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(7) ABSTRACT

This invention relates to a method of analyzing an ultrasound
signal. The method comprises obtaining a time series of
sequential data frames associated with an ultrasound signal
reflected from and/or backscattered from a fixed location of a
material under investigation, each data frame comprising a
plurality of samples of the ultrasound signal, and subjecting
to an analysis a sequence of one or more samples of the
ultrasound signal, or a sequence of at least one parameter
derived from one or more samples of the ultrasound signal,
wherein a result of the analysis is related to one or properties
or characteristics of the material. In one embodiment the
method may be used for detecting, diagnosing, and/or assess-
ing cancer and/or abnormalities in biological tissue.

TR




US 2010/0063393 A1

Mar. 11,2010 Sheet 1 of 8

Patent Application Publication

S

o

3
kS

Fioure

ey



Patent Application Publication  Mar. 11,2010 Sheet 2 of 8 US 2010/0063393 A1




Patent Application Publication  Mar. 11,2010 Sheet 3 of 8 US 2010/0063393 A1

S

A

e

e

%

=5

T

e




Patent Application Publication  Mar. 11,2010 Sheet 4 of 8 US 2010/0063393 A1

40 v v Y T ™ v

35}

30t

25t

20

15¢

10¢

1 L

1.2 12 1.2 1.3 1.3 1.3

Figure 4(a)

60
50t
40‘ i
30}
20¢

10}

Figure 4(b)



Patent Application Publication  Mar. 11,2010 Sheet 5 of 8

A S R e e e O R K
e s

5:} R

o

OO0
s

o
o

%

S

S

AN

e

R

i
R
e

e
e

¥ s
A N
i AN 2

US 2010/0063393 A1

e

R
iR

e
e

e

s

SR
o

S



Patent Application Publication

Mar. 11, 2010 Sheet 6 of 8

US 2010/0063393 A1

1 T ' y
0.9} .
Q
°
£
-
£
[ ]
6'49 0.2 0.4 0.6 0.8 1
scaled frequency
Figure 6(a)
0.8 T '
0.8}
307
2
o
§

0.4 0.6

scaled frequency

Figure 6(b)

0.8 1



Patent Application Publication  Mar. 11,2010 Sheet 7 of 8 US 2010/0063393 A1

{a: Hovine lver} { Pig lvar)

{zr Thicken hreast) {dt Bovioe muscle)



Patent Application Publication  Mar. 11,2010 Sheet 8 of 8 US 2010/0063393 A1

93 i i T T T

average accuracy {%)
g 8 8

maf

=
™
L

10 20 30 40 50
Kmax

Figure &(a)

b o
L =
L)

&
1]
1

average accuracy (%)
=~ [+
S

-]
o
T

>
L=
b

10 15 20
RO size

Figure 8(b)



US 2010/0063393 Al

METHOD FOR IMPROVED ULTRASONIC
DETECTION

FIELD OF THE INVENTION

[0001] This invention relates generally to the field of vltra-
sound imaging. In particular, the invention relates to methods
of analyzing radio frequency (RF) ultrasound signals for
improved ultrasound imaging.

BACKGROUND OF THE INVENTION

[0002] Conventional inspection and examination of mate-
rials using ultrasound typically employs processing of the raw
radio frequency (RF) ultrasound signal at discrete “snap-
shots” in time, for example, to create B-scan images. Such
images are widely used in fields such as medicine; however,
evidence suggests that they may be of limited utility in certain
applications, particularly where fine resolution of tissue
structure is required for accurate classification, such as in-
detecting structural differences among biological tissues, as
may be required in diagnosing various cancers.

[0003] Several researchers have studied ultrasound-based
solutions for computer-aided diagnosis of cancer. The first-
order statistical moments (such as mean, standard deviation,
skewness and kurtosis) of the intensities of pixels in each
region of interest (ROI) of the tissue form a basic set of
features for tissue classification [5, 6]. Tissue characterization
based on the acoustic parameters extracted from the raw RF
ultrasound echo signals (before being transformed to B-scan
images) has been studied since the early 1970’s (see [7] for a
review). Frequency-dependent nature of ultrasound scatter-
ing and attenuation phenomena can characterize different
tissue types and is studied through frequency spectrum of RF
signals. Along with texture and co-occurrence based features
extracted from B-scan images, RF spectrum parameters have
been used to form hybrid feature vectors to be used for detec-
tion of cancer [20]. Such features are utilized as the input to
neural networks and neuro-fuzzy inference systems [5], self
organizing Kohonen maps [8] and quadratic Bayes classifiers
[9] for characterization of tissue. Nevertheless, despite the
long history of studies in this field, an accurate analytical
model of ultrasound-tissue interactions is still outstanding [9,
10] and the results of RF-based tissue classification methods
are not promising enough for clinical applications.

SUMMARY OF THE INVENTION

[0004] One aspect of the invention relates to a method for
analyzing an ultrasound signal reflected from and/or back-
scattered from a material, comprising:
[0005] obtaining a time series of sequential data frames
associated with the ultrasound signal from a fixed location of
the material, each data frame comprising a plurality of
samples of the ultrasound signal, and
[0006] subjecting to an analysis:
[0007] (i) a sequence of one or more samples of the
ultrasound signal, or
[0008] (i1) a sequence of at least one parameter derived
from one or more samples of the ultrasound signal,
[0009] wherein a result of the analysis is indicative of one
or more physical properties of the material.
[0010] The data may be derived from a radio frequency
(RF) ultrasound signal. In another embodiment, the data is
derived from a processed ultrasound signal. The data may be
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derived from a processed ultrasound signal selected from an
A-mode, B-mode, M-mode, Doppler, or 3-D ultrasound sig-
nal.
[0011] The analysis may be at least one selected from:
[0012] (i) an analysis with respect to time, frequency,
amplitude, or a combination thereof,

[0013] (ii) a statistical analysis,

[0014] (iii) a stochastic analysis,

[0015] (iv) a fractal analysis;

[0016] (v)a wavelet analysis;

[0017] (vi) a spectral analysis;

[0018] (vii) array processing; and

[0019] (viii) a combination of two or more of the above.
[0020] Inoneembodiment, the analysis is fractal analysis.

[0021] The result of the analysis may be indicative of the
physical property of the material being normal or abnormal.
In another embodiment, the result of the analysis is a prob-
ability map or a probability score. The result of the analysis
may be indicative of severity of the abnormality in the mate-
rial. The result of the analysis may describe the presence of
the abnormality in the material.

[0022] The material may be biological tissue. In one
embodiment, the biological tissue is human biological tissue.
In another embodiment, the material is biological tissue and
the abnormality in the biological tissue is cancer. The cancer
may be associated with at least one of female genital tract
(ovary, fallopian tube, uterus, cervix and vagina), male genital
tract (prostate and testis), urinary tract (kidney, ureter and
prostate gland), mediastinum and heart, gastrointestinal tract.
(small and large intestines, liver, pancreas, gallbladder and
biliary system), breast, skin, nervous system, endocrine
organs (thyroid gland, adrenal gland), head and neck region,
lymph nodes, soft tissue, respiratory system (including lung),
and combinations thereof. In another embodiment, the cancer
is prostate cancer.

[0023] In another embodiment, the material is biological
tissue and the abnormality in the biological tissue is selected
from benign tumour, infection, abscess, necrosis, infarct, and
combinations thereof.

[0024] The analysis may comprise subjecting the RF time
series data to a discrete Fourier transform. The at least one
parameter may be selected from:

[0025] (i) average of magnitudes of coefficients of the
discrete Fourier transform of the RF time series in a low
frequency portion of the transformation;

[0026] (ii) average of magnitudes of coefficients of the
discrete Fourier transform of the RF time series in a
mid-low frequency portion of the transformation;

[0027] (iii) average of magnitudes of coefficients of the
discrete Fourier transform of the RF time series in a
mid-high frequency portion of the transformation;

[0028] (iv) average of magnitudes of coefficients of the
discrete Fourier transform of the RF time series in a high
frequency portion of the transformation;

[0029] (v)intercept ofa line fitted to magnitudes of coef-
ficients of the discrete Fourier transform of the RF time
series plotted versus normalized frequency; and

[0030] (vi) slope of a line fitted to magnitudes of coeffi-
cients of the discrete Fourier transform of the RF time
series plotted versus normalized frequency.
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[0031] Another aspect of the invention relates to a method
for detecting, diagnosing, and/or assessing cancer, compris-
ing:
[0032] obtaining a time series of sequential data frames
associated with an ultrasound signal reflected from and/or
backscattered from a fixed location of a biological tissue,
each data frame comprising a plurality of samples of the
ultrasound signal, and
[0033] subjecting to an analysis:
[0034] (i) a sequence of one or more samples of the
ultrasound signal, or
[0035] (ii) a sequence of at least one parameter derived
from one or more samples of the ultrasound signal,
[0036] wherein a result of the analysis is related to the
detection, diagnosis, and/or assessment of cancer in the bio-
logical tissue.
[0037] In accordance with this aspect, the data may be
derived from a RF ultrasound signal. In another embodiment,
the data is derived from a processed ultrasound signal. The
data may be derived from a processed ultrasound signal
selected from an A-mode, B-mode, M-mode, Doppler, or 3-D
ultrasound signal. The analysis may be at least one selected
from:
[0038] (i) an analysis with respect to time, frequency,
amplitude, or a combination thereof,

[0039] (i1) a statistical analysis,

[0040] (iii) a stochastic analysis,

[0041] (iv) a fractal analysis;

[0042] (v) a wavelet analysis;

[0043] (vi) a spectral analysis;

[0044] (vii) array processing; and

[0045] (viii) a combination of two or more of the above.

