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1
METHOD FOR IMPROVED ULTRASONIC
DETECTION

FIELD OF THE INVENTION

This invention relates generally to the field of ultrasound
imaging. In particular, the invention relates to methods of
analyzing radio frequency (RF) ultrasound signals for
improved ultrasound imaging.

BACKGROUND OF THE INVENTION

Conventional inspection and examination of materials
using ultrasound typically employs processing of the raw
radio frequency (RF) ultrasound signal at discrete “snap-
shots™ in time, for example, to create B-scan images. Such
images are widely used in fields such as medicine; however,
evidence suggests that they may be of limited utility in
certain applications, particularly where fine resolution of
tissue structure is required for accurate classification, such as
in-detecting structural differences among biological tissues,
as may be required in diagnosing various cancers.

Several researchers have studied ultrasound-based solu-
tions for computer-aided diagnosis of cancer. The first-order
statistical moments (such as mean, standard deviation, skew-
ness and kurtosis) of the intensities of pixels in each region
of interest (ROI) of the tissue form a basic set of features for
tissue classification [5, 6]. Tissue characterization based on
the acoustic parameters extracted from the raw RF ultra-
sound echo signals (before being transformed to B-scan
images) has been studied since the early 1970’s (see 7] for
a review). Frequency-dependent nature of ultrasound scat-
tering and attenuation phenomena can characterize different
tissue types and is studied through frequency spectrum of
RF signals. Along with texture and co-occurrence based
features extracted from B-scan images, RF spectrum param-
eters have been used to form hybrid feature vectors to be
used for detection of cancer [20]. Such features are utilized
as the input to neural networks and neuro-fuzzy inference
systems [ 5], self organizing Kohonen maps [8] and quadratic
Bayes classifiers [9] for characterization of tissue. Never-
theless, despite the long history of studies in this field, an
accurate analytical model of ultrasound-tissue interactions is
still outstanding [9, 10] and the results of RF-based tissue
classification methods are not promising enough for clinical
applications.

SUMMARY OF THE INVENTION

One aspect of the invention relates to a method for
analyzing an ultrasound signal reflected from and/or back-
scattered from a material, comprising:

obtaining a time series of sequential data frames associ-

ated with the ultrasound signal from a fixed location of
the material, each data frame comprising a plurality of
samples of the ultrasound signal, and

subjecting to an analysis:

(1) a sequence of one or more samples of the ultrasound
signal, or
(i1) a sequence of at least one parameter derived from
one or more samples of the ultrasound signal;
wherein a result of the analysis is indicative of one or
more physical properties of the material.

The data may be derived from a radio frequency (RF)
ultrasound signal. In another embodiment, the data is
derived from a processed ultrasound signal. The data may be
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2

derived from a processed ultrasound signal selected from an
A-mode, B-mode, M-mode, Doppler, or 3-D ultrasound
signal.

The analysis may be at least one selected from:

(1) an analysis with respect to time, frequency, amplitude,
or a combination thereof,

(ii) a statistical analysis,

(iii) a stochastic analysis,

(iv) a fractal analysis;

(v) a wavelet analysis;

(vi) a spectral analysis;

(vii) array processing; and

(viii) a combination of two or more of the above.

In one embodiment, the analysis is fractal analysis.

The result of the analysis may be indicative of the
physical property of the material being normal or abnormal.
In another embodiment, the result of the analysis is a
probability map or a probability score. The result of the
analysis may be indicative of severity of the abnormality in
the material. The result of the analysis may describe the
presence of the abnormality in the material.

The material may be biological tissue. In one embodi-
ment, the biological tissue is human biological tissue. In
another embodiment, the material is biological tissue and the
abnormality in the biological tissue is cancer. The cancer
may be associated with at least one of female genital tract
(ovary, fallopian tube, uterus, cervix and vagina), male
genital tract (prostate and testis), urinary tract (kidney, ureter
and prostate gland), mediastinum and heart, gastrointestinal
tract. (small and large intestines, liver, pancreas, gallbladder
and biliary system), breast, skin, nervous system, endocrine
organs (thyroid gland, adrenal gland), head and neck region,
lymph nodes, soft tissue, respiratory system (including
lung), and combinations thereof. In another embodiment, the
cancer is prostate cancer.

In another embodiment, the material is biological tissue
and the abnormality in the biological tissue is selected from
benign tumour, infection, abscess, necrosis, infarct, and
combinations thereof.

The analysis may comprise subjecting the RF time series
data to a discrete Fourier transform. The at least one param-
eter may be selected from:

(1) average of magnitudes of coefficients of the discrete
Fourier transform of the RF time series in a low
frequency portion of the transformation;

(ii) average of magnitudes of coeflicients of the discrete
Fourier transform of the RF time series in a mid-low
frequency portion of the transformation;

(ii1) average of magnitudes of coeflicients of the discrete
Fourier transform of the RF time series in a mid-high
frequency portion of the transformation;

(iv) average of magnitudes of coefficients of the discrete
Fourier transform of the RF time series in a high
frequency portion of the transformation;

(v) intercept of a line fitted to magnitudes of coefficients
of the discrete Fourier transform of the RF time series
plotted versus normalized frequency; and

(vi) slope of a line fitted to magnitudes of coeflicients of
the discrete Fourier transform of the RF time series
plotted versus normalized frequency.

Another aspect of the invention relates to a method for

detecting, diagnosing, and/or assessing cancer, comprising:
obtaining a time series of sequential data frames associ-
ated with an ultrasound signal reflected from and/or
backscattered from a fixed location of a biological
tissue, each data frame comprising a plurality of
samples of the ultrasound signal, and
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subjecting to an analysis:
(1) a sequence of one or more samples of the ultrasound
signal, or
(ii) a sequence of at least one parameter derived from
one or more samples of the ultrasound signal;
wherein a result of the analysis is related to the detection,
diagnosis, and/or assessment of cancer in the biological
tissue.

In accordance with this aspect, the data may be derived
from a RF ultrasound signal. In another embodiment, the
data is derived from a processed ultrasound signal. The data
may be derived from a processed ultrasound signal selected
from an A-mode, B-mode, M-mode, Doppler, or 3-D ultra-
sound signal. The analysis may be at least one selected fron:

(1) an analysis with respect to time, frequency, amplitude,
or a combination thereof,

(i) a statistical analysis,

(111) a stochastic analysis,

(iv) a fractal analysis;

(v) a wavelet analysis;

(vi) a spectral analysis;

(vil) array processing; and

(viil) a combination of two or more of the above.

In one embodiment, the analysis is fractal analysis.

In accordance with this aspect, the cancer may be asso-
ciated with at least one of female genital tract (ovary,
fallopian tube, uterus, cervix and vagina), male genital tract
(prostate and testis), urinary tract (kidney, ureter and pros-
tate gland), mediastinum and heart, gastrointestinal tract
(small and large intestines, liver, pancreas, gallbladder and
biliary system), breast, skin, nervous system, endocrine
organs (thyroid gland, adrenal gland), head and neck region,
lymph nodes, soft tissue, respiratory system (including
lung), and combinations thereof. In one embodiment, the
cancer is prostate cancer.

Another aspect of the invention relates to programmed
media for use with a computer and with an ultrasound signal,
the programmed media comprising:

a computer program stored on storage media compatible
with the computer, the computer program containing
instructions to direct the computer to perform one or
more of:

obtain a time series of sequential data frames associated
with the ultrasound signal from a fixed location of the
material, each data frame comprising a plurality of
samples of the ultrasound signal;

subject to an analysis:

(1) a sequence of one or more samples of the ultrasound
signal, or
(ii) a sequence of at least one parameter derived from
one or more samples of the ultrasound signal;
determine one or more properties of the material based on
a result of the analysis, and

output an indication of the one or more properties.

The computer program may further direct the computer
to:

accept data relating to known properties of the same
material, or complementary data from subsequent analysis
conducted on the same material; and

update the result of the analysis based on a comparison to
the data relating to known properties of the same material
and/or the complementary data.

In accordance with this aspect, the data may be derived
from a RF ultrasound signal. In another embodiment, the
data is derived from a processed ultrasound signal.
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The data may be derived from a processed ultrasound
signal selected from an A-mode, B-mode, M-mode, Dop-
pler, or 3-D ultrasound signal.

Another aspect of the invention relates to a system for
determining one or more properties of a material, compris-
ing:

a computer;

the programmed media described above; and

an ultrasound device for generating an ultrasound signal
from the material.

Another aspect of the invention relates to a method for
analyzing an ultrasound signal reflected from or transmitted
through a material, comprising:

obtaining a time series of continuous data frames associ-
ated with the ultrasound signal from a specific location of the
material, each data frame comprising a plurality of ultra-
sound samples, and

subjecting one or more samples of each said data frame to
an analysis;

wherein a result of the analysis is indicative of one or
more physical properties of the material.

