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(57) ABSTRACT

A fetal parameter or anatomy is measured or detected from
three-dimensional ultrasound data. An algorithm is machine-
trained to detect fetal anatomy. Any machine training
approach may be used. The machine-trained classifier is a
joint classifier, such that one anatomy is detected using the
ultrasound data and the detected location of another anatomy.
The machine-trained classifier uses marginal space such that
the location of anatomy is detected sequentially through
translation, orientation and scale rather than detecting for all
location parameters at once. The machine-trained classifier
includes detectors for detecting from the ultrasound data at
different resolutions, such as in a pyramid volume.
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AUTOMATED FETAL MEASUREMENT
FROM THREE-DIMENSIONAL
ULTRASOUND DATA

RELATED APPLICATIONS

[0001] The present patent document claims the benefit of
the filing date under 35 U.S.C. §119(e) of Provisional U.S.
Patent Application Ser. No. 60/977,494, filed Oct. 4, 2007,
which is hereby incorporated by reference.

BACKGROUND

[0002] Thepresentembodiments relate to medical diagnos-
tic ultrasound imaging. In particular, fetal measurements are
performed using ultrasound data representing a volume.
[0003] Fetal biometric measurements represent an impor-
tant factor for high quality obstetrics health care. Fetal bio-
metric measurements are used for estimating the gestational
age (GA) of the fetus, assessing of fetal size, and monitoring
of fetal growth and health. To perform the measurements, a
physician or sonographer manually searches for a standard-
ized plane using 2-D ultrasound (2DUS) images. Manual
searching is cumbersome and contributes to excessive length
in clinical obstetric examinations. Long ultrasound examina-
tions may lead to increased costs.

[0004] Three-dimensional ultrasound (3DUS) data may
have increasing importance in radiology for fetal diagnosis.
Compared to 2DUS, the main advantages of 3D US may
include a substantial decrease in the examination time, a
possibility of post-exam data processing without requesting
additional visits of the patient, and the ability of experts to
produce 2-D views of the fetal anatomies in orientations that
cannot be seen in common 2-D ultrasound exams. However,
extensive manipulation on the part of the physician or the
sonographer may be required in order to identify standard
planes for measurements from the 3DUS data. The learning
curve to understand these manipulation steps is quite large,
even for expert users. Usually, expert users find several land-
marks in order to reach the sought anatomy. For example, the
standardized plane for measuring the lateral ventricles in the
fetus brain is referred to as the transventricular plane. The
user searches for the cavum septi pellucidi, frontal horn,
atrium, and choroids plexus in order to identify the plane.
Since the fetus is oriented in an arbitrary position in each
volume, an expert sonographer may require several minutes
to localize the structures in a basic examination.

[0005] Some automated or semi-automated processes may
be used to assist in 3DUS. In the field of 3DUS, segmentation
and registration of specific anatomical structures may be pro-
vided. However, segmentation and registration merely sepa-
rate data representing an already identified structure.

[0006] Incomputer vision, there are methods for recogniz-
ing 3D objects using range images, but these applications are
different in the sense that the system works with surfaces
instead of actual volumes. Using 3-D magnetic resonance
imaging (3DMRI) data, a combination of a discriminant clas-
sifier based on the probabilistic boosting tree (PBD) for
appearance and generative classifier based on principal com-
ponents analysis (PCA) for shape, where the weights for these
two terms are learned automatically, has been proposed. This
is applied to the segmentation of eight brain structures, where
the system takes eight minutes to run. Segmentation of heart
structures using 3-D computed tomography (CT) may be
based on discriminant classifiers and marginal space learning.
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The segmentation of four heart structures may be achieved in
less than eight seconds. However, 3DUS data is different than
CT or MRI data. The orientation of anatomical structures in
MRI and CT data is generally better constrained than that of
3DUS.

BRIEF SUMMARY

[0007] By way of introduction, the preferred embodiments
described below include methods, computer readable media
and systems for measuring or detecting a fetal parameter from
three-dimensional ultrasound data. An algorithm is machine-
trained to detect fetal anatomy. Any machine training
approach may be used. In one embodiment, the machine-
trained classifier is a joint classifier, such that one anatomy is
detected using the ultrasound data and the detected location
of another anatomy. In one embodiment, the machine-trained
classifier uses marginal space such that the location of
anatomy is detected sequentially through translation, orien-
tation and scale rather than detecting for all location param-
eters at once. In one embodiment, the machine-trained clas-
sifier includes detectors for detecting from the ultrasound
data at different resolutions, such as in a pyramid volume.
One or more of the embodiments may be used alone or
together.

[0008] Ina first aspect, a method is provided for measuring
a fetal parameter from three-dimensional ultrasound data. A
machine-trained classifier is applied to the three-dimensional
ultrasound data. A first fetal anatomy is detected as a function
ofthe applying. A value of the fetal parameter associated with
the first fetal anatomy is measured and displayed.

[0009] In a second aspect, a computer readable storage
medium has stored therein data representing instructions
executable by a programmed processor for measuring a fetal
parameter from three-dimensional ultrasound data. The stor-
age medium includes instructions for receiving user input
requesting automatic measurement of a fetal head anatomy,
the fetal parameter being for the fetal head anatomy, detecting
the fetal head anatomy with a computer learnt classifier, the
computer learnt classifier operable to detect from the three-
dimensional ultrasound data without user indication of a posi-
tion, and calculating a value for the fetal parameter.

[0010] Inathirdaspect,a system is provided for measuring
a fetal parameter from three-dimensional ultrasound data. A
memory is operable to store ultrasound data representing a
fetal volume A processor is operable to apply a probabilistic
model to detect a first anatomy as a function of the ultrasound
data and a position of a second anatomy. The detection of the
first anatomy is performed sequentially for at least two of
position, orientation and scale. A display is operable to dis-
play an image of the first anatomy, a value representing a
measurement of the first anatomy or combinations thereof.
[0011] The present invention is defined by the following
claims, and nothing in this section should be taken as a limi-
tation on those claims. Further aspects and advantages of the
invention are discussed below in conjunction with the pre-
ferred embodiments and may be later claimed independently
or in combination.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] The components and the figures are not necessarily
to scale, emphasis instead being placed upon illustrating the
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principles of the invention. Moreover, in the figures, like
reference numerals designate corresponding parts throughout
the different views.

[0013] FIG. 1 is a block diagram of one embodiment of a
medical ultrasound imaging system;

[0014] FIG. 2is a flow chart diagram of embodiments of a
method for measuring a fetal parameter from three-dimen-
sional ultrasound data; and

[0015] FIG. 3 is a graphical representation of planes in a
fetal head and corresponding reconstruction images in one
embodiment.

DETAILED DESCRIPTION OF THE DRAWINGS
AND PRESENTLY PREFERRED
EMBODIMENTS

[0016] In ultrasound imaging, shadows, speckle noise and
other artifacts create a low contrast image with blurry edges.
Even if it is easy for the human eye to navigate and recognize
structures, it is difficult to adapt common feature extraction
techniques to 3DUS datasets. The size of the anatomical
structures depends on the age of the fetus, which brings a high
variance in the model for each structure. The position and
orientation of each fetus is completely arbitrary, making it
impossible to constrain the search space in 3D.

[0017] A clinical system automatically indexes fetus struc-
tures despite the limitations of ultrasound imaging ofthe fetus
for biometric measurements. In one embodiment, a system is
based on a machine-trained model. In order to provide a
completely automatic solution for the problem of fetal
anatomy indexing in 3DUS, a principled probabilistic model
combines discriminative and generative classifiers with con-
textual information and sequential sampling. Contextual
information or sequential sampling may be used alone or in
combinations. The indexing of fetal anatomies allows the
display of standard planes and associated biometric measure-
ments of the fetal anatomy. In response to a user query or
other activation, anatomical structures of interest are
detected.

[0018] FIG. 1 shows a medical diagnostic imaging system
10 for measuring a fetal parameter and/or detecting fetal
anatomy from three-dimensional ultrasound data. Fetal
anatomies may be detected, allowing measurement of the
anatomies and reconstruction of standard planes relative to
the anatomies from ultrasound volume data.

