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M-MODE ULTRASOUND IMAGING OF
ARBITRARY PATHS

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. application Ser.
No. 13/730,346, filed Dec. 28, 2012, which application
claims the benefit of US Provisional Application No. 61/581,
583, titled “M-Mode Ultrasound Imaging Of Arbitrary
Paths,” filed Dec. 29, 2011, and U.S. Provisional Application
No. 61/691.717, titled “Ultrasound Imaging System
Memory Architecture,” filed Aug. 21, 2012, all of which are
incorporated herein by reference.

INCORPORATION BY REFERENCE

All publications and patent applications mentioned in this
specification are herein incorporated by reference to the
same extent as if each individual publication or patent
application was specifically and individually indicated to be
incorporated by reference.

FIELD

This invention generally relates to ultrasound imaging,
and more particularly to M-mode imaging of arbitrary paths.

BACKGROUND

Conventional ultrasound (or “scanline based” ultrasound
as used herein) utilizes a phased array controller to produce
and steer a substantially linear transmit waveform. In order
to produce a B-mode image, a sequence of such linear
waveforms (or “scanlines”) may be produced and steered so
as to scan across a region of interest. Echoes are received
along each respective scanline. The individual scanlines
from a complete scan may then be combined to form a
complete image (sometimes referred to as a “sector scan”
image).

A display method known as M-mode (or motion mode)
imaging is commonly used in cardiology and other fields
where it is desirable to view the motion of imaged objects.
In some forms of M-mode imaging, echoes from a one-
dimensional line are displayed over time relative to a static
reference point in order to allow a clinician to evaluate
movement of a particular structure (such as a cardiac wall or
valve) over time. Because a traditional scanline-based ultra-
sound path is directional (along the scanline axis), available
M-mode lines tend to be limited to paths along a scanline.

Generally, M-mode imaging provides a graphic indication
of positions and movements of structures within a body over
time. In some cases, a single stationary focused acoustic
beam is fired at a high frame rate and the resulting M-mode
images or lines are displayed side-by-side, providing an
indication of the function of a heart over multiple heart
cycles.

SUMMARY OF THE DISCLOSURE

A method of defining and displaying an m-mode path for
display in an ultrasound imaging system, the method com-
prising transmitting an ultrasound signal from a transmitting
transducer element into a region of interest including a
structure of interest, receiving echoes with at least one
receiving transducer element, producing an image of the
region of interest from the received echoes. displaying the
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image of the region of interest including the structure of
interest to a user, defining a one-pixel-wide path through the
structure of interest, where the path does not lie along a line
that intersects the transmitting transducer element or the
receiving transducer element, and displaying a graph of a
magnitude of pixels along the path over time.

In some embodiments, the path is non-linear. In other
embodiments, the path has at least one curved segment. In
one embodiment, the path has at least one linear segment
and at least one curved segment. In another embodiment, the
path has at least two linear segments that intersect at an
angle other than 180 degrees. In some embodiments, the
path has at least two dis-continuous segments.

In one embodiment, the transmitting transducer element
lies on a separate physical transducer array from an array
containing the at least one receiving transducer element.

In another embodiment, the transmitting transducer is
configured to transmit an unfocused ping ultrasound signal
into the region of interest.

In some embodiments, the method further comprises
receiving echoes from the entire region of interest with the
at least one receiving transducer element, receiving echoes
from the entire region of interest with a second receiving
transducer element, and producing an image of the region of
interest by combining echoes received at the first and second
transducer elements.

In some embodiments, defining a path through the struc-
ture of interest is performed substantially concurrently with
said transmitting and receiving.

In another embodiment, the transmitting transducer is
configured to insonify a phased array scan line.

A method of ultrasound imaging is also provided, com-
prising transmitting ultrasound signals into a region of
interest and receiving echoes of the transmitted ultrasound
signals with an ultrasound probe, defining a first image
window as a portion of the region of interest, identifying an
M-mode path intersecting a feature visible in the first image
window, displaying data representing the M-mode path on a
common display with a B-mode image of the first image
window, defining a second image window as a portion of the
region of interest that is different than the first image
window, and displaying the data representing the M-mode
path on a common display with a B-mode image of the
second image window.

In one embodiment, all of the method steps are performed
during a live real-time imaging session.

In another embodiment, the M-mode path includes at least
one non-linear segment. In one embodiment, the M-mode
path is not a line intersecting the probe.

In another embodiment, all of the method steps are
performed using stored raw echo data retrieved from a raw
data memory device.

In some embodiments, the first image window is smaller
than and lies entirely within the second image window. In
another embodiment, the second image window does not
overlap the first image window.

In an additional embodiment, the method further com-
prises simultaneously displaying the data of the M-mode
path on a common display with B-mode images of both the
first image window and the second window.

In some embodiments, the M-mode path has at least two
dis-continuous segmerts.

A multi-aperture M-mode ultrasound imaging system is
also provided, comprising a transmitting transducer element
configured to transmit an ultrasound signal into a region of
interest including a structure of interest, a receiving trans-
ducer element separate from the transmitting transducer
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element, the receiving transducer element configured to
receive echoes from the ultrasound signal, a controller
configured to produce an image of the region of interest from
the received echoes, an input mechanism configured to
receive a user input defining a one-pixel-wide path through
the structure of interest, where the path does not lie along a
line that intersects the transmitting transducer element or the
receiving transducer element, and a display configured to
display the region of interest including the structure of
interest, the display also configured to display a graph of a
magnitude of pixels along the path over time.

