

US 20080139932A1

(19) **United States**

(12) **Patent Application Publication**

LEE et al.

(10) **Pub. No.: US 2008/0139932 A1**

(43) **Pub. Date: Jun. 12, 2008**

(54) **ULTRASOUND SYSTEM**

(75) Inventors: **Doo Sik LEE, Seoul (KR); Mi Jeoung Ahn, Seoul (KR)**

Correspondence Address:

OBLON, SPIVAK, MCCLELLAND MAIER & NEUSTADT, P.C.
1940 DUKE STREET
ALEXANDRIA, VA 22314

(73) Assignee: **Medison Co., Ltd.**, Hongchun-gun (KR)

(21) Appl. No.: **11/857,860**

(22) Filed: **Sep. 19, 2007**

(30) **Foreign Application Priority Data**

Dec. 7, 2006 (KR) 10-2006-0123752

Publication Classification

(51) **Int. Cl.**
A61B 8/00 (2006.01)

(52) **U.S. Cl. 600/437**

(57) **ABSTRACT**

The present invention provides an ultrasound system, which comprises: a signal acquiring unit to transmit an ultrasound signal to an object and acquire an echo signal reflected from the object; a signal processing unit to control TGC (Time Gain Compensation) and LGC (Lateral Gain Compensation) of the echo signal; a TGC/LGC setup unit adapted to set TGC and LGC values based on TGC and LGC curves inputted by a user; and an image producing unit adapted to produce an ultrasound image of the object based on the echo signal. The signal processing unit is further adapted to control the TGC and the LGC of the echo signal based on the TGC and LGC values set by the TGC/LGC setup unit.

