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(57) ABSTRACT

A method of processing ultrasound data includes receiving
ultrasound data for a first ultrasound image, the first ultra-
sound image being represented as a first set of discrete pixels
corresponding to positions of a region of interest; receiving
ultrasound data for a second ultrasound image, the second
ultrasound image being represented as a second set of discrete
pixels corresponding to positions of the region of interest;
generating a displacement map by minimizing a cost function
using a dynamic programming procedure that identifies each
of'the first set of discrete pixels with a corresponding one of
the second set of discrete pixels; refining the displacement
map to obtain intermediate displacement values correspond-
ing to positions between the discrete pixels based on mini-
mizing a local approximation to the cost function; and calcu-
lating a physical property of the region of interest based on the
displacement map.
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METHOD AND SYSTEM FOR PROCESSING
ULTRASOUND DATA

CROSS-REFERENCE OF RELATED
APPLICATION

[0001] This application claims priority to U.S. Provisional
Application No. 61/405,890 filed Oct. 22, 2010, the entire
contents of which are hereby incorporated by reference.

BACKGROUND
[0002] 1. Field of Invention
[0003] The field of the currently claimed embodiments of

this invention relates to systems and methods for processing
ultrasound data, and more particularly to systems and meth-
ods for processing ultrasound data using dynamic program-
ming procedures.

[0004] 2. Discussion of Related Art

[0005] Ultrasound imaging is commonly used in detecting
and targeting tumors, isolating organ structures, and monitor-
ing invasive surgical procedures. One example of an intraop-
erative application of ultrasound involves its use in treating
tumors. Such treatments include Electron Beam Radiation
Therapy (EBRT) and hepatic tumor thermal ablation. A com-
mon challenge to these procedures is to accurately image the
tumor so that the tumor can be treated most effectively while
minimizing damage to the surrounding tissue. A further chal-
lenge encountered in such tumor therapies involves the ability
to assess the state of the surrounding tissue after treatment or
between treatments.

[0006] Conventional brightness (or B-mode) ultrasound
has been used for intraoperative target imaging during ther-
mal ablation procedures. However, B-mode ultrasound typi-
cally reveals only hyperechoic (i.e., brighter ultrasound sig-
nature) areas that result from microbubbles and outgassing
from the ablated tissue. The tumor may be isoechoic, meaning
that its brightness in ultrasound imagery is substantially
indistinguishable from that of the surrounding tissue. In such
cases, ablation effectiveness is estimated by the ultrasound-
determined position of the ablation probe, and not by imagery
of the tumor or surrounding tissue.

[0007] Ultrasound elasticity imaging has emerged as an
effective technique to mitigate the disadvantages of B-mode
ultrasound. Ultrasound elasticity imaging exploits the differ-
ences in mechanical properties of the tumor from those of the
surrounding tissue medium. By imaging the deformation of
the tissue in response to pressure exerted by the ultrasound
probe, the contour of the tumor may be extracted from the
surrounding tissue. In doing so, the ultrasound system gener-
ally tracks the deformation (or strain) of the tissue by tracking
the motion of “speckle,” or coherent scattering features
within the tissue.

[0008] Although an improvement over B-mode ultrasound,
related art ultrasound elasticity imaging has limitations. First,
related art image processing techniques result in artifacts and
noise that degrade the quality of the image, and thus may
impede effective target imaging. Second, related art image
processing techniques are generally computationally expen-
sive, which often results in significant lag times in image
display. The artifacts and noise in related art ultrasound elas-
ticity imagery generally results from speckle decorrelation
due to speckle out-of-plane motion, and shadowing.

[0009] Another problem regarding related art ultrasound
elasticity imaging is that the technician may easily apply too
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much pressure to the tissue surrounding the tumor. This exac-
erbates the problem of out-of-plane motion, because the sur-
rounding tissue spreads out of the path (and thus out of the
field of view) of the ultrasound probe. Further, applying too
much pressure on the surrounding tissue may dislocate the
tumor and temporarily alter its shape. Once the pressure is
released, the tumor may return to its original location and
shape. As such, the location and shape of the imaged tumor
(when pressure is applied) may be different from the location
and shape of the tumor in its “rest” state. The resulting inac-
curacy in target imaging may result in inaccurate delivery of
heat or radiation during treatment. Additionally, in the case of
multiple treatments, because each technician may apply dif-
fering and shear strain fields [25] (i.e., reconstruct the strain
tensor), Poisson’s ratio and Young’s modulus [26], [27]. The
axial resolution of ultrasound is determined by the pulse
length, and the lateral resolution is dictated by the center
frequency of the excitation and the transducer pitch. There-
fore, the lateral resolution is of order of magnitude lower than
axial resolution. As a result, few 2D elastography techniques
have been proposed to date. Initially, 2D motion estimation
started in the field of blood flow estimation using speckle
tracking [28]. Designed for blood flow estimation, these tech-
niques are not immediately suitable for elastography which
involves tissue deformation.

[0010] Attaching a coordinate system to the ultrasound
probe as in FIG. 1A, 7, x, and y in the ultrasound image are
generally defined as axial, lateral and out-of-plane directions.
Assume that the applied compression to the tissue is the Z
direction, and attach a coordinate system XY, Z to the applied
force. Letting d,, and d,, be the displacements in the Z and N
directions where N_LZ, axial and transverse strains are 6d,/06Z
and 6d,/0N. In most experimental setups (including freehand
palpation elastography), z and Z are parallel and N will be
either lateral or out-of-plane, and therefore d,, cannot be esti-
mated accurately.

[0011] To calculate an accurate transverse strain, Z and z
are perpendicular in [29] by applying the compression force
perpendicular to the ultrasound imaging axis. Therefore,
transverse strain is in the z direction of the ultrasound probe
and hence can be measured with high accuracy. However,
such an experimental setup is not possible in many medical
applications. Beam steering has been used to solve this issue
[30]. In freehand palpation elastography, beam steering
causes z and Z to be unparallel, so that a component of the d
is in the z direction. The steering angle determines the angle
between z and Z. Unfortunately, large steering angles are
required to obtain accurate estimates of lateral strain, which is
possible in phased arrays and not in linear arrays.

[0012] Lateral strains estimation is obtained in [31] by
iteratively calculating axial strain, companding RF data and
interpolating in the lateral direction. (We hereafter assume the
applied force is in the z direction (i.e., Z and z are parallel) and
therefore we use the term lateral strain instead of the term
transverse strain.) In another work [32], tissue deformation
degrees of force, dislocation and distortion of the tumor may
further degrade the precision of the determined location and
size of the tumor.

[0013] Accordingly, there remains a need for improved
systems and methods for processing ultrasound data.

SUMMARY

[0014] A method of processing ultrasound data according
to some embodiments of the current invention includes
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receiving ultrasound data for a first ultrasound image, the first
ultrasound image being represented as a first set of discrete
pixels corresponding to positions of a region of interest;
receiving ultrasound data for a second ultrasound image, the
second ultrasound image being represented as a second set of
discrete pixels corresponding to positions of the region of
interest; generating a displacement map by minimizing a cost
function using a dynamic programming procedure that iden-
tifies each of the first set of discrete pixels with a correspond-
ing one of the second set of discrete pixels; refining the
displacement map to obtain intermediate displacement values
corresponding to positions between the discrete pixels based
on minimizing alocal approximation to the cost function; and
calculating a physical property of the region of interest based
on the displacement map.

[0015] A computer readable medium according to some
embodiments of the current invention includes software,
which software when executed by a computer, causes the
computer to receive ultrasound data for a first ultrasound
image, the first ultrasound image being represented as a first
set of discrete pixels corresponding to positions of a region of
interest; receive ultrasound data for a second ultrasound
image, the second ultrasound image being represented as a
second set of discrete pixels corresponding to positions of the
region of interest; generate a displacement map by minimiz-
ing a cost function using a dynamic programming procedure
that identifies each of the first set of discrete pixels with a
corresponding one of the second set of discrete pixels; refine
the displacement map to obtain intermediate displacement
values corresponding to positions between the discrete pixels
based on minimizing a local approximation to the cost func-
tion; and calculate a physical property of the region of interest
based on the displacement map.

[0016] An ultrasound system according to some embodi-
ments of the current invention includes an ultrasound trans-
ducer configured to transmit and receive ultrasound signals,
and a data processor arranged to communicate with the ultra-
sound transducer to receive ultrasound data from the ultra-
sound transducer. The data processor is configured to receive
ultrasound data for a first ultrasound image, the first ultra-
sound image being represented as a first set of discrete pixels
corresponding to positions of a region of interest; receive
ultrasound data for a second ultrasound image, the second
ultrasound image being represented as a second set of discrete
pixels corresponding to positions of the region of interest;
generate a displacement map by minimizing a cost function
using a dynamic programming procedure that identifies each
of the first set of discrete pixels with a corresponding one of
the second set of discrete pixels; refine the displacement map
to obtain intermediate displacement values corresponding to
positions between the discrete pixels based on minimizing a
local approximation to the cost function; and calculate a
physical property of the region of interest based on the dis-
placement map.

BRIEF DESCRIPTION OF THE DRAWINGS

[0017] Further objectives and advantages will become
apparent from a consideration of the description, drawings,
and examples.

[0018] FIG. 1A is a schematic illustration to explain some
concepts of methods of processing ultrasound data and ultra-
sound systems according to an embodiment of the current
invention. Axial, lateral, and out-of-plane directions are
shown. The coordinate system is attached to the ultrasound
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probe. The sample (i,j) marked by xmoved by (a, , 1, ), a, ;and
1, ; are, respectively, axial and lateral displacements and ini-
tially are integer in dynamic programming (DP).

[0019] FIG. 1B is a schematic illustration of an ultrasound
system according to an embodiment of the current invention.
[0020] FIGS. 2A and 2B are schematic illustrations to
explain some concepts of methods of processing ultrasound
data and ultrasound systems according to an embodiment of
the current invention. FIG. 2A: In I, the initial estimates (in
black) are updated by the arrows (three components of Ad) to
new estimates (in red) after an iteration of 2D AM. To find Ad
using (19), it is required to calculate image gradient at the
off-grid initial estimate locations (in black) on I,. FIG. 2B:
Schematic plot of two RF-data ], and I, each sampled at three
locations (black dots). The black dashed-dotted arrow shows
Aa of the sample on I, (ignoring the regularization term)
which requires calculating the gradient on I, at an off-grid
location. The blue dashed arrow shows Aa of an off-grid
sample on I, (ignoring the regularization term) which
requires calculating the gradient on I, at an on-grid location.
Ignoring second-order derivatives, the length of the two
arrows is equal. FIG. 2A. Three samples on I, (left) and
corresponding matches on I, (right). FIG. 2B. Inverse gradi-
ent estimation.

[0021] FIGS. 3A-3F show axial strain estimation in the first
simulated phantom. (3A) The SNR values corresponding to
the unbiased regularization calculated in the entire image.
(3B) Schematic plot showing the underestimation of the dis-
placement (Data+reg. curve) with unbiased regularization
(referto the text). (3C), (3D). The calculated displacements at
the bottom of a RF-line at 2% strain and 6% strain levels
respectively with biased and unbiased regularization terms.
The ground truth matches the displacement given by the
biased regularization almost perfectly, and therefore is not
shown (3C) and (3D) not to block the biased regularization
results. The length of the RF-line is 2560 (49.3 mm). (3E) The
SNR values corresponding to the unbiased regularization cal-
culated by omitting the bottom 300 samples of the image. 3F
The SNR values corresponding to the biased regularization
calculated in the entire image. Note that the scale of the SNR
in graph 3A is much smaller than that of graphs (3E) and (3F).
(3A) Unbiased reg. Entire image. (3B) Schematic displace-
ments. (3C) Calculated displacements at 2% strain. (3D) Cal-
culated displacements at 6% strain. (3E) Unbiased reg. Top of
the image. (3F) Biased reg. Entire image.

