	(1	9) (12)			(KR) (A)			
(51) 。 Int. Cl. ⁷ A61B 8/00					(11) (43)		2003 - 0017413 2003 03 03	
(21) (22)	10 - 2002 - 00 2002 08 23	49964 3						
(30)	09/682,358		2001	08 2	24	(US)		
(71)		53188				3000	,	
(72)		- 3182	8					
		- 3189	14					
	7F	- 7	7024		13			
		- 7	7050		6 - 51			
		3960		1				
		- 0379			7			
		- 1515		1				
		- 3183			27			
(74)								
÷								
(54)								

		. 1	((802)	1
1	1	(802)	가		2

2	(810)가	2 (802) (810)		2 가	, , 1	2	2	1	2 (810) (8	02,810)가			1
									,				
	1												
	1												
	2	2	2D				,		3				
	3	2D					,						
	4	В					2D					,	
	5	2				2D					,		
	6	4				2D					,		
	7,			,									В
	8 , 2D			,	В ,				2D				
	9,	2D		,	2D				В		В ,		
	10 2D			, 2D	В			2		,			
	11 2D			, 2D	В			4		,			
	12 2D			, 2D	В			4		3			
	13			,	В		(, 4	00				,
	2D				,		(pause)		20				
	14			,	В					2D			2D

,

15 B			,		В		2 B	
16 2D		2D	, 가		3	В		
17	2D		3	,	В	,		
18 n - integer	ratio)		, 2D	В		3	가	(no
19			3	2D				
102 :	104 :							
106 :	108 :							
110 :	112 : RF							
114 : RF/I0	ຊ 116 :							
118 :	12	2 :						
g) I resolutior	. , 1)			(human	anatomy)) (sp	ultrasonic in patial and ter	nagin npora
2 (2D)]) (muscu	Doppler) Ilar tissue mov	, (hi rement and defe	uman breast) ormation)		da		
В	(color - coded)	ualization) (cov B	. В ering)	2D	(B - moo	est)	e sector) (veloci	가 ty in

- 3 -

" (tissue image)"

가

.

formation) . 가 , B

2D B (frame rate) 2D 2D (sector scanned 2D Doppler aquisition) , 2 (202) В (204) B (B - mode transmit beam) (206) . B (Doppler transmit beam direction) (210) (208) , B (N_B)가 12 (N_D)가4 , В (2 04) (beam density) (208)3 2D (scan sequence) . 12 (302 - 324) (326 - 348)가 (302) 12 (302 - 324)В . , B 가 (326 - 348)가 (326), B (labeled) . В (326 - 348), В ₁ В (3 . B ₁₁ 26) В 가 (1) В (346) В 가 (320 - 324) D_{ii} (i (11)j (320 - 324) (350 - 356)) (302 - 324) (350 - 356) (packet size; PS) (350 - 356) . (320 - 324)3 PS 3 . (350 - 356). (350 - 356) (302 - 324)2D (350 - 356) 가 (302, 304, 306)(1) (305) (measurement) 가 (Doppler pulse repetition time ; PRT_D) (Doppler pulse repetition frequency; PRF $_{D}$) PRF_D = 1/PRT $_{D}$ 가 PRF_D (PRF_{DMAX}) (302 - 324)가 (transducer) (reflector) (reverberation) 가 , $PRF_D > 0.5 * PRF_{DMAX}$ 3 В (frame rate; FR) FR = T frame . $1/T_{frame}$ В (FR_B) (FR_D) В (302 - 324)가 В (326 - 348)가 (T_{frame}) $T_{frame} = (N_D \times PS)/PRF_D + N_B/PRF_B(1)$, PS T_{frame} $, N_D$, PRF_{D} , N_B В , PRF _B В , PS = 3 3 $, N_{\rm D} = 4$ $, N_{B} = 12$. В (interleaving) 2D 4 . 12 (402 - 424) 12 В (426 - 448)가 (402 - 424) (450 - 456) (450 - 456)(45 .

