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1
ULTRASOUND 3D IMAGING SYSTEM

BACKGROUND OF THE INVENTION

Medical ultrasound imaging has become an industry stan-
dard for many medical imaging applications. Techniques
have been developed to provide three dimensional (3D)
images of internal organs and processes using a two dimen-
sional (2D) transducer array. These systems require thou-
sands of beamforming channels. The power required to oper-
ate such systems has resulted in the use of an analog phase
shift technique with a digital delay beamformer that results in
a compromise of image quality.

There is a continuing need for further improvements in
ultrasound imaging technologies enabling improved real-
time three dimensional imaging capability. In addition, this
improved capability should support continuous real-time dis-
play for a fourth dimensional 4D function.

SUMMARY OF THE INVENTION

The present invention relates to a system for ultrasound
medical imaging that provides three dimensional (3D) imag-
ing using a two dimensional (2D) array of transducer ele-
ments in a probe housing. In a preferred embodiment, the
probe housing contains a first beamforming circuit that trans-
mits beamformed data to a second housing having a second
beamforming circuit. The first beamforming circuit provides
a far-field subarray beamforming operation. The resulting
beamformed data is transmitted from the scan head to a sec-
ond housing having the second beamforming circuit that pro-
vides near-field beamsteering and beamfocusing.

A preferred embodiment provides a scan head that can be
connected to a conventional ultrasound system in which the
scan head provides the inputs to the conventional beamform-
ing processing function. The scan head beamformer can uti-
lize a low power charge domain processor having at least 32
beamforming channels.

An alternative preferred embodiment of the invention
employs a sparse array where only a fraction of the transducer
elements need to be activated. By selecting the four corner
elements of the array to provide proper mean lobe bandwidth,
minimizing average sidelobe energy and clutter, eliminating
periodicity and maximizing peak to side lobe ratio, quality
images are produced. To steer the beams across the volume or
region of interest, different transducer elements must be actu-
ated in proper sequence to maintain the peak to sidelobe ratio.
The system processor can be programmed to provide the
desired sequence for transducer actuation to direct the beam
at different angles. Alternatively, a discrete controller can be
used to control sparse array actuation. A preferred embodi-
ment provides a scan head with integrated switching circuits
for sequentially selecting sparse array actuation elements for
sequential multiple beamforming. The scan head can be con-
nected to a conventional ultrasound system in which the scan
head provides the inputs to the conventional beamforming
processing functions.

In addition to the three dimensional (3D) display capabil-
ity, a fourth dimension or time resolved image display can be
used to record and display a sequence of images recorded at
10 frames per second or higher, for example. This enables
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viewing of rapidly changing features such as blood or fluid
flow; heart wall movement etc. at video frames rates of 30
frames per second.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates the use of a two dimensional tiled array
for ultrasound imaging in accordance with the invention.

FIG. 2 illustrates a steerable two dimensional array in
accordance with the invention.

FIG. 3A illustrates the use of a first beamformer device for
far field beamsteering and focusing and a second time delay
beamformer for near field beamforming.

FIG. 3B illustrates a first analog subarray beamformer
forwarding data to a digital beamformer near field beam-
former.

FIG. 4 illustrates a preferred embodiment of a three dimen-
sional imaging system in accordance with the integrated Sub-
array scan head invention.

FIG. § illustrates a preferred embodiment of the integrated
Subarray scan head invention using a charge domain proces-
sor for the 2" time delay beamforming.

FIG. 6A illustrates the use of the integrated subarray scan
head probe ofthe present invention with a second stage beam-
forming ultrasound processor.

FIG. 6B illustrates use of the integrated Subarray scan head
with a digital beamforming processor.

FIG. 7 illustrates an ultrasound system in accordance with
the invention.

FIG. 8A illustrates a sparse array used in accordance with
the invention.

FIG. 8B graphically illustrates the sparse array perfor-
mance.

FIG. 9A illustrates the use of the integrated sparse array
scan head probe of the present invention connected to a host
system with charge-domain beamforming processing

FIG. 9B illustrates the use of the integrated sparse array
scan head probe of the present invention connected to a con-
ventional digital vltrasound system with m-parallel beam-
forming components.

FIG. 10 illustrates a scan head connected to a portable
computer in accordance with a preferred embodiment of the
invention.

