
Support Vector Machines (SVM). A SVM uses a kernel function and an optimization
algorithm to finds a hyper-plane with optimum separation between the two classes. SVMs
have been previously used to classify surgical skill in motion data as well. Given ground
truth labeling, sensitivity and accuracy of the classifier can be directly computed as

performance measures.
Results

[00121] To develop our methods, we analyzed data from two experts, two beginners
and two users with no clinical experience. Table 3.2 shows the scores for all the six subjects
participating in our experiment. The non-clinical users were included to assess the utility of

clinical background in our training tasks.

[00122] Structured Assessment: Table 3.2 shows a clear separation between trainees

based on their system operational skills and clinical background. For this small dataset, the
ratings also correlate with self-reported expertise and provide us with a “ground truth” for
our automated methods. Experts (OSATS score >13) are trainees (OSATS score <10) are

well separated in structured assessment.

[00123] Workspace Visualization: Figure 11 (top left), depicts the expert master

handle workspace usage for the manipulation task. The blue and red motion trajectories
denote the left and right master handles respectively. The green triangles are the time points

when the clutch pedal was pressed to adjust the master handles. The inner red ellipsoid shows
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the volume where the subject’s hands returned after workspace adjustment, while the outer
ellipsoid circumscribes the task work volume. Figure 11 (top right), shows the workspace
usage of a beginner for the same task. It is visually evident that the expert has a much more
compact volume of work than the beginner. As training progresses, the workspace usage

efficiency improves to match that of the experts.

[00124] Table 3.3: Longitudinal observations of time and instrument motion distance

of 2 trainees over four sessions. Time is in seconds, distance in meters.

Tasks Session 1 Session2  ~ Session3 ~Session 4
Time Dist Time Dist _ Time  Dist  Time Dist
User 1 Suturing 416  4.82 444 5.54 331 2.64 215 2.00
Manip. 1061 12.49 566 9.17 295 7.22 346 7.41
User2 Suturing 1154 8.72 675 4.07 414 1.91 358 1.77
Manip 1289 12.79 535 6.55 444 5.64 444 6.97

[00125] Figure 11 (bottom left) depicts expert camera motion for the same task. To

maintain instruments in the field of view, the triangles represent the start and end of camera
motions. To maintain the instruments in the field of view at all times, experts practice regular
camera motions while maintaining approximately the same scale. A trainee (Figure 11,
bottom right) instead aims to minimize camera motion by zooming_}> out, and moving the
camera more frequently, but in small motions. These visualizations may be used to

recommend specific task strategies and improvements to the trainees.
Skill Assessment using Statistical Classification:

[00126] Compared to trainees, experts used 74.64% more videoscopic camera motion

in achieving optimum fields of view, leading to less clutching, translational motion (suturing
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experts<2.5m,novices>4.4m), collisions, and shorter task completion times (experts <290sec,

novices>375sec).

[00127] For statistical skill classification in suturing, we segment the 3 sutures per trial
(2 sessions per user) individually. This provides a total of 36 trials of which 12 are labeled
expert and 24 are non-expert. We now use Cartesian velocity data for each of the suture as a
feature vector. Each suture trial is approximately 5000 samples. Using principal component

analysis we reduced this data to 30 dimensions.

[00128] We next trained a binary support vector machine (SVM classifier) on a subset
of the trials and used the trained classifier to perform expert vs. non-expert binary
classification. 3 expert and 3 non-expert samples were used for training and the trained SVM
was applied on the remaining 30 samples. This achieved an 83.3% classification accuracy
for suturing. Similarly, 96 dimensions provide a classification accuracy of 76.3% for
manipulation. Figure 13 shows a projection of the suturing Cartesian velocities in three
dimensions. The expert trials cluster is well separated from the remaining samples. Note

also that the non-clinical users are also separated from trained users with suturing skills.
Comments

[00129] We describe our novel unsupervised data collection infrastructure for robotic
surgery training the da Vinci surgical system. This infrastructure is in use for capturing
training data at four different training centers (Johns Hopkins, University of Pennsylvania,

Children’s Hospital, Boston and Stanford).