100

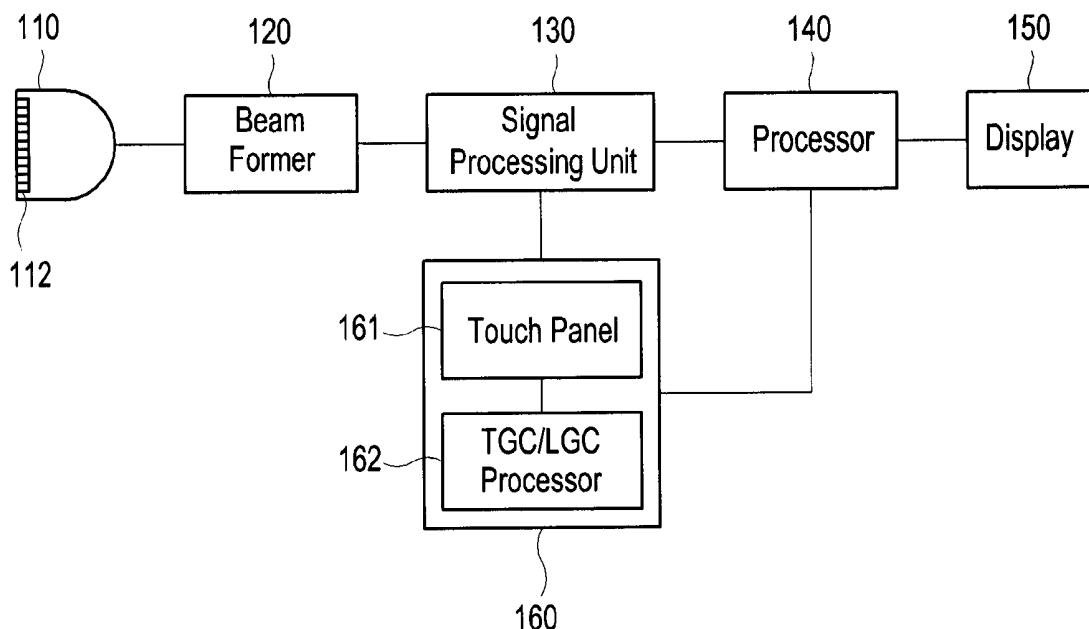


FIG. 1

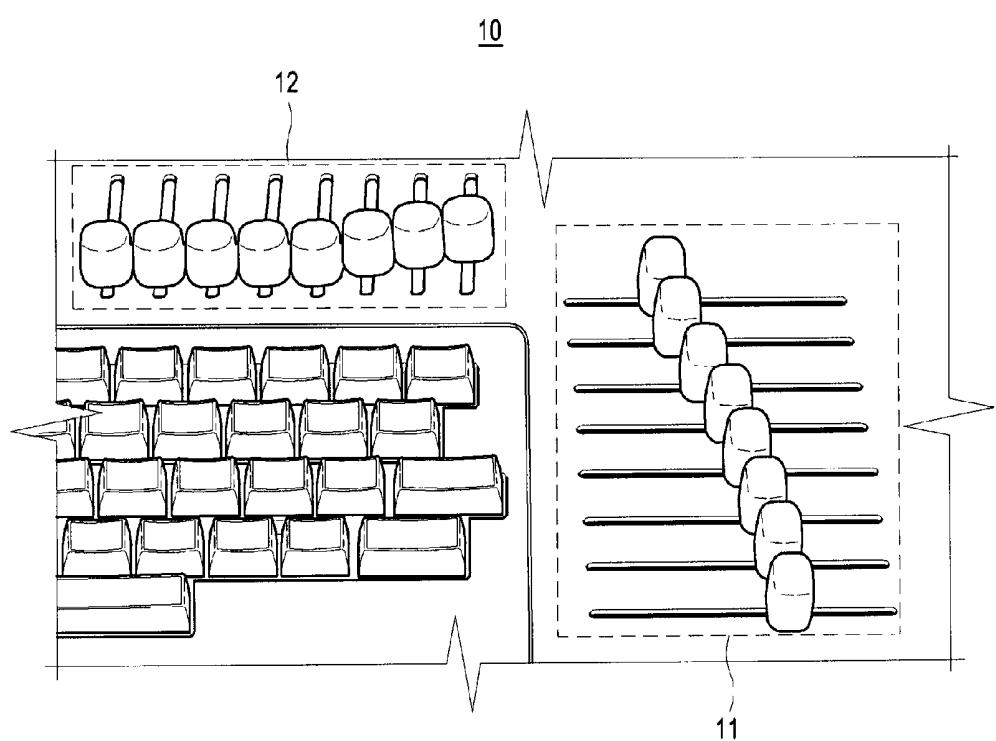


FIG. 2

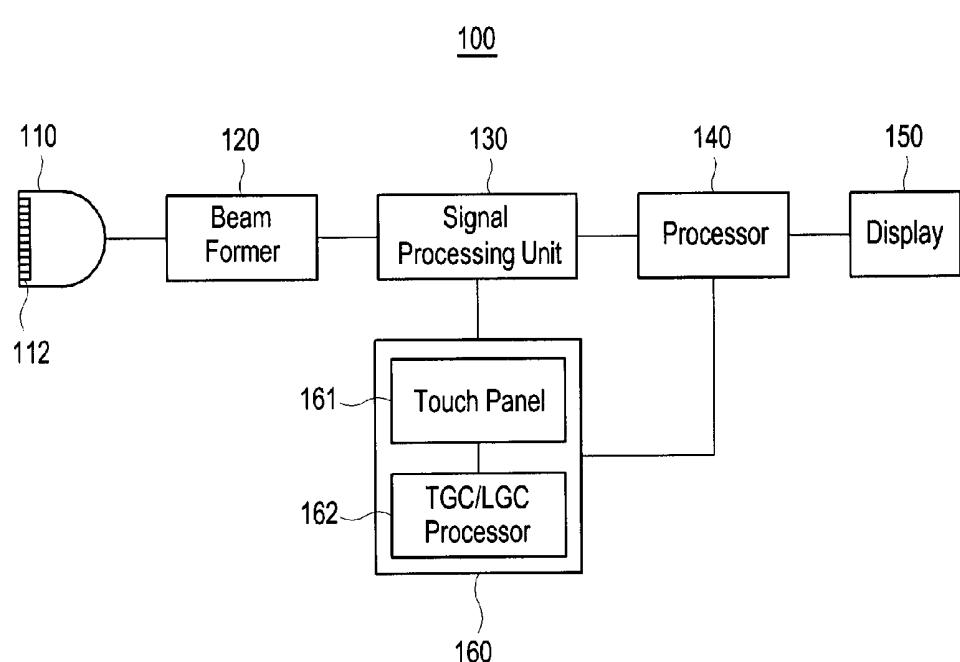


FIG. 3

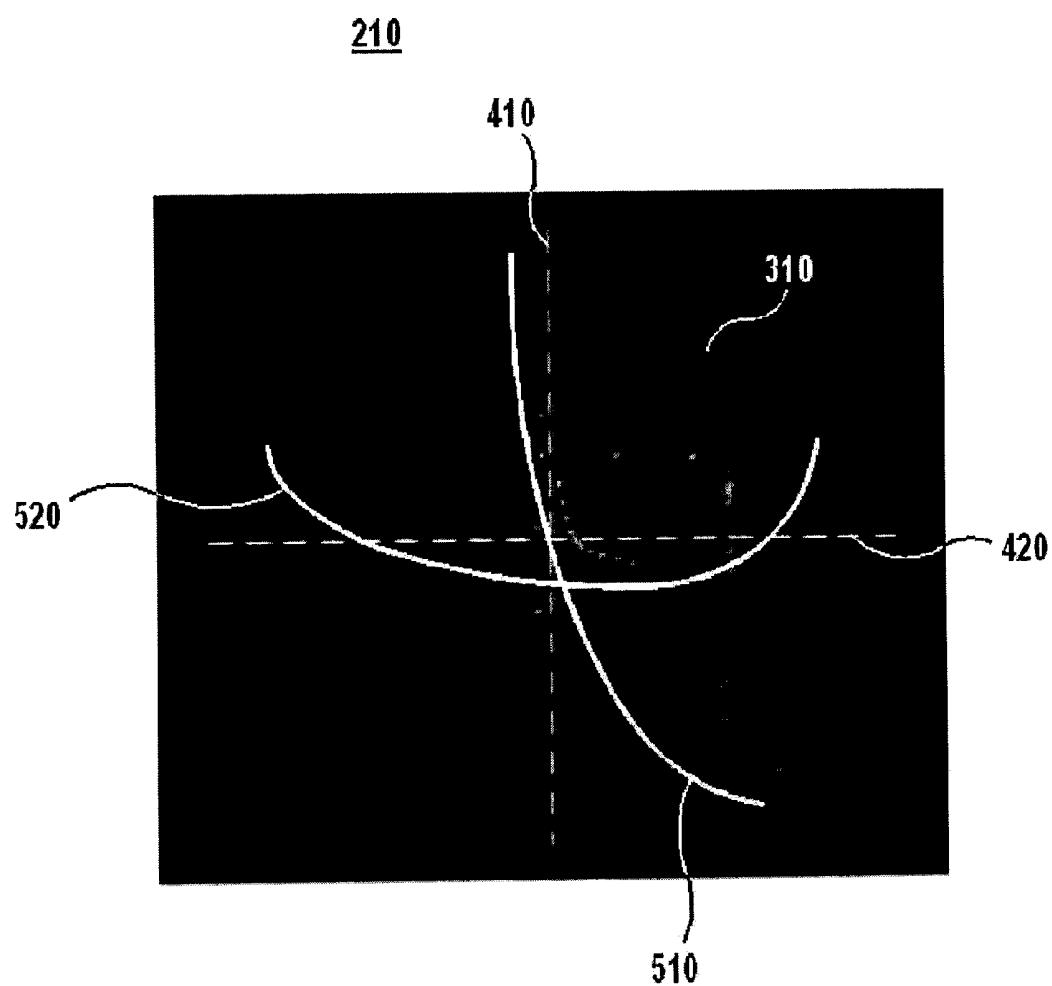


FIG. 4

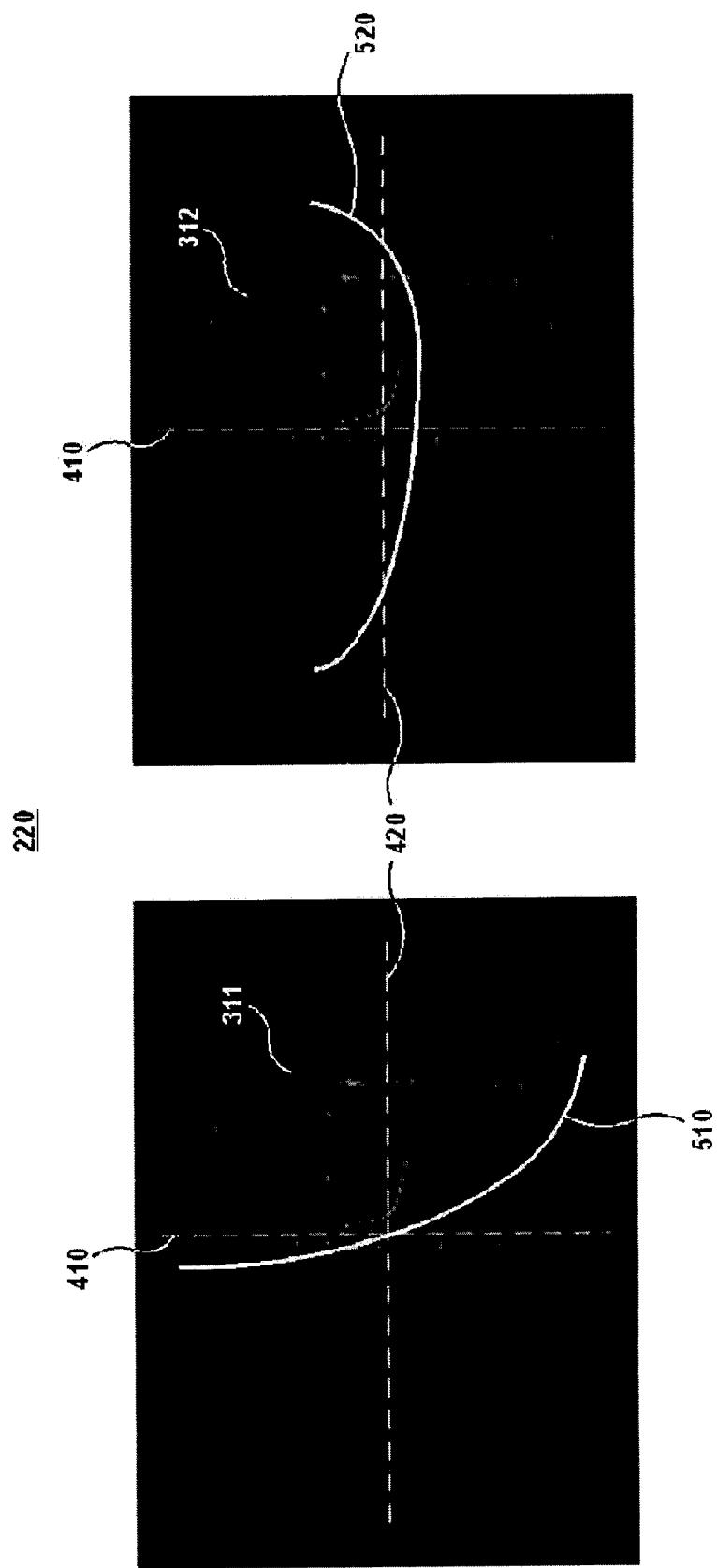


FIG. 5

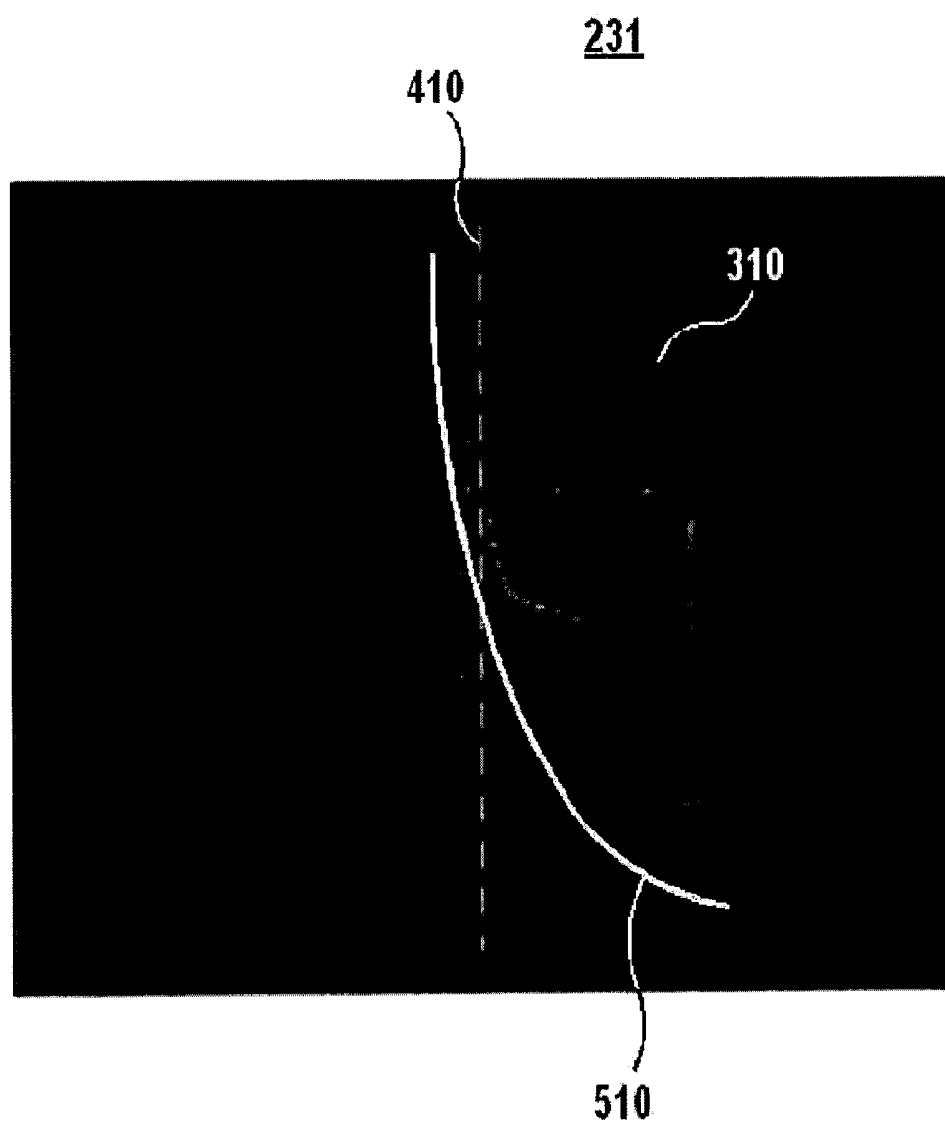


FIG. 6

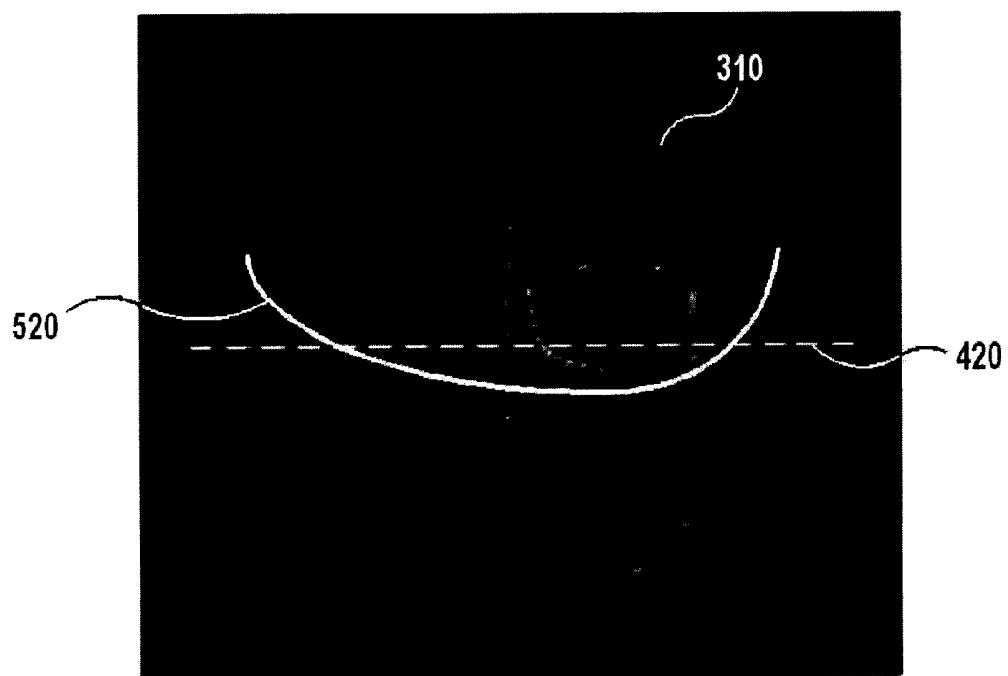