[0022] FIG. 4 shows lateral strain estimation using the 2D
AM method in the first simulated phantom.

[0023] FIGS. 5A and 5B show Bias and Variance of the
axial strain as a function of the axial regularization weight a..
The ground truth axial and lateral strain fields are respectively
uniform 2% and v% fields (v=0.49 is the Poisson’s ratio). The
solid blue and dashed black curves both correspond to unbi-
ased regularization and the solid black curve corresponds to
the biased regularization. In the solid blue and solid black
curves, the entire image is included in the calculation of the
bias and noise. In the dashed black curve the bottom part of
the strain field which suffers from high bias [FIG. 3B] is
excluded from the calculation of the bias and noise. 1D AM
and 2D AM have very similar bias and variance. The curves
with and without IRLS are also very close. Therefore each
curve corresponds to 1D AM or 2D AM with or without IRLS.
(3A) Bias. (3B) Variance.

[0024] FIG. 6A-6D: Measurements in (6A) are in mm. In
(6B), a scatterer is shown in the bottom left part as a red dot.
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Its displacement is calculated by interpolating the displace-
ments of its three neighboring nodes on the mesh. The target
(circular) and background (rectangular) windows for CNR
calculation of (6D) are shown in (6C). (6A) Simulation phan-
tom. (6B) Finite element mesh. (6C) Finite element strain.
(6D) CNR.

[0025] FIGS. 7A and 7B show Bias and Variance of the
lateral strain as a function of the axial regularization weight a.
The ground truth axial and lateral strain fields are respectively
uniform 2% and 2v% fields (v=0.49 is the Poisson’s ratio).
The solid blue curve corresponds to unbiased regularization
and the dashed and solid black curves correspond to the
biased regularization. IRLS is not used in the solid blue and
dashed black curves. (7A) Bias. (7B) Variance.

[0026] FIG. 8A-8C: (8A) shows the strain field calculated
using least squares regression of the uncontaminated dis-
placement field. (8B) depicts the strain field calculated using
least squares regression of the contaminated displacement
field. (8C) shows the strain field calculated from the noisy
measurements of (8D) using the proposed Kalman filter (KF
in (8B) and 8C refers to Kalman filter). The pixels of images
in (8A to 8C) are respectively the ground truth (unavailable)
strain values €, ;, the noisy measurements z, ;, and posterior
strain values &, ;. The brightness scale in (8A-8C) is the same.
(8D), (8E) are the strain estimation at the horizontal line
shown in (8A)-(8C). (8D) is magnified in (8E) around the
step. The Kalman filter removes the noise while keeping the
image sharp, due to the variable model noise of (27). (8A)
Ground truth strain. (8B) Strain without KF. (8C) Strain with
KF. (8D) Strain estimate. (8E) Strain estimates.

[0027] FIG. 9A-9F show phantom experimental results.
The top row shows axial displacement and axial strains as
labeled (KF in (9C) refers to Kalman filter). Average axial
strain and maximum strain are approximately 6.6% and 11%.
(9D) and (9E) show lateral displacement and lateral strain,
respectively. (9F) shows residuals as the regularization
weight varies. (9A) Axial displacement (mm). (9B) Axial
strain. (9C) Axial strain with KF. (9D) Lateral displacement
(mm). (9E) Lateral strain. (9F) Residuals.

[0028] FIGS.10A-10C show phantom experimental results
showing the resolution of the 2D AM. (10A) Strain image.
The edge spread function is evaluated along the vertical line.
(10B) The strain across the edge [vertical line in (10A)] for
the five shown regularization values. (10C) The MTF calcu-
lated across the vertical line in (10A). Spatial resolution is
defined as the spatial frequency when the value of MTF is 0.1.
(10A) Axial strain. (10B) Strain profile. (10C) MTF.

[0029] FIGS. 11A-111 show results of the CIRS elastogra-
phy phantom at 5% maximum strain at different axial and
lateral sampling rates. The hard lesion is spherical and has a
diameter of 1 cm. Downsampling is performed by simply
skipping samples in the axial or (and) lateral directions. In
(11C and 11F)), a downsampling ratio of 2 is applied in both
axial and lateral directions. The lateral displacement is shown
in number of samples in (11D)-(11F). (11H) and (111) show
the CNR between the target and background windows in the
strain images as the axial or lateral downsampling rates
change. The target and background windows are shown in the
axial strain images (11A- (11C) and the lateral strain image
(11G). In (111), the lateral strain curve is not calculated for
downsampling ratios of 6 and higher because the background
window moves out of the image. The black dashed curve with
the highest CNR is the strain obtained with the Kalman filter
(KF). (11A) Axial downsamp. ratio=2. (11B) Lateral down-
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samp. ratio=2. (11C) Ax.-lat. downsamp. rat=2. (11D) Axial
downsamp. ratio=2. (11E) Lateral downsamp. ratio=2. (11F)
Ax.-lat. downsamp. rat=2. (11G) Lateral downsamp. ratio=2.
[0030] FIG. 12A-12C: Shows the axial strain field calcu-
lated by least squares regression of the noisy displacement
field. (12B) depicts the strain field calculated from the noisy
measurements of (12A) using the proposed Kalman filter (KF
in (12A) and (12B) refers to Kalman filter). The pixels of
images in (12A) and (12B) are respectively the least squares
measurements z, , and posterior strain values &, (12C)
shows the strain estimation at the 17 mm deep horizontal line
shown in (12A) to (12B). The Kalman filter removes the noise
while keeping the image sharp, due to the variable model
noise of (27). (12A) Strain without KF. (12B) Strain with KF.
(12C) Strain plots.

[0031] FIGS. 13A-131 show in vivo images of the thermal
lesion produced by RF ablation therapy of liver cancer. All
images acquired after ablation. First, second, and third rows
correspond to the first, second and third patients respectively.
The thermal lesion shows in (13B), (13F) and (13J) as dark,
surrounded by normal tissue in white. The lateral displace-
ment images are shown in number of samples (they do not
immediately carry anatomical information). In (13B), (13D),
(13F), (13H), (13]), and (131) the delineated thermal lesions
is shown. The nonunity aspect ratio in the axes of the B-mode
and strain images should be considered when comparing
them to the CT scans. (13A) B-mode patient 1. (13B) Axial
strain. (13C) Lateral displacement. (13D) CT patient 1. (13E)
B-mode patient 2. (13F) Axial strain. (13G) Lateral displace-
ment. (13H) CT patient 2. (13I) B-mode patient 3. (13] Axial
strain. (13K) Lateral displacement. (13L) CT patient 3.
[0032] FIGS. 14A-14G show in vivo images of the fourth
patient before RF ablation. In (14A), the left anterior branch
of portal vein is marked as 1 and 2 and has low pressure and
therefore compresses easily. Arteries (marked as 3 and 4) and
the middle hepatic vein (marked as 5) however pulsate with
the heart beat and may have low or high pressure. (14B) and
(14C) both show the axial strain from the same location
before ablation. They are calculated at two different phases of
the heart beat. The cancer tumor is discernible in (14B) and
(14C) (regardless of the systolic or diastolic blood pressure),
and its boundary is shown. 1 and 2 [as marked in (14A)]
correspond to the high strain area in both (14B) and (14C).
Since 3,4, and 5 [as marked in (14A)] pulsate, they may look
hard[as in (14B)] or soft [as in (14C)]. (14D) shows the lateral
displacement. The tumors is not visible in this image. (14E)
shows the motion of the probe and the variation in the diam-
eter of the arteries due to the heart beat (refer to the text).
(14F) is the arterial phase and (14G) is the venous phase
contrast CT images. The numbers 1-5 mark the same anatomy
as (14A) B-mode pre-ablation. (14B) Axial strain pre-abla-
tion. (14C) Axial strain pre-ablation. (14D) Lateral displace-
ment pre-ablation. (14E). (14F) CT pre-ablation. (14G) CT
pre-ablation.

[0033] FIGS. 15A-15D show in vivo images of the fourth
patient after RF ablation. Similar to FIG. 14, the hepatic vein
(marked as 5) can have low strain [as in (15B)] or high strain
[as in (15C)] values. (15A) B-mode post-ablation. (15B)
Axial strain post-ablation. (15C) Axial strain postablation.
(15D) Lateral displacement postablation.

DETAILED DESCRIPTION

[0034] Some embodiments of the current invention are dis-
cussed in detail below. In describing embodiments, specific
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terminology is employed for the sake of clarity. However, the
invention is not intended to be limited to the specific termi-
nology so selected. A person skilled in the relevant art will
recognize that other equivalent components can be employed
and other methods developed without departing from the
broad concepts of the current invention. All references cited
anywhere in this specification, including the Background and
Detailed Description sections, are incorporated by reference
as if each had been individually incorporated. The references
cited in square brackets are listed at the end of the specifica-
tion.

[0035] Elastography involves imaging the mechanical
properties of tissue and has numerous clinical applications.
Among many variations of ultrasound elastography [1]-[4],
some embodiments of the current invention focuses on real-
time static elastography, a well-known technique that applies
quasi-static compression of tissue and simultaneously images
it with ultrasound. Within many techniques proposed for
static elastography, some embodiments of the current inven-
tion are directed to freehand palpation elasticity imaging
which involves deforming the tissue by simply pressing the
ultrasound probe against it. It requires no extra hardware,
provides ease of use and has attracted increasing interest in
recent years [5]-[10]. Real-time elastography is of key impor-
tance in many diagnosis applications [11], [6], [12], [8], [13]
and in guidance/monitoring of surgical operations [14]-[16].
[0036] Global and local decorrelation between the pre- and
post-compression ultrasound images compromises the qual-
ity of the elasticity images. The main sources of global deco-
rrelation in freehand palpation elastography are change of
speckle appearance due to scatterer motion and out-of-plane
motion of the probe (axial, lateral and out-of-plane directions
are specified in FIG. 1A). Examples of local decorrelation
are: 1) a decrease in the ultrasonic signal to noise ratio with
depth, 2) low correlation close to arteries due to complex
motion and inside blood vessels due to blood motion, 3)
extremely low correlation in lesions that contain liquid due to
the incoherent fluid motion [17], [8], and 4) out-of-plane
motion of movable structures within the image [17].

[0037] Most elastography techniques estimate local dis-
placements of tissue based on amplitude correlation [18], [2]
or phase correlation of the radio-frequency (RF) echoes [19]-
[21]. Assuming a stationary signal model for the RF data, the
use of large correlation windows helps to reduce jitter errors
(variance) for all motion field estimation techniques studied
in [18] and [22]. This is intuitive as larger windows contain
more information. However, in practice RF data is not sta-
tionary and, for large deformations, the decorrelation
increases with window size. Therefore, in addition to reduc-
ing the spatial resolution [23], larger windows result in sig-
nificant signal decorrelation [24], [23], [18]. Coarse-to-fine
hierarchical search is used in [23] to combine the accuracy of
large windows with the good spatial resolution of small win-
dow. However, the issue of signal decorrelation within the
window remains unresolved in this approach and can cause
the highest level of the hierarchical search to fail.

