

(19) 대한민국특허청(KR) (12) 공개특허공보(A)

(11) 공개번호 10-2019-0083429(43) 공개일자 2019년07월12일

(51) 국제특허분류(Int. Cl.)

A61B 8/00 (2006.01)

(52) CPC특허분류

A61B 8/546 (2013.01) **A61B 8/4444** (2013.01)

(21) 출원번호 10-2018-0001058

(22) 출원일자 **2018년01월04일**

심사청구일자 없음

(71) 출원인

노슨(NOHSN) 주식회사

대전광역시 유성구 문지로 193 , 에이동 502호 (문지동)

(72) 발명자

한철민

대전광역시 서구 만년남로 8, 101동 1303호(만 년동, 상록수아파트)

전체 청구항 수 : 총 1 항

(54) 발명의 명칭 초음파 프로브

(57) 요 약

본 발명은 초음파 프로브에 있어서, 냉각 기능부; 냉각기능 제어부;를 포함하는 것을 특징으로 하는 초음파 프로 브를 제공한다. 따라서, 본 발명은, 초음파 프로브의 열화현상을 개선함으로써 초음파 프로브의 성능과 수명을 효과적으로 개선하였다.

대 표 도 - 도1

초음파 프로브

냉각기 공부
대칭레이어
초음파선서

이 발명을 지원한 국가연구개발사업

과제고유번호 C0453311

부처명 중소벤처기업부

연구관리전문기관 중소기업기술정보진흥원

연구사업명 산학연협력 기술개발사업

연구과제명 아토피 또는 만성피부질환 개선을 위한 한방 피부관리기기

기 여 율 1/1

주관기관 노슨(NOHSN) 주식회사 연구기간 2016.12.01 ~ 2017.11.30

명세서

청구범위

청구항 1

초음파 장치에 있어서, 냉각 기능부를 포함하며;

상기 냉각 기능부는 열전소자 회로부;를 포함하는 것을 특징으로하는 초음파 프로브.

발명의 설명

기술분야

[0001] 본 발명은 초음파 프로브에 관한 것으로, 보다 상세하게는 치료용 초음파 센서에서 발생되는 열을 냉각시켜주는 냉각 기능부를 포함하는 프로브를 포함하는 초음파 프로브에 관한 것이다.

배경기술

- [0002] 현재의 산업용 및 의료용 초음파 프로브는 수신된 신호를 분석하거나 이미지를 생생하기 위한 진단용과 초음파에너지를 전달하기 위한 치료용(산업용 : 타겟을 파괴하는 목적으로 사용함)으로 구분할 수 있다. 진단용 또는 치료용으로 사용되는 초음파 프로브들은 초음파 센서에서 열이 발생하게 되며, 발생된 열에 의한 열화 현상은 초음파 센서의 수명 뿐아니라 초음파 전송 신호 또는 수신 신호의 효율과 감도(Sensitivity)에 큰 영향을 끼치게 된다. 이러한 결과는 수신된 신호 분석 결과와 생성된 이미지의 품질 저하의 직접적인 원인이 된다.
- [0003] 상기 문제점을 해결하기 위해 고강도 집속 초음파 프로브에서는 주로 수냉식 방식을 사용하는 것이 현재의 방식이다.

발명의 내용

해결하려는 과제

- [0005] 본 발명의 목적은 초음파 센서의 열을 낮추기 위한 냉각 기능부를 포함하는 것을 특징으로 하는 초음파 프로브 에 관한 것이다.
- [0006] 본 발명의 다른 목적은 초음파 센서에서 발생되는 열을 낮추기 위해 기존의 수냉식 방식을 사용하지 않고, 펠티어 효과를 적용한 열전소자 회로부를 추가함으로써 초음파 센서의 열화 현상을 낮추는 것을 특징으로 한다.
- [0007] 본 발명의 또 다른 목적은 열전소자 회로부를 추가함으로써 프로브의 상대적 부피를 효과적으로 개선할 수 있다.