[0046] Inone embodiment, the analysis is fractal analysis.
[0047] 1In accordance with this aspect, the cancer may be
associated with at least one of female genital tract (ovary,
fallopian tube, uterus, cervix and vagina), male genital tract
(prostate and testis), urinary tract (kidney, ureter and prostate
gland), mediastinum and heart, gastrointestinal tract (small
and large intestines, liver, pancreas, gallbladder and biliary
system), breast, skin, nervous system, endocrine organs (thy-
roid gland, adrenal gland), head and neck region, lymph
nodes, soft tissue, respiratory system (including lung), and
combinations thereof. In one embodiment, the cancer is pros-
tate cancer.
[0048] Another aspect of the invention relates to pro-
grammed media for use with a computer and with an ultra-
sound signal, the programmed media comprising:
[0049] a computer program stored on storage media com-
patible with the computer, the computer program containing
instructions to direct the computer to perform one or more of:
[0050] obtain a time series of sequential data frames asso-
ciated with the ultrasound signal from a fixed location of the
material, each data frame comprising a plurality of samples of
the ultrasound signal,
[0051] subject to an analysis:

[0052] (i) a sequence of one or more samples of the

ultrasound signal, or
[0053] (i1) a sequence of at least one parameter derived
from one or more samples of the ultrasound signal,

[0054] determine one or more properties of the material
based on a result of the analysis, and
[0055] output an indication of the one or more properties.
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[0056] The computer program may further direct the com-
puter to:

[0057] accept data relating to known properties of the same
material, or complementary data from subsequent analysis
conducted on the same material; and

[0058] update the result of the analysis based on a compari-
son to the data relating to known properties of the same
material and/or the complementary data.

[0059] In accordance with this aspect, the data may be
derived from a RF ultrasound signal. In another embodiment,
the data is derived from a processed ultrasound signal.
[0060] The data may be detived from a processed ultra-
sound signal selected from an A-mode, B-mode, M-mode,
Doppler, or 3-D ultrasound signal.

[0061] Another aspect of the invention relates to a system
for determining one or more properties of a material, com-
prising:

[0062] a computer;
[0063] the programmed media described above; and
[0064] an ultrasound device for generating an ultrasound

signal from the material.
[0065] Another aspect of the invention relates to a method
for analyzing an ultrasound signal reflected from or transmit-
ted through a material, comprising;
[0066] obtaining a time series of continuous data frames
associated with the ultrasound signal from a specific location
of the material, each data frame comprising a plurality of
ultrasound samples, and
[0067] subjecting one or more samples of each said data
frame to an analysis;
[0068] wherein a result of the analysis is indicative of one
or more physical properties of the material.
[0069] Another aspect of the invention relates to a method
for measuring a physical property of a material, comprising:
[0070] obtaining a time series of continuous data frames of
an ultrasound signal reflected from or transmitted through a
specific location of the material, each data frame comprising
a plurality of ultrasound samples, and
[0071] subjecting one or more samples of each said data
frame to an analysis;
[0072] wherein a result of the analysis is indicative of the
physical property of the material.
[0073] Thedatamay be derived from the raw RF ultrasound
signal, or from a processed ultrasound signal such as an
A-mode, B-mode, M-mode, Doppler, or 3-D ultrasound sig-
nal.
[0074] The specific location may be at a fixed location on
the material.
[0075] Invarious embodiments, the analysis may be at least
one analysis selected from:

[0076] (i) an analysis with respect to time, frequency,

amplitude, or a combination thereof,

[0077] (ii) a statistical analysis,

[0078] (iii) a stochastic analysis, and

[0079] (iv) a combination of (i), (i), or (iii).
[0080] In one embodiment, the result of the analysis is
indicative of the physical property of the material being nor-
mal or abnormal. In another embodiment, the result of the
analysis is a probability map or a probability score. In another
embodiment, the result of the analysis is indicative of severity
of the abnormality in the material. In another embodiment,
the result of the analysis describes the presence of the abnor-
mality in the material.
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[0081] The material may be biological tissue. In one
embodiment, the biological tissue is human biological tissue.
In another embodiment, the biological tissue is prostate tis-
sue.
[0082] In another embodiment, the abnormality in the bio-
logical tissue may be cancer. The cancer may be prostate
cancer, breast cancer, liver cancer, lung cancer, skin cancer, or
ovarian cancer. In another embodiment, the cancer is prostate
cancer.
[0083] Inone embodiment, the fractal analysis is the Higu-
chi method.
[0084] According to another aspect of the invention there is
provided a method for diagnosing cancer, comprising:
[0085] obtaining a time series of continuous data frames
associated with an ultrasound signal reflected from a specific
location of a biological tissue, each data frame comprising a
plurality of ultrasound samples, and
[0086] subjecting one or more samples of each said data
frame to an analysis;
[0087] wherein a result of the analysis is related to the
probability of cancer in the biological tissue.
[0088] Thedatamay be derived from the raw RF ultrasound
signal, or from a processed ultrasound signal such as an
A-mode, B-mode, M-mode, Doppler, or 3-D ultrasound sig-
nal.
[0089] The analysis may be at least one analysis selected
from:

[0090] (i) an analysis with respect to time, frequency,

amplitude, or a combination thereof,

[0091] (ii) a statistical analysis,
[0092] (iii) a stochastic analysis, and
[0093] (iv) a combination of (i), (ii), or (iii).

[0094] The analysis may include the Higuchi method.
[0095] The cancer may be prostate cancer, breast cancer,
liver cancer, lung cancer, skin cancer, or ovarian cancer. In
one embodiment, the biological tissue is prostate tissue and
the cancer is prostate cancer.

BRIEF DESCRIPTION OF THE DRAWINGS

[0096] Embodiments of the invention will now be
described, by way of example, with reference to the drawings,
wherein:

[0097] FIG. 1 is a graphical representation showing how
the time series data was acquired.

[0098] FIG. 2 shows typical microscopic images illustrat-
ing (a) normal prostate tissue, (b) benign prostatic hyperpla-
sia tissue, and (c) prostatic carcinoma, as detected by an
embodiment of the invention.

[0099] FIG. 3 shows the set-up for acquisition of the RF
signal and B-scan image: (a) the probe (marked with 1 in the
image) and prostate tissue (marked with 2 in the image) are
fixed in position for continuous acquisition of the RF time
series; (b) the first imaging position is marked with a needle
(visible in the ultrasound image).

[0100] FIG. 4 is a histogram of AHDRFT values for (a)
cancerous and (b) normal ROIs in our data (213 normal ROIs
and 185 cancerous ROIs in 20 different frames of ultrasound
data acquired from a 57 year old patient).

[0101] FIG. 5 shows a typical histopathological map of
prostate tissue used as a standard.

[0102] FIG. 6 shows plots of averaged normalized ampli-
tude of discrete Fourier transform of RF time series from (a)
normal and (b) cancerous ROIs. The slope and intercept of the
linear regression of the frequency spectrum (dotted line) and
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the sum of the amplitude values in four different frequency

bands (separated by vertical lines on the graphs) were used as

features.

[0103] FIG. 7 shows photomicrographs (200x magnifica-

tion) of the cellular structure of four tissue types (bovine liver,

pig liver, chicken breast, bovine muscle) that were differen-

tiated using an embodiment of the invention.

[0104] FIG. 8(a) is a plot of average classification accuracy

over six pairs of tissue for different values ofk,, _at resolu-

tion of 10 samples).

[0105] FIG. 8(b)is aplot of average classification accuracy

over six pairs of tissue for different number of samples in an

ROI (k,,,,=16).

DETAILED DESCRIPTION OF ILLUSTRATIVE
EMBODIMENTS

[0106] As anew approach toward a more accurate classifi-
cation of materials, detection, assessment, and/or diagnosis
of abnormalities, imperfections, and/or defects in materials,
based on ultrasound RF signals, we considered that the inter-
action of the material and ultrasound may be studied through
a stochastic or fractal analysis and described by, for example,
fractal features. We proposed that the RF output of such a
system could result in a fractal pattern when recorded as a
time series (a fractal curve or signal has the property that each
part of it can be considered as an image of the whole in a
reduced scale). We therefore obtained raw ultrasound RF data
(i.e., the ultrasound RF signal prior to any processing) and
stbjected it to time series analysis.

[0107] The idea that the interaction of the material and
ultrasound may be studied through a stochastic or fractal
analysis is particularly relevant to biological tissues. This is
based on the fact that self-organizing self-replicating cells are
the building blocks of biological tissues; furthermore, non-
linearity and quasi-determinism are the basic properties of
biological systems [11]. These two conditions are prerequi-
sites for such analyses. The self-organizing and self-replicat-
ing properties result in a fractal pattern in their output when
recorded as a time series. For example, it has been shown that
gland-like structures in some types of adenocarcinoma pos-
sess a meaningful fractal dimension [12, 13].