Another aspect of the invention relates to a method for
measuring a physical property of a material, comprising:

obtaining a time series of continuous data frames of an
ultrasound signal reflected from or transmitted through a
specific location of the material, each data frame comprising
a plurality of ultrasound samples, and

subjecting one or more samples of each said data frame to
an analysis;

wherein a result of the analysis is indicative of the
physical property of the material.

The data may be derived from the raw RF ultrasound
signal, or from a processed ultrasound signal such as an
A-mode, B-mode, M-mode, Doppler, or 3-D ultrasound
signal.

The specific location may be at a fixed location on the
material.

In various embodiments, the analysis may be at least one
analysis selected from:

(1) an analysis with respect to time, frequency, amplitude,

or a combination thereof,

(i1) a statistical analysis,

(iii) a stochastic analysis, and

(iv) a combination of (1), (i), or (iii).

In one embodiment, the result of the analysis is indicative
of the physical property of the material being normal or
abnormal. In another embodiment, the result of the analysis
is a probability map or a probability score. In another
embodiment, the result of the analysis is indicative of
severity of the abnormality in the material. In another
embodiment, the result of the analysis describes the pres-
ence of the abnormality in the material.

The material may be biological tissue. In one embodi-
ment, the biological tissue is human biological tissue. In
another embodiment, the biological tissue is prostate tissue.

In another embodiment, the abnormality in the biological
tissue may be cancer. The cancer may be prostate cancer,
breast cancer, liver cancer, lung cancer, skin cancer, or
ovarian cancer. In another embodiment, the cancer is pros-
tate cancer.

In one embodiment, the fractal analysis is the Higuchi
method.

According to another aspect of the invention there is
provided a method for diagnosing cancer, comprising:

obtaining a time series of continuous data frames associ-
ated with an ultrasound signal reflected from a specific
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location of a biological tissue, each data frame comprising
a plurality of ultrasound samples, and

subjecting one or more samples of each said data frame to
an analysis;

wherein a result of the analysis is related to the probability
of cancer in the biological tissue.

The data may be derived from the raw RF ultrasound
signal, or from a processed ultrasound signal such as an
A-mode, B-mode, M-mode, Doppler, or 3-D ultrasound
signal.

The analysis may be at least one analysis selected from:

(1) an analysis with respect to time, frequency, amplitude,

or a combination thereof,

(i) a statistical analysis,

(iii) a stochastic analysis, and

(iv) a combination of (i), (ii), or (iii).

The analysis may include the Higuchi method.

The cancer may be prostate cancer, breast cancer, liver
cancer, lung cancer, skin cancet, or ovarian cancer. In one
embodiment, the biological tissue is prostate tissue and the
cancer is prostate cancer.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention will now be described, by
way of example, with reference to the drawings, wherein:

FIG. 1 is a graphical representation showing how the time
series data was acquired.

FIG. 2 shows typical microscopic images illustrating (a)
normal prostate tissue, (b) benign prostatic hyperplasia
tissue, and (c) prostatic carcinoma, as detected by an
embodiment of the invention.

FIG. 3 shows the set-up for acquisition of the RF signal
and B-scan image: (a) the probe (marked with 1 in the
image) and prostate tissue (marked with 2 in the image) are
fixed in position for continuous acquisition of the RF time
series; (b) the first imaging position is marked with a needle
(visible in the ultrasound image).

FIG. 4 is a histogram of AHDRFT values for (a) cancer-
ous and (b) normal ROIs in our data (213 normal ROIs and
185 cancerous ROIs in 20 different frames of ultrasound data
acquired from a 57 year old patient).

FIG. 5 shows a typical histopathological map of prostate
tissue used as a standard.

FIG. 6 shows plots of averaged normalized amplitude of
discrete Fourier transform of RF time series from (a) normal
and (b) cancerous ROIs. The slope and intercept of the linear
regression of the frequency spectrum (dotted line) and the
sum of the amplitude values in four different frequency
bands (separated by vertical lines on the graphs) were used
as features.

FIG. 7 shows photomicrographs (200x magnification) of
the cellular structure of four tissue types (bovine liver, pig
liver, chicken breast, bovine muscle) that were differentiated
using an embodiment of the invention.

FIG. 8(a) is a plot of average classification accuracy over
six pairs of tissue for different values ofk,, .. at resolution of
10 samples).

FIG. 8(b) is a plot of average classification accuracy over
six pairs of tissue for different number of samples in an ROI
(k,,..=16).

DETAILED DESCRIPTION OF ILLUSTRATIVE
EMBODIMENTS

As a new approach toward a more accurate classification
of materials, detection, assessment, and/or diagnosis of
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6

abnormalities, imperfections, and/or defects in materials,
based on ultrasound RF signals, we considered that the
interaction of the material and ultrasound may be studied
through a stochastic or fractal analysis and described by, for
example, fractal features. We proposed that the RF output of
such a system could result in a fractal pattern when recorded
as a time series (a fractal curve or signal has the property that
each part of it can be considered as an image of the whole
in a reduced scale). We therefore obtained raw ultrasound
RF data (i.e., the ultrasound RF signal prior to any process-
ing) and subjected it to time seties analysis.

The idea that the interaction of the material and ultra-
sound may be studied through a stochastic or fractal analysis
is particularly relevant to biological tissues. This is based on
the fact that self-organizing self-replicating cells are the
building blocks of biological tissues; furthermore, non-
linearity and quasi-determinism are the basic properties of
biological systems [11]. These two conditions are prerequi-
sites for such analyses. The self-organizing and self-repli-
cating properties result in a fractal pattern in their output
when recorded as a time series. For example, it has been
shown that gland-like structures in some types of adenocar-
cinoma possess a meaningful fractal dimension [12, 13].

To generate time series data for analysis. we acquired a
continuous set of frames of RF data, at a specified frame
rate, from a fixed location of the material. The RF data was
digitized to facilitate analyses. However, the analyses
described herein may be performed in digital or analogue
domains, or in a combination of both domains. The data may
also be derived from a processed ultrasound signal such as,
for example, an A-mode, B-mode, M-mode, Doppler, or 3-D
ultrasound signal. It will be appreciated that the methods
described herein are also applicable to multi-frequency
ultrasound, where harmonic imaging is possible. The meth-
ods described herein are also applicable to array signal
processing, such as, for example, where single transmit and
multiple receive channels are employed. In such embodi-
ments, if suitable, the ultrasound signal can be discretized in
time and/or amplitude and then subjected to processing.

As used herein, the term “continuous set of frames” refers
to a sequential set of frames, in which an initial frame is
followed in time by a subsequent frame or frames.

As used herein, the term “fixed location” refers to a
location in or on the material under investigation relative to
the ultrasound probe. That is, the probe is not moved but
instead is maintained at a fixed location in or on the material
under investigation. In addition, as used herein, the term
“fixed” is intended to refer to the fact that the material is not
subjected to any intentional movement, other than any
minute movement of the material that might arise as a
byproduct of interaction of the material with the ultrasound
signal. In this regard the method described herein is distinct
from the technique known as “elastography”, in which gross
movement of the material under investigation is intention-
ally induced through exposure to a high power ultrasound
and/or mechanical signal.

It will be appreciated that the positional accuracy of the
fixed location is subject to some uncertainty, however, which
may arise through, for example, vibration of the probe
and/or the material under investigation, such vibration being
caused by, for example, vibration of the building, or move-
ment of the tissue arising from a patient’s breathing, heart
beat, and/or pulse. Where such unintentional movement of
the material occurs, the data may be processed to remove or
compensate for such movement.

As used herein, the term “biological tissue” is intended to
be inclusive of any tissue derived from an organism or part
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thereof, as well as a cell culture and a tissue culture. The
biological tissue may be living or dead, and an analysis as
described herein may be carried out on biological tissue in
vivo or in vitro.

The material under investigation, which may be biologi-
cal tissue, may be normal or abnormal, where “normal”
refers to one or more properties or characteristics of the
material falling within a range of acceptable values or
meeting an acceptable value, or meeting a standard. “Abnor-
mal” refers to one or more properties or characteristics of the
material falling outside of a range of acceptable values or not
meeting an acceptable value, or not meeting a standard.
Where a normal material is being investigated, the investi-
gation might include assessing one or more properties or
characteristics of the material. Such assessment can be of
interest in, for example, comparing one or more propetties
or characteristics of the material to one or more correspond-
ing properties or characteristics of another material.