[0019] The system 10 is a medical diagnostic ultrasound
imaging system, but may be a computer, workstation, data-
base, server, or other system. The system 10 includes a pro-
cessor 12, a memory 14, a display 16, and a transducer 18.
Additional, different, or fewer components may be provided.
For example, the system 10 includes a transmit beamformer,
receive beamformer, B-mode detector, Doppler detector, har-
monic response detector, contrast agent detector, scan con-
verter, filter, combinations thereof, or other now known or
later developed medical diagnostic ultrasound system com-
ponents. As another example, the transducer 18 is not pro-
vided, such as where the system 10 is a workstation for
off-line or later measurement of fetal anatomy.

[0020] The transducer 18 is a piezoelectric or capacitive
device operable to convert between acoustic and electrical
energy. The transducer 18 is an array of elements, such as a
multi-dimensional or two-dimensional array. Alternatively,
the transducer 18 is a wobbler for mechanical scanning in one
dimension and electrical scanning in another dimension.
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[0021] The system 10 uses the transducer 18 to scan a
volume. Electrical and/or mechanical steering allows trans-
mission and reception along different scan lines in the vol-
ume. Any scan pattern may be used. In one embodiment, the
transmit beam is wide enough for reception along a plurality
of scan lines. In another embodiment, a plane, collimated or
diverging transmit waveform is provided for reception along
a plurality, large number, or all scan lines.

[0022] Ultrasound data representing a volume is provided
in response to the scanning. The ultrasound data is beam-
formed, detected, and/or scan converted. The ultrasound data
may be in any format, such as polar coordinate, Cartesian
coordinate, a three-dimensional grid, two-dimensional
planes in Cartesian coordinate with polar coordinate spacing
between planes, or other format. The ultrasound data may be
of any type, such as B-mode, flow mode, Doppler mode,
contrast agent, harmonic, or other ultrasound modes of imag-
ing.

[0023] Thememory 14 is a buffer, cache, RAM, removable
media, hard drive, magnetic, optical, database, or other now
known or later developed memory. The memory 14 is a single
device or group of two or more devices. The memory 14 is
shown within the system 10, but may be outside or remote
from other components of the system 10.

[0024] The memory 14 stores the ultrasound data, such as
ultrasound data representing a fetal volume. The fetal volume
1s a volume including at least a portion of the fetal head, but
other portions of a fetus may be represented. The memory 14
stores flow (e.g., velocity, energy or both) and/or B-mode
ultrasound data. Alternatively, the medical image data is
transferred to the processor 12 from another device. The
medical image ultrasound data is a three-dimensional data
set, or a sequence of such sets. The data represents a three-
dimensional region. Any format may be used, such as voxels
interpolated to a three-dimensional grid or data representing
parallel or non-parallel planes.

[0025] For real-time imaging, the ultrasound data bypasses
the memory 14, is temporarily stored in the memory 14, or is
loaded from the memory 14. Real-time imaging may allow
delay of a fraction of seconds, or even seconds, between
acquisition of data and imaging with measurements. For
example, real-time imaging is provided by generating the
images substantially simultaneously with the acquisition of
the data by scanning. While scanning to acquire a next or
subsequent set of data, images and measurements are gener-
ated for a previous set of data. The imaging occurs during the
same imaging session used to acquire the data. The amount of
delay between acquisition and imaging for real-time opera-
tion may vary, such as a greater delay for initially locating
fetal anatomies with less delay for measurements. In alterna-
tiveembodiments, the ultrasound data is stored in the memory
14 from a previous imaging session and used for measuring
and/or generating a planar reconstruction without concurrent
acquisition.

[0026] The memory 14 is additionally or alternatively a
computer readable storage medium with processing instruc-
tions. The memory 14 stores data representing instructions
executable by the programmed processor 12 for detecting
fetal anatomy and/or measuring a fetal parameter from three-
dimensional ultrasound data. The instructions for implement-
ing the processes, methods and/or techniques discussed
herein are provided on computer-readable storage media or
memories, such as a cache, buffer, RAM, removable media,
hard drive or other computer readable storage media. Com-
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puter readable storage media include various types of volatile
and nonvolatile storage media. The functions, acts or tasks
illustrated in the figures or described herein are executed in
response to one or more sets of instructions stored in or on
computer readable storage media. The functions, acts or tasks
are independent of the particular type of instructions set,
storage media, processor or processing strategy and may be
performed by software, hardware, integrated circuits, firm-
ware, micro code and the like, operating alone or in combi-
nation. Likewise, processing strategies may include multi-
processing, multitasking, parallel processing and the like. In
one embodiment, the instructions are stored on a removable
media device for reading by local or remote systems. In other
embodiments, the instructions are stored in a remote location
for transfer through a computer network or over telephone
lines. In yet other embodiments, the instructions are stored
within a given computer, CPU, GPU, or system.

[0027] The processor 12 is a general processor, digital sig-
nal processor, three-dimensional data processor, graphics
processing unit, application specific integrated circuit, field
programmable gate array, digital circuit, analog circuit, com-
binations thereof, or other now known or later developed
device for processing medical image data. The processor 12 is
asingle device, a plurality of devices, or a network. For more
than one device, parallel or sequential division of processing
may be used. Different devices making up the processor 12
may perform different functions, such as an automated
anatomy detector and a separate device for performing mea-
surements associated with the detected anatomy. In one
embodiment, the processor 12 is a control processor or other
processor of a medical diagnostic imaging system, such as a
medical diagnostic ultrasound imaging system processor.
The processor 12 operates pursuant to stored instructions to
perform various acts described herein, such as obtaining data,
detecting anatomy, measuring anatomy, and/or controlling
imaging.

[0028] In one embodiment, the processor 12 receives
acquired ultrasound data during or after scanning and deter-
mines locations of one or more fetal anatomies in the volume
represented by the data. The processor 12 performs or con-
trols other components to perform the methods described
herein.

[0029] Theprocessor 12 performs machine learning and/or
applies a machine-learnt algorithm. For example, the proces-
sor 12 applies a probabilistic model to detect fetal anatomy.
The probabilistic model is a machine-learned classifier. Any
classifier may be applied, such as a model-based classifier or
a learned classifier (e.g., classifier based on machine learn-
ing). For learned classifiers, binary or multi-class classifiers
may be used, such as Bayesian or neural network classifiers.
In one embodiment, a binary boosting classifier with a tree
and cascade structure is used. The classifier is instructions, a
matrix, a learned code, or other software and/or hardware for
distinguishing between information in a medical image.
[0030] The classifier may include a plurality of models or
classifiers (e.g., detectors) operable together or indepen-
dently. For example, different probabilistic models are
trained for different fetal anatomy. The probabilistic models
may be joint or dependent. The location of other anatomies is
used to limit or define a search space for a current anatomy
and/or as a feature input for classification of another anatomy.
For example, one anatomy, such as the fetal head or skull, is
detected from the ultrasound data. The position of the
anatomy is determined from the volume represented by the
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ultrasound data. Another anatomy is detected as a function of
the ultrasound data and the position of the one anatomy. The
other anatomy may be a cerebellum, a cisterna magna, or a
lateral ventricle. In one embodiment, the cerebellum is
detected based on the location of the fetal skull, the cisterna
magna is detected based on the location of the cerebellum
and/or the fetal skull, and the lateral ventricle is detected
based on the location of the fetal skull, cerebellum, and/or
cisterna magna. Other combinations of joint classifiers may
be used.

[0031] As another example of a plurality of classifiers
being used as one, different probabilistic models are trained
for translation, orientation, and scale of a given fetal anatomy.
A marginal space training and application may provide effi-
cient location detection. The most probable data for a given
anatomy by translation searching (shifting the search window
along three axes) is determined. The most probable size for a
given anatomy by scale searching (increasing and decreasing
the size of the search window along three axes) is determined
for the translated locations with sufficient probability. The
most probable orientation by rotation searching (rotation of
the search window along three axes) is determined for the
translated and scaled locations with sufficient probability.
Other orders of translation, scale, and orientation searching
may be used in the sequence. By performing the detection for
the anatomy sequentially for at least two of position, orien-
tation and scale, the number of computations may be reduced
as compared to classifying for each possible combination of
translation, scale, and orientation. In alternative embodi-
ments, translation, scale, and orientation searching are per-
formed without sequentially limiting the search space or
without marginal space searching.

