

(19)

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11)

EP 1 161 181 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention
of the grant of the patent:
31.05.2006 Bulletin 2006/22

(51) Int Cl.:
A61B 8/12 (2006.01) **A61B 5/03 (2006.01)**
A61B 8/00 (2006.01)

(21) Application number: **00916933.5**

(86) International application number:
PCT/EP2000/002212

(22) Date of filing: **10.03.2000**

(87) International publication number:
WO 2000/053098 (14.09.2000 Gazette 2000/37)

(54) **TRANSMISSION DEVICE FOR ULTRASONIC IMAGING SYSTEM**

TRANSMISSIONSVORRICHTUNG FÜR EIN BILDGEBENDES ULTRASCHALLGERÄT

DISPOSITIF DE TRANSMISSION POUR SYSTEME D'IMAGERIE ULTRASONIQUE

(84) Designated Contracting States:
**AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE**

(72) Inventor: **Nierich, Arno
8051 CJ Hattem (NL)**

(30) Priority: **10.03.1999 EP 99200703**

(74) Representative: **Bartelds, Erik et al
Arnold & Siedsma,
Advocaten en Octrooigmachtingen,
Sweelinckplein 1
2517 GK Den Haag (NL)**

(43) Date of publication of application:
12.12.2001 Bulletin 2001/50

(56) References cited:
WO-A-91/04708 **US-A- 4 349 033**
US-A- 5 190 046

(73) Proprietor: **Cordatec NV
2980 Zoersel (BE)**

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

[0001] The invention relates to an ultrasonic imaging system comprising an ultrasound endoscope device for scanning a patient's organs for use in transesophageal echocardiography. Such a device specially adapted for transesophageal echographic scanning is for example disclosed in US-A-5,105,819.

[0002] Document US-A-5 190 046 discloses a catheter with a fluid-filled balloon into which an ultrasound probe is inserted for imaging within the balloon.

[0003] Transesophageal echocardiography (TEE) has become a widely used imaging technique for evaluating cardiac structure, function, and valvular anatomy. Transesophageal echocardiography has also provided a new perspective on the thoracic aorta, and there is growing evidence that the technique contributes valuable and sometimes unique information about aortic structure and pathology.

[0004] Two-dimensional (2D) transesophageal echocardiography (TEE) and 2D intravascular ultrasound (IVUS) imaging face their greatest limitation in visualizing aortic disease in patients. Recently introduced multiplane transesophageal probes have improved visualization of the proximal and transverse aorta. Three-dimensional (3D) image reconstruction, TEE and IVUS can even improve further visualization but still provide only limited spatial appreciation in aortic disease because 3D imaging of the thoracic aorta requires a broader spatial visualization of the mediastinum than provided by both techniques. Another approach called 3D lighthouse transesophageal echocardiography (LTEE) uses a thin intravascular ultrasound catheter, which provides a full circumferential (360 degree) image, but is invasive and cannot be used during cardiac surgery with cardio-pulmonary bypass. Also these three methods (3D, IVUS and LTEE) need special ultrasound equipment, which is not standard available.

[0005] The available evidence strongly supports the use of TEE in aortic dissection and atherosclerosis and suggests potential utility in additional diseases of the aorta such as aneurysm, ulceration, trauma, and congenital or inherited malformations.

[0006] The features of ultrasonic imaging systems cause main problems in visualization of certain organs in particular of the upper mediastinum, including the ascending aorta.

[0007] To understand these problems, it is important to know the physical limitations of ultrasound. Ultrasound consists of sound waves. The signal is determined by:

1. Frequency, f is determined by the generator.
2. Velocity, v is determined by the medium.
3. Wavelength, λ is the distance between two cycles of sound waves.

[0008] Absorption of sound waves is dependent of the medium. This is reflected as the half power distance: The

distance in which half of the ultrasound energy will be absorbed. For water this is 360 cm, bone 0,2 cm and for air 0,06 cm. This means that nor bone nor air will let through ultrasound waves in practice.

[0009] Consequently, the prior art does not achieve good imaging results, if air or bone are between the ultrasound source and the area which are to be investigated.

[0010] In providing a solution to this problem the invention is directed towards a ultrasonic imaging system as specified in claim 1.