DETAILED DESCRIPTION OF THE INVENTION

The objective of the beamforming system is to focus sig-
nals received from an image point onto a transducer array. By
inserting proper delays in a beamformer to wavefronts that
are propagating ina particular direction, signals arriving from
the direction of interest are added coherently, while those
from other directions do not add coherently or cancel. For
real-time three-dimensional applications, separate electronic
circuitry is necessary for each transducer element. Using
conventional implementations, the resulting electronics rap-
idly become both bulky and costly as the number of elements
increases. Traditionally, the cost, size, complexity and power
requirements of a high-resolution beamformer have been
avoided by “work-around” system approaches. For real-time
three-dimensional high-resolution ultrasound imaging appli-
cations, an electronically steerable two-dimensional beam-
forming processor based on a delay-and-sum computing
algorithm is chosen.

The concept of an electronically-adjustable acoustic con-
formal lens is to divide the surface of a 2D transducer array
into plane “tiles” of relatively small subarrays. As described
in U.S. Pat. No. 6,292,433 the entire contents of which incor-
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porated herein by reference, and illustrated in FIG. 1 the
tiles/subarrays 120 are made small enough so that when an
object is placed within the field-of-view of the imaging sys-
tem, the incident radiation 122 from the object toward each
“tile” can be treated using a far-field approximation. Addi-
tional delay elements are incorporated as second-stage pro-
cessing to allow all subarrays to be coherently summed (i.e.,
global near-field beamforming can be achieved by simply
delaying and then summing the outputs from all subarrays.)
The delay-and-sum beamformer allows each subarray to
“look” for signals radiating from a particular direction. By
adjusting the delays associated with each element of the array,
the array’s look direction can be electronically steered toward
the source of radiation. Thus instead of looking in one direc-
tion as seen at 124a, the direction of tiles 120 can be steered
in different direction 124b. The delay line requirement for
each element in the sub-array can be less than a hundred
stages. Only long delays for global summing are needed for
the final near field focusing.

To scan an image plane using a steerable beamformer
system a process such as that shown in FIG. 2 can be used. A
raster scan 260 can be used to scan an image plane 262 using
a 2D steerable transducer array 264.

A detailed diagram of an electronically-controlled beam-
forming system in accordance with the invention is shown in
FIG. 3A. This system consists of a bank of parallel time-delay
beamforming processors 330, 330N. Each processor 330 con-
sists of two components: a 2D sub-array beamformer 332 for
far-field beamsteering/focusing and an additional time delay
processor 334 to allow hierarchical near-field beamforming
of outputs from each corresponding subarray. The sub-arrays
332 include m-programmable delay lines 340 with tap selec-
tors 342, multiplexers 344 and summed 346 output. As can be
seen in FIG. 3A, for a system with n-sub-arrays, n-parallel
programmable 2"%-stage near field time delays are needed for
individual delay adjustment which are converted with A/D
converter 352 to allow all n-parallel outputs be summed 354
coherently, in turn, this summed output is filtered 338 and
provides the 3D images of the targeted object. A processor
336 controls sub-array operation. Use of the scan head with a
second stage digital beamformer is shown in FIG. 3B. In this
embodiment, a plurality of N sub-array beamformers 400
each receive signals from m transducer elements that have
separate delay lines whose outputs are summed and provided
to near-field beamformers 420 so that this beamformer can be
a conventional system with conventional processor 480. A
separate sub-array processor 460 controls beamformers 400.

Without using this hierarchical subarray far-field and then
near-field beamforming approach, for an 80x80 element 2D
array, a cable consisting of six thousand and four hundred
wires is needed to connect the transducer array to a conven-
tional beamforming system. As shown in FIG. 3A, the num-
ber of inputs to each subarray processor equals the total
number of delay elements in the subarray, each sub-array only
has a single output. The number of inputs to the subarray bank
equals the number of 2D array elements, and the number of
outputs from the subarray bank equals to the total transducer
array element number divided by the subarray element num-
ber, i.e., the number of outputs from the subarray bank refer-
ence to the number of inputs is reduced by a factor equal to the
size of the subarray. For example, if one selects to use a 5x5
subarray to implement this hierarchical beamforming con-
cept, after the first stage subarray beamforming, the total
number of wires needed to connect to the 2" stage near-field
beamforming is reduced by a factor of 25. More specifically,
as mentioned above, without using this 2D subarray beam-
forming, 6400 wires are needed to connect an 80x80-¢l 2D
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transducer array to a conventional back-end beamforming.
Using a 5x5 subarray processing bank first, the number of
wires required to connect to the backend beamforming sys-
tem is reduced to 256. Based on the current invention, a bank
0f 256 5x5 element subarrays Beamformer can be integrated
with a 80x80 element 2D array in the scan head, so a cable
consisting of 256 wires is adequate to connect the integrated
scan head with the back-end near-field beamforming system.
Tt is important to note that 5x5 subarray far-field beamform-
ing processors can be easily integrated in a small size Si
integration circuit, eight of such 5x5 subarray beamforming
can be integrated on one chip. Only 32 chips integrated into
the scan head, it can reduce the cable size from 6,400 wires
down to 256 wires.

