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1
METHOD AND SYSTEM FOR PROCESSING
ULTRASOUND DATA

CROSS-REFERENCE OF RELATED
APPLICATION

This application claims priority to U.S. Provisional Appli-
cation No. 61/405,890 filed Oct. 22, 2010, the entire contents
of which are hereby incorporated by reference.

This invention was made with government support under
W81XWH-09-1-0060 awarded by ARMY/MRMC, U.S.
Army Medical Department, Medical Research and Materiel
Command. The government has certain rights in the inven-
tion.

BACKGROUND

1. Field of Invention

The field of the currently claimed embodiments of this
invention relates to systems and methods for processing ultra-
sound data, and more particularly to systems and methods for
processing ultrasound data using dynamic programming pro-
cedures.

2. Discussion of Related Art

Ultrasound imaging is commonly used in detecting and
targeting tumors, isolating organ structures, and monitoring
invasive surgical procedures. One example of an intraopera-
tive application of ultrasound involves its use in treating
tumors. Such treatments include Electron Beam Radiation
Therapy (EBRT) and hepatic tumor thermal ablation. A com-
mon challenge to these procedures is to accurately image the
tumor so that the tumor can be treated most effectively while
minimizing damage to the surrounding tissue. A further chal-
lenge encountered in such tumor therapies involves the ability
to assess the state of the surrounding tissue after treatment or
between treatments.

Conventional brightness (or B-mode) ultrasound has been
used for intraoperative target imaging during thermal ablation
procedures. However, B-mode ultrasound typically reveals
only hyperechoic (i.e., brighter ultrasound signature) areas
that result from microbubbles and outgassing from the
ablated tissue. The tumor may be isoechoic, meaning that its
brightness in ultrasound imagery is substantially indistin-
guishable from that of the surrounding tissue. In such cases,
ablation effectiveness is estimated by the ultrasound-deter-
mined position of the ablation probe, and not by imagery of
the tumor or surrounding tissue.

Ultrasound elasticity imaging has emerged as an effective
technique to mitigate the disadvantages of B-mode ultra-
sound. Ultrasound elasticity imaging exploits the differences
in mechanical properties of the tumor from those of the sur-
rounding tissue medium. By imaging the deformation of the
tissuein response to pressure exerted by the ultrasound probe,
the contour of the tumor may be extracted from the surround-
ing tissue. In doing so, the ultrasound system generally tracks
the deformation (or strain) of the tissue by tracking the motion
of “speckle,” or coherent scattering features within the tissue.

Although an improvement over B-mode ultrasound,
related art ultrasound elasticity imaging has limitations. First,
related art image processing techniques result in artifacts and
noise that degrade the quality of the image, and thus may
impede effective target imaging. Second, related art image
processing techniques are generally computationally expen-
sive, which often results in significant lag times in image
display. The artifacts and noise in related art ultrasound elas-
ticity imagery generally results from speckle decorrelation
due to speckle out-of-plane motion, and shadowing.
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Another problem regarding related art ultrasound elasticity
imaging is that the technician may easily apply too much
pressure to the tissue surrounding the tumor. This exacerbates
the problem of out-of-plane motion, because the surrounding
tissue spreads out of the path (and thus out of the field of view)
of the ultrasound probe. Further, applying too much pressure
on the surrounding tissue may dislocate the tumor and tem-
porarily alter its shape. Once the pressure is released, the
tumor may return to its original location and shape. As such,
the location and shape of the imaged tumor (when pressure is
applied) may be different from the location and shape of the
tumor 1in its “rest” state. The resulting inaccuracy in target
imaging may result in inaccurate delivery of heat or radiation
during treatment. Additionally, in the case of multiple treat-
ments, because each technician may apply differing degrees
of force, dislocation and distortion of the tumor may further
degrade the precision of the determined location and size of
the tumor.

Accordingly, there remains a need for improved systems
and methods for processing ultrasound data.

SUMMARY

A method of processing ultrasound data according to some
embodiments of the current invention includes receiving
ultrasound data for a first ultrasound image, the first ultra-
sound image being represented as a first set of discrete pixels
corresponding to positions of a region of interest; receiving
ultrasound data for a second ultrasound image, the second
ultrasound image being represented as a second set of discrete
pixels corresponding to positions of the region of interest;
generating a displacement map by minimizing a cost function
using a dynamic programming procedure that identifies each
of the first set of discrete pixels with a corresponding one of
the second set of discrete pixels; refining the displacement
map to obtain intermediate displacement values correspond-
ing to positions between the discrete pixels based on mini-
mizing a local approximation to the cost function; and calcu-
lating a physical property ofthe region of interest based on the
displacement map.

A computer readable medium according to some embodi-
ments of the current invention includes software, which soft-
ware when executed by a computer, causes the computer to
receive ultrasound data for a first ultrasound image, the first
ultrasound image being represented as a first set of discrete
pixels corresponding to positions of a region of interest;
receive ultrasound data for a second ultrasound image, the
second ultrasound image being represented as a second set of
discrete pixels corresponding to positions of the region of
interest; generate a displacement map by minimizing a cost
function using a dynamic programming procedure that iden-
tifies each of the first set of discrete pixels with a correspond-
ing one of the second set of discrete pixels; refine the dis-
placement map to obtain intermediate displacement values
corresponding to positions between the discrete pixels based
on minimizing a local approximation to the cost function; and
calculate a physical property of the region of interest based on
the displacement map.

An ultrasound system according to some embodiments of
the current invention includes an ultrasound transducer con-
figured to transmit and receive ultrasound signals, and a data
processor arranged to communicate with the ultrasound
transducer to receive ultrasound data from the ultrasound
transducer. The data processor is configured to receive ultra-
sound data for a first ultrasound image, the first ultrasound
image being represented as a first set of discrete pixels cor-
responding to positions of a region of interest; receive ultra-



US 8,824,762 B2

3

sound data for a second ultrasound image, the second ultra-
sound image being represented as a second set of discrete
pixels corresponding to positions of the region of interest;
generate a displacement map by minimizing a cost function
using a dynamic programming procedure that identifies each
of the first set of discrete pixels with a corresponding one of
the second set of discrete pixels; refine the displacement map
to obtain intermediate displacement values corresponding to
positions between the discrete pixels based on minimizing a
local approximation to the cost function; and calculate a
physical property of the region of interest based on the dis-
placement map.

BRIEF DESCRIPTION OF THE DRAWINGS

Further objectives and advantages will become apparent
from a consideration of the description, drawings, and
examples.

FIG. 1A is a schematic illustration to explain some con-
cepts of methods of processing ultrasound data and ultra-
sound systems according to an embodiment of the current
invention. Axial, lateral, and out-of-plane directions are
shown. The coordinate system is attached to the ultrasound
probe. The sample (i, j) marked by x moved by (2, , 1, ), a,,
and 1, ; are, respectively, axial and lateral displacements and
initially are integer in dynamic programming (DP).

FIG. 1B is a schematic illustration of an ultrasound system
according to an embodiment of the current invention.

FIGS. 2A and 2B are schematic illustrations to explain
some concepts of methods of processing ultrasound data and
ultrasound systems according to an embodiment of the cur-
rent invention. FIG. 2A: In I, the initial estimates (in black)
are updated by the arrows (three components of Ad) to new
estimates (in red) after an iteration of 2D AM. To find Ad
using (19), it is required to calculate image gradient at the
off-grid initial estimate locations (in black) on I,. FIG. 2B:
Schematic plotof two RF-data I, and I,, each sampled at three
locations (black dots). The black dashed-dotted arrow shows
Aa of the sample on I, (ignoring the regularization term)
which requires calculating the gradient on I, at an off-grid
location. The blue dashed arrow shows Aa of an off-grid
sample on I, (ignoring the regularization term) which
requires calculating the gradient on I, at an on-grid location.
Ignoring second-order derivatives, the length of the two
arrows is equal. FIG. 2A. Three samples on I, (left) and
corresponding matches on I, (right). FIG. 2B. Inverse gradi-
ent estimation.

FIGS. 3A-3F show axial strain estimation in the first simu-
lated phantom. (3A) The SNR values corresponding to the
unbiased regularization calculated in the entire image. (3B)
Schematic plot showing the underestimation of the displace-
ment (Data+reg. curve) with unbiased regularization (refer to
the text). (3C), (3D). The calculated displacements at the
bottom of a RF-line at 2% strain and 6% strain levels respec-
tively with biased and unbiased regularization terms. The
ground truth matches the displacement given by the biased
regularization almost perfectly, and therefore is not shown
(3C) and (3D) not to block the biased regularization results.
The length of the RF-line is 2560 (49.3 mm). (3E) The SNR
values corresponding to the unbiased regularization calcu-
lated by omitting the bottom 300 samples of the image. 3F
The SNR values corresponding to the biased regularization
calculated in the entire image. Note that the scale of the SNR
in graph 3A is much smaller than that of graphs (3E) and (3F).
(3A) Unbiased reg. Entire image. (3B) Schematic displace-
ments. (3C) Calculated displacements at 2% strain. (3D) Cal-
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culated displacements at 6% strain. (3E) Unbiased reg. Top of
the image. (3F) Biased reg. Entire image.

FIG. 4 shows lateral strain estimation using the 2D AM
method in the first simulated phantom.

FIGS. 5A and 5B show Bias and Variance of the axial strain
as a function of the axial regularization weight .. The ground
truth axial and lateral strain fields are respectively uniform
2% and v% fields (v=0.49 is the Poisson’s ratio). The solid
blue and dashed black curves both correspond to unbiased
regularization and the solid black curve corresponds to the
biased regularization. In the solid blue and solid black curves,
the entire image is included in the calculation of the bias and
noise. In the dashed black curve the bottom part of the strain
field which suffers from high bias [FIG. 3B] is excluded from
the calculation of the bias and noise. 1D AM and 2D AM have
very similar bias and variance. The curves with and without
IRLS are also very close. Therefore each curve corresponds to
1D AM or 2D AM with or without IRLS. (3A) Bias. (3B)
Variance.

FIG. 6 A-6D: Measurements in (6A) are in mm. In (6B), a
scatterer is shown in the bottom left part as a red dot. Its
displacement is calculated by interpolating the displacements
of its three neighboring nodes on the mesh. The target (cir-
cular) and background (rectangular) windows for CNR cal-
culationof (6D)are shown in (6C). (6 A) Simulation phantom.
(6B) Finite element mesh. (6C) Finite element strain. (6D)
CNR.

FIGS. 7A and 7B show Bias and Variance of the lateral
strain as a function of the axial regularization weight c.. The
ground truth axial and lateral strain fields are respectively
uniform 2% and 2v% fields (v=0.49 is the Poisson’s ratio).
The solid blue curve corresponds to unbiased regularization
and the dashed and solid black curves correspond to the
biased regularization. IRLS is not used in the solid blue and
dashed black curves. (7A) Bias. (7B) Variance.