[0011] Providing a separate transmission device at a distance of the ultrasound endoscope thus providing a transmission path suitable for sound waves originating from the endoscope device. Visualization will be surprisingly enhanced using a device according to the invention.

[0012] In a preferred embodiment of the invention the transmission device comprises a flexible housing for receiving a sound wave transmission fluid medium. As an example of such a sound wave transmission fluid water or a salt solution in minor concentrations is preferred.

[0013] According to the invention, the transmission device is formed by a distensible balloon member connected to a supply line to permit fluid entry in said balloon member.

[0014] Embodiments of the present invention are described below by way of example only. The invention is adapted for the use in transesophageal echocardiography. It will become apparent that not only a specialized doctor could use the ultrasonic imaging system according to the invention, but also a skilled technician.

[0015] Echocardiography was first used solely by cardiologist by the transthoracic approach in the awake patient. Visualization is sometimes difficult by the bone (sternum) and air (lung) structures between the echo probe and the heart. The development of the transesophageal echocardiography, this problem is largely avoided. The disadvantage is more patient discomfort in the awake situation. Now only small parts of the cardiac structures and surrounding tissues are still difficult or impossible to image by this way. Since TEE is an excellent way of monitoring cardiac function, other specialities, like cardiac anaesthesiologists started to use this technique.

It is even so that nowadays cardiac anaesthesiologists are trained to use TEE in the perioperative period of cardiac surgery without the interference of the cardiologist. The advantage is that during surgery the patient is asleep, so discomfort is not a problem. During cardiac surgery, a patient is paralysed, intubated in the trachea and mechanically ventilated. If the patient is on cardio-pulmonary bypass, the ventilation is stopped since there is no blood flowing through the lungs and oxygenation is provided by the heart lung machine. Placing the echo-probe into the trachea is technically possible but limits

the echo investigation to the upper part of the mediastinum and does not evaluate the heart like with TEE, which is a standard technique perioperative.

[0016] Visualization by external transthoracic

echocardiography is limited by the bone structures between the echoprobe and the ascending aorta. During heart surgery with a split sternum this problem is overcome by epi-aortic scanning. However only a part of the aorta is visualized, needs to be done by the surgeon during surgery and needs an additional echoprobe besides the TEE probe. Visualization by internal transesophageal echocardiography of the ascending aorta is limited by an air structure, i.e. the trachea and main left and right bronchi. By the anatomical location of the Aorta ascendens and the upper part of the main vascular side branches, it is difficult to view this area by TEE because the view is obstructed by the trachea. The trachea is located between the esophagus and the vascular tree, so all echoes are reflected by the trachea, which is filled with air.

[0017] A possible solution is to fill the trachea with a medium not containing air, but with a medium which will absorb ultrasound signal less, like water. In the normal patient, this is not possible, but in the anesthetized patient or a patient on extracorporeal bypass it is possible to stop ventilation for a certain period of time. Oxygenation can be maintained by preoxygenation to a safe period of 4 minutes. If the patient is on extracorporeal circulation, this time-period is at least one hour. Filling the lungs completely with water is not possible, but introducing a transmission device into the trachea comprising a balloon which can be filled and emptied from outside the patient, would allow ultrasound to travel through the tracheal structure without absorption. This would allow visualization of structures in front of the trachea.

[0018] After the patient is intubated there is an easy access route to the distal trachea. The average diameter is 1,7 cm, the average distance to occlude is maximum 10 cm. An inflatable balloon connected to a small extension tube with distally multiple holes allows easy insertion in the trachea. If the material is easily distensible, it will line up against the tracheal wall and might even fill up the right and/or left main bronchi. The trachea wall is not fully round and is vulnerable, so the material of the balloon must be flexible and there must be a possibility to monitor the pressure inside the device to prevent barotrauma of the trachea by overdistension of the balloon. This can be accomplished by a safety valve or pressure monitor at the end of the flexible extension tube. This extension line must be thin with a diameter of approximately 2-3 mm, stiff to allow easy insertion by the tracheal tube without kinking.

[0019] By the side holes in the tube water can be inserted in the balloon, so the balloon will distend and occlude the trachea. Air in the trachea will not obstruct TEE view and an view of the upper mediastinum will be obtained. After the TEE examination the water can be aspirated by suction on the tube and if empty, it is easily removed from the ventilation tube or directly out of the trachea.