0 - 456)

,

3 , (402 - 424) B	4 4) B , B (42 (426 - 448)	(426 - 448) 26 - 430)가 (402	, 2 - 424)	, 4 , . ,	((402 (408 - 412)가 ,	- 426)가 (2)	(1)
В	B 가 .	, FR _D	, FR _B		· ,	,	
가	, PRF _D 기 가 . 1	·	. PRF _D 가 ,	, , 1	(1) 2		,
up Size; IGS)		·		,		(Interl	eave Gro
, IGS가 , , PRF _D 가	2 , PRF _D	PRF _{Dmax/IGS}		. PRF _[o _{max} = PRF _D *	, IGS가	
PRF _D 가	IGS 가	PRF _{Dmax}					
$T_{frame} = (N_D \times$	PS)/(PRF _D × IGS)	+ $N_B / PRF_B = ($	$N_{D} \times PS)/F$	$PRF_{Dmax} + N_{E}$	3/PRF _B		
5 (502 -	2 - 524)	12 B	2D (526	6 - 548)가			. 12
3 、 3 、 , (502) (506)가	, 5 , (1) (1) , , 5 IGS 2	,	(5 ((508)가	가 02 - 524)가 504)가 (2 (2) , B) - アト		
6 (602 4 .	4 - 624) 12 B (602 - 624)가	(626 - 6	2D 48)가 ,	4		(602 - 624	.12 4) , 6 IGS
В	, (parallel beamfo (N	rming) ILA _B)	((Multi - Line A	cquisition; ML (MLA _D)	A)	가 .
	MLA , (reverbera	ation effect)		PRF _B 가 F	PRF _D		

2003 - 0017413

$PRF_{B} = 3kHz$	$PRF_{Dmax} = PRF_{D} * IGS = 4kHz$
$N_{\rm B} = 36$	N _D = 8
$MLA_B = 2$	$MLA_{D} = 4$
PS = 3	
프레임 당 획득 시견	$\pm : \qquad T_{frame} = N_D * PS/PRF_{Dmax} + N_B/PRF_B = 18 ms$
프레임 비율 :	$FR = 1/T_{frame} = 55 Hz$
도플러 수신 빔 :	$MLA_{D} * N_{D} = 32$
B 모드 수신 빔 :	$MLA_B * N_B = 72$

, B	,	В			(ca
가		(orientation)	,	가	
,	,		(address)		

.

1	1	,	가		1		. 1 (echo)가	
2	1	가		2		2	가 . '	1 2
	, 1 .B B	2	1		가 B	2 가	В	가

(blood cell) (muscular tissue) . , (104) (backscattered) . (108)가 . 가 RF (beamformer)(110) . RF RF , RF (112)가, RF . (112) IQ (complex demodulator)(. RF IQ) RF/IQ (114) (routed) .

- 7 -

(110)	(100)	(, RF	IQ)	(116)
(118)	가	(selectable ultrasou	nd modalities)	, ,	(110)
(114)		(live or	, off - line operation)	가 가	RF/IQ
(114)					
	(100)	50 () (118)		(imago huffo
r)(122)가		(122) 7	'F		(iiiiage buile
(122)					
7	가 5	(702 - 706) B (70	B 8 - 716)		
		B (sampling interval) , , (718,720,722)7⊧ (720,722,724) ,	7	가 . (702) (704)	가.
		$PRF_{B} = PRF_{D} = 4 \text{ kHz}$	$N_B = N_D = 12$		
		$MLA_B = MLA_D = 4$			
		프레임 당 획득 시간 :	$T_{frame} = N_B / PRF_B = 3 ms$		
		프레임 비율 :	$FR_B = FR_D = 1/T_{frame} = 333 \text{ Hz}$		
		도플러 수신 빔 :	$MLA_{D} * N_{D} = 48$		
		B 모드 수신 빔 :	$MLA_B * N_B = 48$		
T _{frai}	me		, N _D		, N _B

 T_{frame}
 , N_D
 , N_B

 B
 , PRF_D
 , PRF_B
 , ML

 A_B
 B
 , MLA_D
 , FR_B
 B

 , FR_D
 .
 .
 .
 .