A preferred embodiment of the invention for a 2D array
beamforming, each minimizing noise and cable loss with
improved S/N performance, are described in FIGS. 4, 5and 6.
In all three implementations, the bank of m parallel subarray
beamforming processors 520 and multiplexers 528 are inte-
grated with the 2D transducer array 525 to create a compact,
low-noise, scan head 500. FIG. 4 depicts a system that the
compact scan head is connected to a dedicated processing
module, in which the m-parallel preamp/TGCs 522 transmit/
received chips 524 and the 27 stage time delay processing
units 526 are housed. This dedicated processing module com-
municates with a host computer 540 via FireWire or USB or
PClIbus 542. Control and synchronization is performed by the
system controller 544 located in the processing module or
housing 546. FIG. 5 depicts the same architecture as stated in
FIG. 4, except, inside the dedicated processing module, the
24 stage time delay processing units are specifically imple-
mented by using charge-domain programmable (CDP) time-
delay lines 600 in housing 620 that is connected to handheld
probe 660 and computer housing 648. FIG. 6B depicts a
system that the compact sparse array scan head 700 is con-
nected to a conventional, commercially available time-do-
main digital ultrasound imaging system 700 with n-parallel
beamforming channels 760. It is easy to see that in FIG. 6A,
the time-delay processor 720 can also be implemented by
using CDP time-delay lines 740. In these embodiments the
near-field beamforming is housed 720, 780 in the same hous-
ing with other image processing functions.

By systematically varying beamformer delays and shading
along a viewing angle of a 2D transducer array, returned
echoes along the line of sight representing the 3D radiation
sources can be used to create the scanned image at the
scanned angle. The system can provide continuous real-time
large area scanned images throughout a large field of view at
20 frames/s or more. At this frame rate, the system can be used
to display continuous 3D images vs. time, thus providing 4D
information of the scanned object. As shown in FIG. 7 a CDP
beamforming chip 810, a time multiplexed computing struc-
ture can be used to generate multiple beams, i.e., for each
transmit pulse, the bank of 2D subarray beamformers 818 and
its corresponding 2"“ stage near-field time-delay line are
capable of providing multiple beams sequentially. The com-
puting circuits sequentially generate the delays required for
forming K beams. The device operates as follows. Once a set
of sampled returned-echoes are loaded in the delay lines with
sampling circuits 814, at time t,, the delays required for
forming beam 1 are computed 812 within each module 822
and applied in parallel to all delay lines. The sampled return-
echoes with proper delays are coherently summed 802 and
filtered 804 to form the first beam. At time t,, the delays
required for forming beam 2 are computed within each mod-
ule and applied in parallel to all delay lines. The sampled
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return-echoes with proper delays are coherently summed to
form the second beam. The procedure repeats until the Kth
beam is coherently formed.

For example, if a computing circuit with 16-serial addres-
sable outputs is built in with the CDP subarray and the 2
stage time delay lines, for each transmit pulse, 16 beams or
scan lines each along a different scan angle can be created.
For 256-pulses with a down-range depth of 15 cm, the system
can generate a 4096-beams with a 64x64 pixel resolution at a
frame rate of 20 frames/s. The system is fully programmable;
the beamforming electronics can be adjusted to zoom-in to a
smaller field-of-view for high-resolution or higher frame rate
images. For example, using 192-transmit pulses with the
same down-range depth of 15 cm, the system can generate a
3072-beams with a 64x48 pixel resolution at a 30 frame/s
frame rate.

