

(11)

EP 2 328 487 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent:
18.04.2018 Bulletin 2018/16

(51) Int Cl.:
A61B 17/34 (2006.01) **A61B 1/313** (2006.01)
A61B 17/00 (2006.01) **A61B 1/00** (2006.01)

(21) Application number: **09737239.5**(86) International application number:
PCT/US2009/058792(22) Date of filing: **29.09.2009**(87) International publication number:
WO 2010/037099 (01.04.2010 Gazette 2010/13)

(54) FIRST-ENTRY TROCAR SYSTEM

TROKARSYSTEM FÜR DEN ERSTEN ZUTRITT

SYSTEME DE TROCART POUR PREMIERE INSERTION.

(84) Designated Contracting States:
**AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL
PT RO SE SI SK SM TR**

(30) Priority: **29.09.2008 US 101061 P**

(43) Date of publication of application:
08.06.2011 Bulletin 2011/23

(60) Divisional application:
18155145.8

(73) Proprietor: **APPLIED MEDICAL RESOURCES CORPORATION
Rancho Santa Margarita, CA 92688 (US)**

(72) Inventors:

- STROKOSZ, Arkadiusz**
Dana Point, CA 92629 (US)
- TAYLOR, Scott, V.**
Mission Viejo, CA 92692 (US)
- KAHLE, Henry**
Trabuco Canyon, CA 92679 (US)

(74) Representative: **Dolleymores**
9 Rickmansworth Road
Watford, Hertfordshire WD18 0JU (GB)

(56) References cited:
US-A- 5 976 168 **US-A1- 2005 288 622**
US-A1- 2007 075 465 **US-A1- 2008 086 074**

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description**BACKGROUND****Technical Field**

[0001] This disclosure is generally directed to surgical access devices, and more particularly, to a first-entry surgical access system.

Description of the Related Art

[0002] Trocars are used for instrument access to body cavities in minimally invasive surgery, for example, laparoscopic surgery. In laparoscopic surgery of the organs of the abdomen, the abdomen is typically inflated or insufflated with an insufflation gas, for example, carbon dioxide, which lifts the abdominal wall away from the internal organs, thereby facilitating access to the organs, a condition referred to as pneumoperitoneum. Inserting trocars into an abdomen under pneumoperitoneum is relatively easy. Because the abdominal wall is distended away from the internal organs by the pressure of the insufflation gas, inadvertent damage to the organs during insertion is reduced. Before pneumoperitoneum is established, however, the abdominal wall through which the trocar is to be inserted contacts the internal organs directly. Consequently, inserting the first trocar, referred to as first entry, carries an increased risk of damaging the internal organs directly beneath the entry point.

[0003] US patent application, publication number US 2008/0086074 A1 discloses a visual obturator which may also permit insufflation. The preamble of claim 1 is based on this document.

SUMMARY OF THE INVENTION

[0004] In accordance with the present invention there is provided a surgical access system according to claim 1. Preferred embodiments are define in the dependent claims. Improved optical characteristics of the trocar system permit precise and accurate visual placement thereof into a body cavity. Accordingly the access system is suitable as a first entry surgical access system. Embodiments of the trocar access are also useful for drug delivery, and/or for fluid and/or tissue aspiration.

[0005] Some embodiments provide a bladeless trocar that permits visualization of body tissue fibers as they are being separated, thereby permitting a controlled traversal across a body wall. Some embodiments provide a bladeless trocar that accommodates a conventional laparoscope.

[0006] In some embodiments, the seal assembly comprises a septum seal and a duckbill valve.

[0007] In some embodiments, the fluid inlet is disposed on the proximal end of the trocar.

[0008] In some embodiments, the obturator tip is bladeless. In some embodiments, the wall of the obtura-

tor tip is not greater than about 0.65 mm thick. In some embodiments, the obturator tip has a substantially uniform wall thickness. In some embodiments, the obturator shaft and tip are unitary. In some embodiments, the obturator tip comprises at least one of polymer, polycarbonate, polysulfone, PEEK, polyether block amide (PEBAX®), polyester, copolyester, and acrylic.

[0009] In some embodiments, the obturator tip comprises a single vent hole. In some embodiments, the at least one vent hole is at least one of circular, oval, elliptical, tear-drop shaped, slot shaped, slit shaped, chevron shaped, triangular, rectangular, rhomboid, and polygonal.

[0010] Some embodiments further comprise a depth indicator on the obturator tip. In some embodiments, the depth indicator comprises at least one of indicia disposed in a bore of the at least one vent hole, and indicia disposed proximate to the at least one vent hole.

[0011] In some embodiments, the obturator further comprises at least one laparoscope stop disposed on at least one of the interior surface of the obturator tip and the interior surface of the obturator shaft. In some embodiments, the interior surface of the obturator tip comprises a non-circular transverse cross section.

[0012] In some embodiments, the obturator accommodates laparoscopes with varying diameters. In some embodiments, at least one opening perforates the obturator shaft.

[0013] In some embodiments, a cross-sectional area of the insufflation gas flow channel is at least about 1.6 mm². In some embodiments, a flow rate through the access system is at least about 3.5 L/min at an insufflator setting of about 1.6-2 KPa.

[0014] Some embodiments further comprise at least one of a gas flow indicator, an audible gas flow indicator, and a visual gas flow indicator.

BRIEF DESCRIPTION OF THE DRAWINGS

[0015]

FIG. 1A is a front view and FIG. 1B is a side view of a surgical access system comprising a trocar, an insufflating optical obturator, and a laparoscope. FIG. 1C is a front cross-sectional view and FIG. 1D is a side cross-sectional view a distal end of the insufflating optical obturator illustrated in FIGS. 1A and 1B with a laparoscope inserted therein. FIG. 1E is a top view of a transverse cross section of a tip of the insufflating optical obturator illustrated in FIGS. 1A-1D.

FIG. 2A is a side cross-sectional view and FIG. 2B is a front cross-sectional view of a distal end of an embodiment of an insufflating optical obturator with a laparoscope inserted therein in accordance with the present invention. FIG. 2C is a top view of a transverse cross-section of a tip of the insufflating optical obturator and laparoscope illustrated in FIGS. 2A

and 2B.

FIG 3A is a longitudinal cross-section of another embodiment of an insufflating optical obturator. FIG. 3B is a detailed cross section of a handle of the insufflating optical obturator illustrated in FIG. 3A.

DETAILED DESCRIPTION OF CERTAIN EMBODIMENTS

[0016] Fig. 1A-1C disclose exemplary embodiments not forming part of the claimed invention although they illustrate features that can be used in combination with the invention as claimed. Fig. 2A-3B disclose embodiments of the invention. FIGS. 1A and 1B are front and side views of an embodiment of a surgical access or trocar system 1000, which is suitable, for example, as a first entry trocar system. The illustrated embodiment is suitable, for example, as a 5-mm trocar system, as well as for trocar systems of other sizes. The illustrated access system 1000 comprises a trocar 1100, an obturator 1200, and a laparoscope 1300.

[0017] The trocar 1100 comprises a longitudinal axis, a proximal end, and a distal end. The proximal end is disposed proximal to a user, for example, a surgeon, during use. Conversely, the distal end is disposed away from the user during use. The obturator 1100 comprises a tubular cannula 1110 and a trocar seal assembly 1120 disposed at the proximal end of the cannula 1110. In the illustrated embodiment, the seal assembly 1120 comprises a fluid inlet comprising a Luer fitting 1122 and a stopcock 1124. In other embodiments, the fluid inlet has a different configuration and/or is disposed on another component, for example, on the obturator 1100.

[0018] In the illustrated embodiment, the obturator 1200 is an insufflating optical obturator, as will be described in greater detail below. The obturator 1200 comprises a longitudinal axis, a proximal end, and a distal end. The obturator 1200 comprises an elongate shaft 1210, which is dimensioned for slidable insertion into and removal from the tubular cannula 1110 of the trocar, a tip 1220 disposed at the distal end of the shaft 1210, and a handle 1230 disposed at the proximal end of the shaft 1210. In some embodiments, the obturator tip 1220 is a bladeless tip. In other embodiments, the tip 1220 has another configuration useful for traversing and/or penetrating body tissue, for example, a sharp tip, a pointed tip, a pyramidal tip, a bladed tip, a conical tip, and/or a tip comprising one or more sharp edges or sharpened edges. In other embodiments, the tip 1220 is a radious blunt tip, which is advantageous for traversing an existing body orifice, and/or relatively soft or fatty tissue.

[0019] The trocar 1100 and obturator 1200 independently comprise any suitable material. Those skilled in the art will understand that different components of the trocar 1100 and/or obturator 1200 comprise different materials in some embodiments. Suitable materials include, for example, at least one of a polymer, metal, ceramic, and the like. Suitable polymers include engineering polymers,

polycarbonate, polysulfone, PEEK, polyether block amide (PEBAX®), polyester, copolyester, acrylic, and the like. Some embodiments of the trocar 1100 and/or obturator 1200 further comprise a composite, for example, a fiber-reinforced polymer. In some embodiments, a stronger material permits reducing a wall thickness of a component without reducing the strength thereof. For example, some embodiments of a metal or composite obturator shaft 1210 are thinner than a corresponding polymer version, thereby increasing the diameter of a lumen thereof without increasing the outer diameter. As discussed in detail below, increasing lumen diameter improves gas flow through the device.

[0020] For example, in some embodiments, obturator shaft 1210 comprises a metal tube, for example, a stainless steel tube, with a polycarbonate tip 1220 insert molded onto the tube. In some embodiments, the metal tube has a wall thickness as thin as about 0.003" (about 0.076 mm). An metal obturator shaft 1210 with an inside diameter of about 0.235" (about 6 mm) and an outside diameter of about 0.241" (about 6 mm) provides an acceptable insufflation gas flow rate. The relationship between gas flow rate and component dimensions and configurations is discussed in detail below.