과제의 해결 수단

- [0009] 본 발명의 실시의 일 측면에서, 초음파 프로브에 있어서, 초음파 센서; 매칭레이어부; 냉각 기능부; 열전소자 회로부를 포함하는 가이드부; 열전소자 회로부; 열전소자; 열전소자를 포함하는 냉각 기능부; 냉각기능 제어부; 온도 센서부; 온도 측정부; 초음파 센서 열화현상 모니터링부; 초음파 프로브 설정 정보 관리부; 초음파 프로브 설정 정보에 따른 초음파 센서 열화현상(온도) 변화량 관리부;를 포함하는 것을 특징으로 하는 초음파 프로브를 제공한다. 바람직하게는, 상기 냉각기능 제어부는 초음파 프로브 설정 정보 및/또는 초음파 센서 열화현상(온도) 변화량 관리부의 정보 및/또는 온도 센서부에서 수신된 온도 정보를 활용하여 열전소자의 동작을 제어하는 것을 특징으로 하는 초음파 프로브를 제공한다.
- [0010] 바람직하게는, 상기 냉각 기능부은 상기 냉각 기능부의 개수가 최소가 되도록 형성된 것을 특징으로 하는 초음

파 프로브를 제공한다.

발명의 효과

- [0011] 본 발명은 기존의 공냉식 또는 수냉식 기반의 초음파 프로브 열화현상 개선 방식 대비 부피와 정량적 열화현상 제어, 제품의 경제성, 프로브 사용 수명 개선, 초음파 프로브의 특성(감도 : Sensitivity) 등을 개선할 수 있다.
- [0012] 또한, 본 발명은 초음파 프로브의 사용시간 또는 기간에 따라 성능이 저하되는 단점을 개선시킴으로써, 초음파 진단 이미지의 품질과 치료용 신호의 효율을 높이는 효과를 가질 수 있다.

도면의 간단한 설명

- [0013] 도 1은 종래의 프로브와 온도를 제어하기 위한 수냉식 방식을 나타낸 도면이다.
 - 도 2는 본 발명의 바람직한 일 실시예에 따른 초음파 프로브의 구성도를 나타낸 도면이다.
 - 도 3은 본 발명의 바람직한 일 실시예에 따른 초음파 프로브의 측면도를 나타낸 도면이다.
 - 도 4는 본 발명의 바람직한 일 실시예에 따른 초음파 프로브의 정면도를 나타낸 도면이다.

도 5A 내지 도 5C는 본 발명의 바람직한 일 실시예에 따른 열전소자를 포함하는 초음파 프로브의 구성의 예시도를 나타낸 도면이다.

도 6A 내지 도 6B는 본 발명의 바람직한 일 실시예에 따른 열전소자를 포함하는 가이드와 초음파 프로브의 결합 도를 나타내는 도면이다.

도 7A 내지 도 7C는 본 발명의 바람직한 일 실시예에 따른 초음파 프로브의 단면도를 나타내는 도면이다.

도 8은 본 발명의 바람직한 일 실시에에 따른 초음파 프로브의 열화현상 특성 그래프를 나타낸 도면이다.

도 9는 본 발명의 바람직한 일 실시예에 따른 초음파 프로브와 초음파 진단 및/또는 시스템 구성예시를 나타내는 도면이다.