FIGS. 8(a)-8(e): (@) shows the strain field calculated using
least squares regression of the uncontaminated displacement
field. () depicts the strain field calculated using least squares
regression of the contaminated displacement field. (¢) shows
the strain field calculated from the noisy measurements of (5)
using the proposed Kalman filter (KF in (b) and (c) refers to
Kalman filter). The pixels of images in (@) to (c) are respec-
tively the ground truth (unavailable) strain values ¢, ;, the
noisy measurements 7, ,, and posterior strain values ¢, . The
brightness scale in (a)-(c) is the same. (d), (e) are the strain
estimation at the horizontal line shown in (a)-(¢). (d) is mag-
nified in (e) around the step. The Kalman filter removes the
noise while keeping the image sharp, due to the variable
model noise of (27). (@) Ground truth strain. (b) Strain with-
out KF. (¢) Strain with KF. (d) Strain estimate. (e) Strain
estimates.

FIG. 9A-9F show phantom experimental results. The top
row shows axial displacement and axial strains as labeled (KF
in (9C) refers to Kalman filter). Average axial strain and
maximum strain are approximately 6.6% and 11%. (9D) and
(9E) show lateral displacement and lateral strain, respec-
tively. (9F) shows residuals as the regularization weight var-
ies. (9A) Axial displacement (mm). (9B) Axial strain. (9C)
Axial strain with KF. (9D) Lateral displacement (mm). (9E)
Lateral strain. (9F) Residuals.

FIGS. 10A-10C show phantom experimental results show-
ing the resolution of the 2D AM. (10A) Strain image. The
edge spread function is evaluated along the vertical line.
(10B) The strain across the edge [vertical line in (10A)] for
the five shown regularization values. (10C) The MTF calcu-
lated across the vertical line in (10A). Spatial resolution is
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defined as the spatial frequency when the value of MTF is 0.1.
(10A) Axial strain. (10B) Strain profile. (10C) MTFE.

FIGS. 11A-111 show results of the CIRS elastography
phantom at 5% maximum strain at different axial and lateral
sampling rates. The hard lesion is spherical and has a diameter
of 1 ecm. Downsampling is performed by simply skipping
samples in the axial or (and) lateral directions. In (11C and
11F)), a downsampling ratio of 2 is applied in both axial and
lateral directions. The lateral displacement is shown in num-
ber of samples in (11D)-(11F). (11H) and (111) show the CNR
between the target and background windows in the strain
images as the axial or lateral downsampling rates change. The
target and background windows are shown in the axial strain
images (11A-(11C) and the lateral strain image (11G). In
(111), the lateral strain curve is not calculated for downsam-
pling ratios of 6 and higher because the background window
moves out of the image. The black dashed curve with the
highest CNR is the strain obtained with the Kalman filter
(KF). (11A) Axial downsamp. ratio=2. (11B) Lateral down-
samp. ratio=2. (11C) Ax.-lat. downsamp. rat=2. (11D) Axial
downsamp. ratio=2. (11E) Lateral downsamp. ratio=2. (11F)
Ax.-lat. downsamp. rat=2. (11G) Lateral downsamp. ratio=2.

FIG. 12A-12C: Shows the axial strain field calculated by
least squares regression of the noisy displacement field. (12B)
depicts the strain field calculated from the noisy measure-
ments of (12A) using the proposed Kalman filter (KF in (12A)
and (12B) refers to Kalman filter). The pixels of images in
(12A) and (12B) are respectively the least squares measure-
ments 7, , and posterior strain values &, . (12C) shows the
strain estimation at the 17 mm deep horizontal line shown in
(12A) to (12B). The Kalman filter removes the noise while
keeping the image sharp, due to the variable model noise of
(27). (12A) Strain without KF. (12B) Strain with KF. (12C)
Strain plots.

FIGS. 13(a)-13(]) show in vivo images of the thermal
lesion produced by RF ablation therapy of liver cancer. All
images acquired after ablation. First, second, and third rows
correspond to the first, second and third patients respectively.
The thermal lesion shows in (), (f) and (j) as dark, sur-
rounded by normal tissue in white. The lateral displacement
images are shown in number of samples (they do not imme-
diately carry anatomical information). In (b), (d), (f), (), (j),
and (/) the delineated thermal lesions is shown. The nonunity
aspect ratio in the axes of the B-mode and strain images
should be considered when comparing them to the CT scans.
(a) B-mode patient 1. (b) Axial strain. (¢) Lateral displace-
ment. (d) CT patient 1. (¢) B-mode patient 2. (f) Axial strain.
(g) Lateral displacement. (/) CT patient 2. (i) B-mode patient
3. (j) Axial strain. (k) Lateral displacement. (/) CT patient 3.

FIGS. 14A-14G show in vivo images of the fourth patient
before RF ablation. In (14A), the left anterior branch of portal
vein is marked as 1 and 2 and has low pressure and therefore
compresses easily. Arteries (marked as 3 and 4) and the
middle hepatic vein (marked as 5) however pulsate with the
heart beat and may have low or high pressure. (14B) and
(14C) both show the axial strain from the same location
before ablation. They are calculated at two different phases of
the heart beat. The cancer tumor is discernible in (14B) and
(14C) (regardless of the systolic or diastolic blood pressure),
and its boundary is shown. 1 and 2 [as marked in (14A)]
correspond to the high strain area in both (14B) and (14C).
Since 3,4, and 5 [as marked in (14A)] pulsate, they may look
hard [as in (14B)] or soft [as in (14C)]. (14D) shows the lateral
displacement. The tumors is not visible in this image. (14E)
shows the motion of the probe and the variation in the diam-
eter of the arteries due to the heart beat (refer to the text).
(14F) is the arterial phase and (14G) is the venous phase
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contrast CT images. The numbers 1-5 mark the same anatomy
as (14A) B-mode pre-ablation. (14B) Axial strain pre-abla-
tion. (14C) Axial strain pre-ablation. (14D) Lateral displace-
ment pre-ablation. (14E). (14F) CT pre-ablation. (14G) CT
pre-ablation.

FIGS. 15A-15D show in vivo images of the fourth patient
after RF ablation. Similar to FIG. 14, the hepatic vein (marked
as 5) can have low strain [as in (15B)] or high strain [as in
(15C)] values. (15A) B-mode post-ablation. (15B) Axial
strain post-ablation. (15C) Axial strain postablation. (15D)
Lateral displacement postablation.

DETAILED DESCRIPTION

Some embodiments of the current invention are discussed
in detail below. In describing embodiments, specific termi-
nology is employed for the sake of clarity. However, the
invention is not intended to be limited to the specific termi-
nology so selected. A person skilled in the relevant art will
recognize that other equivalent components can be employed
and other methods developed without departing from the
broad concepts of the current invention. All references cited
anywhere in this specification, including the Background and
Detailed Description sections, are incorporated by reference
as if each had been individually incorporated. The references
cited in square brackets are listed at the end of the specifica-
tion.

Elastography involves imaging the mechanical properties
of tissue and has numerous clinical applications. Among
many variations of ultrasound elastography [1]-[4], some
embodiments of the current invention focuses on real-time
static elastography, a well-known technique that applies
quasi-static compression of tissue and simultaneously images
it with ultrasound. Within many techniques proposed for
static elastography, some embodiments of the current inven-
tion are directed to freehand palpation elasticity imaging
which involves deforming the tissue by simply pressing the
ultrasound probe against it. It requires no extra hardware,
provides ease of use and has attracted increasing interest in
recent years [5]-[10]. Real-time elastography is of key impor-
tance in many diagnosis applications [11], [6], [12], [8], [13]
and in guidance/monitoring of surgical operations [14]-[16].

Global and local decorrelation between the pre- and post-
compression ultrasound images compromises the quality of
the elasticity images. The main sources of global decorrela-
tion in freehand palpation elastography are change of speckle
appearance due to scatterer motion and out-of-plane motion
of the probe (axial, lateral and out-of-plane directions are
specified in FIG. 1A). Examples of local decorrelation are: 1)
adecrease in the ultrasonic signal to noise ratio with depth, 2)
low correlation close to arteries due to complex motion and
inside blood vessels due to blood motion, 3) extremely low
correlation in lesions that contain liquid due to the incoherent
fluid motion [17], [8], and 4) out-of-plane motion of movable
structures within the image [17].

Most elastography techniques estimate local displace-
ments of tissue based on amplitude correlation [18], [2] or
phase correlation of the radio-frequency (RF) echoes [19]-
[21]. Assuming a stationary signal model for the RF data, the
use of large correlation windows helps to reduce jitter errors
(variance) for all motion field estimation techniques studied
in [18] and [22]. This is intuitive as larger windows contain
more information. However, in practice RF data is not sta-
tionary and, for large deformations, the decorrelation
increases with window size. Therefore, in addition to reduc-
ing the spatial resolution [23], larger windows result in sig-
nificant signal decorrelation [24], [23], [18]. Coarse-to-fine
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hierarchical search is used in [23] to combine the accuracy of
large windows with the good spatial resolution of small win-
dow. However, the issue of signal decorrelation within the
window remains unresolved in this approach and can cause
the highest level of the hierarchical search to fail.

All of the aforementioned methods either do not calculate
the lateral displacement or they just calculate an approximate
integer lateral displacement. A two-dimensional (2D) dis-
placement field is required to calculate the thermal expansion,
lateral and shear strain fields [25] (i.e., reconstruct the strain
tensor), Poisson’s ratio and Young’s modulus [26], [27]. The
axial resolution of ultrasound is determined by the pulse
length, and the lateral resolution is dictated by the center
frequency of the excitation and the transducer pitch. There-
fore, the lateral resolution is of order of magnitude lower than
axial resolution. As a result, few 2D elastography techniques
have been proposed to date. Initially, 2D motion estimation
started in the field of blood flow estimation using speckle
tracking [ 28]. Designed for blood flow estimation, these tech-
niques are not immediately suitable for elastography which
involves tissue deformation.

Attaching a coordinate system to the ultrasound probe as in
FIG. 1A, z, x, and y in the ultrasound image are generally
defined as axial, lateral and out-of-plane directions. Assume
that the applied compression to the tissue is the Z direction,
and attach a coordinate system XY, Z to the applied force.
Letting d, and d,, be the displacements in the Z and N direc-
tions where N1Z, axial and transverse strains are 3d,/3Z and
3d,/oN. In most experimental setups (including freehand
palpation elastography), z and Z are parallel and N will be
either lateral or out-of-plane, and therefore d,, cannot be esti-
mated accurately.

To calculate an accurate transverse strain, 7 and z are
perpendicular in [29] by applying the compression force per-
pendicular to the ultrasound imaging axis. Therefore, trans-
verse strain is in the z direction of the ultrasound probe and
hence can be measured with high accuracy. However, such an
experimental setup is not possible in many medical applica-
tions. Beam steering has been used to solve this issue [30]. In
freehand palpation elastography, beam steering causes z and
7 to be unparallel, so that a component of the d is in the z
direction. The steering angle determines the angle between z
and 7. Unfortunately, large steering angles are required to
obtain accurate estimates oflateral strain, which is possible in
phased arrays and not in linear arrays.

Lateral strains estimation is obtained in [31] by iteratively
calculating axial strain, companding RF data and interpolat-
ing in the lateral direction. (We hereafter assume the applied
force is in the z direction (i.e., Z and z are parallel) and
therefore we use the term lateral strain instead of the term
transverse strain.) In another work [32], tissue deformation is
modeled by locally affine transformations to obtain both lat-
eral and axial strains. Change of speckle appearance is taken
into account by proposing a Lagrangian speckle model [33].
Although they provide high quality lateral strain, these tech-
niques are computationally expensive and are not suitable for
real-time implementation.