232

FIG. 7

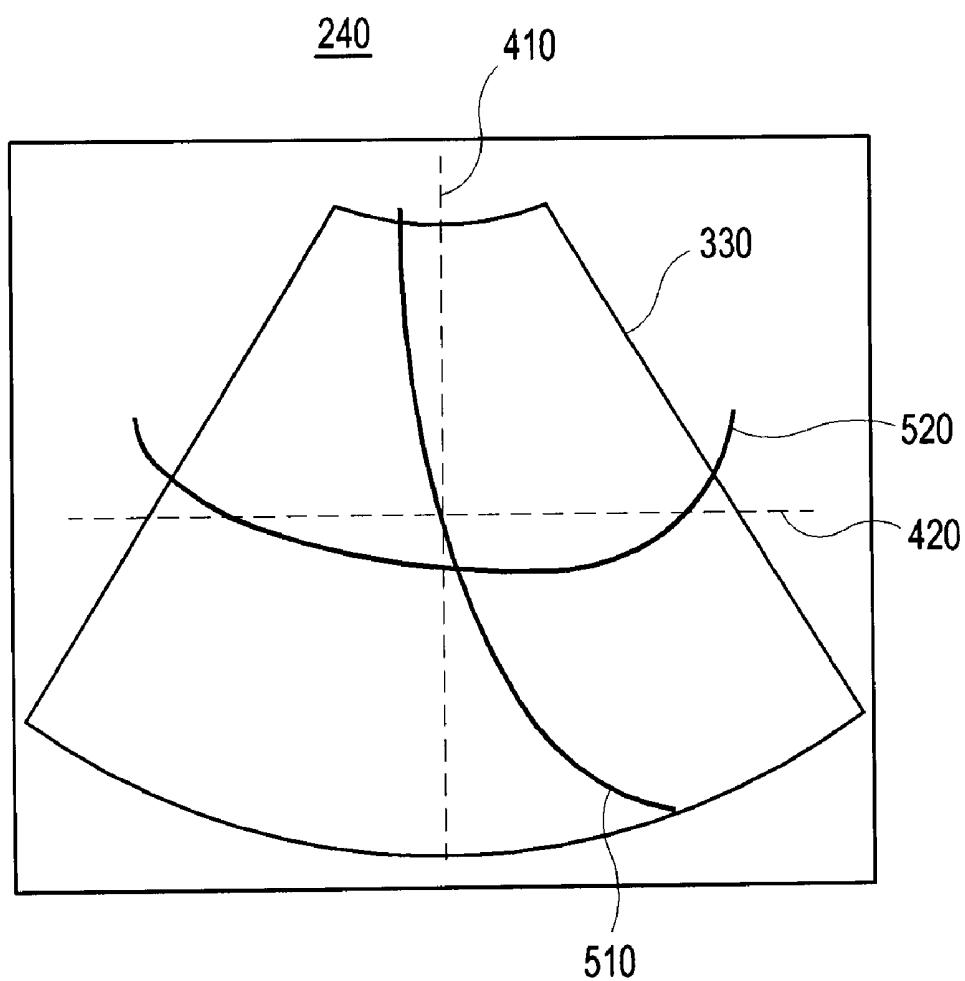
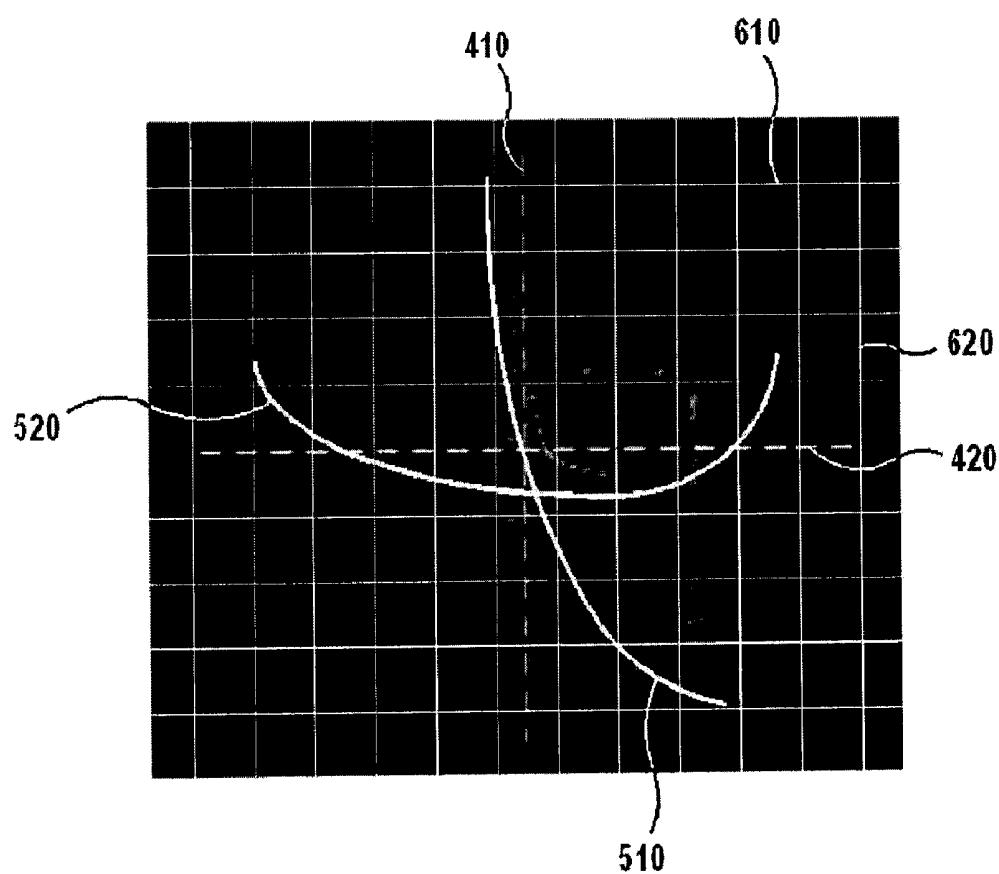



FIG. 8

ULTRASOUND SYSTEM

[0001] The present application claims priority from Korean Patent Application No. 10-2006-0123752 filed on Dec. 7, 2006, the entire subject matter of which is incorporated herein by reference.

BACKGROUND

[0002] 1. Field

[0003] The present invention generally relates to an ultrasound system, and more particularly to an ultrasound system adapted to precisely and easily perform TGC (Time Gain Compensation) and LGC (Lateral Gain Compensation).

[0004] 2. Background

[0005] An ultrasound system has become an important and popular diagnostic tool since it has a wide range of applications. Specifically, due to its non-invasive and non-destructive nature, the ultrasound system has been extensively used in the medical profession. Modern high-performance ultrasound systems and techniques are commonly used to produce two or three-dimensional diagnostic images of internal features of an object.