발명을 실시하기 위한 구체적인 내용

- [0014] 본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시 예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 한편, 본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 또한 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략한다. 본 발명을 설명함에 있어 전체적인 이해를 용이하게 하기 위하여 도면 번호에 상관없이 동일한 수단에 대해서는 동일한 참조 번호를 사용하기로 한다.
- [0015] 도 2는 본 발명의 바람직한 일 실시예에 따른 초음파 프로브의 구성도를 나타낸 도면이다.
- [0016] 도 2를 참조하면, 냉각 기능부 프로부는 냉각 기능부(210), 패드(220), 프로브부(230), 열전소자 제어부(240), 구동부(250), 입력부(260) 및 통신부(270)을 포함한다.
- [0017] 냉각 기능부(210)은 패드(220)위에 위치하고 프로브부(230)가 움직이는 경로를 제공한다. 즉, 프로브부(230)는 열전소자 제어부(240)에 의하여 제어되는 구동부(250)에 의해서 냉각 기능부(210)을 따라 이동한다. 냉각 기능부(210) 자체도 열전소자 제어부(240)에 의하여 제어되는 구동부(250)에 의해서 패드(220)를 따라 이동한다. 따라서, 냉각 기능부(210)은 구동력을 전달하는 냉각 기능부구동부(251)를 포함할 수 있다.
- [0018] 냉각 기능부(210)은 X축냉각 기능부(211) 및/또는 Y축냉각 기능부(212)을 포함한다. X축냉각 기능부(211)은 원통형의 패드(220)의 중심선과 같은 방향으로 놓여진 냉각 기능부(210)을 말한다. Y축냉각 기능부(212)은 원통형의 패드(220)의 중심선과 수직인 방향으로 놓여진 냉각 기능부을 말한다. X축냉각 기능부(211) 및/또는 Y축냉각기능부(212)은 열전소자 제어부(240)의 제어를 받은 구동부(250)에 의해 Y축방향 및/또는 X축방향으로이동한다. X축냉각기능부(211) 및/또는 Y축냉각기능부(212)은 프로브부(230)가 이동하는 경로가 된다.

