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(57) ABSTRACT

Systems and methods of M-mode ultrasound imaging allows
for M-mode imaging along user-defined paths. In various
embodiments, the user-defined path can be a non-linear path
oracurved path. In some embodiments, a system for M-mode
ultrasound imaging can comprise a multi-aperture probe with
at least a first transmitting aperture and a second receiving
aperture. The receiving aperture can be separate from the
transmitting aperture. In some embodiments, the transmitting
aperture can be configured to transmit an unfocused, spheri-
cal, ultrasound ping signal into a region of interest. The user-
defined path can define a structure of interest within the
region of interest.
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M-MODE ULTRASOUND IMAGING OF
ARBITRARY PATHS

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Patent Application No. 61/581,583, titled “M-Mode Ultra-
sound Imaging Of Arbitrary Paths,” filed on Dec. 29, 2011,
and U.S. Provisional Patent Application No. 61/691,717,
titled “Ultrasound Imaging System Memory Architecture,”
filed on Aug. 21, 2012, both of which are incorporated herein
by reference.

INCORPORATION BY REFERENCE

All publications and patent applications mentioned in this
specification are herein incorporated by reference to the same
extent as if each individual publication or patent application
was specifically and individually indicated to be incorporated
by reference.

FIELD

This invention generally relates to ultrasound imaging, and
more particularly to M-mode imaging of arbitrary paths.

BACKGROUND

Conventional ultrasound (or “scanline based” ultrasound
as used herein) utilizes a phased array controller to produce
and steer a substantially linear transmit waveform. In order to
produce a B-mode image, a sequence of such linear wave-
forms (or “scanlines”) may be produced and steered so as to
scan across a region of interest. Echoes are received along
each respective scanline. The individual scanlines from a
complete scan may then be combined to form a complete
image (sometimes referred to as a “sector scan” image).

A display method known as M-mode (or motion mode)
imaging is commonly used in cardiology and other fields
where it is desirable to view the motion of imaged objects. In
some forms of M-mode imaging, echoes from a one-dimen-
sional line are displayed over time relative to a static reference
point in order to allow a clinician to evaluate movement of a
particular structure (such as a cardiac wall or valve) over time.
Because a traditional scanline-based ultrasound path is direc-
tional (along the scanline axis), available M-mode lines tend
to be limited to paths along a scanline.

Generally, M-mode imaging provides a graphic indication
of positions and movements of structures within a body over
time. In some cases, a single stationary focused acoustic
beam is fired at a high frame rate and the resulting M-mode
images or lines are displayed side-by-side, providing an indi-
cation of the function of a heart over multiple heart cycles.

SUMMARY OF THE DISCLOSURE

A method of defining and displaying an m-mode path for
display in an ultrasound imaging system, the method com-
prising transmitting an ultrasound signal from a transmitting
transducer element into a region of interest including a struc-
ture of interest, receiving echoes with at least one receiving
transducer element, producing an image of the region of
interest from the received echoes, displaying the image of the
region of interest including the structure of interest to a user,
defining a one-pixel-wide path through the structure of inter-
est, where the path does not lie along a line that intersects the
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2

transmitting transducer element or the receiving transducer
element, and displaying a graph of a magnitude of pixels
along the path over time.

In some embodiments, the path is non-linear. In other
embodiments, the path has at least one curved segment. In one
embodiment, the path has at least one linear segment and at
least one curved segment. In another embodiment, the path
has at least two linear segments that intersect at an angle other
than 180 degrees. In some embodiments, the path has at least
two discontinuous segments.

In one embodiment, the transmitting transducer element
lies on a separate physical transducer array from an array
containing the at least one receiving transducer element.

In another embodiment, the transmitting transducer is con-
figured to transmit an unfocused ping ultrasound signal into
the region of interest.

In some embodiments, the method further comprises
receiving echoes from the entire region of interest with the at
least one receiving transducer element, receiving echoes from
the entire region of interest with a second receiving trans-
ducer element, and producing an image of the region of inter-
est by combining echoes received at the first and second
transducer elements.

In some embodiments, defining a path through the struc-
ture of interest is performed substantially concurrently with
said transmitting and receiving.

In another embodiment, the transmitting transducer is con-
figured to insonofy a phased array scan line.

A method of ultrasound imaging is also provided, compris-
ing transmitting ultrasound signals into a region of interest
and receiving echoes of the transmitted ultrasound signals
with an ultrasound probe, defining a first image window as a
portion of the region of interest, identifying an M-mode path
intersecting a feature visible in the first image window, dis-
playing data representing the M-mode path on a common
display with a B-mode image of the first image window,
defining a second image window as a portion of the region of
interest that is different than the first image window, and
displaying the data representing the M-mode path on a com-
mon display with a B-mode image of the second image win-
dow.

In one embodiment, all of the method steps are performed
during a live real-time imaging session.

In another embodiment, the M-mode path includes at least
one non-linear segment. In one embodiment, the M-mode
path is not a line intersecting the probe.

In another embodiment, all of the method steps are per-
formed using stored raw echo data retrieved from a raw data
memory device.

In some embodiments, the first image window is smaller
than and lies entirely within the second image window. In
another embodiment, the second image window does not
overlap the first image window.

In an additional embodiment, the method further com-
prises simultaneously displaying the data of the M-mode path
on a common display with B-mode images of both the first
image window and the second window.

In some embodiments, the M-mode path has at least two
dis-continuous segments.