Examples of clinical applications of the transmission device of the invention.

1. Aortic atherosclerosis.

[0020] In cardiac surgery, it is important to obtain information regarding the ascending aorta. Atherosclerosis of the cannulation site is an important source of emboli. It is just this area which is difficult to scan until now. By introducing the transmission device after induction of anesthesia with tracheal intubation, a first screening of this area can be performed, also in non-cardiac situations. Surgical strategy can be altered if atherosclerosis is a fact, e.g. femoral artery cannulation, beating heart surgery without CPB, aortic arch replacement, et al.

2. Aortic dissection

[0021] Aortic dissection and its diagnosis are major clinical problem. Dissections can start at all sides of the aortic root. However the clinical treatment is dependent on the location and the extension of the rupture of the aortic wall. A rupture in the ascending or transverse aorta is treated by surgery, a dissection in the descending aorta by medication treatment. Also the extension of a dissection in the main branches of the aorta can be evaluated. This way of evaluation would allow a fast diagnosis, in contrast to Computer tomography or angiography, thus reducing time loss before surgery.

3. Carotid disease

[0022] In patients at risk for having atherosclerosis, a evaluation can be made during all forms of anesthesia, in order to evaluate carotid disease. Flow measurements can be made by doppler ultrasound.

4. Cardiac output monitoring.

[0023] The aortic arch will be viewed by crossectional view. To use the echodoppler feature of ultrasound, the moving object must be viewed within an angle of 30 degrees. By measuring the anatomical diameter and by measuring the blood flow, cardiac output can be calculated. Without this device this can be performed by viewing the aortic valve by looking at this valve from the deep transgastric direction. This view is sometimes difficult to obtain, like by example during beating heart coronary artery bypass grafting.

5. Monitoring of flow and intravascular lines during CPB

[0024] The aortic CPB line will be inserted in the ascending aorta. Appropriate flow can be visualized.

[0025] During a Heartport procedure an intra-aortic balloon must be placed just above the aortic valve but below the truncus brachiocephalicus. The flow of all sections can be easily monitored now.

[0026] Intra aortic balloon counterpulsation is a device which is used as an assist device in cardiac failure. Flow patterns can be measured to optimize timing of balloon inflation and deflation in order to optimize the effectiveness of this device.

6. Monitoring of embolism during surgery

7. Pulmonary embolism

[0027] The visualization of the left and right pulmonary artery is partially obstructed by the main bronchii. The blocker might allow this view.

[0028] The invention will hereunder be further elucidated with reference to the drawing wherein:

figure 1 is a schematic view of the anatomical location of the aorta, the trachea and the esophagus in relation to the system according to the invention; figure 2 is a schematic view of an ultrasonic imaging system according to the invention; and figure 3 is a perspective view of a preferred embodiment of a transmission device according to the invention.

[0029] As explained in the description visualization of the aorta ascendens 1 and the upper part of the main vascular side branches 2 is difficult to view because an obstruction of the trachea 3 disturbs the ultrasound waves originating from a echoprobe 4 in the esophagus 5. When a patient is intubated with a transmission device according to the invention, which normally consists of a distensible balloon connected to a supply line for a sound wave transmission fluid medium, a suitable sound wave path is formed for the sound waves originating from an ultrasound endoscope positioned in the esophagus 5. An optimal visualization of these parts of the aorta is thus obtained by a combined use of an endoscope device and a transmission device forming an ultrasonic imaging system according to the invention.

[0030] Figure 2 shows very schematically an ultrasonic imaging system 6 comprising an ultrasound endoscope 7 and a separate transmission device 8. When viewed with a target organ 9 ultrasound waves originating from the ultrasound endoscope 7 will have a suitable transmission path and where no such path is provided, for example in cavities with air, a separate transmission device 8 is introduced in order to replace the air with a sound wave transmission fluid medium, such as water or a salt solution.

[0031] A separate transmission device 8 generally consists of a flexible, distensible balloon member 13 which is connected to a supply line 10 which supply line 10 is at its distal end provided with pump and pressure control means 11 and is further connected to a container 12 which is provided with the sound wave transmission fluid. The supply line 10 is provided with perforations 14 at the proximal end in the volume of the flexible balloon

member 13. These perforations 14 permit filling and emptying the balloon 13 over the entire volume and no air inclusion will occur.