- [0019] 패드(220)는 냉각 기능부(210)이 위치할 수 있는 기반을 제공하여 측정부위를 감싸 안아 상기 초음파 프로브가 흔들리지 않도록 고정하는 역할을 한다. 패드(220)는 측정부위와 패드(220)에 맞닿아서 패드(220)가 흔들리지 않도록 하는 젤성분으로 이루어진 젤패드(410)를 포함한다. 패드(220)는 외부기기와 통신을 맡는 통신부(270)을 포함한다.
- [0020] <u>프로브부(230)</u>는 측정부위를 측정하는 탐침을 포함하고 냉각 기능부(210)을 따라 이동한다. 프로브부(230)는 열 전소자 제어부(240)의 제어를 받은 구동부(250 즉, 프로브구동부(252))에 의해 이동한다. 프로브부(230)는 프로브구동부(252)를 포함한다. 또한, 프로브부(230)는 열전소자 제어부(240)를 포함하여 열전소자 제어부(240)가 직접 냉각 기능부(210) 및 프로브부(230)를 제어하도록 할 수 있다(열전소자 제어부(240)는 프로브부(230) 외부에서 결합할 수 있음).
- [0021] 열전소자 제어부(240)는 냉각 기능부(210) 및 프로브부(230)를 이동시키기 위하여 구동부(250)를 제어한다. 열전소자 제어부(240)의 제어를 받은 구동부(250)는 냉각 기능부(210) 및 프로브부(230)를 이동시킨다. 열전소자 제어부(240)는 냉각 기능부(210)제어를 수행하는 냉각 기능부열전소자 제어부(241), 프로브부(230)제어를 수행하는 프로브열전소자 제어부(242) 및 젤패드(410)를 제어하는 젤열전소자 제어부(243)를 포함한다. 열전소자 제어부(240)는 프로브부(230)가 복수의 회전부재(610)를 포함하는 경우, 상기 복수의 회전부재(610) 각각의 속도를 다르게 제어할 수 있다. 열전소자 제어부(240)는 입력부(260)로부터 프로브부(230)가 이동될 위치 및 프로브부(230)가 스캔할 범위를 입력받는다. 열전소자 제어부(240)는 상기 입력받은 위치 및 스캔범위로부터 최단거리 및/또는 최단시간을 산출하고 최소 이동으로 스캔하기 위한 회전여부를 결정한다. 열전소자 제어부(240)는 상기초음과 프로브가 진단 및 치료 시스템과 데이터 통신을 하기 위한 통신부(270)를 제어한다.
- [0022] 열전소자 제어부(240)는 프로브부(230) 내부에 포함될 수 있고 외부에 설치되어 프로브부(230)와 무선통신으로 구동부(250)를 제어할 수 있다.
- [0023] <u>젤열전소자 제어부(243)</u>는 본 발명에서 제안된 프로브(230)의 젤(패드(410)에 젤의 주입량을 제어하는 열전소자 제어부이다. 이때 제어되는 기능은 환자들의 체형이 다양하기 때문에 진단 또는 시술부위와 젤패드 사이의 공간을 없애고, 시술부위에 밀착시키기 위해 활용된다. 그리고 젤패드 또는 시술(진단 또는 치료)부위의 온도가 상승할 경우, 젤의 입력과 출력 비율에 따라 순환시킬 수 있다.