[00130] In comparison to experimental data collection with the intent of detecting
current skill levels reported in the literature [7-9,16-19], we use a benchmarking of skill
paradigm for assessment of not just current skill levels, but rather development of learning
curves. Learning curves, and their validation is being reported separately. Compared to art,
our trainees are motivated by their desire to acquire these skills and become robotic surgeons.
They are participating in a training program at the respective centers, and are not practicing
with the robot due to our protocol. We therefore, also collect their training times between

benchmarking sessions, and the relationship of the training to skill levels is also being
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reported separately. Finally, we investigate the system operation skills for using the da Vinci.
Robotic surgery features a relatively complex man-machine interface, which is one of the
reasons for the steep learning curve. Here, we report visualizations that may be used for

detecting inefficient use and providing guidance.

[00131] We also show that a binary classifier can distinguish between experts and non-
experts with accuracies greater than 80%. This work was intended to investigate the need of
surgical training in the experimental tasks on a limited set of data. Ongoing analysis is
exploring the response times to system events and task errors, and developing methods for
distinguishing skill based on the responses to task variability and errors. Other work is
exploring supervised and unsupervised methods for operational and surgical skills on larger

datasets as well. Those analyses are in preparation for separate submissions.
[00132] References for Example 3

1. Intuitive Surgical Inc, http://www.intuitivesurgical.com/products/fag/index.aspx,

2010.
2. Novick RJ, Fox SA, Kiaii BB, Stitt LW, Rayman R, Kodera K, et al. Analysis of the
learning curve in telerobotic, beating heart coronary artery bypass grafting: a 90

patient experience. The Annals of thoracic surgery 2003;76(3):749--753
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Rodriguez E and Chitwood Jr WR. Outcomes in robotic cardiac surgery, Journal of

Robotic Surgery, 2007;1:19--23
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evaluation of intraoperative laparoscopic skills. American journal of surgery.
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[00133] The embodiments illustrated and discussed in this specification are intended

only to teach those skilled in the art how to make and use the invention and are not intended

to define the scope of the invention. In describing embodiments of the invention, specific

terminology is employed for the sake of clarity. However, the invention is not intended to be

limited to the specific terminology so selected. The above-described embodiments of the

invention may be modified or varied, without departing from the invention, as appreciated by
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those skilled in the art in light of the above teachings. It is therefore to be understood that,
within the scope of the claims and their equivalents, the invention may be practiced

otherwise than as specifically described.
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WE CLAIM:

L. A system to assist in at least one of the evaluation of or the improvement of skills to
perform minimally invasive surgery, comprising:

a minimally invasive surgical system;

a video system arranged to record at least one of a user’s interaction with said
minimally invasive surgical system or tasks performed with said minimally invasive surgical
system; and

a data storage and processing system in communication with said minimally invasive
surgical system and in communication with said video system,

wherein said minimally invasive surgical system provides at least one of motion data,
ergonomics adjustment data, electrical interface interaction data or mechanical interface
interaction data of at least a component of said minimally invasive surgical system in
conjunction with time registered video signals from said video system, and

wherein said data storage and processing system processes said at least one of motion
data, ergonomics adjustment data, electrical interface interaction data or mechanical interface
interaction data to provide a performance metric in conjunction with said time registered

video signals to be made available to an expert for evaluation.

2. The system of claim 1, wherein said minimally invasive surgical system comprises a

surgical tool.

3. The system of claim 1, wherein said minimally invasive surgical system comprises a

robotic surgery system.

4, The system of claim 3, wherein said robotic surgery system is a tele-operated robotic

surgery system.

5. The system of claim 4, wherein said tele-operated robotic surgery system comprises
master handles and said motion data includes motion data of the master handles of the tele-

operated surgery system.
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6. The system of claim 5, wherein said tele-operated robotic surgery system comprises a
console that contains the master handles and said motion data includes a configuration of at

least one of ergonomics, workspace, and visualization aspects of the console.

7. The system of any one of claims 1-6, wherein said minimally invasive surgery system

is a laparoscopic surgery system.

8. The system of claim 1, further comprising a display system in communication with
said data storage and processing system to display said performance metric in conjunction

with said time registered video signals to be made available to said expert for evaluation.