A multi-aperture M-mode ultrasound imaging system is
also provided, comprising a transmitting transducer element
configured to transmit an ultrasound signal into a region of
interest including a structure of interest, a receiving trans-
ducer element separate from the transmitting transducer ele-
ment, the receiving transducer element configured to receive
echoes from the ultrasound signal, a controller configured to
produce an image of the region of interest from the received
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echoes, an input mechanism configured to receive a user input
defining a one-pixel-wide path through the structure of inter-
est, where the path does not lie along a line that intersects the
transmitting transducer element or the receiving transducer
element, and a display configured to display the region of
interest including the structure of interest, the display also
configured to display a graph of a magnitude of pixels along
the path over time.

In some embodiments, the transmitting transducer is con-
figured to transmit an unfocused ping ultrasound signal into
the region of interest.

In another embodiment, the transmitting transducer is con-
figured to transmit an unfocused spherical ping ultrasound
signal into the region of interest. In some embodiments, the
transmitting transducer is configured insonify a phased array
scan line.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the invention are set forth with par-
ticularity in the claims that follow. A better understanding of
the features and advantages of the present invention will be
obtained by reference to the following detailed description
that sets forth illustrative embodiments, in which the prin-
ciples of the invention are utilized, and the accompanying
drawings of which:

Having thus summarized the general nature of the inven-
tion, embodiments and modifications thereof will become
apparent to those skilled in the art from the detailed descrip-
tion below with reference to the attached figures.

FIG. 1A is a block diagram illustrating components of an
ultrasound imaging system.

FIG. 1B is a block diagram illustrating another embodi-
ment of an ultrasound imaging system.

FIG. 2 is a section view of a multiple aperture ultrasound
imaging probe.

FIG. 3 is a schematic illustration of a multiple aperture
ultrasound imaging process using a point-source transmit
signal.

FIG. 4A is an illustration of a B-mode ultrasound image
with an M-mode path defined through a portion of an imaged
object.

FIG. 4B is an illustration of an M-mode graph of the data
along the M-mode path of FIG. 4A.

FIG. 5A is an illustration of a B-mode ultrasound image
with multiple M-mode paths defined through a portion of an
imaged object.

FIG. 5B is an illustration of an M-mode graph of the data
along the multiple m-mode paths of FIG. 5A.

DETAILED DESCRIPTION

In traditional ultrasound systems, images are generated by
combining echoes from a series of pulses transmitted as
phased array scan lines. In such scanline-based ultrasound
imaging systems, the coordinate system used by the user
interface usually lies along the scan lines. As a result, in such
systems, a user interface for selecting an M-mode line typi-
cally involves selecting a desired segment of one of the scan
lines. However, requiring the use of scan lines as M-mode
lines means that the sonographer must position and hold the
probe such that at least one of the scanlines intersects an
anatomical feature through which an M-mode line is desired.
In practice, this may be difficult and/or time consuming, and
may limit the field of view.

Embodiments below provide systems and methods for
obtaining M-mode data substantially in real-time along an
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arbitrary and/or user-defined path that does not necessarily lie
along an ultrasound scan line. In some embodiments, the path
may be a one-dimensional straight line. In other embodi-
ments, the path may comprise a zig-zag pattern, a curved path,
or any other non-linear path. As used herein the term “one-
dimensional” may refer to a narrow path, whether linear,
curved, or otherwise shaped. In some embodiments, a one-
dimensional path may have a width of a single display pixel.
In other embodiments, a one-dimensional path may have a
width greater than one display pixel (e.g., 2 or 3 pixels), but
may still have a length that is substantially greater than its
width. As will be clear to the skilled artisan, the relationship
between actual dimensions of represented objects and image
pixels may be any value defined by the imaging system. In
some embodiments, the M-mode path is not necessarily a
straight line, and may include components at any orientation
within the scan plane.

In some embodiments, an ultrasound imaging system may
be configured to obtain three-dimensional (3D) image data, in
which case an M-mode path may be selected from a displayed
3D volume. For example, an M-mode path may be defined in
a 3D volume by selecting a desired plane through the 3D
volume, and then defining an M-mode path within the
selected 2D plane using any of the systems and methods
described herein.

Some embodiments of systems and methods for specifying
and displaying arbitrary M-mode lines may be used in con-
junction with ping-based and/or multiple aperture ultrasound
imaging systems. In other embodiments, systems and meth-
ods for specifying and displaying arbitrary M-mode lines as
shown and described herein may also be used in conjunction
with scanline-based imaging systems.

Ultrasound Imaging System Components

FIG. 1A is a block diagram illustrating components of an
ultrasound imaging system that may be used with some
embodiments of M-mode imaging systems and methods. The
ultrasound system 10 of FIG. 1A may be particularly suited
for scanline-based imaging and may be configured for acquir-
ing real-time cardiac images either as 2D tomographic slices
or as volumetric image data. The system may includea central
controller/processor configured to control the other system
components, including the probe 12 which includes one or
more transducer arrays, elements of which may transmit and/
or receive ultrasound signals. In some embodiments, the
transducer array(s) may include a 1D, 2D or other dimen-
sional arrays formed from any suitable transducer material.
The probe may generally be configured to transmit ultrasonic
waves and to receive ultrasonic echo signals. In some
embodiments, such transmission and reception may be con-
trolled by a controller which may include a beamformer 14.
The echo information from the beamformer 14 may then be
processed by a B-mode processor 20 and/or other applica-
tion-specific processors as needed (e.g., Doppler processors,
contrast signal processors, elastography processors, efc.).

The B-Mode processor 20 may be configured to perform
functions that include but are not limited to filtering, fre-
quency and spatial compounding, harmonic data processing
and other B-Mode functions. In some embodiments, the pro-
cessed data may then be passed through a scan converter 24
configured to geometrically correct the data from a linear or
polar geometry used by a phased-array scanning probe into a
Cartesian format (x.y or x,y,z) with appropriate scaling in
each dimension. In some embodiments, such as the embodi-
ment described below with reference to FIGS. 2 and 3, a scan
converter 24 may be omitted from the system.