In some embodiments, the transmitting transducer is
configured to transmit an unfocused ping ultrasound signal
into the region of interest.

In another embodiment, the transmitting transducer is
configured to transmit an unfocused spherical ping ultra-
sound signal into the region of interest. In some embodi-
ments, the transmitting transducer is configured insonify a
phased array scan line.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the invention are set forth with
particularity in the claims that follow. A better understanding
of the features and advantages of the present invention will
be obtained by reference to the following detailed descrip-
tion that sets forth illustrative embodiments, in which the
principles of the invention are utilized, and the accompany-
ing drawings of which:

Having thus summarized the general nature of the inven-
tion, embodiments and modifications thereof will become
apparent to those skilled in the art from the detailed descrip-
tion below with reference to the attached figures.

FIG. 1A is a block diagram illustrating components of an
ultrasound imaging system.

FIG. 1B is a block diagram illustrating another embodi-
ment of an ultrasound imaging system.

FIG. 2 is a section view of a multiple aperture ultrasound
imaging probe.

FIG. 3 is a schematic illustration of a multiple aperture
ultrasound imaging process using a point-source transmit
signal.

FIG. 4A is an illustration of a B-mode ultrasound image
with an M-mode path defined through a portion of an imaged
object.

FIG. 4B is an illustration of an M-mode graph of the data
along the M-mode path of FIG. 4A.

FIG. 5A is an illustration of a B-mode ultrasound image
with multiple M-mode paths defined through a portion of an
imaged object.

FIG. 5B is an illustration of an M-mode graph of the data
along the multiple m-mode paths of FIG. 5A.

DETAILED DESCRIPTION

In traditional ultrasound systems, images are generated by
combining echoes from a series of pulses transmitted as
phased array scan lines. In such scanline-based ultrasound
imaging systems, the coordinate system used by the user
interface usually lies along the scan lines. As a result, in such
systems, a user interface for selecting an M-mode line
typically involves selecting a desired segment of one of the
scan lines. However, requiring the use of scan lines as
M-mode lines means that the sonographer must position and
hold the probe such that at least one of the scanlines
intersects an anatomical feature through which an M-mode
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line is desired. In practice, this may be difficult and/or time
consuming, and may limit the field of view.

Embodiments below provide systems and methods for
obtaining M-mode data substantially in real-time along an
arbitrary and/or user-defined path that does not necessarily
lie along an ultrasound scan line. In some embodiments, the
path may be a one-dimensional straight line. In other
embodiments, the path may comprise a zig-zag pattern, a
curved path, or any other non-linear path. As used herein the
term “‘one-dimensional” may refer to a narrow path, whether
linear, curved, or otherwise shaped. In some embodiments,
a one-dimensional path may have a width of a single display
pixel. In other embodiments, a one-dimensional path may
have a width greater than one display pixel (e.g., 2 or 3
pixels), but may still have a length that is substantially
greater than its width. As will be clear to the skilled artisan,
the relationship between actual dimensions of represented
objects and image pixels may be any value defined by the
imaging system. In some embodiments, the M-mode path is
not necessarily a straight line, and may include components
at any orientation within the scan plane.

In some embodiments, an ultrasound imaging system may
be configured to obtain three-dimensional (3D) image data,
in which case an M-mode path may be selected from a
displayed 3D volume. For example, an M-mode path may be
defined in a 3D volume by selecting a desired plane through
the 3D volume, and then defining an M-mode path within
the selected 2D plane using any of the systems and methods
described herein.

Some embodiments of systems and methods for specify-
ing and displaying arbitrary M-mode lines may be used in
conjunction with ping-based and/or multiple aperture ultra-
sound imaging systems. In other embodiments, systems and
methods for specifying and displaying arbitrary M-mode
lines as shown and described herein may also be used in
conjunction with scanline-based imaging systems.
Ultrasound Imaging System Components

FIG. 1A is a block diagram illustrating components of an
ultrasound imaging system that may be used with some
embodiments of M-mode imaging systems and methods.
The ultrasound system 10 of FIG. 1A may be particularly
suited for scanline-based imaging and may be configured for
acquiring real-time cardiac images either as 2D tomographic
slices or as volumetric image data. The system may include
a central controller/processor configured to control the other
system components, including the probe 12 which includes
one or more transducer arrays, elements of which may
transmit and/or receive ultrasound signals. In some embodi-
ments, the transducer array(s) may include a 1 D, 2D or
other dimensional arrays formed from any suitable trans-
ducer material. The probe may generally be configured to
transmit ultrasonic waves and to receive ultrasonic echo
signals. In some embodiments, such transmission and recep-
tion may be controlled by a controller which may include a
beamformer 14. The echo information from the beamformer
14 may then be processed by a B-mode processor 20 and/or
other application-specific processors as needed (e.g., Dop-
pler processors, contrast signal processors, elastography
processors, etc.).

The B-Mode processor 20 may be configured to perform
functions that include but are not limited to filtering, fre-
quency and spatial compounding, harmonic data processing
and other B-Mode functions. In some embodiments, the
processed data may then be passed through a scan converter
24 configured to geometrically correct the data from a linear
or polar geometry used by a phased-array scanning probe
into a Cartesian format (X,vy or x,y,z) with appropriate
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scaling in each dimension. In some embodiments, such as
the embodiment described below with reference to FIGS. 2
and 3, a scan converter 24 may be omitted from the system.