Within each digitized frame a region of interest (ROI) was
defined, the size of the ROI being set as appropriate for the
type of material being studied (see, for example, the below
discussion and Examples). The ROI is in a fixed location in
the series of frames, and is comprised of a matrix (e.g.,
24%88) of samples, each sample representing a scalar value
(e.g., amplitude) of the ultrasound RF signal. The temporal
sequence of values corresponding to a sample in the matrix
forms a time series. This is shown graphically in FIG. 1.
Such time series data may then be subjected to a “single
point” time series analysis, wherein one or more properties
of that time series is determined. The analysis may be
conducted with respect to, for example, time, amplitude,
frequency, and combinations thereof such as time and fre-
quency, and/or may include any mathematical operation or
manipulation, and may include, but is not limited to, power
spectrum, shift in central frequency, Fourier analysis, filter-
ing, matrix or vector mathematics, wavelet, zero crossing,
cyclic minima and maxima, phase analysis, data reduction
(extract regions of data, concatenate, replicate, merge, inter-
polate, and decimate data series), mathematical functions
(basic mathematical functions (addition, subtraction, multi-
plication, division) and/or integration, differentiation, loga-
rithmic functions, trigonometric functions, exponential
functions), or a statistical analysis such as, but not limited to,
mean, variance, standard deviation, least squares fit, regres-
sion, Bayesian, RMS (root mean square), polynomial or
linear curve fitting, correlation, autocorrelation, filtering
(e.g., low pass, high pass, median), or a stochastic analysis
such as, but not limited to probability distribution fitting,
probability determination, signal/noise ratio, and fractal
analysis, and combinations thereof. A set of such property
values, which may be generated from any or all of the time
series resulting from each sample in the ROI, may then be
subjected to further analyses such as an analysis with respect
to, for example, time, amplitude, frequency, and/or may
include any mathematical operation or manipulation, such
as, for example, a statistical or stochastic analysis as listed
above.

Alternatively, in a “multi-point” time series analysis, the
values of two or more samples from within a single ROI,
each sample representing a scalar value (e.g., amplitude) of
the ultrasound RF signal, may first be subjected to an
analysis wherein a property of that ROI is determined. The
analysis may include any mathematical operation or
manipulation, such as, for example, a statistical or stochastic
analysis, examples of which are noted above, to generate a
property for that ROI. This analysis is repeated for that ROI
in the time series, and the resulting time series of such
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properties may then be subjected to further analysis such as
the single point analysis described above. A preferred fractal
analysis is that proposed by Higuchi [14], which is a stable
method to compute the fractal dimension of the irregular
output time series of natural phenomena which show a
turbulent behavior. However, the invention is not limited
thereto.

Embodiments of the invention provide an enhanced abil-
ity to detect defects, abnormalities, and the like, in certain
characteristics or properties of a material, and the extent or
degree of severity of the defects, abnormalities, etc. in the
material. For example, a property may be described as
“abnormal” if the value(s) representing that property falls
outside of a range of preferred values. Such characteristics
or properties, of which there may be one or more for a given
material and type of investigation, may include, for
example, physical properties such as structure, elasticity,
density, optical, and electromagnetic. For example, in the
case of biological tissue, an abnormality may be detected in
the arrangement of cells, relative to normal tissue of the
same type, as is the case in many types of cancer. In
non-biological materials, an abnormality may be detected as,
for example, a variation in size or arrangement of pores, a
variation in thickness or consistency of laminates, or a
variation in density, relative to preferred values, or a minute
crack or fissure in a material. Embodiments of the invention
may allow input and storing of data relating to normal and
abnormal characteristics of a material, and comparison of
data for a current sample to the input/stored data, and as an
output provide an indication (e.g., a probability) of whether
the material is either normal or abnormal. Embodiments of
the invention may also provide an indication as to extent or
severity of the abnormality based on, for example, size,
and/or location of the abnormality, and may further provide
an indication of the grading of the abnormality (e.g., as is
known for various cancers). One aspect of the invention
provides for ongoing training of the method to recognize
abnormalities by inputting data relating to examples of
normal and/or abnormal material as such data become
available, and by correcting the result based on supporting
confirmatory or complementary data.

To demonstrate the effectiveness of the embodiments
described herein, we have applied them to ultrasound data of
biological tissue for diagnosing prostate cancer and for
distinguishing different tissue types (see the below
Examples). However, it will be appreciated that embodi-
ments of the invention are not limited thereto, and they may
be applied not only to other tissues for detection, diagnosis,
and/or assessment of other cancers in any anatomic site,
such as, but not limited to, female genital tract (ovary,
fallopian tube, uterus, cervix and vagina), male genital tract
(prostate and testis), urinary tract (kidney, ureter and pros-
tate gland), mediastinum and heart, gastrointestinal tract
(small and large intestines, liver, pancreas, gallbladder and
biliary system), breast, skin, nervous system, endocrine
organs (thyroid gland, adrenal gland), head and neck region,
lymph nodes, soft tissue, respiratory system (including
lung). Embodiments of the invention may also be used for
detection, diagnosis, and/or assessment of tissue abnormali-
ties including pathological abnormalities other than cancer,
such as, but not limited to, benign tumours, infection,
abscess, necrosis, and infarcts.

Embodiments of the invention may also be used for
inspection and/or assessment of non-biological materials.
Such applications may include inspection of materials for
manufacturing and/or structural defects, analysis of effects
of stress/strain on machine components, and detecting fail-
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ure of machine components, in manufacturing, research, and
industries such as transportation and aerospace.

Embodiments of the invention are further described by
way of the following non-limiting examples.

Example 1
Detection of Prostate Cancer using Fractal Analysis

1.1 Introduction

Prostate cancer (PCa) is the most common malignancy
among men and the second leading cancer-related cause of
death after lung cancer [1]. It is estimated that there will be
about 241,190 new cases of prostate cancer in North
America in 2007 and about 31,350 men will die of this
disease [2, 3]. If diagnosed in early stages, PCa is a
manageable condition in many cases. However, the process
of screening and diagnosis of the disease is controversial [4].
Prostate tumors have inconsistent appearances on medical
images. In particular, on transrectal ultrasound (TRUS)
which is the standard imaging modality to study prostate,
cancer lesions can be hypoechoic, hyper-echoic or even
isoechoic. The presence of benign prostatic hyperplasia
(BPH) further complicates the visual inspection of ultra-
sound images, as BPH is typically associated with hyper-
plastic nodules that may mimic areas of malignancy.

The standard for detection of PCa is pathological analysis
of tissue samples acquired through TRUS guided biopsy.
However, the multi-focal nature of the disease and limited
biopsy sampling of prostate cancer causes high rates of false
negative diagnoses. Several researchers have studied ultra-
sound-based solutions for computer-aided diagnosis of PCa.
The first-order statistical moments (such as mean, standard
deviation, skewness and kurtosis) of the intensities of pixels
in each region of interest (ROI) of the tissue form a basic set
of features for tissue classification [5, 6]. Tissue character-
ization based on the acoustic parameters extracted from the
raw RF ultrasound echo signals (before being transformed to
B-scan images) has been studied since the early 1970’s (see
[7] for a review). Frequency-dependent nature of ultrasound
scattering and attenuation phenomena can characterize dif-
ferent tissue types and is studied through frequency spec-
trum of RF signals. Along with texture and co-occurrence
based features extracted from B-scan images, RF spectrum
parameters have been used to form hybrid feature vectors to
be used for detection of prostate cancer. Such features are
utilized as the input to neural networks and neuro-fuzzy
inference systems [5], self organizing Kohonen maps [8] and
quadratic Bayes classifiers [9] for characterization of pros-
tate tissue. Nevertheless, despite the long history of studies
in this field, an accurate analytical model of ultrasound-
tissue interactions is still outstanding [9, 10] and the results
of RF-based tissue classification methods are not promising
enough for clinical applications.

In prostate cancer, the progression of the malignancy is
associated with geometrical deregulation of the architectural
structure of the cellular network. This is in fact the basis for
pathologic indices used for detecting and grading of the
disease. FIG. 2 shows the typical appearances of the normal
and cancerous tissue in pathology slides where the irregu-
larity of the cancerous structure is vivid. It is also known that
backscattered ultrasound signal is affected by the geometry
and spatial distribution of scatterers [15]. Based on these two
facts we examined the hypothesis that if the prostate tissue
continuously undergoes interactions with the ultrasound
signal, the time series formed by each sample of backscat-
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tered signal will have a fractal dimension which can be used
to distinguish between cancerous and normal tissue.