Axial strain is used in [34] to enhance the quality of lateral
displacement estimation. Tissue is assumed to be incom-
pressible and isotropic and therefore axial, lateral and out-of-
plane strains should add to zero. However, many tissues can-
not be considered incompressible. In fact, some research has
even focused on imaging the ratio of the axial and lateral
strain (i.e., the Poisson’s ratio v) [31].

While most previously mentioned methods use tissue
motion continuity to confine the search range for the neigh-
boring windows, the displacement of each window is calcu-
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lated independently and hence is sensitive to signal decorre-
lation. Since data alone can be insufficient due to signal
decorrelation, Pellot-Barakat et al. [35] proposed minimizing
a regularized energy function that combines constraints of
conservation of echo amplitude and displacement continuity.
In another work [36], both signal shift and scale are found
through minimization of a regularized cost function. The
computation times of these methods are reported to be a few
minutes and therefore they are not immediately suitable for
real time elastography. In [37] and [38], few phase-based
methods are regularized and strain and elasticity modulus
images are obtained. The regularization term is the Laplacian
(second derivative) of the motion field and is spatially variant
based on the peak-value of the correlation coefficient. The
regularization makes the method significantly more robust to
signal decorrelation. However, it is still prone to decorrelation
within each window especially for large strain rates. In a
recent work [39], a displacement field is first calculated by
minimizing phase differences in correlation windows [21].
The strain image is then estimated from the displacement
field by optimizing a regularized cost function. The regular-
ization assures smooth strain image calculation from the
noisy displacement estimates.

Dynamic programming (DP) can be used to speed the
optimization procedure [40], but it only gives integer dis-
placements. (See also U.S. application Ser. No. 11/905501,
U.S. Published App. No. 2008/0306384 Al, filed Oct. 1,
2007, the entire contents of which are incorporated herein by
reference.) Subsample displacement estimation is possible
[40], but it is computationally expensive, particularly if sub-
sample accuracy is needed in both axial and lateral directions.
Therefore, only axial subsample displacement is calculated
[40]. In addition, a fixed regularization weight is applied
throughout the image. To prevent regions with high local
decorrelation from introducing errors in the displacement
estimation one should use large weights for the regularization
term, resulting in over-smoothing.

Some embodiments of the current invention are directed to
two novel real-time elastography methods based on analytic
minimization (AM) of cost functions that incorporate simi-
larity of echo amplitudes and displacement continuity. Simi-
lar to DP, the first method gives subsample axial and integer
lateral displacements. The second method gives subsample
2D displacement fields and 2D strain fields. The size of both
displacement and strain fields is the same size as the RF-data
(i.e., the methods are not window based and the displacement
and strain fields are calculated for all individual samples of
RF-data). An embodiment of the current invention provides a
novel regularization term and demonstrates that it minimizes
displacement underestimation caused by smoothness con-
straint. Another embodiment of the current invention intro-
duces the use of robust statistics implemented via iterated
reweighted least squares (IRLS) to treat uncorrelated ultra-
sound data as outliers. Another embodiment of the current
invention introduces the use of Kalman filtering [41] for
calculating strain images from the displacement fields. Simu-
lation and experimental results according to some exemplar
embodiments of the current invention are provided below.
Also, an example of a clinical pilot study utilizing the system
according to an embodiment of the current invention for
monitoring thermal ablation in patients with liver tumors is
also provided below.

An embodiment of the current invention is directed to a
method of processing ultrasound data that includes receiving
ultrasound data for a first ultrasound image and receiving
ultrasound data for a second ultrasound image. The first ultra-
sound image is represented as a first set of discrete pixels
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corresponding to positions of a region of interest and the
second ultrasound image is represented as a second set of
discrete pixels corresponding to positions of the region of
interest. The term “ultrasound data” is intended to broadly
include ultrasound data in any form that can be processed for
ultrasound imaging. For example, it can be radio frequency
(RF) ultrasound data, or processed RF data. Processed ultra-
sound data can include, but is not limited to, ultrasound data
that is mixed and filter to envelope detect, for example, to
reduce from RF to video. Further filtering and processing can
also be done. The term “pixel” is intended to broadly refer to
a picture element that can include one-dimensional, two-
dimension and/or three-dimensional pixels. Three-dimen-
sional pixels are sometimes also referred to as voxels. Voxels
are intended to be included within the definition of the term
“pixel” For example, pixels can be discrete elements of
A-mode, B-mode and/or C-mode ultrasound images.

The method of processing ultrasound data also includes
generating a displacement map by minimizing a cost function
using a dynamic programming procedure that identifies each
of the first set of discrete pixels with a corresponding one of
the second set of discrete pixels, refining the displacement
map to obtain intermediate displacement values correspond-
ing to positions between the discrete pixels based on mini-
mizing a local approximation to the cost function, and calcu-
lating a physical property of said region of interest based on
the displacement map.

The term “dynamic programming” refers to a method for
solving complex problems by breaking them down into sim-
pler sub-problems. It is applicable to problems exhibiting the
properties of overlapping sub-problems, which are only
slightly smaller and optimal substructure. When applicable,
the method takes far less time than naive methods. Interms of
mathematical optimization, dynamic programming usually
refers to simplifying a decision by breaking it down into a
sequence of decision steps over time. This is done by defining
a sequence of value functions V1, V2, .. . Vn, with an argu-
ment y representing the state of the system at times i from 1 to
n. The definition of Vn(y) is the value obtained in state y at the
last time n. The values Vi at earlier times i=n-1,n-2, ...,2,1
can be found by working backwards, using a recursive rela-
tionship called the Bellman equation. Fori=2, ..., n, Vi-1 at
any state y is calculated from Vi by maximizing a simple
function (usually the sum) of the gain from decision i-1 and
the function Vi at the new state of the system if this decision
is made. Since Vi has already been calculated for the needed
states, the above operation yields Vi-1 for those states.
Finally, V1 at the initial state of the system is the value of the
optimal solution. The optimal values of the decision variables
can be recovered, one by one, by tracking back the calcula-
tions already performed.

In some embodiments of the current invention, the mini-
mizing of the local approximation of the cost function can be
performed analytically to optimize the intermediate displace-
ment values corresponding to positions within a continuous
range between the discrete pixels. In some embodiments of
the current invention, the receiving ultrasound data for the
first ultrasound image can correspond to the region of interest
being under a first compression state, the receiving ultrasound
data for the second ultrasound image can correspond to the
region of interest being under a second compression state,
such that the calculating the physical property of the region of
interest based on the displacement map is calculating a strain
map. The term “compression state” is intended to include
conditions in which positive or zero pressure is applied to the
region of interest. Although less practical in some ultrasound
applications, the term compression state can also include
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situations of negative compression, i.e., stretching. There-
fore, a first compression state and a second compression state
can refer to situations in which no pressure is applied, fol-
lowed by applying a pressure. It can also include situations in
which a first non-zero pressure is applied followed by a sec-
ond non-zero pressure. The first and second non-zero pres-
sures will typically be different values, but generally they
could also be equal. In some embodiments of the current
invention, the calculating the strain map can include Kalman
filtering. In some embodiments of the current invention, the
method can further include rendering an ultrasound image
taking into account the strain map.

The broad concepts of the current invention are not limited
to only rendering strain images. For example, in some
embodiments of the current invention, the receiving ultra-
sound data for the first ultrasound image can correspond to the
region of interest having a first temperature distribution, the
receiving ultrasound data for the first ultrasound image can
correspond to the region of interest having a second tempera-
ture distribution, and the calculating the physical property of
the region of interest based on the displacement map is cal-
culating a temperature map. The method of processing ultra-
sound data according to according to some embodiments of
the current invention can further include rendering an ultra-
sound image taking into account the temperature map.

In some embodiments of the current invention, the cost
function can be modified to reduce errors on the generating
the displacement map due to portions of the region of interest
moving out of an imaging plane of at least one of the first and
second ultrasound images. In some embodiments of the cur-
rent invention, the cost function can be modified to reduce
errors on the generating the displacement map using an itet-
ated reweighted least squares procedure to treat uncorrelated
ultrasound data as outliers. The term “iterated reweighted
least squares” (IRLS) refers to a method used to solve certain
optimization problems. It solves objective functions of the
form:

argmin, Zo;(1)(y,~£(r)*

by an iterative method. IRLS is used to find the maximum
likelihood estimates of a generalized linear model, and in
robust regression to find an M-estimator, as a way of mitigat-
ing the influence of outliers in an otherwise normally-distrib-
uted data set. For example, by minimizing the least absolute
error rather than the least square error. One of the advantages
of IRLS over linear and convex programming is that it can be
used with Gauss-Newton and Levenberg-Marquardt numeri-
cal algorithms.

Some embodiments of the current invention are directed to
a computer readable medium comprising software, which
software when executed by a computer, causes the computer
to receive ultrasound data for a first ultrasound image, the first
ultrasound image being represented as a first set of discrete
pixels corresponding to positions of a region of interest;
receive ultrasound data for a second ultrasound image, the
second ultrasound image being represented as a second set of
discrete pixels corresponding to positions of the region of
interest; generate a displacement map by minimizing a cost
function using a dynamic programming procedure that iden-
tifies each of the first set of discrete pixels with a correspond-
ing one of the second set of discrete pixels; refine the dis-
placement map to obtain intermediate displacement values
corresponding to positions between the discrete pixels based
on minimizing a local approximation to the cost function; and
calculate a physical property of the region of interest based on
the displacement map. The software, according to some
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embodiments of the current invention, can be configured to
perform the above-noted methods on the computer when
executed.

FIG. 1B is a schematic illustration of an ultrasound system
100 according to some embodiments of the current invention.
The ultrasound system 100 includes an ultrasound probe 105
adapted to communicate with a computer 110 over a signal
cable 107. The computer 110 can be configured with a data
processor 112 and a memory 115. The computer 100 can also
have a user interface 120, which can be integrated into com-
puter 120, or can be a separate computer that communicates
with computer 110 over a network connection 122.

The ultrasound system 100 may also include an optional
ultrasound probe mount 125, which may be connected to a
mechanical arm 130. Mechanical arm 130, which is optional,
may be a robotic arm that is controlled by computer 110, or a
passive arm that serves to stabilize probe mount 125. In the
latter case, ultrasound probe 105 and probe mount 125 may be
moved (translated and/or rotated) manually by a technician.

Ultrasound probe 105 can be a commercially available
ultrasound probe. Ultrasound probe 105, computer 110, and
user interface 120 may be components of a commercially
available ultrasound imaging system.

Computer 110 can be a single computer or can be multiple
computers that can be co-located, or can be remotely located
from each other and connected to each other over a network.
Similarly, processor 112 can be a single computer processor
or multiple processors, which can be distributed over multiple
computers.

Memory 115 can include one or more electronic storage
media (e.g., but not limited to, hard drive, flash drive, RAM,
optical storage, etc.) that can be located within computer 110,
or distributed over multiple computers. One skilled in the art
will readily appreciate that many such variations to ultra-
sound system 100 are possible and within the scope of the
current invention.

Memory 115 can be encoded with computer readable
instructions and data (hereinafter “the software”) for per-
forming processes associated with embodiments of the cur-
rent invention. If ultrasound probe 105, computer 110, and
user interface 120 are parts of an integrated commercially
available ultrasound imaging system, then the software
according to some embodiments of the current invention can
be installed and integrated into existing machine readable
instructions and data that come bundled with the ultrasound
imaging system.