[0108] To generate time series data for analysis, we
acquired a continuous set of frames of RF data, at a specified
frame rate, from a fixed location of the material. The RF data
was digitized to facilitate analyses. However, the analyses
described herein may be performed in digital or analogue
domains, or in a combination of both domains. The data may
also be derived from a processed ultrasound signal such as,
for example, an A-mode, B-mode, M-mode, Doppler, or 3-D
ultrasound signal. It will be appreciated that the methods
described herein are also applicable to multi-frequency ultra-
sound, where harmonic imaging is possible. The methods
described herein are also applicable to array signal process-
ing, such as, for example, where single transmit and multiple
receive channels are employed. In such embodiments, if suit-
able, the ultrasound signal can be discretized in time and/or
amplitude and then subjected to processing.

[0109] As used herein, the term “continuous set of frames”
refers to a sequential set of frames, in which an initial frame
is followed in time by a subsequent frame or frames.

[0110] As used herein, the term “fixed location” refers to a
location in or on the material under investigation relative to
the ultrasound probe. That is, the probe is not moved but
instead is maintained at a fixed location in or on the material
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under investigation. In addition, as used herein, the term
“fixed” is intended to refer to the fact that the material is not
subjected to any intentional movement, other than any minute
movement of the material that might arise as a byproduct of
interaction of the material with the ultrasound signal. In this
regard the method described herein is distinct from the tech-
nique known as “elastography”, in which gross movement of
the material under investigation is intentionally induced
through exposure to a high power ultrasound and/or mechani-
cal signal.

[0111] Tt will be appreciated that the positional accuracy of
the fixed location is subject to some uncertainty, however,
which may arise through, for example, vibration of the probe
and/or the material under investigation, such vibration being
caused by, for example, vibration of the building, or move-
ment of the tissue arising from a patient’s breathing, heart
beat, and/or pulse. Where such unintentional movement of
the material occurs, the data may be processed to remove or
compensate for such movement.

[0112] As used herein, the term “biological tissue™ is
intended to be inclusive of any tissue derived from an organ-
ism or part thereof, as well as a cell culture and a tissue
culture. The biological tissue may be living or dead, and an
analysis as described herein may be carried out on biological
tissue in vivo or in vitro.

[0113] The material under investigation, which may be bio-
logical tissue, may be normal or abnormal, where “normal”
refers to one or more properties or characteristics of the
material falling within a range of acceptable values or meet-
ing an acceptable value, or meeting a standard. “Abnormal”
refers to one or more properties or characteristics of the
material falling outside of a range of acceptable values or not
meeting an acceptable value, or not meeting a standard.
Where a normal material is being investigated, the investiga-
tion might include assessing one or more properties or char-
acteristics of the material. Such assessment can be of interest
in, for example, comparing one or more properties or charac-
teristics of the material to one or more corresponding prop-
erties or characteristics of another material.

[0114] Within each digitized frame a region of interest
(ROI) was defined, the size of the ROI being set as appropriate
for the type of material being studied (see, for example, the
below discussion and Examples). The ROl is in a fixed loca-
tion in the series of frames, and is comprised of a matrix (e.g.,
24x88) of samples, each sample representing a scalar value
(e.g., amplitude) of the ultrasound RF signal. The temporal
sequence of values corresponding to a sample in the matrix
forms a time series. This is shown graphically in FIG. 1. Such
time series datamay then be subjected to a “single point” time
series analysis, wherein one or more properties of that time
series is determined. The analysis may be conducted with
respect to, for example, time, amplitude, frequency, and com-
binations thereof such as time and frequency, and/or may
include any mathematical operation or manipulation, and
may include, but is not limited to, power spectrum, shift in
central frequency, Fourier analysis, filtering, matrix or vector
mathematics, wavelet, zero crossing, cyclic minima and
maxima, phase analysis, data reduction (extract regions of
data, concatenate, replicate, merge, interpolate, and decimate
data series), mathematical functions (basic mathematical
functions (addition, subtraction, multiplication, division)
and/or integration, differentiation, logarithmic functions,
trigonometric functions, exponential functions), or a statisti-
cal analysis such as, but not limited to, mean, variance, stan-
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dard deviation, least squares fit, regression, Bayesian, RMS
(root mean square), polynomial or linear curve fitting, corre-
lation, autocorrelation, filtering (e.g., low pass, high pass,
median), or a stochastic analysis such as, but not limited to
probability distribution fitting, probability determination,
signal/noise ratio, and fractal analysis, and combinations
thereof. A set of such property values, which may be gener-
ated from any or all of the time series resulting from each
sample in the RO, may then be subjected to further analyses
such as an analysis with respect to, for example, time, ampli-
tude, frequency, and/or may include any mathematical opera-
tion or manipulation, such as, for example, a statistical or
stochastic analysis as listed above.

[0115] Alternatively, in a “multi-point” time series analy-
sis, the values of two or more samples from within a single
ROI, each sample representing a scalar value (e.g., ampli-
tude) of the ultrasound RF signal, may first be subjected to an
analysis wherein a property of that ROI is determined. The
analysis may include any mathematical operation or manipu-
lation, such as, for example, a statistical or stochastic analy-
sis, examples of which are noted above, to generate a property
for that ROI. This analysis is repeated for that RO in the time
series, and the resulting time series of such properties may
then be subjected to further analysis such as the single point
analysis described above. A preferred fractal analysis is that
proposed by Higuchi [14], which is a stable method to com-
pute the fractal dimension of the irregular output time series
of natural phenomena which show a turbulent behavior. How-
ever, the invention is not limited thereto.

[0116] Embodiments of the invention provide an enhanced
ability to detect defects, abnormalities, and the like, in certain
characteristics or properties of a material, and the extent or
degree of severity of the defects, abnormalities, etc. in the
material. For example, a property may be described as
“abnormal” if the value(s) representing that property falls
outside of a range of preferred values. Such characteristics or
properties, of which there may be one or more for a given
material and type of investigation, may include, for example,
physical properties such as structure, elasticity, density, opti-
cal, and electromagnetic. For example, in the case of biologi-
cal tissue, an abnormality may be detected in the arrangement
of cells, relative to normal tissue of the same type, as is the
case in many types of cancer. In non-biological materials, an
abnormality may be detected as, for example, a variation in
size or arrangement of pores, a variation in thickness or con-
sistency of laminates, or a variation in density, relative to
preferred values, or a minute crack or fissure in a material.
Embodiments of the invention may allow input and storing of
data relating to normal and abnormal characteristics of a
material, and comparison of data for a current sample to the
input/stored data, and as an output provide an indication (e.g.,
a probability) of whether the material is either normal or
abnormal. Embodiments of the invention may also provide an
indication as to extent or severity of the abnormality based on,
forexample, size, and/or location of the abnormality, and may
further provide an indication of the grading of the abnormal-
ity (e.g., as is known for various cancers). One aspect of the
invention provides for ongoing training of the method to
recognize abnormalities by inputting data relating to
examples of normal and/or abnormal material as such data
become available, and by correcting the result based on sup-
porting confirmatory or complementary data.

[0117] To demonstrate the effectiveness of the embodi-
ments described herein, we have applied them to ultrasound
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data of biological tissue for diagnosing prostate cancer and
for distinguishing different tissue types (see the below
Examples). However, it will be appreciated that embodiments
of the invention are not limited thereto, and they may be
applied not only to other tissues for detection, diagnosis,
and/or assessment of other cancers in any anatomic site, such
as, but not limited to, female genital tract (ovary, fallopian
tube, uterus, cervix and vagina), male genital tract (prostate
and testis), urinary tract (kidney, ureter and prostate gland),
mediastinum and heart, gastrointestinal tract (small and large
intestines, liver, pancreas, gallbladder and biliary system),
breast, skin, nervous system, endocrine organs (thyroid
gland, adrenal gland), head and neck region, lymph nodes,
soft tissue, respiratory system (including lung). Embodi-
ments of the invention may also be used for detection, diag-
nosis, and/or assessment of tissue abnormalities including
pathological abnormalities other than cancer, such as, but not
limited to, benign tumours, infection, abscess, necrosis, and
infarets.

[0118] Embodiments of the invention may also be used for
inspection and/or assessment of non-biological materials.
Such applications may include inspection of materials for
manufacturing and/or structural defects, analysis of effects of
stress/strain on machine components, and detecting failure of
machine components, in manufacturing, research, and indus-
tries such as transportation and aerospace.

[0119] Embodiments of the invention are further described
by way of the following non-limiting examples.

Example 1
Detection of Prostate Cancer using Fractal Analysis
1.1 Introduction

[0120] Prostate cancer (PCa) is the most common malig-
nancy among men and the second leading cancer-related
cause of death after lung cancer [1]. It is estimated that there
will be about 241,190 new cases of prostate cancer in North
Americain 2007 and about 31,350 men will die of this disease
[2. 3]. If diagnosed in early stages, PCa is a manageable
condition in many cases. However, the process of screening
and diagnosis of the disease is controversial [4]. Prostate
tumors have inconsistent appearances on medical images. In
particular, on transrectal ultrasound (TRUS) which is the
standard imaging modality to study prostate, cancer lesions
can be hypoechoic, hyper-echoic or even isoechoic. The pres-
ence of benign prostatic hyperplasia (BPH) further compli-
cates the visual inspection of ultrasound images, as BPH is
typically associated with hyperplastic nodules that may
mimic areas of malignancy.