2003 - 0017413

		, P	RF _D 333Hz	. ,	PRF	(100) (100) D		MLA MLA ,
		가	В	가,				,
(,	()	,) B	(В	B 가)
	В			가	,		. B	
가 ,					(region of	interest; ROI)	
ing; BMI))(,	(speckle patter	n)	В	가	가	(Blood Motion Imag
	, 가	,	가 B	, I	. ROI ROI	ROI	В	. ROI B
В		(smeared out) B	(temp 가 , . B	oral interp	oolation) (, 3)		(position tracking)
		50 / 가	가	,				
1.		В.		(regular s	equence)	В		(118)
2. 8)	В		(decimat	ion) .				(11 (full time resolution)
3. B					В	. 7	የት	
(118)		•	,	·				
4. 3	가	, 2		/	가			

, M

가

. ,

(,

) (disp (. , lacement), (strain)) 가 (single sample - volume method) 가 В Μ . M $M = FR_D/FR_B \qquad . M$ В , M 가 В (N_B) 가 Μ
$$\begin{split} D &= N_D * PS \quad \ \ \mathcal{P} \quad \mathcal{P} \quad . \\ N &= \quad N_B + D \quad , N \end{split}$$
В В 가 $B_{1n} \ D_{11} \ D_{21} \ D_{31} \ B_{2n} \ D_{12} \ D_{22} \ D_{32} \ B_{3n} \ D_{13} \ D_{23} \ D_{33} \ B_{4n} \ D_{14} \ D_{24} \ D_{34}$, $N_B = 4$, $N_D = 4$, PS = 3, $B_{ij} = j$ i B , $D_{ii} = j$ i Μ В В , N_B = M * N_B В , B Μ Μ В , M 가 M В (Doppler pulse repetition time; PRT _D) (Doppler pulse repetition frequency; PRF $_{D}$) PRF_D = 1/PRT $_{D}$ $\mathsf{PRF}_{\mathsf{D}}$ 가 В 8 13 11 8 $, N_{\rm D} = 4$, PS = 3 $, D = N_{D} * PS = 12$ В , M = 3 В $, N_{B} = 4$ 8 В . 3 2D (802 - 806)(12) 4 (PS = 3) $(N_D = 4),$ 3 $(N_{B} = 4))$. 3 В (810-814)(4 В 3 В (808) (810 - 814) (802 -, B (808) 806) 1/3

가

B (8 , 8 アト) , ,

(log - detection) 8 (108) В , (122) . , IQ (10 (118) 23 (complex autocorrelation coefficient) . IQ (strain rate imaging) (, , , , (118) Μ) / / ,

9 B 가 В 2D . (902 - 908) B (910 - 916)가 , B (910 - 916) 9 (902 - 908). 8 , В (802) (910 - 916)가 B (902 - 908), 9 (810) В . , В 1/3 .

8 9 PRF_D > 0.5 * PRF_{Dmax} , 가 . PRF_D가 , 10 11 , 가가 .

10 В 2D 2 (1002 - 1024) B (1026 - 1032)가 11 . В 4 2D (1102 - 1124) B (1126 - 1132)가 10 5 11 6 , , В 10 11 1/3 . , 11 6 10 5 В .

M = 3	$N_{D} = 8$
$\Delta N_B = 4$	PS = 3
$PRF_{B} = 3 \text{ kHz}$	$PRF_{Dmax} = PRF_{D} * IGS = 4 \text{ kHz}$
$MLA_B = 2$	$MLA_{D} = 4$
도플러 프레임 비율 :	$FR_{D} = 1 / (\Delta N_{B} / PRF_{B} + PS*N_{D} / PRF_{Dmax}) = 100 \text{ Hz}$
B 모드 프레임 비율 :	$FR_{B} = FR_{D} / M = 33 Hz$
도플러 수신 빔 :	$MLA_D * N_D = 32$

B모드 수신 빔 : MLA_B *∆N_B*M ≃ 72

8 M = FR _B/FR_D 가 . 12 B 11 M , 4 2D (1226 - 1242)가 (1202 - 1224) B 4 В . . 12 , N $_{\rm B}$ = 4, N $_{\rm B}$ = 10, M = 5/2. N _B가 12 (100), N_B/M 가 , M , M , 13 . 13 В , 4 , 2D (1302 - 13 . (1326 - 1344) , 24), B (1346)

8 13 2D B . PRF_D , 가(velocity estimate) (aliasing) . , 3 6 FR_D가FR_B

ROI ROI В 15 В 2 B ROI(1504)가 В . 15 В (1 , 502) В (1506) ROI(1508) В (1506) В ROI(1508) . В В (1526 - 1540) В (1502) . В (1510 - 1516) ROI(1504) ROI(1504) , B (1518 - 1524) ROI(1504) 1 ROI(1504) 2 В ROI(1504) , В (1502) В (1510 - 1524)가 가 В (1502), В (1526 - 1540) В ROI(1504) (1502)В 가 가 (1532,1534)가 , В . , (1532)(B₄₁) B (1 В ROI(1504) В 534)(B₅₂)가 .