- [0024] 젤주입량산출 기능부는 시술 부위에 젤의 주입량을 산출하는 기능을 갖는다. 이때 산출기능은 진단 또는 치료 신체부위의 체적을 산출하여 주입량을 계산하거나, 젤을 주입시 일정 압력기준에 적합한 범위 내에서 젤을 주입 한다. 따라서, 본 발명에서 요구되는 프로브(230)은 온도측정부와 압력측정부를 포함한다.
- [0025] 온도측정부는 실시간으로 온도측정 결과(또는 정보, 데이터)를 젤 열전소자 제어부에 전달하며, 젤 열전소자 제어부는 온도측정부의 온도측정 결과에 따라 젤의 순환여부를 판단한다. 적정온도 기준 범위를 초과할 경우, 온도 상승 비율(온도 상승 시간)에 따라서 젤 열전소자 제어부는 젤의 입력과 출력 비율를 설정하고, 설정된 비율에 따라서 젤을 순환시킨다.
- [0026] 압력측정 기능부는 젤패드(410)가 환자의 진단 또는 치료 부위를 과도하게 압박하여 환자에게 피해를 입히지 않도록 하기위해, 젤패드의 압력을 측정하는 기능부이다. 압력측정 기능부에서 측정된 결과(또는 정보, 데이터)는 젤열전소자 제어부(243)에 전송되며, 전송된 정보를 바탕으로 젤열전소자 제어부는 젤의 주입량과 출력량을 제어한다.
- [0027] 본 발명의 프로브(230)는 환자의 진단 또는 치료를 수행하기 위해, 젤열전소자 제어부(243)에서 젤의 주입량, 방법등을 제어하기 위해 요구되는 적정온도 범위, 젤의 입력과 출력 비율, 적적 압력/압박 범위에 대한 정보 데이터 베이스를 관리하며, 별도의 정보관리부에서 적정온도 유지 범위, 온도 상승 시간에 따라 젤의 입력과 출력 비율/시간 정보, 압력/압박 범위를 관리할 수도 있다.
- [0028] <u>구동부(250)</u>는 냉각 기능부(210) 및 프로브부(230)를 구동하는데, 냉각 기능부(210)을 구동하는 냉각 기능부구 동부(251) 및 프로브부(230)를 구동하는 프로브구동부(252)를 포함한다. 냉각 기능부구동부(251)는 냉각 기능부 (210)에 결합되어 있고 프로브구동부(252)는 프로브부(230)에 결합되어 작동한다. 구동부(250)는 열전소자 제어 부(240)에 의한 제어를 받아 구동력을 생성하여 전달함으로써, 냉각 기능부(210)을 이동시키거나 프로브부(230)를 이동 또는 회전시킨다.
- [0029] **입력부(260)**는 프로브부(230)가 **이동할 위치** 또는 <u>스캔할 범위</u>를 입력받는다. 입력부(260)는 상기 이동할 위치 또는 스캔할 범위를 열전소자 제어부(240)로 전송한다.