[0006] In order to transmit and receive ultrasound signals, the ultrasound system is generally provided with a probe including a wideband transducer. When the transducer is electrically stimulated, it produces ultrasound signals and transmits them into a human body. The ultrasound signals transmitted into the human body are reflected from borders between human tissues and then returned to the transducer. The returned ultrasound echo signals are converted into electric signals. Thereafter, ultrasound image data for imaging the tissues is produced by amplifying and signal-processing the echo signals.

[0007] Typically, the ultrasound system is provided with a control panel including a plurality of input units in order to perform a control function of acquiring the ultrasound image, a menu control function, a measurement and annotation function, etc. The control panel is comprised of a touch panel, an image control unit, a measurement control unit, etc. The touch panel displays menus for optimizing an ultrasound image displayed on a display unit. The menus on the touch panel can be touched and selected by a user. The image control unit controls the ultrasound image, whereas the measurement control unit measures a distance to the object, a circumference of the object, etc. As illustrated in FIG. 1, the image control unit includes a plurality of TGC control keys 11 and a plurality of LGC control keys 12. The TGC control keys 11 are used to control a gain of each echo signal based on depth of the position from which the echo signal is reflected. Further, since the echo signal is attenuated at the outer right and left sides, the LGC control keys 12 are used to control a gain of the attenuated echo signal.

[0008] In the conventional system, the TGC control keys 11 and the LGC control keys 12 are arranged on different areas of the control panel. The problem associated with such an arrangement is that the size of the control panel must be inevitably increased. Further, a user of the system suffers a great inconvenience when operating the TGC control keys 11 and the LGC control keys 12. Another problem of the conventional system is that since the TGC control keys 11 and the LGC control keys 12 are comprised of slide-type variable

resistors, it is very difficult for an unskilled user to finely control TGC and LGC with the TGC control keys 11 and the LGC control keys 12.

[0009] In order to resolve the above problems, the present invention is directed to providing an ultrasound system adapted to display a setup screen used to input TGC and LGC curves on a touch panel and perform TGC and LGC based on the inputted TGC and LGC curves.

[0010] The present invention provides an ultrasound system, which comprises: a signal acquiring unit adapted to transmit an ultrasound signal to an object and acquire an echo signal reflected from the object; a signal processing unit adapted to perform TGC (Time Gain Compensation) and LGC (Lateral Gain Compensation) upon the echo signal at a coarse compensation mode based on predetermined TGC and LGC values; an image producing unit adapted to produce an ultrasound image of the object based on the TGC and LGC compensated echo signal; an input unit adapted to allow a user to provide TGC and LGC curves; and a TGC/LGC setup processor adapted to set TGC and LGC values based on the TGC and LGC curves provided by the user. The signal processing unit is further adapted to perform the TGC and LGC upon the echo signal at a fine compensation mode based on the TGC and LGC values set by the TGC/LGC setup processor.

[0011] In addition, the present invention provides an ultrasound system, which comprises: a processor adapted to configure a setup screen for display; and a touch panel adapted to display the setup screen so as to allow a user to input TGC and LGC curves. The processor is further adapted to calculate the TGC and LGC values based on the inputted TGC and the LGC curves.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] Arrangements and embodiments may be described in detail with reference to the following drawings in which like reference numerals refer to like elements and wherein:

[0013] FIG. 1 is a schematic diagram illustrating conventional TGC and LGC control keys;

[0014] FIG. 2 is a block diagram showing a structure of an ultrasound system according to one embodiment of the present invention;

[0015] FIGS. 3 to 7 illustrate a setup screen according to one embodiment of the present; and

[0016] FIG. 8 illustrates an exemplary distinction between TGC and LGC curves according to one embodiment of the present invention.

DETAILED DESCRIPTION OF THE PRESENT INVENTION

[0017] A detailed description may be provided with reference to the accompanying drawings. One of ordinary skill in the art may realize that the following description is illustrative only and is not in any way limiting. Other embodiments of the present invention may readily suggest themselves to such skilled persons having the benefit of this disclosure.

[0018] Certain embodiments of the present invention will be explained below with reference to FIGS. 2 to 8.

[0019] As illustrated in FIG. 2, an ultrasound system 100 comprises: a probe 110; a beam former 120; a signal processing unit 130; a processor 140; a display unit 150; and a TGC/LGC setup unit 160. The probe 110 includes a plurality of transducers 112. Each of the transducers 112 may be con-

figured to transmit an ultrasound signal to an object and receive the ultrasound signal reflected from the object. The beam former 120 may be configured to focus the transmitted ultrasound signals from the transducers 112 on the object and collect the reflected ultrasound signals from the object to the transducers 112 together with corresponding time delay.

[0020] The signal processing unit 130 may be configured to amplify the signals collected by the beam former 120 and control gains of the amplified echo signals. Specifically, the signal processing unit 130 may be configured to perform TGC (Time Gain Compensation) and LGC (Lateral Gain Compensation) upon the echo signals based on predetermined TGC and LGC values at a coarse compensation mode (e.g., in an initial operation stage). The signal processing unit 130 may be further configured to perform TGC and LGC upon the echo signals based on TGC and LGC values calculated in a TGC/LGC setup unit 160 using a curve inputted by a user at a fine compensation mode (e.g., during operations).

[0021] The processor 140 may be configured to receive the echo signals from the signal processing unit 130 and produce an ultrasound image signal based on the echo signals. The display unit 150 may be adapted to receive the ultrasound image signal from the processor and display an ultrasound image based on the signal.

[0022] The TGC/LGC setup unit 160 may include a touch panel 161 and a TGC/LGC setup processor 162.