5

Claims

1. Ultrasonic imaging system (6) for transesophageal echocardiography comprising an ultrasound intraesophageal endoscope device (7) and an intratracheal transmission device (8) defining a transmission path for sound waves originating from the endoscope device (7), said transmission device (8) being formed by a distensible balloon member (13) connected to a supply line (10) to permit fluid entry in said balloon member (13), the endoscope device (7) being spatially separated from and outside the balloon member (13).
2. Ultrasonic imaging system (6) according to claim 1, **characterized in that** the supply line (10) has a diameter of 2-3 mm allowing insertion of the transmission device (8) into the patient's trachea without kinking.
3. Ultrasonic imaging system (6) according to claim 1 or 2, **characterized in that** the supply line (10) is provided distally with a plurality of side perforations (14) in order to fill and empty the balloon (13) over its entire length.
4. Ultrasonic imaging system (6) according to any of the preceding claims, **characterized by** pressure control means (11) for controlling the pressure inside the balloon member (13).
5. Ultrasonic imaging system (6) according to claim 4, **characterized in that** the pressure control means (11) include a safety valve or a pressure monitor.
6. Ultrasonic imaging system (6) according to any of the preceding claims, **characterized by** positioning means for determining the position of the transmission device (8).

Patentansprüche

1. Bildgebendes Ultraschallgerät (6) für transösophageale Echokardiographie mit einer intra-ösophagischen Ultraschall-Endoskopvorrichtung (7) und einer intratrachealen Transmissionsvorrichtung (8), die für Schallwellen, welche von der Endoskopvorrichtung (7) herrühren, einen Transmissionsweg definiert, wobei die Transmissionsvorrichtung (8) durch ein dehnbare Ballonelement (13) gebildet ist, das mit einer Versorgungsleitung (10) verbunden ist, um Fluideintritt in das Ballonelement (13) zu erlauben,

wobei die Endoskopvorrichtung (7) von dem Balloonlement (13) räumlich getrennt und außerhalb desselben liegt.

2. Bildgebendes Ultraschallgerät (6) nach Anspruch 1, **dadurch gekennzeichnet, dass** die Versorgungsleitung (10) einen Durchmesser von 2-3 mm hat, der ein Einsetzen der Transmissionsvorrichtung (8) in die Trachea des Patienten ohne knicken erlaubt.

3. Bildgebendes Ultraschallgerät (6) nach Anspruch 1 oder 2, **dadurch gekennzeichnet, dass** die Versorgungsleitung (10) distal mit einer Anzahl von seitlichen Perforationen (14) versehen ist, um den Ballon (13) über seine gesamte Länge zu füllen und zu leeren.

4. Bildgebendes Ultraschallgerät (6) nach einem der vorstehenden Ansprüche, **gekennzeichnet durch** Drucksteuermittel (11) zum Steuern des Druckes innerhalb des Ballonelementes (13).

5. Bildgebendes Ultraschallgerät (6) nach Anspruch 4, **dadurch gekennzeichnet, dass** die Drucksteuermittel (11) ein Sicherheitsventil oder eine Drucküberwachung aufweisen.

6. Bildgebendes Ultraschallgerät (6) nach einem der vorstehenden Ansprüche **gekennzeichnet durch** Positioniermittel zum Bestimmen der Position der Transmissionsvorrichtung (8).

remplir et vider le ballonnet (13) sur toute sa longeur.

4. Système d'imagerie ultrasonique (6) selon l'une quelconque des revendications précédentes, **caractérisé par** un moyen de régulation de pression (11) pour régler la pression à l'intérieur de l'élément à ballonnet (13).

5. Système d'imagerie ultrasonique (6) selon la revendication 4, **caractérisé en ce que** le moyen de régulation de pression (11) comprend une soupape de sécurité ou un moniteur de pression.

6. Système d'imagerie ultrasonique (6) selon l'une quelconque des revendications précédentes, **caractérisé par** un moyen de positionnement pour déterminer la position du dispositif de transmission (8).