Data for each 2D image or 3D volume may then be stored
in a memory 28. The memory 28 may be volatile and/or
non-volatile memory configured to store a few seconds up to
several minutes or more of 2D or 3D echo image data. The
video processor 26 may be configured to take the echo data
stored in memory 28 and instructions from the central
controller 16 to form video images, including any added
graphic overlays and/or text annotation (e.g., patient infor-
mation). Processed video data may then be passed on to the
display 30 for presentation to the operator. The central
controller 16 can direct the video processor 26 to display the
most recently acquired data in memory as a real-time
display, or it can replay sequences of older stored 2D slice
or 3D volume data.

An M-mode processor 235 may also be provided to
receive a definition of an M-mode path from a user interface
and to form the images displaying the selected M-mode data
in a desired output format. In some embodiments, an
M-mode processor 235 may also include a (volatile or
non-volatile) memory device for storing the defined
M-mode path. In some embodiments, an M-mode processor
235 may be logically positioned between the video proces-
sor 26 and the display 30 in the diagram of FIG. 1A. In other
embodiments, an M-mode processor 235 may be a set of
functions built into the video processor 26 or another
component of the system.

FIG. 1B illustrates another embodiment of an ultrasound
imaging system 200 comprising an ultrasound probe 202
which may include a plurality of individual ultrasound
transducer elements, some of which may be designated as
transmit elements, and others of which may be designated as
receive elements. In some embodiments, each probe trans-
ducer element may convert ultrasound vibrations into time-
varying electrical signals and vice versa. In some embodi-
ments, the probe 202 may include any number of ultrasound
transducer arrays in any desired configuration. A probe 202
used in connection with the systems and methods described
herein may be of any configuration as desired, including
single aperture and multiple aperture probes.

The transmission of ultrasound signals from elements of
the probe 202 may be controlled by a transmit controller
204. Upon receiving echoes of transmit signals, the probe
elements may generate time-varying electric signals corre-
sponding to the received ultrasound vibrations. Signals
representing the received echoes may be output from the
probe 202 and sent to a receive subsystem 210. In some
embodiments, the receive subsystem may include multiple
channels, each of which may include an analog front-end
device (“AFE”) 212 and an analog-to-digital conversion
device (ADC) 214. In some embodiments, each channel of
the receive subsystem 210 may also include digital filters
and data conditioners (not shown) after the ADC 214. In
some embodiments, analog filters prior to the ADC 214 may
also be provided. The output of each ADC 214 may be
directed into a raw data memory device 220. In some
embodiments, an independent channel of the receive sub-
system 210 may be provided for each receive transducer
element of the probe 202. In other embodiments, two or
more transducer elements may share a common receive
channel.

In some embodiments, an analog front-end device 212
(AFE) may perform certain filtering processes before pass-
ing the signal to an analog-to-digital conversion device 214
(ADC). The ADC 214 may be configured to convert
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received analog signals into a series of digital data points at
some pre-determined sampling rate. Unlike most ultrasound
systems, some embodiments of the ultrasound imaging
system of FIG. 1B may then store digital data representing
the timing, phase, magnitude and/or the frequency of ultra-
sound echo signals received by each individual receive
element in a raw data memory device 220 before performing
any further beamforming, filtering, image layer combining
or other image processing.

In order to convert the captured digital samples into an
image, the data into an image, the data may be retrieved
from the raw data memory 220 by an image generation
subsystem 230. As shown, the image generation subsystem
230 may include a beamforming block 232 and an image
layer combining (“ILC”) block 234. In some embodiments,
a beamformer 232 may be in communication with a cali-
bration memory 238 that contains probe calibration data.
Probe calibration data may include information about the
precise acoustic position, operational quality, and/or other
information about individual probe transducer elements. The
calibration memory 238 may be physically located within
the probe, within the imaging system. or in location external
to both the probe and the imaging system.

In some embodiments, after passing through the image
generation block 230, image data may then be stored in an
image buffer memory 236 which may store beamformed and
(in some embodiments) layer-combined image frames. A
video processor 242 within a video subsystem 240 may then
retrieve image frames from the image buffer, and may
process the images into a video stream that may be displayed
on a video display 244 and/or stored in a video memory 246
as a digital video clip, e.g. as referred to in the art as a “cine
loop”.

An M-mode processor 235 may also be provided to
receive a definition of an M-mode path from a user interface
and to form the images displaying the selected M-mode data
in a desired output format. In some embodiments, an
M-mode processor 235 may also include a (volatile or
non-volatile) memory device for storing the defined
M-mode path. In some embodiments, an M-mode processor
235 may be logically positioned between the image buffer
236 and the video processor 242 in the diagram of FIG. 1B.
In other embodiments, an M-mode processor 235 may be a
set of functions built into the image generation subsystem
230 or the video processor 242 or any other suitable com-
ponent of the system.

In some embodiments, raw echo data stored in a memory
device may be retrieved, beamformed, processed into
images, and displayed on a display using a device other than
an ultrasound imaging system. For example, such a system
may omit the probe 202, the transmit controller 204 and the
receive sub-system 210 of FIG. 1B, while including the
remaining components. Such a system may be implemented
predominantly in software running on general purpose com-
puting hardware. Such alternative processing hardware may
comprise a desktop computer, a tablet computer, a laptop
computer, a smartphone, a server or any other general
purpose data processing hardware.