[0121] The standard for detection of PCa is pathological
analysis of tissue samples acquired through TRUS guided
biopsy. However, the multi-focal nature of the disease and
limited biopsy sampling of prostate cancer causes high rates
of false negative diagnoses. Several researchers have studied
ultrasound-based solutions for computer-aided diagnosis of
PCa. The first-order statistical moments (such as mean, stan-
dard deviation, skewness and kurtosis) of the intensities of
pixels in each region of interest (ROI) of the tissue form a
basic set of features for tissue classification [5, 6]. Tissue
characterization based on the acoustic parameters extracted
from the raw RF ultrasound echo signals (before being trans-
formed to B-scan images) has been studied since the early
1970’s (see [ 7] for a review). Frequency-dependent nature of
ultrasound scattering and attenuation phenomena can charac-
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terize different tissue types and is studied through frequency
spectrum of RF signals. Along with texture and co-occur-
rence based features extracted from B-scan images, RF spec-
trum parameters have been used to form hybrid feature vec-
tors to be used for detection of prostate cancer. Such features
are utilized as the input to neural networks and neuro-fuzzy
inference systems [ 5], self organizing Kohonen maps [8] and
quadratic Bayes classifiers [9] for characterization of prostate
tissue. Nevertheless, despite the long history of studies in this
field, an accurate analytical model of ultrasound-tissue inter-
actions is still outstanding [9, 10] and the results of RF-based
tissue classification methods are not promising enough for
clinical applications.

[0122] In prostate cancer, the progression of the malig-
nancy is associated with geometrical deregulation of the
architectural structure of the cellular network. This is in fact
the basis for pathologic indices used for detecting and grading
of the disease. FIG. 2 shows the typical appearances of the
normal and cancerous tissue in pathology slides where the
irregularity of the cancerous structure is vivid. It is also
known that backscattered ultrasound signal is affected by the
geometry and spatial distribution of scatterers [15]. Based on
these two facts we examined the hypothesis that if the prostate
tissue continuously undergoes interactions with the ultra-
sound signal, the time series formed by each sample of back-
scattered signal will have a fractal dimension which can be
used to distinguish between cancerous and normal tissue.
[0123] To examine the validity of this hypothesis, we
acquired continuous RF data frames from the prostate tissue
of patients undergone radical prostatectomy, and extracted
the Higuchi fractal dimensions of the time series formed in
ROIs of size 0.028 cm” (the highest resolution ever reported).
We analyzed the separability capability of this parameter
between cancerous and normal tissue and found it to be sta-
tistically significant. Furthermore, we used neural networks
to classify the ROIs and observed that when the Higuchi
fractal dimensions of the RF time series is added to a combi-
nation of B-scan based texture features, the accuracy ofneural
network based classification of prostate tissue increases con-
siderably. In fact, contrary to the fractal dimension of the
B-scan ROIs which reportedly [16] performs as “another”
texture feature, the Higuchi dimension of the time series of
RF samples (averaged over the ROI) has a distinctive effect on
the classification results.

1.2 Methods
1.2.1 Data

[0124] For ultrasound data collection, we used a Sonix RP
(Ultrasonix Inc., Vancouver, Canada) ultrasound machine
which has the capability of collecting and recording the raw
RF signals, and an endorectal probe model BPSL.9-5/55/10,
frequency range: 5-9 MHz, set to 6.6 MHz for our experi-
ments, and the linear transducer on this probe which is 55 nun
long. FI1G. 3(a) shows the data collection setup; the endorectal
probe was mounted on a rail which could be moved along the
prostate tissue while the tissue was fixed in a frame and
immersed in water. We ensured that the orientation of the
acquired ultrasound frames was as close as possible to the
orientation of the slices to be made for specimen histopatho-
logic analysis. To mark the position of the first ultrasound
frame which had to be used as the origin for the pathological
analysis, we placed a needle inside the tissue which was
visible within the ultrasound image (FIG. 3(5)).
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[0125] The Sonix RP machine was set to provide a maxi-
mum of 63 RF frames collected with the a rate of 8 frames per
second. Each RF frame (equivalent to one B-scan image)
consisted of 256 lines of RF signal each with 2064 samples
(samples are the outputs of'a 16 bit A/D converter operating at
a frequency of 40 MHz). At each position we acquired 63 RF
frames. The positions were 1 mm apart from each other. The
size of ROIs used in this study was 16x16 pixels on the B-scan
ultrasound which was equivalent to 0.028 cm? of the actual
tissue or a window of size 24x88 in the equivalent RF frame.
A total of four prostates were scanned and data acquired from
two patients were used in this study. After acquisition of
ultrasound data, a detailed histopathologic analysis was per-
formed on tissue slices each 5 mm apart. Multifocal prostatic
carcinoma was confirmed histologically in each prostate
examined. Based on tissue histology, malignancy maps were
produced for each prostate slice and were used as the standard
for validation in this study.

1.2.2 Features

[0126] Every ROI was described with seven features:
[0127] four statistical moments of the pixel intensities in
the B-scan image (mean, standard deviation, skewness and
kurtosis);

[0128] box-counting fractal dimension of the correspond-
ing window of the B-scan image (referred to hereinafter as
“DBS”), and the box-counting fractal dimension of the cor-
responding window in the RF data (referred to hereinafter as
“DRF”); and

[0129] the average of Higuchi fractal dimensions of the RF
sample time series in the ROI (referred to hereinafter as
“AHDRFT” (average Higuchi dimension of RF time series)).
[0130] Single-frame-based fractal dimensions: DBS and
DRF were extracted from a single B-scan image and the
corresponding RF frame. For calculating three of DBS, we
closely followed the box-counting method to compute the
fractal dimension of a grayscale image (as described in [17]
and also used in [ 18]). For computation of DRF, the RF frame
was considered as a 2D matrix of gray levels and the same
methodology as in [17] was applied.

[0131] Higuchi fractal dimension (AHDRFT) [14]: Con-
sider N frames of RF data acquired at a regular rate while the
probe and the tissue are fixed in position. Each sample of the
RF data forms a time series X(1), X(2), ..., X(N).

[0132] From this time series we first construct k new time
series X, as follows:

N-m
mﬂxmxmm+mxw+%%maXW+[k }@

where k<N, m=1,2,...,k-1andboth are integers. The length
of each time series is defined as:

N-m (h

oL (N Xﬁi Xon+ i) -
Lntk) =2 X "7 =m ) ‘XW+U—U%J
[+ =

[0133] The average value of Lm(k) over k sets (denoted
with <[,(k)>) is the length of the curve. If the condition
<L(k)>ock™ holds, the curve is fractal with the dimension d.
In other words, to compute d, a line is fitted to values of In
(Lm(k)) versus In (1/k) and the slope of this line is considered
as the Higuchi fractal dimension of the time series. In our
implementation, k=16 and N=64 (the 63 point time series was
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augmented with one sample equal to the last sample to
increase the computational efficiency). AHDRFT is the aver-
age of d value computed for all the RF samples in the corre-
sponding RF window of an ROT.

1.2.3 Class Separability Measure of the Features

[0134] One of the classical measures to quantify the sepa-
rability capabilities of individual features in a two class prob-
lem is the so-called Fisher’s Discriminant Ratio (FDR) [19]:

- 2)

FDR =
ai+oi

where 1, and o, are the mean and the variance of the values
of the feature in class one respectively. Value of FDR is a
statistical measure of the capability of the feature to discrimi-
nate the samples from the two classes. A higher value of FDR
is an indication of higher separability capability of the fea-
ture.

1.2.4 Classification

[0135] We performed several classification experiments
with artificial neural networks (ANN). We applied multi layer
perceptron networks (feedforward) with one or two hidden
layers and used different combinations of the seven features
described in section 1.2.2 as their input. Back propagation
was used for training the networks. Trained networks were
tested on separate unseen ROTs and the results were validated
based on the histopathologic analysis of the tissue. In one set
of experiments, data acquired from one patient was used for
training and testing the networks. In the second set of experi-
ments, networks were trained on one patient and tested on
another one.

1.3 Results

[0136] Statistical analysis of separability capability of fea-
tures: Table 1.1 summarizes the FDR values for the two more
effective statistical moments, as well as DBS, DRF and
AHDRFT. Separability capability of AHDRFT is clearly
higher compared to all other features. In addition, the value of
correlation coefficient of AHDRFT with mean is significantly
lower than the correlation coefficients of DBS and DRF with
mean. This can be an indication of the independence of
AHDRFT from the absolute pixel intensities in the ROI
which is a useful property for dealing with isoechoic tumors.

TABLE 1.1

The FDR of features and their correlation
coefficient with feature “mean”.