[0023] The touch panel 161 may be configured to display a setup screen and detect TGC/LGC curves inputted by the user on the touch panel 161 to produce a detecting signal. The touch panel 161 detects the user's input according to either the pressure sensing method or the electromagnetic induction method. The touch panel 161 may be a touch panel included in a control panel (not shown) of the ultrasound system 100. Alternatively, it may be separate and apart from the ultrasound system 100.

[0024] In one embodiment of the present invention, the touch panel 161 may be configured to display a setup screen 210 (shown in FIG. 3) including an ultrasound image 310 and first and second reference lines 410, 420. The ultrasound image 310 is based on the echo signal, the TGC and LGC of which are controlled based on the predetermined TGC and LGC values. The first and second reference lines 410, 420 may be used to detect a TGC curve 510 and a LGC curve 520 inputted by the user (i.e., to determine whether a curve inputted by the user is a TGC curve 510 or a LGC curve 520). After inputting a curve, the user can modify a portion of the curve.

[0025] In another embodiment of the present invention, the touch panel 161 may be configured to display a setup screen 220 (shown in FIG. 4) including first and second ultrasound images 311, 312 and first and second reference lines 410, 420. The first and second ultrasound images 311, 312 are based on the echo signal, the TGC and LGC of which are controlled based on the predetermined TGC and LGC values. The first and second reference lines 410, 420 may be used to detect whether a curve inputted by the user is a TGC curve 510 or a LGC curve 520. The first ultrasound image 311 may be identical to the second initial ultrasound image 312.

[0026] In yet another embodiment of the present invention, the touch panel 161 may be configured to display a first setup screen 231 (shown in FIG. 5) including an ultrasound image 310 and a first reference line 410. The ultrasound image 310 is based on the echo signal, the TGC and LGC of which are controlled based on the predetermined TGC and LGC values. The first reference line 410 may be used to detect a TGC curve

510 inputted by the user. The touch panel may then display a second setup screen 232 (shown in FIG. 6) including the ultrasound image 310 and a second reference line 420. The second reference lines 420 may be used to detect a LGC curve 520 inputted by the user. Alternatively, the touch panel 161 may be configured to display the second setup screen 232 before the first setup screen 231.

[0027] In still yet another embodiment of the present invention, the touch panel 161 may be configured to display a setup screen 240 (shown in FIG. 7) including a virtual ultrasound image 330 and first and second reference lines 410, 420.

[0028] The TGC/LGC setup processor 162 may be configured to detect TGC and LGC curves 510, 520 inputted by the user on the touch panel 161. The TGC/LGC setup processor 162 may then calculate new TGC and LGC values in consideration of the detected TGC and LGC curves and transmit the values to the signal processing unit 130.

[0029] In one embodiment of the present invention, as illustrated in FIG. 8, the TGC/LGC setup processor 162 may be configured to establish a first group of lines 610 and a second group of lines 620. The first group of lines 610 is perpendicular to a first reference line 410 and the lines in said group are equally spaced apart from each other. The second group of lines 620 is perpendicular to a second reference line 420 and the lines in this group are equally spaced apart from each other. If it is determined that a curve inputted by the user (such as the curve 510) intersects the first group of lines more often than the second group of lines, then the TGC/LGC setup processor 162 recognizes that the curve is a TGC curve. Alternatively, if it is determined that a curve inputted by the user (such as the curve 520) intersects the second group of lines more often than the first group of lines, then the TGC/LGC setup processor 162 recognizes that the curve is a LGC curve. The TGC/LGC setup processor 162 then calculates the new TGC value corresponding to the TGC curve 510 based on the first reference line 410. It also calculates the LGC value corresponding to the LGC curve 520 based on the second reference line 420. The TGC value and the LGC value are transmitted to the signal processing unit 130.

[0030] The present invention allows the user to accurately control the TGC and LGC by using the TGC and LGC curves inputted into the touch panel, thereby improving operational accuracy and time. Further, the present invention reduces the size of the control panel to thereby improve the spatial efficiency.

[0031] Although the present invention has been described with reference to a number of preferred embodiments thereof, it should be understood that numerous other modifications and embodiments can be devised by those skilled in the art that will fall within the spirit and scope of the principles of this disclosure. More particularly, numerous variations and modifications are possible in the component parts and/or arrangements of the subject combination arrangement within the scope of the disclosure, the drawings and the appended claims. In addition to variations and modifications in the component parts and/or arrangements, alternative uses will also be apparent to those skilled in the art.

What is claimed is:

1. An ultrasound system, comprising:
a signal acquiring unit for transmitting an ultrasound signal to an object and acquiring an echo signal reflected from the object;
a signal processing unit for performing TGC (Time Gain Compensation) and LGC (Lateral Gain Compensation)

upon the echo signal at a coarse compensation mode based on predetermined TGC and LGC values; an image producing unit for producing an ultrasound image of the object based on the TGC and LGC compensated echo signal;

an input unit for allowing a user to provide TGC and LGC curves; and

a TGC/LGC setup processor for setting TGC and LGC values based on the TGC and LGC curves provided by the user,

wherein the signal processing unit further performs the TGC and LGC upon the echo signal at a fine compensation mode based on the TGC and LGC values set by the TGC/LGC setup processor.

2. The ultrasound system of claim 1, wherein the input unit comprises a touch panel to display a setup screen including the produced ultrasound image and receive the TGC and LGC curves provided by the user on the ultrasound image.

3. The ultrasound system of claim 2, wherein the touch panel receives the TGC and LGC curves according to at least one of a pressure sensing method and an electromagnetic induction method.