[0021] Embodiments of the cannula 1110 typically comprise a rigid material. Some embodiments of the obturator shaft 1210 comprise a rigid material and/or a flexible material because the obturator shaft 1210 is largely supported by the cannula 1110 during use in some embodiments.

[0022] The laparoscope 1300 comprises a proximal end and a distal end 1304 (FIGS. 1C and 1D). The laparoscope 1300 is of any suitable type, for example, comprising an eyepiece at a proximal end and an objective at a distal end thereof. The distal end 1304 of the laparoscope 1300 is dimensioned for slidble insertion into and removal from the obturator shaft 1210.

[0023] FIG. 1C is a front cross-sectional view and FIG. 1D is a side cross-sectional view of the distal end of the insufflating obturator 1200 with a laparoscope 1300 inserted therein. The illustrated embodiment depicts a bladeless obturator 1200 suitable for visualization and insufflation therewith. The device include a pair of vent holes 1222 at the distal tip 1220 of the bladeless obturator, through which an insufflating gas, such as carbon dioxide, flows into a body cavity, as discussed in greater detail below. Other embodiments comprise more or fewer vent holes 1222. For example, some embodiments of the tip 1220 of the obturator comprise a single vent hole 1222.

[0024] In the illustrated embodiment, the vent holes 1222 are generally circular. In other embodiments, the vent holes 1222 have another shape, for example, oval, elliptical, tear-drop shaped, slot shaped, slit shaped, chevron-shaped, triangular, rectangular, rhomboid, polygonal, and the like. In some embodiments, at least one vent hole 1222 has a different shape from another vent hole 1222.

[0025] In some embodiments, the obturator 1200 is an

optical obturator in which at least a portion of a distal end of the tip **1220** of the bladeless obturator comprises a generally transparent or translucent material, through which tissue is visualized during the insertion of the obturator **1200** through a body wall. Embodiments of the bladeless obturator **1200** are dimensioned and configured to receive therein any suitable laparoscope **1300**, which typically includes an imaging element and fiber optic light fibers (not illustrated). The illustrated embodiment of the tip **1220** comprises at least one laparoscope stop **1224**, which assists in positioning the laparoscope **1300** within the obturator **1200**. In other embodiments one or more laparoscope stops are disposed within the obturator shaft **1210** and/or at the intersection of the shaft **1210** and tip **1220**. Other embodiments do not comprise a laparoscope stop.

[0025] The illustrated embodiment of the bladeless optical insufflating obturator **1200** includes a tip **1220** configuration comprising one or more features that enhance the visualization and clarity through the tip of the obturator. The illustrated transparent tip **1220** of the obturator through which tissue is observed comprises a wall **1225**, at least a portion of which has a substantially uniform thickness. The uniform wall thickness reduces distortion of an image observed through the obturator tip **1220**. In some embodiments, the entire obturator tip **1220** comprises a substantially uniform wall thickness. Embodiments of bladeless optical obturators comprising non-uniform wall thicknesses typically exhibit less clear imaging through the obturator tip because the varying wall thickness distorts the image transmitted therethrough, for example, in bladeless optical obturators comprising a generally circular inner contour and a generally rectangular outer contour.

[0026] FIG. 1E is a top view of a transverse cross section of the obturator tip **1220** illustrated in FIGS. 1A-1D. In the illustrated embodiment, an inner contour **1226** of the obturator tip **1220** has a generally rectangular transverse cross section, which substantially matches an outer contour **1228** of the obturator tip, which also has a generally rectangular transverse cross section. In other embodiments, the inner and outer transverse cross-sectional contours **1226** and **1228** of the obturator tip **1220** have another shape, for example, generally elliptical, hexagonal, S-shaped, or another suitable shape. In some embodiments, a portion of an interior surface the tip **1220** at which the distal end laparoscope **1300** contacts has a contour different from a shape or contour of the distal end of the laparoscope. For example, in embodiments in which the distal end of the laparoscope **1300** is circular, the portion of the tip **1220** at which the distal end of the laparoscope **1300** contacts is not circular, thereby defining a gas flow channel therebetween, as discussed in greater detail below.

[0027] In some embodiments, at least a portion of the wall **1225** of the obturator tip **1220** comprises a thin-wall configuration. The thin-wall configuration enables light to travel through the material with reduced loss in intensity,

thereby enhancing the visibility of tissue through the obturator tip **1220** as the obturator is advanced and placed into the targeted body cavity. The thin-wall configuration also reduces distortion of the image viewed through the obturator tip **1220** and maintains the color accuracy of the viewed tissue. Some embodiments of the obturators **1200** have tip wall thicknesses of from about 0.02" (about 0.5 mm) to about 0.025" (about 0.65 mm) for about 5-mm to 12-mm obturators. In some embodiments, the tip wall is thicker, for example, to provide additional strength. **[0028]** All transparent materials have a light transmittance value of less than 100%. That is, less than 100% of the light incident on the material is transmitted directly through the material. For a given transparent material, as the wall thickness of the material increases, the amount of light that travels through the material decreases. Moreover, because the illuminating light is directed from within the obturator **1200**, the light must travel through the obturator tip **1220** twice, thereby doubling the loss of light due to the transmittance characteristics or absorption of the obturator tip **1220**. Embodiments of an obturator tip **1220** with a reduced wall thickness reduce the loss of light or absorption thereby, thereby improving the image of the tissue through which the obturator **1200** is advanced, and maintaining the color accuracy and fidelity of the observed tissue.

[0029] In some embodiments, the obturator shaft **1210** and tip **1220** are injection molded as a unitary or single, integral component, which, in combination with the thin-wall tip **1220**, allows positioning or placing a distal end **1304** of the laparoscope (FIGS. 1C and 1D) in close proximity to and/or within the tip **1220** of the obturator. By placing the distal end **1304** of the laparoscope in close proximity to and/or within the tip **1220** of the obturator, an image produced through the laparoscope **1300** is magnified compared with an image produced by a distal end **1304** of the laparoscope **1300** positioned at a greater distance from the obturator tip **1220**. For example, in some embodiments of a 5-mm bladeless optical obturator designed to accommodate laparoscopes with diameters of from about 5 mm to about 5.5 mm, the distal end of the laparoscope is positionable as close as about 0.442" (about 11 mm) from the distal end of the obturator **1200**. Some embodiments of a 12-mm bladeless optical obturator designed to accommodate about 10-mm diameter laparoscopes, permit positioning the distal end of the laparoscope as close as about 0.79" (about 20 mm) from the distal end of the obturator **1200** or less than about 0.83" (about 21 mm) from the distal end of the obturator **1200**. In these embodiments, the magnification through the 5-mm optical obturator is greater than that for the 12-mm optical obturator.

[0030] The enhanced visibility through the tip **1220** of the obturator also enhances the visibility of the vent holes **1222** in the tip of the obturator. Consequently, in some embodiments, the vent holes **1222** are useful as markers for indicating the penetration depth of the obturator tip **1220**. As the surgeon advances the trocar system **1000**

through tissue, the surgeon can view the vent holes **1222** through the laparoscope **1300**, thereby observing when the vent holes **1222** have traversed a body wall, such as the abdominal wall. Once the vent holes **1222** have traversed a body wall and entered a body cavity, the trocar system **1000** need not be advanced further. Accordingly, the enhanced visibility of the obturator tip **1220** permits precise placement of the access system **1000**, and consequently, the trocar **1100** into a body cavity, thereby preventing the trocar **1100** from being advanced too far into the body cavity. Because the surgeon is able to precisely place the trocar system **1000** across a body wall until just the portion of the obturator tip **1220** comprising the vent holes **1222** is positioned within the body cavity, the risk of injury to internal body structures is reduced.

[0031] In some embodiments, one or more indicia are provided on at least one vent hole **1222**, thereby increasing the utility, visibility, and/or prominence of the vent holes **1222** as depth indicators. For example, in some embodiments, one or more contrasting and/or fluorescent colors are printed in the vent hole **1222** bores.

[0032] In some embodiments, one or more marker bands or indicia are disposed proximate to or near at least one vent hole **1222**, for example, by printing one or more contrasting or fluorescent marker bands. The enhanced visibility through the tip **1220** of the obturator permits using the marker bands for monitoring the penetration depth of the obturator **1200**. For example, in some embodiments, the marker band is highly visible through the laparoscope **1300** as a rectangular band positioned just proximal to the vent holes **1222**. In other embodiments, the marker bands have another shape, for example, dots. As a surgeon advances the access system **1000** through the tissue, the surgeon can view the position of the marker band to determine when the vent holes **1222** have traversed a body wall. The enhanced visualization through the obturator tip **1220** enables precise placement of the trocar **1100** into a body cavity, thereby preventing the trocar **1100** from being advanced too far into the body cavity. Precisely placing the access system **1000** across a body wall until just the portion of the obturator tip **1220** with the vent holes **1222** is in the body cavity reduces the risk of injury to internal body structures.

[0033] Referring to FIGS. **1C** and **1D**, some embodiments provide a device comprising an insufflation flow path or channel **1400** defined by an inner wall of the obturator shaft **1210** and the laparoscope **1300**. For example, embodiments of a 5-mm bladeless optical trocar with a 5-mm obturator are dimensioned and configured to accommodate laparoscopes with diameters of from about 5 mm to about 5.5 mm (from about 0.197" to about 0.217") with an insufflation flow channel **1400** extending longitudinally through the inside of the obturator between the outside wall of the laparoscope **1300** and the inside wall of the obturator shaft **1210**. The insufflation flow channel **1400** is dimensioned to accommodate a suitable flow of an insufflating gas, for example, carbon dioxide.

In some embodiments, a cross-sectional area of the insufflation flow channel is at least about 0.0025 in² (about 1.6 mm²). In the illustrated embodiment, an inside diameter of the obturator shaft **1210** is larger compared with the inside diameter of the obturator shaft of a typical 5-mm optical obturator. Increasing the inside diameter of the obturator shaft **1210** defines a generally cylindrical flow channel **1400** sufficient for insufflation when either a 5-mm or 5.5-mm laparoscope **1300** is inserted into the obturator **1200**. In the illustrated embodiment, an outer diameter of the obturator shaft **1210** is also increased. To accommodate the slightly larger obturator shaft **1210**, in some embodiments, the inner diameter and outer diameter of the trocar cannula **1110** are also increased compared with typical a 5-mm trocar cannula.