Fisher’s Correlation
discriminant with

Feature ratio mean
mean 5.8 —

std 26.6 0.3401
DBS 339.9 0.9932
DRF 132.8 0.9627
AHDRFT 1186.7 04552

[0137] Single patient classification experiments: In the first

set of experiments, we selected 213 normal ROIs and 185
cancerous ROIs in the data (based on the histopathology
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results). The cancerous samples were from two different
lesions (one hypoechoic and one isoechoic) in two different
parts of the prostate tissue of a 57 year old patient. The ROIs
were selected from 20 different frames of ultrasound data. In
each experiment, two thirds of the data samples were ran-
domly selected for training and the rest were used for testing
the trained network. FIG. 4 is a histogram of the AHDRFT
values, showing a dramatic separation between the cancerous
(a) and normal (b) ROIs. Table 1.2 summarizes the results.
Accuracy, sensitivity and specificity values reported in each
row are the average of 10 experiments performed with the
feature vector described in column two on the ANN architec-
ture described in column three (which was found to be the
optimal architecture in the corresponding case). Table 1.2
shows that after including AHDRFT in the feature vector, a
significant increase in the classification accuracy is witnessed
(compare rows 1 and 5). It is also worth mentioning that
adding AHDRFT improved the performance of the DBS and
DRF set. While the two dimensional vector formed by DBS
and DRF (row 2) does not show any significant improvement
over texture feature results (row 1), adding AHDRFT consid-
erably increases the accuracy (row 4). The overall best results
were acquired by using the feature vector that contained all
seven features (around 97% accuracy, row 6).

[0138] 1In an effort for further statistical validation of the
results, we performed 200 rounds of training and testing each
time with a random split of training and testing sets. We used
the seven dimensional feature vector and an average accuracy
0f 93.8% was recorded.

TABLE 1.2
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1.4 Discussion and Conclusions

[0140] One embodiment of this invention relates to a new
method of detecting cancer using time series ultrasound RF
data and a fractal analysis. In this example, we used the
average Higuchi dimension of RF time series (AH-DRFT) for
prostate cancer detection from ultrasound RF signals and
acquired highly promising tissue classification results.
Malignant prostate tissue is composed of irregularly shaped
and distributed cellular networks. In search for an ultrasound-
based parameter that can discriminate cancer from normal
tissue by characterizing the scattering caused by different
tissue types, we analyzed backscattered RF time series
acquired from prostate glands of patients undergone prostate-
ctomy. The Higuchi fractal dimension of these time series
averaged over an ROI showed a meaningful statistical differ-
ence in cancer versus normal regions. In ANN-based classi-
fication experiments on data acquired from one patient, we
acquired up to 97% accuracy. Furthermore, the neural net-
works trained with our proposed set of features on data
acquired from one patient were almost perfectly capable of
detecting all cases of cancer in the data acquired from another
patient. The detection of normal tissues on the second patient
resulted in a lower accuracy. Our investigation showed that
this phenomena is due to the presence of areas with BPH in
the prostate tissue which was not considered as a separate
class in our training data.

[0141] The experimental results demonstrate the effective-
ness of this embodiment for detecting and diagnosing pros-

The performance of different groups of features. Addition of AHDRFT

considerably increased the accuracy.

Test Features ANN§ Accuracy Sensitivity Specificity

1 mean, std, ku*, sk** 4-15-15-1 87.4 87.7 84.0

2 mean, std, ku, sk, DBS, DRF 6-10-10-1 88.7 85.2 88.3

3 DBS,DRF 2-20-1 88.4 89 88.7

4 DBS, DRF, AHDRFT 3-10-10-1 94.2 93.2 94.3

5 mean, std, ku, sk, AHDRFT 5-10-10-1 93.9 94.5 93.4

6 mean, std, ku, sk, DBS, DRF, AHDRFT ~ 7-20-1 96.4 95.4 97.1
*Kurtosis,
**Skewness,

§Structure of the best performing ANN, number of neurons in netwark layers are separated with “-.

[0139] Cross validation classification experiments: In the
second set of experiments, the ANN of choice was trained
with the data used in the previous experiment and tested on
ROIs extracted from the data acquired on a second patient (50
cancer ROIs extracted from two different tumors and 54 ROIs
extracted from the non-cancerous areas in the prostate ofa 54
year old patient). An MLP with two hidden layers and 10
neurons in each hidden layer was used with the seven dimen-
sional feature vector. The sensitivity of the tests was con-
stantly equal to or higher than 98%. However, the specificity
dropped to almost 70%. In other words, although all areas of
cancer were identified, a high rate of false positives was
witnessed. This result urged us to further investigate the cor-
responding regions of the actual prostate tissue. We observed
that relatively large lesions of BPH were present in the areas
labeled as normal in data acquired from the second patient.
Although BPH tissue is not cancerous, it shows a different
cellular structure (see FIG. 2(b)). The high rate of false posi-
tive detections is likely due to the fact that networks were not
trained on such benign ROIs.

tate cancer, and suggest that it will be effective in detecting
and diagnosing other cancers as well as non-cancerous abnor-
malities in biological tissue, and in detecting defects in non-
biological materials.

Example 2
Detection of Prostate Cancer using Fourier Analysis
2.1 Introduction

[0142] In Example 1 we performed a study involving
extracted prostate tissue from two prostatectomy patients,
and used fractal dimension of RF time series to detect prostate
cancer. The results showed that the fractal dimension of RF
time series is superior to texture features extracted from ultra-
sound B-scan images in detection of prostate cancer. How-
ever, the specificity of detection was low. To overcome this
limitation, data has been collected from human prostate tissue
samples, and various features have been extracted from RF
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time series to increase the diagnostic value of the embodi-
ments described herein. This example presents a new set of
features extracted from the amplitude of the discrete Fourier
transform (DFT) of RF time series. These features represent
the frequency spectrum of RF time series using a small profile
that consists of six parameters. The results show that, when
used together, these six parameters are excellent features for
detection of prostate cancer with a simple neural network
classifier. The results include a mean accuracy of over 91%,
with 92% sensitivity and 90% specificity, and the results have
been validated using detailed malignancy maps acquired
from histopathologic analysis of seven prostate specimens.
The results show that acquisition and analysis of RF time
series is an efficient approach for detection of prostate cancer.

2.2 Methods
2.2.1 Ultrasound and Histopathology Data

[0143] Ultrasound and histopathology data were collected
from patients who choose prostatectomy as their treatment
choice at Kingston General Hospital (Kingston, Ontario,
Canada). Excised prostate specimens were suspended in a
water bath, and scanned along cross-sections marked by a
pathologist. The distance between the cross-sections was 4
mm. The RF ultrasound data was collected using a Sonix RP
(Ultrasonix Inc., Vancouver, Canada) ultrasound machine
which is capable of recording raw RF frames. A transrectal
ultrasound probe model BPSI.9-5/55/10 was used with the
central frequency set to 6.6 MHz. To form the RF time series,
a continuous sequence of 112 frames of RF data were
acquired, at the rate of 22 frames per second, from each
cross-section of the tissue. The prostate specimen was then
dissected along the scanned cross-sections. The pathologist
then examined the tissues under a microscope, and provided
malignancy maps which were overlayed on the cross-section
slides (FIG. 5). These maps were used as the standard to
evaluate the performance of detection based on the features
extracted from the acquired RF time series.

[0144] The process of registering the histopathology maps
to the ultrasound frames was performed manually. In some
cases, the boundaries of the prostate in the ultrasound images
were blurred (many scanned cross-sections were discarded
due to uncertainty in the registration process). The results
reported in this example were obtained based on data from 15
cross-sections of prostate specimens acquired from seven
patients. Tissue characterizing features were extracted from
square Regions of Interest (ROI) of size 0.03 cm® which is
equivalent to 8x48 samples in an RF data frame. 285 ROIs in
cancerous areas and 285 ROIs in normal areas of the scanned
cross-sections were identified. The methods described in this
example were applied to these 570 ROIs.

2.2.2 Feature Extraction

[0145] Each region of interest in the dataset is represented
with seven features. All these features were extracted from the
RF time series described above.

[0146] DFT-based features: These included six features
extracted from the amplitude of the DFT of RF time series
averaged over an ROI. Fach RF time series is a discrete signal
of length N (N=112 frames in this example). We were inter-
ested in variations of this signal; therefore, features were
extracted from the zero-meaned time series. The discrete
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Fourier transform of the time series x, can be described as

([23]):

= (3)
X[k = NZOX' [n]e 2k
[0147] where X is the DFT of the zero-meaned RF time

series x,, and N=112. DFT was computed using the fast Fou-
rier transform (FFT) algorithm [21] as implemented in MAT-
LAB™ (The Mathworks, Inc., Natick, Mass., U.S.A.).
[0148] Since the RF time series are real and have mean of
zero, 1X[0]1=0 and IX[k]I=IX[N-k]I, where || denotes ampli-
tude of a complex number [22]. In other words, the frequency
spectrum of RF time series is completely represented by N/2
or 56 values, namely IX[k]l where k=1, . .., n/2. We average
each of these 56 values over all RF time series corresponding
to RF samples in one ROIL The averaged spectrum of the ROI
(IXIROI) was then normalized as follows:

K\ = T K] /max( W K1) @
[0149] This normalization process set the maximum of the
averaged spectrum to 1 and enabled comparison of data from
different ROIs. The six proposed RF time series features,
listed below, were extracted from (1Xz,l) and are designed to
represent the frequency spectrum through a few parameters.