[0038] All of the aforementioned methods either do not
calculate the lateral displacement or they just calculate an
approximate integer lateral displacement. A two-dimensional
(2D) displacement field is required to calculate the thermal
expansion, lateral is modeled by locally affine transforma-
tions to obtain both lateral and axial strains. Change of
speckle appearance is taken into account by proposing a
Lagrangian speckle model [33]. Although they provide high
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quality lateral strain, these techniques are computationally
expensive and are not suitable for real-time implementation.
[0039] Axial strain is used in [34] to enhance the quality of
lateral displacement estimation. Tissue is assumed to be
incompressible and isotropic and therefore axial, lateral and
out-of-plane strains should add to zero. However, many tis-
sues cannot be considered incompressible. In fact, some
research has even focused on imaging the ratio of the axial
and lateral strain (i.e., the Poisson’s ratio v) [31].

[0040] While most previously mentioned methods use tis-
sue motion continuity to confine the search range for the
neighboring windows, the displacement of each window is
calculated independently and hence is sensitive to signal
decorrelation. Since data alone can be insufficient due to
signal decorrelation, Pellot-Barakat et al. [35] proposed mini-
mizing a regularized energy function that combines con-
straints of conservation of echo amplitude and displacement
continuity. In another work [36], both signal shift and scale
are found through minimization of a regularized cost func-
tion. The computation times of these methods are reported to
be a few minutes and therefore they are not immediately
suitable for real time elastography. In [37] and [38], few
phase-based methods are regularized and strain and elasticity
modulus images are obtained. The regularization term is the
Laplacian (second derivative) of the motion field and is spa-
tially variant based on the peak-value of the correlation coef-
ficient. The regularization makes the method significantly
more robust to signal decorrelation. However, it is still prone
to decorrelation within each window especially for large
strain rates. In a recent work [39], a displacement field is first
calculated by minimizing phase differences in correlation
windows [21]. The strain image is then estimated from the
displacement field by optimizing a regularized cost function.
The regularization assures smooth strain image calculation
from the noisy displacement estimates.

[0041] Dynamic programming (DP) can be used to speed
the optimization procedure [40], but it only gives integer
displacements. (See also U.S. application Ser. No.
11/905501, U.S. Published App. No. 2008/0306384 A1, filed
Oct. 1, 2007, the entire contents of which are incorporated
herein by reference.) Subsample displacement estimation is
possible [40], but it is computationally expensive, particu-
larly if subsample accuracy is needed in both axial and lateral
directions. Therefore, only axial subsample displacement is
calculated [40]. In addition, a fixed regularization weight is
applied throughout the image. To prevent regions with high
local decorrelation from introducing errors in the displace-
ment estimation one should use large weights for the regular-
ization term, resulting in over-smoothing.

[0042] Some embodiments of the current invention are
directed to two novel real-time elastography methods based
on analytic minimization (AM) of cost functions that incor-
porate similarity of echo amplitudes and displacement conti-
nuity. Similar to DP, the first method gives subsample axial
and integer lateral displacements. The second method gives
subsample 2D displacement fields and 2D strain fields. The
size of both displacement and strain fields is the same size as
the RF-data (i.e., the methods are not window based and the
displacement and strain fields are calculated for all individual
samples of RF-data). An embodiment of the current invention
provides a novel regularization term and demonstrates that it
minimizes displacement underestimation caused by smooth-
ness constraint. Another embodiment of the current invention
introduces the use of robust statistics implemented via iter-
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ated reweighted least squares (IRLS) to treat uncorrelated
ultrasound data as outliers. Another embodiment of the cur-
rent invention introduces the use of Kalman filtering [41] for
calculating strain images from the displacement fields. Simu-
lation and experimental results according to some exemplar
embodiments of the current invention are provided below.
Also, an example of a clinical pilot study utilizing the system
according to an embodiment of the current invention for
monitoring thermal ablation in patients with liver tumors is
also provided below.

[0043] An embodiment of the current invention is directed
to a method of processing ultrasound data that includes
receiving ultrasound data for a first ultrasound image and
receiving ultrasound data for a second ultrasound image. The
first ultrasound image is represented as a first set of discrete
pixels corresponding to positions of a region of interest and
the second ultrasound image is represented as a second set of
discrete pixels corresponding to positions of the region of
interest. The term “ultrasound data” is intended to broadly
include ultrasound data in any form that can be processed for
ultrasound imaging. For example, it can be radio frequency
(RF) ultrasound data, or processed RF data. Processed ultra-
sound data can include, but is not limited to, ultrasound data
that is mixed and filter to envelope detect, for example, to
reduce from RF to video. Further filtering and processing can
also be done. The term “pixel” is intended to broadly refer to
a picture element that can include one-dimensional, two-
dimension and/or three-dimensional pixels. Three-dimen-
sional pixels are sometimes also referred to as voxels. Voxels
are intended to be included within the definition of the term
“pixel.” For example, pixels can be discrete elements of
A-mode, B-mode and/or C-mode ultrasound images.

[0044] The method of processing ultrasound data also
includes generating a displacement map by minimizing a cost
function using a dynamic programming procedure that iden-
tifies each of the first set of discrete pixels with a correspond-
ing one of the second set of discrete pixels, refining the
displacement map to obtain intermediate displacement values
corresponding to positions between the discrete pixels based
on minimizing a local approximation to the cost function, and
calculating a physical property of said region of interest based
on the displacement map.

[0045] The term “dynamic programming” refers to a
method for solving complex problems by breaking them
down into simpler sub-problems. It is applicable to problems
exhibiting the properties of overlapping sub-problems, which
are only slightly smaller and optimal substructure. When
applicable, the method takes far less time than naive methods.
In terms of mathematical optimization, dynamic program-
ming usually refers to simplifying a decision by breaking it
down into a sequence of decision steps over time. This is done
by defining a sequence of value functions V1, V2, ... Vn, with
an argument y representing the state of the system at times i
from 1 to n. The definition of Vn(y) is the value obtained in
state y at the last time n. The values Vi at earlier times i=n-1,
n-2, ..., 2,1 can be found by working backwards, using a
recursive relationship called the Bellman equation. Fori=2, .
.., 0, Vi-1 at any state y is calculated from Vi by maximizing
a simple function (usually the sum) of the gain from decision
i-1 and the function Vi at the new state of the system if this
decision is made. Since Vi has already been calculated for the
needed states, the above operation yields Vi -1 for those
states. Finally, V1 at the initial state of the system is the value
of the optimal solution. The optimal values of the decision
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variables can be recovered, one by one, by tracking back the
calculations already performed.

[0046] In some embodiments of the current invention, the
minimizing of the local approximation of the cost function
can be performed analytically to optimize the intermediate
displacement values corresponding to positions within a con-
tinuous range between the discrete pixels. In some embodi-
ments of the current invention, the receiving ultrasound data
for the first ultrasound image can correspond to the region of
interest being under a first compression state, the receiving
ultrasound data for the second ultrasound image can corre-
spond to the region of interest being under a second compres-
sion state, such that the calculating the physical property of
the region of interest based on the displacement map is cal-
culating a strain map. The term “compression state” is
intended to include conditions in which positive or zero pres-
sure is applied to the region of interest. Although less practi-
cal in some ultrasound applications, the term compression
state can also include situations of negative compression, i.e.,
stretching. Therefore, a first compression state and a second
compression state can refer to situations in which no pressure
is applied, followed by applying a pressure. It can also include
situations in which a first non-zero pressure is applied fol-
lowed by a second non-zero pressure. The first and second
non-zero pressures will typically be different values, but gen-
erally they could also be equal. In some embodiments of the
current invention, the calculating the strain map can include
Kalman filtering. In some embodiments of the current inven-
tion, the method can further include rendering an ultrasound
image taking into account the strain map.

[0047] The broad concepts of the current invention are not
limited to only rendering strain images. For example, in some
embodiments of the current invention, the receiving ultra-
sound data for the first ultrasound image can correspond to the
region of interest having a first temperature distribution, the
receiving ultrasound data for the first ultrasound image can
correspond to the region of interest having a second tempera-
ture distribution, and the calculating the physical property of
the region of interest based on the displacement map is cal-
culating a temperature map. The method of processing ultra-
sound data according to according to some embodiments of
the current invention can further include rendering an ultra-
sound image taking into account the temperature map.

[0048] In some embodiments of the current invention, the
cost function can be modified to reduce errors on the gener-
ating the displacement map due to portions of the region of
interest moving out of an imaging plane of at least one of the
first and second ultrasound images. In some embodiments of
the current invention, the cost function can be modified to
reduce errors on the generating the displacement map using
an iterated reweighted least squares procedure to treat uncor-
related ultrasound data as outliers. The term “iterated
reweighted least squares” (IRLS) refers to a method used to
solve certain optimization problems. It solves objective func-
tions of the form:

argmin, So,(1)(y,-£(r))?

by an iterative method. IRLS is used to find the maximum
likelihood estimates of a generalized linear model, and in
robust regression to find an M-estimator, as a way of mitigat-
ing the influence of outliers in an otherwise normally-distrib-
uted data set. For example, by minimizing the least absolute
error rather than the least square error. One of the advantages
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of IRLS over linear and convex programming is that it can be
used with Gauss-Newton and Levenberg-Marquardt numeri-
cal algorithms.

[0049] Some embodiments of the current invention are
directed to a computer readable medium comprising soft-
ware, which software when executed by a computer, causes
the computer to receive ultrasound data for a first ultrasound
image, the first ultrasound image being represented as a first
set of discrete pixels corresponding to positions of a region of
interest; receive ultrasound data for a second ultrasound
image, the second ultrasound image being represented as a
second set of discrete pixels corresponding to positions of the
region of interest; generate a displacement map by minimiz-
ing a cost function using a dynamic programming procedure
that identifies each of the first set of discrete pixels with a
corresponding one of the second set of discrete pixels; refine
the displacement map to obtain intermediate displacement
values corresponding to positions between the discrete pixels
based on minimizing a local approximation to the cost func-
tion; and calculate a physical property of the region of interest
based on the displacement map. The software, according to
some embodiments of the current invention, can be config-
ured to perform the above-noted methods on the computer
when executed.

[0050] FIG. 1B is a schematic illustration of an ultrasound
system 100 according to some embodiments of the current
invention. The ultrasound system 100 includes an ultrasound
probe 105 adapted to communicate with a computer 110 over
a signal cable 107. The computer 110 can be configured with
a data processor 112 and a memory 115. The computer 100
can also have a user interface 120, which can be integrated
into computer 120, or can be a separate computer that com-
municates with computer 110 over a network connection 122.
[0051] The ultrasound system 100 may also include an
optional ultrasound probe mount 125, which may be con-
nected to a mechanical arm 130. Mechanical arm 130, which
is optional, may be a robotic arm that is controlled by com-
puter 110, or a passive arm that serves to stabilize probe
mount 125. In the latter case, ultrasound probe 105 and probe
mount 125 may be moved (translated and/or rotated) manu-
ally by a technician.

[0052] Ultrasound probe 105 can be a commercially avail-
able ultrasound probe. Ultrasound probe 105, computer 110,
and user interface 120 may be components of a commercially
available ultrasound imaging system.

[0053] Computer 110 can be a single computer or can be
multiple computers that can be co-located, or can be remotely
located from each other and connected to each other over a
network. Similarly, processor 112 can be a single computer
processor or multiple processors, which can be distributed
over multiple computers.

[0054] Memory 115 can include one or more electronic
storage media (e.g., but not limited to, hard drive, flash drive,
RAM, optical storage, etc.) that can be located within com-
puter 110, or distributed over multiple computers. One skilled
in the art will readily appreciate that many such variations to
ultrasound system 100 are possible and within the scope of
the current invention.