The array described addresses ultrasound imaging appli-
cations using a two-dimensional 2 cmx2 cm array at a fre-
quency of 3 MHZ. The need for resolution on the order of less
than half the wavelength dictates as large an aperture as
possible that can be housed within a compact package. To
interrogate a 90 degree scanning volume and also minimize
the impact of grating lobes, an element pitch or separation of
less than 0.25 mm is desirable, leading to a 80x80 element
array. Using the subarray processing technique described
above, a scan head with integrated subarray beamforming
circuits followed by a 2"¢ stage near-field beamsteering/
beamfocusing system provides a practical implementation.
However, the implementation still requires at least 32 subar-
ray chips to be integrated on a scan head. An alternative
pseudo random array design approach can be used to achieve
this resolution with a much less amount of processing com-
ponents in the scanned head.

To make a sparse array practical, the combination of low
insertion loss and wide bandwidth performance is important
for realizing acceptable imaging performance with low illu-
mination levels. Quarter-wave matching layers with low
acoustic impedance, but physically solid backing results in a
robust array that loses only 3-4 dB in the conversion of
received signal energy to electrical energy. Array band-
widths of 75% or more are typical of this design and construc-
tion process. Also, the transducer array employs element
positioning and an interconnect system suitable for the beam-
former circuitry. The electronics are mounted on printed-
circuit boards that are attached to the transducer elements via
flexible cables. In practice, a majority of the array elements
are connected to outputs using the flexible cables. However,
only asmall fraction of the total number of elements are wired
to the circuit boards. Nevertheless, the large number of array
element connections are sufficient to insure a unique pattern
of active-element locations in the final array.

As an example of a sparse array, assuming a 2x2 cm array
with 256 active elements, the resulting filling factor is 4%.
The output signal to noise ratio of the array is proportional to
the number of active elements, so this filling factor corre-
sponds to a loss in sensitivity of —13 dB when compared to a
filled array of the same dimensions. To compensate for this
loss, a transmitted signal of wider bandwidth is chosen to
increase array sensitivity. In the approach presented here, the
sensitivity is increased on the order of 10 dB. Further details
regarding sparse array devices can be found in U.S. Pat. No.
6,721,235, the contents of which is incorporated herein by
reference.

Positioning the elements of the array follows the approach
in which care must be taken to eliminate any periodicity that
would produce grating lobes that compete with the main lobe.
Pseudorandom or random arrays can be used (FIG. 8A). The
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geometry of activated element placement has been developed
to maximize the efficiency of the beamformers while mini-
mizing grating and side lobe clutter. Switching between a
plurality of different array patterns is used to provide the most
efficient beam pattern at different beam angles relative to the
region or volume of interest being scanned. Thus, a first
pattern can utilize that illustrated in FIG. 8A, which is than
switched to a second pattern for a different scan angle. This
can involve selecting a transducer element within a neighbor-
hood 880 surrounding a given element to scan at a second
angle.

The primary goal of the optimization method is to mini-
mize theaverage side lobe energy. Specifically, this is done by
interactively evaluating the optimization criterion:

J= M

1
% fIW(ux, uy)Bluy, u)dudu,,

2
mnx

where the weighting function, W(u,, u,), applies more weight
to regions in the array response that require side lobe reduc-
tion. The optimization method begins with no weighting (i.e.,
W(u,, u,)=1) and proceeds by choosing successively better
weighting functions that satisfy the optimization criterion.
Since the side lobes that require the greatest reduction are
related to the previously computed beampattern, B(u,,u,), the
weighting is chosen such that W (u,,u, )=B(u,,u, ). This is done
in an interactive manner until convergence.

Basically, a random array is capable of producing an imag-
ing point spread function that has a main lobe to average side
lobe ratio of N, where N is the total number of active elements
in the array. For the 256-element sparse array example, the
resulting ratio is —13 dB. Using a wide bandwidth approach
improves this ratio by 10 dB. Based on the preceding optimi-
zation criterion, a pseudorandom placement of the array ele-
ments was generated (F1G. 8A).

FIG. 8B is a plot of the array performance, sensitivity
versus cross range, for a 256-element sparsely-sampled array
at 3 MHZ. The peak to maximum side lobe level is approxi-
mately 30 dB. To improve this performance, the system is
configured to achieve the maximum main lobe to clutter level
ratio possible, which has been independently verified.

FIG. 9B depicts a system that the sparse array scan head
900 is connected to a conventional, commercially available
time-domain digital ultrasound imaging system 940 with
m-parallel beamforming channels. Itis easy to see that in FIG.
9A, the time-delay processor can also be implemented by
using CDP time-delay lines 920 in housing 925 that is con-
nected to a separate computer 927. An array of m multiplexers
906 is used to switch between a sequence of scan patterns
executed using a software program and system controller 940
orprocessor 950. The sequence of sparse array patterns is thus
selected to scan at different scan angles of an object being
imaged to provide 3D ultrasound imaging thereof.

