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(57) ABSTRACT

This invention relates to a method of analyzing an ultra-
sound signal. The method comprises obtaining a time series
of sequential data frames associated with an ultrasound
signal reflected from and/or backscattered from a fixed
location of a material under investigation, each data frame
comprising a plurality of samples of the ultrasound signal,
and subjecting to an analysis a sequence of one or more
samples of the ultrasound signal, or a sequence of at least
one parameter derived from one or more samples of the
ultrasound signal, wherein a result of the analysis is related
to one or properties or characteristics of the material. In one
embodiment the method may be used for detecting, diag-
nosing, and/or assessing cancer and/or abnormalities in
biological tissue.
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Figure 2(c)
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Figure 3(a)
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METHOD FOR IMPROVED ULTRASONIC
DETECTION

RELATED APPLICATIONS

[0001] This application claims the benefit of the filing date
of U.S. Provisional Patent Application No. 60/808,557, filed
on May 26, 2006, the entire contents of which are incorpo-
rated herein by reference.

FIELD OF THE INVENTION

[0002] This invention relates generally to the field of
ultrasound imaging. In particular, the invention relates to
methods of analyzing radio frequency (RF) ultrasound sig-
nals for improved ultrasound imaging.

BACKGROUND OF THE INVENTION

[0003] Conventional inspection and examination of mate-
rials using ultrasound typically employs processing of the
raw radio frequency (RF) ultrasound signal at discrete
“snapshots” in time, for example, to create B-scan images.
Such images are widely used in fields such as medicine;
however, evidence suggests that they may be of limited
utility in certain applications, particularly where fine reso-
lution of tissue structure is required for accurate classifica-
tion, such as in detecting structural differences among bio-
logical tissues, as may be required in diagnosing various
cancers.

[0004] Several researchers have studied ultrasound-based
solutions for computer-aided diagnosis of cancer. The first-
order statistical moments (such as mean, standard deviation,
skewness and kurtosis) of the intensities of pixels in each
region of interest (ROI) of the tissue form a basic set of
features for tissue classification [5, 6]. Tissue characteriza-
tion based on the acoustic parameters extracted from the raw
RF ultrasound echo signals (before being transformed to
B-scan images) has been studied since the early 1970’s (see
[7] for a review). Frequency-dependent nature of ultrasound
scattering and attenuation phenomena can characterize dif-
ferent tissue types and is studied through frequency spec-
trum of RF signals. Along with texture and co-occurrence
based features extracted from B-scan images, RF spectrum
parameters have been used to form hybrid feature vectors to
be used for detection of cancer [20]. Such features are
utilized as the input to neural networks and neuro-fuzzy
inference systems [5], self organizing Kohonen maps [8] and
quadratic Bayes classifiers [9] for characterization of tissue.
Nevertheless, despite the long history of studies in this field,
an accurate analytical model of ultrasound-tissue interac-
tions is still outstanding [9, 10] and the results of RF-based
tissue classification methods are not promising enough for
clinical applications.

SUMMARY OF THE INVENTION

[0005] One aspect of the invention relates to a method for
analyzing an ultrasound signal reflected from and/or back-
scattered from a material, comprising:
[0006] obtaining a time series of sequential data frames
associated with the ultrasound signal from a fixed location of
the material, each data frame comprising a plurality of
samples of the ultrasound signal, and
[0007] subjecting to an analysis:

[0008] (i) a sequence of one or more samples of the

ultrasound signal, or
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[0009] (ii) a sequence of at least one parameter derived
from one or more samples of the ultrasound signal;

[0010] wherein a result of the analysis is indicative of one
or more physical properties of the material.
[0011] The data may be derived from a radio frequency
(RF) ultrasound signal. In another embodiment, the data is
derived from a processed ultrasound signal. The data may be
derived from a processed ultrasound signal selected from an
A-mode, B-mode, M-mode, Doppler, or 3-D ultrasound

signal.
[0012] The analysis may be at least one selected from:
[0013] (i) an analysis with respect to time, frequency,

amplitude, or a combination thereof,

[0014] (ii) a statistical analysis,

[0015] (iii) a stochastic analysis,

[0016] (iv) a fractal analysis;

[0017] (v) a wavelet analysis;

[0018] (vi) a spectral analysis;

[0019] (vii) array processing; and

[0020] (viii) a combination of two or more of the above.
[0021] Inone embodiment, the analysis is fractal analysis.

[0022] The result of the analysis may be indicative of the
physical property of the material being normal or abnormal.
In another embodiment, the result of the analysis is a
probability map or a probability score. The result of the
analysis may be indicative of severity of the abnormality in
the material. The result of the analysis may describe the
presence of the abnormality in the material.

[0023] The material may be biological tissue. In one
embodiment, the biological tissue is human biological tis-
sue. In another embodiment, the material is biological tissue
and the abnormality in the biological tissue is cancer. The
cancer may be associated with at least one of female genital
tract (ovary, fallopian tube, uterus, cervix and vagina), male
genital tract (prostate and testis), urinary tract (kidney, ureter
and prostate gland), mediastinum and heart, gastrointestinal
tract (small and large intestines, liver, pancreas, gallbladder
and biliary system), breast, skin, nervous system, endocrine
organs (thyroid gland, adrenal gland), head and neck region,
lymph nodes, soft tissue, respiratory system (including
lung), and combinations thereof. In another embodiment, the
cancer is prostate cancer.

[0024] In another embodiment, the material is biological
tissue and the abnormality in the biological tissue is selected
from benign tumour, infection, abscess, necrosis, infarct,
and combinations thereof.

[0025] The analysis may comprise subjecting the RF time
series data to a discrete Fourier transform. The at least one
parameter may be selected from:

[0026] (i) average of magnitudes of coeflicients of the
discrete Fourier transform of the RF time series ina low
frequency portion of the transformation;

[0027] (i) average of magnitudes of coefficients of the
discrete Fourier transform of the RF time series in a
mid-low frequency portion of the transformation;

[0028] (iii) average of magnitudes of coeflicients of the
discrete Fourier transform of the RF time series in a
mid-high frequency portion of the transformation;

[0029] (iv) average of magnitudes of coeflicients of the
discrete Fourier transform of the RF time series in a
high frequency portion of the transformation;

[0030] (v) intercept of a line fitted to magnitudes of
coeflicients of the discrete Fourier transform of the RF
time series plotted versus normalized frequency; and
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[0031] (vi) slope of a line fitted to magnitudes of
coefficients of the discrete Fourier transform of the RF
time series plotted versus normalized frequency.

[0032] Another aspect of the invention relates to a method
for detecting, diagnosing, and/or assessing cancer, compris-
ing:

[0033] obtaining a time series of sequential data frames

associated with an ultrasound signal reflected from and/or
backscattered from a fixed location of a biological tissue,
each data frame comprising a plurality of samples of the
ultrasound signal, and
[0034] subjecting to an analysis:
[0035] (i) a sequence of one or more samples of the
ultrasound signal, or
[0036] (ii) a sequence of at least one parameter derived
from one or more samples of the ultrasound signal;
[0037] wherein a result of the analysis is related to the
detection, diagnosis, and/or assessment of cancer in the
biological tissue.
[0038] In accordance with this aspect, the data may be
derived from a RF ultrasound signal. In another embodi-
ment, the data is derived from a processed ultrasound signal.
The data may be derived from a processed ultrasound signal
selected from an A-mode, B-mode, M-mode, Doppler, or
3-D ultrasound signal. The analysis may be at least one
selected from:
[0039] (i) an analysis with respect to time, frequency,
amplitude, or a combination thereof,

[0040] (ii) a statistical analysis,

[0041] (iii) a stochastic analysis,

[0042] (iv) a fractal analysis;

[0043] (v) a wavelet analysis;

[0044] (vi) a spectral analysis;

[0045] (vii) array processing; and

[0046] (viii) a combination of two or more of the above.
[0047] Inone embodiment, the analysis is fractal analysis.

[0048] In accordance with this aspect, the cancer may be
associated with at least one of female genital tract (ovary,
fallopian tube, uterus, cervix and vagina), male genital tract
(prostate and testis), urinary tract (kidney, ureter and pros-
tate gland), mediastinum and heart, gastrointestinal tract
(small and large intestines, liver, pancreas, gallbladder and
biliary system), breast, skin, nervous system, endocrine
organs (thyroid gland, adrenal gland), head and neck region,
lymph nodes, soft tissue, respiratory system (including
lung), and combinations thereof. In one embodiment, the
cancer is prostate cancer.
[0049] Another aspect of the invention relates to pro-
grammed media for use with a computer and with an
ultrasound signal, the programmed media comprising:
[0050] a computer program stored on storage media com-
patible with the computer, the computer program containing
instructions to direct the computer to perform one or more
of:
[0051] obtain a time series of sequential data frames
associated with the ultrasound signal from a fixed location of
the material, each data frame comprising a plurality of
samples of the ultrasound signal;
[0052] subject to an analysis:

[0053] (i) a sequence of one or more samples of the

ultrasound signal, or
[0054] (ii) a sequence of at least one parameter derived
from one or more samples of the ultrasound signal;
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[0055] determine one or more properties of the material
based on a result of the analysis, and

[0056] output an indication of the one or more properties.
[0057] The computer program may further direct the com-
puter to:

[0058] accept data relating to known properties of the

same material, or complementary data from subsequent
analysis conducted on the same material; and

[0059] update the result of the analysis based on a com-
parison to the data relating to known properties of the same
material and/or the complementary data.