[0055] Memory 115 can be encoded with computer read-
able instructions and data (hereinafter “the software”) for
performing processes associated with embodiments of the
current invention. If ultrasound probe 105, computer 110, and
user interface 120 are parts of an integrated commercially
available ultrasound imaging system, then the software
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according to some embodiments of the current invention can
be installed and integrated into existing machine readable
instructions and data that come bundled with the ultrasound
imaging system.

[0056] FIG. 1B illustrates ultrasound probe 105 acousti-
cally coupled to a patient’s anatomy 135, which includes a
tissue medium 145. Within tissue medium is an aberration
140. Aberration 140 may be any region or object within tissue
medium 140 that has mechanical properties, such as Young’s
Modulus, that is different from that of surrounding tissue
medium 145. Examples of aberration 140 include a tumor, a
region of ablated tissue, a foreign object, a cavity resulting
from a removed tumor, an organ—such as a prostate gland,
and the like. Tissue medium 145 may include a liver, a breast,
or any tissue region that surrounds aberration 140.

EXAMPLES
I1. Methods

[0057] Assume that the tissue undergoes a deformation and
let I1 and 12 be two images acquired from the tissue before
and after the deformation. Letting I, and I, be of size mxn
(FIG. 1), our goal is to find two matrices A and L where the (i,
Jth component of A(a, ;) and L(], ) are the axial and lateral
motion of the pixel (i, j) of I, (we are not calculating the
out-of-plane motion). The axial and lateral strains are easily
calculated by spatially differentiating A in the axial direction
(resultingin A, )and L inthe lateral direction (resultinginL)).
The shear strains (not calculated in this work) can also be
easily calculated by spatially differentiating A in the lateral
direction (resulting in A,) or L in the axial direction (resulting
inL,).

[0058] In this section, we first give a brief overview of a
previous work (DP) that calculates integer values for A and L.
We then propose 1D analytic minimization (AM) as a method
that takes the integer displacement field from DP and refines
the axial displacement component. We then introduce 2D
analytic minimization (AM) that takes the integer displace-
ment of a single RF-line from DP and gives the subsample
axial and lateral displacement fields for the entire image. We
conclude this section by presenting a technique for calculat-
ing smooth strain field from the displacement field using
Kalman filtering.

A. Dynamic Programming (DP)

[0059] In order to present the general DP formulation, we
consider a single columnj (an RF-line) in I, (the image before
deformation) in FIG. 1. Let m and n be the length of the
RF-lines and the number of RF-lines in the images (FIG. 1).
Let o, and i, denote the axial and lateral displacements of the
ith sample of the RF-line in column j. In DP elastography
[40], a regularized cost function is generated by adding the
prior of displacement continuity (the regularization term) to
an amplitude similarity term. The displacement continuity
term for column j is

Ry, 1y 0y, )=0g (a0 oIt F (O]

which forces the displacements of the samplei (i.e., o, and 1)
be similar to the displacements of the previous sample i-1
(i.e., a,_;andl,_)). o, and o, are axial and lateral regulariza-
tion weights respectively. We write R(a,;, 1, @, , 1,_;) to

indicate the dependency of ¢, and 1, on j. The regularized cost
function for column j is then generated as following:
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Cilag, b, = [hG, ) - hli+a, j+ [+ @

min {Cj(daa dpy i= 1)+ Cj-1(dg, di, 0)

4. d 3 + Rj(ai, li, da, dl}

where d_and d; are temporary displacements in the axial and
lateral directions that are varied to minimize the term in the
bracket. After calculating C, fori=2. . . m, C, is minimized at
i=m giving o, and 1,,. The ¢, and 1, values that have mini-
mized the cost function at i=m are then traced back to i=1,
giving integer a, and i;, for all samples of jth line. The process
is performed for the next line j+1 until the displacement of the
whole image is calculated. The 2D DP method gives integer
axial and lateral displacement maps. In [40], we performed
hierarchical search to obtain subsample axial displacement
(the lateral displacement was not refined to subsample). DP is
an efficient method for global optimization and has been used
extensively in many applications in computer vision includ-
ing solving for optimal deformable models [42]. In the next
section, we propose an alternative method for calculating
sub-sample axial displacement which is both faster and more
robust than hierarchical DP.

B. 1D Analytic Minimization (AM)

[0060] Tissue deformations in ultrasound elastography are
usually very small and therefore a subsample displacement
estimation is required. We now develop a method that ana-
lytically minimizes a regularized cost function and gives the
refined displacement field following the work presented in
[16]. We first consider a specialization of (2) in which we only
consider refining axial displacements to subsample level.
[0061] Having the integer displacements o, and 1, from DP,
it is desired to find Ao, values such that o +Acq,, gives the
value of the displacement at the sample i fori=1...m(l,, o,
and Ao, correspond to line j. Hereafter, wherever the displace-
ments correspond to the jth line, j is omitted to prevent nota-
tion clutter). Such A, values will minimize the following
regularized cost function:

CilAai, ... , Aap) = 3

{1, )= hi+a + A, j+ 5] +aaa + Mg —aiy — Aai_y)* +

I

aia; + Ag; — a; jo — Aa; j1)?]}

where 0.,>0 and o>0 are tunable axial and lateral regular-
ization weights and subscript j—1 refers to the previous RF-
line (adjacent RF-line in the lateral direction).

[0062] Substituting 12(i+di+Adi) with its first-order Taylor
expansion approximation around d,, we have

Ci(Aay, ... ,Aay,) = 4)

(16, )= B+ a, j+1) - Bli+a, j+Aa)] +

i=

2 2
q(a; + Aa; — a1 — Aaj_ ]° + ay(a; + Aa; — a; j- — Aa; 1) ]}

where I', is the derivative of the I, in the axial direction. The
optimal Aa, values occur when the partial derivative of C,
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with respect to Aa, is zero. Setting (3C)/(3Ax,;)=0 fori=1 . .
. m we have

(152 +ozaD+z117)Aaj =le —(aaD +a,7)aj +wajy, )
1 -1 0 0 .. 0 ©)
-1 2 -1 0 .. 0

p=|0 -1 2 -1 ... 0
0 0 0 -11

where I',=diag(I',(1+d,, j+1,) . . . I';(m+dm, j+1,)), Aa=[Aa, ;
. Aa,W.]T, eTe, ...e, 1% e~1,(, )-L(+d,, j+l), a=[a, ;...
] 7 1is the identity matrix and a,_, is the total displacement
of the previous line (i.e., when the displacement of the j-1th
line was being calculated, a,_, was updated witha,_,+Aa,_)).
I',, D and I are matrices of size mxm and Aa, e and a are
vectors of size m.

[0063] Comparing 1D AM [as formulated in (5)] and 2D
DP, they both optimize the same cost function. Therefore,
they give the same displacement fields (up to the refinement
level of the DP). In the next two subsections, we will further
improve 1D AM.

[0064] 1) Biasing the Regularization: The regularization
term o (c,+Ac,—0,_;-Ac,_|)* penalizes the difference
between o,+Ac, and «,_;+Ad,_;, and therefore can result in
underestimation of the displacement field. Such underestima-
tion can be prevented by biasing the regularization by € to
ag(o+Aa,—o,_ -Aa,_ —€)?, where e=(a,,~a,)/(m-1) is the
average displacement difference (i.e., average strain)
between samples i and i-1. An accurate enough estimate of
d,,—d, isknown from the previous line. With the bias term, the
right-hand side of (5) becomes I'ze—((an+(x,i)a{;+a,(aj_l+
Aa,_,)+b where the bias term is b=(c.,[-€0 . . . Oe]” (only the
first and the last terms are nonzero) and all other terms are as
before. In the other words, except for the first and the last
equations in this system, all other m-2 equations are same as
).

[0065] Equation (5) can be solved for Aa; in 4 m operations
since the coefficient matrix I',>+a.,+a,,1 is tridiagonal. Utiliz-
ing its symmetry, the number of operations can be reduced to
2 m. The number of operations required for solving a system
with a full coefficient matrix is more than m?/3, significantly
more than 2 m.

[0066] 2)Making Flastography Resistant to Outliers: Even
with pure axial compression, some regions of the image may
move out of the imaging plane and decrease the decorrelation.
In such parts the weight of the data term in the cost function
should be reduced. The data from these parts can be regarded
as outliers and therefore a robust estimation technique can
limit their effect. Before deriving a robust estimator for 66 d,
we rewrite (4) as

m @)
C(Ad) = Z p(r) + R(AD)

i=1

where r=1,(i)-1,(i+d,)-T'5(i+d,)Ad, is the residual, p(r,)=r;
and R is the regularization term. The M-estimate of Ad is



US 2012/0128223 Al

Ad=arg min, {2,_, "p(r,)+R(Ad)} where p(r,) is a robust loss
function [43]. The minimization is solved by setting
3C/3Ad,~0

ar  ORAD) (8)

s Or  ORA)
PUgag * aadr

[0067] A common next step [44] is to introduce a weight
function w, where w(r;). r,/=p'(r;). This leads to a process
known as “iteratively reweighted least squares™ (IRLS) [45],
which alternates steps of calculating weights w(r,) forr,=1. .
.musing the current estimate of Ad and solving (8) to estimate
a new Ad with the weights fixed. Among many proposed
shapes for w(*), we compared the performance of Huber [44],
[43]

1 Inl<T ()]
=9 T
Rl I

Iril

and Cauchy [45]
[0068]

L 1 (10)
MU= TG TR

functions and discovered that the more strict Cauchy function
(which decreases with inverse of the square of the residual) is
more suitable in our application. To better discriminate out-
liers, we calculate the residuals r, at linear interpolation of the
integer sample displacements provided by DP. With the addi-
tion of the weight function, (8) becomes

wIy o DrahAa=wlhe-(aDrad)a+oa; +b (11

where w=diag(w(r; ) . . . w(r,,)). This equation will converge
to a unique local minimum after few iterations [45]. The
convergence speed however depends on the choice of T,
which in this work is defined manually. Since the Taylor
approximation gives a local quadratic approximation of the
original non-quadratic cost function, the effect of higher
orders terms increase if Ac, is large. Assuming that DP gives
the correct displacements, I Aa I, =e where I-Iis the infinity
norm and €=0.5. In practice, however, €<<0.5 because the
linear interpolation of the DP displacements (which is very
close to the correct displacement) is used to calculate the
residuals r;. Therefore, a small value can be assigned to T in
1D AM provided that DP results are trusted.

[0069] The coefficient matrix QqVI'22+aaD+ali in(11)is
the Hessian of the cost function C whose minimum is sought.
This matrix is strictly diagonally dominant (i.e., Iq,I>X,_Iq,)|
for all i where q,; is the i, jth element of Q), symmetric and all
diagonal entries are positive. Therefore, it is positive definite,
which means that setting the gradient of C to zero results in
the global minimum of C (not in a saddle point, a local
maximum or a local minimum) All of the 1D AM results
presented in this work are obtained with one iteration of the
above equation.
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[0070] 1D AM takes the integer axial and lateral displace-
ment fields from DP and gives refined axial displacement. It
inherits the robustness of DP and adds more robustness when
calculating the fine axial displacements via IRLS. However,
there are redundant calculations in this method which are
eliminated in 2D AM as described next.

C. 2D Analytic Minimization (AM)

[0071] In 2D AM, we modify (2) to calculate subsample
axial and lateral displacement fields simultaneously. The out-
line of our proposed algorithm is as follows.

