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&7 ABSTRACT

Automated detection of structure is provided in ultrasound
M-mode imaging. A coarse and fine search for structure is
used. For example, a less noise susceptible initial position or
range of positions for a given structure is determined. This
position is then refined. The coarse positioning and/or the
refined position may use machine-trained classifiers. The
positions of other structure may be used in either coarse or
fine positioning, such as using a Markov Random Field. The
structure or structures may be identified in the M-mode image
without user input of a location in the M-mode image or along
the line.
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DETECTION OF STRUCTURE IN
ULTRASOUND M-MODE IMAGING

RELATED APPLICATIONS

[0001] The present patent document claims the benefit of
the filing date under 35 U.S.C. §119(e) of Provisional U.S.
Patent Application Ser. No. 61/227,236, filed Jul. 21, 2009,
which is hereby incorporated by reference.

BACKGROUND

[0002] The present embodiments relate to medical ultra-
sound imaging. In particular, structure represented in
M-mode imaging is detected and may be used for measuring
heart function.

[0003] An M-mode echocardiogram is a spatial-temporal
image captured using an ultrasound device. Instead of using
multiple interrogation beams like B-mode echocardiography,
M-mode uses one interrogation beam and captures intensity
information of that beam across time. M-mode images may
have high image quality, allowing accurate measurement and
capture of subtle motion. Due to these characteristics,
M-mode imaging is used frequently to image the moving
heart of a patient. The functionality of anatomic structures
inside the heart, like the left ventricle and aortic root, may be
assessed.

[0004] To assess the tissue motion, the tissue structure or
anatomy is determined from the M-mode image. The sonog-
rapher may position calipers at different times, such as the end
of diastole or end of systole, to designate tissue structure
locations along the scan line at those times. The calipers are
used to determine various measurements.

[0005] However, manual placement of the calipers may be
time consuming and difficult. Ultrasound images may be
noisy. Different M-mode images appear different due to dif-
ferent pathologies. The heart size varies for different patients.
These sources of variance between M-mode images make
placement of the calipers difficult.

BRIEF SUMMARY

[0006] By way of introduction, the preferred embodiments
described below include methods, computer readable media
and systems for automated detection of structure in ultra-
sound M-mode imaging. A coarse and fine search for struc-
ture is used. For example, a less noise susceptible initial
position or range of positions for a given structure is deter-
mined. This position is then refined. The coarse positioning
and/or the refined position may be found using machine-
trained classifiers. The positions of other structures may be
used, such as using a Markov Random Field, in either coarse
or fine positioning. The structure or structures may be iden-
tified in the M-mode image without user input of a location in
the M-mode image or along the line.

[0007] In a first aspect, a method is provided for detection
of structure in ultrasound M-mode imaging. M-mode data
representing a line within a patient over a range of time is
acquired. A portion of the line is identified as associated with
a structure of a heart of the patient. The portion includes a
plurality of depths and is identified as a function of the
M-mode data. A location of the structure within the portion is
identified. A search for the identifying of the location is
limited to the portion. Information associated with the loca-
tion, such as a caliper or a measurement, is displayed.
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[0008] Inasecond aspect, a non-transitory computer read-
able storage medium has stored therein data representing
instructions executable by a programmed processor for detec-
tion of structure in ultrasound M-mode imaging. The storage
medium includes instructions for locating, in an M-mode
image, first positions of respective structures in a search, the
search being based on intensity as a function of depth inte-
grated over a plurality of times and machine-trained feature
probabilities. The first positions are refined to second posi-
tions of the structures. The refining is limited by the first
positions where each of the second positions is a function of
a plurality of the first positions. A measurement is calculated
as a function of the second positions. The locating and refin-
ing are performed free of user input of a location of any
structure in the M-mode image.

[0009] Ina third aspect, a system is provided for detection
of structure in ultrasound M-mode imaging. A memory is
operable to store ultrasound M-mode data representing a line
within a patient over a range of time. A processor is operable
to identify a location of the structure from the ultrasound
M-mode data and free of user input of any location of any
structure along the line. A display is operable to display an
M-mode image of the line with the location indicated by a
marker, to display a measurement that is a function of the
location, or to display the M-mode image of the line with the
marker and the measurement.

[0010] The present invention is defined by the following
claims, and nothing in this section should be taken as a limi-
tation on those claims. Further aspects and advantages of the
invention are discussed below in conjunction with the pre-
ferred embodiments and may be later claimed independently
or in combination.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] The components and the figures are not necessarily
to scale, emphasis instead being placed upon illustrating the
principles of the invention. Moreover, in the figures, like
reference numerals designate corresponding parts throughout
the different views.

[0012] FIG.1isaflow chart diagram of one embodiment of
a method for detection of structure in ultrasound M-mode
imaging;

[0013] FIG. 2 is a flow chart diagram of another embodi-
ment of a method for detection of structure in ultrasound
M-mode imaging;

[0014] FIG. 3 shows an example M-mode medical image
and an integration profile;

[0015] FIG. 4 is an illustration of a two-dimensional pro-
jection of the integration profile of FIG. 3;

[0016] FIG. 5is an example M-mode image, with calipers,
of a left ventricle;

[0017] FIG. 6 is an example M-mode image, with calipers,
of an aorta; and

[0018] FIG. 7 is a block diagram of one embodiment of a
medical ultrasound imaging system for detection of structure
in ultrasound M-mode imaging.

DETAILED DESCRIPTION OF THE DRAWINGS
AND PRESENTLY PREFERRED
EMBODIMENTS

[0019] Fastand accurate detection of anatomical structures
in M-mode image may be provided. The structures are
detected for position determination and/or placement of cali-
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pers. Automated detection may be challenging because of
dramatic variations in appearance of any given structure. A
rough estimate followed by a constrained or refining search is
used to deal with at least some of the challenges. For example,
rough caliper localization uses an intensity profile of the
M-mode data to deal with noise and/or structure variation. A
constrained search is then performed for accurate caliper
positions. Markov Random Field (MRF) and warping image
detectors may be used for jointly considering appearance
information and the geometric relationship between calipers
or structure locations.