A commercially available window-based 3D visualization
software can be used to visualizing, manipulating, and ana-
lyzing the 3D multiple-beams volume image data generated
by the electronically-adjustable acoustic conformal lens sys-
tem. Traditionally, a clinician with 2D ultrasound images for
diagnosis would look at the 2D scanned images slice by slice
and mentally reconstruct the information into a 3D represen-
tation to judge the anatomy of the patient. This procedure
requires the clinician to have well-founded experience as well
as a highly sophisticated understanding of human anatomy.
To create a “complete” image to the 3D structures, the clini-
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cian has to take all available slices into account. Looking at
hundreds of slices is too time-consuming, even for a single
patient. 3D visualization based on 3D volume data can help
overcome this problem by providing the clinician with a 3D
representation of the patient’s anatomy reconstructed from
the set of multiple-scanned beamforming data.

A commercially available software tool such as KB-Vol3D
of KB-VIS technologies, Chennai, India, provides display or
viewing 3D features such as:

Fast Volume-Rendering

Shaded Surface Display

Shaded-Surface module allows easy visualization of sur-
faces in the volume. Surfaces may be created by intensity-
based thresholding. Alternatively, the Seeding option allows
selection of specific connected structures of interest.

MIP (Maximum Intensity Projection) with Radials

MPR (Multiple-Plane-Reformating) with Oblique &

Double-Oblique and 3D correlation

MRP Slabs & Multi-Cuts

Curved MPR

Color & Opacity Presets with Editor

Region-Growing and Volume Measurements

Cutaway Viewing with Slab-Volume and Interactive Real-

time VOI

Volume-interiors are easily visualized using the “Cutaway-
Viewing” tool. A Cut-Plane is used to slice through the vol-
ume, revealing the interior regions. The cut-plane is easily
positioned and oriented using the mouse.

The VOI (Volume-of-Interest) tool allows interactive, real-
time Volume-of-Interest display. The user can isolate and
view sub-volumes of interest very easily and in real-time,
using easy click-and-drag mouse operation.

Image Save in Multiple Formats

Images displayed by KB-Vol3D can be captured to various
image formats (including DICOM, JPEG, and BMP etc.)

Movie Capture in AVI Format

Visualization operations can also be captured to an AVI
movie Je and played on Windows Media Player, QuickTime,
and Real Player etc.

The invention can be implemented using a scan head 12
connected to a portable computer 14 as shown in FIG. 10. the
ultrasound system 10 can also include a cable 16 to connect
the probe 12 to the processor housing 14. Certain embodi-
ments can employ an interface unit 13 which can include a
beamformer device. Scan head 12 can include a transducer
array 15A (2D) and a circuit housing 15B which can house
multiplexer and/or beamforming components as described in
detail in U.S. Pat. Nos. 6,106,472 and 6,869,401, the entire
contents being incorporated herein by reference.

The claims should not be read as limited to the recited order
or elements unless stated to that effect. All embodiments that
come within the scope and spirit of the following claims and
equivalents thereto are claimed as the invention.

What is claimed is:

1. A medical ultrasound imaging system comprising:

a two dimensional (2D) array of transducer elements in a
probehousing, the array of transducer elements having a
plurality of 2D transducer sub-arrays;

a first beamformer device in the probe housing, the first
beamformer device having a plurality of sub-array
beamformer elements that receive signals from the plu-
rality of 2D transducer sub-arrays;

a multiplexer device in the probe housing, the multiplexer
device having a plurality of multiplexer elements, each
of the plurality of multiplexer elements being connected
to one of the sub-array beamformer elements and such
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that each of the plurality of 2D transducer sub-arrays are
each connected to one of the plurality of multiplexer
elements;
a summing device for summing of a plurality of delayed
5 signals within the probe housing;

a controller to sparsely actuate the plurality of 2D trans-
ducer subarrays to generate a plurality of scan lines at a
plurality of different scan angles for each transmit pulse;
and

a second beamformer device in a second housing, the sec-
ond beamformer being in communication with the probe
housing to receive summed beamformed data from the
first beamformer device, the second housing including
an image processor and a display.

2. The system of claim 1 wherein the first beamformer
device comprises a plurality of beamformer elements and a
corresponding plurality of multiplexer elements.

3. The system of claim 1 further comprising a processor
housing having an image processor programmed to perform
3D image processing and Doppler processing.