EXAMPLE 1

[0034] A polycarbonate insufflating obturator was manufactured in which the inner diameter of the 5-mm insufflating obturator shaft was 0.235" (6 mm), the outer diameter was 0.272" (6.9 mm), and the wall thickness was 0.018" (0.46 mm). The inner diameter of the mating 5-mm cannula was 0.277" (7 mm), the outer diameter was 0.343" (8.7 mm), and the wall thickness of the cannula was 0.033" (0.84 mm). Based on these dimensions, the cross-sectional area of the obturator flow channel with a 5.5 mm laparoscope inserted therein was 0.0064 in² (4.1 mm²), which provides a carbon dioxide flow rate of about 6 L/min at an insufflator pressure setting of about 1.6-2 KPa (about 12-15 Torr).

EXAMPLE 2 (COMPARATIVE EXAMPLE)

[0035] For comparison, a polycarbonate 5-mm bladeless optical trocar designed to accommodate 5-mm to 5.5-mm laparoscopes included an obturator with an inner diameter of 0.219" (5.6 mm), an outer diameter of 0.225" (5.7 mm), and a wall thickness of 0.003" (0.076 mm). The mating cannula for this obturator had an inner diameter of 0.227" (5.8 mm), an outer diameter of 0.287" (7.3 mm), and a wall thickness of 0.03" (0.76 mm). For comparison, the cross-sectional area of the obturator flow channel with a 5.5-mm laparoscope inserted in the obturator was 0.00068 in² (0.44 mm²), which provides an insufficient flow of carbon dioxide through the device.

EXAMPLE 3

[0036] A 5-mm obturator is molded from polycarbonate with an inside diameter of 0.230" (5.8 mm) and a wall thickness of 0.021" (0.53 mm). The carbon dioxide flow rate through this obturator with a 5.5-mm laparoscope inserted therein is about 3.5 L/minute at an insufflator pressure setting of about 1.6-2 KPa (about 12-15 Torr). The increased wall thickness improves the injection molding process for manufacturing the obturator shaft.

[0037] The tip **1220** of a bladeless insufflating obturator

is designed to separate and dilate tissue and muscle fibers during traversal of a body wall. Because of the dilating and separating properties of a 5-mm insufflating trocar, increasing the outer diameters of the obturator shaft **1210** and the cannula **1110**, as compared with typically sized 5-mm bladeless trocars, does not adversely affect the insertion force of the trocar in the illustrated embodiment. The wall thickness of the obturator shaft **1210** is also sufficient to permit injection molding the shaft **1210** and tip **1220** as a single piece, thereby reducing the overall device cost and increasing production capacity.

[0038] FIG. **2A** is a side cross-sectional view and FIG. **2B** is a front cross-sectional view of a distal end of another embodiment of an insufflating optical obturator **2200** with a laparoscope **2300** inserted therein. FIG. **2C** is a top view of a transverse cross section of a tip **2220** of the insufflating optical obturator **2200** and laparoscope **2300** illustrated in FIGS. **2A** and **2B**. The following description refers to a 12-mm obturator sized to accommodate 10-mm laparoscopes, which defines an insufflation flow channel sufficient for generating pneumoperitoneum. Those skilled in the art will understand that the illustrated embodiment is also scalable to other size trocar systems.

[0039] The illustrated 12-mm obturator also accommodates smaller laparoscopes **2300** such as 5-mm and/or 5.5-mm diameter laparoscopes. In accordance with the present invention the tip **2220** of the obturator is configured such that a distal end **2304** a 5-mm to 5.5-mm laparoscope is insertable deep into a tapered portion of the obturator tip **2220**, while still defining an insufflation flow channel **2400** with a sufficient minimum area for a suitable flow of carbon dioxide around the laparoscope **2300**. In the illustrated embodiment, a shorter dimension or width of a generally rectangular internal surface **2226** of the tip of the obturator defines a stop for a 5-mm and/or 5.5-mm laparoscope **2300**. The insufflation flow channel **2400** is defined by the area between the internal longer dimension or internal length of the internal surface **2226** of the tip and the outside wall of the laparoscope **2300**, as best viewed in FIGS. **2A** and **2C**. The insufflation flow channel **2400** is fluidly connected to one or more vent holes **2222** disposed on the tip. The embodiment illustrated in FIG. **2A** also comprises an optional stop **2224** for a 10-mm laparoscope.

[0040] Some embodiments in which distal end of the 5-mm or 5.5 mm laparoscope **2300** and the portion of the inner surface **2226** of the tip that acts as a stop therefor have similar shapes do not provide an insufflation flow channel **2400** with an sufficiently large minimum area to provide a desired insufflation gas flow. For example, inserting a round laparoscope **2300** into an obturator **2200** in which the stop portion of the inner surface **2226** has a circular transverse cross section provides only a small or even no flow channel **2400**, thereby effectively isolating the vent holes **2222** from the lumen of the shaft **2210** and preventing gas flow therethrough.

[0041] The illustrated trocar system exhibits improved flexibility, versatility, and/or performance, while reducing

cost and inventory requirements. Pairing a 5-mm and/or 5.5-mm laparoscope with a 12-mm obturator improves the flow rate of carbon dioxide through the obturator **2200** with the laparoscope inserted therein compared with the flow rate through the obturator **2200** with a 10-mm laparoscope inserted therein. Also, a hospital or clinic may not have any 10-mm zero-degree laparoscopes readily available, whereas many facilities have 5mm and/or 5.5mm zero-degree laparoscopes readily available. Another advantage is that the distal end of a 5mm or 5.5mm laparoscope is closer to the distal end of the obturator tip **2200** compared with a 10-mm laparoscope, thereby providing a magnified image. For example, in the illustrated embodiment, the distal end of a 5-mm or 5.5-mm laparoscope is positioned at about 0.430" (about 11 mm) from the distal end of the tip **2200** of the obturator, while the distal end of a 10-mm laparoscope is positioned at about 0.790" (about 20 mm) from the distal end of the tip **3220** of the obturator.

[0042] FIG. **3A** is a longitudinal cross-section of another embodiment of an insufflating obturator **3200** and FIG. **3B** is a detailed longitudinal cross section of a proximal end thereof. The insufflating obturator **3200** comprises a shaft **3210**, a tip **3220**, and a handle **3230**. The handle **3230** comprises a funneled entry **3232** disposed at a proximal end thereof. A seal assembly **3240** is disposed distally thereof. Accordingly, the seal assembly **3240** is spaced from and/or recessed from the proximal end of the obturator **3200**, thereby encasing the seal assembly **3240** within the handle **3230**. Thus, in the illustrated embodiment, the seal assembly **3240** is protected from direct user contact and/or manipulation. In some embodiments in which a seal assembly **3240** is disposed at the proximal end of the obturator **3200** and externally accessible, one or more components of the seal assembly **3240** are vulnerable to inadvertent deformation, for example, during placement of the trocar system, which can cause loss of pneumoperitoneum. Furthermore, in some embodiments, the seal assembly **3240** is vulnerable to deliberate and/or inadvertent removal and/or loss. The illustrated seal assembly **3240** seals with instruments of varying diameters as well as providing a zero seal in the absence of an instrument. Again, using a 12-mm obturator as an illustrative example, the seal assembly **3240** seals with any of 5-mm laparoscopes, 5.5-mm laparoscopes, and/or 10-mm laparoscopes, thereby preventing leakage of carbon dioxide from the proximal end of the obturator **3200**.

[0043] In the illustrated embodiment of the obturator **3200**, at least one opening **3206** perforates the shaft **3210**, fluidly connecting the interior or lumen with the exterior thereof. When inserted into a suitable trocar, for example, embodiments of the trocar **1110** illustrated in FIGS. **1A** and **1B**, the at least one opening **3206** fluidly connects the interior or lumen of the obturator **3200** to the fluid inlet **1122**, thereby permitting fluid flow from the fluid inlet **1122**, through the openings **3210**, and out the vent holes **3222**. Some embodiments of the obturator

3200 comprise a single opening perforating the shaft. In some embodiments, the opening or openings **3206** independently have another shape, for example, circular, oval, elliptical, tear-drop shaped, slot shaped, slit shaped, chevron-shaped, triangular, rectangular, rhomboid, polygonal, and the like.

[0044] Referring to FIG. 3B, which is a detailed longitudinal cross section of the proximal end of the obturator **3200** illustrated in FIG. 3A, the illustrated seal assembly **3240** comprises an internal septum seal **3242** and an internal duckbill valve **3244** disposed at the proximal end of the obturator shaft **3210**. The septum seal **3242** prevents carbon dioxide from leaking from the obturator **3200** when a laparoscope **3300** is inserted therein. The duckbill valve **3244** prevents carbon dioxide from leaking in the absence of a laparoscope **3300**, for example, when the laparoscope **3300** is withdrawn from the obturator **3200** or not used at all. The illustrated embodiment also comprises a sleeve **3246** disposed proximally of the septum seal **3242**, which prevents and/or reduces inversion of the septum seal **3242** on withdrawal of the laparoscope **3300** therefrom. The septum seal **3242** and the duckbill valve **3444** are disposed between the obturator shaft **3210** and the obturator handle **3230** in the illustrated embodiment. The obturator handle **3230** comprises a funneled entry **3232** at its proximal end leading into a guide channel **3234**, which guides or directs the laparoscope **3300** into the obturator **3200**. Some embodiments of the obturator handle **3230** comprise a space in the guide channel **3234** sufficient to permit at least some septum seal **3234** inversion during laparoscope **3300** withdrawal without binding the laparoscope **3300**. For example, in some embodiments, the diameter of the cap guide channel **3234** is larger than the diameter of the laparoscope plus the thickness of the inverted septum seal, which is sufficient to prevent binding or lock-up of the laparoscope **3300** during withdrawal from the obturator **3200**.