Data for each 2D image or 3D volume may then be stored
in a memory 28. The memory 28 may be volatile and/or
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non-volatile memory configured to store a few seconds up to
several minutes or more of 2D or 3D echo image data. The
video processor 26 may be configured to take the echo data
stored in memory 28 and instructions from the central con-
troller 16 to form video images, including any added graphic
overlays and/or text annotation (e.g. patient information).
Processed video data may then be passed on to the display 30
for presentation to the operator. The central controller 16 can
direct the video processor 26 to display the most recently
acquired data in memory as a real-time display, or it can
replay sequences of older stored 2D slice or 3D volume data.

An M-mode processor 235 may also be provided to receive
a definition of an M-mode path from a user interface and to
form the images displaying the selected M-mode data in a
desired output format. In some embodiments, an M-mode
processor 235 may also include a (volatile or non-volatile)
memory device for storing the defined M-mode path. In some
embodiments, an M-mode processor 235 may be logically
positioned between the video processor 26 and the display 30
in the diagram of FIG. 1A. In other embodiments, an M-mode
processor 235 may be a set of functions built into the video
processor 26 or another component of the system.

FIG. 1B illustrates another embodiment of an ultrasound
imaging system 200 comprising an ultrasound probe 202
which may include a plurality of individual ultrasound trans-
ducer elements, some of which may be designated as transmit
elements, and others of which may be designated as receive
elements. In some embodiments, each probe transducer ele-
ment may convert ultrasound vibrations into time-varying
electrical signals and vice versa. In some embodiments, the
probe 202 may include any number of ultrasound transducer
arrays in any desired configuration. A probe 202 used in
connection with the systems and methods described herein
may be of any configuration as desired, including single apet-
ture and multiple aperture probes.

The transmission of ultrasound signals from elements of
the probe 202 may be controlled by a transmit controller 204.
Upon receiving echoes of transmit signals, the probe ele-
ments may generate time-varying electric signals corre-
sponding to the received ultrasound vibrations. Signals rep-
resenting the received echoes may be output from the probe
202 and sent to a receive subsystem 210. In some embodi-
ments, the receive subsystem may include multiple channels,
each of which may include an analog front-end device
(“AFE”) 212 and an analog-to-digital conversion device
(ADC) 214. In some embodiments, each channel of the
receive subsystem 210 may also include digital filters and
data conditioners (not shown) after the ADC 214. In some
embodiments, analog filters prior to the ADC 214 may also be
provided. The output of each ADC 214 may be directed into
a raw data memory device 220. In some embodiments, an
independent channel of the receive subsystem 210 may be
provided for each receive transducer element of the probe
202. In other embodiments, two or more transducer elements
may share a common receive channel.

In some embodiments, an analog front-end device 212
(AFE) may perform certain filtering processes before passing
the signal to an analog-to-digital conversion device 214
(ADC). The ADC 214 may be configured to convert received
analog signals into a series of digital data points at some
pre-determined sampling rate. Unlike most ultrasound sys-
tems, some embodiments of the ultrasound imaging system of
FIG. 1B may then store digital data representing the timing,
phase, magnitude and/or the frequency of ultrasound echo
signals received by each individual receive element in a raw
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data memory device 220 before performing any further beam-
forming, filtering, image layer combining or other image
processing.

In order to convert the captured digital samples into an
image, the data into an image, the data may be retrieved from
the raw data memory 220 by an image generation subsystem
230. As shown, the image generation subsystem 230 may
include a beamforming block 232 and an image layer com-
bining (“ILC”) block 234. In some embodiments, a beam-
former 232 may be in communication with a calibration
memory 238 that contains probe calibration data. Probe cali-
bration data may include information about the precise acous-
tic position, operational quality, and/or other information
about individual probe transducer elements. The calibration
memory 238 may be physically located within the probe,
within the imaging system, or in location external to both the
probe and the imaging system.

In some embodiments, after passing through the image
generation block 230, image data may then be stored in an
image buffer memory 236 which may store beamformed and
(in some embodiments) layer-combined image frames. A
video processor 242 within a video subsystem 240 may then
retrieve image frames from the image buffer, and may process
the images into a video stream that may be displayed on a
video display 244 and/or stored in a video memory 246 as a
digital video clip, e.g. as referred to in the art as a “cine loop”.

An M-mode processor 235 may also be provided to receive
a definition of an M-mode path from a user interface and to
form the images displaying the selected M-mode data in a
desired output format. In some embodiments, an M-mode
processor 235 may also include a (volatile or non-volatile)
memory device for storing the defined M-mode path. In some
embodiments, an M-mode processor 235 may be logically
positioned between the image buffer 236 and the video pro-
cessor 242 in the diagram of FIG. 1B. In other embodiments,
an M-mode processor 235 may be a set of functions built into
the image generation subsystem 230 or the video processor
242 or any other suitable component of the system.

In some embodiments, raw echo data stored in a memory
device may beretrieved, beamformed, processed into images,
and displayed on a display using a device other than an
ultrasound imaging system. For example, such a system may
omit the probe 202, the transmit controller 204 and the receive
sub-system 210 of FIG. 1B, while including the remaining
components. Such a system may be implemented predomi-
nantly in software running on general purpose computing
hardware. Such alternative processing hardware may com-
prise a desktop computer, a tablet computer, a laptop com-
puter, a smartphone, a server or any other general purpose
data processing hardware.