FIG. 1B illustrates ultrasound probe 105 acoustically
coupled to a patient’s anatomy 135, which includes a tissue
medium 145. Within tissue medium is an aberration 140.
Aberration 140 may be any region or object within tissue
medium 140 that has mechanical properties, such as Young’s
Modulus, that is different from that of surrounding tissue
medium 145. Examples of aberration 140 include a tumor, a
region of ablated tissue, a foreign object, a cavity resulting
from a removed tumor, an organ—such as a prostate gland,
and the like. Tissue medium 145 may include a liver, a breast,
or any tissue region that surrounds aberration 140.

EXAMPLES

1I. Methods

Assume that the tissue undergoes a deformation and let 11
and 12 be two images acquired from the tissue before and after
the deformation. Letting I, and I, be of size mxn (FIG. 1), our
goal is to find two matrices A and L where the (i, j)th com-
ponent of A(a; ;) and L(1, ;) are the axial and lateral motion of
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the pixel (i, j) of I, (we are not calculating the out-of-plane
motion). The axial and lateral strains are easily calculated by
spatially differentiating A in the axial direction (resulting in
A,)and L in the lateral direction (resulting in L,). The shear
strains (not calculated in this work) can also be easily calcu-
lated by spatially differentiating A in the lateral direction
(resulting in A;) or L in the axial direction (resulting in L ).

In this section, we first give a brief overview of a previous
work (DP) that calculates integer values for A and L. We then
propose 1D analytic minimization (AM) as a method that
takes the integer displacement field from DP and refines the
axial displacement component. We then introduce 2D ana-
lytic minimization (AM) that takes the integer displacement
ofasingle RF-line from DP and gives the subsample axial and
lateral displacement fields for the entire image. We conclude
this section by presenting a technique for calculating smooth
strain field from the displacement field using Kalman filter-
ing.
A. Dynamic Programming (DP)

Inorderto present the general DP formulation, we consider
a single column j (an RF-line) in I, (the image before defor-
mation) in FIG. 1. Let m and n be the length of the RF-lines
and the number of RF-lines in the images (FIG. 1). Let a, and
1, denote the axial and lateral displacements of the ith sample
of the RF-line in column j. In DP elastography [40], a regu-
larized cost function is generated by adding the prior of dis-
placement continuity (the regularization term) to an ampli-
tude similarity term. The displacement continuity term for
column j is

Riay Iy 0,y 1 )=0g(am2; D3+al-l Y

8 M
which forces the displacements of the sample i (i.e., a, and 1)
be similar to the displacements of the previous sample i-1
(i.e,a,_,andl_)). o, and o, are axial and lateral regulariza-
tion weights respectively. We write R (a, 1, a,_,, 1,_,) to indi-
cate the dependency of a, and 1, on j. The regularized cost
fanction for column j is then generated as following:

Cila, by, ) =L, p-Dli+a, j+ 1+ @

min {Cj(daa di, i-D)+Cj(dg, dp, i)
"

da, dy 2 Rilai, b, da, d,}

where d,, and d, are temporary displacements in the axial and
lateral directions that are varied to minimize the term in the
bracket. After calculating C; fori=2. . . m, C; is minimized at
i=mgivinga,, and1 . The a,and ], values that have minimized
the cost function at i=m are then traced back to =1, giving
integer a, and 1, for all samples of jth line. The process is
performed for the next line j+1 until the displacement of the
whole image is calculated. The 2D DP method gives integer
axial and lateral displacement maps. In [40], we performed
hierarchical search to obtain subsample axial displacement
(the lateral displacement was not refined to subsample). DP is
an efficient method for global optimization and has been used
extensively in many applications in computer vision includ-
ing solving for optimal deformable models [42]. In the next
section, we propose an alternative method for calculating
sub-sample axial displacement which is both faster and more
robust than hierarchical DP.

B. 1D Analytic Minimization (AM)

Tissue deformations in ultrasound elastography are usually
very small and therefore a subsample displacement estima-
tion is required. We now develop a method that analytically
minimizes a regularized cost function and gives the refined
displacement field following the work presented in [16]. We
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first consider a specialization of (2) in which we only consider
refining axial displacements to subsample level.

Having the integer displacements a, and I, from DP, it is
desired to find Aa, values such that a,+Aa,, gives the value of
the displacement at the sample i fori=1 ... m (1. a, and Aa,
correspond to line j. Hereafter, wherever the displacements
correspond to the jth line, j is omitted to prevent notation
clutter). Such Aa, values will minimize the following regular-
ized cost function:

CiAay, ... ,Aa,)=

(LG - bii+e +Ag, j+ 117 + el +Aa - aig —Agi))F +

s

ayla +Aa; —a; j - Aa; 1)}

where >0 and >0 are tunable axial and lateral regulariza-
tion weights and subscript j-1 refers to the previous RF-line
(adjacent RF-line in the lateral direction).

Substituting 12(i+di+Adi) with its first-order Taylor expan-
sion approximation around d,, we have

CilAay, ... ,Aay) = 4

{16, =Dl +a, j+1) = Bl+a, j+DAa) +

INgE

i

2 2
(6 + Mg — -y — Mg 1P + oya; + Mgy — 4y g - Aag )]}

where I'; is the derivative of the I, in the axial direction. The
optimal Aa, values occur when the partial derivative of C, with
respect to Aa, is zero, Setting (3C;)/(3Aa,)=0 fori=1...mwe

have

(Ié2 +a,D+ a,?)Aaj =he- (ozaD +a,7)aj +a; g, &)
1 =1 0 0 .. 0 (6)
-1 2 -1 0 .. 0

p=|0 -1 2 -1 ... 0
0 0 0 -11

where I',)=diag(l', (1+d,, j+1) . . . I, (m+dm, j+1)). Aa=
[Aa, ;. .. Aam,j]T; ele; . .. el e L, )-Lo(i+d, j+),
a=la,;...a, J]T , L is the identity matrix and a_, is the total
displacement of the previous line (i.e., when the displacement
of the j-1th line was being calculated, a._, was updated with
a_+Aa_ ). T, Dand I are matrices of size mxm and Aa, e
and a are vectors of size m.

Comparing 1D AM [as formulated in (5)] and 2D DP, they
both optimize the same cost function. Therefore, they give the
same displacement fields (up to the refinement level of the
DP). In the next two subsections, we will further improve 1D
AM.

1) Biasing the Regularization: The regularization term
o, (a+Aa,-a,_  -Aa,_|)* penalizes the difference between
a+Aa, and a,_;+Aa,_,, and therefore can result in underesti-
mation of the displacement field. Such underestimation can
be prevented by biasing the regularization by € to o (a,+Aa,~
a,_,-Aa,_,-€)*, where e=(a,-a,)/(m-1) is the average dis-
placement difference (i.e., average strain) between samples i
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andi-1. An accurate enough estimate ofd,,~d, is known from
the previous line. With the bias term, the right-hand side of (5)
becomes I'ze—(aaD+aZi)';1j+al(aj_ +Aa;_,)+b where the bias
term is b=(c1[-€0 ... 0e]” (only the first and the last terms are
nonzero) and all other terms are as before. In the other words,
except for the first and the last equations in this system, all
other m-2 equations are same as (5).

Equation (5) can be solved for Aa, in 4 m operations since
the coefficient matrix I',?+o+o ] is tridiagonal. Utilizing its
symmetry, the number of operations can be reduced to 2 m.
The number of operations required for solving a system with
afull coefficient matrix is more than m*/3, significantly more
than 2 m.

2) Making Elastography Resistant to Outliers: Even with
pure axial compression, some regions ofthe image may move
out of the imaging plane and decrease the decorrelation. In
such parts the weight of the data term in the cost function
should be reduced. The data from these parts can be regarded
as outliers and therefore a robust estimation technique can
limit their effect. Before deriving a robust estimator for 66 d,
we rewrite (4) as

Q]

s

CAd) = > plr)+ R(Ad)

i

where r,=T,(1)-L,(i+d,)-I',(i+d,)Ad, is the residual, p(r,)=r
and R is the regularization term. The M-estimate of Ad is
Ad=arg min, {X,_,"p(r,)+R(Ad)} where p(r,) is a robust loss
function [43]. The minimization is solved by setting
3C/3Ad~0

, o
p ‘J’i)m*’

IRAD ®

Adi

A common next step [44] is to introduce a weight function
w, where w(r,)x,=p'(r,). This leads to a process known as
“iteratively reweighted least squares” (IRLS) [45], which
alternates steps of calculating weights w(r,) forr=1 ... m
using the current estimate of Ad and solving (8) to estimate a
new Ad with the weights fixed. Among many proposed shapes
for w(*), we compared the performance of Huber [44], [43]

Lo nl<T ®
MOEN T sy
Il
and Cauchy [45]
B (10)
= e

functions and discovered that the more strict Cauchy function
(which decreases with inverse of the square of the residual) is
more suitable in our application. To better discriminate out-
liers, we calculate the residuals r, at linear interpolation of the
integer sample displacements provided by DP. With the addi-
tion of the weight function, (8) becomes

(1

(wI+a,DrohAa=wle~(a,Drodatoma;_+b
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where w=diag(w(r,) . . . w(r,,)). This equation will converge
to a unique local minimum after few iterations [45]. The
convergence speed however depends on the choice of T,
which in this work is defined manually. Since the Taylor
approximation gives a local quadratic approximation of the
original non-quadratic cost function, the effect of higher
orders terms increase if Aa; is large. Assuming that DP gives
the correct displacements, ||Aa)|..<e where |¢[fis the infinity
norm and €<0.5. In practice, however, €<<0.5 because the
linear interpolation of the DP displacements (which is very
close to the correct displacement) is used to calculate the
residuals r,. Therefore, a small value can be assigned to T in
1D AM provided that DP results are trusted.

The coefficient matrix Q=wI',2+0, D+al in (11) is the
Hessian of the cost function C whose minimum is sought.
This matrix is strictly diagonally dominant (i.e., Iq;,1>X,.. 1q;]
for alli where g, is the i, jth element of Q), symmetric and all
diagonal entries are positive. Therefore, it is positive definite,
which means that setting the gradient of C to zero results in
the global minimum of C (not in a saddle point, a local
maximum or a local minimum) All of the 1D AM results
presented in this work are obtained with one iteration of the
above equation.

1D AM takes the integer axial and lateral displacement
fields from DP and gives refined axial displacement. It inher-
its the robustness of DP and adds more robustness when
calculating the fine axial displacements via IRLS. However,
there are redundant calculations in this method which are
eliminated in 2D AM as described next.

C. 2D Analytic Minimization (AM)

In 2D AM, we modify (2) to calculate subsample axial and
lateral displacement fields simultaneously. The outline of our
proposed algorithm is as follows.

1) Calculate the integer axial and lateral displacements of
one or more seed RF-lines (preferably in the middle of
the image) using DP [(2)]. Calculate the linear interpo-
lation of the integer displacements as an initial sub-
sample estimate.

2) Calculate subsample axial and lateral displacements of
the seed RF-line using 2D AM, as explained below. Add
the subsample axial and lateral displacements to the
initial estimate to get the displacement of the seed line.