Introduction to Ping-Based Imaging

Some embodiments of ultrasound imaging systems to be
used in combination with the systems and methods
described herein may use point source transmission of
ultrasound signals during the transmit pulse. An ultrasound
wavefront transmitted from a point source (also referred to
herein as a “ping”) illuminates the entire region of interest
with each circular or spherical wavefront. Echoes from a
single ping received by a single receive transducer element
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may be beamformed to form a complete image of the
insonified region of interest. By combining data and images
from multiple receive transducers across a wide probe, and
by combining data from multiple pings, very high resolution
images may be obtained.

As used herein the terms “point source transmission” and
“ping” may refer to an introduction of transmitted ultra-
sound energy into a medium from a single spatial location.
This may be accomplished using a single ultrasound trans-
ducer element or combination of adjacent transducer ele-
ments transmitting together. A single transmission from one
or more element(s) may approximate a uniform spherical
wave front, or in the case of imaging a 2D slice, may create
a uniform circular wavefront within the 2D slice. In some
cases, a single transmission of a circular or spherical wave-
front from a point source transmit aperture may be referred
to herein as a “ping” or a “point source pulse” or an
“unfocused pulse.”

Point source transmission differs in its spatial character-
istics from a scanline-based “phased array transmission” or
a “directed pulse transmission” which focuses energy in a
particular direction (along a scanline) from the transducer
element array. Phased array transmission manipulates the
phase of a group of transducer elements in sequence so as to
strengthen or steer an insonifying wave to a specific region
of interest.

Images may be formed from such ultrasound pings by
beamforming the echoes received by one or more receive
transducer elements. In some embodiments, such receive
elements may be arranged into a plurality of apertures in a
process referred to as multiple aperture ultrasound imaging.

Beamforming is generally understood to be a process by
which imaging signals received at multiple discrete recep-
tors are combined to form a complete coherent image. The
process of ping-based beamforming is consistent with this
understanding. Embodiments of ping-based beamforming
generally involve determining the position of reflectors
corresponding to portions of received echo data based on the
path along which an ultrasound signal may have traveled, an
assumed-constant speed of sound and the elapsed time
between a transmit ping and the time at which an echo is
received. In other words, ping-based imaging involves a
calculation of distance based on an assumed speed and a
measured time. Once such a distance has been calculated, it
is possible to triangulate the possible positions of any given
reflector. This distance calculation is made possible with
accurate information about the relative positions of transmit
and receive transducer elements. (As discussed in Appli-
cants’ previous applications referenced above, a multiple
aperture probe may be calibrated to determine the acoustic
position of each transducer element to at least a desired
degree of accuracy.) In some embodiments, ping-based
beamforming may be referred to as “dynamic beamform-
ing.”

A dynamic beamformer may be used to determine a
location and an intensity for an image pixel corresponding to
each of the echoes resulting from each transmitted ping.
When transmitting a ping signal, no beamforming need be
applied to the transmitted waveform, but dynamic beam-
forming may be used to combine the echoes received with
the plurality of receive transducers to form pixel data.

The image quality may be further improved by combining
images formed by the beamformer from one or more sub-
sequent transmitted pings. Still further improvements to
image quality may be obtained by combining images formed
by more than one receive aperture. An important consider-
ation is whether the summation of images from different
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pings or receive apertures should be coherent summation
(phase sensitive) or incoherent summation (summing mag-
nitude of the signals without phase information). In some
embodiments, coherent (phase sensitive) summation may be
used to combine echo data received by transducer elements
located on a common receive aperture resulting from one or
more pings. In some embodiments, incoherent summation
may be used to combine echo data or image data received by
receive apertures that could possibly contain cancelling
phase data. Such may be the case with receive apertures that
have a combined total aperture that is greater than a maxi-
mum coherent aperture width for a given imaging target.

As used herein the terms “ultrasound transducer” and
“transducer” may carry their ordinary meanings as under-
stood by those skilled in the art of ultrasound imaging
technologies, and may refer without limitation to any single
component capable of converting an electrical signal into an
ultrasonic signal and/or vice versa. For example, in some
embodiments, an ultrasound transducer may comprise a
piezoelectric device. In some alternative embodiments,
ultrasound transducers may comprise capacitive microma-
chined ultrasound transducers (CMUT). Transducers are
often configured in arrays of multiple elements. An element
of a transducer array may be the smallest discrete compo-
nent of an array. For example, in the case of an array of
piezoelectric transducer elements, each element may be a
single piezoelectric crystal.

As used herein, the terms “transmit element” and “receive
element” may carry their ordinary meanings as understood
by those skilled in the art of ultrasound imaging technolo-
gies. The term “transmit element” may refer without limi-
tation to an ultrasound transducer element which at least
momentarily performs a transmit function in which an
electrical signal is converted into an ultrasound signal.
Similarly, the term “receive element” may refer without
limitation to an ultrasound transducer element which at least
momentarily performs a receive function in which an ultra-
sound signal impinging on the element is converted into an
electrical signal. Transmission of ultrasound into a medium
may also be referred to herein as “insonifying.” An object or
structure which reflects ultrasound waves may be referred to
as a “reflector” or a “scatterer.”

As used herein the term “aperture” refers without limita-
tion to one or more ultrasound transducer elements collec-
tively performing a common function at a given instant of
time. For example, in some embodiments, the term aperture
may refer to a group of transducer elements performing a
transmit function. In alternative embodiments, the term
aperture may refer to a plurality of transducer elements
performing a receive function. In some embodiments, group
of transducer elements forming an aperture may be redefined
at different points in time.