[0072] 1) Calculate the integer axial and lateral displace-
ments of one or more seed RF-lines (preferably in the
middle of the image) using DP [(2)]. Calculate the linear
interpolation of the integer displacements as an initial
subsample estimate.

[0073] 2)Calculate subsample axial and lateral displace-
ments of the seed RF-line using 2D AM, as explained
below. Add the subsample axial and lateral displace-
ments to the initial estimate to get the displacement of
the seed line.

[0074] 3) Propagate the solution to the right and left of
the seed RF-line using the 2D AM method, taking the
displacement of the previous line as the initial displace-
ment estimate.

[0075] Benefits of 2D AM are two-fold. First it computes
subsample displacements in both axial and lateral directions.
Lateral strain contains important information from tissue
structure that is not available from axial strain [31], [46], [47].
Second, it is only required to calculate the displacement of a
single line using DP (the seed), eliminating the need to have
the integer displacement map for the entire image. This is
significant as in the 1D AM method, the initial step to calcu-
late the 2D integer displacements using DP takes about 10
times more than the 1D AM.

[0076] Assume that initial displacement estimates in the
axial direction, o, and in the lateral direction, 1,, are known
foralli=1... m samples of an RF-line. Note that ¢, and 1, are
not integer; for the seed line they are the linear interpolation
of'the integer DP displacements and for the rest of the lines are
the displacement of the previous line. It is desired to find Ac,
and Al, values such that the duple o, +Ac., 1,+Al, gives the axial
and lateral displacements at the sample i. Such (Ad,, Ac.)
values will minimize the following regularized cost function:

Ci(Aat, ... , Aam, Ali, ... , Aly) = (12)

(U1, )= B(i+a +Dag, j+1+ AP +

m
i=1

a(a; + Aa; — ai_y — Aaj_))? +

Balli + AL =Ly = Al P+ Bl + AL — 1 1))

where I(i, j) is the ith sample on the jth RF-line. Since we
perform the calculations for one RF-line at a time, we
dropped the index j to simplify the notations: a., 1,, Aa,, and
Alarea, ;1 , Aa, ;, and Al .. Al, ,_, is the lateral displacement
of the previous RF-line (note that I, ,_, is the total lateral
displacement of the previous line, i.e., when the displacement
of the j-lth line was being calculated, 1, ;_; was updated with
1, ;_1+Al; ;_,). Since in the first iteration o, and 1, (the initial
displacement estimates) are in fact the displacements of the
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previous RF-line, for the first iteration we have 1, ;_,=l,. This
simplifies the last term in the right-hand side to ',Al. The
regularization terms are o, f, and f';: o determines how close
the axial displacement of each sample should be to its neigh-
bor on the top and f, and f'; determine how close lateral
displacement of each sample should be to its neighbors on the
top and left (or right if propagating to the left). If the displace-
ment of the previous line is not accurate, it will affect the
displacement of the next line through the last term in the
right-hand side of (12). Although its effect will decrease
exponentially with j, it will propagate for few RF-lines.
Therefore, we set

B (13)

T L+l al

Bi

to prevent such propagation whererr, ;_, is the residual asso-
ciated with the displacement of the ith sample of the previous
line. A large residual indicates that the displacement is not
accurate and therefore its influence on the next line should be
small, which is realized via the small weight (3';. This is, in
principle, similar to guiding the displacement estimation
based on a data quality indicator [48]. The effect of the tun-
able parameters o, 3, and f§, is studied in Section III. Writing
the 2D Taylor expansion of the data term in (12) around (i+a,,
i+

L{i+aAy, jHAN Y=L+, jHIFACTS (TS (14)

where I'; , and I', ; are the derivatives of the I, at point (i+c,
j+l,) in the axial and lateral directions respectively. Note that
since the point (i+q;, j+1;) is not on the grid (a, and i, are not
integer), interpolation is required to calculate I', , and T', ;.
We propose a method in Section I I-C1 that eliminates the
need for interpolation. The optimal (Aq, Al) values occur
when the partial derivatives of Cj with respect to both Aat, and
Al, are zero. Setting (3C;)/(9Ac,,)=0 and (3C,)/(3A1,)=0 for i=1
... m and stacking the 2 m unknowns in Ad=[Ac,1,Ac,Al,
Ao.,,Al 17 and the 2 m initial estimates in d=[c, 1,1, . . .
a.,,]” we have

(I3} + Dy + Dy)Ad = e - Did, (15)

|
Q
<
S
Q
=]
|
Q
=
o o o o ©

D, =

0 0 0 ... = 0 a 0
0 0 0 .. 0 =B 0 B

where D,=diag(0, §', 0, B', . . . 0, f') is a diagonal matrix of
size 2 mx2 m, I',’=diag S (1) ... ' (m) is a symmetric
tridiagonal matrix of size 2 mx2 m with
B Bl (16)
3=~ T

;o 2
Lol Iy
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blocks on its diagonal entries where I', , and I';; are the
derivatives of the I, at point (i+c,j+1,) in the axial and lateral
directions

1’2:diag(1’27n(1), 1’2,1(1)‘ 1’2,&(2)‘ 1’2,1(2) .. '12,cx(m)‘
I f(m)) an

whereI', (i) and I, ,(i)' are calculated at point (i+c,, j+1,), and
e=[eeee,...e, |7, e~1 3L+, j+L).

[0077] We make four modifications to (15). First, we take
into account the attenuation of the ultrasound signal with
depth. As the signal gets weaker with depth, the first term in
the right-hand side of (15) (I';e gets smaller. This results in
increasing the share of the regularization term in the cost C,
and therefore over-smoothing the bottom of the image. The
attenuation of the ultrasound signal [49] reflected from the
depth d is {(d)=e2 08U where @, is the frequency
dependent attenuation coefficient of tissue and is equal to
0.63 dB/cm/MHz for fat [49], {, is the center frequency of the
wave (in MHz) and d is in cm. Having the exponential attenu-
ation equation, the attenuation level at sample i will be

» 1540 x 10%q, fylog(10) (13)
G=x'x=e———————i=1l .. m
201, x 10°

where 1540x10? is the speed of sound in tissue (in cm/sec)
and {, is the sampling rate of the ultrasound system (in MHz).
This is assuming that the TGC (time gain control) is turned
off. Otherwise, the TGC values should be taken into account
in this equation. Let the 2 mx2 m diagonal matrix Z be
Z=diag(C,, C;, Ay, &, . . . T, T,). To compensate for the
attenuation, we multiply the D, and D, matrices in (15) by Z,
and therefore reduce the regularization weight with depth. As
we will show in Sections III and IV, the regularization weight
can vary substantially with no performance degradation.
Therefore approximate values of the speed of sound and
attenuation coefficient will suffice. Second, we add a bias
term in the regularization similar to the 1D case. Here we only
bias the axial displacement since the difference between the
lateral displacements of the points on a RF-line is very small,
usually less than 4 RF-lines. Third, we exploit the fact that,
because the tissue is in contact with the ultrasound probe, the
axial displacement of the top of the image is zero relative to
the probe (the lateral displacement of the top of the image is
not zero as tissue might slip under the probe). Therefore, we
enforce the axial displacement of the first sample to be zero by
changing the first row of D, I',?, and I',. Fourth, we make the
displacement estimation robust via IRLS using the Cauchy
function (10). Similar to 1D AM, T is selected manually. For
the first (seed) RF-line, a small value can be selected for T if
DP results are trusted. For the next lines, the value of Ad
determines the accuracy of the Taylor expansion 14: for a
small Ad, the residuals of the inliers are small and therefore a
small T can be chosen, while for a large Ad the inliers might
give large residuals and therefore a large value for T is
required. Since the tissue motion is mostly continuous, Ad
mostly depends on the lateral sampling of the image (i.e., the
number of A-line per cm). Therefore if many A-lines are given
per cm of the image width, a small value of T will give the
optimum results. Since the amplitude of signal is decreasing
due to attenuation, we decrease the IRLS parameter T with
depth by multiplying it with C; at each sample i. With these
modifications, (15) becomes

WI'>+ZD\+ZD,Ad=WI',e 7D d+s (19
where W=diag(0, w(r,), w(r,), w(r,) . . . w(t,,), w(r,,)) (i.e.,
W, 07 Wa, ) 5 =W(r,) for i=1 . . . m except for W, ;=0
which guarantees the displacement of the first sample to be
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zero) is the weight function determined by the residuals r,=I,
(1, )-[LG+d, j+o)+AdT, +Ac,I', ], wis as before (10), the
bias term s is a vector of length 2 m whose all elements are
zero except the 2 m-Ith element: s,,,_,=oe, and e=(d,,-d, )/
(m-1) is as before. Similar to (11), the coefficient matrix
Q =WT',>+ZD +ZD, is strictly diagonally dominant, sym-
metric and all the diagonal entries are positive. Therefore
Q ispositive definite which means that solving (19) results in
the global minimum of the cost function C. The updated
displacement field (axial and lateral) will be d+Ad.

[0078] Equation (19) canbe solved for Ad in 9 m operations
since the coefficient matrix WI',>+ZD, +ZD, is pentadiagonal
and symmetric. This number is again significantly less than
((2 m)*/(3), the number of operations required to solve a full
system.

[0079] 1) Inverse Gradient Estimation: With the subsample
initial displacement field, the Taylor expansion should be
written around off-grid points, which requires calculation of
image gradient at these points [matrices I',* and I', (19)]. In
FIG. 2(A), this is equivalent to calculating gradient of I, on
the off-grid marks. There are two disadvantages associated
with this: 1) it requires interpolation of the gradients, and 2)
the image gradient should be recalculated after each iteration.
As proposed by [44], [50], image gradient can be instead
calculated at on-grid locations on image 1 in the following
way.

[0080] Consider two problems: 1) to find the matches for
grid points on I1 having the initial off-grid estimates on I,
and 2) to find the matches for the off-grid points on I, having
the initial grid estimates on I,. For both problems, I, values
must be interpolated on the off-grid values. However, the
second problem does not require interpolation of the image
gradient since the Taylor expansion is written around grid
points of I, [FIG. 2(B)]. It is shown in [51] that the two
techniques converge to the same results. Therefore, on one
hand inverse gradient calculation is both faster and easier to
implement, and on the other hand it causes no performance
degradation. Exploiting this, (19) becomes

(WI'24+ZD,+ZD5)Ad=WI'\& - ZD, d+s (20)

where I',? and I', are now calculated on the grid points of
image 1.

[0081] All the 2D AM results presented in this work are
obtained using (20). For the seed line where the initial esti-
mate might be inaccurate, this equation is iterated multiple
times (about 10 times). For all other lines, this equation is
iterated only once.

D. Strain Estimation Using Kalman Filter

[0082] Strain estimation requires spatial derivation of the
displacement field. Since differentiation amplifies the signal
noise, least squares regression technmiques are commonly used
to obtain the strain field. Adjacent RF-lines are usually pro-
cessed independently in strain calculation. However, the
strain value of each pixel is not independent from the strain
value of its neighboring pixels. The only exception is the
boundary of two tissue types with different mechanical prop-
erties where the strain field is discontinuous. We use the prior
of piecewise strain continuity via a Kalman filter to improve
the quality of strain estimation. Although locations with strain
discontinuity are limited, we will develop a technique to take
such discontinuities into account.
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[0083] We first calculate the strain using least squares
regression. Each RF-line is first differentiated independently:
for each sample i, a line is fitted to the displacement estimates
in a window of length 2 k+1 around i, i.e., to the samples i-k
to i+k. The slope of the line, 7, ,, is calculated as the strain
measurement at i. The center of the window is then moved to
i+1 and the strain value z,,, ;is calculated. We reuse overlap-
ping terms in calculation of z, ; and z,,, , and therefore the
running time is independent of the window length 2 k+1.
Having z,; for i=1 . . . m, and j=1 . . . n, we propose the
following algorithm based on Kalman filter to take into
account the prior of strain continuity.