Revendications

1. Système d'imagerie ultrasonique (6) pour échocardiographie transoesophagienne, comprenant un dispositif ultrasonique à endoscope intra-oesophagien (7) et un dispositif de transmission intratrachéal (8) définissant un trajet de transmission pour ondes sonores provenant du dispositif à endoscope (7), ledit dispositif de transmission (8) étant formé par un élément à ballonnet dilatable (13) raccordé à un conduit d'alimentation (10) pour permettre l'entrée de fluide dans ledit élément à ballonnet (13), le dispositif à endoscope (7) étant spatialement séparé de l'élément à ballonnet (13) et à l'extérieur de celui-ci.

2. Système d'imagerie ultrasonique (6) selon la revendication 1, **caractérisé en ce que** le conduit d'alimentation (10) a un diamètre de 2 à 3 mm permettant l'insertion du dispositif de transmission (8) dans la trachée du patient sans vrillage.

3. Système d'imagerie ultrasonique (6) selon la revendication 1 ou 2, **caractérisé en ce que** le conduit d'alimentation (10) est muni à l'extrémité distale d'une pluralité de perforations latérales (14) pour

35

40

45

50

55

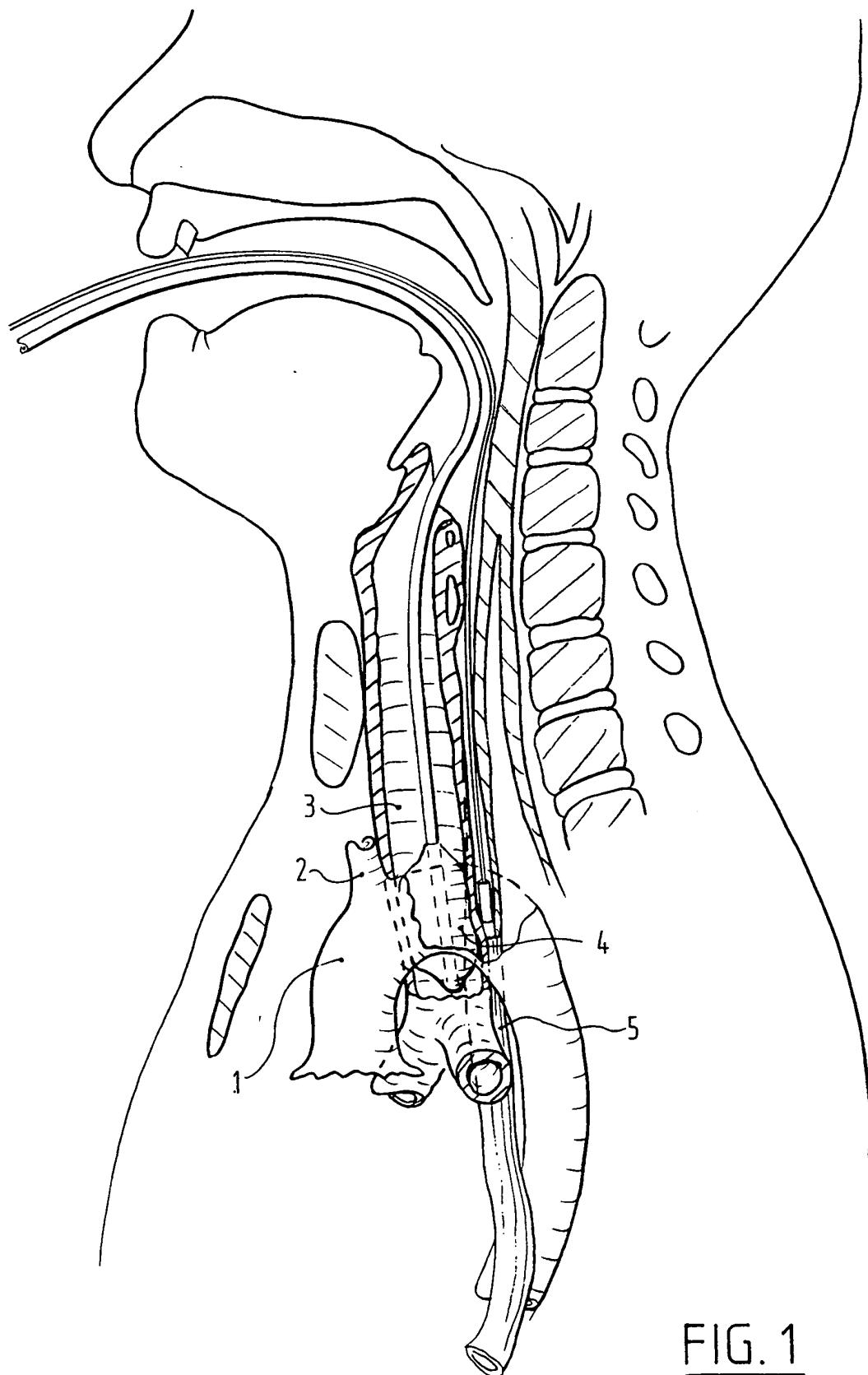


FIG. 1

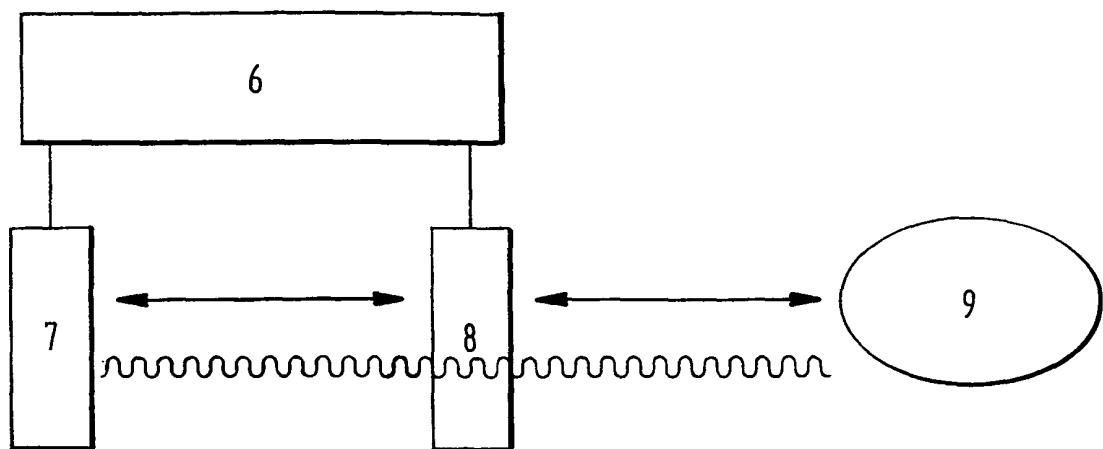


FIG. 2

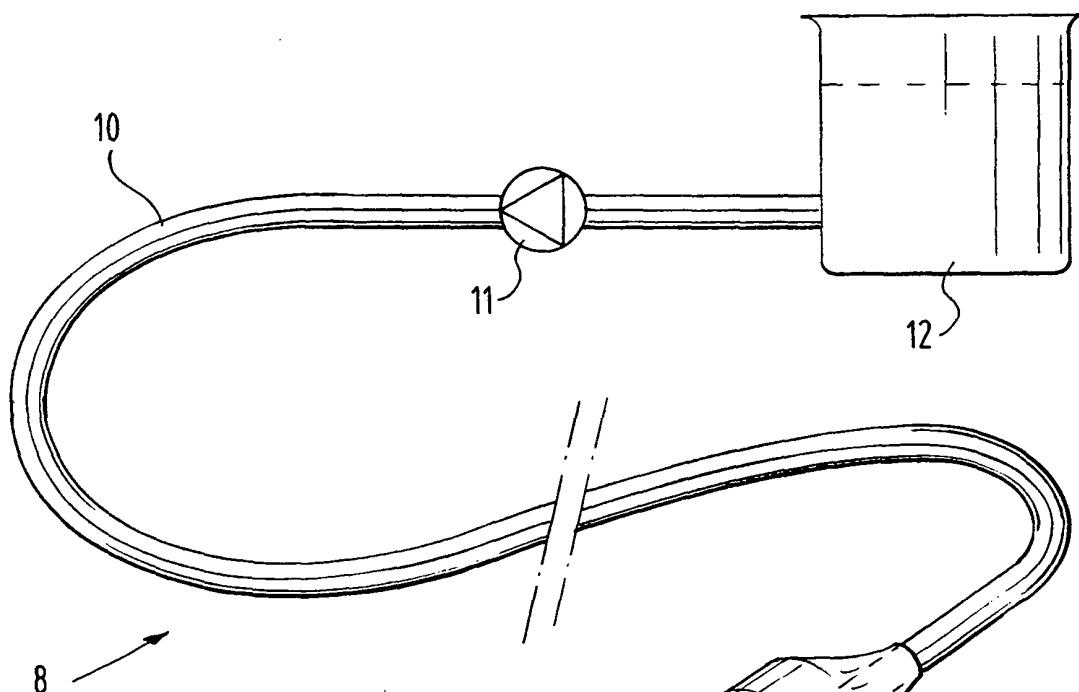