Generating ultrasound images using a ping-based ultra-
sound imaging process means that images from an entire
region of interest are “in focus™ at all times. This is true
because each transmitted ping illuminates the entire region,
receive apertures receive echoes from the entire region, and
the dynamic multiple aperture beamforming process may
form an image of any part or all of the insonified region. In
such cases, the maximum extent of the image may be
primarily limited by attenuation and signal-to-noise factors
rather than by the confined focus of a transmit or receive
beamforming apparatus. As a result, a full-resolution image
may be formed from any portion of a region of interest using
the same set of raw echo data. As used herein, the term
“image window” will be used to refer to a selected portion
of an entire insonified region of interest that is being
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displayed at any given time. For example, a first image
window may be selected to include an entire insonified area,
and then a user may choose to “zoom in” on a smaller
selected area, thereby defining a new image window. The
user may then choose to zoom out or pan the image window
vertically and/or horizontally, thereby selecting yet another
image window. In some embodiments, separate simultane-
ous images may be formed of multiple overlapping or
non-overlapping image windows within a single insonified
region.

Embodiments of Multiple Aperture Ultrasound Imaging
Systems and Methods

Applicant’s prior U.S. patent application Ser. No. 11/865,
501 filed Oct. 1, 2007, now U.S. Pat. No. 8,007,439, and
U.S. patent application Ser. No. 13/029,907 (“the 907
application”), now U.S. Pat. No. 9,146,313, describe
embodiments of ultrasound imaging techniques using
probes with multiple apertures to provide substantially
increased resolution over a wide field of view.

In some embodiments, a probe may include one, two,
three or more apertures for ultrasound imaging. FIG. 2
illustrates one embodiment of a multiple aperture ultrasound
probe which may be used for ultrasound imaging with a
point source transmit signal. The probe of FIG. 2 comprises
three transducer arrays 60, 62, 64, each one of which may be
a 1D, 2D, CMUT or other ultrasound transducer array. In
alternative embodiments, a single curved array may also be
used, each aperture being defined logically electronically as
needed. In still further embodiments, any single-aperture or
multiple-aperture ultrasound imaging probe may also be
used. As shown, the lateral arrays 60 and 64 may be mounted
in a probe housing 70 at angles relative to the center array
62. In some embodiments, the angle © of the lateral arrays
relative to the central array may be between zero and 45
degrees or more. In one embodiment, the angle ® is about
30 degrees. In some embodiments, the right and left lateral
arrays 60, 64 may be mounted at different angles relative to
the center array 62. In some embodiments, the probe 50 of
FIG. 2 may have a total width 74 substantially wider than 2
cm, and in some embodiments 10 cm or greater.

In some embodiments as shown in FIG. 2, separate
apertures of the probe may comprise separate transducer
arrays which may be physically separated from one another.
For example, in FIG. 2, a distance 72 physically separates
the center aperture 62 from the right lateral aperture 64. The
distance 72 can be the minimum distance between trans-
ducer elements on aperture 62 and transducer elements on
aperture 64. In some embodiments, the distance 72 may be
equal to at least twice the minimum wavelength of trans-
mission from the transmit aperture. In some embodiments of
a multiple aperture ultrasound imaging system, a distance
between adjacent apertures may be at least a width of one
transducer element. In alternative embodiments, a distance
between apertures may be as large as possible within the
constraints of a particular application and probe design.

In some embodiments, a probe such as that illustrated in
FIG. 2 may be used with an ultrasound imaging system such
as that illustrated in FIG. 1 but omitting the scan converter.
As will be described in more detail below, some embodi-
ments of a point-source imaging method negate the need for
a scan converter. The probe 50 may also include one or more
sensors 52 and/or controllers 54 joined to an ultrasound
imaging system and/or to the transducer arrays by cables 56,
57, 58. Embodiments of similar multiple aperture probes 50
are also shown and described in US Patent Publication No.
2010/0262013 and U.S. patent application Ser. No. 13/029,
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907, filed Feb. 17, 2011, now U.S. Pat. No. 9,146,313, both
of which are incorporated herein by reference.

Embodiments of multiple aperture ultrasound imaging
methods using a point-source transmit signal will now be
described with reference to FIG. 3. FIG. 3 illustrates a probe
300 with a first aperture 302 and a second aperture 304
directed toward a region of interest represented by the grid
below the probe. In the illustrated embodiment, the first
aperture is used as a transmit aperture 302, and the second
aperture 304 is used for receiving echoes. In some embodi-
ments, an ultrasound image may be produced by insonifying
an entire region of interest to be imaged with a point-source
transmitting element in a transmit aperture 302, and then
receiving echoes from the entire imaged plane on one or
more receive elements (e.g., R1-Rm) in one or more receive
apertures 304.

In some embodiments, subsequent insonifying pulses may
be transmitted from each of the elements T1-Tn on the
transmitting aperture 302 in a similar point-source fashion.
Echoes may then be received by elements on the receive
aperture(s) 302 after each insonifying pulse. An image may
be formed by processing echoes from each transmit pulse.
Although each individual image obtained from a transmit
pulse may have a relatively low resolution, combining these
images may provide a high resolution image.

In some embodiments, transmit elements may be operated
in any desired sequential order, and need not follow a
prescribed pattern. In some embodiments, receive functions
may be performed by all elements in a receive array 302. In
alternative embodiments, echoes may be received on only
one or a select few elements of a receive array 302.