[0032] Inanother example of a plurality of classifiers being
used as one, different probabilistic models are trained for
different data resolutions. A data pyramid is provided, such as
the same data set down sampled to different resolutions. Two
or more versions of the data may be provided. For example,
the ultrasound data has voxels representing about 1x1x1 mm
cubes. The data is down sampled by half, providing a data set
where each voxel represents a 2x2x2 mm cube. This lower
resolution data is down sampled by half, providing a data set
where each voxel represents a 4x4x4 mm cube. In alternative
embodiments, the voxels have unequal sides or are not iso-
tropic. Different probabilistic models are provided as classi-
fiers for each of the data sets. One classifier is applied to the
coarsest set. The results of the course set application are used
by the classifier for the next highest resolution, such as by
limiting the search space. This repeats until the highest reso-
lution data set is used. In alternative embodiments, a single
data set is used.

[0033] Thedifferent classifiers for joint classification, mar-
ginal space classification, and/or multiple resolution classifi-
cation are the same or different types of classifiers. The same
or different types of classifiers may be used for the same type
of classification, such as different types of classifiers being
used for different marginal space classification (e.g., the clas-
sifier for translation is different than the classifier for scale).
[0034] In one embodiment, the probabilistic model is
formed from a plurality of probabilistic boosting tree classi-
fiers. Separate training and resulting machine-trained classi-
fiers are provided for each anatomy of interest. For each of
these separate classifiers, separate probabilistic boosting tree
classifiers are provided for each of the marginal space types.
For example, the classifiers follow the marginal space learn-
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ing protocol, providing a position detector using Haar wavelet
features, a scale detector using steerable features, and an
orientation detector using steerable features. Separate mar-
ginal space classifiers are provided for each resolution of
data. For example, each detector (e.g., position, scale, and
orientation for each anatomy) at 4 mm resolution is a proba-
bilistic boosting tree with 6 levels, and each node in the tree is
a strong classifier with at most 20 weak classifiers. Fach
detector (e.g., position, scale, and orientation for each
anatomy) at 2 mm is a probabilistic boosting tree with 8
levels, and each node in the tree is a strong classifier with at
most 20 weak classifiers. Each detector (e.g., position, scale,
and orientation for each anatomy) at 1 mm is a probabilistic
boosting tree with 10 levels, and each node in the tree is a
strong classifier with at most 20 weak classifiers. Any number
of classifiers, nodes, levels, or other combinations may be
used.

[0035] The detection algorithm implemented by the pro-
cessor 12 searches through multiple hypotheses (window
locations) to identify the hypotheses with high probabilities
for each anatomy. Multiple hypotheses are maintained
between algorithm stages. Each stage, such as a translation
stage, an orientation stage, and a scale stage, quickly removes
false hypotheses remaining from any earlier stages. The cor-
rect or remaining hypotheses propagate to the final stage.
Only one hypothesis is selected as the final detection result or
a measurement location is detected from information for a
combination of hypotheses (e.g., average of the remaining
hypotheses after the final stage).

[0036] For application, the processor 12 calculates features
for classification. The same or different features are used for
classificationineachstage. For example in a translation stage,
features are calculated for each of a plurality of translated
positions of cubic regions of interest. Using a machine-
trained translation classifier, the features are used to rule out
hypotheses corresponding to the translated positions, leaving
a subset of remaining hypotheses.

[0037] The features are three-dimensional features. 3D
data is used to calculate the features. The window function
defining the data is a cube, but may have other volume shapes.
The window is translated, rotated, and scaled as part of
searching for an anatomy. The same or different sized win-
dows are used for different anatomies.

[0038] Any features may be used. Different types of fea-
tures may be used for the same classifier, or all of the features
are of a same type for a given classifier. In one embodiment,
Haar wavelet-like and/or steerable features are calculated.
Haar wavelet-like features represent the difference between
different portions of a region. Any number of features may be
used, such as tens, hundreds, or thousands. The machine
learning process may operate to determine a desired subset or
set of features to be used for a given classification task. In one
embodiment, the type of features used is gradient features.
For example, the “steerable” features described by Zheng, et
al. in “Fast Automatic Heart Chamber Segmentation from 3D
CT Data Using Marginal Space Learning and Steerable Fea-
tures,” Proc. Int’l Conf. on Computer Vision, pp. 1-8, 2007,
are used. Other types of features may alternatively or addi-
tionally be used.

[0039] Feature values are calculated for each hypothesis.
For translation classification at 1 mm for the cerebellum, the
features are calculated for each of the possible translated
window positions. The same features, such as the same Haar
functions, are calculated for each of the possible translated
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positions. The translation classifier outputs a probability of a
given possible position being the correct or desired anatomy
based on the feature values. If the probability is above a
threshold, the associated hypothesis is maintained. If the
probability is below a threshold, the associated hypothesis is
ruled out and discarded from the pool of hypotheses.

[0040] By ruling out one or more hypotheses, the number of
possible positions associated with rotation and/or scale may
be limited. For example, ruling out one hypothesis and leav-
ing two hypotheses allows the orientation classifier to calcu-
late features for different rotations relative to two different
translations instead of three.

[0041] The processor 12 calculates the same or different
features for each of a plurality of rotated positions associated
with the remaining hypotheses. Hypotheses corresponding to
the rotated positions are ruled out with an orientation classi-
fier and as a function of the features. After application of the
orientation classifier, a further subset of hypotheses remains.
The remaining hypotheses are for sufficient translations hav-
ing at least one sufficient rotation.

[0042] The processor 12 calculates the same or different
features for each of a plurality of scaled planes associated
with hypotheses remaining after translation and orientation
testing. A scale classifier rules out hypotheses corresponding
to the scaled windows as a function of the features. After
ruling out none, one or more hypotheses, a remaining set of
hypotheses remains for the anatomy being detected. Other
marginal space orders may be used.

[0043] The remaining hypotheses for the lowest resolution
data are used for classification using higher resolution data.
The marginal space process repeats using the higher resolu-
tion data. The process is repeated until one or more hypoth-
eses remain after application of the classifiers for the higher
resolution data set. By sequentially ruling out hypotheses for
different marginal space and data resolution applications, the
number of calculations for detecting a fetal anatomy may be
quickly (e.g., seconds) determined using a computer.

[0044] The processor 12 calculates measurements of the
detected anatomy. Any measurement may be made. In one
embodiment, the classifier is trained with measurement anno-
tations, such as caliper positions. The detection of the
anatomy provides the caliper positions as an output of the
classifier. The measurement corresponding to the caliper
position is performed, such as measuring a diameter or dis-
tance. Any now known or later developed measurement may
be used.

[0045] The display 16 is a CRT, LCD, plasma, projector,
printer, or other output device for showing an image. The
display 16 displays an image of the detected anatomy, such as
an image of a standard plane associated with the measure-
ment of the anatomy. The data representing the volume is
used for generating the image. Data from the volume dataset
adjacent to or intersected by the plane defined by the location
of the anatomy is used to generate a cut-plane or planar
reconstruction image. The detected anatomy may or may not
be highlighted or segmented. Alternatively or additionally, a
value of the measurement is displayed. The value may be
displayed in a chart, graph, and/or on an image.

[0046] FIG. 2 shows a method for measuring a fetal param-
eter and/or detecting fetal anatomy from three-dimensional
ultrasound data. The method is implemented by a medical
diagnostic imaging system, a review station, a workstation, a
computer, a PACS station, a server, combinations thereof, or
other device for image processing medical ultrasound data.
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For example, the system or computer readable media shown
in FIG. 1 implements the method, but other systems may be
used.

[0047] The method is implemented in the order shown or a
different order. Additional, different, or fewer acts may be
performed. For example, act 36 is optional. As another
example, one or more of acts 26, 28, and 30 are not performed.
[0048] The acts are performed in real-time, such as during
scanning. The user may view images of act 36 while scanning
to acquire another dataset representing the volume. The
images may be associated with previous performance of acts
20-36 in the same imaging session, but with different volume
data. Forexample, acts 20-36 are performed for an initial scan
and for subsequent scans during the same imaging session.
Measurements and/or images of automatically detected
anatomy may be provided in seconds, such as 10 or fewer
seconds.