3) Propagate the solution to the right and left of the seed
RF-line using the 2D AM method, taking the displace-
ment of the previous line as the initial displacement
estimate.

Benefits of 2D AM are two-fold. First it computes sub-
sample displacements in both axial and lateral directions.
Lateral strain contains important information from tissue
structure thatis not available from axial strain [31], [46], [47].
Second, it 1s only required to calculate the displacement of a
single line using DP (the seed), eliminating the need to have
the integer displacement map for the entire image. This is
significant as in the 1D AM method, the initial step to calcu-
late the 2D integer displacements using DP takes about 10
times more than the 1D AM.

Assume that initial displacement estimates in the axial
direction, g,, and in the lateral direction, 1,, are known for all
i=1...m samples of an RF-line. Note that a, and 1, are not
integer; for the seed line they are the linear interpolation of the
integer DP displacements and for the rest of the lines are the
displacement of the previous line. It is desired to find Aa, and
Al values such that the duple a,+Aa,, 1 +Al, gives the axial and
lateral displacements at the sample i. Such (Ad,, Aa,) values
will minimize the following regularized cost function:
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Ci(Aay, ... ,Aam, ALy, ... ,Aly)= (12)

(G, )= B +a; +Ag;, j+ 1+ AL +

INGE

ola; +Aa; —aiy —Aa;_)* +

Balli + AL~y — Al P+ B + AL =1 1))

where I(i, j) is the ith sample on the jth RF-line. Since we
perform the calculations for one RF-line at a time, we
dropped the index j to simplify the notations: a,, 1,, Aa,, and Al,
area, ; I, , Aa, , and Al .. Al , is the lateral displacement of
the previous RF-line (note that 1, ;_, is the total lateral dis-
placement ofthe previous line, i.e., when the displacement of
the j-1th line was being calculated, |, _, was updated with
I,;,_,+Al, ;). Since in the first iteration &, and I; (the initial
displacement estimates) are in fact the displacements of the
previous RF-line, for the first iteration we have 1, _ =1,. This
simplifies the last term in the right-hand side to f",AL,>. The
regularization terms are o, f, and p';: o determines how close
the axial displacement of each sample should be to its neigh-
bor on the top and B, and p', determine how close lateral
displacement of each sample should be to its neighbors on the
top and left (or right if propagating to the left). If the displace-
ment of the previous line is not accurate, it will affect the
displacement of the next line through the last term in the
right-hand side of (12). Although its effect will decrease
exponentially with j, it will propagate for few RF-lines.
Therefore, we set

= Bi

T LRl

to prevent such propagation wherer; ;_, is the residual asso-
ciated with the displacement of the ith sample of the previous
line. A large residual indicates that the displacement is not
accurate and therefore its influence on the next line should be
small, which is realized via the small weight f',. This is, in
principle, similar to guiding the displacement estimation
based on a data quality indicator [48]. The effect of the tun-
able parameters a., 3, and B, is studied in Section III. Writing

the 2D Taylor expansion of the data term in (12) around (i+a,,
J+,)

Li+apAa, fHAN )L+, f+L)FAa D, ANLT (14)

where I';, , and I'; ; are the derivatives of the I, at point (i+a,,
j+1,) in the axial and lateral directions respectively. Note that
since the point (i+a;, j+1,) is not on the grid (a, and 1, are not
integer), interpolation is required to calculate I', , andT', . We
propose a method in Section I1-C1 that eliminates the need for
interpolation. The optimal (Aa,, Al,) values occur when the
partial derivatives of Cj with respect to both Aa, and Al, are
zero. Setting (3C,)/(3Aa,)=0 and (3C,)/(3AL)=0 fori=1 ... m
and stacking the 2 m unknowns in Ad=[Aa; 1, Aa, Al, ... Aa,,
Al 1" and the 2 m initial estimates in d=[a, 1, a,1,...a,,1 ]"
we have

(I + D, +Dy)Ad = Ihe—Dyd, (15)
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-continued
¢ 0 - 0 D 0 .0
0 B 0 =B 0 0 .0
- 0 2« 0 -a 0 .. 0
0 =B+ 0 28, 0 —Bo ... O
Dislo 0 22 0 20 0 .0
0 0 0 ... - 0 a 0
0 0 0 .. 0 -B 0 B

where D,=diag(0, p',, 0, p',, . .. 0, f',) is a diagonal matrix of
size 2 mx2 m, I',>=diag 3 (1) ... I" (m) is a symmetric
tridiagonal matrix of size 2 mx2 m with

12
12,0

Ié,alé.l
([) = ’ 4
Lol

} (16)

72
Iy

blocks on its diagonal entries where I', , and I', ; are the
derivatives of the I, at point (i+a,j+],) in the axial and lateral
directions

Io=diag(l (1), I (1, 15,420, 15 42) o D o),

I (m)) 17
where ', (i) and I, (i)' are calculated at point (i+a,, j+1,), and
e=e,ee0e, ... e |5 el 3, -L(i+a, j+l).

We make four modifications to (15). First, we take into
account the attenuvation of the ultrasound signal with depth.
As the signal gets weaker with depth, the first term in the
right-hand side of (15) (I';e ) gets smaller. This results in
increasing the share of the regularization term in the cost C,
and therefore over-smoothing the bottom of the image. The
attenuation of the ultrasound signal [49] reflected from the
depth d is T(d)—e 281D 920 where a, is the frequency
dependent attenuation coefficient of tissue and is equal to
0.63 dB/ctn/MHz for fat [49], £, is the center frequency of the
wave (in MHz) and d is in cm. Having the exponential attenu-
ation equation, the attenuation level at sample i will be

1540 % 10%a, folog(10) (18)

& :xf‘,x:eW,z_l

where 1540x107 is the speed of sound in tissue (in cm/sec)
and f_ is the sampling rate of the ultrasound system (in MHz).
This is assuming that the TGC (time gain control) is turned
off. Otherwise, the TGC values should be taken into account
in this equation. Let the 2 mx2 m diagonal matrix Z be
Z=diag(C,, C;, &, & . . . C, C,,). To compensate for the
attenuation, we multiply the D, and D, matrices in (15) by Z,
and therefore reduce the regularization weight with depth. As
we will show in Sections 11T and 1V, the regularization weight
can vary substantially with no performance degradation.
Therefore approximate values of the speed of sound and
attenuation coefficient will suffice. Second, we add a bias
term in the regularization similar to the 1D case. Here we only
bias the axial displacement since the difference between the
lateral displacements of the points on a RF-line is very small,
usually less than 4 RF-lines. Third, we exploit the fact that,
because the tissue is in contact with the ultrasound probe, the
axial displacement of the top of the image is zero relative to
the probe (the lateral displacement of the top of the image is
not zero as tissue might slip under the probe). Therefore, we
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enforce the axial displacement ofthe first sample to be zero by
changing the firstrow of D, I',%, and I'. Fourth, we make the
displacement estimation robust via IRLS using the Cauchy
function (10). Similar to 1D AM, T is selected manually. For
the first (seed) RF-line, a small value can be selected for T if
DP results are trusted. For the next lines, the value of Ad
determines the accuracy of the Taylor expansion 14: for a
small Ad, the residuals of the inliers are small and therefore a
small T can be chosen, while for a large Ad the inliers might
give large residuals and therefore a large value for T is
required. Since the tissue motion is mostly continuous, Ad
mostly depends on the lateral sampling of the image (i.e., the
number of A-line per cm). Therefore if many A-lines are given
per cm of the image width, a small value of T will give the
optimum results. Since the amplitude of signal is decreasing
due to attenuation, we decrease the IRLS parameter T with
depth by multiplying it with T, at each sample i. With these
modifications, (15) becomes

WI'y2+ZD\+ZDAd=WT'8 7D, d+s (19)

where W=diag(0, w(r,), w(r,), W(t,) . . . w(r,,), w(t,,)) (i€,
Waio =W, 10, =w(r,) for i=1 .. . m except for W, ;=0
which guarantees the displacement of the first sample to be
zero) 1s the weight function determined by the residuals r=I,
(1, 1)-[1,(i+d,, j+a)+Ad T, +Aa,l’, ], w is as before (10), the
bias term s is a vector of length 2 m whose all elements are
zero except the 2 m-1th element: s,,_,=ce, and e=(d,~d,)/
(m-1) is as before. Similar to (11), the coefficient matrix
Q =WI',>+ZD +ZD, is strictly diagonally dominant, sym-
metric and all the diagonal entries are positive. Therefore
Q is positive definite which means that solving (19) results in
the global minimum of the cost function C. The updated
displacement field (axial and lateral) will be d+Ad.

Equation (19) can be solved for Ad in 9 m operations since
the coefficient matrix WI',>+ZD, +ZD, is pentadiagonal and
symmetric. This number is again significantly less than ((2
m)*/(3), the number of operations required to solve a full
system.

1) Inverse Gradient Estimation: With the subsample initial
displacement field, the Taylor expansion should be written
around off-grid points, which requires calculation of image
gradient at these points [matrices I, and I', in (19)]. In FIG.
2(A), this is equivalent to calculating gradient of 1, on the
off-grid marks. There are two disadvantages associated with
this: 1) it requires interpolation of the gradients, and 2) the
image gradient should be recalculated after each iteration. As
proposed by [44], [50], image gradient can be instead calcu-
lated at on-grid locations on image 1 in the following way.

Consider two problems: 1) to find the matches for grid
points on I1 having the initial off-grid estimates on I,, and 2)
to find the matches for the off-grid points on I, having the
initial grid estimates on 1,. For both problems, I, values must
be interpolated on the off-grid values. However, the second
problem does not require interpolation of the image gradient
since the Taylor expansion is written around grid points of I,
[FIG. 2(B)]. It is shown in [51] that the two techniques con-
verge to the same results. Therefore, on one hand inverse
gradient calculation is both faster and easier to implement,
and on the other hand it causes no performance degradation.
Exploiting this, (19) becomes

(WT'2+ZD\+ZD>)Ad=WT'® ~ZD\d+s (20)

where I',® and T', are now calculated on the grid points of
image 1.

All the 2D AM results presented in this work are obtained
using (20). For the seed line where the initial estimate might
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be inaccurate, this equation is iterated multiple times (about
10 times). For all other lines, this equation is iterated only
once.

D. Strain Estimation Using Kalman Filter

Strain estimation requires spatial derivation of the dis-
placement field. Since differentiation amplifies the signal
noise, least squares regression techniques are commonly used
to obtain the strain field. Adjacent RF-lines are usually pro-
cessed independently in strain calculation. However, the
strain value of each pixel is not independent from the strain
value of its neighboring pixels. The only exception is the
boundary of two tissue types with different mechanical prop-
erties where the strain field is discontinuous. We use the prior
of piecewise strain continuity via a Kalman filter to improve
the quality of strain estimation. Although locations with strain
discontinuity are limited, we will develop a technique to take
such discontinuities into account.

We first calculate the strain using least squares regression.
Each RF-line is first differentiated independently: for each
sample 1, a line is fitted to the displacement estimates in a
window of length 2 k+1 around 1, i.e., to the samples i—k to
i+k. The slope of the line, 7, , is calculated as the strain
measurement at i. The center of the window is then moved to
i+1 and the strain value z,, , , is calculated. We reuse overlap-
ping terms in calculation of 7, and 7,,, ,, and therefore the
running time is independent of the window length 2 k+1.
Having 7, for i=1 . . . m, and j=1 . . . n, we propose the
following algorithm based on Kalman filter to take into
account the prior of strain continuity.