The data received by the receiving elements is a series of
echoes reflected by objects within the target region. In order
to generate an image, each received echo must be evaluated
to determine the location of the object within the target
region that reflected it (each reflected point may be referred
to herein as a scatterer). For a scatterer point represented by
coordinates (i,j) in FIG. 3, it is a simple matter to calculate
the total distance “a” from a particular transmit element Tx
to an element of internal tissue or target object T at (i,j), and
the distance “b” from that point to a particular receive
element. These calculations may be performed using basic
trigonometry. The sum of these distances is the total distance
traveled by one ultrasound wave.

Assuming the speed of the ultrasound waves traveling
through the target object is known, these distances can be
translated into time delays which may be used to identify a
location within the image corresponding to each received
echo. When the speed of ultrasound in tissue is assumed to
be uniform throughout the target object, it is possible to
calculate the time delay from the onset of the transmit pulse
to the time that an echo is received at the receive element.
Thus, a given scatterer in the target object is the point for
which a+b=the given time delay. The same method can be
used to calculate delays for all points in the desired target to
be imaged, creating a locus of points. As discussed in more
detail in the *907 application, adjustments to time delays
may be made in order to account for variations in the speed
of sound through varying tissue paths.

A method of rendering the location of all of the scatterers
in the target object, and thus forming a two dimensional
cross section of the target object, will now be described with
reference to FIG. 3 which illustrates a grid of points to be
imaged by apertures 302 and 304. A point on the grid is
given the rectangular coordinates (i,j). The complete image
will be a two dimensional array of points provided to a video
processing system to be displayed as a corresponding array
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of pixels. In the grid of FIG. 3, ‘mh’ is the maximum
horizontal dimension of the array and ‘mv’ is the maximum
vertical dimension. FIG. 3 also illustrates MAUI electronics,
which can comprise any hardware and/or software elements
as needed, such as those described above with reference to
FIG. 1.

In some embodiments, the following pseudo code may be
used to accumulate all of the information to be gathered
from a transmit pulse from one transmit element (e.g., one
element of T1 .. . Tn from aperture 302), and the consequent
echoes received by one receive element (e.g.. one element of
R1...Rm from aperture 304) in the arrangement of FIG.
3.

for (i = 0; i < mb; i++){
for (j = 03 < mv; j+0)]
compute distance a
compute distance b
compute time equivalent of a+b
echo[ 1 ][ j ] = echo[i ][ j]+stored received echo at the computed time

A complete two dimensional image may be formed by
repeating this process for every receive element in a receive
aperture 304 (e.g., R1 . .. Rm). In some embodiments, it is
possible to implement this code in parallel hardware result-
ing in real time image formation.

In some embodiments, image quality may be further
improved by combining similar images resulting from
pulses from other transmit elements. In some embodiments,
the combination of images may be performed by a simple
summation of the single point source pulse images (e.g.,
coherent addition). Alternatively, the combination may
involve taking the absolute value of each element of the
single point source pulse images first before summation
(e.g., incoherent addition). Further details of such combina-
tions, including corrections for variations in speed-of-sound
through different ultrasound paths, are described in Appli-
cant’s prior US Patent Applications referenced above.

As discussed above, because embodiments of an imaging
system using a point source transmit signal and a multiple-
aperture receive probe are capable of receiving an entire
scan-plan image in response to a single insonifying pulse, a
scan converter is not needed, and may therefore be omitted
from an ultrasound imaging system. Having received a
series of image frames in a similar manner, the image data
may be processed and sent to a display for viewing by an
operator. In addition to ultrasound imaging systems using
point-source transmit signals, the following methods of
selecting and displaying arbitrary m-mode paths may also be
used with any other ultrasound imaging system, including
phased array transmit systems, single-aperture probes, 3D
probes, and probes in systems using synthetic aperture
techniques.

Embodiments for Defining and Displaying Arbitrary
M-Mode Paths

FIG. 4A illustrates an example of an ultrasound image
with a specified m-mode path 100 drawn through an imaged
object 110. The amplitude of each pixel along the m-mode
path may be displayed in a graph (e.g., a bar graph, line
graph or any other desired format). Changing pixel ampli-
tude values may be illustrated over time. FIG. 4B illustrates
an example of a graph of data taken along the m-mode path
100 of FIG. 4A.

In some embodiments, a sonographer may wish to simul-
taneously view changes along two or more separate M-mode
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paths. Thus in some embodiments, a user may define a
plurality of M-mode paths 110, 112 as shown in FIG. SA.
The change in pixel values lying along the first and second
paths 110, 112 may be displayed simultaneously in a pair of
amplitude/time charts as shown for example in FIG. 5B.
FIG. 5A also shows an example of a non-linear path 112. As
discussed in further detail below, a non-linear M-mode path
may have any length and shape as desired.

Multiple discontinuous M-mode paths and/or non-linear
M-mode paths may be beneficial in viewing movement of
multiple structures simultaneously. For example, a curve
M-mode path may be beneficial when imaging anatomic
structures such as a moving valve, such as a tricuspid valve,
an aortic valve or a mitral valve. In other embodiments,
multiple simultaneous but discontinuous m-mode lines may
be used to simultaneously view the movement of multiple
structures. For example, a first m-mode path may be drawn
to view operation of a tricuspid valve, and a second M-mode
path may be drawn to view operation of a mitral valve.
Viewing the function of both valves simultaneously may
provide substantial diagnostic benefits, such as allowing for
precise calibration of a pacemaker.