[0060] In accordance with this aspect, the data may be
derived from a RF ultrasound signal. In another embodi-
ment, the data is derived from a processed ultrasound signal.
The data may be derived from a processed ultrasound signal
selected from an A-mode, B-mode, M-mode. Doppler, or
3-D ultrasound signal.

[0061] Another aspect of the invention relates to a system
for determining one or more properties of a material, com-
prising:
[0062] a computer;

[0063] the programmed media described above; and
[0064] an ultrasound device for generating an ultrasound
signal from the material.

[0065] Another aspect of the invention relates to a method
for analyzing an ultrasound signal reflected from or trans-
mitted through a material, comprising:

[0066] obtaining a time series of continuous data frames
associated with the ultrasound signal from a specific location
of the material, each data frame comprising a plurality of
ultrasound samples, and

[0067] subjecting one or more samples of each said data
frame to an analysis;

[0068] wherein a result of the analysis is indicative of one
or more physical properties of the material.

[0069] Another aspect of the invention relates to a method
for measuring a physical property of a material, comprising:
[0070] obtaining a time series of continuous data frames of
an ultrasound signal reflected from or transmitted through a
specific location of the material, each data frame comprising
a plurality of ultrasound samples, and

[0071] subjecting one or more samples of each said data
frame to an analysis;

[0072] wherein a result of the analysis is indicative of the
physical property of the material.

[0073] The data may be derived from the raw RF ultra-
sound signal, or from a processed ultrasound signal such as
an A-mode, B-mode, M-mode, Doppler, or 3-D ultrasound

signal.

[0074] The specific location may be at a fixed location on
the material.

[0075] In various embodiments, the analysis may be at

least one analysis selected from:
[0076] (i) an analysis with respect to time, frequency,
amplitude, or a combination thereof,

[0077] (ii) a statistical analysis,
[0078] (iii) a stochastic analysis, and
[0079] (iv) a combination of (i), (ii), or (iii).
[0080] In one embodiment, the result of the analysis is

indicative of the physical property of the material being
normal or abnormal. In another embodiment, the result of
the analysis is a probability map or a probability score. In
another embodiment, the result of the analysis is indicative
of severity of the abnormality in the material. In another
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embodiment, the result of the analysis describes the pres-
ence of the abnormality in the material.

[0081] The material may be biological tissue. In one
embodiment, the biological tissue is human biological tis-
sue. In another embodiment, the biological tissue is prostate
tissue.

[0082] In another embodiment, the abnormality in the
biological tissue may be cancer. The cancer may be prostate
cancer, breast cancer, liver cancer, lung cancer, skin cancer,
or ovarian cancer. In another embodiment, the cancer is
prostate cancer.

[0083] In one embodiment, the fractal analysis is the
Higuchi method.

[0084] According to another aspect of the invention there
is provided a method for diagnosing cancer, comprising:
[0085] obtaining a time series of continuous data frames
associated with an ultrasound signal reflected from a specific
location of a biological tissue, each data frame comprising
a plurality of ultrasound samples, and

[0086] subjecting one or more samples of each said data
frame to an analysis;

[0087] wherein a result of the analysis is related to the
probability of cancer in the biological tissue.

[0088] The data may be derived from the raw RF ultra-
sound signal, or from a processed ultrasound signal such as
an A-mode, B-mode, M-mode, Doppler, or 3-D ultrasound

signal.
[0089] The analysis may be at least one analysis selected
from:

[0090] (i) an analysis with respect to time, frequency,

amplitude, or a combination thereof,

[0091] (ii) a statistical analysis,

[0092] (iii) a stochastic analysis, and

[0093] (iv) a combination of (i), (ii), or (iii).
[0094] The analysis may include the Higuchi method.

[0095] The cancer may be prostate cancer, breast cancer,
liver cancer, lung cancer, skin cancer, or ovarian cancer. In
one embodiment, the biological tissue is prostate tissue and
the cancer is prostate cancer.

BRIEF DESCRIPTION OF THE DRAWINGS

[0096] Embodiments of the invention will now be
described, by way of example, with reference to the draw-
ings, wherein:

[0097] FIG. 1 is a graphical representation showing how
the time series data was acquired.

[0098] FIG. 2 shows typical microscopic images illustrat-
ing (a) normal prostate tissue, (b) benign prostatic hyper-
plasia tissue, and (¢) prostatic carcinoma, as detected by an
embodiment of the invention.

[0099] FIG. 3 shows the set-up for acquisition of the RF
signal and B-scan image: (a) the probe (marked with 1 in the
image) and prostate tissue (marked with 2 in the image) are
fixed in position for continuous acquisition of the RF time
series; (b) the first imaging position is marked with a needle
(visible in the ultrasound image).

[0100] FIG. 4 is a histogram of AHDRFT values for (a)
cancerous and (b) normal ROIs in our data (213 normal
ROIs and 185 cancerous ROIs in 20 different frames of
ultrasound data acquired from a 57 vear old patient).
[0101] FIG. 5 shows a typical histopathological map of
prostate tissue used as a standard.

[0102] FIG. 6 shows plots of averaged normalized ampli-
tude of discrete Fourier transform of RF time series from (a)
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normal and (b) cancerous ROIs. The slope and intercept of
the linear regression of the frequency spectrum (dotted line)
and the sum of the amplitude values in four different
frequency bands (separated by vertical lines on the graphs)
were used as features.

[0103] FIG. 7 shows photomicrographs (200x magnifica-
tion) of the cellular structure of four tissue types (bovine
liver, pig liver, chicken breast, bovine muscle) that were
differentiated using an embodiment of the invention.
[0104] FIG. 8(a) is a plot of average classification accu-
racy over six pairs of tissue for different values of k.. (at
resolution of 10 samples).

[0105] FIG. 8(b) is a plot of average classification accu-
racy over six pairs of tissue for different number of samples
in an ROI (k,,,.=16).

DETAILED DESCRIPTION OF ILLUSTRATIVE
EMBODIMENTS

[0106] As a new approach toward a more accurate clas-
sification of materials, detection, assessment, and/or diag-
nosis of abnormalities, imperfections, and/or defects in
materials, based on ultrasound RF signals, we considered
that the interaction of the material and ultrasound may be
studied through a stochastic or fractal analysis and described
by, for example, fractal features. We proposed that the RF
output of such a system could result in a fractal pattern when
recorded as a time series (a fractal curve or signal has the
property that each part of it can be considered as an image
of the whole in a reduced scale). We therefore obtained raw
ultrasound RF data (i.e., the ultrasound RF signal prior to
any processing) and subjected it to time series analysis.
[0107] The idea that the interaction of the material and
ultrasound may be studied through a stochastic or fractal
analysis is particularly relevant to biological tissues. This is
based on the fact that self-organizing self-replicating cells
are the building blocks of biological tissues; furthermore,
non-linearity and quasi-determinism are the basic properties
of biological systems [11]. These two conditions are pre-
requisites for such analyses. The self-organizing and self-
replicating properties result in a fractal pattern in their
output when recorded as a time series. For example, it has
been shown that gland-like structures in some types of
adenocarcinoma possess a meaningful fractal dimension
[12, 13].

[0108] To generate time series data for analysis, we
acquired a continuous set of frames of RF data, at a specified
frame rate, from a fixed location of the material. The RF data
was digitized to facilitate analyses. However, the analyses
described herein may be performed in digital or analogue
domains, or in a combination of both domains. The data may
also be derived from a processed ultrasound signal such as,
for example, an A-mode, B-mode, M-mode, Doppler, or 3-D
ultrasound signal. It will be appreciated that the methods
described herein are also applicable to multi-frequency
ultrasound, where harmonic imaging is possible. The meth-
ods described herein are also applicable to array signal
processing, such as, for example, where single transmit and
multiple receive channels are employed. In such embodi-
ments, if suitable, the ultrasound signal can be discretized in
time and/or amplitude and then subjected to processing.
[0109] As used herein, the term “continuous set of frames”
refers to a sequential set of frames, in which an initial frame
is followed in time by a subsequent frame or frames.



US 2019/0041505 A1

[0110] As used herein, the term “fixed location” refers to
a location in or on the material under investigation relative
to the ultrasound probe. That is, the probe is not moved but
instead is maintained at a fixed location in or on the material
under investigation. In addition, as used herein, the term
“fixed” is intended to refer to the fact that the material is not
subjected to any intentional movement, other than any
minute movement of the material that might arise as a
byproduct of interaction of the material with the ultrasound
signal. In this regard the method described herein is distinct
from the technique known as “elastography”, in which gross
movement of the material under investigation is intention-
ally induced through exposure to a high power ultrasound
and/or mechanical signal.