Introduction to Ping-Based Imaging

Some embodiments of ultrasound imaging systems to be
used in combination with the systems and methods described
herein may use point source transmission of ultrasound sig-
nals during the transmit pulse. An ultrasound wavefront trans-
mitted from a point source (also referred to herein as a “ping”)
illuminates the entire region of interest with each circular or
spherical wavefront. Echoes from a single ping received by a
single receive transducer element may be beamformed to
form a complete image of the insonified region of interest. By
combining data and images from multiple receive transducers
across a wide probe, and by combining data from multiple
pings, very high resolution images may be obtained.

As used herein the terms “point source transmission” and
“ping” may refer to an introduction of transmitted ultrasound
energy into a medium from a single spatial location. This may
be accomplished using a single ultrasound transducer ele-
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ment or combination of adjacent transducer elements trans-
mitting together. A single transmission from one or more
element(s) may approximate a uniform spherical wave front,
or in the case of imaging a 2D slice, may create a uniform
circular wavefront within the 2D slice. In some cases, a single
transmission of a circular or spherical wavefront from a point
source transmit aperture may be referred to herein as a “ping”
or a “point source pulse” or an “unfocused pulse.”

Point source transmission differs in its spatial characteris-
tics from a scanline-based “phased array transmission” or a
“directed pulse transmission” which focuses energy in a par-
ticular direction (along a scanline) from the transducer ele-
ment array. Phased array transmission manipulates the phase
of a group of transducer elements in sequence so as to
strengthen or steer an insonifying wave to a specific region of
interest.

Images may be formed from such ultrasound pings by
beamforming the echoes received by one or more receive
transducer elements. In some embodiments, such receive ele-
ments may be arranged into a plurality of apertures in a
process referred to as multiple aperture ultrasound imaging.

Beamforming is generally understood to be a process by
which imaging signals received at multiple discrete receptors
are combined to form a complete coherent image. The pro-
cess of ping-based beamforming is consistent with this under-
standing. Embodiments of ping-based beamforming gener-
ally involve determining the position of reflectors
corresponding to portions of received echo data based on the
path along which an ultrasound signal may have traveled, an
assumed-constant speed of sound and the elapsed time
between a transmit ping and the time at which an echo is
received. In other words, ping-based imaging involves a cal-
culation of distance based on an assumed speed and a mea-
sured time. Once such a distance has been calculated, it is
possible to triangulate the possible positions of any given
reflector. This distance calculation is made possible with
accurate information about the relative positions of transmit
and receive transducer elements (As discussed in Applicants’
previous applications referenced above, a multiple aperture
probe may be calibrated to determine the acoustic position of
each transducer element to at least a desired degree of accu-
racy.) In some embodiments, ping-based beamforming may
be referred to as “dynamic beamforming.”

A dynamic beamformer may be used to determine a loca-
tion and an intensity for an image pixel corresponding to each
of the echoes resulting from each transmitted ping. When
transmitting a ping signal, no beamforming need be applied to
the transmitted waveform, but dynamic beamforming may be
used to combine the echoes received with the plurality of
receive transducers to form pixel data.

The image quality may be further improved by combining
images formed by the beamformer from one or more subse-
quent transmitted pings. Still further improvements to image
quality may be obtained by combining images formed by
more than one receive aperture. An important consideration is
whether the summation of images from different pings or
receive apertures should be coherent summation (phase sen-
sitive) or incoherent summation (summing magnitude of the
signals without phase information). In some embodiments,
coherent (phase sensitive) summation may be used to com-
bine echo data received by transducer elements located on a
common receive aperture resulting from one or more pings. In
some embodiments, incoherent summation may be used to
combine echo data or image data received by receive aper-
tures that could possibly contain cancelling phase data. Such
may be the case with receive apertures that have a combined
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total aperture that is greater than a maximum coherent aper-
ture width for a given imaging target.

As used herein the terms “ultrasound transducer” and
“transducer” may carry their ordinary meanings as under-
stood by those skilled in the art of ultrasound imaging tech-
nologies, and may refer without limitation to any single com-
ponent capable of converting an electrical signal into an
ultrasonic signal and/or vice versa. For example, in some
embodiments, an ultrasound transducer may comprise a
piezoelectric device. In some alternative embodiments, ultra-
sound transducers may comprise capacitive micromachined
ultrasound transducers (CMUT). Transducers are often con-
figured in arrays of multiple elements. An element of a trans-
ducer array may be the smallest discrete component of an
array. For example, in the case of an array of piezoelectric
transducer elements, each element may be a single piezoelec-
tric crystal.

As used herein, the terms “transmit element” and “receive
element” may carry their ordinary meanings as understood by
those skilled in the art of ultrasound imaging technologies.
The term “transmit element” may refer without limitation to
an ultrasound transducer element which at least momentarily
performs a transmit function in which an electrical signal is
converted into an ultrasound signal. Similarly, the term
“receive element” may refer without limitation to an ultra-
sound transducer element which at least momentarily per-
forms a receive function in which an ultrasound signal
impinging on the element is converted into an electrical sig-
nal. Transmission of ultrasound into a medium may also be
referred to herein as “insonifying”” An object or structure
which reflects ultrasound waves may be referred to as a
“reflector” or a “scatterer.”

As used herein the term “aperture” refers without limita-
tion to one or more ultrasound transducer elements collec-
tively performing a common function at a given instant of
time. For example, in some embodiments, the term aperture
may refer to a group of transducer elements performing a
transmit function. In alternative embodiments, the term aper-
ture may refer to a plurality of transducer elements perform-
ing a receive function. In some embodiments, group of trans-
ducer elements forming an aperture may be redefined at
different points in time.