[0084] zi,j are the noisy measurements of the underlying
strain field ¢, ;. Since the zi,j values are calculated using axial
windows, we apply the Kalman filter in the lateral direction.
Let r, be the Gaussian process noise and s, be the Gaussian
measurement noise to be removed. We have [52], [41]

€ €11 (21

Z; =€, +S, (22)

(A MR A

[0085] Let é; (note the super minus) be our a priori strain
estimate from the process prior to step j [i.e., from the (21)]
and €, , be our a posteriori strain estimate at step j given
measurement 7. Let also the variances of €,; and €,; be
respectively p~ and p. The time update (i.e., prior estimation)

equations will be [41]

€ (23)

pi_,/':pi,j—l +0, (24)

[0086] where o, is the variance of the process noiser. p, -1
is initialized to zero for the first sample j=1. The measurement
update equations will be [41]

I Li N 25)
g =6+ —pw +o? (zij =&
Pij (26)
P DR
P [ p;j+o? ]Pw

where 0.2 is the variance of the measurement noise s. Note
that since both the state €, ; and measurement z, ; are scalars,
all the update equations only require scalar operations. We
estimate 0, and 0* as following. Let the mean (calculated
using a Gaussian kernel of standard deviation of 05=0.6
sample) of the strain values in 3x3 blocks around samples (i,
j=1)and (i,j) be w,_, and p, respectively. Then 0,2 is [52]

02 =(_ 1) @7

[0087] This is a reasonable estimate of o, as it tries to
capture the difference between pixel values at adjacent RF-
lines. If the difference between the mean strain values is high,
less weight is given to the a priori estimate. This space-variant
estimation of the model noise provides a better match to local
variations in the underlying tissue leading to a greater noise
reduction. o, is the variance of z, smeasurements in the entire
image and is constant throughout the image.

[0088] The strain estimation algorithm can be summarized
as following.

[0089] 1) Perform least squares regression in the axial
direction for each RF-line. Generate a (noisy) strain
image Z whose pixel i,j is 7, ;. This step ensures conti-
nuity in the axial direction.
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[0090] 2) Apply the Kalman filter to the noisy strain
image Z in the lateral direction. Generate a (denoised)
strain image whose pixel i,j is €,,. This step ensures
continuity in the lateral direction.

[0091] Both steps are applied once and are not iterated. We
show in the experimental results how the Kalman filter
removes the noise from the strain image with minimal blur-
ring, owing to the model noise update (27).

III. Simulation Results

[0092] Field II [53] and ABAQUS (Providence, R.1.) soft-
ware are used for ultrasound simulation and for finite element
simulation. Many scatterers are distributed in a volume and an
ultrasound image is created by convolving all scatterers with
the point spread function of the ultrasound and adding the
results using superposition. The phantom is then meshed and
compressed using finite element simulation, giving the 3D
displacement of each node of the mesh. The displacement of
each scatterer is then calculated by interpolating the displace-
ment of its neighboring nodes. Scatterers are then moved
accordingly and the second ultrasound image is generated.
The displacement and strain fields are then calculated using
the AM methods and are compared with the ground truth. The
unitless metric signal-to-noise ratio (SNR) and contrast to
noise ratio (CNR) are also calculated to assess the perfor-
mance of the AM method according to

28

where s, and s, are the spatial strain average of the target and
background, o,? and 0, are the spatial strain variance of the

target and background, and s and o are the spatial average and
variance of a window in the strain image, respectively.
[0093] The parameters of the ultrasound probe are set to
mimic commercial probes. The probe frequency is 7.27 MHz,
the sampling rate is 40 MHz and the fractional bandwidth is
60%. A Hanning window is used for apodization, the single
transmit focus is at 22.5 mm, equi-distance receive foci are
from 5 to 45 mm at each 5 mm, the transmit is sequential, and
the number of active elements is 64.

[0094] Two simulated phantoms are generated. The first
phantom is 50x10x55 mm and the second one is 36x10x25
mm Respectively 5x10° and 1.4x10° scatterers with Gaussian
scattering strengths [54] are uniformly distributed in the first
and second phantom, ensuring more than 10 scatterers [55]
exist in a resolution cell.

[0095] The mechanical properties of both phantoms,
required for finite element simulation, is assumed to be iso-
tropic and homogeneous. The first phantom is uniform while
the second phantom contains a circular hole filled with blood
that can move out-of-plane, simulating a blood vessel in
tissue [FIG. 7(A)]. The scatterers are distributed in the vessel,
also with the same intensity and distribution as the surround-
ing material. A uniform compression in the z direction is
applied and the 3D displacement field of phantoms is calcu-
lated using ABAQUS. The Poisson’s ratio is set to v=0.49 in
both phantoms to mimic real tissue [56], [57] which causes
the phantoms to deform in x and y directions as a result of the
compression in the z direction.
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[0096] The first phantom undergoes compressions in the z
direction to achieve strain levels 0f 1%-10%. FIG. 3 shows the
SNR of the axial strain of the 1D AM and 2D AM methods
[the window for SNR calculation covers the entire strain
image in FIGS. 3A and (3F)]. The sharp drop of the SNR with
strain in graph (3A) is mainly due to the strain underestima-
tion in the bottom part of the image. It can be explained as
following. The unbiased regularization term tries to force
constant displacement [dashed-dotted red line in (3B)].
Assuming an ideal noiseless case where the data term gives a
smooth ramp displacement [dashed black line in (3B)], mini-
mizing the cost function (which is the summation of the data
and the regularization terms) will underestimate the displace-
ment at the two ends [solid blue line in (3B)]. This underes-
timation decays exponentially moving towards the center of
the image. This artifact is shown in the simulation experiment
at 2% and 6% strain levels in FIGS. 3C and (3D). Since we
exploit the fact that the axial displacement of the first sample
is zero (Section I1-C), the underestimation does not happen in
the top of the image. Biasing the regularization prevents this
artifact, as is shown in FIGS. 3C and 3D. The AM method
with or without the bias term gives the same result away from
the bottom of the image: part (3E) shows that if we ignore 300
(5.8 mm) samples at the bottom of the image, the SNR will
not drop sharply unlike in FIG. 3A. FIG. 3F shows the SNR of
the AM methods with biased regularization calculated in the
entire image. The SNR at 1% strain in parts FIGS. 3E and 3F
is the same. At higher strain levels, the strain underestimation
propagates more into the middle of the image, and therefore
the SNR decreases at higher strain levels in graph (3E). FIG.
3E shows 2D AM gives slightly better axial strain compared
to 1D AM. IRLS slightly increases the SNR. However, we
will see in the simulation results of the second phantom that in
the presence of outliers significant improvement in SNR and
CNR is achieved using IRLS.

[0097] The SNR of the lateral strain field is much lower
than that of the axial strain field (FIG. 4). Unbiased regular-
ization gives the lowest SNR, mainly due to artifacts in the
bottom of the image. Similar to the axial strain, the SNR
improves as 300 samples from the bottom of image are omit-
ted from the SNR calculation (results not shown).

[0098] The effect of the regularization weights on bias and
variance of the axial strain image at 2% ground truth axial
strain is shown in FIG. 5. The blue curves show the bias and
variance of the entire strain image obtained with unbiased
regularization. It shows the tradeoff between the bias and
variance: increasing the regularization weight increases the
bias and decreases the variance. The variance starts to
increase at o~12 which is caused by the underestimation of
the strain at the bottom of the image [the artifact in FIG. 3(c)].
If we exclude the bottom 300 samples of the strain image
from the bias and variance calculation (the black dashed
curve), we see a consistent drop of variance as . is increased.
The black curves show the bias and variance of the entire
strain image obtained with biased regularization. Biasing the
regularization causes the bias to decrease as the regularization
weight o is increased which is a nonstandard behavior. It can
be explained by the simple ground truth strain field which is
uniform, exactly what the regularization term is trying to
achieve. Even in the unbiased case, only the bias of the bottom
part of the strain field increases as a is increased (i.e., in the
bias plot, the blue curve increases while the black dashed
curve decreases). Therefore, one cannot conclude from this
experiment that higher a is beneficial to both bias and vari-
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ance. To prove this, we designed a simulation study where the
underlying axial strain field continuously varied with depth
and the lateral and out-of-plane strains were zero (such strain
field is not physically realizable). We observed that the abso-
lute value of the bias monotonically increases with a with
both unbiased and biased regularizations. To save space, we
do not present the full results here. Similar curves for the
lateral strain field is shown in FIG. 6.

[0099] The second simulation experiment is designed to
show the effect of smoothness weight and IRLS threshold
CNR when the correlation is lower in parts of the image due
to fluid motion. The phantom contains a vein oriented per-
pendicular to the image plane (FIG. 7). The background win-
dow for CNR calculation is located close to the target window
to show how fast the strain is allowed to vary, a property
related to the spatial resolution. The maximum CNR with
IRLS is 5.3 generated at T=0.005 and o, =38, and without
IRLS is 4.8 at a.,=338. Such high o, value makes the share of
the data term in the cost function very small and causes
over-smoothing.

A. Displacement Simulation

[0100] To study the performance of the Kalman filter, we
simulate a displacement field of size 100x100 samples whose
strain image (calculated using least squares regression) is as
shown in FIG. 8 A. One hundred samples in the axial direction
corresponds to approximately 1.9 mm (assuming 40 MHz
sampling rate), and 100 samples in the lateral direction cor-
responds to 10-25 mm depending on the probe. To be consis-
tent with the notations of Section II-D, let ¢, ; denote the strain
values of the uncontaminated image in (8A). We then con-
taminate the displacement field with a Gaussian noise with
standard deviation of 1.5 samples, and perform least squares
regression to calculate the noisy estimates z, ; [FIG. 8B]. We
then apply the Kalman filter as described in Section II-D to
the noisy estimates 7, in the lateral direction (i.e., row-by-
row). The posterior estimates of the strain values, €,; are
shown in (FIG. 8C). The strain values of the shown line in
FIGS. 8A-8C (at i=50 samples) is shown in FIG. 8D and 8E
[The plot in (8D) around the step in magnified in (8E)]. The
Kalman filter formulation is eliminating the noise without
over-smoothing the strain image. This is due to the model
variance update (27). We note that although displacement is
generally continuous in tissue, its spatial derivation (strain) is
not: at the boundary of two tissues with different elasticity
moduli, strain field is discontinuous.

IV. Experimental Results

[0101] For experimental evaluation, RF data is acquired
from an Antares Siemens system (Issaquah, Wash.) at the
center frequency of 6.67 MHz with a VF10-5 linear array at a
sampling rate of 40 MHz. Only the 2D AM method is used in
the experimental results. Phantom results and patient trials
are presented in this section. The tunable parameters of the 2D
AM algorithm are set to o=5, $,=10, f=0.005 and T=0.2
[(12) and (20)], and the tunable parameters of the DP (run for
the seed RF-line in the 2D AM algorithm) are a.,=~0.15 (1)
in all the phantom results (except if specified otherwise). In
the patient results, all the parameters are the same except for
B, which is increased to ,=20 because the data is noisier.
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The strain images in all the patient trials are obtained using
the least squares regression and Kalman filtering as described
in Section II-D.