7i, j are the noisy measurements of the underlying strain
field €, . Since the zi, j values are calculated using axial
windows, we apply the Kalman filter in the lateral direction.
Let r, be the Gaussian process noise and s, be the Gaussian
measurement noise to be removed. We have [52], [41]
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22)
Lete € (note the super mmus) be our a priori strain estimate
from the process prior to step j [i.e., from the (21)] and e ,be
our a posteriori strain estlmate at step Jjgiven measurement Z;.
Let also the variances of € eryand ¢, ; be respectively p~ and p
The time update (i.e., prior estlmatlon) equations will be [41]

&7 1

23
pi_j:pijfl"'orz (24)

where o, is the variance of the process noise r. p, jo1 18
initialized to zero for the first sample j=1. The measurement
update equations will be [41]

&=+ %(zu &) @3
i Pij t0;
p..szpe. (26)
" pitos )
where 0. is the variance of the measurement noise s. Note

that since both the state €, , and measurement 7, , are scalars,
all the update equations only require scalar operations. We
estimate 0,” and o, as following. Let the mean (calculated
using a Gaussian kernel of standard deviation of 05=0.6
sample) of the strain values in 3x3 blocks around samples (i,
j-Dand (i, j) be p_, and p, respectively. Then 0% is [52]
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This is a reasonable estimate of o, as it tries to capture the
difference between pixel values at adjacent RF-lines. If the
difference between the mean strain values is high, less weight
is given to the a priori estimate. This space-variant estimation
of the model noise provides a better match to local variations
in the underlying tissue leading to a greater noise reduction.
o,>is the variance of z, measurements in the entire image and
is constant throughout the image.

The strain estimation algorithm can be summarized as
following.

1) Perform least squares regression in the axial direction
for each RF-line. Generate a (noisy) strain image 7
whose pixel ij is z, ;. This step ensures continuity in the
axial direction.

2) Apply the Kalman filter to the noisy strain image Z inthe
lateral direction. Generate a (denoised) strain image
whose pixel i, j is e . This step ensures continuity in the
lateral direction.

Both steps are applied once and are not iterated. We show
in the experimental results how the Kalman filter removes the
noise from the strain image with minimal blurring, owing to
the model noise update (27).

III. Simulation Results

Field IT [53] and ABAQUS (Providence, R.1.) software are
used for ultrasound simulation and for finite element simula-
tion. Many scatterers are distributed in a volume and an
ultrasound image is created by convolving all scatterers with
the point spread function of the ultrasound and adding the
results using superposition. The phantom is then meshed and
compressed using finite element simulation, giving the 3D
displacement of each node of the mesh. The displacement of
each scatterer is then calculated by interpolating the displace-
ment of its neighboring nodes. Scatterers are then moved
accordingly and the second ultrasound image is generated.
The displacement and strain fields are then calculated using
the AM methods and are compared with the ground truth. The
unitless metric signal-to-noise ratio (SNR) and contrast to
noise ratio (CNR) are also calculated to assess the perfor-
mance of the AM method according to

255 -5, @8

Frat

CNR =

Zz| o

SNR =

qlw@

where s, and s, are the spatial strain average of the target and
background, o, and o, are the spatial strain variance of the
target and background, and s and o are the spatial average and
variance of a window in the strain image, respectively.

The parameters of the ultrasound probe are set to mimic
commercial probes. The probe frequency is 7.27 MHz, the
sampling rate is 40 MHz and the fractional bandwidth is 60%.
A Hanning window is used for apodization, the single trans-
mit focus is at 22.5 mm, equi-distarce receive fociare from 5
to 45 mm at each 5 mm, the transmit is sequential, and the
number of active elements is 64.

Two simulated phantoms are generated. The first phantom
is 50x10x55 mm and the second one is 36x10x25 mm
Respectively 5x10° and 1.4x10° scatterers with Gaussian
scattering strengths [54] are uniformly distributed in the first
and second phantom, ensuring more than 10 scatterers [55]
exist in a resolution cell.

The mechanical properties of both phantoms, required for
finite element simulation, is assumed to be isotropic and
homogeneous. The first phantom is uniform while the second
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phantom contains a circular hole filled with blood that can
move out-of-plane, simulating a blood vessel in tissue [FIG.
7(A)]. The scatterers are distributed in the vessel, also with
the same intensity and distribution as the surrounding mate-
rial. A uniform compression in the z direction is applied and
the 3D displacement field of phantoms is calculated using
ABAQUS. The Poisson’s ratio is set to v=0.49 in both phan-
toms to mimic real tissue [56], [57] which causes the phan-
toms to deform in x and y directions as a result of the com-
pression in the z direction.

The first phantom undergoes compressions in the z direc-
tion to achieve strain levels of 1%-10%. FIG. 3 shows the
SNR of the axial strain of the 1D AM and 2D AM methods
[the window for SNR calculation covers the entire strain
image in FIGS. 3A and (3F)]. The sharp drop of the SNR with
strain in graph (3A) is mainly due to the strain underestima-
tion in the bottom part of the image. It can be explained as
following. The unbiased regularization term tries to force
constant displacement [dashed-dotted red line in (3B)].
Assuming an ideal noiseless case where the data term gives a
smooth ramp displacement [dashed black line in (3B)], mini-
mizing the cost function (which is the summation of the data
and the regularization terms) will underestimate the displace-
ment at the two ends [solid blue line in (3B)]. This underes-
timation decays exponentially moving towards the center of
the image. This artifact is shown in the simulation experiment
at 2% and 6% strain levels in FIGS. 3C and (3D). Since we
exploit the fact that the axial displacement of the first sample
is zero (Section I1-C), the underestimation does not happen in
the top of the image. Biasing the regularization prevents this
artifact, as is shown in FIGS. 3C and 3D. The AM method
with or without the bias term gives the same result away from
the bottom of the image: part (3E) shows that if we ignore 300
(5.8 mm) samples at the bottom of the image, the SNR will
notdrop sharply unlike in FIG. 3A. FIG. 3F shows the SNR of
the AM methods with biased regularization calculated in the
entire image. The SNR at 1% strain in parts FIGS. 3E and 3F
is the same. At higher strain levels, the strain underestimation
propagates more into the middle of the image, and therefore
the SNR decreases at higher strain levels in graph (3E). FIG.
3E shows 2D AM gives slightly better axial strain compared
to 1D AM. IRLS slightly increases the SNR. However, we
will see in the simulation results of the second phantom that in
the presence of outliers significant improvement in SNR and
CNR is achieved using IRLS.

The SNR of the lateral strain field is much lower than that
of the axial strain field (FIG. 4). Unbiased regularization
gives the lowest SNR, mainly due to artifacts in the bottom of
the image. Similar to the axial strain, the SNR improves as
300 samples from the bottom of image are omitted from the
SNR calculation (results not shown).

The effect of the regularization weights on bias and vari-
ance of the axial strain image at 2% ground truth axial strain
is shown in FIG. 5. The blue curves show the bias and vari-
ance of the entire strain image obtained with unbiased regu-
larization. It shows the tradeoff between the bias and vari-
ance: increasing the regularization weight increases the bias
and decreases the variance. The variance starts to increase at
a=~12 which is caused by the underestimation of the strain at
the bottom of the image [the artifact in FIG. 3(c)]. If we
exclude the bottom 300 samples of the strain image from the
bias and variance calculation (the black dashed curve), we see
a consistent drop of variance as o is increased. The black
curves show the bias and variance of the entire strain image
obtained with biased regularization. Biasing the regulariza-
tion causes the bias to decrease as the regularization weight c.
is increased which is a nonstandard behavior. It can be
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explained by the simple ground truth strain field which is
uniform, exactly what the regularization term is trying to
achieve. Even in the unbiased case, only the bias of the bottom
part of the strain field increases as o is increased (i.e., in the
bias plot, the blue curve increases while the black dashed
curve decreases). Therefore, one cannot conclude from this
experiment that higher « is beneficial to both bias and vari-
ance. To prove this, we designed a simulation study where the
underlying axial strain field continuously varied with depth
and the lateral and out-of-plane strains were zero (such strain
field is not physically realizable). We observed that the abso-
lute value of the bias monotonically increases with o with
both unbiased and biased regularizations. To save space, we
do not present the full results here. Similar curves for the
lateral strain field is shown in FIG. 6.

The second simulation experiment is designed to show the
effect of smoothness weight and IRLS threshold CNR when
the correlation is lower in parts of the image due to fluid
motion. The phantom contains a vein oriented perpendicular
to the image plane (FIG. 7). The background window for
CNR calculation is located close to the target window to show
how fast the strain is allowed to vary, a property related to the
spatial resolution. The maximum CNR with IRLS is 5.3 gen-
erated at T=0.005 and o,=38, and without IRLS is 4.8 at
o, =338. Such high o, value makes the share of the data term
in the cost function very small and causes over-smoothing.
A. Displacement Simulation

To study the performance of the Kalman filter, we simulate
a displacement field of size 100x100 samples whose strain
image (calculated using least squares regression) is as shown
in FIG. 8A. One hundred samples in the axial direction cor-
responds to approximately 1.9 mm (assuming 40 MHz sam-
pling rate), and 100 samples in the lateral direction corre-
sponds to 10-25 mm depending on the probe. To be consistent
with the notations of Section II-D, let ¢, ; denote the strain
values of the uncontaminated image in (8A). We then con-
taminate the displacement field with a Gaussian noise with
standard deviation of 1.5 samples, and perform least squares
regression to calculate the noisy estimates z, , [F1G. 8B]. We
then apply the Kalman filter as described in Section 1I-D to
the noisy estimates z, ; in the lateral direction (i.¢., row-by-
row). The posterior estimates of the strain values, €, ; are
shown in (FIG. 8C). The strain values of the shown line in
FIGS. 8A-8C (at i=50 samples) is shown in FIG. 8D and 8E
[The plot in (8D) around the step in magnified in (8E)]. The
Kalman filter formulation is eliminating the noise without
over-smoothing the strain image. This is due to the model
variance update (27). We note that although displacement is
generally continuous in tissue, its spatial derivation (strain) is
not: at the boundary of two tissues with different elasticity
moduli, strain field is discontinuous.

IV. Experimental Results

For experimental evaluation, RF data is acquired from an
Antares Siemens system (Issaquah, Wash.) at the center fre-
quency of 6.67 MHz witha VF10-5 linear array at a sampling
rate of 40 MHz. Only the 2D AM method is used in the
experimental results. Phantom results and patient trials are
presented in this section. The tunable parameters of the 2D
AM algorithm are set to a=5, ,=10, p,=0.005 and T=0.2
[(12) and (20)], and the tunable parameters of the DP (run for
the seed RF-line in the 2D AM algorithm) are o, =a,=0.15 (1)
in all the phantom results (except if specified otherwise). In
the patient results, all the parameters are the same except for
[, whichisincreasedto f,=20 because the data is noisier. The
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strain images in all the patient trials are obtained using the
least squares regression and Kalman filtering as described in
Section 1I-D.