[0045] In some embodiments, at least one of the septum seal **3242** and duckbill valve **3244** is treated by a chlorination process, which reduces friction when inserting, rotating, and/or withdrawing the laparoscope **3300**, which typically has a polished surface that generates high friction with septum seals **3242** and duckbill valves **3244**. In some embodiments, at least one of the septum seal **3242** and duckbill valve **3244** is coated or treated with one or more other anti-friction materials and/or coatings, such as silicone oil, silicone emulsion, parylene, polytetrafluoroethylene (Teflon®), and/or treated by plasma etching.

[0046] A method is now described for using the surgical access or trocar system refers to the embodiment **1000** illustrated in FIGS. 1A-1E, although the method is applicable to any of the embodiments discussed herein. In the method, the bladeless obturator **1200** is first inserted through the trocar seal **1120** and cannula **1110** of the trocar. A laparoscope **1300** is then inserted into the proximal end of the bladeless obturator **1200** and advanced to the stop **1224** or tip **1220** of the obturator. An endo-

scopic video camera (not illustrated) is attached to the proximal end of the laparoscope **1300** and the access system **1000** is then axially advanced by a surgeon through a body wall. As the surgeon advances the access system **1000** through the body wall, the surgeon visualizes the tissue as it is being separated, for example, using a video monitor connected to the endoscopic video camera. The surgeon can also readily determine when the body wall has been traversed by observing the distal end of the obturator **1200** entering the body cavity. As discussed above, the distal end of the obturator **1200** includes insufflation vent holes **1222** through which an insufflation gas may flow from the obturator **1200** and into a body cavity.

[0047] Alternatively the optical access system **1000** accesses a targeted body area or region under laparoscopic guidance as discussed above, then is used to administer a medicament under vision. The medicament may be delivered through the stopcock **1124** and Luer fitting **1122**, through the obturator **1200**, and out through the vent holes **1222** disposed at the tip **1220** of the obturator. The term "vent hole" is used here for consistency. Those skilled in the art will understand that in some embodiments, gas need not be delivered through the vent holes. Instead, the vent holes are used for another purpose, for example, for delivering a fluid, aspirating a fluid, withdrawing tissue, and/or as a gauge for placing the device, as discussed above. The trocar **1100**, in this embodiment, is rigid, semi-rigid, or flexible. Some embodiments of the obturator **1200** comprise a single vent hole **1222**. In some embodiments, the vent hole **1222** is disposed at the distal end of the tip **1220**, generally along the longitudinal axis of the obturator **1200**, which permits a more precise delivery of the medicament. The access system **1000** is suitable, for example, for rapidly accessing a trauma site and for rapidly delivering a medicament through the obturator under vision to the trauma site. In some embodiments, the obturator **1200** is usable in this application either with or without a trocar **1100**. In embodiments that do not include a trocar, the obturator **1200** comprises a fluid inlet, for example, a Luer fitting, disposed at or near the proximal end of the obturator **1200**, for example, at the handle **1230**. The fluid inlet is fluidly connected to the vent hole **1222** through the lumen of the obturator shaft **1210**. These embodiments of the trocar system **1100** are also useful for accessing a targeted body area under vision using an inserted laparoscope, then withdrawing a body fluid sample and/or a soft tissue sample through the vent or aspiration hole **1222** of the obturator, for example, for pathology analysis, without a cannula.

[0048] In some embodiments, the access system **1000** further comprises an insufflator comprising a gas flow alarm (not illustrated). In some embodiments, a source of insufflation gas, for example, an insufflator, is connected to the Luer fitting **1122**, the stopcock valve **1124** opened, and the insufflation gas flow activated, for example, a carbon dioxide flow. When the tip **1220** of the

obturator is placed in tissue such as the abdominal wall, the gas flow is blocked by the tissue, which in turn activates a gas flow obstruction alarm of the insufflator. The gas flow obstruction alarm will continue as the trocar is advanced through the tissue until the vent holes **1222** in the tip of the obturator are positioned within a hollow body cavity, at which point, carbon dioxide automatically starts flowing into the cavity and the gas flow obstruction alarm on the insufflator deactivates, thereby serving as an audible indicator that the distal tip **1222** of the obturator is properly positioned within the body cavity.

[0049] Some embodiments of the access system **1000** further comprise an integral audible indicator (not illustrated), which indicates gas flow, for example, carbon dioxide, through the device. The audible indicator produces a sound, for example, a high-pitched tone, for example, by mechanically modulating the gas flow through the device. In some embodiments, the audible indicator is disposed in the trocar **1100**. In some embodiments in which the audible indicator is integral to the trocar seal **1120**, the audible indicator is positioned within and/or integrated with the stopcock Luer fitting **1122**. In other embodiments, the audible indicator is disposed in the obturator **1200**. In yet other embodiments, the audible indicator is a detachable component, for example, disposed between and fluidly connecting the stopcock Luer fitting **1122** and the insufflation tubing.

[0050] In some embodiments, the access system **1000** comprising the audible indicator is connected to an insufflator and the carbon dioxide gas flow activated. When the tip **1220** of the obturator is placed in tissue, such as the abdominal wall, the tissue blocks gas flow through the device. As the tip **1220** is advanced though the tissue, the gas flow remains blocked until the vent holes **1222** in the tip of the obturator reach the targeted body cavity. When the vent holes **1222** are positioned within the body cavity, the carbon dioxide automatically starts flowing into the cavity. The gas flow activates the audible indicator, thereby creating a high-pitched tone, which signals that the distal tip **1220** of the obturator is properly positioned within the body cavity.

[0051] Some embodiments of the access system **1000** further comprise a visual indicator (not illustrated), for example, a flow sight that indicates carbon dioxide flow through the device. Suitable visual indicators include a flapper, a rotor, and/or an oscillating ball. In some embodiments, the visual indicator is integral to the trocar seal **1120**, for example, positioned within and/or integrated with the stopcock Luer fitting **1122**. In other embodiments, the visual indicator is disposed within the proximal portion of the obturator **1200**. In other embodiments, the visual indicator is a detachable component disposed between the Luer fitting **1122** and the insufflation tubing.

[0052] In a method for using the trocar system comprising the integral visual indicator, the trocar system is connected to an insufflator and the carbon dioxide gas flow activated. When the tip **1220** of the obturator is placed in tissue, such as the abdominal wall, the gas flow

is blocked. As the tip **1220** is advanced though tissue, the gas flow remains blocked until the vent holes **1222** in the tip of the obturator enter the targeted body cavity. When the vent holes **1222** are positioned within the body cavity, the carbon dioxide automatically flows into the body cavity. The gas flow causes movement of the visual flow indicator, thereby indicating that the distal tip of the obturator is properly positioned within the body cavity.

[0053] Some embodiments of the access system **1000** comprise an electronic gas flow indicator. An output of the gas flow indicator is, for example, audible and/or visible.

[0054] While certain embodiments have been particularly shown and described with reference to exemplary embodiments thereof, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the scope of the following claims.

Claims

1. A surgical access system comprising:

25 a tubular trocar comprising a longitudinal axis, a proximal end, a distal end, an elongate cannula, and a seal assembly disposed at a proximal end of the cannula; an insufflating obturator (2200) slidably insertable into the trocar, the obturator (2200) comprising a longitudinal axis, a proximal end, a distal end, a tubular shaft (1210), a tip (2220) having an inner surface (2226) and being disposed at the distal end of the shaft (1210), the tip comprising a tapered portion, at least one vent hole (2222) disposed on the tapered portion of the tip (2220), and a handle disposed at the proximal end of the shaft (1210); a fluid inlet disposed at a proximal end of the access system; and a laparoscope (2300); wherein

40 at least a portion of the obturator tip (2220) comprises a wall comprising a transparent material with a substantially uniform thickness,

45 the obturator (2200) slidably receives the laparoscope into the obturator (2200) shaft (1210), and

50 an interior surface of the obturator shaft (1210) and tip (2220), and an outer surface of an inserted laparoscope together define a insufflation gas flow channel (2400) fluidly connecting the at least one vent hole (2222) to the fluid inlet;

55 **characterized by** the obturator being configured to slidably receive the inserted laparoscope

into the tubular shaft (1210) of the obturator and extending into the tapered portion of the tip (2220) such that the inner surface (2226) of the tip (2220) abuts the outer surface of the inserted laparoscope while still defining an insufflation gas flow channel (2400) between the inner surface (2226) of the tip (2220) and an outer surface of the inserted laparoscope.

2. The surgical access system of Claim 1, wherein the seal assembly comprises a septum seal and a duck-bill valve.

3. The surgical access system of Claim 1, wherein the fluid inlet is disposed on the proximal end of the trocar.

4. The surgical access system of Claim 1, wherein the obturator tip (2220) is bladeless.

5. The surgical access system of Claim 1, wherein the wall of the obturator tip (2220) is not greater than about 0.65 mm thick.

6. The surgical access system of Claim 1, wherein the obturator tip (2220) comprises a single vent hole (2222).

7. The surgical access system of Claim 1, wherein the at least one vent hole (2222) is at least one of circular, oval, elliptical, tear-drop shaped, slot shaped, slit shaped, chevron shaped, triangular, rectangular, rhomboid, and polygonal.

8. The surgical access system of Claim 1, further comprising a depth indicator on the obturator tip (2220).

9. The surgical access system of Claim 8, wherein the depth indicator comprises at least one of indicia disposed in a bore of the at least one vent hole (2222), and indicia disposed proximate to the at least one vent hole (2222).

10. The surgical access system of Claim 1, wherein the obturator (2200) further comprises at least one laparoscope stop (2224) disposed on at least one of the inner surface (2226) of the obturator tip (2220) and the interior surface of the obturator (2200) shaft (1210).

11. The surgical access system of Claim 1, wherein the inner surface (2226) of the obturator tip (2220) comprises a non-circular transverse cross section.