Generating ultrasound images using a ping-based ultra-
sound imaging process means that images from an entire
region of interest are “in focus™ at all times. This is true
because each transmitted ping illuminates the entire region,
receive apertures receive echoes from the entire region, and
the dynamic multiple aperture beamforming process may
form an image of any part or all of the insonified region. In
such cases, the maximum extent of the image may be prima-
rily limited by attenuation and signal-to-noise factors rather
than by the confined focus of a transmit or receive beamform-
ing apparatus. As a result, a full-resolution image may be
formed from any portion of a region of interest using the same
set of raw echo data. As used herein, the term “image win-
dow” will be used to refer to a selected portion of an entire
insonified region of interest that is being displayed at any
given time. For example, a first image window may be
selected to include an entire insonified area, and then a user
may choose to “zoom in” on a smaller selected area, thereby
defining a new image window. The user may then choose to
zoom out or pan the image window vertically and/or horizon-
tally, thereby selecting yet another image window. In some
embodiments, separate simultaneous images may be formed
of multiple overlapping or non-overlapping image windows
within a single insonified region.
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Embodiments of Multiple Aperture Ultrasound Imaging Sys-
tems and Methods

Applicant’s prior U.S. patent application Ser. No. 11/865,
501 filed on Oct. 1, 2007, published as US Patent Application
Publication 2008/0103393 and U.S. patent application Ser.
No. 13/029,907 (“the *907 application”), published as 2011/
0201933, describe embodiments of ultrasound imaging tech-
niques using probes with multiple apertures to provide sub-
stantially increased resolution over a wide field of view.

In some embodiments, a probe may include one, two, three
or more apertures for ultrasound imaging. FIG. 2 illustrates
one embodiment of a multiple aperture ultrasound probe
which may be used for ultrasound imaging with a point source
transmit signal. The probe of FIG. 2 comprises three trans-
ducer arrays 60, 62, 64, each one of which may be a 1D, 2D,
CMUT or other ultrasound transducer array. In alternative
embodiments, a single curved array may also be used, each
aperture being defined logically electronically as needed. In
still further embodiments, any single-aperture or multiple-
aperture ultrasound imaging probe may also be used. As
shown, the lateral arrays 60 and 64 may be mounted in a probe
housing 70 at angles relative to the center array 62. In some
embodiments, the angle 6 of the lateral arrays relative to the
central array may be between zero and 45 degrees or more. In
one embodiment, the angle 6 is about 30 degrees. In some
embodiments, the right and left lateral arrays 60, 64 may be
mounted at different angles relative to the center array 62. In
some embodiments, the probe 50 of FIG. 2 may have a total
width 74 substantially wider than 2 cm, and in some embodi-
ments 10 cm or greater.

In some embodiments as shown in FIG. 2, separate aper-
tures of the probe may comprise separate transducer arrays
which may be physically separated from one another. For
example, in FIG. 2, a distance 72 physically separates the
center aperture 62 from the right lateral aperture 64. The
distance 72 can be the minimum distance between transducer
elements on aperture 62 and transducer elements on aperture
64. In some embodiments, the distance 72 may be equal to at
least twice the minimum wavelength of transmission from the
transmit aperture. In some embodiments of a multiple aper-
ture ultrasound imaging system, a distance between adjacent
apertures may be at least a width of one transducer element. In
alternative embodiments, a distance between apertures may
be as large as possible within the constraints of a particular
application and probe design.

In some embodiments, a probe such as that illustrated in
FIG. 2 may be used with an ultrasound imaging system such
as that illustrated in FIG. 1 but omitting the scan converter. As
will be described in more detail below, some embodiments of
a point-source imaging method negate the need for a scan
converter. The probe 50 may also include one or more sensors
52 and/or controllers 54 joined to an ultrasound imaging
system and/or to the transducer arrays by cables 56, 57, 58.
Embodiments of similar multiple aperture probes 50 are also
shown and described in US Patent Application Publication
No. 2010/0262013 and U.S. patent application Ser. No.
13/029,907, filed on Feb. 17, 2011, published as 2011/
0201933, both of which are incorporated herein by reference.

Embodiments of multiple aperture ultrasound imaging
methods using a point-source transmit signal will now be
described with reference to FI1G. 3. FIG. 3 illustrates a probe
300 with a first aperture 302 and a second aperture 304
directed toward a region of interest represented by the grid
below the probe. In the illustrated embodiment, the first aper-
ture isused as a transmit aperture 302, and the second aperture
304 is used for receiving echoes. In some embodiments, an
ultrasound image may be produced by insonifying an entire
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region of interest to be imaged with a point-source transmit-
ting element in a transmit aperture 302, and then receiving
echoes from the entire imaged plane on one or more receive
elements (e.g., R1-Rm) in one or more receive apertures 304.

In some embodiments, subsequent insonifying pulses may
be transmitted from each of the elements T1-Tn on the trans-
mitting aperture 302 in a similar point-source fashion. Echoes
may then be received by elements on the receive aperture(s)
302 after each insonifying pulse. An image may be formed by
processing echoes from each transmit pulse. Although each
individual image obtained from a transmit pulse may have a
relatively low resolution, combining these images may pro-
vide a high resolution image.

In some embodiments, transmit elements may be operated
in any desired sequential order, and need not follow a pre-
scribed pattern. In some embodiments, receive functions may
be performed by all elements in a receive array 302. In alter-
native embodiments, echoes may be received on only one or
a select few elements of a receive array 302.

The data received by the receiving elements is a series of
echoes reflected by objects within the target region. In order
to generate an image, each received echo must be evaluated to
determine the location of the object within the target region
that reflected it (each reflected point may be referred to herein
as a scatterer). For a scatterer point represented by coordi-
nates (i,j) in FIG. 3, it is a simple matter to calculate the total
distance “a” from a particular transmit element Tx to an
element of internal tissue or target object T at (i,j), and the
distance “b” from that point to a particular receive element.
These calculations may be performed using basic trigonom-
etry. The sum of these distances is the total distance traveled
by one ultrasound wave.