To examine the validity of this hypothesis, we acquired
continuous RF data frames from the prostate tissue of
patients undergone radical prostatectomy, and extracted the
Higuchi fractal dimensions of the time series formed in
ROIs of size 0.028 cm” (the highest resolution ever
reported). We analyzed the separability capability of this
parameter between cancerous and normal tissue and found it
to be statistically significant. Furthermore, we used neural
networks to classify the ROIs and observed that when the
Higuchi fractal dimensions of the RF time series is added to
a combination of B-scan based texture features, the accuracy
of neural network based classification of prostate tissue
increases considerably. In fact, contrary to the fractal dimen-
sion of the B-scan ROIs which reportedly [16] performs as
“another” texture feature, the Higuchi dimension of the time
series of RF samples (averaged over the ROI) has a distinc-
tive effect on the classification results.

1.2 Methods
1.2.1 Data

For ultrasound data collection, we used a Sonix RP
(Ultrasonix Inc., Vancouver, Canada) ultrasound machine
which has the capability of collecting and recording the raw
RF signals, and an endorectal probe model BPSL9-5/55/10,
frequency range: 5-9 MHz, set to 6.6 MHz for our experi-
ments, and the linear transducer on this probe which is 55
nun long. FIG. 3(a) shows the data collection setup; the
endorectal probe was mounted on a rail which could be
moved along the prostate tissue while the tissue was fixed in
a frame and immersed in water. We ensured that the orien-
tation of the acquired ultrasound frames was as close as
possible to the orientation of the slices to be made for
specimen histopathologic analysis. To mark the position of
the first ultrasound frame which had to be used as the origin
for the pathological analysis, we placed a needle inside the
tissue which was visible within the ultrasound image (FIG.
3(6)).

The Sonix RP machine was set to provide a maximum of
63 RF frames collected with the a rate of 8 frames per
second. Each RF frame (equivalent to one B-scan image)
consisted of 256 lines of RF signal each with 2064 samples
(samples are the outputs of a 16 bit A/D converter operating
at a frequency of 40 MHz). At each position we acquired 63
RF frames. The positions were 1 mm apart from each other.
The size of ROIs used in this study was 16x16 pixels on the
B-scan ultrasound which was equivalent to 0.028 cm® of the
actual tissue or a window of size 24x88 in the equivalent RF
frame. A total of four prostates were scanned and data
acquired from two patients were used in this study. After
acquisition of ultrasound data, a detailed histopathologic
analysis was performed on tissue slices each 5 mm apart.
Multifocal prostatic carcinoma was confirmed histologically
in each prostate examined. Based on tissue histology, malig-
nancy maps were produced for each prostate slice and were
used as the standard for validation in this study.

1.2.2 Features

Every ROI was described with seven features:

four statistical moments of the pixel intensities in the
B-scan image (mean, standard deviation, skewness and
kurtosis);

box-counting fractal dimension of the corresponding win-
dow of the B-scan image (referred to hereinafter as “DBS”),
and the box-counting fractal dimension of the corresponding
window in the RF data (referred to hereinafter as “DRF”);
and
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the average of Higuchi fractal dimensions of the RF
sample time series in the ROI (referred to hereinafter as
“AHDRFT” (average Higuchi dimension of RF time
series)).

Single-frame-based fractal dimensions: DBS and DRF
were extracted from a single B-scan image and the corre-
sponding RF frame. For calculating three of DBS, we
closely followed the box-counting method to compute the
fractal dimension of a grayscale image (as described in [17]
and also used in [18]). For computation of DRF, the RF
frame was considered as a 2D matrix of gray levels and the
same methodology as in [17] was applied.

Higuchi fractal dimension (AHDRFT) [14]: Consider N
frames of RF data acquired at a regular rate while the probe
and the tissue are fixed in position. Each sample of the RF
data forms a time series X(1), X(2), . .., X(N).

From this time series we first construct k new time series
X" as follows:

N-m
X X(m),X(m+k).X(m+2k),...,X(m+[ - ]k)

where k<N, m=1, 2, . . ., k-1 and both are integers. The
length of each time series is defined as:

(22 )
k)—lx N-1 XZ‘ X(m+ ik) - ‘
L Tk (N-m Xm+@Gi-1)-k)
T 4

The average value of Lm(k) over k sets (denoted
with <L(k)>) is the length of the curve. If the condition
<I(k)>ok™ holds, the curve is fractal with the dimension d.
In other words, to compute d, a line is fitted to values of In
(Lm(k)) versus In (1/k) and the slope of this line is consid-
ered as the Higuchi fractal dimension of the time series. In
our implementation, k=16 and N=64 (the 63 point time
series was augmented with one sample equal to the last
sample to increase the computational efficiency). AHDRFT
is the average of d value computed for all the RF samples in
the corresponding RF window of an ROL
1.2.3 Class Separability Measure of the Features

One of the classical measures to quantify the separability
capabilities of individual features in a two class problem is
the so-called Fisher’s Discriminant Ratio (FDR) [19]:

H1—#2
ol + 0}

FDR =

where 11, and 0, are the mean and the variance of the values
of the feature in class one respectively. Value of FDR is a
statistical measure of the capability of the feature to dis-
criminate the samples from the two classes. A higher value
of FDR is an indication of higher separability capability of
the feature.
1.2.4 Classification

We performed several classification experiments with
artificial neural networks (ANN). We applied multi layer
perceptron networks (feedforward) with one or two hidden
layers and used different combinations of the seven features
described in section 1.2.2 as their input. Back propagation
was used for training the networks. Trained networks were
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tested on separate unseen ROIs and the results were vali-
dated based on the histopathologic analysis of the tissue. In
one set of experiments, data acquired from one patient was
used for training and testing the networks. In the second set
of experiments, networks were trained on one patient and
tested on another one.
1.3 Results

Statistical analysis of separability capability of features:
Table 1.1 summarizes the FDR values for the two more
effective statistical moments, as well as DBS, DRF and
AHDRFT. Separability capability of AHDRFT is clearly
higher compared to all other features. In addition, the value
of correlation coefficient of AHDRFT with mean is signifi-
cantly lower than the correlation coeflicients of DBS and
DRF with mean. This can be an indication of the indepen-
dence of AHDRFT from the absolute pixel intensities in the
ROI which is a useful property for dealing with isoechoic
tumors.

TABLE 1.1

The FDR of features and their correlation
coefficient with feature “mean”.

Fisher’s Correlation

discriminant with
Feature ratio mean
mean 5.8 —
std 26.6 0.3401
DBS 339.9 0.9932
DRF 132.8 0.9627
AHDRFT 1186.7 0.4552

Single patient classification experiments: In the first set of
experiments, we selected 213 normal ROIs and 185 cancer-
ous ROIs in the data (based on the histopathology results).
The cancerous samples were from two different lesions (one
hypoechoic and one isoechoic) in two different parts of the
prostate tissue of a 57 year old patient. The ROIs were
selected from 20 different frames of ultrasound data. In each
experiment, two thirds of the data samples were randomly
selected for training and the rest were used for testing the
trained network. FIG. 4 is a histogram of the AHDRFT
values, showing a dramatic separation between the cancer-
ous (a) and normal (b) ROIs. Table 1.2 summarizes the
results. Accuracy, sensitivity and specificity values reported
in each row are the average of 10 experiments performed
with the feature vector described in column two on the ANN
architecture described in column three (which was found to
be the optimal architecture in the corresponding case). Table
1.2 shows that after including AHDRFT in the feature
vector, a significant increase in the classification accuracy is
witnessed (compare rows 1 and 5). It is also worth men-
tioning that adding AHDRFT improved the performance of
the DBS and DRF set. While the two dimensional vector
formed by DBS and DRF (row 2) does not show any
significant improvement over texture feature results (row 1),
adding AHDRFT considerably increases the accuracy (row
4). The overall best results were acquired by using the
feature vector that contained all seven features (around 97%
accuracy, row 6).

In an effort for further statistical validation of the results,
we performed 200 rounds of training and testing each time
with a random split of training and testing sets. We used the
seven dimensional feature vector and an average accuracy of
93.8% was recorded.
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TABLE 1.2

14

The performance of different groups of features. Addition of AHDRFT

considerably increased the accuracy.

Test Features ANNS§ Accuracy Sensitivity Specificity
1 mean, std, ku*, sk** 4-15-15-1 87.4 87.7 84.0
2 mean, std, ku, sk, DBS, DRF 6-10-10-1 88.7 85.2 88.3
3 DBS, DRF 2-20-1 88.4 89 88.7
4 DBS, DRF, AHDRFT 3-10-10-1 94.2 93.2 943
5 mean, std, ku, sk, AHDRFT 5-10-10-1 93.9 94.5 934
6 mean, std, ku, sk, DBS, DRF, AHDRFT  7-20-1 96.4 95.4 97.1

*Kurtosis,

**Skewness,

§Structure of the best performing ANN, number of neurons in network layers are separated with “-”.