12. The surgical access system of Claim 11, wherein the interior surface (2226) of the obturator tip (2220) is generally rectangular with the shorter dimension of width defining a stop.

13. The surgical access system of Claim 1, wherein at least one opening perforates the obturator (2200) shaft (1210).

5 14. The surgical access system of Claim 1, wherein a cross-sectional area of the insufflation gas flow channel (2400) is at least about 1.6 mm².

10 15. The surgical access system of Claim 1, wherein a flow rate through the access system is at least about 3.5 L/min at an insufflator pressure of about 1.6-2 KPa.

15 Patentansprüche

1. Ein chirurgisches Zugangssystem, das Folgendes beinhaltet:

einen röhrenförmigen Trokar, der eine Längsachse, ein proximales Ende, ein distales Ende, eine längliche Kanüle und eine Dichtungsbaugruppe, die an einem proximalen Ende der Kanüle angeordnet ist, beinhaltet;

einen Insufflationsobturator (2200), der verschiebbar in den Trokar einführbar ist, wobei der Obturator (2200) Folgendes beinhaltet: eine Längsachse, ein proximales Ende, ein distales Ende, einen röhrenförmigen Schaft (1210), eine Spitze (2220), die eine innere Oberfläche (2226) aufweist und an dem distalen Ende des Schafts (1210) angeordnet ist, wobei die Spitze einen verjüngten Abschnitt aufweist, wobei mindestens ein Entlüftungsöffnung (2222) auf dem verjüngten Abschnitt der Spitze (2220) angeordnet ist, und einen Handgriff, der an dem proximalen Ende des Schafts (1210) angeordnet ist; einen Fluideinlass, der an einem proximalen Ende des Zugangssystems angeordnet ist; und ein Laparoskop (2300);

wobei

mindestens ein Abschnitt der Obturatorspitze (2220) eine Wand beinhaltet, die ein transparentes Material mit einer im Wesentlichen gleichförmigen Dicke beinhaltet, der Obturator (2200) das Laparoskop verschiebbar in dem Schaft (1210) des Obturators (2200) aufnimmt, und

eine Innenfläche des Obturatorschafts (1210) und der Spitze (2220) und eine äußere Oberfläche eines eingeführten Laparoskops zusammen einen Insufflationsgasflusskanal (2400) definieren, der eine Fluidverbindung von der mindestens einen Entlüftungsöffnung (2222) zu dem Fluideinlass herstellt; **dadurch gekennzeichnet, dass** der Obturator

so konfiguriert ist, dass er das eingeführte Laparoskop verschiebbar in dem röhrenförmigen Schaft (1210) des Obturators aufnimmt und sich in den verjüngten Abschnitt der Spitze (2220) hinein erstreckt, so dass die innere Oberfläche (2226) der Spitze (2220) an die äußere Oberfläche des eingeführten Laparoskops anstößt, während sie noch einen Insufflationsgasflusskanal (2400) zwischen der inneren Oberfläche (2226) der Spitze (2220) und einer äußeren Oberfläche des eingeführten Laparoskops definiert.

2. Das chirurgische Zugangssystem gemäß Anspruch 1, wobei die Dichtungsbaugruppe eine Trennwanddichtung und ein Entenschnabelventil beinhaltet.
3. Das chirurgische Zugangssystem gemäß Anspruch 1, wobei der Fluideinlass an dem proximalen Ende des Trokars angeordnet ist.
4. Das chirurgische Zugangssystem gemäß Anspruch 1, wobei die Obturatorspitze (2220) klingenlos ist.
5. Das chirurgische Zugangssystem gemäß Anspruch 1, wobei die Dicke der Wand der Obturatorspitze (2220) nicht mehr als etwa 0,65 mm beträgt.
6. Das chirurgische Zugangssystem gemäß Anspruch 1, wobei die Obturatorspitze (2220) eine einzelne Entlüftungsöffnung (2222) beinhaltet.
7. Das chirurgische Zugangssystem gemäß Anspruch 1, wobei die mindestens eine Entlüftungsöffnung (2222) mindestens eines von Folgendem ist: kreisförmig, oval, elliptisch, tränenförmig, kerbenförmig, schlitzförmig, chevronförmig, dreieckig, rechteckig, rautenförmig und polygonal.
8. Das chirurgische Zugangssystem gemäß Anspruch 1, das ferner eine Tiefenanzeige an der Obturatorspitze (2220) beinhaltet.
9. Das chirurgische Zugangssystem gemäß Anspruch 8, wobei die Tiefenanzeige mindestens eines von Indikatoren, die in einem Loch der mindestens einen Entlüftungsöffnung (2222) angeordnet sind, und Indikatoren, die in der Nähe der mindestens einen Entlüftungsöffnung (2222) angeordnet sind, beinhaltet.
10. Das chirurgische Zugangssystem gemäß Anspruch 1, wobei der Obturator (2200) ferner mindestens einen Laparoskopanschlag (2224) beinhaltet, der auf mindestens einer von der inneren Oberfläche (2226) der Obturatorspitze (2220) und der Innenfläche des Schafts (1210) des Obturators (2200) angeordnet ist.

11. Das chirurgische Zugangssystem gemäß Anspruch 1, wobei die innere Oberfläche (2226) der Obturatorspitze (2220) einen nicht kreisförmigen Querschnitt beinhaltet.

12. Das chirurgische Zugangssystem gemäß Anspruch 11, wobei die Innenfläche (2226) der Obturatorspitze (2220) im Allgemeinen rechteckig ist, wobei die kürzere Abmessung der Breite einen Anschlag definiert.

13. Das chirurgische Zugangssystem gemäß Anspruch 1, wobei mindestens eine Öffnung den Schaft (1210) des Obturators (2200) perforiert.

15 14. Das chirurgische Zugangssystem gemäß Anspruch 1, wobei eine Querschnittsfläche des Insufflationsgasflusskanals (2400) mindestens etwa $1,6 \text{ mm}^2$ beträgt..

20 15. Das chirurgische Zugangssystem gemäß Anspruch 1, wobei eine Flussgeschwindigkeit durch das Zugangssystem mindestens etwa 3,5 l/min bei einem Insufflatordruck von etwa 1,6 bis 2 KPa beträgt.

Recommendations

1. Système d'accès chirurgical comportant :

un trocart tubulaire comportant un axe longitudinal, une extrémité proximale, une extrémité distale, une canule allongée, et un ensemble joint d'étanchéité disposé au niveau d'une extrémité proximale de la canule ;
un obturateur d'insufflation (2200) pouvant être inséré à coulissemement dans le trocart, l'obturateur (2200) comportant un axe longitudinal, une extrémité proximale, une extrémité distale, un arbre tubulaire (1210), un bout (2220) présentant une surface interne (2226) et qui est disposé au niveau de l'extrémité distale de l'arbre (1210), le bout comportant une partie conique, au moins un trou pour passage d'air (2222) disposé sur la partie conique du bout (2220), et une poignée disposée au niveau de l'extrémité proximale de l'arbre (1210) ;
une entrée de fluide disposée au niveau d'une extrémité proximale du système d'accès : et

un laparoscope (2300) ;
dans lequel

au moins une partie du bout d'obturateur (2220) comporte une paroi comportant un matériau transparent d'une épaisseur sensiblement uniforme,

l'obturateur (2200) reçoit à coulisser le laparoscope dans l'arbre (1210) d'obturateur (2200), et

une surface intérieure de l'arbre d'obturateur

(1210) et du bout (2220), et une surface externe d'un laparoscope inséré délimitent ensemble un canal d'écoulement de gaz d'insufflation (2400) reliant de manière fluidique ledit au moins un trou pour passage d'air (2222) à l'entrée de fluide ;

caractérisé en ce que l'obturateur est configuré pour recevoir à coulissoir le laparoscope inséré dans l'arbre tubulaire (1210) de l'obturateur et s'étend dans la partie conique du bout (2220) de telle sorte que la surface interne (2226) du bout (2220) vient buter contre la surface externe du laparoscope inséré tout en délimitant encore un canal d'écoulement de gaz d'insufflation (2400) entre la surface interne (2226) du bout (2220) et une surface externe du laparoscope inséré.

2. Système d'accès chirurgical selon la revendication 1, dans lequel l'ensemble joint d'étanchéité comporte un joint d'étanchéité à cloison et une valve en bec de canard.

3. Système d'accès chirurgical selon la revendication 1, dans lequel l'entrée de fluide est disposée sur l'extrémité proximale du trocart.

4. Système d'accès chirurgical selon la revendication 1, dans lequel le bout d'obturateur (2220) est sans lame.

5. Système d'accès chirurgical selon la revendication 1, dans lequel la paroi du bout d'obturateur (2220) n'est pas supérieure à environ 0,65 mm d'épaisseur.