Selection of an M-mode path generally involves identi-
fying a group of image pixel locations which are to be
presented over time as an M-mode graph. Identifying a
group of pixels for an m-mode path may comprise identi-
fying the coordinates of selected pixels in a coordinate
system used by the video processing system. In some
embodiments, M-mode selection and display methods as
described herein may be performed in real-time using an
ultrasound imaging system such as those illustrated in FIGS.
1A and 1B. With reference to FIGS. 1A and 1B, selection of
an M-mode path may be performed by a user via a suitable
user interface interaction performed in communication with
the M-mode processor 235. The identification of selected
pixels may be at least temporarily stored in a memory device
associated with the M-mode processor 235. The selected
pixels defining the M-mode path may then be retrieved from
image frames in the image buffer and/or in the video
processor, and an M-mode graph or image illustrating the
values of the selected pixels may be formed by the M-mode
processor 235 and transmitted to the display to be displayed
along with the B-mode image. In alternative embodiments,
M-mode selection and display methods as described herein
may be performed on a workstation playing back stored 2D
or 3D image data.

In some embodiments, selection of a group of pixel
locations for presentation as an M-mode path may be
assisted by or entirely performed automatically, such as by
using a computer aided detection (CAD) system configured
to identify a desired anatomical or other feature through
which an m-mode path may be desired. For example, US
Publication No. 2011/0021915 describes a system for auto-
matic detection of structures in M-mode ultrasound imaging.
In other embodiments, a desired M-mode path may be
chosen by a user through any of several possible user
interface interactions, several examples of which are pro-
vided below.

As will be clear to the skilled artisan, an imaging system
or an image display system may include a variety of user
interface devices through which a user may input informa-
tion to or modify information or objects in a displayed
image. Such user interface devices may comprise any of the
following, trackballs, buttons, keys, keypads, sliders, dials,
voice commands, touch screen, joystick, mouse, etc. The use
of these and other user input devices will be clear to the
skilled artisan.
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In some embodiments, any arbitrary line or path in the
image plane may be selected by a user as a line for M-mode
display. In some embodiments, a linear path of defined
length may be selected as an m-mode path. This may be
facilitated through a number of user interface interactions,
some examples of which are provided below.

In some embodiments, the ultrasound display may include
a touch screen, and a user may define an M-mode path by
simply drawing the desired path with a finger or stylus
directly on the display screen. In other embodiments, a user
may draw a freehand path using a separate user interface
device such as a mouse or a drawing tablet. In some
embodiments, after drawing a path of a desired shape, an
M-mode path of the desired shape may be dragged across a
display and/or rotated to a desired position.

In one embodiment of a user interface interaction, a linear
m-mode path segment may be selected by first defining a
line length, then defining a rotation angle, and then trans-
lating the line into a desired position. In some embodiments,
further adjustments to the line length, rotation angle, and
position may be made as needed. In some embodiments,
defining a line length may comprise entering a numeric
value with a numeric keypad or increasing/decreasing a
numeric line length value with a scroll wheel, track ball,
dial, slider, arrow keys or other input device. Similarly, in
some embodiments, a rotation angle may be defined by
entering a numeric value with a numeric keypad or any other
input device. A rotation angle may be defined relative to any
suitable coordinate system. For example, in some embodi-
ments, a rotation angle of zero degrees may correspond to a
three o’clock position (e.g., assuming the top of the image
is 12 o’clock).

In some embodiments, numeric values of line length or
rotation angle may not be displayed, instead only changes to
a line length or rotation angle of the line may be shown on
the display screen. In some embodiments, translating the
line up, down, left or right within the image plane may be
performed using arrow keys, a track ball, a mouse, touch
screen, voice commands or other input devices.

In another embodiment of a user interface interaction, a
desired linear m-mode path segment may be selected by
defining or adjusting a line length, translating the line until
a first end point is in a desired position, fixing the first end
point and rotating the second end point until the line is
rotated to the desired orientation and position.

In another embodiment of a user interface interaction, a
desired linear m-mode path segment may be selected by first
selecting a first end point, such as by positioning a cursor at
a desired position on the image. A line length and rotation
angle may then be defined and adjusted as needed. In some
embodiments, a rotation angle may be defined by directing
the system to pivot the line about the selected first end point.
Alternatively, a user may select the second end point or
another point along the line about which to pivot the line in
order to define a desired rotation angle.

In another embodiment of a user interface interaction, a
desired linear M-mode path segment may be selected by
selecting a first end point with a cursor and then dragging the
cursor in a desired direction to draw a line. In other
embodiments, a line may be defined by selecting first and
second end points, defining a line by joining the two points.

In any case, once a line is defined, either automatically or
through a user interface interaction such as those described
above, the length and rotation angle may be adjustable
through further user interface interactions. For example, a
user may define a pivot point about which to pivot the line
in order to adjust a rotation angle. Similarly, a user may
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select a fixed point from which to increase or decrease the
length of the line. Such fixed points and pivot points may be
either one of the end points, or any other point along the line.

In some embodiments, a non-linear M-mode path may be
defined through any of the above user interface interactions
by joining linear segments to form any desired non-linear
path made up of linear segments. In some embodiments, a
user may choose to apply a radius to the M-mode path in
areas adjacent intersections of linear segments. In some
embodiments, such a radius may be applied automatically,
or may be increased or decreased through a user interface
interaction.