[0020] In one embodiment, the end of diastole (ED) and
end of systole (ES) line positions for one or more heart cycles
are estimated based on an ECG signal. The system automati-
cally estimates the vertical (i.e., spatial) coordinates of a
plurality of calipers along each line (ED and SD lines). The
detection of structure along the lines is challenging because
the ultrasound M-mode image or data is usually noisy, the
M-mode data varies due to differences in pathology, and the
heart size varies for different patients. The system addresses
this challenging task in a progressive manner. A coarse local-
ization is obtained first using an intensity profile image. Then,
precise localization is obtained by considering both the
appearance (e.g., M-mode data) and a geometric relationship
between those anatomical structures.

[0021] FIG. 1 shows a method for detection of structure in
ultrasound M-mode imaging. The method is implemented by
a medical diagnostic imaging system, a review station, a
workstation, a computer, a PACS station, a server, combina-
tions thereof, or other device for image processing medical
ultrasound data. For example, the system or computer read-
able media shown in FIG. 7 implements the method, but other
systems may be used.

[0022] The method is implemented in the order shown or a
different order. Additional, different, or fewer acts may be
performed. For example, act 22 is performed without acts 26,
28, and/or 30, and/or act 32 is performed without acts 34, 36,
and/or 38. Acts 22 and 32 may include none, one, two, all, or
additional sub-acts 26, 28, 30, 34, 36, 38 than shown in FIG.
1. As another example, acts 40 and/or 42 are optional. In yet
another example, F1G. 2 represents one specific embodiment
of the method of FIG. 1 without general acts 22 or 32. Other
embodiments are possible.

[0023] The acts are performed in real-time, such as during
scanning. The user may view images of act 42 while scanning
to acquire another dataset representing intensity or velocity
along a line. The images of act 42 are displayed in a scrolling
manner along the time dimension with automatically detected
calipers and/or measurements. The images may be associated
with previous performance of act 20 in the same imaging
session, but with different data. For example, act 20 is per-
formed for an initial scan and for subsequent scans during the
same imaging session. Measurements and/or images of auto-
matically detected anatomy may be provided in less than one
second while additional M-mode data or scans are performed.
In alternative embodiments, acts 20-42 may be performed on
M-mode data from a previous imaging session, such as stored
M-mode data from scans that occurred minutes, hours, days,
weeks or longer in the past.

[0024] For training and/or application of embodiments
using machine-learned classifiers, ultrasound data represent-
ing the anatomy of interest, such as a left ventricle or aorta, is
used. For training, the data is the same type of data as is going
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to be used for application. For application, the data is the same
type of data as used in the training.

[0025] In act 20, M-mode data is acquired. The M-mode
data is acquired from a memory, by transfer from memory or
over a network, or in real-time with scanning. M-mode data
represents a line within a patient over a range of time. For
example, transmit and receive ultrasound beams are formed
along a scan line. Data is sampled in the receive beam at
depths ofinterest, such as depths corresponding to a patient’s
heart. The samples are detected. In one embodiment, the
samples are detected with an intensity detector. The intensity
of echoes represented by the samples is determined and
mapped to a grayscale value. In another embodiment, the
samples are detected with a Doppler or flow detector. The
velocity, power, variance or combinations thereof are esti-
mated and mapped along a color scale.

[0026] The scan line is scanned at any repetition rate to
acquire data for the temporal dimension. The M-mode scan-
ning may be continuous (e.g., transmit and receive operations
with or without a delay for acoustic reverberation die down
are performed sequentially without interleaving for other
scanning modes) or may be interleaved with B-mode, flow
mode or other scanning modes. Each repetition provides data
foranother time. For each time, samples representing the scan
line are provided.

[0027] TheM-mode data corresponds to adisplayed image,
detected data prior to scan conversion, scan converted data,
data prior to color or grayscale mapping, data mapped for
display, beamformed data prior to detection, and/or data at
other stages of processing. The M-mode data represents a
one-dimensional region of a patient. The region includes
tissue, fluid or other structures. Different structures or types
of structures react to the acoustic energy differently. The
location of the structure along the scan line may be reflected
in the M-mode data. For example, the right ventricle internal
wall, interventricular septum, left ventricle internal wall, and
left ventricle posterior wall for any given time in the heart
cycle may be represented.

[0028] To detect one or more of these structures at a given
time, the method is performed with two modules in a progres-
sive fashion as represented by acts 22 and 32. The first module
of act 22 performs coarse detection based on an intensity
profile image or other information. The second module of act
32 estimates the precise location of each caliper. In another
approach, separate modules are provided for each act or other
combinations of acts may be performed. For example, the
workflow illustrated in FIG. 2 is used. As yet another
approach, one module is provided to perform all of the acts
included in a given embodiment.

[0029] Thecoarsedetection and preciselocation estimation
(e.g., position identifying acts 22 and 32) are performed with-
out user input of any location along the scan line. The user
may activate the M-mode imaging, automated structure
detection, and/or automated measurement, but spatial infor-
mation relative to the M-mode data or image is not provided.
The user does not indicate the location of one or more struc-
tures for which location is to be determined. The initial locat-
ing in act 22 and the refining of act 32 are performed free of
user input of a location of any structure in the M-mode image.
The user may indicate a depth for which the M-mode scan is
to occur, but does not indicate locations within the range of
depths within a region of interest. In alternative embodi-
ments, the user indicates the position of one or more structure
locations at one or more times.
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[0030] In act 22, portions of a line associated with one or
more different structures are identified. The portions repre-
sent initial locations of respective structures identified in a
search. A portion corresponds to two or more points along the
line. For example, a region of contiguous points along the line
likely to represent the structure of interest is a portion. As
another example, a couple of non-adjacent or adjacent loca-
tions likely to be the structure of interest is a portion. In one
embodiment, different portions of the line represented by
M-mode data associated with different heart structures are
identified. Each point or sample in the portion corresponds to
different depths relative to the transducer.

[0031] The searchis a function of the M-mode data, such as
M-mode data from animage to be displayed, being displayed,
or previously displayed. The portions are identified from a
first estimate of a location of the structure along the line. A
window is defined around the given location for the portion.
Alternatively, the portions may be identified directly without
identification of a specific point.