가 16 가 В 16 2D (1602 - 1624) B (1626 - 1632)가 14 В (1626 - 1632)(1602 - 1624)가 . 가 В ,

가 .

 B
 B PRF_B PRF_D .

 M=10
 M=10 $M_B = 4$ $N_D = 10$
 $PRF_B = 3 \text{ kHz}$ $PRF_{Dmax} = PRF_D * IGS = 4 \text{ kHz}$.

 $MLA_B = 2$ $MLA_D = 4$.

 $E \equiv d = del b l \equiv : FR_D = PRF_D = 1/(\Delta N_B / PRF_B + N_D / PRF_{Dmax}) = 260 \text{ Hz}$.

 $B = C = del b l \equiv : FR_B = FR_D / M = 26 \text{ Hz}$.

 $MLA_{D} * N_{D} = 40$

 $MLA_{B} * \Delta N_{B} * M = 80$

도플러 수신 빔 :

B 모드 수신 빔 :

, B 17 . 17 , B . . 17 (1702 - 1732) B (1726 - 1732)7├ . B B B

М		, M	В	(FR _B)	
(FR _D)	(decimated)			가 ,	
r	M = FR _D /FR _B 가가				
18	В	가			
가	. (*	1802 - 1808) B	(1810 - 1828	3)가	. 18 N
$_{\rm B} = 4, \ {\rm N}_{\rm D} = 4$	M = 5/2	. В	6		PRF _B
가 .	(non - seq	uential firing pattern)		Μ	가 N
_B /N	N _B 가 .	19			
19					
		. (1902 -	1908) , B	(1910 - 1928	5), (
1930)	. (1930)	,	19 M	18	М
= 5/2가	. (1930)	, M	M = 3 .	(1930)	t = 2/
PRF _B					

가	. 2D	. ,		(spect	rum)		가
	(clutter filtering) 가	가 가 , PRF가	가	,	가 가	· ,	
		,					

가	가		,	3			3
						,	,
		,			•		

,

(57)

1.

,

.

(diagnostic ultrasound image)			3	
1 (a first mode of operation) (a first set of ultrasound pulses)(802)	1	,	(a first frame rate)	1

1 (echo)	,
----------	---

2		(810)	2	-,	2	1	-	2
	2		(810)		,			
	1	(single ima	(802) ge represer	2 itative)	(8	10)		
1	2.	,						
	1		(802)	2	(810)			
1	3.	,						
	1	(B - mode ima	(802)가 ge)	,	(Doppler image)) , 2	(810)7 B	ŀВ
1	4.	,	·					
		3	1		В	(802) 1	, 2	
1	5.	1						
	1	(810)	(802) B B			(high resolution portion,	n) ,	

6.

.

,

,

	2 (802)	(810)	(entire image)	(partial image) ,	, ,	1
	7.	·				
1	, 1	(802)		, 2	(810)	
1	8.					
I	, ,		(common direction)	(ι	ininterrupted)	
			-	,		-
	9.	·				
1	, 1	(802)가	2	(810) (interleaved)	
1	10.	·				
-	1	(802)				

1

,

(1002) 1 1 (1004) 2 2 2 (1006) 1

- 16 -

,

-

15.

,

•

11

	1		1 (902)	,
	2	(subset) (904)	, 2	2
	16.			
11 ,	, 2	가	(910)	
11	17. ,			
	(802 18.	2) N , M N	(810)	Μ
11	, ()			
	(scan interval)		,	(unique),

(scan interval)	,	(unique
(non - overlapping)	,	
가	-	(suspending)

19.

,

(816)

,

,

20. 11 ,

(equal duration)

. 21.

11 , (810) ,

. 22.