[0049] For training and/or application, ultrasound data rep-
resenting a volume containing the head of a fetus between 13
to 35 weeks of age is used. After 35 weeks, the ultrasound
signal has difficulty penetrating the fetal skull. Alternatively,
the volume represents the entire fetus or only other portions of
the fetus.

[0050] One or more sets of data are obtained. The ultra-
sound data corresponds to a data set interpolated to a regular
3D grid, displayed images (e.g., detected and scan converted
ultrasound data), beamformed data, detected data, and/or
scan converted data. The ultrasound data represents a volume
or 3D region of a patient. The region includes tissue, fluid or
other structures. Different structures or types of structures
react to the acoustic energy differently. The shape of a struc-
ture or spatial aspect may be reflected in B-mode or harmonic
data. The fetal head or other portion of the fetus is within the
volume region. The data represents the region.

[0051] In act 20, user input is received. The user input
requests automatic measurement or detection of fetal
anatomy, such as fetal head anatomy. The measurement is a
parameter associated with the fetal head anatomy. For
example, measurement of the diameter of the cerebellum is
requested. In alternative embodiments, the measurement and/
or detection occur without user request, such as in response to
activation of a three-dimensional fetal imaging application.
[0052] The user input is data, an electrical signal, or other
information useable by a processor to indicate user activation.
For example, the electrical signal generated in response to
user depression of a button or other user interface selection
(e.g., pointer-based selection) indicates a user request. The
context of the information shows the aspect requested (e.g.,
request of all available automatic fetal head measurements
based on user selection of a menu item for such request).
[0053] In one semantic embodiment, the user input is text.
A semantic keyword is input as a user query. The user may
query the system using a limited vocabulary of semantic
keywords. Each keyword represents an anatomy of interest
that the user wants to visualize and/or measure. For example,
cerebellum, cisterna magna, and lateral ventricles anatomies
may be detected and measured. Once the user selects the
keyword, the system automatically shows the standard plane
of visualization and/or the respective biometric measure by
implementing acts 22-36.

[0054] In act 22, a machine-trained classifier is applied to
the three-dimensional ultrasound data. The machine-trained
classifier is any one or more classifiers. The classifier may be
a model or detector using imaging processing, filtering, or
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other techniques. A single class or binary classifier, collection
of different classifiers, cascaded classifiers, hierarchal classi-
fier, multi-class classifier, model-based classifier, classifier
based on machine learning, or combinations thereof may be
used. Multi-class classifiers include CART, K-nearest neigh-
bors, neural network (e.g., multi-layer perception), mixture
models, or others. A probabilistic boosting tree may be used.
Error-correcting output code (ECOC) may be used.

[0055] The classifier is trained from a training data set
using a computer. Any number of expert annotated sets of
ultrasound data is used. For example, about 200 hundred
ultrasound volumes representing fetal heads and including
the cerebellum, cisterna magna and lateral ventricles are
annotated. The annotation is a line, points, curves or volumes
associated with a measurement of the respective anatomy.
The different anatomies of each volume are annotated. This
large number of annotations allows use of a probabilistic
boosting tree to learn relevant features over a large pool of
3-D Haar features and steerable features. Both features may
be efficiently computed and be effective as a feature space for
boosting classifiers. Other features may be used. Fach clas-
sifier uses the data sets and annotations specific to the
anatomy being classified.

[0056] In one embodiment, the classifier is a knowledge-
based probabilistic model, such as marginal space learning
using a hierarchical search. A database of known cases is
collected for machine learning, providing a database-driven
knowledge-based approach. For training data, three-dimen-
sional context information is preserved and guides the detec-
tion process. Knowledge is embedded in large annotated data
repositories where expert clinicians manually indicate the
anatomies and/or measurement indicators for the anatomies.
Training and detecting the location of measurement indica-
tors include detecting the associated anatomy since the mea-
surement indicator (e.g., a line representing the diameter)
indicates the anatomy. The known cases may be spatially
aligned or registered, such as by aligning the coordinate sys-
tem to the fetal skull. The detectors are trained on a large
number of annotated 3D ultrasound volumes. The classifier
learns various feature vectors for distinguishing between a
desired anatomy and information not being detected. In alter-
native embodiments, the classifier is manually programmed.

[0057] For learning-based approaches, the classifier is
taught to distinguish based on features. For example, the
probability model algorithm selectively combines features
into a strong committee of weak learners based on Haar-like
local rectangle filters whose rapid computation is enabled by
the use of an integral image. Features that are relevant to the
anatomies are extracted and learned in a machine algorithm
based on the experts’ annotations, resulting in a probabilistic
model. A large pool of features may be extracted. The training
determines the most determinative features for a given clas-
sification and discards non-determinative features. Different
combinations of features may be used for detecting different
anatomies, the same anatomy at different resolutions, and/or
the same anatomy associated with different translation, rota-
tion, or scale. For example, different sequential classification
stages utilize different features computed from the 3D vol-
ume data. Each classifier selects a set of discriminative fea-
tures that are used to distinguish the positive target from
negatives. The features are selected from a large pool of
features. The large pool is determined by a programmer or
may include features systematically determined.
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[0058] A tree structure may be learned and may offer effi-
ciency in both training and application. Often, in the midst of
boosting a multi-class classifier, one class (or several classes)
has been completely separated from the remaining ones and
further boosting yields no additional improvement in terms of
the classification accuracy. For efficient training, a tree struc-
ture is trained. To take advantage of this fact, a tree structure
is trained by focusing on the remaining classes to improve
learning efficiency. Posterior probabilities or known distribu-
tions may be computed, such as by correlating anterior prob-
abilities together.

[0059] To handle the background classes with many
examples, a cascade training procedure may be used. A cas-
cade of boosted binary-class strong classifiers may result. The
cascade of classifiers provides a unified algorithm able to
detect and classify multiple objects while rejecting the back-
ground classes. The cascade structure corresponds to a degen-
erate decision tree. Such a scenario presents an unbalanced
nature of datasamples. The background class has voluminous
samples because all data points not belonging to the object
classes belong to the background class. Alternatively, the
classifiers are sequentially trained without cascade.

[0060] The probabilistic boosting tree (PBT) unifies clas-
sification, recognition, and clustering into one treatment. For
example, the translation, orientation, and scale classifiers are
trained as a probabilistic boosting tree. A probabilistic boost-
ing tree is learned for each anatomy of interest. The classifier
is a tree-based structure with which the posterior probabilities
of the presence of the anatomy of interest are calculated from
given data. Each detector not only provides a binary decision
for a given sample, but also a confidence value associated
with the decision. The nodes in the tree are constructed by a
combination of simple classifiers using boosting techniques,
such as disclosed by Tu, “Probabilistic Boosting-Tree: Learn-
ing Discriminative Models for Classification, Recognition,
and Clustering,” Proc. Int’1 Conf. on Computer Vision, pp
1589-1596, 2005.

[0061] The classifier is trained and applied as a machine-
trained joint, marginal space, and/or different resolution clas-
sifier. Any combination of one or more of joint classification
(act 26), marginal space classification (act 28), and different
resolution classification (act 30) may be used. The resulting
machine-trained classifier is applied as a detector of the cer-
ebellum, fetal cisterna magna, fetal lateral ventricles, or com-
binations thereof. The classifier may be trained to detect
different, additional, or fewer fetal anatomies.

[0062] In act 26, a joint classifier is applied. The joint
classifier includes different classifiers for different fetal
anatomies. For joint classification, at least one of the anato-
mies is detected as a function of the previous detection of
another of the anatomies. For example, a machine-trained
head detector detects the location of a center of a fetal skull in
a desired plane. Another machine-trained detector detects the
location of the cerebellum, cisterna magna, lateral ventricles,
combinations thereof, or other anatomy from the ultrasound
data and as a function of the location of the center of the fetal
skull. Some of the machine-trained detectors have an input for
the location detected from one or more other detectors of
different anatomy, so are dependent on the output of the other
machine-trained head detectors.

[0063] Joint classification uses contextual information. In
one embodiment, the contextual information is based on one
or two cues: 1) global context based on the detection of the
fetal skull, and 2) semi-local context based on the relative
position, orientation and scale between anatomies. These
cues may be modeled with generative classifiers. The fetal
skull is the largest and most visible structure in 3D ultra-
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sound. Thus, the fetal skull may be more reliably used as a
reference to constrain the search space of other anatomies in
the fetal brain.