Cross validation classification experiments: In the second
set of experiments, the ANN of choice was trained with the
data used in the previous experiment and tested on ROIs
extracted from the data acquired on a second patient (50
cancer ROIs extracted from two different tumors and 54
ROIs extracted from the non-cancerous areas in the prostate
of a 54 year old patient). An MLP with two hidden layers and
10 neurons in each hidden layer was used with the seven
dimensional feature vector. The sensitivity of the tests was
constantly equal to or higher than 98%. However, the
specificity dropped to almost 70%. In other words, although
all areas of cancer were identified, a high rate of false
positives was witnessed. This result urged us to further
investigate the corresponding regions of the actual prostate
tissue. We observed that relatively large lesions of BPH were
present in the areas labeled as normal in data acquired from
the second patient. Although BPH tissue is not cancerous, it
shows a different cellular structure (see FIG. 2(b)). The high
rate of false positive detections is likely due to the fact that
networks were not trained on such benign ROIs.

1.4 Discussion and Conclusions

One embodiment of this invention relates to a new
method of detecting cancer using time series ultrasound RF
data and a fractal analysis. In this example, we used the
average Higuchi dimension of RF time series (AH-DRFT)
for prostate cancer detection from ultrasound RF signals and
acquired highly promising tissue classification results.
Malignant prostate tissue is composed of irregularly shaped
and distributed cellular networks. In search for an ultra-
sound-based parameter that can discriminate cancer from
normal tissue by characterizing the scattering caused by
different tissue types, we analyzed backscattered RF time
series acquired from prostate glands of patients undergone
prostatectomy. The Higuchi fractal dimension of these time
series averaged over an ROT showed a meaningful statistical
difference in cancer versus normal regions. In ANN-based
classification experiments on data acquired from one patient,
we acquired up to 97% accuracy. Furthermore, the neural
networks trained with our proposed set of features on data
acquired from one patient were almost perfectly capable of
detecting all cases of cancer in the data acquired from
another patient. The detection of normal tissues on the
second patient resulted in a lower accuracy. Our investiga-
tion showed that this phenomena is due to the presence of
areas with BPH in the prostate tissue which was not con-
sidered as a separate class in our training data.

The experimental results demonstrate the effectiveness of
this embodiment for detecting and diagnosing prostate can-
cer, and suggest that it will be effective in detecting and
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diagnosing other cancers as well as non-cancerous abnor-
malities in biological tissue, and in detecting defects in
non-biological materials.

Example 2
Detection of Prostate Cancer using Fourier Analysis

2.1 Introduction

In Example 1 we performed a study involving extracted
prostate tissue from two prostatectomy patients, and used
fractal dimension of RF time series to detect prostate cancer.
The results showed that the fractal dimension of RF time
series is superior to texture features extracted from ultra-
sound B-scan images in detection of prostate cancer. How-
ever, the specificity of detection was low. To overcome this
limitation, data has been collected from human prostate
tissue samples, and various features have been extracted
from RF time series to increase the diagnostic value of the
embodiments described herein. This example presents a new
set of features extracted from the amplitude of the discrete
Fourier transform (DFT) of RF time series. These features
represent the frequency spectrum of RF time series using a
small profile that consists of six parameters. The results
show that, when used together, these six parameters are
excellent features for detection of prostate cancer with a
simple neural network classifier. The results include a mean
accuracy of over 91%, with 92% sensitivity and 90%
specificity, and the results have been validated using detailed
malignancy maps acquired from histopathologic analysis of
seven prostate specimens. The results show that acquisition
and analysis of RF time series is an efficient approach for
detection of prostate cancer.
2.2 Methods
2.2.1 Ultrasound and Histopathology Data

Ultrasound and histopathology data were collected from
patients who choose prostatectomy as their treatment choice
at Kingston General Hospital (Kingston, Ontario, Canada).
Excised prostate specimens were suspended in a water bath,
and scanned along cross-sections marked by a pathologist.
The distance between the cross-sections was 4 mm. The RF
ultrasound data was collected using a Sonix RP (Ultrasonix
Inc., Vancouver, Canada) ultrasound machine which is
capable of recording raw RF frames. A transrectal ultrasound
probe model BPSL.9-5/55/10 was used with the central
frequency set to 6.6 MHz. To form the RF time series, a
continuous sequence of 112 frames of RF data were
acquired, at the rate of 22 frames per second, from each
cross-section of the tissue. The prostate specimen was then
dissected along the scanned cross-sections. The pathologist
then examined the tissues under a microscope, and provided
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malignancy maps which were overlayed on the cross-section
slides (FIG. 5). These maps were used as the standard to
evaluate the performance of detection based on the features
extracted from the acquired RF time series.

The process of registering the histopathology maps to the
ultrasound frames was performed manually. In some cases,
the boundaries of the prostate in the ultrasound images were
blurred (many scanned cross-sections were discarded due to
uncertainty in the registration process). The results reported
in this example were obtained based on data from 15
cross-sections of prostate specimens acquired from seven
patients. Tissue characterizing features were extracted from
square Regions of Interest (ROI) of size 0.03 em” which is
equivalent to 8x48 samples in an RF data frame. 285 ROIs
in cancerous areas and 285 ROIs in normal areas of the
scanned cross-sections were identified. The methods
described in this example were applied to these 570 ROIs.
2.2.2 Feature Extraction

Each region of interest in the dataset is represented with
seven features. All these features were extracted from the RF
time series described above.

DFT-based features: These included six features extracted
from the amplitude of the DFT of RF time series averaged
over an ROI. Each RF time series is a discrete signal of
length N (N=112 frames in this example). We were inter-
ested in variations of this signal; therefore, features were
extracted from the zero-meaned time series. The discrete
Fourier transform of the time series X, can be described as

([23]):

R ) (3
Z x[nle 2N Yen

n=t

X =5

where X is the DFT of the zero-meaned RF time series x,,
and N=112. DFT was computed using the fast Fourier
transform (FFT) algorithm [21] as implemented in MAT-
LAB™ (The Mathworks, Inc., Natick, Mass., U.S.A.).

Since the RF time series are real and have mean of zero,
IX[0]1=0 and IX[Kk]I=IX[N-K]I, where || denotes amplitude of
a complex number [22]. In other words, the frequency
spectrum of RF time series is completely represented by N/2
or 56 values, namely IX[k]l where k=1, . . ., n/2. We average
each of these 56 values over all RF time series correspond-
ing to RF samples in one ROI. The averaged spectrum of the
ROI (IXIROI) was then normalized as follows:

Zrorl k1= Xg o ] Vmax( Xpo,{]1) (©)

This normalization process set the maximum of the averaged
spectrum to 1 and enabled comparison of data from different
ROIs. The six proposed RF time series features, listed
below, were extracted from (IXz,,) and are designed to
represent the frequency spectrum through a few parameters.
The first four features (S1, S2, S3 and S4) are the integral of
(IX,of) in four quarters of the frequency range:

N/8

N &)
Sl= Z |XROI[k]|
pr)

N
Z | rorlK]
F=NTB+1

(6)
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-continued
s @]
$3= ) |Rearlk]
=N+
N2 ®)

S4= Z |% rou[K]]

k=3N/8+1

A regression line was fit to values of the spectrum (versus
normalized frequency). The slope and intercept of this line
were used as two more features. FIG. 6 illustrates the
average spectrums over all normal (a) and cancerous (b)
ROIs and clarifies the process of extracting S1-S4, spectral
slope and intercept.

Fractal dimension: Example 1 describes our methodology
for extracting the average fractal dimension of RF time
series in a region of interest of tissue, which is based on
Higuchi’s algorithm. In order to extract the fractal dimen-
sion, Higuchi’s algorithm computes mean length of the time
series at different scales (up to a maximum scale k), plots
a log-log graph of length versus scale, and measures the
slope of the linear fit of this graph as the FD. We have shown
that for tissue characterization based on FD, the algorithm
works best with k,, . =16. As mentioned earlier, the ROIs
considered in this work are of size 8x48=384 in the RF data.
The FD of each of the corresponding 384 time series in each
ROI was computed, and these were averaged to acquire one
feature per ROI (simply called FD in the rest of this
example).