In other embodiments, a non-linear M-mode path may be
defined by providing a user with a free-form drawing cursor
with which the user may draw any non-linear path as
desired. Further adjustments may then be made to the path,
such as by selecting and dragging one or more individual
points along the path to obtain a desired M-mode path.

As described above, multiple images may be formed for
two or more separate simultaneous image windows showing
different overlapping or non-overlapping portions of an
insonified region of interest. Thus, in some embodiments, an
M-mode path may be defined while a first image window is
displayed, and a user may then zoom or pan the image to a
second image window. In some embodiments, the system
may be configured to continue displaying the data along the
defined M-mode path even when the displayed B-mode
image is changed to a different image window than the one
in which the M-mode path was defined. For example, a user
may zoom in to view a heart valve, and may define an
M-mode path intersecting the valve in the zoomed-in image
window. The user may then choose to zoom out to view the
movement of the whole heart (or a different region of the
heart) while continuing to monitor data along the M-mode
line intersecting the heart valve.

In some embodiments, the system may store a definition
of the image window in which the M-mode line was defined,
and may allow a user to toggle between a B-mode image of
the M-mode defining image window and a B-mode image of
at least one other image window. In still further embodi-
ments, the system may be configured to simultaneously
display B-mode images of both the M-mode defining win-
dow and another image window (e.g., in a picture-in-picture
mode or in a side-by-side view).

Any of the above user interface interactions may also be
used to define an M-mode path through a displayed 3D
volume. In some embodiments, defining an M-mode path
from a 3D volume may also involve a step of rotating an
image of a 3D volume before after or during any of the
M-mode path defining user interface steps described above.

Although various embodiments are described herein with
reference to ultrasound imaging of various anatomic struc-
tures, it will be understood that many of the methods and
devices shown and described herein may also be used in
other applications, such as imaging and evaluating non-
anatomic structures and objects. For example, the ultrasound
probes, systems and methods described herein may be used
in non-destructive testing or evaluation of various mechani-
cal objects, structural objects or materials, such as welds,
pipes, beams, plates, pressure vessels, layered structures,
etc. Therefore, references herein to medical or anatomic
imaging targets such as blood, blood vessels, heart or other
organs are provided merely as non-limiting examples of the
nearly infinite variety of targets that may be imaged or
evaluated using the various apparatus and techniques
described herein.
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Although this invention has been disclosed in the context
of certain preferred embodiments and examples, it will be
understood by those skilled in the art that the present
invention extends beyond the specifically disclosed embodi-
ments to other alternative embodiments and/or uses of the
invention and obvious modifications and equivalents
thereof. Thus, it is intended that the scope of the present
invention herein disclosed should not be limited by the
particular disclosed embodiments described above, but
should be determined only by a fair reading of the claims
that follow. In particular, materials and manufacturing tech-
niques may be employed as within the level of those with
skill in the relevant art. Furthermore, reference to a singular
item, includes the possibility that there are plural of the same
items present. More specifically, as used herein and in the
appended claims, the singular forms “a,” “and,” “said,” and
“the” include plural referents unless the context clearly
dictates otherwise. It is further noted that the claims may be
drafted to exclude any optional element. As such, this
statement is intended to serve as antecedent basis for use of
such exclusive terminology as “solely,” “only” and the like
in connection with the recitation of claim elements, or use of
a “negative” limitation. Unless defined otherwise herein, all
technical and scientific terms used herein have the same
meaning as commonly understood by one of ordinary skill
in the art to which this invention belongs.

What is claimed is:

1. A method of defining and displaying an m-mode path
for display in an ultrasound imaging system, the method
comprising:

transmitting a first unfocused ultrasound signal from a

single transmitting transducer element into a region of
interest including a structure of interest;

receiving first echoes of the first unfocused ultrasound

signal with a first group of receiving transducer ele-
ments;

receiving second echoes of the first unfocused ultrasound

signal with a second group of receiving transducer
elements;

20

25

16

retrieving position data describing an acoustic position of
the single transmitting transducer element, each ele-
ment of the first group of receiving transducer ele-
ments, and each element of the second group of receiv-
ing transducer elements;

forming three-dimensional volumetric data from the first

received echoes, the second received echoes, and the
position data;

displaying a volumetric image representing the three-

dimensional volumetric data;

selecting a first plane through the three-dimensional volu-

metric data and intersecting the structure of interest,
and simultaneously displaying the selected first plane;
defining an arbitrary M-mode path through the structure
of interest within the selected first plane; and
simultaneously displaying a graph of a magnitude of
pixels along the selected M-mode path over time.

2. The method of claim 1, wherein the arbitrary M-mode
path is non-linear.

3. The method of claim 2, wherein the arbitrary M-mode
path has at least one curved segment.

4. The method of claim 2, wherein the arbitrary M-mode
path has at least two linear segments that intersect at an
angle other than 180 degrees.

5. The method of claim 1, wherein the arbitrary M-mode
path has at least one linear segment and at least one curved
segment.

6. The method of claim 1, wherein the arbitrary M-mode
path has at least two dis-continuous segments.

7. The method of claim 1, further comprising rotating the
three-dimensional volumetric image prior to selecting the
first plane.

8. The method of claim 1, further comprising selecting a
second plane through the three dimensional volume and
displaying the selected second plane.

9. The method of claim 1, wherein defining a path through
the structure of interest is performed substantially concur-
rently with transmitting first unfocused ultrasound signal,
receiving first echoes, and receiving second echoes.
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