[0032] By identifying a portion alone or based on a point, a
coarse or initial detection of the structure is provided. The
coarse detection may be more robust in view of noise in an
ultrasound image. More processing intensive estimation may
be limited to the portion associated with the coarse detection
rather than processing all of the data along the scan line. With
the coarse detection, the search range for each caliper is
constrained during the processing intensive final searching,
which increases the detection speed. Moreover, using two
stages of detection may make it less likely to get stuck in local
maxima for a final location output.

[0033] Any coarse search may be used, such as low pass
filtering the data as a function of space and applying a thresh-
old. Model matching may be used. A machine-learned clas-
sifier using any desired features may be applied.

[0034] In one embodiment in act 26, the coarse search is
based on intensity as a function of depth integrated over a
plurality of times. The M-mode data may be processed prior
1o integration. For example, color M-mode data is converted
to grayscale. As another example, the M-mode data is tem-
porally normalized. The heart cycle of the M-mode data is
temporally stretched or compressed using interpolation, deci-
mation, extrapolation, filtering or other process to correspond
with a reference heart cycle length in time. Other processes
may be performed.

[0035] Once prepared, the M-mode data is integrated over
time. For each depth along the line, the M-mode data over a
portion of a heart cycle, a plurality of heart cycles, the time
represented in a portion of an image, the time represented
over an entire image, user set time frame, or other length of
time is summed. FIG. 3 shows an M-mode image with over
fourheart cycles. The M-mode data for each depth is summed
along the entire image, resulting in the intensity profile or
curve shown in the right half of FIG. 3. The intensity profile
image gives strong cues about the vertical coordinates of each
caliper or structure. Other combination functions may be
used, such as an average. The combination may reduce the
effects of noise.

[0036] The intensity profile may be matched to a profile
model or thresholds may be applied. The initial locations may
be determined from the matched model or thresholds. The
portion associated with a given structure is identified from
this integrated M-mode data.

[0037] Alternatively, in an embodiment represented by act
28, the portion or initial position is identified from the
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M-mode data by application of a machine-learned classifier.
The machine-trained classifier is any one or more classifiers.
The classifier may be a model or detector using imaging
processing, filtering, or other techniques. A single class or
binary classifier, collection of different classifiers, cascaded
classifiers, hierarchal classifier, multi-class classifier, model-
based classifier, classifier based on machine learning, or com-
binations thereof may be used. Multi-class classifiers include
CART, K-nearest neighbors, neural network (e.g., multi-layer
perceptron), mixture models, or others. A probabilistic boost-
ing tree may be used.

[0038] The classifier is trained from a training data set
using a computer. Any number of expert annotated sets of
ultrasound M-mode data is used. For example, about 200
hundred or more ultrasound M-mode images representing the
left and/or right ventricles are annotated by expert positioning
of one or more calipers. The annotation indicates the location
of structures. This large number of annotations allows use of
a probabilistic boosting tree to learn relevant features over a
large pool of 1D or 2D Haar features. Haar features may be
efficiently computed and be effective as a feature space for
boosting classifiers. Other features may be used. Each clas-
sifier uses the data sets and annotations specific to the
anatomy being classified.

[0039] In one embodiment, the classifier is a knowledge-
based probabilistic model, such as marginal space learning
classifier. A database of known cases is collected for machine
learning, providing a database-driven knowledge-based
approach. Knowledge is embedded in large annotated data
repositories where expert clinicians manually indicate the
anatomies and/or measurement indicators for the anatomies.
Training and detecting the location of measurement indica-
tors include detecting the associated anatomy since the mea-
surement indicator (e.g., caliper) indicates the anatomy. The
known cases may be aligned or registered, such as temporal
normalization and/or intensity normalization. The detectors
are trained on a large number of annotated ultrasound
M-mode data sets. The classifler learns various feature vec-
tors for determining the position of portions or an initial
estimate of the location of the structure. In alternative
embodiments, the classifier is manually programmed.
[0040] A probabilistic boosting cascade tree (PBT) unifies
classification, recognition, and clustering into one treatment.
In one embodiment, a probabilistic boosting tree is learned
for each anatomy of interest. The classifier is a tree-based
structure with which the posterior probabilities of the pres-
ence ofthe anatomy of interest are calculated from given data.
Each detector not only provides a binary decision for a given
sample, but also a confidence value associated with the deci-
sion. The nodes in the tree are constructed by a combination
of simple classifiers using boosting techniques, such as dis-
closed by Tu, “Probabilistic Boosting-Tree: Learning Dis-
criminative Models for Classification, Recognition, and
Clustering,” Proc. Int’l Conf. on Computer Vision, pp 1589-
1596, 2005. One classifier may be trained to detect all or some
of the structures of interest. In other embodiments, separate
classifiers are trained for detecting each of the structures of
interest.

[0041] For learning-based approaches, the classifier is
taught to distinguish based on features. For example, the
probability model algorithm selectively combines features
into a strong committee of weak learners based on Haar-like
local rectangle filters whose rapid computation is enabled by
the use of an integral image. Features that are relevant to the
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anatomies are extracted and learned in a machine algorithm
based on the experts’ annotations, resulting in a probabilistic
model. A large pool of features may be extracted. The training
determines the most determinative features for a given clas-
sification and discards non-determinative features. Different
combinations of features may be used for detecting different
anatomies or structures. For example, different classifiers are
trained for detecting different portions or initial locations.
Each classifier selects a set of discriminative features that are
used to distinguish the positive target from negatives. The
features are selected from a large pool of features. The large
pool is determined by a programmer or may include features
systematically determined.

[0042] The machine-trained classifier in one embodiment
searches based on machine-trained feature probabilities. For
example, a marginal space classifier weights the features with
a matrix of feature probabilities to determine an output. FIG.
4 shows an image used to extract the features. The image is a
mapping of the intensity profile over time. The one-dimen-
sional profile information is extended along the time dimen-
sion. The intensity of each pixel is proportional to the value of
the corresponding entry in the intensity profile for that depth.
The features, such as 2D (space and time) Haar features, are
calculated from the image. Other features may be included or
used instead, such as features calculated from the M-mode
data prior to integration and/or features calculated from the
intensity profile. Other features different than orin addition to
Haar features may be used.