A. Phantom Results

1) Effect of Regularization on Residuals: The cost function
of the AM method (7) is composed of residuals (i.e., the data
term) and the regularization terms. The AM method mini-
mizes this summation. Therefore the AM method will not
necessarily minimize the residuals. We now show that the
data term alone is nonconvex and has many local minima.
Adding the regularization term will eliminate many of the
local minima and makes optimization of the data term easier.
This is in addition to the effect of regularization that makes
the displacement field smooth, a generally desired attribute.

The effect of regularization on the residuals is studied
using experimental data. An elastography phantom (CIRS
elastography phantom, Norfolk, Va.) is compressed 0.2 in
axially using a linear stage, resulting in an average strain of
6%. Two RF frames are acquired corresponding to before and
after the compression. The Young’s elasticity modulus of the
background and the lesion under compression are respec-
tively 33 kPa and 56 kPa. The displacement map is calculated
using the 2D AM method and the residuals corresponding to
the displacement map are obtained. FIGS. 9A-9C) show the
axial and lateral strains at such a high strain rate (minimum of
2% and maximum of 11%). The mean and median of the
residuals p(r,) in the entire image is shown in FIG. 9D. One
could expect the graph to monotonically increase as the regu-
larization weight o increases, since the difference between
the objective function C and the residuals X_ "p(r,) is
increased as . is increased. However, the residual values are
very high at very low a. Therefore, numerical minimization
of Z,_,"'p(r,)+R(Ad) gives a smaller value for Z._, "p(r,) com-
pared to trying to directly minimize Z,_, "p(r;). This indicates
that the nonregularized cost function is not quasi-convex and
is very hard to minimize.

2) Resolution of the Strain Images Generated With AM:
The effect of the regularization on spatial resolution is evalu-
ated experimentally using the experimental setup of the pre-
vious experiment. The compression is set to 0.1 in in this
experiment. FIG. 10A shows the strain image obtained by
compression the lesion with the Young’s modulus of 56 kPa.
Spatial resolution is evaluated using modulation transfer
function (MTF), an established method for estimating the
spatial resolution of medical imaging systems that was rela-
tively recently extended to elastography [58]. The spatial
resolution of the reconstructed images is determined with a
three-step approach [59], [60]. First, the edge spread function
is computed by averaging the pixel values across the back-
ground-inclusion interface [the line in FIG. 10A]. Second, the
line spread function (LSF) is computed by differentiating the
edge spread function. Third, the MTF is determined by com-
puting the Fourier transform of the LSF and normalizing the
resulting function to zero spatial frequency
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FIG. 10C shows the MTF for five different normalization
coefficients respectively. Strain results are obtained with a
regression window of length 2 k+1=65 [Section II-D].
Increasing the regularization weight is adversely affecting
spatial resolution. Spatial resolution is defined as the spatial
frequency when the value of MTF is 0.1. At 0=1, a=2 and
=4 this value is respectively 2 cycles/mm, 1 cycles/mm, and
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0.5 cycles/mm. Inaddition to o, this value also depends on the
length of the regression window 2 k +1.

3) Image Quality Versus Axial and Lateral Sampling Rates
of the RF-Data: Sampling rate of the RF-data usually ranges
from 20 to 50 MHz depending on the hardware of the device.
The number of the A-lines provided in an image also varies
significantly. In addition, bandwidth limitations of the data
transfer can impose limits on the size of the image for real-
time operations. In this study, we downsample the RF-data by
a factor of 2-4 in the axial direction and by a factor of 2-8 in
the lateral direction. FIGS. 11A-11G show axial and lateral
displacement and strain images of the CIRS elastography
phantom undergoing maximum axial strain of 5%. Axial sam-
pling rate can be reduced by a factor of 2 without significant
impact on the strain image quality [part (h)]. Downsampling
the images in the lateral direction by a factor of 4 results the
CNR of'the axial and lateral strain images to drop respectively
12% (from 16.3 to 14.3) and 56% (from 2.55 to 1.13) as
shown in (i). While the axial strain is robust to the number of
A-line in the image even at a high strain level of 5%, the lateral
strain is sensitive to it (i). Similar study with lower axial strain
levels shows that as the axial strain decreases, higher down-
sampling rates in both axial and lateral directions are possible
without a large impact on the results.

4) Kalman Filter: The performance of the Kalman filter is
studied using the RF-data used in FIG. 9. The linear least
squares differentiation technique is applied to the axial dis-
placement field calculated with 2D AM, resulting in 7, , [F1G.
12A]. The Kalman filter is then applied to 7, ; measurements
of (12A), giving the posterior €, ,measurements of (b). Com-
paring the strain values at a horizontal line of FIGS. 12A and
12B, the noisy 7, ; measurements are smoothed in the lateral
direction using the proposed Kalman filter, with minimal
blurring of the edge.

B. Clinical Study

Seven patients undergoing open surgical radiofrequency
(RF) thermal ablation for primary or secondary liver cancer
were enrolled between Feb. 6, 2008 and Jul. 28, 2009. All
patients enrolled in the study had unresectable disease and
were candidates for RF ablation following review at our insti-
tutional multidisciplinary conference. Patients with cirrhosis
or suboptimal tumor location were excluded from the study.
All patients provided informed consent as part of the proto-
col, which was approved by the institutional review board. RF
ablation was administered using the RITA Model 1500 XRF
generator (Rita Medical Systems, Fremont, Calif.). Strain
images are generated offline. Some preliminary results are
published in [15].

We show the results from only four patients due to space
limitations. FIG. 13 shows the B-mode scan, the strain images
and CT scans performed after RF ablation. Tissue is simply
compressed freehand at a frequency of approximately 1 com-
pression per 2 s with the ultrasound probe without any attach-
ment. The shadow in FIG. 13A at 20 mm depth is produced by
the thermal lesion. Note that it is not possible to ascertain the
size and position of the thermal lesions from B-mode images.
In addition, the thermal lesion has different appearances in
the three B-scans. However, the thermal lesions show very
well as hard lesions in the strain images. After gross correla-
tion of the post ablation CT scan and the thermal lesion in the
strain images, the size of the lesion seems to correspond well.
However, a more rigorous validation of the size and shape of
the ablated lesion in the elastography image is underway
using nonrigid registration of CT and ultrasound images. To
the best of our knowledge, this is also the first demonstration
of the success of elastography in imaging the thermal lesion in
an in vivo human experiment.
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We have also acquired patient RF data of liver ablation
prior and after ablation in one of the patient trials. FIG. 14
shows the B-mode, strain and venous and arterial phase' CT
images obtained before ablation, and FIG. 15 shows the
B-mode, strain and lateral displacement images after abla-
tion. (CT scans are performed at different phases after intra-
venous injection of a contrast agent. In the arterial phase
(directly after injection of a contrast agent) arteries will
enhance, where as in the venous phase (30-60 s after injec-
tion) the hepatic parenchyma and veins will enhance). In FIG.
14, the tumor [marked in the CT images (14F) and (14G)] is
not visible in the B-mode image (14A), but is clearly visible
in the strain images FIGS. 14B and 14C. While the tissue is
getting compressed with the ultrasound probe, the middle
hepatic vein (marked as 5) which is only 4-8 cm from vena
cava inferior pulsates at high amplitude. The graph in FIG.
14E schematically shows the probe motion and variations in
the diameter of the vein. Therefore, the vein can look soft as
in (14C) or hard as in (14B) depending on whether its diam-
eter variation is in the same [marked by ellipse 1 in (14E)] or
opposite [marked by ellipse 2 in (14E)] direction as the probe
motion The effect of pulsation of vessels, a well-known cause
of signal decorrelation, is minimized via IRLS resulting in a
low noise strain image. In addition, since the 2D AM method
gives a dense motion field (same size as RF data), the small
artery at the diameter of less than 2 mm [marked as 4 in (14A)]
is discernible in (14B) from the low pressure portal vein. The
ablated lesion is also discernible in the strain images of FIGS.
15B and (15C). We believe the soft region in the middle of the
two hard ablation lesions in FIGS. 15B and 15C and (15C) (at
the depth of 25-30 mm and width of 10-25 mm) is not close to
any ofthe 10 tines of the ablation probe. Therefore because of
its proximity to veins and vessels its temperature has
remained low.

V. Discussion

The resolution of the method is formally studied in Section
1V-A using the phantom experiment. Future work will include
more intuitive measures for resolution in terms of the smallest
detectable target as a function of its elasticity difference with
the background.

The cost function is a regularized function of all displace-
ments on an A-line. This makes the methods robust to noise
which exist throughout the image. Besides, the AM methods
are not window-based and therefore they do not suffer from
decorrelation within the window. As a result, both AM meth-
ods work for strains as high as 10%. In addition, the IRLS
outlier rejection technique makes the AM methods robust to
local sources of decorrelation such as out-of-plane motion of
movable structures or blood flow.

Global stretching assumes a constant strain across the
depth and stretches one of the RF-limes accordingly. It is
shown that it enhances the quality of correlation based elas-
tography methods. The reason is that the strain of each point
canbe assumed to be the global strain (fixed for each RF-line)
plus some perturbation, i.e. constant strain is a better
approximation than zero strain. Biasing the regularization is
motivated by the same reason and involves almost no addi-
tional computational cost.

Improvement in the SNR and CNR achieved with Kalman
filtering differentiation is due to utilizing the (piecewise)
continuity of the strain field. One could think of a unified
framework which includes both the 2D AM and the Kalman
filtering and directly calculates the strain field. We made an
effort to formulate (15) in terms of strain values. Unfortu-
nately, the coeflicient matrix in the left-hand side became a

10

15

20

25

30

35

40

45

50

55

60

65

26

full matrix for our desired regularization. Such large full
system cannot be solved in real-time.

The least squares differentiation of Section II-D can be
incorporated in the Kalman filter. This can be simply done by
defining the state at each point to be the displacement and the
strain of that point. The observed variables are the noisy
displacement measurements from 2D AM. Solving for the
state gives a strain estimate at each point. However, we pre-
ferred to follow the common approach of first finding the
strain by solving least squares. In addition, the axial and
lateral displacements can be considered as two channels of a
measurement and a Kalman filter that takes into account both
intra-channel (spatial) and inter-channel variations can be
developed. This is a subject of future work.

Lateral displacement estimation with 2D AM is of order of
magnitude less accurate than the axial displacement esti-
mates. We tested the following algorithm for calculating the
lateral displacement field based on 1D AM: run IDAM to find
the axial displacement field, then transpose both ultrasound
images T, and T, and run 1D AM again using A calculated in
the previous step. The axial displacement field calculated for
the transposed images is in fact the lateral displacement of the
original images. Although considerably more computation-
ally expensive than 2D AM, this algorithm did not improve
the lateral displacement estimation. Therefore only images of
lateral displacement are provided for the patient trials
because the lateral strain did not show the ablation lesion.
This is in accordance with recent work [36] which only shows
the lateral displacement. A 2D displacement field can be
utilized to calculate the thermal expansion and to reconstruct
the strain tensor. Incorporation of the synthetic lateral phase
[61]-[63], into 2D AM to further improve the accuracy of the
lateral displacement measurement is also a subject of future
work.