[0064] A volume is a 3-D mapping V: R>—[0, 255]. A
sub-volume window containing a particular anatomical struc-
ture is represented by a vector containing position, size and
orientation, as follows:

0,[p.c.qleR’, o)

where p=[x, v, z]eR? is the three dimensional center of the
sub-volume, 0eR represents its size, g=[q,, q,, q2]€R> repre-
sents orientation (e.g., represented using quaternions) and s
represents a specific anatomy (here, se{CB (center brain),
CER (cerebellum), CM (cisterna magna), LV (lateral ven-
tricles)}. FIG. 3 shows example planes and anatomies. The
sub-volume parameters of all the anatomies of interest:

argmax  P(Ocgr, Ocur, Oy | V) ()
8CEROCh ALY

[cgr: Ocurs O] =

are determined, where P(0 oz, 0 67,1V) indicates a prob-
ability measure of the anatomy parameters given the volume
V. The search space for this case is O(M”)")=O(M>"), where
each dimension is assumed to be partitioned into M values,
and =3 is the number of anatomies to detect. An example
value for M is in the order of 100.

[0065] The context may be used to prune the search space,
possibly improving the accuracy and increasing the speed of
the recognition systems. Any type of context may be used. For
example, global and semi-local contexts are used.

[0066] The global context is provided by the center of the
brain (CB) structures derived from the whole skull of the
fetus. CB may be the largest and most distinctive feature in a
3D fetal ultrasound, so may be found reliably in most
datasets. As context, the CB may be used to constrain the
search space for the other anatomies. Thus, equation (2) can
be denoted as:

R I 3
[O¢sr- Ocu» Oy] =
BCERScm ALy

argmax f POcs, Ocrr. Ocur» Oy | V)dbcp.
fcB

[0067] Assuming the existence of the random variable

y={-1,1} for se{CB, CER, CM, LV}, where y =1 indicates

the presence of the anatomy s, the result is:

P(GCBsGCERaBCMaeLV‘V):P({,Vs:l }ss{CB,CERkLV,
cMbie

[0068] Discriminative classifiers capable of computing
actual posterior probabilities (e.g., PBT) may be trained and
applied for each anatomy. The following or other probabili-
ties may be computed: P(y,=116,, V) for se{CB,CER,CM,
LV} (hereafter P(y =118, V)=P(y 10,, V)). Using the Bayes
rule, equation (4) is derived to:

CB»BCER»BCM»BLVV)' “

P(y2rY sy cerY car® c8:0cerO a0 V),

P(yc.y cer¥ crlOcr B cerBarOrrV)

which can be further derived to:

Plyy \Ory, V)-
Plycs, ycer: you \Ocs, Ocer, Ocnr, V) -

POy \Ycs, ycErs You > Ocp Ocer, Ocm, V)
POy \Ocs, Ocer, Ocm» V)

The probability of the presence of LV based on the feature
values is assumed to depend only on 8;, and V, but the
probability distribution of 6, ,- depends on the detection and
parameters of other anatomies. This is an assumption of parts
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independence but geometry dependency. The conditional dis-
tribution of 0, ,-given all other parameters is assumed to be a
uniform distribution because there is no notion about the
actual presence of the other anatomies. Finally, equation (4)
may be written as follows:

POcs, Ocrr. Ocur» Oy \V) = 3
Plyy \Ory . VIP(yen \Ocur» VIP(ycer \Ocer, VIP(ycp\Ocp, V)
POcer \ycs, Ocg, V). POcw \ycp, ycer, Ocp, Ocer, V)

P(Ory \ycB, ycERs You, Ocgs Ocer, Dom s V),

where the first four terms are the posterior probabilities of
each anatomy, and the remaining terms account for the global
and semi-local context. The detection probability described
in equation (5) suggests a sequential detection where CB is
detected first, followed by CER, then CM, and finally LV.
Other orders may be used. Using context, the complexity of
the detection may be reduced from OM™) in its original
form of equation (2) to O(L+1)xM’.

[0069] Additionally or alternatively, semi-local context
may constrain even more the search space of the sought
anatomy given the anatomies already found. For semi-local
context, during the detection process, the parameter values of
the detected anatomies are used to estimate a distribution in
the parameter space for the subsequent anatomies to be
detected. For position, scale, and orientation parameters, it is
possibleto determine an orthonormal matrix R .eR** with the
three axis of the coordinate system lying in its rows using the
orientation parameters. To produce scale invariant estimates
of position for anatomy j given the parameters of anatomy 1
(e, 6,):

J

PP 6
Py = R{ i ] (6)
g

where P €F R and oseR are the center and scale of anatomy
s, respectively. Given a training set {6,(k)},_,, ..., N, where
kisanindex to a training sample, a least squares optimization
is formulated for the scale invariant conditional position as:

Hpijpy = argmin/ (Pj;], ©
Pji

where:

1 8
J(Pyi) = EZ (Pj(k) = o hRT ()P ', :
k
reading to:
Hpliiy = ﬁZ R"""(JLTT]
k
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Assuming a Gaussian distribution for pjli, the position cova-
riance may be computed as:

1 . (10)
E NZ (P jitk) = ppy iy (P yatk) = Ivlp(j\i))T-
X

plii=

[0070] The estimation of the scale of anatomy i given the
scale of anatomy j is denoted as

gi 1n

o=
i e

Again, considering a Gaussian distribution for o/l,:

1 oiik) 12
Heijliy = Nzk: m

1 )
Z = ﬁ; @10 = perj 1)

a(jliy

[0071] Finally, the estimation of the orientation of anatomy
i given the orientation of anatomy j is denoted as

0:,~0:+4,(q, 9, 13)

where d () is a function that computes difference between
quaternions. Considering a Gaussian distribution for g, :

! : (14)
Haijiy = VZ dgq (k) - gi(k)
Tk

1 L .
NZ (G 1) = g D = prgegiy)”
k

qljl=

[0072] Given the parameter estimations above, the compu-
tation of the semi-local context probabilities are as follows:

P-P, (15)
o

1
PO =18y, V)= g[[zZ R
{

1 1
zzl U'J'/O'l, z; dq(Qja qt)}[/-‘p(j\{l))ﬂq(jm)]a Z]

with:
0 0
PURLY
oo Do
a(jith
0 0
qUilL)
and:

1 1 - .
g(x: My Z) = WEX[F E(X_H)TZ X =),
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where 6=[p,, 0, q,] is the parameter for anatomy j, 1 is an
index to the previous L detections, and [W,q 1 Hogiihily
gi{z1)] is computed by taking the sample average of the esti-
mations, and similarly for 2.

[0073] With the use of semi-local context, the complexity
of the detection algorithm is unaltered. In practice, only
places where the semi-local context probability is above a
threshold are searched. Empirically, places in the parameter
space that are further than 2 times the covariance of the
estimated Gaussian may be avoided or not searched. In gen-
eral, this reduces the search space at each search parameter
dimension from M to M %% (in embodiment, M=100). As a
result, in practice the complexity of the detection is reduced
from O(M"%) in its original form of equation (2) to O(M”+
LxM™).

Consequently, the use of semi-local and global context infor-
mation makes this approach linearly scalable in terms of the
number of brain anatomies.

[0074] In act 28, the classifier is applied as a sequence of
marginal machine-trained classifiers to the three-dimensional
ultrasound data. One marginal machine-trained classifier is
for translation of a given fetal anatomy within a volume
represented by the three-dimensional ultrasound data.
Another marginal machine-trained classifier is for rotation of
the given fetal anatomy within the volume. Yet another mar-
ginal machine-trained classifier is for scale of the given fetal
anatomy within the volume.

[0075] The pose estimation for each fetal anatomy may
involves 3-D position, orientation and scale resulting in 7 or 9
degrees of freedom (i.e., atotal of 21 or 27 degrees of freedom
for all anatomies) in a typical volume of dimensions 250x
200x150 voxels. This large dimensional search space makes a
brute force approach not practical. Thus, to make the problem
tractable, sequential sampling and contextual information are
used.