Assuming the speed of the ultrasound waves traveling
through the target object is known, these distances can be
translated into time delays which may be used to identify a
location within the image corresponding to each received
echo. When the speed of ultrasound in tissue is assumed to be
uniform throughout the target object, it is possible to calculate
the time delay from the onset of the transmit pulse to the time
that an echo is received at the receive element. Thus, a given
scatterer in the target object is the point for which a+b=the
given time delay. The same method can be used to calculate
delays for all points in the desired target to be imaged, creat-
ing a locus of points. As discussed in more detail in the *907
application, adjustments to time delays may be made in order
to account for variations in the speed of sound through vary-
ing tissue paths.

A method of rendering the location of all of the scatterers in
the target object, and thus forming a two dimensional cross
section of the target object, will now be described with refer-
ence to FIG. 3 which illustrates a grid of points to be imaged
by apertures 302 and 304. A point on the grid is given the
rectangular coordinates (i,j). The complete image will be a
two dimensional array of points provided to a video process-
ing system to be displayed as a corresponding array of pixels.
In the grid of FIG. 3, ‘mh’ is the maximum horizontal dimen-
sion ofthe array and ‘mv’is the maximum vertical dimension.
FIG. 3 also illustrates MAUT electronics, which can comprise
any hardware and/or software elements as needed, such as
those described above with reference to FIG. 1.

In some embodiments, the following pseudo code may be
used to accumulate all of the information to be gathered from
a transmit pulse from one transmit element (e.g., one element
of T1. .. Tn from aperture 302), and the consequent echoes
received by one receive element (e.g.. one element of R1 . ..
Rm from aperture 304) in the arrangement of FIG. 3.
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for (i=0; i< mh; i++){
for (j = 03 < mv; j++){
compute distance a
compute distance b
compute time equivalent of a+b
echo[i][ j] = echo[i][j]+stored received echo at the computed time

delay.

A complete two dimensional image may be formed by
repeating this process for every receive element in a receive
aperture 304 (e.g., R1 . .. Rm). In some embodiments, it is
possible to implement this code in parallel hardware resulting
in real time image formation.

In some embodiments, image quality may be further
improved by combining similar images resulting from pulses
from other transmit elements. In some embodiments, the
combination of images may be performed by a simple sum-
mation of the single point source pulse images (e.g., coherent
addition). Alternatively, the combination may involve taking
the absolute value of each element of the single point source
pulse images first before summation (e.g., incoherent addi-
tion). Further details of such combinations, including correc-
tions for variations in speed-of-sound through different ultra-
sound paths, are described in Applicant’s prior U.S. Patent
Applications referenced above.

As discussed above, because embodiments of an imaging
system using a point source transmit signal and a multiple-
aperture receive probe are capable of receiving an entire
scan-plan image in response to a single insonifying pulse, a
scan converter is not needed, and may therefore be omitted
from an ultrasound imaging system. Having received a series
of image frames in a similar manner, the image data may be
processed and sent to a display for viewing by an operator. In
addition to ultrasound imaging systems using point-source
transmit signals, the following methods of selecting and dis-
playing arbitrary m-mode paths may also be used with any
other ultrasound imaging system, including phased array
transmit systems, single-aperture probes, 3D probes, and
probes in systems using synthetic aperture techniques.
Embodiments for Defining and Displaying Arbitrary
M-mode Paths

FIG. 4A illustrates an example of an ultrasound image with
aspecified m-mode path 100 drawn through an imaged object
110. The amplitude of each pixel along the m-mode path may
be displayed in a graph (e.g. a bar graph, line graph or any
other desired format). Changing pixel amplitude values may
be illustrated over time. FIG. 4B illustrates an example of a
graph of data taken along the m-mode path 100 of FIG. 4A.

In some embodiments, a sonographer may wish to simul-
taneously view changes along two or more separate M-mode
paths. Thus in some embodiments, a user may define a plu-
rality of M-mode paths 110, 112 as shown in FIG. SA. The
change in pixel values lying along the first and second paths
110, 112 may be displayed simultaneously in a pair of ampli-
tude/time charts as shown for example in FIG. 5B. FIG. 5A
also shows an example of'a non-linear path 112. As discussed
in further detail below, a non-linear M-mode path may have
any length and shape as desired.

Multiple discontinuous M-mode paths and/or non-linear
M-mode paths may be beneficial in viewing movement of
multiple structures simultaneously. For example, a curve
M-mode path may be beneficial when imaging a anatomic
structures such as a moving valve, such as a tricuspid valve, an
aortic valve or a mitral valve. In other embodiments, multiple
simultaneous but dis-continuous m-mode lines may be used
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to simultaneously view the movement of multiple structures.
For example, a first m-mode path may be drawn to view
operation of atricuspid valve, and a second M-mode path may
be drawn to view operation of a mitral valve. Viewing the
function of both valves simultaneously may provide substan-
tial diagnostic benefits, such as allowing for precise calibra-
tion of a pacemaker.