[0111] Itwill be appreciated that the positional accuracy of
the fixed location is subject to some uncertainty, however,
which may arise through, for example, vibration of the probe
and/or the material under investigation, such vibration being
caused by, for example, vibration of the building, or move-
ment of the tissue arising from a patient’s breathing, heart
beat, and/or pulse. Where such unintentional movement of
the material occurs, the data may be processed to remove or
compensate for such movement.

[0112] As used herein, the term “biological tissue” is
intended to be inclusive of any tissue derived from an
organism or part thereof, as well as a cell culture and a tissue
culture. The biological tissue may be living or dead, and an
analysis as described herein may be carried out on biological
tissue in vivo or in vitro.

[0113] The material under investigation, which may be
biological tissue, may be normal or abnormal, where “nor-
mal” refers to one or more properties or characteristics of the
material falling within a range of acceptable values or
meeting an acceptable value, or meeting a standard. “Abnor-
mal” refers to one or more properties or characteristics of the
material falling outside of a range of acceptable values or not
meeting an acceptable value, or not meeting a standard.
Where a normal material is being investigated, the investi-
gation might include assessing one or more properties or
characteristics of the material. Such assessment can be of
interest in, for example, comparing one or more properties
or characteristics of the material to one or more correspond-
ing properties or characteristics of another material.

[0114] Within each digitized frame a region of interest
(ROI) was defined, the size of the ROI being set as appro-
priate for the type of material being studied (see, for
example, the below discussion and Examples). The ROI is
in a fixed location in the series of frames, and is comprised
of a matrix (e.g., 24x88) of samples, each sample represent-
ing a scalar value (e.g., amplitude) of the ultrasound RF
signal. The temporal sequence of values corresponding to a
sample in the matrix forms a time series. This is shown
graphically in FIG. 1. Such time series data may then be
subjected to a “single point” time series analysis, wherein
one or more properties of that time series is determined. The
analysis may be conducted with respect to, for example,
time, amplitude, frequency, and combinations thereof such
as time and frequency, and/or may include any mathematical
operation or manipulation, and may include, but is not
limited to, power spectrum, shift in central frequency, Fou-
rier analysis, filtering, matrix or vector mathematics, wave-
let, zero crossing, cyclic minima and maxima, phase analy-
sis, data reduction (extract regions of data, concatenate,
replicate, merge, interpolate, and decimate data series),
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mathematical functions (basic mathematical functions (addi-
tion, subtraction, multiplication, division) and/or integra-
tion, differentiation, logarithmic functions, trigonometric
functions, exponential functions), or a statistical analysis
such as, but not limited to, mean, variance, standard devia-
tion, least squares fit, regression, Bayesian, RMS (root mean
square), polynomial or linear curve fitting, correlation, auto-
correlation, filtering (e.g., low pass, high pass, median), or
a stochastic analysis such as, but not limited to probability
distribution fitting, probability determination, signal/noise
ratio, and fractal analysis, and combinations thereof. A set of
such property values, which may be generated from any or
all of the time series resulting from each sample in the ROI,
may then be subjected to further analyses such as an analysis
with respect to, for example, time, amplitude, frequency,
and/or may include any mathematical operation or manipu-
lation, such as, for example, a statistical or stochastic
analysis as listed above.

[0115] Alternatively, in a “multi-point” time series analy-
sis, the values of two or more samples from within a single
ROI, each sample representing a scalar value (e.g., ampli-
tude) of the ultrasound RF signal, may first be subjected to
an analysis wherein a property of that ROI is determined.
The analysis may include any mathematical operation or
manipulation, such as, for example, a statistical or stochastic
analysis, examples of which are noted above, to generate a
property for that ROI. This analysis is repeated for that ROI
in the time series, and the resulting time series of such
properties may then be subjected to further analysis such as
the single point analysis described above. A preferred fractal
analysis is that proposed by Higuchi [14], which is a stable
method to compute the fractal dimension of the irregular
output time series of natural phenomena which show a
turbulent behavior. However, the invention is not limited
thereto.

[0116] Embodiments of the invention provide an enhanced
ability to detect defects, abnormalities, and the like, in
certain characteristics or properties of a material, and the
extent or degree of severity of the defects, abnormalities, etc.
in the material. For example, a property may be described as
“abnormal” if the value(s) representing that property falls
outside of a range of preferred values. Such characteristics
or properties, of which there may be one or more for a given
material and type of investigation, may include, for
example, physical properties such as structure, elasticity,
density, optical, and electromagnetic. For example, in the
case of biological tissue, an abnormality may be detected in
the arrangement of cells, relative to normal tissue of the
same type, as is the case in many types of cancer. In
non-biological materials, an abnormality may be detected as,
for example, a variation in size or arrangement of pores, a
variation in thickness or consistency of laminates, or a
variation in density, relative to preferred values, or a minute
crack or fissure in a material. Embodiments of the invention
may allow input and storing of data relating to normal and
abnormal characteristics of a material, and comparison of
data for a current sample to the input/stored data, and as an
output provide an indication (e.g., a probability) of whether
the material is either normal or abnormal. Embodiments of
the invention may also provide an indication as to extent or
severity of the abnormality based on, for example, size,
and/or location of the abnormality, and may further provide
an indication of the grading of the abnormality (e.g., as is
known for various cancers). One aspect of the invention
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provides for ongoing training of the method to recognize
abnormalities by inputting data relating to examples of
normal and/or abnormal material as such data become
available, and by correcting the result based on supporting
confirmatory or complementary data.

[0117] To demonstrate the effectiveness of the embodi-
ments described herein, we have applied them to ultrasound
data of biological tissue for diagnosing prostate cancer and
for distinguishing different tissue types (see the below
Examples). However, it will be appreciated that embodi-
ments of the invention are not limited thereto, and they may
be applied not only to other tissues for detection, diagnosis,
and/or assessment of other cancers in any anatomic site,
such as, but not limited to, female genital tract (ovary,
fallopian tube, uterus, cervix and vagina), male genital tract
(prostate and testis), urinary tract (kidney, ureter and pros-
tate gland), mediastinum and heart, gastrointestinal tract
(small and large intestines, liver, pancreas, gallbladder and
biliary system), breast, skin, nervous system, endocrine
organs (thyroid gland, adrenal gland). head and neck region,
lymph nodes, soft tissue, respiratory system (including
lung). Embodiments of the invention may also be used for
detection, diagnosis, and/or assessment of tissue abnormali-
ties including pathological abnormalities other than cancer,
such as, but not limited to, benign tumours, infection,
abscess, necrosis, and infarcts.

[0118] Embodiments of the invention may also be used for
inspection and/or assessment of non-biological materials.
Such applications may include inspection of materials for
manufacturing and/or structural defects, analysis of effects
of stress/strain on machine components, and detecting fail-
ure of machine components, in manufacturing, research, and
industries such as transportation and aerospace.

[0119] Embodiments of the invention are further described
by way of the following non-limiting examples.

Example 1. Detection of Prostate Cancer Using
Fractal Analysis

1.1 Introduction

[0120] Prostate cancer (PCa) is the most common malig-
nancy among men and the second leading cancer-related
cause of death after lung cancer [1]. It is estimated that there
will be about 241,190 new cases of prostate cancer in North
America in 2007 and about 31,350 men will die of this
disease [2, 3]. If diagnosed in early stages, PCa is a
manageable condition in many cases. However, the process
of screening and diagnosis of the disease is controversial [4].
Prostate tumors have inconsistent appearances on medical
images. In particular, on transrectal ultrasound (TRUS)
which is the standard imaging modality to study prostate,
cancer lesions can be hypoechoic, hyper-echoic or even
isoechoic. The presence of benign prostatic hyperplasia
(BPH) further complicates the visual inspection of ultra-
sound images, as BPH is typically associated with hyper-
plastic nodules that may mimic areas of malignancy.

[0121] The standard for detection of PCa is pathological
analysis of tissue samples acquired through TRUS guided
biopsy. However, the multi-focal nature of the disease and
limited biopsy sampling of prostate cancer causes high rates
of false negative diagnoses. Several researchers have studied
ultrasound-based solutions for computer-aided diagnosis of
PCa. The first-order statistical moments (such as mean,
standard deviation, skewness and kurtosis) of the intensities
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of pixels in each region of interest (ROT) of the tissue form
a basic set of features for tissue classification [5, 6]. Tissue
characterization based on the acoustic parameters extracted
from the raw RF ultrasound echo signals (before being
transformed to B-scan images) has been studied since the
early 1970’s (see [7] for a review). Frequency-dependent
nature of ultrasound scattering and attenuation phenomena
can characterize different tissue types and is studied through
frequency spectrum of RF signals. Along with texture and
co-occurrence based features extracted from B-scan images,
RF spectrum parameters have been used to form hybrid
feature vectors to be used for detection of prostate cancer.
Such features are utilized as the input to neural networks and
neuro-fuzzy inference systems [5], self organizing Kohonen
maps [8] and quadratic Bayes classifiers [9] for character-
ization of prostate tissue. Nevertheless, despite the long
history of studies in this field, an accurate analytical model
of ultrasound-tissue interactions is still outstanding [9, 10]
and the results of RF-based tissue classification methods are
not promising enough for clinical applications.