[0076] A sequence of machine-trained classifiers is learned
and/or applied to the three-dimensional ultrasound data.
Anatomy detection estimates the pose parameters (i.e., posi-
tion) for each anatomy. The pose parameters of a 3D rigid
body may include 9 components: 3 translations (X, y; z), 3
orientations (e.g., Euler angles w.r.t. for each axis), and 3
scales (one for each axis). One or more of the parameters may
not be used, such as not providing scale or only providing
scale along one axis or the same for all three axes.

[0077] Searching in a high-resolution 3D volume is pro-
hibitive for online applications or rapid determination. For
example, a volume of 100x100x100 voxels has 10° hypoth-
eses for translation. If combining orientation and scale, a
combinatorial hypothesis search space expands dramatically.
A limited set of hypotheses may be used based on any desired
criteria, such as relative expected positions of different
anatomy. By training a series of detectors that estimate
anatomy pose parameters at a number of sequential stages,
the number of calculations may be reduced. The stages are
applied in the order of complexity as the parameter degrees of
freedom increase (e.g., translation, then orientation, and then
scale), but other orders may be used. For example, scale may
be adjusted only along two axes given a translation and ori-
entation. In other embodiments, other learning with or with-
out hierarchical searching is used.

[0078] Sequential sampling is used to model probability
distributions. The posterior classifiers are modeled to com-
pute P(y,I0,, V). Sequential sampling or marginal space
learning provides efficient training and detection approaches
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for high-dimensional search parameter spaces. The original
parameter space £2is brokeninto subsets of increasing dimen-
sionality Q, =Q, = ... =Q, and then classifiers are trained
for each subset. The samples for training the classifierin ,,
are bootstrapped from €2, _ |, and the classifier in Q, is trained
using all possible samples.

[0079] In one embodiment, the following sequence is
assumed: €2,=peR?, Q,=[p,, o JeR*, and Q,=Q=p,, o,
q.JeR”. The actual search space for training and detection in
Q,, is defined to be dim(Q,)-dim(Q,_,), where dim(£2,)
denotes the dimensionality of the Q,, space. In each subspace,
a discriminative classifier is trained using the PBT algorithm
(i.e., forming PBT, for each Q,) due to its ability of repre-
senting multi-modality distributions in binary classification
problems.

[0080] This process results in a training and detection com-
plexity figures of O(M?), where M is the number of quantized
parameter values per dimension. This represents a reduction
in terms of complexity of the original algorithm in equation
(2). Sequential sampling and the use of contextual informa-
tion reduce the complexity from O(M™) to O(M>+LxM*?).
This reduction allows for the detection of additional anato-
mies with little impact on the overall detection complexity.

[0081] Orientation may be determined using quaternions or
Euler angles. The space of possible orientations is usually
represented with the three Euler angles. Euler angles are easy
to implement and understand, but they have several draw-
backs to represent the orientation space. First, a uniform step
size over possible Euler angles does not generate a uniform
sampling in the space of orientations, which makes Euler
angles impractical for uniform sampling. Second, the repre-
sentation for each orientation is not unique, which makes it
difficult to define a similarity measure between two orienta-
tions expressed in Euler angles. In other words, Euler angles
are a chart ofthe space of orientations with singularities (i.e.,
non-smooth). Consequently, two similar orientations might
have very different Euler angles, which make it difficult to
compute statistics and distances. For example, if the ZxZ-
convention is selected with (v, , ct) as the three Euler angles,
a singularity is provided along the line f=0. The triplet (0.7,
0.0, 0.3) gives the same orientation as the triplet (0.0, 0.0,
1.0).

[0082] The concepts on quaternions proposed for molecu-
lar modeling may be used to represent the space of orienta-
tions in 3D. The problems above are solved using unitary
quaternions to express orientations. Each orientation may be
defined as a point in the hypersphere $*=3{peR*|lp||,~1} with
opposite points identified. This equivalence relation defines
the space of orientations as the following quotient space:

503)=5*4q.-9}q=(9..92.9:.9./R gl =1},

where the operator “/” denotes the quotient space given by the
identification of {g~—q} in 8*. Two properties from quater-
nions are used. First, composition of two rotations may be
computed as a multiplication of two quaternions. If R(q) with
qeSO(3) represents one orientation and R(p) with peSO(3)
represents another, then R(p)oR(q)=p-q where q is the con-
jugate of q'. Second, there is a distance preserving map
between SO(3) and a ball in R®. This map allows use in SO(3)
of standard statistical tools from R’

'9=[01,-02,-03,-04]

[0083] Each quaternion may also be expressed as q=[cos
(0/2)v-5in(6/2)]eSO3) with veR? s.t. |[v]|,-1 and Oe(—m,m). v
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represents the axis of rotation and 6 the angle of rotation
around that axis. Then, the definition of the distance preserv-
ing map is the following:

f:503) (16)

- sm<|0|)]%

g u with ullv and ||| =( 7

The same way a hemisphere may be “flattened” into a disc in
R?preserving geodesic distances, Equation (16) “flattens” the
quotient space into a ball in R?.

[0084] Using the two properties explained above, the ori-
entations may be manipulated, and statistics and metrics may
be computed in the space of orientations. d (q;, q,) inequation
(13) may be defined as:

49(g;,9)-Rg)-A)|l» an
where f is defined in equation (16).
[0085] The space of orientations may be sampled uni-

formly with different angle precision. The sampling points
for different resolutions may be stored in memory since the
sampling points are not easy to calculate on the fly. For
example, to achieve 110 accuracy, only 7416 samples are
needed. Using constant step size in FEuler angles
36%36%18=23328 samples are needed. Since the complete
space of orientations in 3DUS is sampled, quaternions bring
calculation savings to this task.

[0086] The orientation is determined as part of the marginal
space approach. The classifiers for this sequential approach
are the same or different. For example, different features are
used for translation, orientation, and/or scale. For the classi-
fiers at the translation stage, Haar wavelet-like features are
used, but other features may be provided. Haar wavelet-like
features are calculated efficiently using integral image-based
techniques. For classifiers at the rotation and scale stages,
gradient or steerable features are used, but other features may
be provided. Steerable features constitute a flexible frame-
work, where a few points are sampled from the volume under
a spatial pattern (e.g., a regular grid). A few local features are
extracted for each sampling point, such as voxel intensity and
gradient. To evaluate the steerable features under a specified
orientation, the sampling pattern is controlled, and no com-
putationally expensive volume rotation is involved. The com-
putation of steerable features does not require volume rota-
tion and re-scaling, which are computationally expensive.

[0087] To apply the classifier, features are calculated. The
features are calculated for each of the possible anatomy posi-
tions. Other features may be calculated regardless of the
possible anatomy position, such as where a feature for a
sub-volume may be determinative in combination with other
features.

[0088] For each possible anatomy position, the features for
a given classification are calculated. For the translation stage,
the possible anatomy positions relate to different positions
translated along three axes. For example, Haar features are
calculated for classifying whether a given translation possible
anatomy position may be the desired anatomy. For the rota-
tion stage, the possible anatomy positions relate to rotation
about the three axes at remaining translation positions. For
the scale stage, the possible anatomy positions relate to dif-
ferent size regions at the remaining rotation and translation
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positions. Different features may be calculated for different
stages. Different features may be calculated for different
views being detected.

[0089] In act 30, the classifier is trained and applied to the
ultrasound data at different resolutions. For example, one
detectoris applied to a coarse sampling of the ultrasound data.
Another detector is applied to a finer sampling of the ultra-
sound data. The search space of the later applied detectoris a
fanction of an output of the earlier applied detector. For
example, the course sampling is used to determine a location,
and the search for applying a detector to a finer sampling is
centered around the location. More than two different sam-
plings and associated detectors may be used, such as provid-
ing three or more different resolutions of data. Any order of
coarse-to-fine, fine-to-coarse, or other orders may be used for
sequential sampling.

[0090] For sequential sampling to provide data at different
resolutions, the initial parameter space is partitioned into
sub-spaces of increasing dimensionality, where the PBT clas-
sifiers are trained sequentially in each of these sub-spaces
using bootstrap samples. A pyramid data structure is pro-
vided. The training sets are selected for the detectors at dif-
ferent levels depending on the complexity of the detection
task. At the coarse level, the negative anatomy positions are
far from the positive anatomy positions and randomly
sampled across reasonable configurations while maintaining
arelatively large gap (e.g., any empirically determined spac-
ing) from the positives. At the fine level, negatives are
selected only within an empirically determined neighbor-
hood of the positives in accordance to the search strategy,
while decreasing the gap in between as compared to the
coarse level.