In cases where the two ultrasound frames correlate very
poorly throughout the image, 1D AM outperforms 2D AM
because DP is run for the entire image in 1D AM. However, in
those cases the strainimages are of very low quality even with
1D AM. In cases where the images correlate reasonably, the
2D AM algorithm slightly outperforms 1D AM in terms of the
SNR ofthe axial strain as shown in FIGS. 3E and 3F. Also, 1D
AM and 2D AM are very similar in terms of bias and variance
as mentioned in the caption of the FIG. 5. And finally, 2D AM
is more than 10 times faster than 1D AM because it eliminates
the redundant calculations in the DP step of 1D AM. This is
important considering that there are combinatorial many
ways of choosing two frames for elastography from a
sequence of images. Having a fast algorithm, like 2D AM,
makes it plausible to invest time to perform real-time frame
selection, an area that we are currently working on [16], [64].

Recent work [65] has attempted to reconstruct elasticity
from the displacement field for monitoring thermal ablation.
It has also shown that [66] compared to strain images, elas-
ticity images have both higher correlation with the ablation
zone and give higher CNR. Another work [67] has utilized the
solution of the elasticity reconstruction to improve motion
estimation in an iterative framework. Calculation of the elas-
ticity modulus in our ablation monitoring trials is an area of
future work.

Statistical analysis of the residuals is a subject of future
work. The sum of squared differences used as the similarity
metric in our cost function is suitable if ultrasound noise can
be modeled as additive Gaussian noise. However, ultrasound
noise is not simply additive Gaussian and it has been shown
that similarity metrics that model the noise process consider-
ing physics of ultrasound give more accurate results [68].
Performance of the 2D AM method for images that are not
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fully developed speckles (i.e., have few scatterers per resolu-
tion cell) is also a subject of future work.

Current implementations of the 1D AM and 2D AM take,
respectively, 0.4 s and 0.04 s to generate strain images (axial
for 1D AM and axial and lateral for 2D AM) of size 1000x100
ona 3.8 GHz P4 CPU. DP contributes to more than 90% ofthe
running time of the 1D AM, and that’s why it is slower than
2D AM where DP is only run for a single A-line. The running
time of both methods changes linearly with the size of the
image.

VI. Conclusion

Two regularized elastography methods, 1D AM and 2D
AM, are introduced for calculating the motion field between
two ultrasound images. They both give dense subsample
motion fields (1D AM gives subsample axial and integer
sample lateral and 2D AM gives subsample axial and lateral)
in real-time. The size of the motion fields is the same as the
size of the RF-data (except for few samples from the bound-
ary whose displacements are not calculated). Such dense
motion fields lead to dense strain fields which are critical in
detecting small lesions. The prior of tissue motion continuity
is exploited in the AM methods to minimize the effect of
signal decorrelation. The regularization term is biased with
the average strain in the image to minimize underestimation
of the strain values. Parts of the image that have very low
correlation are treated as outliers and their effectis minimized
via IRLS. The strain image is calculated by differentiating the
motion fields using least squares regression and Kalman fil-
tering. The performance of the proposed elastography algo-
rithms is analyzed using Field II and finite element simula-
tions, and phantom experiments. Clinical trials of monitoring
RF ablation therapy for liver cancer in four patients are also
presented. An implementation of the 2D AM method, the
least squares regression and the Kalman filter in MATLAB
mex functions, as well as some of the phantom and patient RF
data used in this work are available for academic research and
can be downloaded (http://www.cs.jhu.edu/~rivaz/Ultra-
soundElastography).

The embodiments illustrated and discussed in this specifi-
cation are intended only to teach those skilled in the art how
to make and use the invention. In describing embodiments of
the invention, specific terminology is employed for the sake
of clarity. However, the invention is not intended to be limited
to the specific terminology so selected. The above-described
embodiments of the invention may be modified or varied,
without departing from the scope of the invention, as appre-
ciated by those skilled in the art in light of the above teach-
ings. It is therefore to be understood that, within the scope of
the claims and their equivalents, the invention may be prac-
ticed otherwise than as specifically described.
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We claim:

1. A method of processing ultrasound data, comprising:

receiving ultrasound data for a first ultrasound image, said
first ultrasound image being represented as a first set of
discrete pixels corresponding to positions of a region of
interest;

receiving ultrasound data for a second ultrasound image,
said second ultrasound image being represented as a
second set of discrete pixels corresponding to positions
of said region of interest;

generating a displacement map by minimizing a cost func-
tion using a dynamic programming procedure that iden-
tifies each of said first set of discrete pixels with a cor-
responding one of said second set of discrete pixels;

refining said displacement map to obtain intermediate dis-
placement values corresponding to positions between
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said discrete pixels based on minimizing a local approxi-
mation to said cost function;

calculating a physical property of said region of interest

based on said displacement map;

wherein said receiving ultrasound data for said first ultra-

sound image corresponds to said region of interest hav-
ing a first temperature distribution,

wherein said receiving ultrasound data for said second

ultrasound image corresponds to said region of interest
having a second temperature distribution, and

said calculating said physical property of said region of

interest based on said displacement map is calculating a
temperature map.

2. A method of processing ultrasound data according to
claim 1, wherein said minimizing said local approximation to
said cost function is performed analytically to optimize said
intermediate displacement values corresponding to positions
within a continuous range between said discrete pixels.

3. A method of processing ultrasound data according to
claim 1, wherein said receiving ultrasound data for said first
ultrasound image corresponds to said region of interest being
under a first compression state,

wherein said receiving ultrasound data for said second

ultrasound image corresponds to said region of interest
being under a second compression state, and

said calculating said physical property of said region of

interest based on said displacement map is calculating a
strain map.

4. A method of processing ultrasound data according to
claim 3, wherein said calculating said strain map comprises
Kalman filtering.

5. A method of processing ultrasound data according to
claim 4, further comprising rendering an ultrasound image
taking into account said strain map.

6. A method of processing ultrasound data according to
claim 1, further comprising rendering an ultrasound image
taking into account said temperature map.

7. A method of processing ultrasound data according to
claim 1, wherein said cost function is modified to reduce
errors on said generating said displacement map due to por-
tions of said region of interest moving out of an imaging plane
of at least one of said first and second ultrasound image.

8. A method of processing ultrasound data according to
claim 1, wherein said cost function is modified to reduce
errors on said generating said displacement map using an
iterated reweighted least squares procedure to treat uncorre-
lated ultrasound data as outliers.

9. A non-transitory computer readable medium comprising
software, which software when executed by a computer,
causes the computer to:

receive ultrasound data for a first ultrasound image, said

first ultrasound image being represented as a first set of
discrete pixels corresponding to positions of a region of
interest;

receive ultrasound data for a second ultrasound image, said

second ultrasound image being represented as a second
set of discrete pixels corresponding to positions of said
region of interest;
generate a displacement map by minimizing a cost func-
tion using a dynamic programming procedure that iden-
tifies each of said first set of discrete pixels with a cor-
responding one of said second set of discrete pixels;

refine said displacement map to obtain intermediate dis-
placement values corresponding to positions between
said discrete pixels based on minimizing a local approxi-
mation to said cost function;
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calculate a physical property of said region of interest
based on said displacement map;

wherein said receiving ultrasound data for said first ultra-
sound image corresponds to said region of interest hav-
ing a first temperature distribution,

wherein said receiving ultrasound data for said second
ultrasound image corresponds to said region of interest
having a second temperature distribution, and

said calculating said physical property of said region of
interest based on said displacement map is calculating a
temperature map.

10. A non-transitory computer readable medium according
to claim 9, wherein said minimizing said local approximation
to said cost function is performed analytically to optimize
said intermediate displacement values corresponding to posi-
tions within a continuous range between said discrete pixels.

11. A non-transitory computer readable medium according
to claim 9, wherein said receiving ultrasound data for said first
ultrasound image corresponds to said region of interest being
under a first compression state,

wherein said receiving ultrasound data for said second
ultrasound image corresponds to said region of interest
being under a second compression state, and

said calculating said physical property of said region of
interest based on said displacement map is calculating a
strain map.

12. A non-transitory computer readable medium according
to claim 11, wherein said calculating said strain map com-
prises Kalman filtering.

13. A non-transitory computer readable medium according
to claim 12, wherein said software when executed by said
computer, further causes the computer to render an ultra-
sound image taking into account said strain map.

14. A non-transitory computer readable medium according
to claim 9, wherein said software when executed by said
computer, further causes the computer to render an ultra-
sound image taking into account said temperature map.

15. A non-transitory computer readable medium according
to claim 9, wherein said cost function is modified to reduce
errors on said generating said displacement map due to por-
tions of said region of interest moving out of an imaging plane
of at least one of said first and second ultrasound image.

16. A non-transitory computer readable medium according
to ¢laim 9, wherein said cost function is modified to reduce
errors on said generating said displacement map using an
iterated reweighted least squares procedure to treat uncorre-
lated ultrasound data as outliers.

17. An ultrasound system, comprising:

an ultrasound transducer configured to transmit and receive
ultrasound signals;

a data processor arranged to communicate with said ultra-
sound transducer to receive ultrasound data from said
ultrasound transducer,

wherein said data processor is configured to:

receive ultrasound data for a first ultrasound image, said
first ultrasound image being represented as a first set of
discrete pixels corresponding to positions of a region of
interest;
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receive ultrasound data for a second ultrasound image, said
second ultrasound image being represented as a second
set of discrete pixels corresponding to positions of said
region of interest;
generate a displacement map by minimizing a cost func-
tion using a dynamic programming procedure that iden-
tifies each of said first set of discrete pixels with a cor-
responding one of said second set of discrete pixels;

refine said displacement map to obtain intermediate dis-
placement values corresponding to positions between
said discrete pixels based on minimizing a local approxi-
mation to said cost function;

calculate a physical property of said region of interest

based on said displacement map,

wherein said receiving ultrasound data for said first ultra-

sound image corresponds to said region of interest hav-
ing a first temperature distribution;

wherein said receiving ultrasound data for said second

ultrasound image corresponds to said region of interest
having a second temperature distribution; and

said calculating said physical property of said region of

interest based on said displacement map is calculating a
temperature map.

18. An ultrasound system according to claim 17, wherein
said minimizing said local approximation to said cost func-
tion is performed analytically to optimize said intermediate
displacement values corresponding to positions within a con-
tinuous range between said discrete pixels.

19. An ultrasound system according to claim 17, wherein
said receiving ultrasound data for said first ultrasound image
corresponds to said region of interest being under a first
compression state,

wherein said receiving ultrasound data for said second

ultrasound image corresponds to said region of interest
being under a second compression state, and

said calculating said physical property of said region of

interest based on said displacement map is calculating a
strain map.

20. An ultrasound system according to claim 19, wherein
said calculating said strain map comprises Kalman filtering.

21. An ultrasound system according to claim 20, wherein
said data processor is further configured to render an ultra-
sound image taking into account said strain map.

22. An ultrasound system according to claim 17, wherein
said data processor is further configured to render an ultra-
sound image taking into account said temperature map.

23. An ultrasound system according to claim 17, wherein
said cost function is modified to reduce errors on said gener-
ating said displacement map due to portions of said region of
interest moving out of an imaging plane of at least one of said
first and second ultrasound image.

24. An ultrasound system according to claim 17, wherein
said cost function is modified to reduce errors on said gener-
ating said displacement map using an iterated reweighted
least squares procedure to treat uncorrelated ultrasound data
as outliers.
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