[0122] In prostate cancer, the progression of the malig-
nancy is associated with geometrical deregulation of the
architectural structure of the cellular network. This is in fact
the basis for pathologic indices used for detecting and
grading of the disease. FIG. 2 shows the typical appearances
of the normal and cancerous tissue in pathology slides where
the irregularity of the cancerous structure is vivid. It is also
known that backscattered ultrasound signal is affected by the
geometry and spatial distribution of scatterers [15]. Based
on these two facts we examined the hypothesis that if the
prostate tissue continuously undergoes interactions with the
ultrasound signal, the time series formed by each sample of
backscattered signal will have a fractal dimension which can
be used to distinguish between cancerous and normal tissue.
[0123] To examine the validity of this hypothesis, we
acquired continuous RF data frames from the prostate tissue
of patients undergone radical prostatectomy, and extracted
the Higuchi fractal dimensions of the time series formed in
ROIs of size 0.028 cm® (the highest resolution ever
reported). We analyzed the separability capability of this
parameter between cancerous and normal tissue and found it
to be statistically significant. Furthermore, we used neural
networks to classify the ROIs and observed that when the
Higuchi fractal dimensions of the RF time series is added to
a combination of B-scan based texture features, the accuracy
of neural network based classification of prostate tissue
increases considerably. In fact, contrary to the fractal dimen-
sion of the B-scan ROIs which reportedly [16] performs as
“another” texture feature, the Higuchi dimension of the time
series of RF samples (averaged over the ROI) has a distinc-
tive effect on the classification results.

1.2 Methods

1.2.1 Data

[0124] For ultrasound data collection, we used a Sonix RP
(Ultrasonix Inc., Vancouver, Canada) ultrasound machine
which has the capability of collecting and recording the raw
RF signals, and an endorectal probe model BPSL9-5/55/10,
frequency range: 5-9 MHz, set to 6.6 MHz for our experi-
ments, and the linear transducer on this probe which is 55
mm long. FIG. 3(a) shows the data collection setup; the
endorectal probe was mounted on a rail which could be
moved along the prostate tissue while the tissue was fixed in
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a frame and immersed in water. We ensured that the orien-
tation of the acquired ultrasound frames was as close as
possible to the orientation of the slices to be made for
specimen histopathologic analysis. To mark the position of
the first ultrasound frame which had to be used as the origin
for the pathological analysis, we placed a needle inside the
tissue which was visible within the ultrasound image (FIG.
3(b)).

[0125] The Sonix RP machine was set to provide a maxi-
mum of 63 RF frames collected with the a rate of 8 frames
per second. Each RF frame (equivalent to one B-scan image)
consisted of 256 lines of RF signal each with 2064 samples
(samples are the outputs of a 16 bit A/D converter operating
at a frequency of 40 MHz). At each position we acquired 63
RF frames. The positions were 1 mm apart from each other.
The size of ROIs used in this study was 16x16 pixels on the
B-scan ultrasound which was equivalent to 0.028 cm? of the
actual tissue or a window of size 24x88 in the equivalent RF
frame. A total of four prostates were scanned and data
acquired from two patients were used in this study. After
acquisition of ultrasound data, a detailed histopathologic
analysis was performed on tissue slices each 5 mm apart.
Multifocal prostatic carcinoma was confirmed histologically
in each prostate examined. Based on tissue histology, malig-
nancy maps were produced for each prostate slice and were
used as the standard for validation in this study.

1.2.2 Features

[0126]

[0127] four statistical moments of the pixel intensities in
the B-scan image (mean, standard deviation, skewness and
kurtosis);

[0128] box-counting fractal dimension of the correspond-
ing window of the B-scan image (referred to hereinafter as
“DBS”), and the box-counting fractal dimension of the
corresponding window in the RF data (referred to hereinaf-
ter as “DRF”); and

[0129] the average of Higuchi fractal dimensions of the
RF sample time series in the ROI (referred to hereinafter as
“AHDRFT” (average Higuchi dimension of RF time
series)).

[0130]

[0131] DBS and DRF were extracted from a single B-scan
image and the corresponding RF frame. For calculating
three of DBS, we closely followed the box-counting method
to compute the fractal dimension of a grayscale image (as
described in [17] and also used in [18]). For computation of
DREF, the RF frame was considered as a 2D matrix of gray
levels and the same methodology as in [17] was applied.

[0132] Higuchi Fractal Dimension (AHDRFT) [14]:

[0133] Consider N frames of RF data acquired at a regular
rate while the probe and the tissue are fixed in position. Each
sample of the RF data forms a time series X(1), X(2), . . .,
X(N).

[0134] From this time series we first construct k new time
series X, as follows:

Every ROI was described with seven features:

Single-Frame-Based Fractal Dimensions:

N-m
X' X0m), X (m + k), X(m+26), ... ,X(m+[ - ]k)
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where k<N, m=1, 2, . . ., k=1 and both are integers. The
length of each time series is defined as:

Nom (
= 1/kx| L 5 ik i~ 1k
Lol = Lk | 0 K= X - D)
k ] B
[0135] The average value of Lm(k) over k sets (denoted

with <[(k)>) is the length of the curve. If the condition
<L(k)>ok™ holds, the curve is fractal with the dimension d.
In other words, to compute d, a line is fitted to values of
In(Lm(k)) versus In(l/k) and the slope of this line is consid-
ered as the Higuchi fractal dimension of the time series. In
our implementation, k=16 and N=64 (the 63 point time
series was augmented with one sample equal to the last
sample to increase the computational efficiency). AHDRFT
is the average of d value computed for all the RF samples in
the corresponding RF window of an ROL

1.2.3 Class Separability Measure of the Features

[0136] One of the classical measures to quantify the
separability capabilities of individual features in a two class
problem is the so-called Fisher’s Discriminant Ratio (FDR)
[19]:

U'1+U'2

where 1, and 0, are the mean and the variance of the values
of the feature in class one respectively. Value of FDR is a
statistical measure of the capability of the feature to dis-
criminate the samples from the two classes. A higher value
of FDR is an indication of higher separability capability of
the feature.

1.2.4 Classification

[0137] We performed several classification experiments
with artificial neural networks (ANN). We applied multi
layer perceptron networks (feedforward) with one or two
hidden layers and uvsed different combinations of the seven
features described in section 1.2.2 as their input. Back
propagation was used for training the networks. Trained
networks were tested on separate unseen ROIs and the
results were validated based on the histopathologic analysis
of the tissue. In one set of experiments, data acquired from
one patient was used for training and testing the networks.
In the second set of experiments, networks were trained on
one patient and tested on another one.

1.3 Results

[0138] Statistical Analysis of Separability Capability of
Features:
[0139] Table 1.1 summarizes the FDR values for the two

more effective statistical moments, as well as DBS, DRF and
AHDRFT. Separability capability of AHDRFT is clearly
higher compared to all other features. In addition, the value
of correlation coefficient of AHDRFT with mean is signifi-
cantly lower than the correlation coeflicients of DBS and
DRF with mean. This can be an indication of the indepen-
dence of AHDRFT from the absolute pixel intensities in the
ROI which is a useful property for dealing with isoechoic
tumors.
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TABLE 1.1
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TABLE 1.2-continued

The FDR of features and their correlation
coefficient with feature “mean”.

Fisher’s Correlation
discriminant with
Feature ratio mean
mean 5.8 —
std 26.6 0.3401
DBS 339.9 0.9932
DRF 132.8 0.9627
AHDRFT 1186.7 0.4552
[0140] Single Patient Classification Experiments:

[0141] In the first set of experiments, we selected 213
normal ROIs and 185 cancerous ROIs in the data (based on
the histopathology results). The cancerous samples were
from two different lesions (one hypoechoic and one
isoechoic) in two different parts of the prostate tissue of a 57
year old patient. The ROIs were selected from 20 different
frames of ultrasound data. In each experiment, two thirds of
the data samples were randomly selected for training and the
rest were used for testing the trained network. FIG. 4 is a
histogram of the AHDRFT values, showing a dramatic
separation between the cancerous (a) and normal (5) ROIs.
Table 1.2 summarizes the results. Accuracy, sensitivity and
specificity values reported in each row are the average of 10
experiments performed with the feature vector described in
column two on the ANN architecture described in column
three (which was found to be the optimal architecture in the
corresponding case). Table 1.2 shows that after including
AHDREFT in the feature vector, a significant increase in the
classification accuracy is witnessed (compare rows 1 and 5).
It is also worth mentioning that adding AHDRFT improved
the performance of the DBS and DRF set. While the two
dimensional vector formed by DBS and DRF (row 2) does
not show any significant improvement over texture feature
results (row 1), adding AHDRFT considerably increases the
accuracy (row 4). The overall best results were acquired by
using the feature vector that contained all seven features
(around 97% accuracy, row 6).

[0142] In an effort for further statistical validation of the
results, we performed 200 rounds of training and testing
each time with a random split of training and testing sets. We
used the seven dimensional feature vector and an average
accuracy of 93.8% was recorded.