- [0030] **통신부(270)**는 패드(220)에 위치하여 진단 및 치료 시스템과 데이터 통신을 한다.
- [0031] 도 3은 본 발명의 바람직한 일 실시예에 따른 초음파 프로브의 측면도를 나타낸 도면이고, 도 4는 본 발명의 바람직한 일 실시예에 따른 초음파 프로브의 정면도를 나타낸 도면이다.
- [0032] 도 3 및 도 4를 참조하면, 초음파 프로브가 실제로 구현된 경우의 도면이다. 가령, 패드(220)가 환자의 신체부 위를 둘러싸면 패드(220)위의 냉각 기능부(210) 및/또는 프로브부(230)가 이동하면서 측정을 시작한다. 이 때 X 축냉각 기능부(211)과 Y축냉각 기능부(212)은 각각 상하이동 및 좌우이동을 할 수 있고, 프로브부(230)도 냉각 기능부(210)을 따라 이동할 수 있다.
- [0033] 도 5A 내지 도 5C는 본 발명의 바람직한 일 실시예에 따른 초음파 프로브의 냉각 기능부 구성의 예시도를 나타 낸 도면이다.
- [0034] 도 5A 내지 도 5C를 참조하면, 냉각 기능부(210)은 패드(220)위에 여러 형태로 배열될 수 있다.
- [0035] 도 5A를 참조하면, 냉각 기능부(210)은 격자형태로 배열될 수 있다. 따라서, 프로브부(230)는 격자형태의 냉각 기능부(210)을 따라서 이동하며 측정한다.
- [0036] 상기 초음파 프로브는 상기 도 5A의 냉각 기능부 배열형태 이외에도 최소 개수의 냉각 기능부(210)만을 포함하여 냉각 기능부(210) 구동을 최소화 할 수 있는데, 냉각 기능부(210) 구동 형태는 도 5B 및 도 5C의 형태가 될 수 있다.
- [0037] 도 58를 참조하면, 냉각 기능부(210)은 양 끝의 냉각 기능부(210)과 가운데 X축냉각 기능부(211) 및 Y축냉각 기능부(212)을 추가배열한 형태로 구성될 수 있다. 냉각 기능부구동부(251)(도면 미도시)는 X축냉각 기능부(211) 및 Y축냉각 기능부(212)을 이동시키고 상기 이동하는 X축냉각 기능부(211) 및 Y축냉각 기능부(212)을 따라서 프로브부(230)가 이동하면서 측정한다. 따라서, 상기 초음파 프로브는 X축냉각 기능부(211) 및 Y축냉각 기능부(212)의 이동만으로 전 영역을 스캔할 수 있다. 또한, 상기 초음파 프로브는 필요에 따라 X축냉각 기능부(211) 또는 Y축냉각 기능부(212)의 이동과 프로브부(230)의 이동으로 전 영역을 스캔할 수 있다.
- [0038] 도 5C를 참조하면, 냉각 기능부(210)은 양 끝의 냉각 기능부(210)과 가운데 Y축냉각 기능부(212)만을 추가배열한 형태로 구성될 수 있다. 반대로 냉각 기능부(210)은 X축냉각 기능부(211)만을 추가배열한 행태로 구성될 수도 있다. 냉각 기능부구동부(251)는 Y축냉각 기능부(212)을 이동시키고 상기 이동하는 Y축냉각 기능부(212)을 따라서 프로브부(230)가 이동하면서 측정한다. 따라서, Y축냉각 기능부(212)의 움직임과 프로브부(230)의 움직임으로 전 영역을 스캔할 수 있다.
- [0039] 도 6A 내지 도 6B는 본 발명의 바람직한 일 실시예에 따른 초음파 프로브의 냉각 기능부과 프로브부의 결합도를 나타내는 도면이다.
- [0040] 도 6A 내지 도 6B를 참조하면, 냉각 기능부(210)과 프로브부(230)가 결합된 태양이 도시된다. X축냉각 기능부 (211) 및 Y축냉각 기능부(212)을 포함하는 냉각 기능부(210)은 냉각 기능부을 보호하는 부재로써, 냉각 기능부 가드부(640)을 포함할 수 있다. 프로브부((230)는 냉각 기능부(210)과의 접촉으로 프로브부(230)를 움직이게 하는 회전부재(610), 회전부재(610)와 프로브부(230)를 결합시키는 회전부재 이음부(620) 및 Y축냉각 기능부(212)의 결합을 통해서, Y축냉각 기능부(212)이 이동하면, X축냉각 기능부(211) 또는 프로브부(230)가 이동한다.
- [0041] 도 6A를 참조하면, 프로브부(230)가 X축냉각 기능부(211)에 결합되어 있되, 하나의 냉각 기능부(210)을 양쪽에서 감싸 안은 형태로 결합할 수 있다. 이 때, 회전부재(610)는 복수개 일 수 있고 상기 각각의 회전부재(610)의 속도는 열전소자 제어부(240)에 의하여 다르게 제어될 수 있다.
- [0042] 도 6B를 참조하면, 프로브부(230)가 X축냉각 기능부(211)에 결합되어 있되, 두 개의 냉각 기능부(210)사이에서 결합된 형태로 결합할 수 있다. 이 경우, 회전부재 이음부(620)는 포함되지 않을 수 있다.
- [0043] 도 7A 내지 도 7C는 본 발명의 바람직한 일 실시예에 따른 초음파 프로브의 냉각 기능부의 단면도를 나타내는 도면이다.
- [0044] 도 7A 내지 도 7C를 참조하면, 하나의 냉각 기능부(210)의 양 단면 또는 하나의 단면만을 포함할 수 있다. 상기 단면들은 프로브부(230)의 회전부재(610)와 맞물리는 부분으로써, 배열간격을 달리하는 톱니를 구비할 수 있다. 배열간격을 달리하는 상기 톱니의 촘촘함에 따라서 정밀도는 비례하고 상기 초음파 프로브의 이동속도는 반비례