[0043] For identifying different portions and/or associated
initial estimates of different structure locations, separate clas-
sifiers are applied using the same or different features. In an
alternative embodiment, a joint classifier may be applied. The
joint classifier includes different classifiers for different
anatomies. For joint classification, at least one of the anato-
mies is detected as a function of the previous detection of
another of the anatomies. The different portions may overlap
in depth. Alternatively, the different portions do not overlap.
[0044]  Acts 26 and 28 may be used alone or together. Act 30
may be used with the output of either to select the most likely
position for each structure based on the locations estimated
for other structures. Alternatively, act 30 is not performed.
[0045] In act 30, the identification of the portions or initial
locations is performed as a function of the locations of the
other portions or initial locations. For example, the likely
positions of each of the initial positions are selected with a
Markov Random Field (MRF) function. The MRF function
captures the geometric relationship between calipers. Any
two or more structures may be used in the MRF function. For
example, the structures along a given line or time use the same
MREF. A different MRF is used for different times. As shown
in FIG. 5, the locations for five anatomical structures (52, 54,
56, 58, and 60) are provided along an end of diastole (ED)
time. Four anatomical structures (62, 64, 66, and 68) are
provided along an end of systole (ES) time. Each ED line
contains 5 anatomical structures (calipers), and each ES line
contains 4 calipers. The B-mode image on the top illustrates
the beam (dotted line) position. As another example, different
MRFs are provided for different sub-sets of structures at a
given time or structure locations form different times are
included in the same MRF.

[0046] Inoneembodiment, the MRF receives a plurality of
possible initial locations for each structure and a correspond-
ing probability from the machine-trained classifier. A thresh-
old probability is applied to limit the number of possible
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initial locations. The sufficiently likely locations are input to
the MRF with the probabilities. The MRF outputs possible
combinations of locations for groups of structures based on
the input. The combinations with the highest probability are
selected, such as selecting the top three or five combinations.
For five combinations, five possible initial locations are pro-
vided for each structure. Inalternative embodiments, the most
likely candidate is selected.

[0047] Other approaches than MRF may be provided. For
example, a cost function with a spring or elastic variable is
used to tend the locations to an average or median location for
each structure.

[0048] In act 32, the initial positions are refined to deter-
mine final positions of the structures. The initial position may
be a point. The point is determined to be accurate or shifted to
amore likely accurate location. The initial position may be a
range of depths or points. The most likely location within the
range is determined. The initial position may be a plurality of
possible locations. One of the possible locations is selected.
Combinations of two or more of these approaches may be
used. Other refining may alternatively or additionally be used.
The refinement is local by identifying positions within a
limited depth range rather due to the coarse identification.
[0049] In one embodiment, the local refinement of act 32
includes four acts 34, 36, and 38 with act 36 represented two
acts. Additional, different, or fewer acts may be provided,
such as providing only one of the acts 34, 36, or 38, providing
act 36 with just one of the operations described below, or
other combinations.

[0050] Inact 34, a machine-learned classifier is applied. A
separate classifier is provided for each structure (e.g., nine
classifiers in the example shown in FIG. 5), but joint classi-
fication or classification of a combination of structures may
be provided. Each anatomy is detected independently or
dependently on other detection.

[0051] The input features for this refinement classifier are
Haar features from the M-mode data without or with different
integration. For example, Haar features determined in two-
dimensions over time and space of the M-mode data without
integration are used. Other features may be used alternatively
or additionally. The classifier outputs a plurality of possible
locations. The final location is one of the possible locations.
The outputs include location probabilities for each of the
possible locations based on the input feature probabilities
learned from training data. Possible locations are output for
each of the structures.

[0052] Themachine-learned classifier is of the same type as
used in act 28. In one embodiment, a marginal space classifier
trained using a probabilistic boosting cascade tree is used.
Alternatively, a different type of classifier is used. Given
different input features, the classifiers are different for coarse
and fine searching.

[0053] The search performed by the machine-learnt classi-
fier is constrained. A window is set based on the coarse
location. For example. the portion defines the locations to be
considered by a given classifier. Depths outside of the portion
are not considered. As another example, an initial position
output in act 22 defines the center or other location in a
window. The window is a set size (e.g., predetermined in size)
or may be a function of other information. For example, the
window depth range or size is inversely proportional to the
confidence of the initial detection result. This window is the
portion of the line identified using act 22. The confidence is
the probability output by the classifier for a given possible
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location. The probability is the location probability output by
the classifier of act 28 based on the feature probahilities. Any
mapping of probability to window size may be used, such as
the window size being between 30 and 60 mm based on a
range of probabilities (e.g., inversely linear mapped to
60-100% confidence). Other variables may be used for adapt-
ing the window size.

[0054] The output of act 34 may be one location for each
structure or a plurality of possible locations for each structure
with corresponding probabilities or confidence scores. The
output of act 34 may be used without further processing. The
most likely locations are identified as the refined or final
locations. Alternatively, acts 36 and/or 38 use the output to
further refine the final locations. The final locations are iden-
tifled as a function of locations of other structures and/or the
M-mode data, with or without further processing.

[0055] In act 36, the location of one or more structures is
refined or determined as a function of other locations or other
structures. For example, the positions determined in act 34 are
adjusted or selected based on one or more other positions of
other structures. The positions output in act 22 are used to
limit the positions determined in act 34, so are indirectly used
to select in act 36.

[0056] Any function may be used, such as a cost function
based on ideal distances. In one embodiment, one or more
MRF functions are used. The statistics about the geometric
relationship of two or more structures are used to select the
most likely combinations of positions of the structures. The
possible locations may be input and used to limit the number
of combinations. The combinations with the most likelihood
may be output or used and those with the least ignored.

[0057] Using training data, the probabilities or other cost
function of different geometrical relationships between cer-
tain structures are calculated. These probabilities are used to
select the combination of locations for the structures. The
locations of two or more structures are determined using these
machine-learned functions, such as using the probabilities or
other statistics. The machine-learned functions for one struc-
ture relative to another structure are used to determine loca-
tions for both structures. Different machine-learned functions
may be provided for different structures, such as associated
with different groupings of structures.