A. Phantom Results

[0102] 1) Effect of Regularization on Residuals: The cost
function of the AM method (7) is composed of residuals (i.e.,
the data term) and the regularization terms. The AM method
minimizes this summation. Therefore the AM method will
not necessarily minimize the residuals. We now show that the
data term alone is nonconvex and has many local minima.
Adding the regularization term will eliminate many of the
local minima and makes optimization of the data term easier.
This is in addition to the effect of regularization that makes
the displacement field smooth, a generally desired attribute.

[0103] The effect of regularization on the residuals is stud-
ied using experimental data. An elastography phantom (CIRS
elastography phantom, Norfolk, Va.) is compressed 0.2 in
axially using a linear stage, resulting in an average strain of
6%. Two RF frames are acquired corresponding to before and
after the compression. The Young’s elasticity modulus of the
background and the lesion under compression are respec-
tively 33 kPa and 56 kPa. The displacement map is calculated
using the 2D AM method and the residuals corresponding to
the displacement map are obtained. FIGS. 9A-9C) show the
axial and lateral strains at such a high strain rate (minimum of
2% and maximum of 11%). The mean and median of the
residuals p(r,) in the entire image is shown in FIG. 9D. One
could expect the graph to monotonically increase as the regu-
larization weight o increases, since the difference between
the objective function C and the residuals =,_,"p(r;) is
increased as ¢. is increased. However, the residual values are
very high at very low c.. Therefore, numerical minimization
of 2,_,"'p(r,)+R(Ad) gives a smaller value for Z,_, "p(r;) com-
pared to trying to directly minimize X,_, ”p(r,). This indicates
that the nonregularized cost function is not quasi-convex and
is very hard to minimize.

[0104] 2) Resolution of the Strain Images Generated With
AM: The effect of the regularization on spatial resolution is
evaluated experimentally using the experimental setup of the
previous experiment. The compression is set to 0.1 in in this
experiment. FIG. 10A shows the strain image obtained by
compression the lesion with the Young’s modulus of 56 kPa.
Spatial resolution is evaluated using modulation transfer
function (MTF), an established method for estimating the
spatial resolution of medical imaging systems that was rela-
tively recently extended to elastography [58]. The spatial
resolution of the reconstructed images is determined with a
three-step approach [59], [60]. First, the edge spread function
is computed by averaging the pixel values across the back-
ground-inclusion interface [the line in FIG. 10A]. Second, the
line spread function (LSF) is computed by differentiating the
edge spread function. Third, the MTF is determined by com-
puting the Fourier transform of the LSF and normalizing the
resulting function to zero spatial frequency

E(k) 29
MTF(k) = =——=.
=20
[0105] FIG. 10C shows the MTF for five different normal-

ization coefficients respectively. Strain results are obtained
with a regression window of length 2 k+1=65 [Section II-D].



US 2012/0128223 Al

Increasing the regularization weight is adversely affecting
spatial resolution. Spatial resolution is defined as the spatial
frequency when the value of MTF is 0.1. At o=1, a=2 and
a=4 this value is respectively 2 cycles/mm, 1 cycles/mm, and
0.5 cycles/mm. In addition to ¢, this value also depends on the
length of the regression window 2 k +1.

[0106] 3)Image Quality Versus Axial and Lateral Sampling
Rates of the RF-Data: Sampling rate of the RF-data usually
ranges from 20 to 50 MHz depending on the hardware of the
device. The number of the A-lines provided in an image also
varies significantly. In addition, bandwidth limitations of the
data transfer can impose limits on the size of the image for
real-time operations. In this study, we downsample the RF-
data by a factor of 2-4 in the axial direction and by a factor of
2-8 in the lateral direction. FIGS. 11A-11G show axial and
lateral displacement and strain images of the CIRS elastog-
raphy phantom undergoing maximum axial strain of 5%.
Axial sampling rate can be reduced by a factor of 2 without
significant impact on the strain image quality [part (h)].
Downsampling the images in the lateral direction by a factor
of 4 results the CNR of the axial and lateral strain images to
drop respectively 12% (from 16.3 to 14.3) and 56% (from
2.55t01.13) as shown in (i). While the axial strain is robust to
the number of A-line in the image even at a high strain level of
5%, the lateral strain is sensitive to it (i). Similar study with
lower axial strain levels shows that as the axial strain
decreases, higher downsampling rates in both axial and lat-
eral directions are possible without a large impact on the
results.

[0107] 4) Kalman Filter: The performance of the Kalman
filter is studied using the RF-data used in FIG. 9. The linear
least squares differentiation technique is applied to the axial
displacement field calculated with 2D AM, resulting in z,
[FIG. 12A]. The Kalman filter is then applied to z, , measure-
ments of (12A), giving the posterior €, ; measurements of (b).
Comparing the strain values at a horizontal line of FIGS. 12A
and 12B, the noisy z,; measurements are smoothed in the
lateral direction using the proposed Kalman filter, with mini-
mal blurring of the edge.

B. Clinical Study

[0108] Seven patients undergoing open surgical radiofre-
quency (RF) thermal ablation for primary or secondary liver
cancer were enrolled between Feb. 6, 2008 and Jul. 28, 2009.
All patients enrolled in the study had unresectable disease and
were candidates for RF ablation following review at our insti-
tutional multidisciplinary conference. Patients with cirrhosis
or suboptimal tumor location were excluded from the study.
All patients provided informed consent as part of the proto-
col, which was approved by the institutional review board. RF
ablation was administered using the RITA Model 1500 XRF
generator (Rita Medical Systems, Fremont, Calif.). Strain
images are generated offline. Some preliminary results are
published in [15].

[0109] We show the results from only four patients due to
space limitations. FIG. 13 shows the B-mode scan, the strain
images and CT scans performed after RF ablation. Tissue is
simply compressed freehand at a frequency of approximately
1 compression per 2 s with the ultrasound probe without any
attachment. The shadow in FIG. 13A at 20 mm depth is
produced by the thermal lesion. Note that it is not possible to
ascertain the size and position of the thermal lesions from
B-mode images. In addition, the thermal lesion has different
appearances in the three B-scans. However, the thermal
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lesions show very well as hard lesions in the strain images.
After gross correlation of the post ablation CT scan and the
thermal lesion in the strain images, the size of the lesion
seems to correspond well. However, a more rigorous valida-
tion of the size and shape of the ablated lesion in the elastog-
raphy image is underway using nonrigid registration of CT
and ultrasound images. To the best of our knowledge, this is
also the first demonstration of the success of elastography in
imaging the thermal lesion in an in vivo human experiment.

[0110] We have also acquired patient RF data of liver abla-
tion prior and after ablation in one of the patient trials. FIG. 14
shows the B-mode, strain and venous and arterial phase' CT
images obtained before ablation, and FIG. 15 shows the
B-mode, strain and lateral displacement images after abla-
tion. (CT scans are performed at different phases after intra-
venous injection of a contrast agent. In the arterial phase
(directly after injection of a contrast agent) arteries will
enhance, where as in the venous phase (30-60 s after injec-
tion) the hepatic parenchyma and veins will enhance). In FIG.
14, the tumor [marked in the CT images (14F) and (14G)] is
not visible in the B-mode image (14A), but is clearly visible
in the strain images FIGS. 14B and 14C. While the tissue is
getting compressed with the ultrasound probe, the middle
hepatic vein (marked as 5) which is only 4-8 cm from vena
cava inferior pulsates at high amplitude. The graph in FIG.
14E schematically shows the probe motion and variations in
the diameter of the vein. Therefore, the vein can look soft as
in (14C) or hard as in (14B) depending on whether its diam-
eter variation is in the same [marked by ellipse 1 in (14E)] or
opposite [marked by ellipse 2 in (14E)] direction as the probe
motion The effect of pulsation of vessels, a well-known cause
of signal decorrelation, is minimized via IRLS resulting in a
low noise strain image. In addition, since the 2D AM method
gives a dense motion field (same size as RF data), the small
artery at the diameter of less than 2 mm [marked as 4 in (14A)]
is discernible in (14B) from the low pressure portal vein. The
ablated lesion is also discernible in the strain images of FIGS.
15B and (15C). We believe the soft region in the middle of the
two hard ablation lesions in FIGS. 15B and 15C and (15C) (at
the depth of 25-30 mm and width of 10-25 mm) is not close to
any of'the 10 tines ofthe ablation probe. Therefore because of
its proximity to veins and vessels its temperature has
remained low.

V. Discussion

[0111] The resolution of the method is formally studied in
Section IV-A using the phantom experiment. Future work
will include more intuitive measures for resolution in terms of
the smallest detectable target as a function of its elasticity
difference with the background.

[0112] The cost function is a regularized function of all
displacements on an A-line. This makes the methods robust to
noise which exist throughout the image. Besides, the AM
methods are not window-based and therefore they do not
suffer from decorrelation within the window. As a result, both
AM methods work for strains as high as 10%. In addition, the
IRLS outlier rejection technique makes the AM methods
robust to local sources of decorrelation such as out-of-plane
motion of movable structures or blood flow.

[0113] Global stretching assumes a constant strain across
the depth and stretches one of the RF-limes accordingly. It is
shown that it enhances the quality of correlation based elas-
tography methods. The reason is that the strain of each point
can be assumed to be the global strain (fixed for each RF-line)
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plus some perturbation, i.e., constant strain is a better
approximation than zero strain. Biasing the regularization is
motivated by the same reason and involves almost no addi-
tional computational cost.

[0114] Improvement in the SNR and CNR achieved with
Kalman filtering differentiation is due to utilizing the (piece-
wise) continuity of the strain field. One could think of a
unified framework which includes both the 2D AM and the
Kalman filtering and directly calculates the strain field. We
made an effort to formulate (15) in terms of strain values.
Unfortunately, the coefficient matrix in the left-hand side
became a full matrix for our desired regularization. Such large
full system cannot be solved in real-time.

[0115] Theleast squares differentiation of Section II-D can
be incorporated in the Kalman filter. This can be simply done
by defining the state at each point to be the displacement and
the strain of that point. The observed variables are the noisy
displacement measurements from 2D AM. Solving for the
state gives a strain estimate at each point. However, we pre-
ferred to follow the common approach of first finding the
strain by solving least squares. In addition, the axial and
lateral displacements can be considered as two channels of a
measurement and a Kalman filter that takes into account both
intra-channel (spatial) and inter-channel variations can be
developed. This is a subject of future work.

[0116] Lateral displacement estimation with 2D AM is of
order of magnitude less accurate than the axial displacement
estimates. We tested the following algorithm for calculating
the lateral displacement field based on 1D AM: run 1D AM to
find the axial displacement field, then transpose both ultra-
sound images T, and T, and run 1D AM again using A cal-
culated in the previous step. The axial displacement field
calculated for the transposed images is in fact the lateral
displacement of the original images. Although considerably
more computationally expensive than 2D AM, this algorithm
did not improve the lateral displacement estimation. There-
fore only images of lateral displacement are provided for the
patient trials because the lateral strain did not show the abla-
tion lesion. This is in accordance with recent work [36] which
only shows the lateral displacement. A 2D displacement field
can be utilized to calculate the thermal expansion and to
reconstruct the strain tensor. Incorporation of the synthetic
lateral phase [61]-[63], into 2D AM to further improve the
accuracy of the lateral displacement measurement is also a
subject of future work.