TABLE 1.2

The performance of different groups of features. Addition
of AHDRFT considerably increased the accuracy.

Accu-  Sensi-  Speci-

Test Features ANNS$ racy tiviy  fleity

1 mean, std, ku*, sk**
2 mean, std, ku, sk, DBS,

4-15-15-1 87.4 87.7 84.0
6-10-10-1 88.7 85.2 88.3

DRF
3 DBS, DRF 2-20-1 88.4 89 88.7
4 DBS, DRF, AHDRFT 3-10-10-1 94.2 93.2 94.3

5 mean, std, ku, sk, 5-10-10-1 939 945 934

AHDRFT

The performance of different groups of features. Addition
of AHDRFT considerably increased the accuracy.

Accu-  Sensi-  Speci-
Test Features ANNS$ racy tivity  fleity
6 mean, std, ku, sk, DBS, 7-20-1 96.4 954 97.1
DRF, AHDRFT
*Kurtosis,

**Skewness,
§Structure of the best performing ANN, number of neurons in network layers are separated
with .

[0143] Cross Validation Classification Experiments:
[0144] In the second set of experiments, the ANN of
choice was trained with the data used in the previous
experiment and tested on ROIs extracted from the data
acquired on a second patient (50 cancer ROIs extracted from
two different tumors and 54 ROIs extracted from the non-
cancerous areas in the prostate of a 54 year old patient). An
MLP with two hidden layers and 10 neurons in each hidden
layer was used with the seven dimensional feature vector.
The sensitivity of the tests was constantly equal to or higher
than 98%. However, the specificity dropped to almost 70%.
In other words, although all areas of cancer were identified,
ahigh rate of false positives was witnessed. This result urged
us to further investigate the corresponding regions of the
actual prostate tissue. We observed that relatively large
lesions of BPH were present in the areas labeled as normal
in data acquired from the second patient. Although BPH
tissue is not cancerous, it shows a different cellular structure
(see FIG. 2(5)). The high rate of false positive detections is
likely due to the fact that networks were not trained on such
benign ROIs.

1.4 Discussion and Conclusions

[0145] One embodiment of this invention relates to a new
method of detecting cancer using time series ultrasound RF
data and a fractal analysis. In this example, we used the
average Higuchi dimension of RF time series (AH-DRFT)
for prostate cancer detection from ultrasound RF signals and
acquired highly promising tissue classification results.
Malignant prostate tissue is composed of irregularly shaped
and distributed cellular networks. In search for an ultra-
sound-based parameter that can discriminate cancer from
normal tissue by characterizing the scattering caused by
different tissue types, we analyzed backscattered RF time
series acquired from prostate glands of patients undergone
prostatectomy. The Higuchi fractal dimension of these time
series averaged over an ROI showed a meaningful statistical
difference in cancer versus normal regions. In ANN-based
classification experiments on data acquired from one patient,
we acquired up to 97% accuracy. Furthermore, the neural
networks trained with our proposed set of features on data
acquired from one patient were almost perfectly capable of
detecting all cases of cancer in the data acquired from
another patient. The detection of normal tissues on the
second patient resulted in a lower accuracy. Our investiga-
tion showed that this phenomena is due to the presence of
areas with BPH in the prostate tissue which was not con-
sidered as a separate class in our training data.

[0146] The experimental results demonstrate the effective-
ness of this embodiment for detecting and diagnosing pros-
tate cancer, and suggest that it will be effective in detecting
and diagnosing other cancers as well as non-cancerous
abnormalities in biological tissue, and in detecting defects in
non-biological materials.
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Example 2. Detection of Prostate Cancer Using
Fourier Analysis

2.1 Introduction

[0147] In Example 1 we performed a study involving
extracted prostate tissue from two prostatectomy patients,
and used fractal dimension of RF time series to detect
prostate cancer. The results showed that the fractal dimen-
sion of RF time series is superior to texture features
extracted from ultrasound B-scan images in detection of
prostate cancer. However, the specificity of detection was
low. To overcome this limitation, data has been collected
from human prostate tissue samples, and various features
have been extracted from RF time series to increase the
diagnostic value of the embodiments described herein. This
example presents a new set of features extracted from the
amplitude of the discrete Fourier transform (DFT) of RF
time series. These features represent the frequency spectrum
of RF time series using a small profile that consists of six
parameters. The results show that, when used together, these
six parameters are excellent features for detection of prostate
cancer with a simple neural network classifier. The results
include a mean accuracy of over 91%, with 92% sensitivity
and 90% specificity, and the results have been validated
using detailed malignancy maps acquired from histopatho-
logic analysis of seven prostate specimens. The results show
that acquisition and analysis of RF time series is an efficient
approach for detection of prostate cancer.

2.2 Methods

2.2.1 Ultrasound and Histopathology Data

[0148] Ultrasound and histopathology data were collected
from patients who choose prostatectomy as their treatment
choice at Kingston General Hospital (Kingston, Ontario,
Canada). Excised prostate specimens were suspended in a
water bath, and scanned along cross-sections marked by a
pathologist. The distance between the cross-sections was 4
mm. The RF ultrasound data was collected using a Sonix RP
(Ultrasonix Inc., Vancouver, Canada) ultrasound machine
which is capable of recording raw RF frames. A transrectal
ultrasound probe model BPS1.9-5/55/10 was used with the
central frequency set to 6.6 MHz. To form the RF time
series, a continuous sequence of 112 frames of RF data were
acquired, at the rate of 22 frames per second, from each
cross-section of the tissue. The prostate specimen was then
dissected along the scanned cross-sections. The pathologist
then examined the tissues under a microscope, and provided
malignancy maps which were overlayed on the cross-section
slides (FIG. 5). These maps were used as the standard to
evaluate the performance of detection based on the features
extracted from the acquired RF time series.

[0149] The process of registering the histopathology maps
to the ultrasound frames was performed manually. In some
cases, the boundaries of the prostate in the ultrasound
images were blurred (many scanned cross-sections were
discarded due to uncertainty in the registration process). The
results reported in this example were obtained based on data
from 15 cross-sections of prostate specimens acquired from
seven patients. Tissue characterizing features were extracted
from square Regions of Interest (ROI) of size 0.03 cm®
which is equivalent to 8x48 samples in an RF data frame.
285 ROIs in cancerous areas and 285 ROIs in normal areas
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of the scanned cross-sections were identified. The methods
described in this example were applied to these 570 ROIs.

2.2.2 Feature Extraction

[0150] Each region of interest in the dataset is represented
with seven features. All these features were extracted from
the RF time seties described above.

[0151] DFT-Based Features:

[0152] These included six features extracted from the
amplitude of the DFT of RF time series averaged over an
ROI. Each RF time series is a discrete signal of length N
(N=112 frames in this example). We were interested in
variations of this signal; therefore, features were extracted
from the zero-meaned time series. The discrete Fourier
transform of the time series x, can be described as ([23]):

N-1 3
Z wlnle” TN YR

n

=| -

X[k] =

where X is the DFT of the zero-meaned RF time series x,,
and N=112. DFT was computed using the fast Fourier
transform (FFT) algorithm [21] as implemented in MAT-
LAB™ (The Mathworks, Inc., Natick, Mass., U.S.A.).

[0153] Since the RF time series are real and have mean of
zero, |X[0]1=0 and IX[k]I=IX[N-k]|, where || denotes ampli-
tude of a complex number [22]. In other words, the fre-
quency spectrum of RF time series is completely represented
by N/2 or 56 values, namely IX[k]l where k=1, ..., n/2. We
average each of these 56 values over all RF time series
corresponding to RF samples in one ROI. The averaged
spectrum of the ROI (IXIROI) was then normalized as
follows:

UA{ROI[k] I==[Xo k]limax(Xzor[K]1) (C)

This normalization process set the maximum of the averaged
spectrum to 1 and enabled comparison of data from different
ROIs. The six proposed RF time series features, listed
below, were extracted from (IX,,l) and are designed to
represent the frequency spectrum through a few parameters.
The first four features (S1, 82, S3 and S4) are the integral of
(IXgo7!) in four quarters of the frequency range:

vE ()
1= [Xrailt]

k=1

A ©)
2= Z | % rou ]|
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A regression line was fit to values of the spectrum (versus
normalized frequency). The slope and intercept of this line
were used as two more features. FIG. 6 illustrates the
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average spectrums over all normal (a) and cancerous (b)
ROIs and clarifies the process of extracting S1-S4, spectral
slope and intercept.

[0154] Fractal Dimension:

[0155] Example 1 describes our methodology for extract-
ing the average fractal dimension of RF time series in a
region of interest of tissue, which is based on Higuchi’s
algorithm. In order to extract the fractal dimension, Higu-
chi’s algorithm computes mean length of the time series at
different scales (up to a maximum scale k), plots a
log-log graph of length versus scale, and measures the slope
of the linear fit of this graph as the FD. We have shown that
for tissue characterization based on FD, the algorithm works
best with k,,,.=16. As mentioned earlier, the ROIs consid-
ered in this work are of size 8x48=384 in the RF data. The
FD of each of the corresponding 384 time series in each ROI
was computed, and these were averaged to acquire one
feature per ROI (simply called FD in the rest of this
example).