9. The system of claim 8, further comprising an input device in communication with
said data storage and processing system to receive expert evaluation from said expert in

correspondence with said performance metric and said time registered video.

10.  The system of claim 9, further comprising a second display system in communication
with said data storage and processing system to display said expert evaluation in conjunction

with said time registered video.
11.  The system of claim 9, wherein said data storage and processing system is further
configured to analyze task performances and provide automated evaluation and expert

evaluation together with task video.

12.  The system of claim 9, wherein said display system is in communication with said

data storage and processing system remotely through the internet.

13.  The system of claim 12, wherein said input device is in communication with said data

storage and processing system remotely through the internet.
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14.  The system of claim 11, wherein said automated evaluation includes learning curves

of task performance based on configurable task metrics.

15. The system of claim 11, wherein said data storage and processing system is further
configured to allow for specific aspects of the automated evaluation to be hidden from review
to prevent introduction of bias or a focus on numerical aspects of the automated evaluation

by a trainee.

16. The system of claim 13, wherein the automated evaluation includes task-specific

feedback for a next training session.

17.  The system of claim 16, wherein the automated evaluation includes specific objective
feedback for both a mentor and the trainee, with the feedback for the mentor being different

from the feedback to the trainee.

18. The system of claim 17, wherein the objective feedback includes task steps in which

the trainee is identified to be deficient.

19. The system of claim 17, wherein the objective feedback to the mentor includes a
summary trainee progress, learning curves, population wide trends, comparison of trainee to
other trainees, training system limitations, supplies and materials status, and system

maintenance issues.

20. The system of claim 17, wherein the automated evaluation is used to vary a training

task complexity.

21. The system of claim 17, wherein the automated evaluation is used to vary a frequency

of training.

22. The system of claim 17, wherein the automated evaluation is used to select training

tasks for the next training session.
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23. The system of claim 1, wherein the processing system is configured to perform
methods for statistical analysis of skill classification, including identification of proficiency

and deficiency.

24.  The system of claim 23, wherein the skill classification is binary.

25. The system of claim 23, wherein the skill classification is at least one of multi-class
and ordinal.

26.  The system of claim 23, wherein the skill classification is based on at least one of'a

task statistic or a metric of skill.

27.  The system of claim 23, wherein the skill classification is based on multiple

classification methods.

28. The system of claim 23, wherein the man-machine interaction, ergonomics, and

surgical task skills classification is performed separately.

29.  The system of claim 23, wherein separate metrics of man-machine interaction,

ergonomics and surgical task skills are computed.

30.  The system of claim 23, wherein separate training tasks and difficulty levels are used

for man-machine interaction, ergonomics and surgical task skills.

31. A method for evaluating and assisting in the improvement of minimally invasive
surgical skills, comprising:

recording, in a tangible medium, at least one of motion data, ergonomics adjustment
data, electrical interface interaction data or mechanical interface interaction data of at least a

- component of a minimally invasive surgical system while in use;

55



WO 2012/060901 PCT/US2011/035627

recording, in a tangible medium, video of at least said component of said minimally
invasive surgical system in conjunction with said recording at least one of motion data,
ergonomics adjustment data, electrical interface interaction data or mechanical interface
interaction data to provide time registered video signals; and

processing said at least one of motion data, ergonomics adjustment data, electrical
interface interaction data or mechanical interface interaction data on a data processing system
to provide a performance metric in conjunction with said time-registered video signals to be

made available to an expert for evaluation.

32. A tangible machine-readable storage medium comprising stored instructions, which
when executed by a data processing system, causes said data processing system to perform
operations comprising:

receiving at least one of motion data, ergonomics adjustment data, electrical interface
interaction data or mechanical interface interaction data of at least a component of a
minimally invasive surgical system;

receiving non-transient, time-registered video signals of at least said component of
said minimally invasive surgical system in conjunction with said at least one of motion data,
ergonomics adjustment data, electrical interface interaction data or mechanical interface
interaction data; and

processing said at least one of motion data, ergonomics adjustment data, electrical
interface interaction data or mechanical interface interaction data on said data processing
system to provide a performance metric in conjunction with said non-transient, time-

registered video signals to be made available to an expert for evaluation.
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