The first four features (S1, S2, S3 and S4) are the integral of
(1Xzo) in four quarters of the frequency range:

N 5)
S1="[Rroulk]]
k=1

7 (6)
$2= > |Rrorlk]

k=Nj8+1

s )
3= Y |Rarlk]

k=Njd+1

o 8)
54 = Z | X ror [K]|
=3NT8+L

A regression line was fit to values of the spectrum (versus
normalized frequency). The slope and intercept of this line
were used as two more features. FI1G. 6 illustrates the average
spectrums over all normal (a) and cancerous (b) ROIs and
clarifies the process of extracting S1-S4, spectral slope and
intercept.

[0150] Fractal dimension: Example 1 describes our meth-
odology for extracting the average fractal dimension of RF
time series in a region of interest of tissue, which is based on
Higuchi’s algorithm. In order to extract the fractal dimension,
Higuchi’s algorithm computes mean length of the time series
at different scales (up to a maximum scale k), plots a
log-log graph of length versus scale, and measures the slope
ofthe linear fit of this graph as the FD. We have shown that for
tissue characterization based on FD, the algorithm works best
with k, , =16. As mentioned earlier, the ROIs considered in
this work are of size 8x48=384 in the RF data. The FD of each
of the corresponding 384 time series in each ROI was com-
puted, and these were averaged to acquire one feature per ROI
(simply called FD in the rest of this example).

2.2.3 Classification Performance of Individual Features

[0151] To study the capability of the proposed features in
detection of prostate cancer, the features were ranked indi-
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vidually. Each feature was considered as the sole character-
izing parameter and used with a Bayesian approach to distin-
guish cancerous ROIs from normal ones. The Bayesian
approach can be summarized as follows. If o, and w_ repre-
sent ROIs from normal and cancerous tissues, and frepresents
the feature value ofa given ROI (which we do not know what
category itbelongs to), Bayes rule states that the classification
can be performed based on the following inequalities:

B(f ©,)P(0,)ZP(flo,)P() ©)

P(w,) and P(w,) are a priori probabilities (which can be
simply calculated as the ratio of the number of ROIs in each
category to the total number of ROIs). P(flw,) and P(flw )
are the probability distribution functions of feature values in
normal and cancerous ROIs, respectively. For validation, the
data was randomly partitioned in each category to 10 folds,
probability density functions (PDFs) were evaluated on 90%
ofthe data ROIs, the remaining 10% were classified based on
Equation 9, and the procedure repeated for all 10 partitions of
the data. The entire leave-10%-out process was repeated 200
times (each time with a new random partitioning of the ROIs
to 10 folds), and the mean and standard deviation of the
outcomes was recorded.

2.2.4 Neural Network Classification

[0152] Different combinations of the proposed features
were used with feedforward neural networks in an effort to
maximize accuracy in detection of cancerous lesions.
Reported results were acquired on a network with two hidden
layers; five neurons in each hidden layer with log-sigmoid
transfer functions. A supervised learning strategy with Lev-
enberg-Marquardt backpropagation training was used. For
validation of the classification results, a leave-10%-out train-
ing-testing methodology was followed. In other words, the
network was trained using 90% of the data samples, the
remaining 10% were classified, and procedure repeated for all
10 portions of the data. The entire leave-10%-out process was
repeated 100 times, and the mean and standard deviation of
accuracy, sensitivity and specificity were recorded.

2.3 Results and Discussion
2.3.1 Classification Results Using Individual Features

[0153] Table 2.1 summarizes the ranking of individual fea-
tures based on their performance in detection of prostate
cancer ROIs as the sole feature. While the table provides
sensitivity, specificity and accuracy, the ranking is based on
accuracy. It is evident that the two features with high classi-
fication performance are spectral slope and the fractal dimen-
sion. In agreement with the results of Example 1, the classi-
fication based on FD resulted in very high sensitivity (94%)
and low specificity (61%). In the case of spectral slope, the
specificity is fairly high (83%) at the expense of sensitivity
(77%). Among the other DFT-based features, the worst per-
formance occurred when S1 and the spectral intercept were
used. Both of these features characterize the low frequency
components of the RF time series. S4, S3 and S2 have higher
levels of tissue characterizing performance in decreasing
order.

2.3.2 Neural Network-Based Classification Results

[0154] Table 2.2 presents the classification results acquired
using different useful combinations of the selected features
with the neural network classifier described above. The high-
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estaccuracy was 91.1%, acquired when a feature vector con-
sisting of the six DFT-based features was used. This high
accuracy was achieved while both sensitivity and specificity
were very high (92.3% and 89.8%), a favorable outcome of a
diagnostic test.

[0155] It is noted that addition of the FD to the DF T-based
features did not add to the diagnostic value of the method (row
2). In other words, the six DFT-based features were sufficient
for classification. Another interesting result was that although
S1-S4 were not powerful features when used individually, the
combination of all of them resulted in an efficient feature
vector (the classification accuracy was 86.7% for a feature
vector consisting of S1-S4). On the other hand, while FD and
spectral slope were the two best performing individual fea-
tures (Table 2.1), their combination did not provide a very
high diagnostic accuracy (72.6%).

TABLE 2.1

Ranking of the seven features for accuracy in
separation of normal and cancerous tissue
using the Bayesian approach

mean mean mean
accuracy sensitivity specificity
rank feature (std) (std) (std)
1 spectral slope  80.1% (5.4) 77.0%(2.0)  83.5% (6.9)
2 FD 76.9% (5.1) 94.1% (3.0)  61.9% (3.8)
5 s4 63.9% (6.1) $75%(5.1)  68.7% (7.4)
4 s3 62.3% (6.1) 60.1%(53)  63.9% (8.7)
3 S2 61.6% (6.9) 57.5%(41)  66.1% (9.0)
6 spectral intercept  58.8% (6.9)  534.2% (5.2)  63.2% (4.6)
7 s1 57.3% (5.5) 32.6%(5.2)  63.2% (8.3)
TABLE2.2

Neural network classification results using different
combinations of the seven features

mean mean mean
Feamre vector aceuracy sensitivity specificity
(number of features) (std) (std) (std)
spectral slope and intercept, 91.1% (2.7)  92.3% (3.5)  89.8% (4.2)
$1-84 (6)
spectral slope and intercept,  89.4% (5.4) 91.1%(6.7)  87.2% (8.8)
S1-S4,FD (7)
S1-S4 (4) 86.7% (3.8) 885%(53)  85.0% (6.0)
spectral slope and intercept ~ 81.7% (3.9) 80.7%(5.3)  82.7% (8.4)
@
spectral slope and FD (2) 72.6% (9.9) 79.8%(8.3)  65.2% (9.4)

2.4 Conclusion

[0156] The above analysis showed that the six selected
DFT-based features were self-sufficient for diagnosis of pros-
tate cancer with high sensitivity and specificity. The analysis
improves the performance of ultrasound-based methods for
detection of prostate cancer. An advantage of the analysis is
that the FFT algorithm reduces the computational complexity
of calculating DFT-based features. Ongoing work investi-
gates the effects of probe frequency, acquisition frame rate,
and length of RF time series on the results of the analysis, and
the use of phase information acquired from DFT of RF time
series for tissue characterizing features.
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Example 3

Tissue Characterization Using Fractal Dimension of
High Frequency Ultrasound Rf Time Series

3.1 Introduction

[0157] Ultrasound-based tissue characterization tech-
niques rely on different patterns of scattering ofultrasound in
tissues with dissimilar cellular microstructures. Although the
exact physical mechanisms that govern these patterns are not
well understood [24], microstructure-induced differences in
ultrasound-tissue interaction are documented both at clinical
(2-10 MHz) frequencies [25] and at higher frequencies [24,
26]. In other words, ultrasound radio frequency (RF) echoes
contain information about tissue characteristics. However, it
is challenging to disentangle this information from variations
in the signal caused by system-dependent effects, such as
mechanical and electrical properties of the transducer and
diffraction effects due to the finite aperture of the transducer.
This fundamental restriction of ultrasound-based tissue char-
acterization techniques limits their sensitivity and specificity
in diagnosis of cancer lesions [5, 20, 27].

[0158] The above examples demonstrate that if a specific
location in tissue undergoes continuous interactions with
ultrasound, the time series of the RF echo signals from that
location carries “tissue characterizing” information. In other
words, although variations in the intensity of one sample of
RF echo over time are partly due to the electronic noise of the
ultrasound machine or the errors caused during the beam-
forming process, they depend on tissue characteristics as
well. Use of high frequency ultrasound in this new approach
may provide insight into this phenomenon. It is a well-known
fact that at very high frequencies the scattering of ultrasound
1s primarily caused by cellular microstructure [24] as opposed
to tissue macrostructure. Therefore, the dependence of the FD
of RF time series on cellular microstructure should be more
evident in high frequency data.