2.2.3 Classification Performance of Individual Features

[0156] To study the capability of the proposed features in
detection of prostate cancer, the features were ranked indi-
vidually. Each feature was considered as the sole character-
izing parameter and used with a Bayesian approach to
distinguish cancerous ROIs from normal ones. The Bayesian
approach can be summarized as follows. If w, and w,
represent ROIs from normal and cancerous tissues, and f
represents the feature value of a given ROI (which we do not
know what category it belongs to), Bayes rule states that the
classification can be performed based on the following
inequalities:

P(f 0,)P(0,) 2 P(flo, (o) ©

P(w,) and P(w,) are a priori probabilities (which can be
simply calculated as the ratio of the number of ROIs in each
category to the total number of ROIs). P(flw,,) and P(flm )
are the probability distribution functions of feature values in
normal and cancerous ROIs, respectively. For validation, the
data was randomly partitioned in each category to 10 folds,
probability density functions (PDFs) were evaluated on 90%
of the data ROIs, the remaining 10% were classified based
on Equation 9, and the procedure repeated for all 10 parti-
tions of the data. The entire leave-10%-out process was
repeated 200 times (each time with a new random partition-
ing of the ROIs to 10 folds), and the mean and standard
deviation of the outcomes was recorded.

2.2.4 Neural Network Classification

[0157] Different combinations of the proposed features
were used with feedforward neural networks in an effort to
maximize accuracy in detection of cancerous lesions.
Reported results were acquired on a network with two
hidden layers; five neurons in each hidden layer with log-
sigmoid transfer functions. A supervised learning strategy
with Levenberg-Marquardt backpropagation training was
used. For validation of the classification results, a leave-
10%-out training-testing methodology was followed. In
other words, the network was trained using 90% of the data
samples, the remaining 10% were classified, and procedure
repeated for all 10 portions of the data. The entire leave-
10%-out process was repeated 100 times, and the mean and
standard deviation of accuracy, sensitivity and specificity
were recorded.
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2.3 Results and Discussion

2.3.1 Classification Results Using Individual Features

[0158] Table 2.1 summarizes the ranking of individual
features based on their performance in detection of prostate
cancer ROIs as the sole feature. While the table provides
sensitivity, specificity and accuracy, the ranking is based on
accuracy. It is evident that the two features with high
classification performance are spectral slope and the fractal
dimension. In agreement with the results of Example 1, the
classification based on FD resulted in very high sensitivity
(94%) and low specificity (61%). In the case of spectral
slope, the specificity is fairly high (83%) at the expense of
sensitivity (77%). Among the other DFT-based features, the
worst performance occurred when S1 and the spectral inter-
cept were used. Both of these features characterize the low
frequency components of the RF time series. 84, 83 and 52
have higher levels of tissue characterizing performance in
decreasing order.

2.3.2 Neural Network-Based Classification Results

[0159] Table 2.2 presents the classification results
acquired using different useful combinations of the selected
features with the neural network classifier described above.
The highest accuracy was 91.1%, acquired when a feature
vector consisting of the six DFT-based features was used.
This high accuracy was achieved while both sensitivity and
specificity were very high (92.3% and 89.8%), a favorable
outcome of a diagnostic test.

[0160] It is noted that addition of the FD to the DFT-based
features did not add to the diagnostic value of the method
(row 2). In other words, the six DFT-based features were
sufficient for classification. Another interesting result was
that although S1-S4 were not powerful features when used
individually, the combination of all of them resulted in an
efficient feature vector (the classification accuracy was
86.7% for a feature vector consisting of S1-S4). On the other
hand, while FD and spectral slope were the two best
performing individual features (Table 2.1), their combina-
tion did not provide a very high diagnostic accuracy (72.
6%).

TABLE 2.1

Ranking of the seven features for accuracy in separation of
normal and cancerous tissue using the Bayesian approach

mean mean mean
accuracy sensitivity  specificity

rank feature (std) (std) (std)
1 spectral slope 80.1% (5.4)  77.0% (2.0) 83.5% (6.9)
2 FD 76.9% (5.1)  94.1% (3.0) 61.9% (8.8)
5 sS4 63.9% (6.1)  57.5% (5.1) 68.7% (7.4)
4 83 62.3% (6.1)  60.1% (5.3) 63.9% (8.7)
3 82 61.6% (6.9)  57.5% (4.1) 66.1% (9.0)
6  spectral intercept 58.8% (6.9) 54.2% (5.2) 63.2% (4.6)
7 81 573% (3.5)  52.6% (5.2) 63.2% (8.5)
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TABLE 2.2

Neural network classification results using
different combinations of the seven features

mean mean mean
Feature vector accuracy sensitivity  specificity
(number of features) (std) (std) (std)
spectral slope and intercept, 91.1% (2.7) 92.3% (3.5) 89.8% (4.2)
S1-84 (6)

spectral slope and intercept, 89.4% (5.4) 91.1% (6.7) 87.2% (8.8)
S1-84, FD (7)

S1-84 (4) 86.7% (3.8) 88.5% (5.3) 85.0% (6.0)
spectral slope and intercept 81.7% (3.9) 80.7% (5.3) 82.7% (8.4)
@

spectral slope and FD (2) 72.6% (9.9) 79.8% (8.3) 65.2% (9.4)

2.4 Conclusion

[0161] The above analysis showed that the six selected
DFT-based features were self-sufficient for diagnosis of
prostate cancer with high sensitivity and specificity. The
analysis improves the performance of ultrasound-based
methods for detection of prostate cancer. An advantage of
the analysis is that the FFT algorithm reduces the compu-
tational complexity of calculating DFT-based features.
Ongoing work investigates the effects of probe frequency,
acquisition frame rate, and length of RF time series on the
results of the analysis, and the use of phase information
acquired from DFT of RF time series for tissue character-
izing features.

BExample 3. Tissue Characterization Using Fractal
Dimension of High Frequency Ultrasound RF Time
Series

3.1 Introduction

[0162] Ultrasound-based tissue characterization tech-
niques rely on different patterns of scattering of ultrasound
in tissues with dissimilar cellular microstructures. Although
the exact physical mechanisms that govern these patterns are
not well understood [24], microstructure-induced differ-
ences in ultrasound-tissue interaction are documented both
at clinical (2-10 MHz) frequencies [25] and at higher fre-
quencies [24, 26]. In other words, ultrasound radio fre-
quency (RF) echoes contain information about tissue char-
acteristics. However, it is challenging to disentangle this
information from variations in the signal caused by system-
dependent effects. such as mechanical and electrical prop-
erties of the transducer and diffraction effects due to the
finite aperture of the transducer. This fundamental restriction
of ultrasound-based tissue characterization techniques limits
their sensitivity and specificity in diagnosis of cancer lesions
[5, 20, 27].

[0163] The above examples demonstrate that if a specific
location in tissue undergoes continuous interactions with
ultrasound, the time series of the RF echo signals from that
location carries “tissue characterizing” information. In other
words, although variations in the intensity of one sample of
RF echo over time are partly due to the electronic noise of
the ultrasound machine or the errors caused during the
beam-forming process, they depend on tissue characteristics
as well. Use of high frequency ultrasound in this new
approach may provide insight into this phenomenon. It is a
well-known fact that at very high frequencies the scattering
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of ultrasound is primarily caused by cellular microstructure
[24] as opposed to tissue macrostructure. Therefore, the
dependence of the FD of RF time series on cellular micro-
structure should be more evident in high frequency data.
[0164] In this example, for the first time, RF echo time
series acquired using high frequency ultrasound probes were
analyzed. The data demonstrate that at these high frequen-
cies, the differentiation of tissues based on FD of RF time
series is closely related to differences in tissue microstruc-
tures. The FD of the RF times series was used to successfully
distinguish segments as small as 20 microns of animal
tissues of dissimilar microstructures with accuracies as high
as 98%. Furthermore, the FD values calculated from the RF
time series of different tissues showed statistically signifi-
cant differences, far beyond the variations in FD values in
one tissue type. These results suggest the presence of
microstructure-related information in the RF time series, and
provide a novel, effective method in diagnosing cancer, due
to changes at the cellular level of the tissue during the
formation of malignancy.

3.2 Methods

[0165] To study the tissue characterizing capabilities of
RF echo time series acquired at higher frequencies, four
different tissue types were used: bovine liver, pig liver,
bovine muscle, and chicken breast. As illustrated in FIG. 7,
the cellular structure of both bovine and pig liver are
characterized by hepatocyte cells (the two are of slightly
different shape and density), whereas bovine muscle and
chicken breast both have fibrous structures formed by sat-
comeres.

[0166] The high frequency ultrasound RF time series were
collected using a Vevo 770 high resolution ultrasound sys-
tem (VisualSonics Inc., Toronto, Canada) with two different
probes of the 700-series RMV scanheads (see Table 3.1 for
specifications). Each time series of RF data was formed by
scanning a fixed spot of the tissue in A-mode (single lines of
RF), with a depth of about 1 mm (equivalent to 512 samples
of digital RF signal) 500 times at the rate of about 60 frames
per second. Initially, we used the RMV711 scanhead to
acquire two separate lines of RF time series from two
different areas of each tissue type. Then, the data collection
procedure was repeated using the RMV706 scanhead using
the same tissue specimens.