4. The ultrasound system of claim 2, wherein the setup screen further includes first and second reference lines on the ultrasound image, and wherein the first and second reference lines are used to detect the TGC and LGC curves.

5. The ultrasound system of claim 1, wherein the input unit comprises a touch panel to display a setup screen including first and second ultrasound images based on the produced ultrasound image and first and second reference lines on the first and second ultrasound images, respectively, wherein the first reference line is used to detect the TGC curve provided on the first ultrasound image and the second reference line is used to detect the LGC curve shown on the second ultrasound image, and wherein the TGC/LGC setup unit includes a processor to calculate the TGC and LGC values based on the TGC and LGC curves.

6. The ultrasound system of claim 1, wherein the input unit comprises a touch panel to display a setup screen including a virtual ultrasound image and first and second reference lines on the virtual ultrasound image, wherein the first and second reference lines are used to detect the TGC and LGC curves, and wherein the TGC/LGC setup unit includes a processor to calculate the TGC and LGC values based on the TGC and LGC curves.

7. The ultrasound system of claim 4, wherein the processor establishes first and second group of lines, wherein the first group of lines is perpendicular to the first reference line and is equally spaced from each other, wherein the second group of

lines is perpendicular to the second reference line and is equally spaced from each other, and wherein the processor determines whether a curve provided by a user on the touch panel is the TGC curve or the LGC curve using the first and second group of lines.

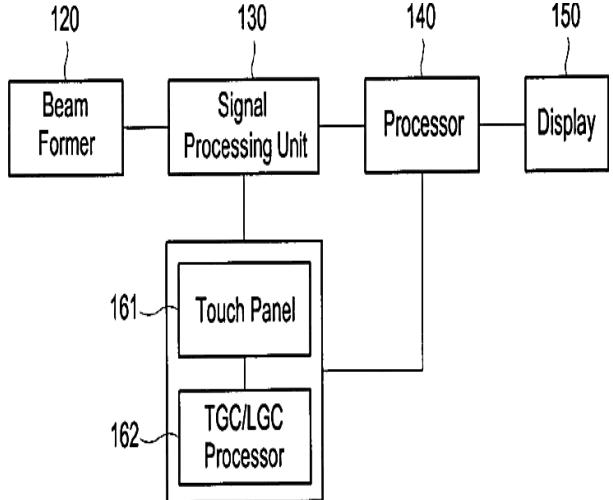
8. The ultrasound system of claim 5, wherein the processor establishes first and second group of lines, wherein the first group of lines is perpendicular to the first reference line and is equally spaced from each other, wherein the second group of lines is perpendicular to the second reference line and is equally spaced from each other, and wherein the processor determines whether a curve provided by a user on the touch panel is the TGC curve or the LGC curve using the first and second group of lines.

9. The ultrasound system of claim 6, wherein the processor establishes first and second group of lines, wherein the first group of lines is perpendicular to the first reference line and is equally spaced from each other, wherein the second group of lines is perpendicular to the second reference line and is equally spaced from each other, and wherein the processor determines whether a curve provided by a user on the touch panel is the TGC curve or the LGC curve using the first and second group of lines.

10. The ultrasound system of claim 7, wherein the processor determines whether the curve provided by the user is the TGC curve or the LGC curve based on a comparison of the number of times of intersections between the curve and the first group of lines and the number of times of intersection between the curve and the second group of lines.

11. The ultrasound system of claim 8, wherein the processor determines whether the curve provided by the user is the TGC curve or the LGC curve based on a comparison of the number of times of intersections between the curve and the first group of lines and the number of times of intersection between the curve and the second group of lines.

12. The ultrasound system of claim 9, wherein the processor determines whether the curve provided by the user is the TGC curve or the LGC curve based on a comparison of the number of times of intersections between the curve and the first group of lines and the number of times of intersection between the curve and the second group of lines.


13. An ultrasound system, comprising:
a processor for providing a setup screen for display; and
a touch panel for displaying the setup screen to allow a user to input TGC and LGC curves;
wherein the processor is configured to calculate TGC and LGC values based on the inputted TGC and LGC curves.

* * * * *

专利名称(译)	超声系统		
公开(公告)号	US20080139932A1	公开(公告)日	2008-06-12
申请号	US11/857860	申请日	2007-09-19
申请(专利权)人(译)	MEDISON CO. , LTD.		
当前申请(专利权)人(译)	三星MEDISON CO. , LTD.		
[标]发明人	LEE DOO SIK AHN MI JEOUNG		
发明人	LEE, DOO SIK AHN, MI JEOUNG		
IPC分类号	A61B8/00		
CPC分类号	A61B8/00 A61B8/463 A61B8/467 G01S7/52033 G01S7/52084 A61B8/5207 A61B8/4254 A61B8/4444 A61B8/5269 A61B8/54 A61B8/461 A61B8/14 A61B6/467 A61B8/46 A61B8/462 A61B8/465 G06F3/01 G06F3/048 G06F3/0484 G06F3/04845 G06F3/04847 G06T7/0012		
优先权	1020060123752 2006-12-07 KR		
其他公开文献	US8016759		
外部链接	Espacenet USPTO		

摘要(译)

本发明提供一种超声系统，包括：信号获取单元，用于将超声信号发送到物体并获取从物体反射的回波信号；信号处理单元，用于控制回波信号的TGC (时间增益补偿) 和LGC (横向增益补偿)；TGC / LGC设置单元，适于根据用户输入的TGC和LGC曲线设置TGC和LGC值；图像产生单元，适于基于回波信号产生对象的超声图像。信号处理单元还适于基于由TGC / LGC设置单元设置的TGC和LGC值来控制回声信号的TGC和LGC。