[0058] Inoneembodiment, a plurality of geometric estima-
tion functions is applied. For example, one Markov network is
used for a first group of structures, and a different Markov
network is used for second group of structures. Each structure
is associated with two or more of the Markov networks.

[0059] One Markov network may use the same or different
structures, but at different times. Referring to FIG. 5, the
structures 52, 54, 56, 62, and 64 occur at ED and ES, two
different times. A Markov network is provided for this group
of structures. This network is used for each of the heart cycles
ofinterest. Another Markov network is provided for the struc-
tures 58, 60, 66, and 68. Other groupings may be provided
with more or fewer groupings and corresponding Markov
networks. The groupings across time enforce the position
consistency of caliper positions across time.

[0060] In one embodiment, the top eleven or other number
of possible positions output in act 34 for each structure are
used. Using the MRF, the top three most likely combinations
of positions are determined from the possible positions. Dif-
ferent combinations of positions may be determined and
probabilities associated with each combination.
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[0061] Thestructures are regrouped to apply other geomet-
ric cost functions. For example, the structures along each time
are grouped, such as structures 52, 54,56, 58, and 60 along the
ED line being one group and structures 62, 64, 66, and 68
along the ES line being another group. A different MRF is
used for each of the groups, such as MRF populated with
statistics learned from training data. In one embodiment, the
top three or other number of positions output for each struc-
ture by the first layer of MRF are used as inputs. This layer of
geometric control enforces position consistency in a given
time or across the entire depth.

[0062] Ifaninputtoa geometric relationship function does
not include possible positions for a given structure, the geo-
metric function may fail. For example, the machine-learned
detector may fail to determine any locations for a given struc-
ture with sufficient probability, resulting in failure when
applying the MRF.

[0063] As an alternative to failure, the geometric relation-
ship function may assume a location with a large penalty, such
as a predefined negative score for this location. The missing
position or groups of possible positions for a structure are
determined from the locations of the other structures, such as
selecting the most likely position or positions based on the
geometrical statistics alone. The locations of the structures
are determined with the assumed location or locations of
highest probability for the missing structure. Other processes
for dealing with missing information may be used, such as
determining the position of the missing structure using its
average distance to the nearest neighboring structure.

[0064] The output from act 36 may be used as the final
position for each structure, such as using a combination with
thehighest probability. Alternatively, the output from act 36 is
used for further processing to determine the final position for
each structure. For example, act 38 is performed.

[0065] Inact 38, the M-mode data is used to determine the
final position based on one or more possible positions output
in acts 22, 34, or 36. A machine-learned classifier may be used
with the search space limited by the input possible positions.
A machine-learned classifier may be used with the possible
positions input as features with features derived from the
M-mode data. Other classifiers or functions may be used to
determine position from M-mode data based on input of
possible positions.

[0066] Inoneembodiment, a warping detector is used. The
warping detector is a probabilistic, hierarchal, and discrimi-
nant framework for detection of anatomic structure, such as
disclosed by S. K. Zhou. F. Guo, J. H. Park, G. Carneiro, J.
Jackson, M. Brendel, C. Simopoulos, I. Otsuki, and D.
Comaniciu in “A probabilistic, hierarchical, and discriminant
(PHD) framework for rapid and accurate detection of deform-
able anatomic structure,” International Conference on Com-
puter Vision (ICCV), October 2007. Other detectors may be
used.

[0067] The warping detector uses geometric position and
M-mode data to determine position of structure. For example,
the best configuration of structure positions at a time, at
several times, or other groupings are determined. In one
embodiment, the best configuration of positions along a given
line (ED or ES) is determined separately for each line or time.
The optimal configuration is selected from the fifteen or other
number of likely configurations output in act 36. A machine-
trained classifier uses both geometric relationship and 1D or
2D features determined from M-mode data to select a most
probable configuration of the locations of structures. Both
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appearance (M-mode data) of the structure and the location
configuration (geometric) are jointly considered. In alterna-
tive embodiments, only appearance, only configuration, or
additional features are used.

[0068] Inact40,one or more measurements are performed.
The measurements rely on the locations determined for the
structure. The measurement values may be calculated from
the ultrasound data associated with the located anatomy and/
or from spatial or temporal locations associated with the
anatomy. Any parameter may be calculated, such as distance,
circumference, volume, change, velocity, acceleration, or
other anatomy parameter. The measurement is a function of
the position of one or more structures.

[0069] One dimension of the M-mode data represents space
(e.g., depth) and another time, so measures of distance and/or
time may be performed. For example, the measurement value
is calculated as a function of a distance between two of the
final positions. Example measurements include: right ven-
tricle (RV) internal dimension in diastole (RVIDd) (e.g., dif-
ference between structures 52 and 54), interventricular sep-
tum thickness in diastole (IVSd) (e.g., difference between
structures 54 and 56), left ventricle (LV) internal dimensionin
diastole (LVIDA) (e.g., difference between structures 56 and
58), LV posterior wall thickness in diastole (LVPWd) (e.g.,
difference between structures 58 and 60), interventricular
septum thickness in systole (IVSs) (e.g., difference between
structures 62 and 64). LV internal dimension in systole
(LVIDs) (e.g., difference between structures 64 and 66), and
LV posterior wall thickness in systole (LVPWs) (e.g., differ-
ence between structures 66 and 68). For aortic measurements,
the AoR internal dimension in diastole (AoR), and LA inter-
nal dimension in (LA) may be calculated. Other measure-
ments for the same or different imaging or scanning regions
of the patient may be provided.

[0070] Other measurement values may be calculated. For
example, one or more distances are used in estimating a
volume, such as LV end diastolic volume (LVEDV), and LV
end systolic volume (LVESV). The difference in volume is
determined as the LV ejection fraction (LVEF).

[0071] One or more measurement values are calculated in
response to user selection of a given measurement. In other
embodiments, one or more measurements are automatically
provided. The user activates the automatic position determi-
nation, such as selecting an appropriate application (e.g.,
selecting LV imaging). The appropriate, commonly used, or
user defined measurements are calculated without further
user input.