TABLE 3.1

Specifications of the high frequency ultrasound scanheads.

Center Axial
Model Broadband frequency frequency resolution
RMV711 Up to 82.5 MHz 55 MHz 300
RMV706 Up to 60 MHz 45 MHz 40u

3.2.1 Feature Extraction

[0167] Tissue types were characterized by the average of
FDs computed for all the time series corresponding to RF
samples in a Region of Interest (ROI). The high frequency
data was acquired in A-mode. Therefore, ROIs were simply
segments of RF lines (a segment with 10 samples was
equivalent to 20 microns). We examined ROI sizes as small
as a single RF sample up to 20 samples.
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[0168]
cesses has been extensively studied as a parameter that

FD of time series originating from natural pro-

quantifies nonlinear internal dynamics of complex systems
[28, 29]. In such systems, the mechanisms of interaction that
give rise to the output time series are not well understood.
FD has been shown to have low sensitivity to noise-induced
variations [30]. In the case of RF time series analysis,
microstructural information is received along with noise-
related variations. Therefore, FD was used to characterize
the RF time series. Higuchi’s algorithm [14] was used for
computation of the FD of time series which can be summa-
rized as follows: Each sample of the RF data forms a time
series {X(1), X(2), . . . , X(N)} over sequential ultrasound
frames, where N=500 for the high frequency RF data. From
this time series, k new time series were constructed of form:

X X(m), X(n+h), X(m+2%), ... X(m+ [N _m].k) (10

where k is the sampling time interval (which determines the
scale, k<N) and m=1, 2, ..., k-1. Both m and k are integers.
The length of each time series, L. (k), was defined as:

(¥ (11

N-1 . .
Ln(h) = 1k x| —— | Z; X (m+ k) = X(m + (i — 1))
T k i=
[0169] The average value of L, (k) over k sets, L(k), is the

length of the time series at scale k. This procedure was
repeated for each k ranging from 1 tok,,,.. A line was fitted
to values of In(L(k)) versus In(1/k) and the slope of this line
was considered as the FD. The number of samples, N, and
the nature of the time series determine the optimal value of
the parameter k,, .. For this example, the value of k. was
optimized based on the average classification accuracy
acquired. k,  values between 4 and 56 were examined.
Feature extraction for each A-line involved computation of
FD of 512 time series of length 500. The output of this
process is referred to as a FD vector.

3.2.2 Bayesian Classification

[0170]
acquired with a Bayesian approach. If o, and w, represent

All classification results reported herein were

ROIs from two categories of tissue in one of the classifica-
tion experiments, and x represents the feature value of a
given ROI (which we do not know what category it belongs
to), Bayes’ rule states that the classification can be per-
formed based on the following inequalities:

P@I0)P0;) Z PErloy)P(oy) (12)
[0171] P(w,) and P(w,) are a priori probabilities (which
can be simply calculated as the ratio of the number of ROIs

in each category to the total number of ROIs in the two
categories). P(xlw,) and P(xlm,) are the probability distri-
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bution functions (PDFs) of feature values in categories 1 and
2 respectively. A Gaussian PDF was fit to the distribution of
the feature in each category.

[0172] A leave-10%-out validation methodology was fol-
lowed for classification, in which the data was randomly
partitioned in each category into 10 folds. The PDFs were
evaluated on 90% of the data samples, and the remaining
10% were classified based on the evaluated PDFs, and the
procedure was repeated for all 10 portions of the data. The
whole leave-10%-out process was repeated 200 times (each
time with a random partitioning of the ROIs to 10 folds). The
mean accuracies and standard deviations were recorded over
these 200 trials.

3.3 Results and Discussion

[0173]

[0174] The first step in the analysis was to perform one-
way analysis of variance (ANOVA) tests on pairs of FD
vectors from the same tissue types. As Table 3.2 illustrates,
when two FD vectors from the same tissue type were
compared, the p-values in ANOVA tests were relatively
large and the samples from two lines could not be separated
(classification accuracies close to 50%). The ROI size used
for classification was 20 microns (10 samples) and k,,, =16.

FD Vectors from the Same Tissue Types:

TABLE 3.2

Comparison of two FD vectors from
two RF lines of one tissue type.

ANOVA accuracy in separating ROIs
p-value from the two lines results on
Tissue type RMV711 RMV711 - mean (STD)
Bovine liver 0.47 52% (3.7)
Pig liver 0.007 47% (3.9)
chicken breast 0.0001 59% (3.1)
Bovine muscle 0.68 53% (4.3)

[0175] FD Vectors from Different Tissue Types (k,,,,=16):

[0176] We performed the ANOVA tests on FD vectors of
different tissue types (for all six possible pairs of tissue).
Column 2 of Table 3.3 provides the p-values which were all
virtually zero and showed that the vectors were statistically
different in all six pairs.

[0177] Two separate FD vectors from each tissue type,
computed from the data acquired on the RMV711 scanhead,
were available. The two vectors of each tissue type were
combined to acquire a single vector of length 1000 and the
Bayesian approach described above was used to perform
pairwise classifications. The results for these classification
trials which were in single RF sample resolution are reported
in column 3 of Table 3.3. It is interesting to note that even
with this resolution, classification was successful when the
two tissue types were from different microstructural catego-
ries (rows 1-4); however, when pig liver was compared with
bovine liver (row 5) or the two fibrous tissue types were
compared (row 6), the classification at this extremely high
resolution produced lower accuracy.
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TABLE 3.3

Comparison and classification of data from different tissue types

p-value  mean (STD) mean (STD) mean(STD)

FD vectors 1 sample 10 samples 10 samples

Tissue types RMV711 RMV711 RMV711 RMV706
Bovine liver - chicken breast 0 81.1% (2.5) 92.2% (5.8) 96.9% (3.5)
Bovine liver - bovine muscle 0 84.1% (2.3) 95.5% (4.0) 93.7% (5.3)
Chicken breast - pig liver 0 84.6% (2.3) 96.0% (4.2) 92.3% (5.3)
Pig liver - bovine muscle 0 89.2% (2.1) 98.2% (3.1) 90.0% (6.4)
Bovine liver - pig liver 0 73.7% (3.0) 83.7% (7.1) 65.1% (7.9)
Chicken breast - bovine muscle 5.7 x 10713 64.1% (3.1)  72.2% (8.9) 63.1% (8.1)

Average over all six tissue pairs 79.5% 89.6%

83.2%

[0178] Furthermore, the performance of our approach was
examined at a lower resolution. Ten samples of each FD
vector were examined to acquire vectors of length 50 (100
after combining the two lines from the RMV711 scanhead).
Each element of these vectors represented an ROI of size 20
microns. The results of pairwise classification experiments
at this level of resolution are presented in column 4, Table
3.3. For tissues in different microstructural categories, the
mean accuracy was about 95% (rows 1-4); however, the
accuracy dropped to about 80% for similar microstructures.
The overall classification performance was 89.6%.

[0179] For validation purposes, the classification process
(at 20 micron resolution) was repeated on a similar dataset
that was acquired on the RMV706 scanhead (which operates
at a lower frequency and axial resolution). The results are
reported in column 5, Table 3.3. In general, the overall
outcome decreased in comparison with the RMV711 scan-
head data (average overall: 83.2%). However, the same
pattern of performance (excellent on different microstruc-
tures, moderate on similar microstructures) was observed.
The overall decrease in the classification results can be
explained by the lower axial resolution of the RMV706
scanhead.

[0180] Optimal k,, .. Value:

[0181] Different possible values for K, . (or maximum
scaling level of the signal) were examined using Higuchi’s
algorithm. In FIG. 8(a), the average accuracy of tissue
classification over six pairs of tissue types is plotted against
the values of k, . between 4 and 56. Values between 10 and
32 resulted in very similar outcomes. The Higuchi algorithm
becomes increasingly computationally expensive for large
values of k. We chose k =16 as a reasonably small
number that also resulted in maximum accuracy. This is in
agreement with the above findings regarding the optimal K
value on RF time series acquired from human prostate
specimens.

[0182] Optimal ROI Size:

[0183] In general, it is reasonable to expect that the
classification of ROIs of sizes smaller than the resolution of
the ultrasound will be more challenging. As FIG. 8(a)
illustrates, this is true for ROI sizes up to 20 microns (10
samples). However, we were limited by the size of the
dataset, as increasing the ROI to over 10 samples meant that
the Gaussian PDFs were estimated on less than 100 data
points and tested on less than 10 points and therefore, the
outputs were not reliable.