[0117] In cases where the two ultrasound frames correlate
very poorly throughout the image, 1D AM outperforms 2D
AM because DP is run for the entire image in 1D AM. How-
ever, in those cases the strain images are of very low quality
even with 1D AM. In cases where the images correlate rea-
sonably, the 2D AM algorithm slightly outperforms 1D AM in
terms of the SNR of the axial strain as shown in FIGS. 3E and
3F. Also, 1D AM and 2D AM are very similar in terms of bias
and variance as mentioned in the caption of the FIG. 5. And
finally, 2D AM is more than 10 times faster than 1D AM
because it eliminates the redundant calculations in the DP
step of 1D AM. This is important considering that there are
combinatorial many ways of choosing two frames for elas-
tography from a sequence of images. Having a fast algorithm,
like 2D AM, makes it plausible to invest time to perform
real-time frame selection, an area that we are currently work-
ing on [16], [64].

[0118] Recent work [65] has attempted to reconstruct elas-
ticity from the displacement field for monitoring thermal
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ablation. It has also shown that [66] compared to strain
images, elasticity images have both higher correlation with
the ablation zone and give higher CNR. Another work [67]
has utilized the solution of the elasticity reconstruction to
improve motion estimation in an iterative framework. Calcu-
lation of the elasticity modulus in our ablation monitoring
trials is an area of future work.

[0119] Statistical analysis of the residuals is a subject of
future work. The sum of squared differences used as the
similarity metric in our cost function is suitable if ultrasound
noise can be modeled as additive Gaussian noise. However,
ultrasound noise is not simply additive Gaussian and it has
been shown that similarity metrics that model the noise pro-
cess considering physics of ultrasound give more accurate
results [68]. Performance of the 2D AM method for images
that are not fully developed speckles (i.e., have few scatterers
per resolution cell) is also a subject of future work.

[0120] Current implementations of the 1D AM and 2D AM
take, respectively, 0.4 s and 0.04 s to generate strain images
(axial for 1D AM and axial and lateral for 2D AM) of size
1000x100 on a 3.8 GHz P4 CPU. DP contributes to more than
90% of the running time of the 1D AM, and that’s why it is
slower than 2D AM where DP is only run for a single A-line.
The running time of both methods changes linearly with the
size of the image.

VI. Conclusion

[0121] Two regularized elastography methods, 1D AM and
2D AM, are introduced for calculating the motion field
between two ultrasound images. They both give dense sub-
sample motion fields (1D AM gives subsample axial and
integer sample lateral and 2D AM gives subsample axial and
lateral) in real-time. The size of the motion fields is the same
as the size of the RF-data (except for few samples from the
boundary whose displacements are not calculated). Such
dense motion fields lead to dense strain fields which are
critical in detecting small lesions. The prior of tissue motion
continuity is exploited in the AM methods to minimize the
effect of signal decorrelation. The regularization term is
biased with the average strain in the image to minimize under-
estimation of the strain values. Parts of the image that have
very low correlation are treated as outliers and their effect is
minimized via IRLS. The strain image is calculated by dif-
ferentiating the motion fields using least squares regression
and Kalman filtering. The performance of the proposed elas-
tography algorithms is analyzed using Field II and finite
element simulations, and phantom experiments. Clinical tri-
als of monitoring RF ablation therapy for liver cancer in four
patients are also presented. An implementation of the 2D AM
method, the least squares regression and the Kalman filter in
MATLAB mex functions, as well as some of the phantom and
patient RF data used in this work are available for academic
research and can be downloaded (http://www.cs.jhu.edu/~ri-
vaz/UltrasoundElastography).

[0122] The embodiments illustrated and discussed in this
specification are intended only to teach those skilled in the art
how to make and use the invention. In describing embodi-
ments of the invention, specific terminology is employed for
the sake of clarity. However, the invention is not intended to
be limited to the specific terminology so selected. The above-
described embodiments of the invention may be modified or
varied, without departing from the scope of the invention, as
appreciated by those skilled in the art in light of the above
teachings. It is therefore to be understood that, within the
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scope of the claims and their equivalents, the invention may
be practiced otherwise than as specifically described.
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We claim:

1. A method of processing ultrasound data, comprising:

receiving ultrasound data for a first ultrasound image, said

first ultrasound image being represented as a first set of
discrete pixels corresponding to positions of a region of
interest;

receiving ultrasound data for a second ultrasound image,

said second ultrasound image being represented as a
second set of discrete pixels corresponding to positions
of said region of interest;
generating a displacement map by minimizing a cost func-
tion using a dynamic programming procedure that iden-
tifies each of said first set of discrete pixels with a cor-
responding one of said second set of discrete pixels;

refining said displacement map to obtain intermediate dis-
placement values corresponding to positions between
said discrete pixels based on minimizing a local approxi-
mation to said cost function; and

calculating a physical property of said region of interest

based on said displacement map.

2. A method of processing ultrasound data according to
claim 1, wherein said minimizing said local approximation to
said cost function is performed analytically to optimize said
intermediate displacement values corresponding to positions
within a continuous range between said discrete pixels.

3. A method of processing ultrasound data according to
claim 1, wherein said receiving ultrasound data for said first
ultrasound image corresponds to said region of interest being
under a first compression state,

wherein said receiving ultrasound data for said second

ultrasound image corresponds to said region of interest
being under a second compression state, and

said calculating said physical property of said region of

interest based on said displacement map is calculating a
strain map.
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4. A method of processing ultrasound data according to
claim 3, wherein said calculating said strain map comprises
Kalman filtering.

5. A method of processing ultrasound data according to
claim 4, further comprising rendering an ultrasound image
taking into account said strain map.

6. A method of processing ultrasound data according to
claim 1, wherein said receiving ultrasound data for said first
ultrasound image corresponds to said region of interest hav-
ing a first temperature distribution,

wherein said receiving ultrasound data for said second

ultrasound image corresponds to said region of interest
having a second temperature distribution, and

said calculating said physical property of said region of

interest based on said displacement map is calculating a
temperature map.

7. A method of processing ultrasound data according to
claim 6, further comprising rendering an ultrasound image
taking into account said temperature map.

8. A method of processing ultrasound data according to
claim 1, wherein said cost function is modified to reduce
errors on said generating said displacement map due to por-
tions of said region of interest moving out of an imaging plane
of at least one of said first and second ultrasound image.

9. A method of processing ultrasound data according to
claim 1, wherein said cost function is modified to reduce
errors on said generating said displacement map using an
iterated reweighted least squares procedure to treat uncorre-
lated ultrasound data as outliers.

10. A computer readable medium comprising software,
which software when executed by a computer, causes the
computer to:

receive ultrasound data for a first ultrasound image, said

first ultrasound image being represented as a first set of
discrete pixels corresponding to positions of a region of
interest;

receive ultrasound data for a second ultrasound image, said

second ultrasound image being represented as a second
set of discrete pixels corresponding to positions of said
region of interest;
generate a displacement map by minimizing a cost func-
tion using a dynamic programming procedure that iden-
tifies each of said first set of discrete pixels with a cor-
responding one of said second set of discrete pixels;

refine said displacement map to obtain intermediate dis-
placement values corresponding to positions between
said discrete pixels based on minimizing a local approxi-
mation to said cost function; and

calculate a physical property of said region of interest
based on said displacement map.

11. A computer readable medium according to claim 10,
wherein said minimizing said local approximation to said
cost function is performed analytically to optimize said inter-
mediate displacement values corresponding to positions
within a continuous range between said discrete pixels.

12. A computer readable medium according to claim 10,
wherein said receiving ultrasound data for said first ultra-
sound image corresponds to said region of interest being
under a first compression state,

wherein said receiving ultrasound data for said second

ultrasound image corresponds to said region of interest
being under a second compression state, and
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said calculating said physical property of said region of
interest based on said displacement map is calculating a
strain map.

13. A computer readable medium according to claim 12,
wherein said calculating said strain map comprises Kalman
filtering.

14. A computer readable medium according to claim 13,
wherein said software when executed by said computer, fur-
ther causes the computer to render an ultrasound image taking
into account said strain map.

15. A computer readable medium according to claim 10,
wherein said receiving ultrasound data for said first ultra-
sound image corresponds to said region of interest having a
first temperature distribution,

wherein said receiving ultrasound data for said second
ultrasound image corresponds to said region of interest
having a second temperature distribution, and

said calculating said physical property of said region of
interest based on said displacement map is calculating a
temperature map.

16. A computer readable medium according to claim 15,
wherein said software when executed by said computer, fur-
ther causes the computer to render an ultrasound image taking
into account said temperature map.

17. A computer readable medium according to claim 10,
wherein said cost function is modified to reduce errors on said
generating said displacement map due to portions of said
region of interest moving out of an imaging plane of at least
one of said first and second ultrasound image.

18. A computer readable medium according to claim 10,
wherein said cost function is modified to reduce errors on said
generating said displacement map using an iterated
reweighted least squares procedure to treat uncorrelated
ultrasound data as outliers.

19. An ultrasound system, comprising:

an ultrasound transducer configured to transmit and receive
ultrasound signals;

a data processor arranged to communicate with said ultra-
sound transducer to receive ultrasound data from said
ultrasound transducer,

wherein said data processor is configured to:

receive ultrasound data for a first ultrasound image, said
first ultrasound image being represented as a first set of
discrete pixels corresponding to positions of a region of
interest;

receive ultrasound data for a second ultrasound image, said
second ultrasound image being represented as a second
set of discrete pixels corresponding to positions of said
region of interest;

generate a displacement map by minimizing a cost func-
tion using a dynamic programming procedure that iden-
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tifies each of said first set of discrete pixels with a cor-
responding one of said second set of discrete pixels;

refine said displacement map to obtain intermediate dis-
placement values corresponding to positions between
said discrete pixels based on minimizing a local approxi-
mation to said cost function; and

calculate a physical property of said region of interest

based on said displacement map.

20. An ultrasound system according to claim 19, wherein
said minimizing said local approximation to said cost func-
tion is performed analytically to optimize said intermediate
displacement values corresponding to positions within a con-
tinuous range between said discrete pixels.

21. An ultrasound system according to claim 19, wherein
said receiving ultrasound data for said first ultrasound image
corresponds to said region of interest being under a first
compression state,

wherein said receiving ultrasound data for said second

ultrasound image corresponds to said region of interest
being under a second compression state, and

said calculating said physical property of said region of

interest based on said displacement map is calculating a
strain map.

22. An ultrasound system according to claim 21, wherein
said calculating said strain map comprises Kalman filtering.

23. An ultrasound system according to claim 22, wherein
said data processor is further configured to render an ultra-
sound image taking into account said strain map.

24. An ultrasound system according to claim 19, wherein
said receiving ultrasound data for said first ultrasound image
corresponds to said region of interest having a first tempera-
ture distribution,

wherein said receiving ultrasound data for said second

ultrasound image corresponds to said region of interest
having a second temperature distribution, and

said calculating said physical property of said region of

interest based on said displacement map is calculating a
temperature map.

25. An ultrasound system according to claim 24, wherein
said data processor is further configured to render an ultra-
sound image taking into account said temperature map.

26. An ultrasound system according to claim 19, wherein
said cost function is modified to reduce errors on said gener-
ating said displacement map due to portions of said region of
interest moving out of an imaging plane of at least one of said
first and second ultrasound image.

27. An ultrasound system according to claim 19, wherein
said cost function is modified to reduce errors on said gener-
ating said displacement map using an iterated reweighted
least squares procedure to treat uncorrelated ultrasound data
as outliers.
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