하게 된다.

- [0045] 도 7A를 참조하면, 냉각 기능부(210)은 양 단면을 포함하고 각 단면은 냉각 기능부상단면(710)과 냉각 기능부하 단면(720)의 비율이 2:1인 톱니개수를 가지고 있다. 따라서, 프로브구동부(252)가 프로브부(230)의 두 개의 회전부재(610) 중 냉각 기능부상단면(710)에 맞물린 회전부재(610)만 구동하면 프로브부(230)는 천천히 정밀하게움직일 수 있어서, 느리지만 정밀한 측정이 가능해진다. 반면에, 프로브구동부(252)가 프로브부(230)의 두 개의회전부재(610) 중 냉각 기능부하단면(720)에 맞물린 회전부재(610)만 구동하면 프로브부(230)는 빠르게 크게 움직일 수 있어서, 빠른 측정이 가능해진다. 톱니개수의 비율은 N:1로 확장될 수 있다.
- [0046] 도 7B를 참조하면, 냉각 기능부(210)은 양 단면을 포함하고 각 단면은 냉각 기능부상단면(710)과 냉각 기능부하 단면(720)의 비율이 1:1인 톱니개수를 가지고 있다. 따라서, 프로브구동부(252)가 프로브부(230)의 두 개의 회전부재(610)를 구동하면, 도 7A의 냉각 기능부하단면(720)만을 이용하여 구동할 때 보다 빠른 측정이 가능해진다.
- [0047] 도 7C를 참조하면, 냉각 기능부(210)은 하나의 단면을 포함하고 프로브구동부(252)는 상기 단면 회전부재(610)를 구동하여 프로브부(230)를 이동시킨다.
- [0048] 도 8은 본 발명의 바람직한 일 실시예에 따른 초음파 프로브가 이동하는 예시도를 나타내는 도면이다.
- [0050] *도 8을 참조하면, 도 8은 상기 초음파 프로브가 도 5B의 냉각 기능부(210)배열을 통하여 이동할 때를 나타낸 도면이다. 상기 초음파 프로브의 측정은 냉각 기능부(210) 및 프로브부(230)를 이동시킴으로써 행하여진다. X축 1냉각 기능부(810)과 X축3냉각 기능부(830)은 Y축냉각 기능부(212)을 결합하고 냉각 기능부구동부(251)는 Y축냉각 기능부(212)을 이동시킨다. 이를 따라서, 다른 냉각 기능부구동부(251)는 X축2냉각 기능부(820)을 이동하여 프로브부(230)를 원하는 지점으로 이동시킨다.
- [0051] X축2냉각 기능부(820)이 없는 경우, Y축냉각 기능부(212)이 이동하고 X축2냉각 기능부(820)의 움직임 없이 프로 브부(230)가 대신 이동함으로써, 프로브부(230)가 원하는 지점을 측정한다.
- [0052] 도 9는 본 발명의 바람직한 일 실시예에 따른 초음파 프로브의 최단거리 이동의 예시도를 나타내는 도면이다.
- [0053] 도 9를 참조하면, 열전소자 제어부(240)는 프로브부(230)를 원하는 위치에 가장 최단시간에 이동시키도록 최단 거리 및 최단시간을 산출하고, 상기 산출 정보에 따라서, 구동부(250)를 동작시킨다. 가령, 현재위치(910)에 있는 프로브부(230)가 A1위치(920)로 이동하고자 할 때, Y축방향으로의 이동을 최단거리로 산출하고 프로브부(230)를 Y축냉각 기능부(212)을 따라서 이동시킨다. 또한, 현재위치(910)에 있는 프로브부(230)가 A2위치(930)로 이동하고자 할 때, 대각선 방향을 최단거리로 산출하고 Y축냉각 기능부(212)을 X축으로 이동시키면서, 프로브부(230)를 Y축냉각 기능부(212)을 따라서 이동시킨다.
- [0054] 도 10은 본 발명의 바람직한 일 실시예에 따른 초음파 프로브가 스캔하는 예시도를 나타내는 도면이다.
- [0055] 도 10을 참조하면, 열전소자 제어부(240)는 프로브부(230)가 원하는 스캔범위를 최소의 냉각 기능부(210) 구동 및 프로브부(230) 구동 즉, 가장 최단시간으로 스캔하도록 하기 위하여 프로브부(230)를 회전시킨다. 가령, 종 방향 프로브부(1010)는 종방향 스캔범위(1030)를 스캔하는데 적합한데, 그 이유는 종방향 프로브부(1010)의 스캔범위가 넓어서 냉각 기능부(210) 또는 프로브부(230)를 구동시키는 횟수가 적어지기 때문이다. 따라서, 횡방향 프로브부(1020)상태에서 종방향 스캔범위(1030)를 스캔하기 위해서는 횡방향을 종방향으로 회전할 필요성이 있다. 반대로, 종방향 프로브부(1010)가 횡방향 스캔범위(1040)를 스캔하는 경우 종방향에서 횡방향으로 회전할 필요성이 있다. 상기 프로브부(230)의 회전 여부는 열전소자 제어부(240)가 최단거리, 스캔 방향 및 횟수 및 냉각 기능부(210)구동 횟수를 바탕으로 판단한다.
- [0056] 도 11은 본 발명의 바람직한 일 실시예에 따른 초음파 프로브를 이용한 진단 및 치료 시스템의 구성도를 나타내는 도면이다.
- [0057] 도 11을 참조하면, 진단 및 치료 시스템은 펄스발생부(1110), 송수신부(1120), 영상처리부(1130) 및 냉각기능 제어부(1140)을 포함한다.
- [0058] **필스발생부(1110)**는 펄스를 발생시키는 기능을 한다. 상기 펄스는 초음파 펄스 등의 치료를 위한 펄스가 된다.
- [0059] 송수신부(1120)는 상기 초음파 프로브와 진단 및 치료 시스템(1100)사이에서 정보를 교환을 담당한다. 송수신부