2.2.3 Classification Performance of Individual Features

To study the capability of the proposed features in detec-
tion of prostate cancer, the features were ranked individu-
ally. Each feature was considered as the sole characterizing
parameter and used with a Bayesian approach to distinguish
cancerous ROIs from normal ones. The Bayesian approach
can be summarized as follows. If w, and w_ represent ROIs
from normal and cancerous tissues, and f represents the
feature value of a given ROI (which we do not know what
category it belongs to), Bayes rule states that the classifi-
cation can be performed based on the following inequalities:

)

P(w,) and P(w_) are a priori probabilities (which can be
simply calculated as the ratio of the number of ROIs in each
category to the total number of ROIs). P(flw,,) and P(flm,)
are the probability distribution functions of feature values in
normal and cancerous ROIs, respectively. For validation, the
data was randomly partitioned in each category to 10 folds,
probability density functions (PDFs) were evaluated on 90%
of the data ROIs, the remaining 10% were classified based
on Equation 9, and the procedure repeated for all 10 parti-
tions of the data. The entire leave-10%-out process was
repeated 200 times (each time with a new random partition-
ing of the ROIs to 10 folds), and the mean and standard
deviation of the outcomes was recorded.
2.2.4 Neural Network Classification

Different combinations of the proposed features were
used with feedforward neural networks in an effort to
maximize accuracy in detection of cancerous lesions.
Reported results were acquired on a network with two
hidden layers; five neurons in each hidden layer with log-
sigmoid transfer functions. A supervised learning strategy
with Levenberg-Marquardt backpropagation training was
used. For validation of the classification results, a leave-

P(flw,)P(®,)Z P(flw )P(0,)
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10%-out training-testing methodology was followed. In
other words, the network was trained using 90% of the data
samples, the remaining 10% were classified, and procedure
repeated for all 10 portions of the data. The entire leave-
10%-out process was repeated 100 times, and the mean and
standard deviation of accuracy, sensitivity and specificity
were recorded.

2.3 Results and Discussion
2.3.1 Classification Results Using Individual Features

Table 2.1 summarizes the ranking of individual features
based on their performance in detection of prostate cancer
ROIs as the sole feature. While the table provides sensitivity,
specificity and accuracy, the ranking is based on accuracy. It
is evident that the two features with high classification
performance are spectral slope and the fractal dimension. In
agreement with the results of Example 1, the classification
based on FD resulted in very high sensitivity (94%) and low
specificity (61%). In the case of spectral slope, the speci-
ficity is fairly high (83%) at the expense of sensitivity
(77%). Among the other DFT-based features, the worst
performance occurred when S1 and the spectral intercept
were used. Both of these features characterize the low
frequency components of the RF time series. S4, S3 and S2
have higher levels of tissue characterizing performance in
decreasing order.

2.3.2 Neural Network-Based Classification Results

Table 2.2 presents the classification results acquired using
different useful combinations of the selected features with
the neural network classifier described above. The highest
accuracy was 91.1%, acquired when a feature vector con-
sisting of the six DFT-based features was used. This high
accuracy was achieved while both sensitivity and specificity
were very high (92.3% and 89.8%), a favorable outcome of
a diagnostic test.

It is noted that addition of the FD to the DFT-based
features did not add to the diagnostic value of the method
(row 2). In other words, the six DFT-based features were
sufficient for classification. Another interesting result was
that although S1-S4 were not powerful features when used
individually, the combination of all of them resulted in an
efficient feature vector (the classification accuracy was
86.7% for a feature vector consisting of S1-S4). On the other
hand, while FD and spectral slope were the two best
performing individual features (Table 2.1), their combina-
tion did not provide a very high diagnostic accuracy
(72.6%).

TABLE 2.1

Ranking of the seven features for accuracy in
separation of normal and cancerous tissue

using the Bayesian approach

mean mean mean
aceuracy sensitivity specificity

rank feature (std) (std) (std)
1 spectral slope  80.1% (5.4)  77.0% (2.0)  83.5% (6.9)
2 FD 76.9% (5.1) 94.1% (3.0)  61.9% (8.8)
5 s4 63.5% (6.1) 57.5% (5.1) 68.7% (7.4)
4 S3 62.3% (6.1) 60.1% (5.3)  63.9% (8.7)
3 s2 61.6% (6.9) 57.5% (4.1)  66.1% (9.0)
6 spectral intercept 58.8% (6.9) 54.2% (5.2)  63.2% (4.6)
7 s1 57.3% (5.5) 52.6% (5.2)  63.2% (85)
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TABLE 2.2

Newral network classification results using different
combinations of the seven features

mean mean mean
Feature vector accuracy sensitivity specificity
(number of features) (std) (std) (std)
spectral slope and intercept, 91.1% (2.7) 92.3% (3.5)  89.8% (4.2)
S1-S4 (6)
spectral slope and intercept, 89.4% (5.4) 91.1% (6.7)  87.2% (8.8)
S1-84, FD (7)
S1-S4 4) 86.7% (3.8) 88.5% (5.3)  85.0% (6.0)

spectral slope and intercept 80.7% (5.3)  82.7% (84)

@
spectral slope and FD (2)

81.7% (3.9)

72.6% (9.9) 79.8% (83)  65.2% (94)

2.4 Conclusion

The above analysis showed that the six selected DFT-
based features were self-sufficient for diagnosis of prostate
cancer with high sensitivity and specificity. The analysis
improves the performance of ultrasound-based methods for
detection of prostate cancer. An advantage of the analysis is
that the FFT algorithm reduces the computational complex-
ity of calculating DFT-based features. Ongoing work inves-
tigates the effects of probe frequency, acquisition frame rate,
and length of RF time series on the results of the analysis,
and the use of phase information acquired from DFT of RF
time series for tissue characterizing features.

Example 3

Tissue Characterization Using Fractal Dimension of
High Frequency Ultrasound Rf Time Series

3.1 Introduction

Ultrasound-based tissue characterization techniques rely
on different patterns of scattering of ultrasound in tissues
with dissimilar cellular microstructures. Although the exact
physical mechanisms that govern these patterns are not well
understood [24], microstructure-induced differences in
ultrasound-tissue interaction are documented both at clinical
(2-10 MHz) frequencies [25] and at higher frequencies [24,
26]. In other words, ultrasound radio frequency (RF) echoes
contain information about tissue characteristics. However, it
is challenging to disentangle this information from varia-
tions in the signal caused by system-dependent effects, such
as mechanical and electrical properties of the transducer and
diffraction effects due to the finite aperture of the transducer.
This fandamental restriction of ultrasound-based tissue char-
acterization techniques limits their sensitivity and specificity
in diagnosis of cancer lesions [5, 20, 27].

The above examples demonstrate that if a specific loca-
tion in tissue undergoes continuous interactions with ultra-
sound, the time series of the RF echo signals from that
location carries “tissue characterizing” information. In other
words, although variations in the intensity of one sample of
RF echo over time are partly due to the electronic noise of
the ultrasound machine or the errors caused during the
beam-forming process, they depend on tissue characteristics
as well. Use of high frequency ultrasound in this new
approach may provide insight into this phenomenon. It is a
well-known fact that at very high frequencies the scattering
of ultrasound is primarily caused by cellular microstructure
[24] as opposed to tissue macrostructure. Therefore, the
dependence of the FD of RF time series on cellular micro-
structure should be more evident in high frequency data.
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In this example, for the first time, RF echo time series
acquired using high frequency ultrasound probes were ana-
lyzed. The data demonstrate that at these high frequencies,
the differentiation of tissues based on FD of RF time series
is closely related to differences in tissue microstructures.
The FD of the RF times series was used to successfully
distinguish segments as small as 20 microns of animal
tissues of dissimilar microstructures with accuracies as high
as 98%. Furthermore, the FD values calculated from the RF
time series of different tissues showed statistically signifi-
cant differences, far beyond the variations in FD values in
one tissue type. These results suggest the presence of
microstructure-related information in the RF time series, and
provide a novel, effective method in diagnosing cancer, due
to changes at the cellular level of the tissue during the
formation of malignancy.

3.2 Methods

To study the tissue characterizing capabilities of RF echo
time series acquired at higher frequencies, four different
tissue types were used: bovine liver, pig liver, bovine
muscle, and chicken breast. As illustrated in FIG. 7, the
cellular structure of both bovine and pig liver are charac-
terized by hepatocyte cells (the two are of slightly different
shape and density), whereas bovine muscle and chicken
breast both have fibrous structures formed by sarcomeres.

The high frequency ultrasound RF time series were col-
lected using a Vevo 770 high resolution ultrasound system
(VisualSonics Inc., Toronto, Canada) with two different
probes of the 700-series RMV scanheads (see Table 3.1 for
specifications). Each time series of RF data was formed by
scanning a fixed spot of the tissue in A-mode (single lines of
RF), with a depth of about 1 mm (equivalent to 512 samples
of digital RF signal) 500 times at the rate of about 60 frames
per second. Initially, we used the RMV711 scanhead to
acquire two separate lines of RF time series from two
different areas of each tissue type. Then, the data collection
procedure was repeated using the RMV706 scanhead using
the same tissue specimens.