[0072] In act 42, information associated with one or more
ofthe final locations is displayed. The calculated value and/or
an image are displayed. The information is displayed with or
without a corresponding M-mode image.

[0073] Forexample, a value of a measure determined based
on the location is displayed. One of the measurements of act
401s provided to the user, or a measurement from the M-mode
data (e.g., a variance of intensity) at the location is provided.
The value is displayed as text, in a chart, or as part of a table.
The value may be labeled, such as indicating the parameter
represented by the value and the units of measurement. Other
information may he displayed, such as other values of mea-
sures.

[0074] In another example, a marker is displayed to indi-
cate the location. FIG. 6 shows an M-mode image of the aorta
of a heart. A two-dimensional image is shown above the
M-mode image. The two-dimensional image shows a loca-
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tion of the line used for the M-mode image. On the M-mode
image, two calipers are shown as cross-hair boxes at both ED
and ES times. Other shaped and/or sized markers may be
used. The markers are the same or different for different
structures. The M-mode data from which the locations are
identified is used for the M-mode image, but other M-mode
data may be used. FIG. 5 shows an M-mode image of the LV
and RV of the heart with markers.

[0075] The method may be implemented using all of acts
22-38. For example, a dataset containing 478 or other number
of M-mode images is used. 378 or other number of the
M-mode images are used for training, and 100 or other num-
ber are used as the test set. As shown below in Table 1, the
system may achieve accuracy in both training and test sets.
The mean error over all the 478 data is 1.64 mm. The system
may detect all calipers in one LV image (see FIG. 5) within 1
second. Using the warping detector of act 38 alone may uses
up to 4 seconds to detect data with multiple heart cycles. The
performance using exactly the same training set is: the mean
error is 2.64 with standard deviation 3.73. Using the coarse-
to-fine approach in acts 22-38 may provide an advantage in
both accuracy and speed.

TABLE 1

The error (in millimeter) between the detection result and ground truth.

ES ED
Training Mean 1.3647 1.3036
(378 images) Std 1.7989 1.6496
Testing Mean 2.5695 2.3356
(100 images) Std 3.6807 2.5060

[0076] FIG. 7 shows a medical diagnostic imaging system
10 for detection of structure in ultrasound M-mode imaging.
Structures along a line may be detected, allowing measure-
ment of the anatomies and display of the locations of the
anatomy.

[0077] The system 10 is a medical diagnostic ultrasound
imaging system, but may be a computer, workstation, data-
base, server, or other system. The system 10 includes a pro-
cessor 12, a memory 14, a display 16, and a transducer 18.
Additional, different, or fewer components may be provided.
For example, the system 10 includes a transmit beamformer,
receive beamformer, B-mode detector, Doppler detector, har-
monic response detector, contrast agent detector, scan con-
verter, filter, combinations thereof, or other now known or
later developed medical diagnostic ultrasound system com-
ponents. As another example, the transducer 18 is not pro-
vided, such as where the system 10 is a workstation for
off-line or later measurement of structures.

[0078] The transducer 18 is a piezoelectric or capacitive
device operable to convert between acoustic and electrical
energy. The transducer 18 is an array of elements, such as a
one-dimensional array.

[0079] The system 10 uses the transducer 18 to scan a line,
area or volume. Electrical and/or mechanical steering allows
transmission and reception along different scan lines or a
desired scan line.

[0080] Ultrasound data representing a line is provided in
response to the scanning. The ultrasound data is beamformed,
detected, and/or scan converted. The ultrasound data may be
in any format, such as polar coordinate or Cartesian coordi-
nate. The ultrasound data may be of any type, such as
B-mode, flow mode, Doppler mode, contrast agent, har-
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monic, or other ultrasound modes of imaging. For M-mode
imaging, the B-mode detector is used to sample a scan line at
different times. For color M-mode imaging, the Doppler
detector may be used to estimate velocities along the scan line
at different times.

[0081] Thememory 14 is a buffer, cache, RAM, removable
media, hard drive, magnetic, optical, database, or other now
known or later developed memory. The memory 14 is a single
device or group of two or more devices. The memory 14 is
shown within the system 10, but may be outside or remote
from other components of the system 10.

[0082] The memory 14 is a computer readable storage
medium with processing instructions. The memory 14 stores
data representing instructions executable by the programmed
processor 12 for detection of structure in ultrasound M-mode
imaging. The instructions for implementing the processes,
methods and/or techniques discussed herein are provided on
computer-readable storage media or memories, such as a
cache, buffer, RAM, removable media, hard drive or other
computer readable storage media. Computer readable storage
media include various types of non-transitory volatile and
nonvolatile storage media. The functions, acts or tasks illus-
trated in the figures or described herein are executed in
response to one or more sets of instructions stored in or on
computer readable storage media. The functions, acts or tasks
are independent of the particular type of instructions set,
storage media, processor or processing strategy and may be
performed by software, hardware, integrated circuits, firm-
ware, micro code and the like, operating alone or in combi-
nation. Likewise, processing strategies may include multi-
processing, multitasking, parallel processing and the like. In
one embodiment, the instructions are stored on a removable
media device for reading by local or remote systems. In other
embodiments, the instructions are stored in a remote location
for transfer through a computer network or over telephone
lines. In yet other embodiments, the instructions are stored
within a given computer, CPU, GPU, or system.

[0083] The memory 14 additionally or alternatively stores
the ultrasound data, such as ultrasound M-mode data repre-
senting a line within the patient over a range of time. For
example, the M-mode data represents a line through the left
ventricle or aorta of a patient’s heart. The M-mode data is at
any stage of processing along the ultrasound data path. The
memory 14 stores color M-mode (e.g., velocity, energy or
both) and/or grayscale M-mode (e.g., intensity) ultrasound
data.