Selection of an M-mode path generally involves identify-
ing a group of image pixel locations which are to be presented
over time as an M-mode graph. Identifying a group of pixels
for an m-mode path may comprise identifying the coordinates
of selected pixels in a coordinate system used by the video
processing system. In some embodiments, M-mode selection
and display methods as described herein may be performed in
real-time using an ultrasound imaging system such as those
illustrated in FIGS. 1A and 1B. With reference to FIGS. 1A
and 1B, selection of an M-mode path may be performed by a
user via a suitable user interface interaction performed in
communication with the M-mode processor 235. The identi-
fication of selected pixels may be at least temporarily stored
in a memory device associated with the M-mode processor
235. The selected pixels defining the M-mode path may then
be retrieved from image frames in the image buffer and/or in
the video processor, and an M-mode graph or image illustrat-
ing the values of the selected pixels may be formed by the
M-mode processor 235 and transmitted to the display to be
displayed along with the B-mode image. In alternative
embodiments, M-mode selection and display methods as
described herein may be performed on a workstation playing
back stored 2D or 3D image data.

In some embodiments, selection of a group of pixel loca-
tions for presentation as an M-mode path may be assisted by
or entirely performed automatically, such as by using a com-
puter aided detection (CAD) system configured to identify a
desired anatomical or other feature through which an m-mode
path may be desired. For example, US Patent Application
Publication No. 2011/0021915 describes a system for auto-
matic detection of structures in M-mode ultrasound imaging.
In other embodiments, a desired M-mode path may be chosen
by a user through any of several possible user interface inter-
actions, several examples of which are provided below.

As will be clear to the skilled artisan, an imaging system or
an image display system may include a variety of user inter-
face devices through which a user may input information to or
modify information or objects in a displayed image. Such
user interface devices may comprise any of the following,
trackballs, buttons, keys, keypads, sliders, dials, voice com-
mands, touch screen, joystick, mouse, etc. The use of these
and other user input devices will be clearto the skilled artisan.

In some embodiments, any arbitrary line or path in the
image plane may be selected by a user as a line for M-mode
display. In some embodiments, a linear path of defined length
may be selected as an m-mode path. This may be facilitated
through a number of user interface interactions, some
examples of which are provided below.

In some embodiments, the ultrasound display may include
a touch screen, and a user may define an M-mode path by
simply drawing the desired path with a finger or stylus
directly on the display screen. In other embodiments, a user
may draw a freehand path using a separate user interface
device such as a mouse or a drawing tablet. In some embodi-
ments, after drawing a path of a desired shape, an M-mode
path of the desired shape may be dragged across a display
and/or rotated to a desired position.

In one embodiment of a user interface interaction, a linear
m-mode path segment may be selected by first defining a line
length, then defining a rotation angle, and then translating the



US 9,265,484 B2

13

line into a desired position. In some embodiments, further
adjustments to the line length, rotation angle, and position
may be made as needed. In some embodiments, defining a
line length may comprise entering a numeric value with a
numeric keypad or increasing/decreasing a numeric line
length value with a scroll wheel, track ball, dial, slider, arrow
keys or other input device. Similarly, in some embodiments,
a rotation angle may be defined by entering a numeric value
with a numeric keypad or any other input device. A rotation
angle may be defined relative to any suitable coordinate sys-
tem. For example, in some embodiments, a rotation angle of
zero degrees may correspond to a three o-clock position (e.g.,
assuming the top of the image is 12 o-clock).

In some embodiments, numeric values of line length or
rotation angle may not be displayed, instead only changes to
aline length or rotation angle of the line may be shown on the
display screen. In some embodiments, translating the line up,
down, left or right within the image plane may be performed
using arrow keys, a track ball, a mouse, touch screen, voice
commands or other input devices.

In another embodiment of a user interface interaction, a
desired linear m-mode path segment may be selected by
defining or adjusting a line length, translating the line until a
first end point is in a desired position, fixing the first end point
and rotating the second end point until the line is rotated to the
desired orientation and position.

In another embodiment of a user interface interaction, a
desired linear m-mode path segment may be selected by first
selecting a first end point, such as by positioning a cursor at a
desired position on the image. A line length and rotation angle
may then be defined and adjusted as needed. In some embodi-
ments, a rotation angle may be defined by directing the sys-
tem to pivot the line about the selected first end point. Alter-
natively, a user may select the second end point or another
point along the line about which to pivot the line in order to
define a desired rotation angle.

In another embodiment of a user interface interaction, a
desired linear m-mode path segment may be selected by
selecting a first end point with a cursor and then dragging the
cursor in a desired direction to draw a line. In other embodi-
ments, a line may be defined by selecting first and second end
points, defining a line by joining the two points.

In any case, once a line is defined, either automatically or
through a user interface interaction such as those described
above, the length and rotation angle may be adjustable
through further user interface interactions. For example, a
user may define a pivot point about which to pivot the line in
order to adjust a rotation angle. Similarly, a user may select a
fixed point from which to increase or decrease the length of
the line. Such fixed points and pivot points may be either one
of the end points, or any other point along the line.

In some embodiments, a non-linear M-mode path may be
defined through any of the above user interface interactions
by joining linear segments to form any desired non-linear
path made up of linear segments. In some embodiments, a
user may choose to apply a radius to the M-mode path in areas
adjacent intersections of linear segments. In some embodi-
ments, such aradius may be applied automatically, or may be
increased or decreased through a user interface interaction.

In other embodiments, a non-linear M-mode path may be
defined by providing a user with a free-form drawing cursor
with which the user may draw any non-linear path as desired.
Further adjustments may then be made to the path, such as by
selecting and dragging one or more individual points along
the path to obtain a desired M-mode path.

As described above, multiple images may be formed for
two or more separate simultaneous image windows showing
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different overlapping or non-overlapping portions of an
insonified region of interest. Thus, in some embodiments, an
M-mode path may be defined while a first image window is
displayed, and a user may then zoom or pan the image to a
second image window. In some embodiments, the system
may be configured to continue displaying the data along the
defined M-mode path even when the displayed B-mode
image is changed to a different image window than the one in
which the M-mode path was defined. For example, a user may
zoom in to view a heart valve, and may define an M-mode
path intersecting the valve in the zoomed-in image window.
The user may then choose to zoom out to view the movement
of the whole heart (or a different region of the heart) while
continuing to monitor data along the M-mode line intersect-
ing the heart valve.