TABLE 3.1

Specifications of the high frequencv ultrasound scanheads.

Model Broadband frequency ~ Center frequency  Axial resolution
RMV711  TUp to 82.5 MHz 55 MHz 30p
RMV706 TUp to 60 MHz 45 MHz 40p

3.2.1 Feature Extraction

Tissue types were characterized by the average of FDs
computed for all the time series corresponding to RF
samples in a Region of Interest (ROI). The high frequency
data was acquired in A-mode. Therefore, ROIs were simply
segments of RF lines (a segment with 10 samples was
equivalent to 20 microns). We examined ROI sizes as small
as a single RF sample up to 20 samples.

FD of time series originating from natural processes has
been extensively studied as a parameter that quantifies
nonlinear internal dynamics of complex systems [28, 29]. In
such systems, the mechanisms of interaction that give rise to
the output time series are not well understood. FD has been
shown to have low sensitivity to noise-induced variations
[30]. In the case of RF time series analysis, microstructural
information is received along with noise-related variations.
Therefore, FD was used to characterize the RF time
series. Higuchi’s algorithm [14] was used for computation
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of the FD of time series which can be summarized as
follows: FEach sample of the RF data forms a time series
{X(1), X(Q2), . .., X(N)} over sequential ultrasound frames,
where N=500 for the high frequency RF data. From this time
series, k new time series were constructed of form:

10

X" X(m), Xon+ k), X +2%), ... | X(m +[

2y

where k is the sampling time interval (which determines the
scale, k<N)and m=1, 2, ..., k-1. Both m and k are integers.
The length of each time series, L,,(k), was defined as:

an

5 ,
k)—lx N-1 XZ‘ X(m + ik) - ‘
Ll Tk N-m X(m+(i-1)-k)
) 4

The average value of L, (k) over k sets, L(k), is the length
of the time series at scale k. This procedure was repeated for
each k ranging from 1 to k. A line was fitted to values of
In (L(k)) versus In (1/k) and the slope of this line was
considered as the FD. The number of samples, N, and the
nature of the time series determine the optimal value of the
parameter k. For this example, the value of k,, . was
optimized based on the average classification accuracy
acquired. k,__ values between 4 and 56 were examined.
Feature extraction for each A-line involved computation of
FD of 512 time series of length 500. The output of this
process is referred to as a FD vector.

3.2.2 Bayesian Classification

All classification results reported herein were acquired
with a Bayesian approach. If o, and w, represent ROIs from
two categories of tissue in one of the classification experi-
ments, and x represents the feature value of a given ROI
(which we do not know what category it belongs to), Bayes’
rule states that the classification can be performed based on
the following inequalities:

P(xl0)P(0) Z P(xlo,)P(0)) (12)

P(w,) and P(w,) are a priori probabilities (which can be
simply calculated as the ratio of the number of ROIs in each
category to the total number of ROIs in the two categories).
P(xlm;) and P(xlw,) are the probability distribution func-
tions (PDFs) of feature values in categories 1 and 2 respec-
tively. A Gaussian PDF was fit to the distribution of the
feature in each category.

A leave-10%-out validation methodology was followed
for classification, in which the data was randomly parti-
tioned in each category into 10 folds. The PDFs were
evaluated on 90% of the data samples, and the remaining
10% were classified based on the evaluated PDFs, and the
procedure was repeated for all 10 portions of the data. The
whole leave-10%-out process Was repeated 200 times (each
time with a random partitioning of the ROIs to 10 folds). The
mean accuracies and standard deviations were recorded over
these 200 trials.

3.3 Results and Discussion

FD vectors from the same tissue types: The first step in the
analysis was to perform one-way analysis of variance
(ANOVA) tests on pairs of FD vectors from the same tissue
types. As Table 3.2 illustrates, when two FD vectors from the
same tissue type were compared, the p-values in ANOVA
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tests were relatively large and the samples from two lines
could not be separated (classification accuracies close to
50%). The ROI size used for classification was 20 microns
(10 samples) and k,,, =16.

TABLE 3.2

Comparison of two FD vectors from
two RF lines of one tissue type.

accuracy in
separating ROIs
ANOVA from the two
p-value lines results on
Tissue type RMV711 RMV711 - mean (STD)
Bovine liver 0.47 52% (3.7)
Pig liver 0.007 47% (3.9)
chicken breast 0.0001 59% (3.1)
Bovine muscle 0.68 53% (4.3)

FD vectors from different tissue types (k,,,.=16): We
performed the ANOVA tests on FD vectors of different tissue
types (for all six possible pairs of tissue). Column 2 of Table
3.3 provides the p-values which were all virtually zero and
showed that the vectors were statistically different in all six
pairs.

Two separate FD vectors from each tissue type, computed
from the data acquired on the RMV711 scanhead, were
available. The two vectors of each tissue type were com-
bined to acquire a single vector of length 1000 and the
Bayesian approach described above was used to perform
pairwise classifications. The results for these classification
trials which were in single RF sample resolution are reported
in column 3 of Table 3.3. It is interesting to note that even
with this resolution, classification was successful when the
two tissue types were from different microstructural catego-
ries (rows 1-4); however, when pig liver was compared with
bovine liver (row 5) or the two fibrous tissue types were
compared (row 6), the classification at this extremely high
resolution produced lower accuracy.

TABLE 3.3
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For validation purposes, the classification process (at 20
micron resolution) was repeated on a similar dataset that was
acquired on the RMV706 scanhead (which operates at a
lower frequency and axial resolution). The results are
reported in column 5, Table 3.3. In general, the overall
outcome decreased in comparison with the RMV711 scan-
head data (average overall: 83.2%). However, the same
pattern of performance (excellent on different microstruc-
tures, moderate on similar microstructures) was observed.
The overall decrease in the classification results can be
explained by the lower axial resolution of the RMV706
scanhead.

Optimal k.. value: Different possible values forK,, . (or
maximum scaling level of the signal) were examined using
Higuchi’s algorithm. In FIG. 8(a), the average accuracy of
tissue classification over six pairs of tissue types is plotted
against the values of k. between 4 and 56. Values between
10 and 32 resulted in very similar outcomes. The Higuchi
algorithm becomes increasingly computationally expensive
for large values of k. We chose k =16 as a reasonably
small number that also resulted in maximum accuracy. This
is in agreement with the above findings regarding the
optimal K, .. value on RF time series acquired from human
prostate specimens.

Optimal ROI size: In general, it is reasonable to expect
that the classification of ROIs of sizes smaller than the
resolution of the ultrasound will be more challenging. As
FIG. 8(a) illustrates, this is true for ROI sizes up to 20
microns (10 samples). However, we were limited by the size
of the dataset, as increasing the ROI to over 10 samples
meant that the Gaussian PDFs were estimated on less than
100 data points and tested on less than 10 points and
therefore, the outputs were not reliable.

Comparison with results at 6.6 MHz: As previously noted,
even at frequencies normally utilized on clinical machines
(2-10 MHz), the RF time series contain tissue characterizing

Comparison and classification of data from different tissue types

p-value  mean (STD) mean (STD) mean(STD)

FD vectors 1 sample 10 samples 10 samples

Tissue types RMV711 RMV711 RMV711 RMV706
Bovine liver - chicken breast 0 81.1% (2.5) 92.2% (5.8) 96.9% (3.5)
Bovine liver - bovine muscle 0 84.1% (2.3) 95.5% (4.0) 93.7% (5.3)
Chicken breast - pig liver 0 84.6% (2.3) 96.0% (4.2) 92.3% (5.3)
Pig liver - bovine muscle 0 89.2% (2.1) 98.2% (3.1) 90.0% (6.4)
Bovine liver - pig liver 0 73.7% (3.0) 83.7% (7.1) 65.1% (7.9)
Chicken breast - bovine muscle 5.7 x 10713 64.1% (3.1) 72.2% (8.9) 63.1% (8.1)

Average over all six tissue pairs 79.5% 89.6%

83.2%

Furthermore, the performance of our approach was exam-
ined at a lower resolution. Ten samples of each FD vector
were examined to acquire vectors of length 50 (100 after
combining the two lines from the RMV711 scanhead). Fach
element of these vectors represented an ROI of size 20
microns. The results of pairwise classification experiments
at this level of resolution are presented in column 4, Table
3.3. For tissues in different microstructural categories, the
mean accuracy was about 95% (rows 1-4); however, the
accuracy dropped to about 80% for similar microstructures.
The overall classification performance was 89.6%.