[0184] Comparison with Results at 6.6 MHz:

[0185] As previously noted, even at frequencies normally
utilized on clinical machines (2-10 MHz), the RF time series
contain tissue characterizing information. However, the

maximum resolution is much lower. For comparison, we
used a Sonix RP (Ultrasonix Inc., Vancouver, Canada)
ultrasound machine to collect RF time series at 6.6 MHz
from the same specimens that we had scanned at high
frequencies. The temporal length of time series (number of
frames taken from each cross-section) was 255 and the data
was collected with a BPSL.9-5/55/10 probe at the rate of 22
frames per second. ROIs of size 8x44 RF samples (equiva-
lent to 0.03 cm?) of the tissue were used in classification;
150 ROIs from each tissue type were available. Results
reported in Table 3.4 show an overall accuracy of around
76.5%.

TABLE 3.4

Results using data acquired for probe center frequency of 6.6 MHz

Tissue types accuracy (STD)

Bovine liver - chicken breast
Bovine liver - bovine muscle
Chicken breast - pig liver

Pig liver - bovine muscle
Bovine liver - pig liver
Chicken breast - bovine muscle
Average over all six tissue pairs

82.9% (6.4)
80.7% (6.8)
71.4% (6.7)
74.8% (7.5)
69.3% (5.3)
79.6% (5.9)
76.5%

3.4 Conclusions

[0186] These findings demonstrate that tissue microstruc-
ture results in variations of the ultrasound RF time series.
This concept can be used in ultrasound-based detection of
fine differences and abnormalities in tissues, in diagnosing
pathologic conditions such as cancer, and in detecting flaws,
imperfections, and/or damage in other materials.

[0187] All citations are incorporated herein by reference in
their entirety.
[0188] Other embodiments of the invention will be appar-

ent to those skilled in the art. Such embodiments are within
the scope of the invention and are covered by the appended
claims.
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1-28. (canceled)

29. A method for determining one or more physical

properties of a material, comprising:

(1) obtaining a plurality of ultrasound data frames sequen-
tially in time;

wherein the plurality of ultrasound data frames is gener-
ated from an ultrasound signal received by one ultra-
sound transducer that is in one fixed relationship rela-
tive to the material and the ultrasound transducer is not
subjected to intentional movement relative to the mate-
rial;

wherein each ultrasound data frame of the plurality of
ultrasound data frames comprises a plurality of samples
of the ultrasound signal reflected from and/or backscat-
tered from the material;

(1) deriving, from one ultrasound data frame of the
plurality of ultrasound data frames, a first value relating
to amplitude of one or more samples of the ultrasound
signal;

(1IT) deriving, from a second ultrasound data frame of the
plurality of ultrasound data frames, a second value



US 2019/0041505 A1

relating to amplitude of one or more samples of the
ultrasound signal at the same position in the material as
in (I1);

(IV) repeating (IIT) to generate a time series of derived
values from the temporal sequence of ultrasound data
frames;

(V) subjecting the time series of derived values to an
analysis to extract a plurality of parameters;

(V1) comparing at least a portion of the plurality of
parameters to data relating to one or more known
physical properties of one or more materials;

wherein a result of the comparing is indicative of the one
or more physical properties of the material.

30. The method of claim 29, wherein the ultrasound signal

is selected from an A-mode, B-mode, M-mode, or 3-D
ultrasound signal.

31. The method of claim 29, wherein the result of the
comparing is indicative of the physical property of the
material being normal or abnormal.

32. The method of claim 1, wherein the result of the
comparing is a probability map or a probability score.

33. The method of claim 31, wherein the result of the
comparing is indicative of severity of the abnormality in the
material.

34. The method of claim 31, wherein the result of the
comparing describes the presence of the abnormality in the
material.

35. The method of claim 29, wherein the comparing
comprises using a classifier;

wherein the classifier is trained with data relating to one
or more known physical properties of one or more
materials.

36. The method of claim 29, wherein the analysis is at

least one analysis selected from:

(1) an analysis with respect to time, frequency, amplitude,
or a combination thereof;

(i) a statistical analysis;

(iii) a stochastic analysis;

(iv) a fractal analysis;

(v) a wavelet analysis:

(vi) a spectral analysis;

(vii) array processing; and

(viil) a combination of two or more of the above.

37. The method of claim 29, wherein the analysis com-
prises a discrete Fourier transform or a discrete wavelet
transform.

38. The method of claim 29, wherein the material is
biological tissue.

39. The method of claim 38, wherein the biological tissue
is human biological tissue.

40. The method of claim 39, wherein the material is
biological tissue and the abnormality in the biological tissue
is cancer.

41. The method of claim 40, wherein the cancer is
associated with at least one of female genital tract (ovary,
fallopian tube, uterus, cervix and vagina), male genital tract
(prostate and testis), urinary tract (kidney, ureter and pros-
tate gland), mediastinum and heart, gastrointestinal tract
(small and large intestines, liver, pancreas, gallbladder and
biliary system), breast, skin, nervous system, endocrine
organs (thyroid gland, adrenal gland). head and neck region,
lymph nodes, soft tissue, respiratory system (including
lung), and combinations thereof.
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42. The method of claim 40, wherein the cancer is prostate
cancer.

43. The method of claim 34, wherein the material is
biological tissue and the abnormality in the biological tissue
is selected from benign tumour, infection, abscess, necrosis,
infarct, and combinations thereof.

44. A non-transitory computer-readable storage medium
storing computer executable programmed instructions that,
when executed, direct the computer to perform the following
steps:

(I) obtain a plurality of ultrasound data frames sequen-

tially in time;

wherein the plurality of ultrasound data frames is gener-
ated from an ultrasound signal received by one ultra-
sound transducer that is in one fixed relationship rela-
tive to the material and the ultrasound transducer is not
subjected to intentional movement relative to the mate-
rial;

wherein each ultrasound data frame of the plurality of
ultrasound data frames comprises a plurality of samples
of the ultrasound signal reflected from and/or backscat-
tered from the material;

(1) derive, from one ultrasound data frame of the plurality
of ultrasound data frames, a first value relating to
amplitude of one or more samples of the ultrasound
signal,

(WIT) derive, from a second ultrasound data frame of the
plurality of ultrasound data frames, a second value
relating to amplitude of one or more samples of the
ultrasound signal at the same position in the material as
in (1D);

(IV) repeat (IIT) to generate a time series of derived values
from the temporal sequence of ultrasound data frames;

(V) subject the time series of derived values to an analysis
to extract a plurality of parameters;

(VI) compare at least a portion of the plurality of param-
eters to data relating to one or more known physical
properties of one or more materials;

wherein a result of the comparison is indicative of one or
more physical properties of the material.

45. The non-transitory computer-readable storage
medium of claim 44, wherein the programmed instructions
further direct the computer to:

update the data relating to known physical properties of
one or more materials by accepting further data relating
to known physical properties of the material, or
complementary data from subsequent analysis con-
ducted on the material; and

perform the comparison using the updated data relating to
known physical properties of the material.

46. The non-transitory computer-readable storage
medium of claim 44, wherein the result of the comparison is
indicative of the physical property of the material being
normal or abnormal.

47. The non-transitory computer-readable storage
medium of claim 44, wherein the comparison comprises
using a classifier;

wherein the classifier is trained with data relating to one
or more known physical properties of one or more
materials.

48. A system for determining one or more physical

properties of a material, comprising:
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a computer;

the non-transitory coniputet-readable storage medium of
claim 44; and

an ultrasound device for generating an ultrasound signal
from the material.

® 0% % % %



TRAFROE) s BB R AN 5 &
NIF(2E)E US20190041505A1
HiES US15/968842

R EERR)A(E) SHMEZEAS
MEERR)AGE) LR ARESEN
LR B(ER)A(E) ZEALESHH

[FRIRBAA MORADI MEHDI
ABOLMAESUMI PURANG
MOUSAVI PARVIN
SAUERBREI ERIC
SIEMENS ROBERT
ISOTALO PHILLIP

RAAN MORADI, MEHDI
ABOLMAESUMI, PURANG
MOUSAVI, PARVIN
SAUERBREI, ERIC
SIEMENS, ROBERT
ISOTALO, PHILLIP

IPCH %S G01S7/52 A61B8/08 G01S15/89
CPCH %S G01815/8977 G01S7/52036 A61B8/0833
LR 60/808557 2006-05-26 US

PCT/CA2007/000934 2007-05-25 WO

SNEBEEEE Espacenet  USPTO

BE@®F)

FERASR—FMIMBEESNGE. ZHEBEREENFRTEH
P B R AL B 5 A/ 30 10 B 9 B 75 5 5 A8 X BR Y I 2543 it Y et )
F5, 8 M BEMEESIMEFESHE , ARToM. BFESHN—
PRENMEENF  RENBEESH—IPHSMEARSHNED —
NSBWFD , AP 2 MNEREMRN - RSIEREIBERR.
E—AIXEART , ZHETRTRN , SN/ EENARPHE
EM/RFE.

2019-02-07

2018-05-02

patsnap



https://share-analytics.zhihuiya.com/view/47b1bd92-8b2a-4dbb-9022-9ea2e7a0f228
https://worldwide.espacenet.com/patent/search/family/038778056/publication/US2019041505A1?q=US2019041505A1
http://appft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PG01&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.html&r=1&f=G&l=50&s1=%2220190041505%22.PGNR.&OS=DN/20190041505&RS=DN/20190041505