11 ,

. 23. 11 ,

1

24. 11 , (1102)

(predefined pulse repetition time) (pausing)

가

,

2003 - 0017413

- 22 -

6

(종래기술)

11 1126 1130 1128 1132 1118 1122 (1120*)* 1124 1102 1106 (1104) 1108 1110 1114 (1112) 1116 $\mathcal{P}_{11} \mathcal{P}_{21} \mathcal{P}_{31} \mathcal{P}_{41} \mathcal{P}_{12} \mathcal{P}_{22} \mathcal{P}_{32} \mathcal{P}_{42} \mathcal{P}_{13} \mathcal{P}_{23} \mathcal{P}_{33} \mathcal{P}_{43} \mathcal{P}_{11} \mathcal{P}_{21} \mathcal{P}_{31} \mathcal{P}_{41} \mathcal{P}_{11} \mathcal{P}_{21} \mathcal{P}_{31} \mathcal{P}_{41} \mathcal{P}$ D11 D21 D31 D41 D12 D22 D32 D42 D13 D23 D33 D43 B12 B22 B32 B42 D11 D21 D31 D41 D12 D22 D32 D42 D13 D23 D33 D43 B13 B23 B33 B43

¹⁶²⁶ 1628 ¹⁶³⁰ 1632 1624 Ŋ D11 ^{- В}41 D12 D₂₂ D₃₂ D₅₂ D₅₂ D₅₂ $D_{62}D_{72}D_{82}D_{102}$ [⊾] B₄₂ $\begin{array}{c} 3\\ 3\\ D_{23}\\ D_{33}\\ D_{43}\\ D_{43}\\ D_{43}\\ D_{63}\\ D_{63}\\ D_{73}\\ D_{83}\\ D_{103}\\ D_{103}\\ D_{123}\\ D_{123}\\ B_{13}\\ B_{23}\\ B_{33}\\ B_{43}\\ M/// \\ M \end{array}$ D13 $D_{24}^{4'} D_{34}^{7'} D_{54}^{7'} D_{64}^{7'} D_{74}^{7'} D_{94}^{7'} (D_{114}^{7'}) D_{124}^{8'} D_{114}^{7'} D_{124}^{8'} D_{104}^{1'} D_{124}^{1'} D_{124}$ D14 - B₄₁

D₁₃ D₁₂ ₽1 1702 D₂₃ . D₂₂ D₃₂ D21 D31 B11 1704 D33 1706 1726 1708 B13 D43 D53 D63 D41 D51 1710 .. ວິວ ຄິວ 1 D61 1712 ₿<u>21</u> [₿]22 B23 1714 1728 | 1716 D71 D81 D91 D73 D72 D₆₂ D₈₃ ⊏ 1718 D93 D92 B31 1730 B32□ B₃₃ D₁₀₃ D₁₁₃ D₁₂₃ 1720 D101 D111 D121 D41 1722 1724 /1732 B43

patsnap

专利名称(译)	诊断超声图像采集方法和感兴趣的超声图像采集方法					
公开(公告)号	KR1020030017413A	公开(公告)日	2003-03-03			
申请号	KR1020020049964	申请日	2002-08-23			
申请(专利权)人(译)	지이메디컬시스템즈글로발테크놀리	거지캄파니엘엘씨				
当前申请(专利权)人(译)	지이메디컬시스템즈글로발테크놀리	거지캄파니엘엘씨				
[标]发明人	BJAERUM STEINAR KIRKHORN JOHAN TORP HANSGARMANN VIGGEN KJETIL OLSTAD BJORN 올스타드브존 KRISTOFFERSEN KJELL STEEN ERIKN SAETRE DAGFINN					
发明人	브재럼스테이너 키르크혼요한 토프한스가만 빅젠크제틸 올스타드브존 크리스토퍼슨크젤 스텐에릭엔 새트레다그핀					
IPC分类号	A61B8/08 A61B8/00 G01S7/52 G0	1S15/89 A61B8/14 A61B8/06				
CPC分类号	G01S7/52063 G01S7/52034 G01S	7/52074 G01S15/8979 G01S7/52	2085			
代理人(译)	KIM, CHANG SE 张居正,KU SEONG					
优先权	09/682358 2001-08-24 US					
外部链接	<u>Espacenet</u>					

摘要(译)

为了获得两个超声图像,同时提供给该方法。使用第一操作模式将第一 超声波脉冲组(802)发送到第一帧速率。接收来自第一超声波脉冲组 (802)的回波。使用第二操作模式将第二超声波脉冲组(810)发送到 第二帧速率。第一和第二帧速率是不同的。而第一超声波脉冲组(802) 定义整个图像,而第二超声波脉冲组(810)定义部分图像。接收来自第 二超声波脉冲组(810)的回波。第一和第二超声波脉冲组(802,810) 显示在一个图像中。