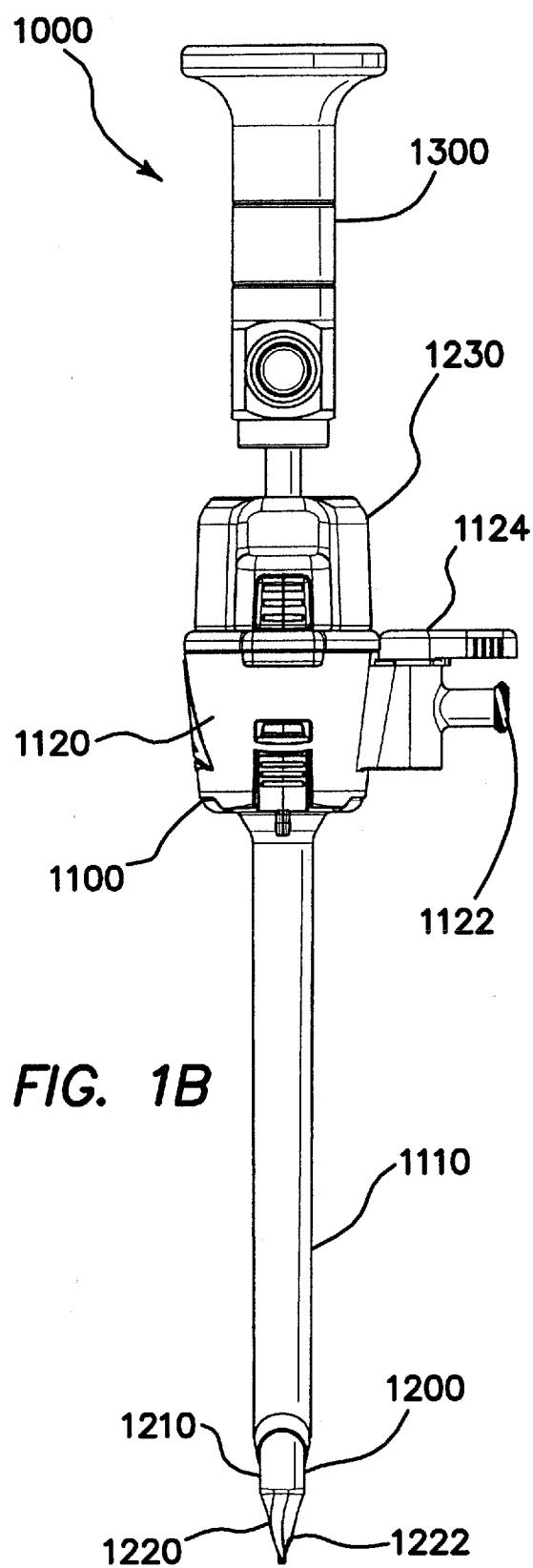
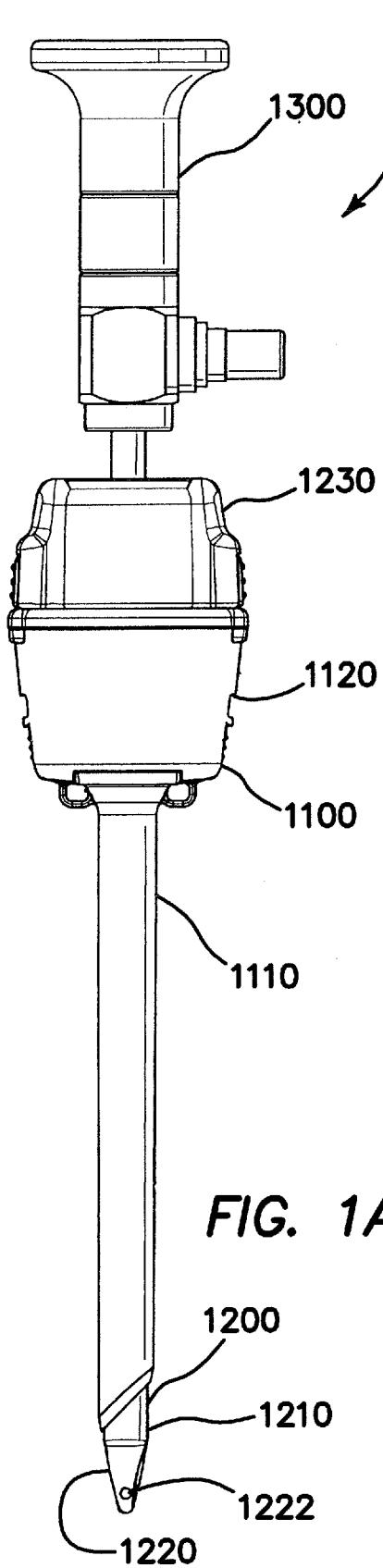
6. Système d'accès chirurgical selon la revendication 1, dans lequel le bout d'obturateur (2220) comporte un seul trou pour passage d'air (2222).

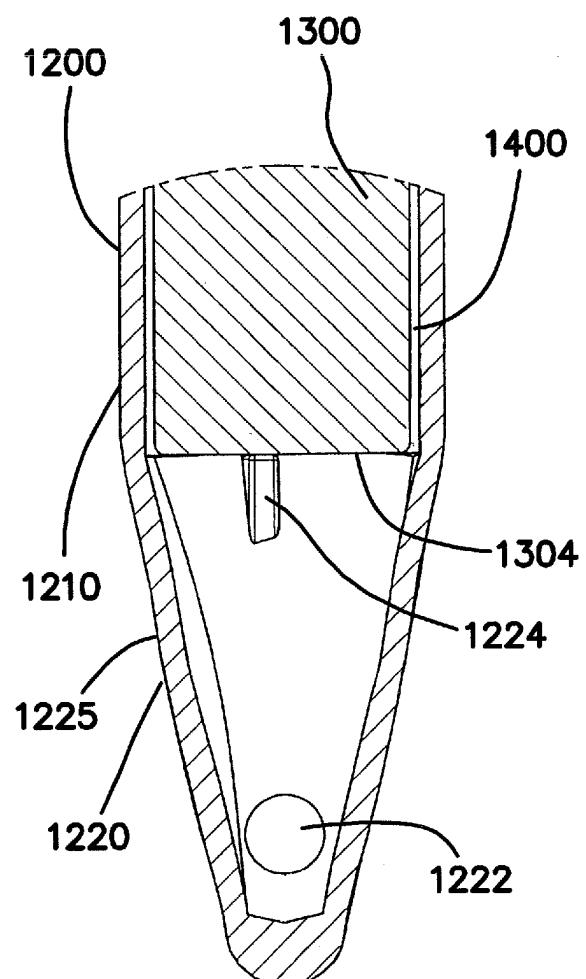
7. Système d'accès chirurgical selon la revendication 1, dans lequel ledit au moins un trou pour passage d'air (2222) est au moins circulaire, ovale, elliptique, en forme de gouttelette, en forme de rainure, en forme de fente, en forme de chevron, triangulaire, rectangulaire, rhomboïde, et/ou polygonal.

8. Système d'accès chirurgical selon la revendication 1, comportant en outre un indicateur d'épaisseur sur le bout d'obturateur (2220).

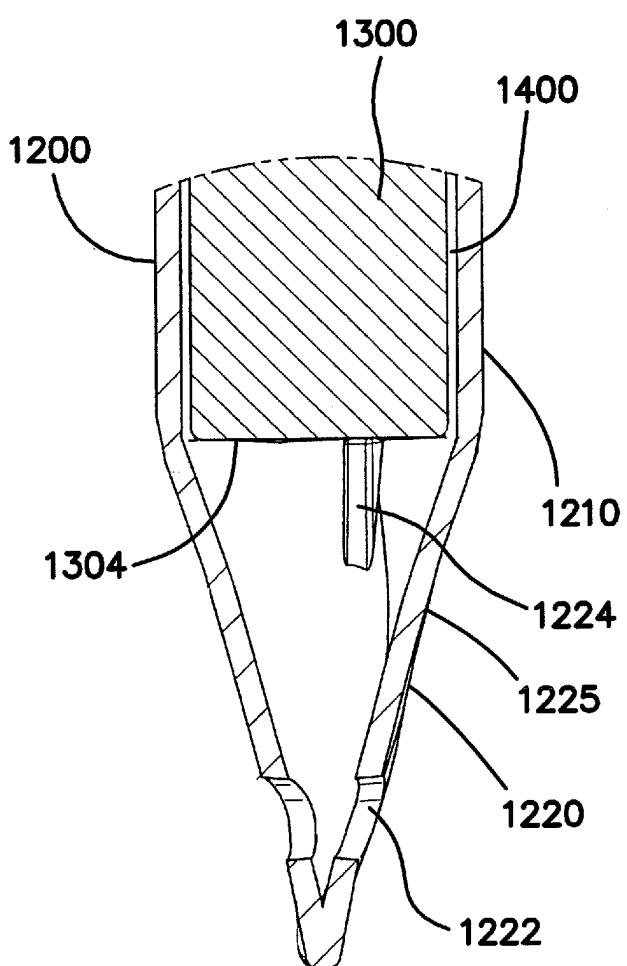
9. Système d'accès chirurgical selon la revendication 8, dans lequel l'indicateur d'épaisseur comporte au moins une indication parmi plusieurs disposée dans un alésage dudit au moins un trou pour passage d'air (2222), et les indications sont disposées à proximité dudit au moins un trou pour passage d'air (2222).

10. Système d'accès chirurgical selon la revendication 5, dans lequel l'obturateur (2220) comporte en outre au moins une butée de laparoscope (2224) disposée sur au moins la surface interne (2226) du bout d'obturateur (2220) et/ou la surface intérieure de l'arbre (1210) d'obturateur (2220).



11. Système d'accès chirurgical selon la revendication 1, dans lequel la surface interne (2226) du bout d'obturateur (2220) comporte une section transversale non circulaire.


12. Système d'accès chirurgical selon la revendication 11, dans lequel la surface intérieure (2226) du bout d'obturateur (2220) est généralement rectangulaire avec la dimension plus petite de largeur délimitant une butée.