55

60

65

information. However, the maximum resolution is much
lower. For comparison, we used a Sonix RP (Ultrasonix Inc.,
Vancouver, Canada) ultrasound machine to collect RF time
series at 6.6 MHz from the same specimens that we had
scanned at high frequencies. The temporal length of time
series (number of frames taken from each cross-section) was
255 and the data was collected with a BPSL9-5/55/10 probe
at the rate of 22 frames per second. ROIs of size 8x44 RF
samples (equivalent to 0.03 cm?) of the tissue were used in
classification; 150 ROIs from each tissue type were avail-
able. Results reported in Table 3.4 show an overall accuracy
of around 76.5%.
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TABLE 3.4

Results using data acquired for
probe center frequency of 6.6 MHz

classification
Tissue types accuracy (STD)
Bovine liver - chicken breast 82.9% (6.4)
Bovine liver - bovine muscle 80.7% (6.8)
Chicken breast - pig liver 71.4% (6.7)
Pig liver - bovine muscle 74.8% (1.5)
Bovine liver - pig liver 69.3% (5.3)
Chicken breast - bovine muscle 79.6% (5.9)
Average over all six tissue pairs 76.5%

3.4 Conclusions

These findings demonstrate that tissue microstructure
results in variations of the ultrasound RF time series. This
concept can be used in ultrasound-based detection of fine
differences and abnormalities in tissues, in diagnosing
pathologic conditions such as cancer, and in detecting flaws,
imperfections, and/or damage in other materials.

Other embodiments of the invention will be apparent to
those skilled in the art. Such embodiments are within the
scope of the invention and are covered by the appended
claims.
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The invention claimed is:

1. A method for determining one or more physical prop-
erties of a material, comprising:

(D) obtaining a plurality of ultrasound data frames sequen-

tially in time;

wherein the plurality of ultrasound data frames is gener-
ated from an ultrasound signal received by one ultra-
sound transducer that is in one fixed relationship rela-
tive to the material and the ultrasound transducer is not
subjected to intentional movement relative to the mate-
rial;

wherein each ultrasound data frame of the plurality of
ultrasound data frames comprises a plurality of samples
of the ultrasound signal reflected from and/or backscat-
tered from the material,

(1) selecting, from one ultrasound data frame of the
plurality of ultrasound data frames, one or more
samples of the ultrasound signal, wherein each sample
is a scalar value corresponding to amplitude of the
ultrasound signal at one position in the material;

(TII) selecting, from a second ultrasound data frame of the
plurality of ultrasound data frames, one or more
samples of the ultrasound signal, wherein each sample
is a scalar value corresponding to amplitude of the
ultrasound signal at the same position as each of the one
or more samples in (II);

(IV) repeating (I1I) to generate a time series of scalar
values from a temporal sequence of the scalar values of
the ultrasound signal;

(Va) inputting the time series of scalar values to a clas-
sifier trained with data relating to known physical
properties of one or more materials, wherein an output
of the classifier is related to the temporal sequence of
the time series of scalar values; or

(Vb) subjecting the time series of scalar values to a
discrete Fourier transform or a discrete wavelet trans-
form to extract a plurality of spectral parameters, and
inputting at least a portion of the plurality of spectral
parameters to a classifier trained with data relating to
known physical properties of one or more materials;

(V1) outputting a result of the classifier;

wherein the result of the classifier is indicative of one or
more physical properties of the material.

2. The method of claim 1, wherein the ultrasound signal

is selected from an A-mode, B-mode, M-mode, or 3-D
ultrasound signal.

3. The method of claim 1, wherein the result of the
classifier is indicative of the physical property of the mate-
rial being normal or abnormal.

4. The method of claim 1, wherein the result of the
classifier is a probability map or a probability score.

5. The method of claim 3, wherein the result of the
classifier is indicative of severity of the abnormality in the
material.

6. The method of claim 3, wherein the result of the
classifier describes the presence of the abnormality in the
material.

7. The method of claim 1, wherein the material is bio-
logical tissue.

8. The method of claim 7, wherein the biological tissue is
human biological tissue.

9. The method of claim 8, wherein the material is bio-
logical tissue and the abnormality in the biological tissue is
cancer.

10. The method of claim 9, wherein the cancer is asso-
ciated with at least one of female genital tract (ovary,
fallopian tube, uterus, cervix and vagina), male genital tract
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(prostate and testis), urinary tract (kidney, ureter and pros-
tate gland), mediastinum and heart, gastrointestinal tract
(small and large intestines, liver, pancreas, gallbladder and
biliary system), breast, skin, nervous system, endocrine
organs (thyroid gland, adrenal gland), head and neck region,
lymph nodes, soft tissue, respiratory system (including
lung), and combinations thereof.

11. The method of claim 9, wherein the cancer is prostate
cancer.

12. The method of claim 6, wherein the material is
biological tissue and the abnormality in the biological tissue
is selected from benign tumour, infection, abscess, necrosis,
infarct, and combinations thereof.

13. Programmed media for use with a computer, com-
prising:

a computer program stored on non-transitory storage
media compatible with the computer, the computer
program containing instructions to direct the computer
to perform the following steps:

(I) obtain a plurality of ultrasound data frames sequen-
tially in time;

wherein the plurality of ultrasound data frames is gener-
ated from an ultrasound signal received by one ultra-
sound transducer that is in one fixed relationship rela-
tive to the material and the ultrasound transducer is not
subjected to intentional movement relative to the mate-
rial;

wherein each ultrasound data frame of the plurality of
ultrasound data frames comprises a plurality of samples
of the ultrasound signal reflected from and/or backscat-
tered from the material;

(1) select, from one ultrasound data frame of the plurality
of ultrasound data frames, one or more samples of the
ultrasound signal, wherein each sample is a scalar value
corresponding to amplitude of the ultrasound signal at
one position in the material;

(1IT) select, from a second ultrasound data frame of the
plurality of ultrasound data frames, one or more
samples of the ultrasound signal, wherein each sample
is a scalar value corresponding to amplitude of the
ultrasound signal at the same position as each of the one
or more samples in (I1);

(IV) repeat (1II) to generate a time series of scalar values
from a temporal sequence of the scalar values of the
ultrasound signal;

(Va) input the time series of scalar values to a classifier
trained with data relating to known physical properties
of one or more materials, wherein an output of the
classifier is related to the temporal sequence of the time
series of scalar values; or

(Vb) subject the time series of scalar values to a discrete
Fourier transform or a discrete wavelet transform to
extract a plurality of spectral parameters, and input at
least a portion of the plurality of spectral parameters to
a classifier trained with data relating to known physical
properties of one or more materials;

(VI) output a result of the classifier;

wherein the result of the classifier is indicative of one or
more physical properties of the material.

14. The programmed media of claim 13, wherein the

computer program further directs the computer to:

update the data relating to known physical properties of
one or more materials by accepting further data relating
to known physical properties of the material, or
complementary data from subsequent analysis con-
ducted on the material; and
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training the classifier according to the updated data relat-
ing to known physical properties of the material.

15. A system for determining one or more physical

properties of a material, comprising:

a computer; 5

the programmed media of claim 13; and

an ultrasound device for generating an ultrasound signal
from the material.

# % % k&

28



THMBW(EF)

[ i (S RIR) A ()
e (S IR) A (%)

HAT R E (TR AGE)

FRI& B A

RHA

H AT SR
S\EREERE

BEX)

iRt R P R AR U Y 75 0%
uS10018712
US12/227697
WL EREFE
EERFEESHA
EERFHEZHA

MORADI MEHDI
ABOLMAESUMI PURANG
MOUSAVI PARVIN
SAUERBREI ERIC
SIEMENS ROBERT
ISOTALO PHILLIP

MORADI, MEHDI
ABOLMAESUMI, PURANG
MOUSAVI, PARVIN
SAUERBREI, ERIC
SIEMENS, ROBERT
ISOTALO, PHILLIP

G01S7/52 A61B8/08 G01S15/89
G01S7/52036 A61B8/0833 G01S15/8977

60/808557 2006-05-26 US
US20100063393A1

Espacenet

REESR—MoTBEEESNGE. ZHEERBRESAHERFHH
BB TE (7 B S 5 /30 [ B 5T B i 75 45 5548 5 Bk 9 It 403 ot 9 B[]
F5 , BN BEMEESIMBEESHA  ARTON. BEESH—
PNRENMEENFY  RENBEESH—IPHS MRS HNED —
NSBWFS , AP 2 MNEREMRN - PR MEEIBEER.

E—AMXEART , ZHETATRN

EM/RRE

, WA/ ST E AR PR

2018-07-10

2007-05-25

patsnap



https://share-analytics.zhihuiya.com/view/460ac966-6dbf-43f8-8590-21618f3a1663
https://worldwide.espacenet.com/patent/search/family/038778056/publication/US10018712B2?q=US10018712B2