[0091] The same pyramid sequence is used during the
detection process. The features are calculated from the ultra-
sound data representing the volume. The features are calcu-
lated from the data at different resolutions. The sets represent
the same object in the same volume. Features are calculated
from a coarse set and then in a fine set of the volume pyramid.
The machine learning may determine the determinative fea-
tures. For each determinative feature, a data set at the corre-
sponding resolution is provided.

[0092] The classification using data at different resolutions
is used alone or in combination with joint and/or marginal
space application. For example, the translation, orientation,
and scale for detecting the cerebellum is performed sequen-
tially using coarse data (e.g., the original data set down
sampled by 4, such as 1 mm voxels down sampled to represent
4 mm). The translation, orientation, and scale for detecting
the cerebellum are performed sequentially again using data at
a mid-range of sampling (e.g., the original data set down
sampled by 2, such as 1 mm voxels down sampled to represent
2 mm). The translation, orientation, and scale for detecting
the cerebellum are performed sequentially again using data at
the highest resolution data (e.g., the original data set, such as
1 mm voxels). The output from the last detector or classifier is
one or more hypotheses for the location of the cerebellum or
cerebellum measurement. This output is used as an input for
locating the cisterna magna. The detection of the cisterna
magna uses the different resolution data and marginal space
detection, similar to the detection for the cerebellum, but
limited or assisted by the cerebellum location.

[0093] Inact32,afetal anatomy is detected as a function of
the applying. By applying the machine-trained classifier, an
anatomy is detected. The anatomy may be detected in whole
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or in part, such as detecting the location of a point, line, or
volume corresponding to the anatomy. For example, the fetal
head is detected with a computer-learnt classifier. The detec-
tors determine if a given sub-volume sample (data for a pos-
sible anatomy position) is positive or negative.

[0094] The detection may be performed in response to user
activation, but is performed without user assistance. For
example, the computer-learnt classifier detects the anatomy
from the three-dimensional ultrasound data without user indi-
cation of a position. In alternative embodiments, the user
confirms, adjusts, or assists in the detection.

[0095] Any fetal anatomy may be detected. For example,
the fetal head, cerebellum, cisterna magna, and lateral ven-
tricles are detected.

[0096] Each anatomy is detected independently or depen-
dently on other detection. Each anatomy is detected using any
number of degrees of freedom of the search window, such as
translation, orientation, and scale alone each of three axes.
The location searching is performed simultaneously or
sequentially. One or more sets of data representing the same
volume may be used, such as using a pyramid data structure.
In one embodiment, a joint, hierarchal, marginal space clas-
sifier is used. One or more anatomies are located, in part,
based on the location of another anatomy. Fach anatomy is
located using data at different resolutions sequentially and
with marginal space sequential searching.

[0097] For joint detection, the computer learnt classifier is
a joint classifier. The joint classifier detects a fetal head
anatomy as a function of a location of other anatomy. For
example, a fetal head is detected with a first probabilistic
boosting tree classifier. The cerebellum, cisterna magna, lat-
eral ventricle or combinations thereof are detected using
other probabilistic boosting tree classifiers with the probabil-
ity distribution and/or search space limited based on the
detected fetal head and/or other anatomies.

[0098] For marginal space classification, the computer
learnt classifier is a marginal space classifier. A translation
detector searches for translation. A scale search by a scale
detector is limited by a position output by translation detector.
An orientation search by an orientation detector is limited by
a scale output by the scale detector and/or the position output
by the translation detector. This sequential detection may
limit complexity or increase efficiency. Possible anatomy
positions are ruled out by sequentially calculating the features
for translated possible positions, for scaled possible posi-
tions, and for rotated possible positions. Each stage removes
possible positions from a hypotheses list.

[0099] Any step size or search strategy may be used, such as
a coarse search with a fine search at the locations identified as
likely in the coarse search. The detector provides a probability
for each possible position. The possible positions associated
with sufficient probability are maintained in the hypotheses
pool. Sufficient probability is determined by a threshold, by
selecting the top X (where X is one or more) probabilities, or
other test. The spatial distributions of probabilities may be
used to adjust the search, further reducing calculations.
[0100] The detectors are trained for different resolutions of
the ultrasound data in a volume pyramid. Different detectors
sequentially detect using ultrasound data at different resolu-
tions.

[0101] The detected anatomy is the possible position with
the highest probability output by the classifier. Alternatively,
the detected anatomy is the possible position with the highest
average probability from the marginal space and/or data reso-
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lution stages. In other embodiments, an average position of
the remaining sufficient possible positions is determined. The
average position is the detected anatomy. Other limitations
may be used, such as averaging the position of the top Y most
possible positions. Alternatively, the average measurement is
used.

[0102] In act 34, a value of the fetal parameter associated
with the fetal anatomy is measured. The value is calculated
from the ultrasound data associated with the anatomy and/or
from spatial or temporal locations associated with the
anatomy. Any parameter may be calculated, such as distance,
circumference, volume, change, velocity, acceleration, or
other anatomy parameter. For example, aline representing the
fetal anatomy is determined. The line may be a longest diam-
eter for the anatomy in a given view. In one embodiment, the
machine-trained classifier outputs the line. The annotated
data used for training is annotated with the measurement line
so that the output is the spatial line to be measured. Using the
voxel size, the distance associated with the line is calculated.
The parameters are specific to a doctor, practice, or hospital.
Alternatively, the biometric measurements of the anatomies
are performed according to guidelines, such as the guidelines
of the International Society of Ultrasound in Obstetrics and
Gynecology.

[0103] In act 36, the calculated value and/or an image are
displayed. The value is displayed as text, in a chart, or as part
of a table. The value may be labeled, such as indicating the
parameter represented by the value and the units of measure-
ment. Other information may be displayed, such as the ges-
tational age derived from the value.

[0104] For an image, a planar reconstruction is created
from the three-dimensional ultrasound data. The anatomy
may have a standard or predetermined view associated with
the measurement. For example, the plane includes the line
used for measurement. Ultrasound data corresponding to the
view is extracted from the volume. The data is used to gen-
erate an image for the view. Data associated with locations
intersecting each plane or adjacent to each plane is used to
generate a two-dimensional image. Data may be interpolated
to provide spatial alignment to the view, or a nearest neighbor
selection may be used.

[0105] Images are generated for each of the anatomies. One
view may be used for multiple anatomies. All or a sub-set of
the specific views are generated. The images may be high-
lighted and/or annotated to indicate the anatomy or the mea-
surement locations. Fewer than all available views may be
provided, such as displaying no more than three views and
having a priority list of views.

[0106] One example of training and application discussed
for FIG. 2 is provided. 240 volumes with expert annotations
of cerebellum, cisterna magna, and lateral ventricles are col-
lected. Other anatomies and/or numbers of volumes may be
used. The annotations are the measurement lines for each
feature. The volumes have an average size of 250x200x150,
but other sizes may be used. The annotation for the center of
the brain uses the same annotation plane as the Cerebellum.
This annotation is a line through the midline of the brain, but
other planes or annotations may be used. The training vol-
umes for each anatomy are obtained by building a cubic
sub-volume around the annotation of size k times bigger the
annotation length (e.g., k=2 for CER, k=7 for CM, k=5 LV,
and k=1.5 for CB). Other sub-volumes may be used.

[0107] The PBT,, or marginal classifier for position, is
trained with positive samples formed by a box around the
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center location of the annotated anatomy with fixed size and
oriented according to the volume orientation (i.e., not accord-
ing to the annotation orientation). The negative samples are
formed with boxes from positions 8, away from this center
(e.g., 3,73 voxels). The features used for PBT, are the 3-D
Haar features because of the high efficiency in computation
using integral volumes. The classifier for position and scale,
PBT,, is trained with positive samples formed by a box
around the center of the anatomy with size proportional to the
length of annotation, but oriented according to the volume
orientation. The negative samples are boxes 8, away from the
center and §, away in terms of scale (e.g., 8,=2). Finally, for
PBT;, or the orientation classifier, the positive training
samples have boxes located at the anatomy center, propor-
tional to scale and at the correct orientation. Negative samples
are boxes dp, 8, and 3, away (e.g., 8,=0.2). For PBT, ;,
steerable features are used because of the efficiency of their
computation. The main advantage is that, differently of the
3-D Haar features, it is not necessary to perform volume
rotations to compute steerable features. The training of PBT,
uses bootstrapped samples from PBT, ;. The process
explained above produces the discriminative classifier
P(y=110,, V). The semi-local context parameters are learned
generatively.