[0084] Forreal-time imaging, the ultrasound data bypasses
the memory 14, is temporarily stored in the memory 14, or is
loaded from the memory 14. Real-time imaging may allow
delay of a fraction of seconds, or even seconds, between
acquisition of data and imaging with measurements. For
example, real-time imaging is provided by generating the
images substantially simultaneously with the acquisition of
the data by scanning. While scanning to acquire a next or
subsequent set of data, images and measurements are gener-
ated for a previous set of data. The imaging occurs during the
same imaging session used to acquire the data. The imaging
session is the imaging of a given patient during a given visit
and/or of a given patient in a particular configuration of the
systenl. The amount of delay between acquisition and imag-
ing for real-time operation may vary, such as a greater delay
for initially locating structure with less delay for measure-
ments. In alternative embodiments, the ultrasound data is
stored in the memory 14 from a previous imaging session and
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used for measuring and/or generating an M-mode image
without concurrent acquisition.

[0085] The processor 12 is a general processor, digital sig-
nal processor, graphics processing unit, application specific
integrated circuit, field programmable gate array, digital cir-
cuit, analog circuit, combinations thereof, or other now
known or later developed device for processing medical
image data. The processor 12 is a single device, a plurality of
devices, or a network. For more than one device, parallel or
sequential division of processing may be used. Different
devices making up the processor 12 may perform different
functions, such as an automated anatomy detector and a sepa-
rate device for performing measurements associated with the
detected anatomy. In one embodiment, the processor 12 is a
control processor or other processor of a medical diagnostic
imaging system, such as a medical diagnostic ultrasound
imaging system processor. The processor 12 operates pursu-
ant to stored instructions to perform various acts described
herein, such as obtaining data, detecting anatomy, measuring
anatomy, and/or controlling imaging.

[0086] In one embodiment, the processor 12 receives
acquired ultrasound data during or after scanning and deter-
mines locations of one or more structures along the line
represented by the data. The location of the structure is deter-
mined at one time or at different times. For example, the
location of a given structure is determined one or two times
for every heart cycle. The processor 12 performs or controls
other components to perform the methods described herein.

[0087] The system 10 may include a user input, such as for
configuring the system 10 and/or activation operations. The
processor 12 may identify locations of structure in M-mode
data free of user input of any location of any structure along
the line. The user may refine the final locations output by the
processor 12, but the processor 12 determines the locations
without any initial location indication. Alternatively, the user
inputs location information during the process to identify the
location.

[0088] The processor 12 performs machine learning and/or
applies one or more machine-learnt algorithms. For example,
the processor 12 applies a probabilistic model to detect
anatomy, to detect locations of anatomy, to determine geo-
metrical relationships, or for other functions. The probabilis-
tic model is a machine-learned classifier. Any classifier may
be applied, such as a model-based classifier or a learned
classifier (e.g., classifier based on machine learning). For
learned classifiers, binary or multi-class classifiers may be
used, such as Bayesian or neural network classifiers. In one
embodiment, a marginal space learning framework is deter-
mined using a probabilistic boosting cascade tree framework.
The classifieris instructions, a matrix, a learned code, or other
software and/or hardware for distinguishing between infor-
mation in a medical image.

[0089] Different classifiers may be trained for different pur-
poses, such as for use with different input features, different
structures, different line locations, different structure group-
ings, and/or different stages of processing. The classifier may
include a plurality of models or classifiers (e.g., detectors)
operable together or independently. For example, different
probabilistic models are trained for different anatomy. The
probabilistic models may be joint or dependent. The location
of other anatomies is used to limit or define a search space for
a current anatomy and/or as a feature input for classification
of another anatonty.
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[0090] The different classifiers for different purposes or
structures are the same or different types of classifiers. The
same or different types of classifiers may beused forthe same
type of classification, such as different types of classifiers
being used for different marginal space classification (e.g.,
the classifier for coarse detection is different than the classi-
fier for refining the locations).

[0091] In one embodiment, the probabilistic model is
formed from a plurality of probabilistic boosting tree classi-
fiers. Separate training and resulting machine-trained classi-
fiers are provided for each anatomy of interest. For each of
these separate classifiers, separate probabilistic boosting tree
classifiers are provided for each of the marginal space types.
For example, the classifiers follow the marginal space learn-
ing protocol, providing a position detector using Haar wavelet
features. Separate marginal space classifiers are provided for
each structure, purpose and/or stage of processing. For
example, each detector is a probabilistic boosting tree with 5
levels, and each node in the tree is a strong classifier with at
most 30 weak classifiers. Any number of classifiers, nodes,
levels, or other combinations may be used.

[0092] Forapplication, the processor 12 calculates features
for classification. The same or different features are used for
classification in each stage. The features are one-dimen-
sional, two-dimensional (e.g., space and time) or other fea-
tures. Using a machine-trained translation classifier, the fea-
tures are used to rule out hypotheses and/or determine the
most likely locations for structures.

[0093] Any features may be used. Different types of fea-
tures may be used for the same classifier, or all of the features
are of a same type for a given classifier. In one embodiment,
Haar wavelet-like and/or steerable features are calculated.
Haar wavelet-like features represent the difference between
different portions of a region. Any number of features may be
used, such as tens, hundreds, or thousands. The machine
learning process may operate to determine a desired subset or
set of features to be used for a given classification task.
[0094] In one embodiment, the processor 12 identifies a
given location by first finding a range or plurality of possi-
bilities. A machine-trained model is applied to determine the
initial depths or range. The final location is determined from
the range of initial depths. Another machine-trained model is
applied to determine the final location. One or both of finding
the range and determining the final location is performed
using geometric information or information about locations
for other structures. For example, a Markov field of other
locations relative to the given location is applied in both the
coarse and fine location determinations. The Markov field
may be applied even where one or more expected structures is
not indicated. The Markov field is used to estimate the miss-
ing location.

[0095] The processor 12 calculates measurements of the
detected anatomy. Any measurement may be made. In one
embodiment, the classifier is trained with measurement anno-
tations, such as caliper positions. The detection of the
anatomy provides the caliper positions as an output of the
classifier. The measurement corresponding to the caliper
position is performed, such as measuring a distance, volume,
or ejection fraction. Any now known or later developed mea-
surement may be used.