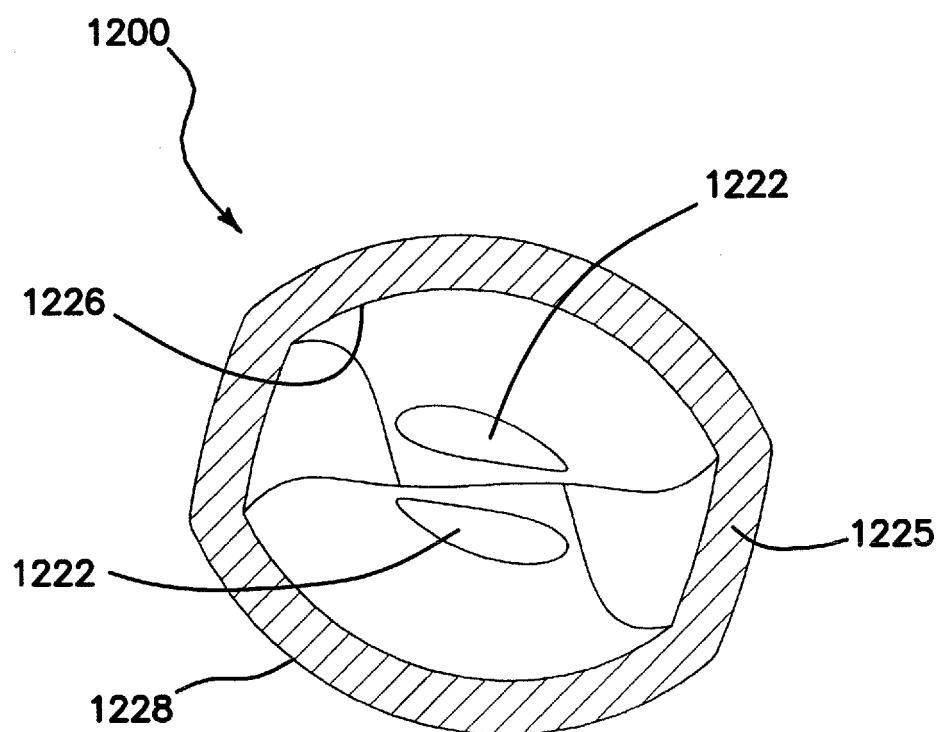
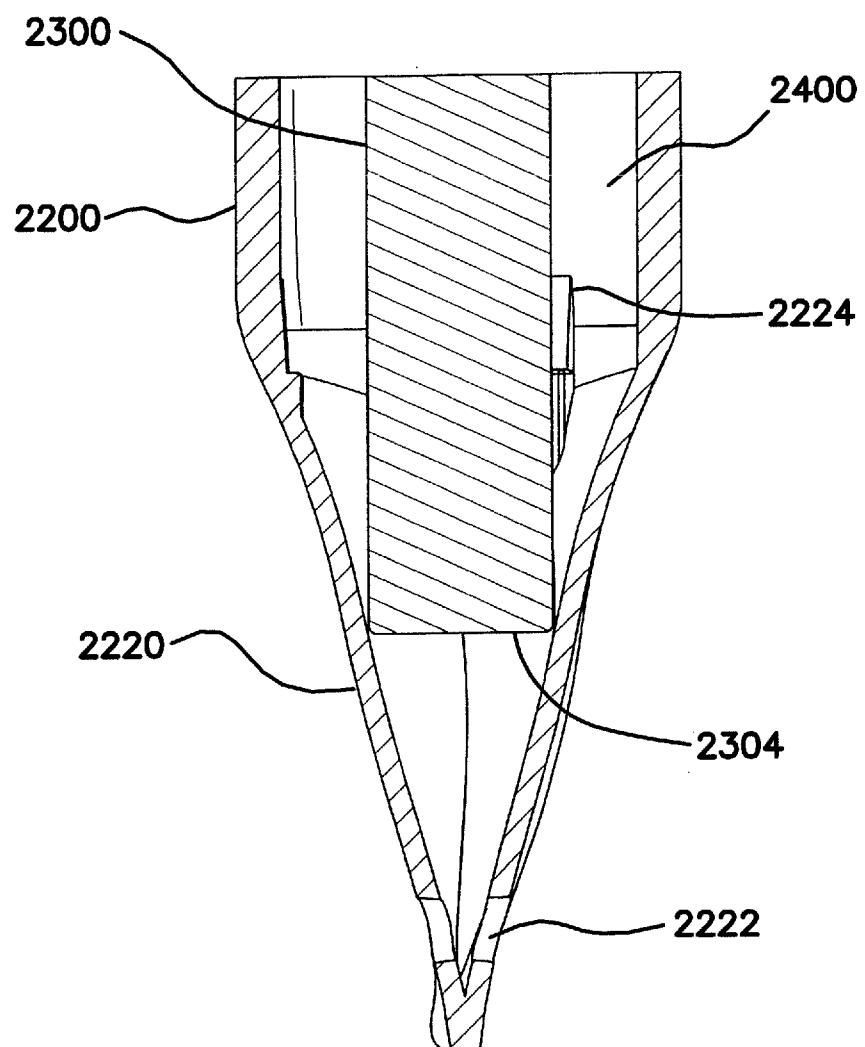
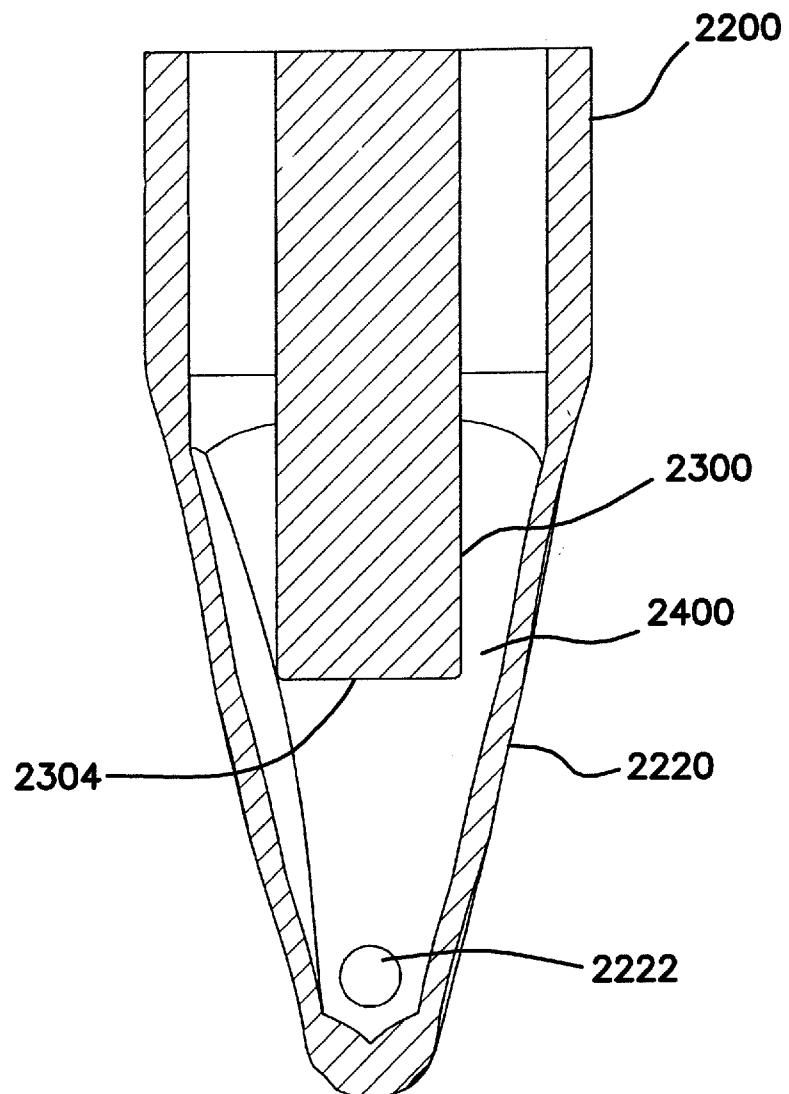
13. Système d'accès chirurgical selon la revendication 1, dans lequel au moins une ouverture perfore l'arbre (1210) d'obturateur (2220).

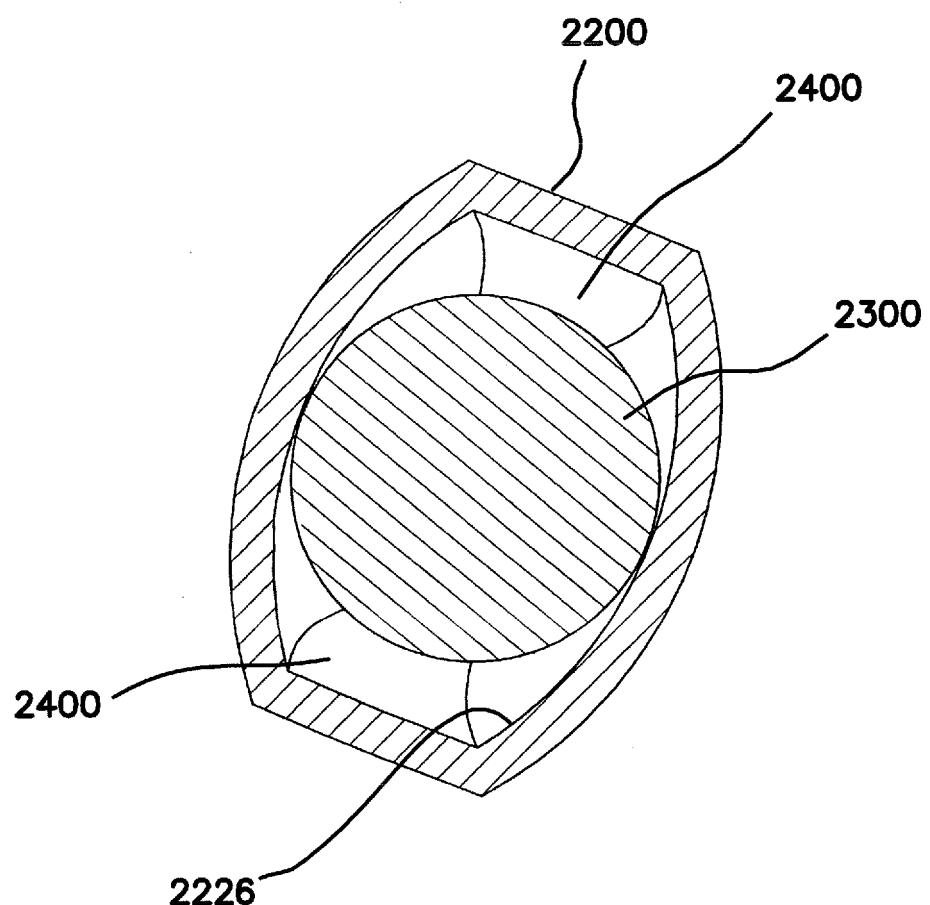

14. Système d'accès chirurgical selon la revendication 1, dans lequel une zone transversale du canal d'écoulement de gaz d'insufflation (2400) est d'au moins environ 1,6 mm².