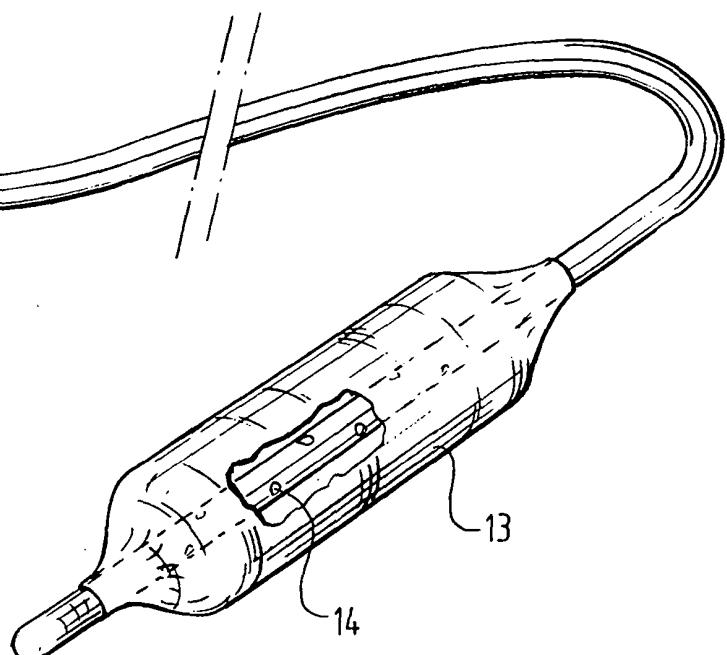



FIG. 3

专利名称(译)	超声成像系统的传输装置		
公开(公告)号	EP1161181B1	公开(公告)日	2006-05-31
申请号	EP2000916933	申请日	2000-03-10
[标]申请(专利权)人(译)	NIERICH ARNO		
申请(专利权)人(译)	NIERICH , ARNO		
当前申请(专利权)人(译)	CORDATEC NV		
[标]发明人	NIERICH ARNO		
发明人	NIERICH, ARNO		
IPC分类号	A61B8/12 A61B5/03 A61B8/00		
CPC分类号	A61B8/12 A61B5/037		
优先权	1999200703 1999-03-10 EP		
其他公开文献	EP1161181A1		
外部链接	Espacenet		

摘要(译)

超声成像系统技术领域本发明涉及一种超声成像系统(6)，其包括使用中的两个空间可分离装置：用于扫描患者器官(9)的超声食管内窥镜装置(7)，特别是用于经食道超声心动图和气管内传输装置。(8)定义源自内窥镜装置的声波的传输路径。本发明还涉及一种传输装置(8)，其特别适用于与超声成像系统(6)中的内窥镜装置(7)相关联，该超声成像系统包括连接到供应线(10)的柔性球囊元件(13)。声波传输流体介质。

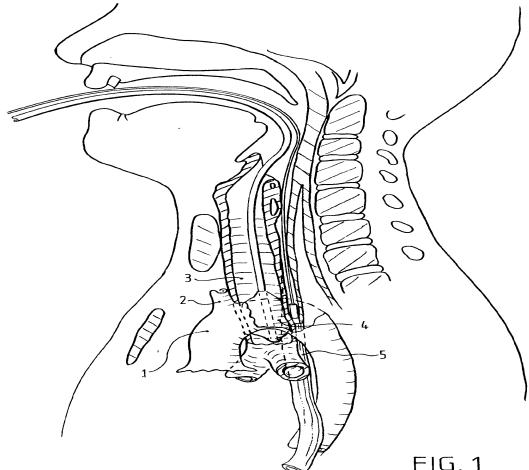


FIG. 1