[0096] The display 16 is a CRT, LCD, plasma, projector,
printer, or other output device for showing an image. The
display 16 displays an image, such as an M-mode image. The
M-mode data representing the line is used for generating the

Jan. 27, 2011

image, such as a color M-mode or grayscale M-mode image.
The M-mode image is generated with the location of detected
structures indicated by markers. The M-mode image repre-
sents return along a line over time. For each desired time, the
determined location is indicated by a marker.
[0097] Alternatively or additionally, a value of the mea-
surement is displayed. The value may be displayed in a chart,
graph, and/or on an image. The measurements that are a
function of the locations are displayed. Only one or a plurality
of different measurement may be displayed. The values may
be displayed with the corresponding M-mode image. The
measurements corresponding to the values may be displayed
on the M-mode image, such as overlaying an indication of
what the measurement represents.
[0098] While the invention has been described above by
reference to various embodiments, it should be understood
that many changes and modifications can be made without
departing from the scope of the invention. It is therefore
intended that the foregoing detailed description be regarded
as illustrative rather than limiting, and that it be understood
that it is the following claims, including all equivalents, that
are intended to define the spirit and scope of this invention.
I(we) claim:
1. A method for detection of structure in ultrasound
M-mode imaging, the method comprising:
acquiring M-mode data representing a line within a patient
over a range of time;
identifying a first portion of the line as associated with a
first structure of a heart of the patient, the first portion
comprising a first plurality of depths, the identifying
being a function of the M-mode data;
identifying a first location of the first structure within the
first portion, a search for the identifying of the first
location being limited to the first portion; and
displaying information associated with the first location.
2. The method of claim 1 wherein identifying the first
portion comprises:
integrating the M-mode data over time for each depth of the
line; and
identifying the first portion from the integrated M-mode
data.
3. The method of claim 1 wherein identifying the first
portion comprises applying a machine-learned classifier.
4. The method of claim 1 further comprising:
identifying at least a second portion of the line as associ-
ated with at least a second structure of the heart of the
patient, the second portion comprising a second plural-
ity of depths, the second plurality including or not
including one or more of the depths of'the first plurality;
wherein identifying the first portion comprises identifying
as a function of the second portion.
5. The method of claim 1 further comprising:
identifying at least a second portion of the line as associ-
ated with at least a second structure of the heart of the
patient, the second portion comprising a second plural-
ity of depths, the second plurality including or not
including one or more of the depths of the first plurality;
wherein identifying the first location comprises applying a
first machine-learned classifier, the first location being
one of a plurality of possible first locations output by the
first machine-learned classifier;
further comprising:
identifying a second location of the second structure within
the second portion with a second machine-learned clas-
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sifier, the second location being one of a plurality of
possible second locations output by the second machine-
learned classifier;

wherein identifying the first and second locations further

comprises determining the first location as a machine-
learned function of the second location and determining
the second location as a machine-learned function of the
first location.

6. The method of claim 1 wherein identifying the first
location comprises identifying as a function of other locations
of other structure and the M-mode data.

7. The method of claim 1 wherein identifying the first
portion and identifying the first location are performed with-
out user input of any location along the line.

8. The method of claim 1 wherein identifying the first
location comprises identifying as a function of other locations
of other structure, the identifying operable with a missed one
of the other locations such that the missed one of the other
locations is determined from the identified first location and
identified ones of the other locations.

9. The method of claim 1 wherein displaying information
associated with the first location comprises displaying the
first location as a marker in an M-mode image generated from
the M-mode data.

10. The method of claim 1 wherein displaying information
associated with the first location comprises displaying a mea-
sure determined as a function of the first location.

11. In a non-transitory computer readable storage medium
having stored therein data representing instructions execut-
able by a programmed processor for detection of structure in
ultrasound M-mode imaging, the storage medium comprising
instructions for:

locating, in an M-mode image, first positions of respective

structures ina search, the search being based onintensity
as a function of depth integrated over a plurality of times
and machine-trained feature probabilities;

refining the first positions to second positions of the struc-

tures, the refining limited by the first positions, each of
the second positions being a function of a plurality of the
first positions; and

calculating a measurement as a function of the second

positions;

wherein the locating and refining are performed free of

user input of a location of any structure in the M-mode
image.

12. The non-transitory computer readable storage medium
of claim 11 wherein locating the first positions comprises
determining ranges for each of the first positions as a function
of respective first marginal space classifiers and selecting
likely positions of each of the first positions with a Markov
Random Field function.

13. The non-transitory computer readable storage medium
of claim 11 wherein refining comprises:
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limiting the second positions within ranges that are
inversely proportional to location probabilities deter-
mined as a function of the machine-trained feature prob-
abilities; and

applying a Markov network.

14. The non-transitory computer readable storage medium
of claim 13 wherein applying the Markov network comprises
applying a first Markov network based on the second posi-
tions at different times in the M-mode image and applying a
second Markov network based on the second positions at a
same time in the M-mode image.

15. The non-transitory computer readable storage medium
of claim 11 wherein refining comprises applying at least one
Markov network and detecting the second positions as a
function of possible configurations output by the Markov
network and the M-mode image.

16. The non-transitory computer readable storage medium
of claim 11 further comprising indicating caliper positions at
the second positions in the M-mode image.

17. The non-transitory computer readable storage medium
of claim 11 wherein calculating the measurement comprises
calculating as a function of a distance between two of the
second positions.

18. A system for detection of structure in ultrasound
M-mode imaging, the system comprising:
a memory operable to store ultrasound M-mode data rep-
resenting a line within a patient over a range of time;

a processor operable to identify a location of the structure
from the ultrasound M-mode data and free of user input
of any location of any structure along the line;

a display operable to display an M-mode image of the line
with the location indicated by a marker, to display a
measurement that is a function of the location, or to
display the M-mode image of the line with the marker
and the measurement.

19. The system of claim 18 wherein the processor is oper-
able to identify the location by finding a range of possibilities
as a function of a first machine-trained model and determine
the location as a function of the range and a second machine-
trained model, at least one of finding the range and determin-
ing the location being a function of a Markov field of other
locations relative to the location.

20. The system of claim 19 wherein the processor is oper-
able to determine the location as the function of the Markov
field of other locations where one of the other locations is
missing and is operable to determine the one of the other
locations as a function of the determined location.
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