[0159] In this example, for the first time, RF echo time
series acquired using high frequency ultrasound probes were
analyzed. The data demonstrate that at these high frequen-
cies, the differentiation of tissues based on FD of RF time
series is closely related to differences in tissue microstruc-
tures. The FD of the RF times series was used to successfully
distinguish segments as small as 20 microns of animal tissues
of dissimilar microstructures with accuracies as high as 98%.
Furthermore, the FD values calculated from the RF time
series of different tissues showed statistically significant dif-
ferences, far beyond the variations in FD values in one tissue
type. These results suggest the presence of microstructure-
related information in the RF time series, and provide a novel,
effective method in diagnosing cancer, due to changes at the
cellular level of the tissue during the formation of malig-
nancy.

3.2 Methods

[0160] To study the tissue characterizing capabilities of RF
echo time series acquired at higher frequencies, four different
tissue types were used: bovine liver, pig liver, bovine muscle,
and chicken breast, As illustrated in FIG. 7, the cellular struc-
ture of both bovine and pig liver are characterized by hepa-
tocyte cells (the two are of slightly different shape and den-
sity), whereas bovine muscle and chicken breast both have
fibrous structures formed by sarcomeres.
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[0161] Thehigh frequency ultrasound RF time series were
collected using a Vevo 770 high resolution ultrasound system
(VisualSonics Inc., Toronto, Canada) with two different
probes of the 700-series RMV scanheads (see Table 3.1 for
specifications). Each time series of RF data was formed by
scanning a fixed spot of the tissue in A-mode (single lines of
RF), with a depth of about 1 mm (equivalent to 512 samples
of digital RF signal) 500 times at the rate of about 60 frames
per second. Initially, we used the RMV711 scanhead to
acquire two separate lines of RF time series from two differ-
ent areas of each tissue type. Then, the data collection proce-
dure was repeated using the RMV706 scanhead using the
same tissue specimens.

TABLE 3.1

Specifications of the high frequency ultrasound scanheads.

Model Broadband frequency Center frequency  Axial resolution
RMV711  Up to 82.5 MHz 55 MHz 30p
RMV706  Up to 60 MHz 45 MHz 40u

3.2.1 Feature Extraction

[0162] Tissue types were characterized by the average of
FDs computed for all the time series corresponding to RF
samples in a Region of Interest (ROI). The high frequency
data was acquired in A-mode. Therefore, ROIs were simply
segments of RF lines (a segment with 10 samples was equiva-
lent to 20 microns). We examined RO sizes as small as a
single RF sample up to 20 samples.

[0163] FD oftime series originating from natural processes
has been extensively studied as a parameter that quantifies
nonlinear internal dynamics of complex systems [28, 29]. In
such systems, the mechanisms of interaction that give rise to
the output time series are not well understood. FD has been
shown to have low sensitivity to noise-induced variations
[30]. In the case of RF time series analysis, microstructural
information is received along with noise-related variations.
Therefore, FD was used to characterize the RF time series.
Higuchi’s algorithm [14] was used for computation of the FD
of time series which can be summarized as follows: Each
sample of the RF data forms a time series {X(1), X(2), . ..,
X(N)} over sequential ultrasound frames, where N=500 for
the high frequency RF data. From this time series, k new time
series were constructed of form:

X X (), X(m4K), X(m+26), ... ,X(m+[¥]-k] (10

where k is the sampling time interval (which determines the
scale, k<N)and m=1, 2, . .., k-1. Both m and k are integers.
The length of each time series, L,,(k), was defined as:

(an

(7% .
k)—lx N-1 XZ‘ X (m + ik) -
b= X F = X(m+(i-1)-k)
= =

[0164] The average value of L, (k) over k sets, L(k), is the
length of the time series at scale k. This procedure was
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repeated for each k ranging from 1 tok,, ... A line was fitted to
values of In (L(k)) versus In (1/k) and the slope of this line was
considered as the FD. The number of samples, N, and the
nature of the time series determine the optimal value of the
parameter k. . For this example, the value ofk , , was opti-
mized based on the average classification accuracy acquired.
K, values between 4 and 56 were examined. Feature extrac-
tion for each A-line involved computation of FD of 512 time
series of length 500. The output of this process is referred to
as a FD vector.

3.2.2 Bayesian Classification

[0165] All classification results reported herein were
acquired with a Bayesian approach. If o, and w, represent
ROIs from two categories of tissue in one of the classification
experiments, and x represents the feature value ofa given ROI
(which we do not know what category it belongs to), Bayes’
rule states that the classification can be performed based on
the following inequalities:

P(x ©,)P(00) Z P(xl,)P(0;) 12)

[0166] P(w,)and P(w,)area priori probabilities (which can
be simply calculated as the ratio of the number of ROIs in
each category to the total number of ROIs in the two catego-
ries). P(xlw,) and P(xlw,) are the probability distribution
functions (PDFs) of feature values in categories 1 and 2
respectively. A Gaussian PDF was fit to the distribution of the
feature in each category.

[0167] A leave-10%-out validation methodology was fol-
lowed for classification, in which the data was randomly
partitioned in each category into 10 folds. The PDFs were
evaluated on 90% of the data samples, and the remaining 10%
were classified based on the evaluated PDFs, and the proce-
dure was repeated for all 10 portions of the data. The whole
leave-10%-out process Was repeated 200 times (each time
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could not be separated (classification accuracies close to
50%). The ROI size used for classification was 20 microns
(10 samples) and k, , =16.

TABLE 3.2

Comparison of two FD vectors from
two RF lines of one tissue type.

accuracy in

separating ROIs
ANOVA from the two
p-value lines results on
Tissue type RMV711 RMV711 - mean (STD)
Bovine liver 0.47 52% (3.7)
Pig liver 0.007 47% (3.9)
chicken breast 0.0001 59% (3.1)
Bovine muscle 0.68 53% (4.3)

[0169] FD vectors from different tissue types (k,,,,=16):
We performed the ANOVA tests on FD vectors of different
tissue types (for all six possible pairs of tissue). Column 2 of
Table 3.3 provides the p-values which were all virtually zero
and showed that the vectors were statistically different in all
SiX pairs.

[0170] Two separate FD vectors from each tissue type,
computed from the data acquired on the RMV711 scanhead,
were available. The two vectors of each tissue type were
combined to acquire a single vector of length 1000 and the
Bayesian approach described above was used to perform
pairwise classifications. The results for these classification
trials which were in single RF sample resolution are reported
in column 3 of Table 3.3. It is interesting to note that even with
this resolution, classification was successful when the two
tissue types were from different microstructural categories
(rows 1-4); however, when pig liver was compared with
bovine liver (row 5) or the two fibrous tissue types were
compared (row 6), the classification at this extremely high
resolution produced lower accuracy.

TABLE 3.3

Comparison and classification of data from different tissue types

p-value mean (STD) mean (STD) mean(STD)
FD vectors 1 sample 10 samples 10 samples
Tissue types RMV711 RMV711 RMV711 RMV706
Bovine liver - chicken breast 0 81.1% (2.5) 92.2% (5.8) 96.9% (3.5)
Bovine liver - bovine muscle 0 84.1% (2.3)  95.5% (4.0) 93.7% (5.3)
Chicken breast - pig liver 0 84.6% (2.3)  96.0% (4.2) 92.3% (5.3)
Pig liver - bovine muscle 0 89.2% (2.1) 98.2% (3.1) 90.0% (6.4)
Bovine liver - pig liver 0 73.7% (3.0)  83.7%(7.1) 65.1% (7.9)
Chicken breast - bovine muscle ~ 5.7x 107 64.1% (3.1) 72.2%(8.9) 63.1% (8.1)
Average over all six tissue pairs 79.5% 89.6% 83.2%

with a random partitioning of the ROIs to 10 folds). The mean
accuracies and standard deviations were recorded over these
200 trials.

3.3 Results and Discussion

[0168] FD vectors from the same tissue types: The first step
in the analysis was to perform one-way analysis of variance
(ANOVA) tests on pairs of FD vectors from the same tissue
types. As Table 3.2 illustrates, when two FD vectors from the
same tissue type were compared, the p-values in ANOVA
tests were relatively large and the samples from two lines

[0171] Furthermore, the performance of our approach was
examined at a lower resolution. Ten samples of each FD
vector were examined to acquire vectors of length 50 (100
after combining the two lines from the RMV711 scanhead).
Each element of these vectors represented an ROI of size 20
microns. The results of pairwise classification experiments at
this level of resolution are presented in column 4, Table 3.3.
For tissues in different microstructural categories, the mean
accuracy was about 95% (rows 1-4); however, the accuracy
dropped to about 80% for similar microstructures. The over-
all classification performance was 89.6%.

[0172] For validation purposes, the classification process
(at 20 micron resolution) was repeated on a similar dataset
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that was acquired on the RMV706 scanhead (which operates
at a lower frequency and axial resolution). The results are
reported in column 5, Table 3.3. In general, the overall out-
come decreased in comparison with the RMV711 scanhead
data (average overall: 83.2%). However, the same pattern of
performance (excellent on different microstructures, moder-
ate on similar microstructures) was observed. The overall
decrease in the classification results can be explained by the
lower axial resolution of the RMV706 scanhead.