In some embodiments, the system may store a definition of
the image window in which the M-mode line was defined, and
may allow a user to toggle between a B-mode image of the
M-mode defining image window and a B-mode image of at
least one other image window. In still further embodiments,
the system may be configured to simultaneously display
B-mode images of both the M-mode defining window and
another image window (e.g., in a picture-in-picture mode or
in a side-by-side view).

Any of the above user interface interactions may also be
used to define am M-mode path through a displayed 3D
volume. In some embodiments, defining an M-mode path
from a 3D volume may also involve a step of rotating an
image of a 3D volume before after or during any of the
M-mode path defining user interface steps described above.

Although various embodiments are described herein with
reference to ultrasound imaging of various anatomic struc-
tures, it will be understood that many of the methods and
devices shown and described herein may also be used in other
applications, such as imaging and evaluating non-anatomic
structures and objects. For example, the ultrasound probes,
systems and methods described herein may be used in non-
destructive testing or evaluation of various mechanical
objects, structural objects or materials, such as welds, pipes,
beams, plates, pressure vessels, layered structures, etc. There-
fore, references herein to medical or anatomic imaging tar-
gets such as blood, blood vessels, heart or other organs are
provided merely as non-limiting examples of the nearly infi-
nite variety of targets that may be imaged or evaluated using
the various apparatus and techniques described herein.

Although this invention has been disclosed in the context of
certain preferred embodiments and examples, it will be
understood by those skilled in the art that the present inven-
tion extends beyond the specifically disclosed embodiments
to other alternative embodiments and/or uses of the invention
and obvious modifications and equivalents thereof. Thus, it is
intended that the scope of the present invention herein dis-
closed should not be limited by the particular disclosed
embodiments described above, but should be determined
only by a fair reading of the claims that follow. In particular,
materials and manufacturing techniques may be employed as
within the level of those with skill in the relevant art. Further-
more, reference to a singular item, includes the possibility
that there are plural of the same items present. More specifi-
cally, as used herein and in the appended claims, the singular
forms “a,” “and,” “said,” and “the” include plural referents
unless the context clearly dictates otherwise. It is further
noted that the claims may be drafted to exclude any optional
element. As such, this statement is intended to serve as ante-
cedent basis for use of such exclusive terminology as “solely,”
“only” and the like in connection with the recitation of claim
elements, or use of a “negative” limitation. Unless defined
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otherwise herein, all technical and scientific terms used
herein have the same meaning as commonly understood by
oneof ordinary skill in the art to which this invention belongs.

What is claimed is:

1. A method of defining and displaying an M-mode path for
display in an ultrasound imaging system, the method com-
prising:

transmitting a first unfocused ultrasound signal from a

single transmitting transducer element into a region of
interest including a structure of interest;
receiving echoes of the first unfocused ultrasound signal
with a first group of receiving transducer elements;

receiving echoes of the first unfocused ultrasound signal
with a second group of receiving transducer elements;

retrieving position data describing an acoustic position of
the single transmitting transducer element, each element
of the first group of receiving transducer elements, and
each element of the second group of receiving trans-
ducer elements;

forming a first image by using the position data to calculate

reflector positions for the echoes received with each of
the elements of the first group of receiving transducer
elements and coherently combining echo data received
by the elements of the first group of receiving transducer
elements;

forming a second image by using the position data to cal-

culate reflector positions for the echoes received with
each of the elements of the second group of receiving
transducer elements and coherently combining echo
data received by the elements of the second group of
receiving transducer elements;

producing an improved-quality image of the region of

interest from the received echoes by incoherently com-
bining the first image and the second image;

displaying the improved-quality image of the region of

interest including the structure of interest to a user;
defining an arbitrary one-pixel-wide path through the
structure of interest; and

displaying a graph of a magnitude of pixels along the path

over time.

2. The method of claim 1, wherein the path is non-linear.

3. The method of claim 2, wherein the path has at least one
curved segment.
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4. The method of claim 1, wherein the path has at least one
linear segment and at least one curved segment.

5. The method of claim 2, wherein the path has at least two
linear segments that intersect at an angle other than 180
degrees.

6. The method of claim 1, wherein the path has at least two
dis-continuous segments.

7. The method of claim 1, wherein the transmitting trans-
ducer element lies on a separate physical transducer array
from an array containing the first group of receiving trans-
ducer elements.

8. The method of claim 1, wherein defining a path through
the structure of interest is performed substantially concur-
rently with said transmitting and receiving.

9. A method of ultrasound imaging, comprising:

transmitting ultrasound signals into a region of interest and

receiving echoes of the transmitted ultrasound signals
with an ultrasound probe;

defining a first image window as a first portion of the region

of interest;

identifying an M-mode path intersecting a feature visible

in the first image window;

defining a second image window as a second portion of the

region of interested that is different than the first image
window; and
displaying the data representing the M-mode path from the
first image window on a common display with a B-mode
image of the second image window while a B-mode
image of the first image window is not displayed;

wherein the second portion of the region of interest defin-
ing the second image window does not overlap any of the
first portion of the region of interest defining the first
image window.

10. The method of claim 9, wherein all of the method steps
are performed during a live real-time imaging session.

11. The method of claim 9, wherein the M-mode path
includes at least one non-linear segment.

12. The method of claim 9, wherein the M-mode path is not
a line intersecting the probe.

13. The method of claim 9, wherein the M-mode path has
at least two dis-continuous segments.
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