(1120)는 상기 초음파 프로브의 통신부(270)로부터 측정 정보를 수신하여 냉각기능 제어부(1140)로 전송한다. 또한, 송수신부(1120)는 펄스발생부(1110)로 냉각기능 제어부(1140)의 펄스제어신호를 전송한다.

- [0060] **영상처리부(1130)**는 사용자가 볼 수 있도록 상기 냉각기능 제어부(1140)에 의해 도식화 및 영상화된 측정 정보 를 디스플레이 한다.
- [0061] 냉각기능 제어부(1140)는 진단 및 치료 시스템(1100) 즉, 펄스발생부(1110), 송수신부(1120) 및 영상처리부 (1130)를 제어한다. 냉각기능 제어부(1140)는 송수신부(1120)로부터 상기 초음파 프로브의 측정 정보를 전송받고 이를 영상으로 변환하여 영상처리부(1130)로 전송하는 기능을 한다.
- [0062] 도 12는 본 발명의 바람직한 일 실시예에 따른 초음파 프로브를 이용한 진단 및 치료 시스템의 활용도를 나타내는 도면이다.
- [0063] 도 12를 참조하면, 상기 초음파 프로브가 환자의 진단 및 치료를 위하여 팔에 착용될 수 있다. 상기 초음파 프로브가 환자의 팔에 장착되면 프로브부(230)가 이동하면서 측정 정보를 진단 및 치료 시스템(1100)에 전송한다. 시술자는 원격으로 환자의 취득된 상기 측정 정보를 진단 및 치료 시스템(1100)을 통하여 영상으로 볼 수 있고 시술을 진행할 수 있다.
- [0064] 도 13은 본 발명의 바람직한 일 실시예에 따른 초음파 프로브를 이용한 진단 및 치료 시스템(1100)의 1차원 또는 2차원 측정 정보가 영상정보로 변화되는 예시도를 나타내는 도면이다.
- [0065] 도 13을 참조하면, S1311단계, S1313단계, S1315단계 및 S1330단계는 1차원 측정 정보를 바탕으로 3차원 영상을 얻는 과정을 나타낸다..
- [0066] S1311단계에서, 프로브부(230)가 이동하면서 1차원 이미지를 획득하고 상기 초음파 프로브는 상기 1차원 이미지를 진단 및 치료 시스템으로 전송한다.
- [0067] S1313단계에서, 냉각기능 제어부(1140)는 상기 1차원 이미지를 바탕으로 2차원 이미지를 생성한다.
- [0068] S1315단계에서, 냉각기능 제어부(1140)는 상기 2차원 이미지를 바탕으로 3차원 볼륨을 덧입혀 3차원 볼륨 이미지를 생성한다.
- [0069] S1330단계에서, 냉각기능 제어부(1140)는 상기 생성된 3차원 볼륨 이미지를 합하여 3차원 영상을 생성한다.
- [0070] S1321단계, S1323단계 및 S1330단계는 2차원 측정 정보를 바탕으로 3차원 영상을 얻는 과정을 나타낸다.
- [0071] S1321단계에서, 프로브부(230)가 이동하면서 2차원 이미지를 획득하고 상기 초음파 프로브는 상기 2차원 이미지를 진단 및 치료 시스템으로 전송한다.
- [0072] S1323단계에서, 냉각기능 제어부(1140)는 상기 2차원 이미지를 바탕으로 3차원 볼륨을 덧입혀 3차원 볼륨 이미지를 생성한다.
- [0073] S1330단계에서, 냉각기능 제어부(1140)는 상기 생성된 3차원 볼륨 이미지를 합하여 3차원 영상을 생성한다.
- [0074] 상기 설명한 것처럼, 본 발명은 냉각 기능부(210) 및 프로브부(230)를 구동하여 피측정 부위를 측정하는 초음파 프로브를 제공하고 상기 초음파 프로브를 이용한 진단 및 치료 시스템을 통하여 상기 측정 정보로부터 3D 영상 또는 이미지를 제공한다. 따라서, 본 발명은 간단한 측정으로 3D를 제공함으로써, 환자에 대한 진단 및 시술치료가 가능하게 하는 효과가 있다.

산업상 이용가능성

[0075] 본 발명은 산업용 및/또는 의료용 초음파 프로브에 적용이 가능하다.

부호의 설명

[0076] 210 : 냉각 기능부

220 : 패드

230 : 프로브부

240 : 열전소자 제어부

250 : 구동부

260 : 입력부

270 : 통신부

도면

도면1

초은파	프로	Н

냉각기 등부	
대칭레이어	
초음파선서	

专利名称(译)	超声波探头			
公开(公告)号	KR1020190083429A	公开(公告)日	2019-07-12	
申请号	KR1020180001058	申请日	2018-01-04	
[标]申请(专利权)人(译)	诺森有限公司			
申请(专利权)人(译)	Noseun(NOHSN)有限公司			
[标]发明人	한철민			
发明人	한철민			
IPC分类号	A61B8/00			
CPC分类号	A61B8/546 A61B8/4444			
外部链接	Espacenet			

摘要(译)

本发明提供了一种超声波探头。超声波探头包括冷却功能部。以及冷却功能控制部。因此,本发明通过改善超声波探头的劣化现象而有效地改善了超声波探头的性能和寿命。

초음파 프로브

냉각가 등부 대칭레이어 초음파센서