[0173] Optimal k,,,. value: Different possible values for
K,,.. (ormaximum scaling level ofthe signal) were examined
using Higuchi’s algorithm. In FIG. 8(a), the average accuracy
of tissue classification over six pairs of tissue types is plotted
against the values of k, . between 4 and 56. Values between
10 and 32 resulted in very similar outcomes. The Higuchi
algorithm becomes increasingly computationally expensive
for large values of k.. We chose k,,,.=16 as a reasonably
small number that also resulted in maximum accuracy. This is
in agreement with the above findings regarding the optimal
K,... value on RF time series acquired from human prostate
specimens.

[0174] Optimal RO size: In general, it is reasonable to
expect that the classification of ROIs of sizes smaller than the
resolution of the ultrasound will be more challenging. As
FIG. 8(a) illustrates, this is true for ROI sizes up to 20 microns
(10 samples). However, we were limited by the size of the
dataset, as increasing the ROI to over 10 samples meant that
the Gaussian PDFs were estimated on less than 100 data
points and tested on less than 10 points and therefore, the
outputs were not reliable.

[0175] Comparison with results at 6.6 MHz: As previously
noted, even at frequencies normally utilized on clinical
machines (2-10 MHz), the RF time series contain tissue char-
acterizing information. However, the maximum resolution is
much lower. For comparison, we used a Sonix RP (Ultrasonix
Inc., Vancouver, Canada) ultrasound machine to collect RF
time series at 6.6 MHz from the same specimens that we had
scanned at high frequencies. The temporal length of time
series (number of frames taken from each cross-section) was
255 and the data was collected with a BPSL9-5/55/10 probe
at the rate of 22 frames per second. ROIs of size 8x44 RF
samples (equivalent to 0.03 cm?) of the tissue were used in
classification; 150 ROIs from each tissue type were available.
Results reported in Table 3.4 show an overall accuracy of
around 76.5%.

TABLE 3.4

Results using data acquired for
probe center frequency of 6.6 MHz

classification
Tissue types accuracy (STD)
Bovine liver - chicken breast 82.9% (6.4)
Bovine liver - bovine muscle 80.7% (6.8)
Chicken breast - pig liver 71.4% (6.7)
Pig liver - bovine muscle 74.8% (7.5)
Bovine liver - pig liver 69.3% (5.3)
Chicken breast - bovine muscle 79.6% (5.9)
Average over all six tissue pairs 76.5%

3.4 Conclusions

[0176] These findings demonstrate that tissue microstruc-
ture results in variations of the ultrasound RF time series. This
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concept can be used in ultrasound-based detection of fine
differences and abnormalities in tissues, in diagnosing patho-
logic conditions such as cancer, and in detecting flaws, imper-
fections, and/or damage in other materials.

[0177] Other embodiments of the invention will be appar-
ent to those skilled in the art. Such embodiments are within
the scope of the invention and are covered by the appended
claims.
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1. A method for analyzing an ultrasound signal reflected
from and/or backscattered from a material, comprising;

obtaining a time series of sequential data frames associated
with the ultrasound signal from a fixed location of the
material, each data frame comprising a plurality of
samples of the ultrasound signal, and

subjecting to an analysis:
(1) a sequence of one or more samples of the ultrasound

signal, or
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(ii) a sequence of at least one parameter derived from one
or more samples of the ultrasound signal;

wherein a result of the analysis is indicative of one or more

physical properties of the material.

2. The method of claim 1, wherein the data is derived from
a radio frequency (RF) ultrasound signal.

3. The method of claim 1, wherein the data is derived from
a processed ultrasound signal.

4. The method of claim 1, wherein the data is derived from
an ultrasound signal selected from an A-mode, B-mode,
M-mode, Dopplet, or 3-D ultrasound signal.

5. The method of claim 1, wherein the analysis is at least
one selected from:

(1) an analysis with respect to time, frequency, amplitude,

or a combination thereof,

(ii) a statistical analysis,

(iii) a stochastic analysis,

(iv) a fractal analysis;

(v) a wavelet analysis;

(vi) a spectral analysis;

(vii) array processing; and

(viil) a combination of two or more of the above.

6. The method of claim 5, wherein the analysis is fractal
analysis.

7. The method of claim 1, wherein the result of the analysis
is indicative of the physical property of the material being
normal or abnormal.

8. The method of claim 1, wherein the result of the analysis
is a probability map or a probability score.

9. The method of claim 7, wherein the result of the analysis
is indicative of severity of the abnormality in the material.

10. The method of claim 7, wherein the result of the analy-
sis describes the presence of the abnormality in the material.

11. The method of claim 1, wherein the material is biologi-
cal tissue.

12. The method of claim 11, wherein the biological tissue
is human biological tissue.

13. The method of claim 10, wherein the material is bio-
logical tissue and the abnormality in the biological tissue is
cancer.

14. The method of claim 13, wherein the cancer is associ-
ated with at least one of female genital tract (ovary, fallopian
tube, uterus, cervix and vagina), male genital tract (prostate
and testis), urinary tract (kidney, ureter and prostate gland),
mediastinum and heart, gastrointestinal tract (small and large
intestines, liver, pancreas, gallbladder and biliary system),
breast, skin, nervous system, endocrine organs (thyroid
gland, adrenal gland), head and neck region, lymph nodes,
soft tissue, respiratory system (including lung), and combi-
nations thereof.

15. The method of claim 14, wherein the cancer is prostate
cancer.

16. The method of claim 10, wherein the material is bio-
logical tissue and the abnormality in the biological tissue is
selected from benign tumour, infection, abscess, necrosis,
infarct, and combinations thereof.

17. The method of claim 2, wherein the analysis comprises
subjecting the RF time series data to a discrete Fourier trans-
form.

18. The method of claim 17, wherein the at least one
parameter is selected from:

(1) average of magnitudes of coefficients of the discrete

Fourier transform of the RF time series in a low fre-
quency portion of the transformation;
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(ii) average of magnitudes of coefficients of the discrete
Fourier transform of the RF time series in a mid-low
frequency portion of the transformation;

(iii) average of magnitudes of coefficients of the discrete
Fourier transform of the RF time series in a mid-high
frequency portion of the transformation;

(iv) average of magnitudes of coefficients of the discrete
Fourier transform of the RF time series in a high fre-
quency portion of the transformation;

(v) intercept of a line fitted to magnitudes of coefficients of
the discrete Fourier transform of the RF time series
plotted versus normalized frequency; and

(vi) slope of aline fitted to magnitudes of coefficients of the
discrete Fourier transform of the RF time series plotted
versus normalized frequency.

19. A method for detecting, diagnosing, and/or assessing

cancer, comprising:

obtaining a time series of sequential data frames associated
with an ultrasound signal reflected from and/or back-
scattered from a fixed location of a biological tissue,
each data frame comprising a plurality of samples of the
ultrasound signal, and

subjecting to an analysis:

(1) a sequence of one or more samples of the ultrasound
signal, or

(i1) a sequence of at least one parameter derived from one
or more samples of the ultrasound signal;

wherein a result of the analysis is related to the detection,
diagnosis, and/or assessment of cancer in the biological
tissue.

20. The method of claim 19, wherein the data is derived

from a RF ultrasound signal.

21. The method of claim 19, wherein the data is derived

from a processed ultrasound signal.

22. The method of claim 19, wherein the analysis is at least

one selected from:

(1) an analysis with respect to time, frequency, amplitude,
or a combination thereof,

(i) a statistical analysis,

(iii) a stochastic analysis,

(iv) a fractal analysis;

(v) a wavelet analysis;

(vi) a spectral analysis;

(vil) array processing; and

(viii) a combination of two or more of the above.

23. The method of claim 22, wherein the analysis is fractal

analysis.
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24. The method of claim 22, wherein the cancer is associ-
ated with at least one of female genital tract (ovary, fallopian
tube, uterus, cervix and vagina), male genital tract (prostate
and testis), urinary tract (kidney, ureter and prostate gland),
mediastinum and heart, gastrointestinal tract (small and large
intestines, liver, pancreas, gallbladder and biliary system),
breast, skin, nervous system, endocrine organs (thyroid
gland, adrenal gland), head and neck region, lymph nodes,
soft tissue, respiratory system (including lung), and combi-
nations thereof.

25. The method of claim 22, wherein the cancer is prostate
cancer.

26. Programmed media for use with a computer and with
an ultrasound signal, the programmed media comprising:

a computer program stored on storage media compatible
with the computer, the computer program containing
instructions to direct the computer to perform one or
more of:

obtain a time series of sequential data frames associated
with the ultrasound signal from a fixed location of the
material, each data frame comprising a plurality of
samples of the ultrasound signal;

subject to an analysis:

(i) a sequence of one or more samples of the ultrasound
signal, or

(i1) a sequence of at least one parameter derived from one
or more samples of the ultrasound signal;

determine one or more properties of the material based on
a result of the analysis, and

output an indication of the one or more properties.

27. The programmed media of claim 26, wherein the com-
puter program further directs the computer to:

accept data relating to known properties of the same mate-
rial, or complementary data from subsequent analysis
conducted on the same material; and

update the result of the analysis based on a comparison to
the data relating to known properties of the same mate-
rial and/or the complementary data.

28. A system for determining one or more properties of a

material, comprising:

a computer;

the programmed media of claim 26 or 27; and

an ultrasound device for generating an ultrasound signal
from the material.
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