[0108] 200 volumes are used for training and 40 volumes
are used for testing. The training and test volumes are ran-
domly selected, and there is no overlap between the training
and test sets. The results produced by the automated system
are compared with the results from an inter-user variability
experiment conducted with two OBGYN experts who mea-
sured the Cerebellum, Cisterna Magna, and Lateral Ventricles
on the same volumes. The average and standard deviation of
the inter-user variability and system error for position, scale,
and orientation are respectively computed as follows:
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where N is the number of volumes for testing and d, (., .) is
defined in equation (17). The annotations of one expert are
assumed to be the ground truth results. In equation (18), the
index 1 denotes ground truth (i.e., one of the users) while 2
indicates either the measurements by the other user for the
case of the inter-user variability or the system automatic
measurements for the computation of the system error. The
average error of the automatic results produced by the system
is within the range of inter-user variability for all cases except
for 10% to 20% of the cases for Cerebellum and Cisterna
Magna position. Empirically, one tradeoff between robust-
ness to imaging variations, noise, and pose variance and accu-
racy is achieved by running the system on a pyramid of
volumes where the coarse scale is 4 mm/voxel (isotropic) and
the finest scale is 2 mm/voxel. Consequently, the error results
produced by the system have a different scale than the inter-
user variability that partially explains this discrepancy.
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[0109] This fully automatic approach may performs
quickly (e.g., under 10 seconds in a dual-core PC at 1.7 GHz
and possibly better with increased processing speed and/or
code efficiency) and robustly. The system locates position,
orientation and size of the three anatomies with an error
similar to the inter-user variability, allowing physicians and
sonographers to quickly navigate through ultrasound vol-
umes of fetal heads. A large scale semantic-based fetal struc-
ture retrieval from 3DUS may be created, where the users
type a semantic keyword and the system returns the structure
in the volume making the 3D navigation much easier and
faster.

[0110] 3-Dultrasound volumes of fetal heads are automati-
cally indexed using semantic keywords, which represent fetal
anatomies. The automatic index involves the display of the
correct standard plane for visualizing the requested anatomy
and the biometric measurement according to the guidelines of
the International Society of Ultrasound in Obstetrics and
Gynecology. Anatomies are retrieved in ultrasound volumes
based on semantic keywords or with or without other input.
Tens of brain anatomies may be determined, even given the
small, noisy, indistinet, and/or difficult to locate appearance.
The principled probabilistic model combines the use of dis-
criminative/generative classifiers with global and semi-local
context.

[0111] While the invention has been described above by
reference to various embodiments, it should be understood
that many changes and modifications can be made without
departing from the scope of the invention. It is therefore
intended that the foregoing detailed description be regarded
as illustrative rather than limiting, and that it be understood
that it is the following claims, including all equivalents, that
are intended to define the spirit and scope of this invention.

I(We) claim:

1. A method for measuring a fetal parameter from three-
dimensional ultrasound data, the method comprising:

applying a machine-trained classifier to the three-dimen-

sional ultrasound data;

detecting a first fetal anatomy as a function of the applying;

measuring a value of the fetal parameter associated with

the first fetal anatonty; and

displaying the value.

2. The method of claim 1 further comprising displaying a
planar reconstruction from the three-dimensional ultrasound
data, the planar reconstruction showing the fetal anatomy.

3. The method of claim 1 wherein applying comprises
applying the machine-trained classifier as a detector of the
fetal cerebellum, fetal cisterna magna, fetal lateral ventricles,
or combinations thereof.

4. The method of claim 1 wherein applying the machine-
trained classifier comprises applying a joint classifier for a
plurality of fetal anatomies, including the first fetal anatomy,
the first fetal anatomy being detected as a function of detec-
tion of another fetal anatomy.

5. The method of claim 4 wherein applying the joint clas-
sifier comprises applying a machine-trained head detector,
and then applying a machine trained detector of the first fetal
anatomy, the machine-trained detector of the first fetal
anatomy dependent on an output of the machine-trained head
detector.

6. The method of claim 1 wherein applying the machine-
trained classifier comprises applying a sequence of marginal
machine-trained classifiers to the three-dimensional ultra-
sound data, a first of the marginal machine-trained classifiers
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for translation of the first fetal anatomy within a volume
represented by the three-dimensional ultrasound data, a sec-
ond of the marginal machine-trained classifiers for rotation of
the first fetal anatomy within the volume, and a third of the
marginal machine-trained classifiers for scale of the first fetal
anatomy within the volume.

7. The method of claim 1 wherein applying the machine-
trained classifier comprises applying a first detector to first
data comprising a coarse sampling of the ultrasound data and
applying a second detector to second data comprising a finer
sampling of the ultrasound data than the first data, a search
space of the second detector being a function of an output of
the first detector.

8. The method of claim 1 wherein applying the machine-
trained classifier comprises applying a machine-trained joint,
marginal space classifier.

9. The method of claim 1 wherein applying the machine-
trained classifier comprises applying a probabilistic boosting
tree.

10. The method of claim 1 wherein measuring comprises
determining a line representing the first fetal anatomy as an
output of the machine-trained classifier, determining a voxel
size, and calculating the distance as a function of the line and
the voxel size.

11. In a computer readable storage medium having stored
therein data representing instructions executable by a pro-
grammed processor for measuring a fetal parameter from
three-dimensional ultrasound data, the storage medium com-
prising instructions for:

receiving user input requesting automatic measurement of

a fetal head anatomy, the fetal parameter being for the
fetal head anatomy;

detecting the fetal head anatomy with a computer learnt

classifier, the computer learnt classifier operable to
detect from the three-dimensional ultrasound data with-
out user indication of a position; and

calculating a value for the fetal parameter.

12. The computer readable storage medium of claim 11
wherein detecting comprises detecting with the computer
learnt classifier comprising a joint classifier such that the fetal
head anatomy is detected as a function of a location of other
anatomy.

13. The computer readable storage medium of claim 12
wherein detecting comprises detecting a fetal head with a first
probabilistic boosting tree classifier, and detecting a cerebel-
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lum, cisterna magna, lateral ventricle or combinations thereof
as the fetal head anatomy using a second probabilistic boost-
ing tree classifier.

14. The computer readable storage medium of claim 11
wherein detecting comprises detecting with the computer
learnt classifier comprising a marginal space classifier.

15. The computer readable storage medium of claim 14
wherein detecting with the marginal space classifier com-
prises using a translation search with a first detector of the
computer learnt classifier, detecting using a scale search lim-
ited by a position output by the first detector with a second
detector of the computer learnt classifier, and detecting using
an orientation search limited by a scale output by the second
detector and the position with a third detector of the computer
learnt classifier.

16. The computer readable storage medium of claim 11
wherein detecting comprises detecting with detectors trained
for different resolutions of the ultrasound data in a volume
pyramid.

17. The computer readable storage medium of claim 11
wherein detecting comprises detecting a fetal head, cerebel-
lum, cisterna magna, and lateral ventricles with a joint, hier-
archal, marginal space classifier.

18. A system for measuring a fetal parameter from three-
dimensional ultrasound data, the system comprising:

amemory operable to store ultrasound data representing a
fetal volume;

a processor operable to apply a probabilistic model to
detect a first anatomy as a function of the ultrasound data
and a position of a second anatomy, the detection of the
first anatomy being performed sequentially for at least
two of position, orientation and scale; and

adisplay operable to display an image of the first anatomy,
a value representing a measurement of the first anatomy
or combinations thereof.

19. The system of claim 18 wherein the probabilistic model

comprises a machine learned classifier.

20. The system of claim 18 wherein the second anatomy
comprises a fetal skull, the first anatomy comprises a cerebel-
lum, a cisterna magna, or a lateral ventricle, and the probabi-
listic model comprises a machine-trained classifier.
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