4. The system of claim 3 wherein the second housing is
connected to the probe housing with a first cable and is con-
nected to the processor housing with a second cable.

5. The system of claim 1 wherein the two dimensional array
has at least 256 elements.

6. The system of claim 1 wherein the first beamformer
device comprises a plurality of beamforming channels that
receives signals from a two dimensional sub-array having
NxM transducer elements.

7. The system of claim 1 wherein the second beamformer
device comprises a digital beamformer.

8. The system of claim 1 wherein the first beamformer
device comprises a charge domain processor.

9. The system of claim 1 further comprising a processor
programmed to actuate the system to collect at least 10 3D
images per second.

10. The system of claim 1 wherein the system comprises a
portable ultrasound system.

11. The system of claim 1 further comprising a plurality of
transmit circuits in the second housing that are connected to
the multiplexer device and a system controller connected to
the transmit circuits such that the system controller actuates a
plurality of sparse transmission array patterns of the array of
transducer elements.

12. The system of claim 1 further comprising a transmit
circuit that generates a transmit pulse actuating 16 separately
steerable beams with the array of transducer elements.

13. A medical ultrasound scan head comprising:

a two dimensional (2D) array of transducer elements in a
probe housing, the probe housing having a cable for
connecting to a medical ultrasound processor;

a first beamformer device in the probe housing, the first
beamformer device including a plurality of sub-array
beamformer elements that receive signals from a corre-
sponding plurality of 2D transducer sub-arrays; and

a multiplexing network in the probe housing, the multi-
plexing network having a plurality of multiplexer ele-
ments that are connected to the plurality of sub-array
beamformer elements, each sub-array beamformer ele-
ment connected to one of the plurality of 2D transducer
sub-arrays.

14. The scan head of claim 13 wherein the two dimensional

65 array comprises a sparse transmission array.
15.The scan head of claim 13 wherein the first beamformer
device comprises a charge domain processor.
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16. A medical ultrasound imaging system comprising:

atwo dimensional array of transducer elements in a probe
housing having a plurality of 2D transducer subarrays;

a plurality of multiplexer elements that switches the array
between a plurality of sparse transmission array pat-
terns;

a plurality of beamformer circuits in the probe housing,
each beamformer circuit being connected to one of the
multiplexer elements and one of the plurality of 2D
transducer subarrays;

a portable processor housing connected to the probe hous-
ing with a cable, the portable processor housing includ-
ing a display; and

aprocessor programmed to sparsely actuate the transducer
array with a plurality of transmit circuits to transmit a
plurality of pulses, each transmit pulse generating 16
separately steerable beams at different scan angles to
generate at least 10 three dimensional images per sec-
ond.

17. The system of claim 16 further comprising a processor
housing connected to the probe housing, the processor hous-
ing having at least one image processor programmed to per-
form 3D image processing and Doppler processing and hav-
ing a controller to sequentially actuate sparsely selected array
elements.

18. The system of claim 16 wherein the two dimensional
array comprises a sparse array having at least 256 transducer
elements.

19. The system of claim 16 wherein the first transmission
sparse array pattern transmits at a first scan angle and the
second transmission sparse array pattern transmits at a second
scan angle different from the first scan angle.
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20. A medical ultrasound imaging system comprising:

a two dimensional array of transducer elements in a probe
housing, the two dimensional array of transducer ele-
ments comprising a plurality of 2D transducer subat-
rays;

a multiplexing network in the probe housing to sparsely
actuate the array elements that transmit a plurality of
different sparse transmission patterns in sequence, the
multiplexing network comprising a plurality of multi-
plexing elements connected to the corresponding plural-
ity of 2D transducer subarrays;

a first beamformer in the probe housing that is connected to
the multiplexing network, the first beamformer receiv-
ing signals from the array of transducer elements such
that data are generated;

a second beamformer device in a second housing, the
beamformer being in communication with the probe
housing to receive summed data from the first beam-
former device

a controller in the second housing in communication with
the probe housing to sequentially actuate selected trans-
ducer elements to form the plurality of sparse transmis-
sion patterns; and

an image processor in the second housing.

21. The system of claim 20 further comprising a controller

that activates a fully populated receiver transducer array.

22. The system of claim 20 further comprising a sub-array

processor.

23. The system of claim 20 further comprising a steerable

beamforming processor.

24. The scan head of claim 13 further comprising a plural-

ity of sub-array processors.
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