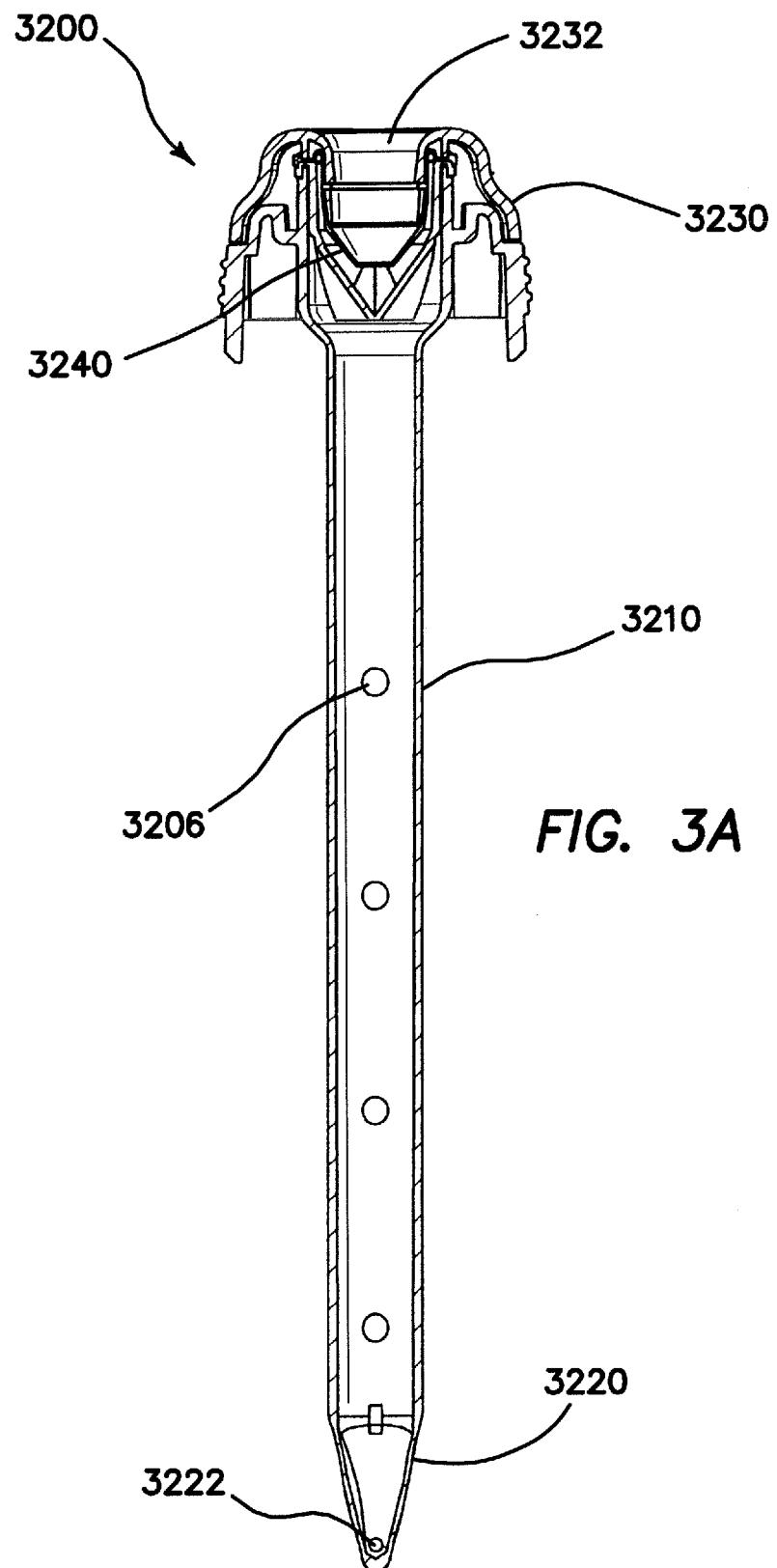
15. Système d'accès chirurgical selon la revendication 1, dans lequel un taux d'écoulement à travers le système d'accès est d'au moins environ 3,5 L/min à une pression d'insufflateur d'environ 1,6 à 2 KPa.

FIG. 1C

FIG. 1D


FIG. 1E


FIG. 2A

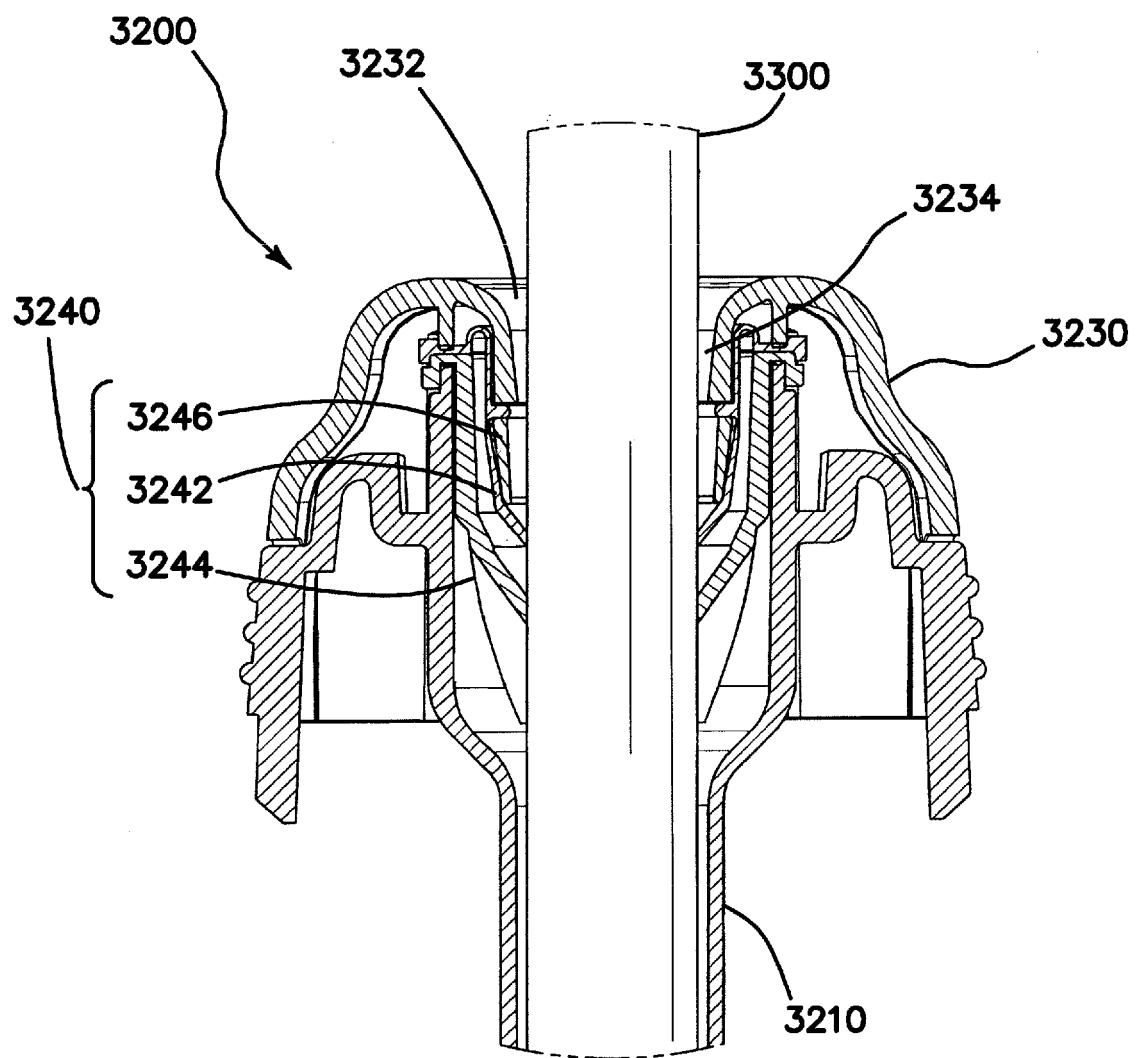


FIG. 2B

FIG. 2C

FIG. 3B

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 20080086074 A1 [0003]

专利名称(译)	首次进入套管针系统		
公开(公告)号	EP2328487A1	公开(公告)日	2011-06-08
申请号	EP2009737239	申请日	2009-09-29
[标]申请(专利权)人(译)	应用医疗资源		
申请(专利权)人(译)	应用医疗资源CORPORATION		
当前申请(专利权)人(译)	应用医疗资源CORPORATION		
[标]发明人	STROKOSZ ARKADIUSZ TAYLOR SCOTT V KAHLE HENRY		
发明人	STROKOSZ, ARKADIUSZ TAYLOR, SCOTT, V. KAHLE, HENRY		
IPC分类号	A61B17/34 A61B1/00 A61B1/313 A61B17/00		
CPC分类号	A61B1/313 A61B17/00234 A61B17/3417 A61B17/3474 A61B90/36 A61B90/361 A61B2017/00902 A61B2017/00907 A61B2017/3454 A61B1/00154 A61B1/3132 A61B17/0218 A61B17/3423 A61B17 /3496 A61B2017/3419		
优先权	61/101061 2008-09-29 US		
其他公开文献	EP2328487B1		
外部链接	Espacenet		

摘要(译)

一种外科进入系统，包括套管针，可滑动地插入套管针中的吹入式光学填塞器，以及可滑动地插入到闭塞器中的腹腔镜。所述填塞器的远端包括尖端，所述尖端的至少一部分包括具有大致均匀厚度的壁，所述壁包括透明材料。设置在填塞器尖端处的至少一个通气孔流体连接到由填塞器的内表面和腹腔镜限定的气体流动通道，该气体流动通道流体连接到设置在套管针的近端处的吹入气体入口。套管针系统的改进的光学特性允许将其精确且准确地视觉放置到体腔中。因此，进入系统适合作为第一进入外科手术进入系统。套管针通路的实施例也可用于药物输送，和/或用于流体和/或组织抽吸。