(19) 日本国特許庁(JP)

(12)特許公報(B2)

(11)特許番号

特許第4734395号

(P4734395)

(45) 発行日 平成23年7月27日(2011.7.27)

- (24) 登録日 平成23年4月28日 (2011.4.28)
- (51) Int.Cl. F I A 6 1 B 8/08 (2006.01) A 6 1 B 8/08

雨水県の数3(王	24	頁)
----------	----	----

(21) 出願番号 (22) 出願日	特願2008-270237 (P2008-270237) 平成20年10月20日 (2008, 10, 20)	(73)特許権者	章 000003078 株式会社東芝
(62)分割の表示	特願2002-272845 (P2002-272845)		東京都港区芝浦一丁目1番1号
原出願日	の分割 平成14年9月19日 (2002.9.19)	(74)代埋人	100108855 弁理士 蔵田 昌俊
(65) 公開番号	特開2009-11861 (P2009-11861A)	(74)代理人	100091351
(43) 公開日	平成21年1月22日 (2009.1.22)		弁理士 河野 哲 10000000
普	平成20年10月20日(2008.10.20) 特願2001-288499(P2001-288499)	(74)代埋入	100088683 - 弃理十 中村 誠
(32) 優先日	平成13年9月21日 (2001.9.21)	(74)代理人	100109830
(33)優先権主張国	日本国(JP)		弁理士 福原 淑弘
		(74)代理人	100075672 会理上 略 降司
		(74)代理人	开理工 哮 隆可 100095441
			弁理士 白根 俊郎
			最終頁に続く

(54) 【発明の名称】超音波診断装置

(57)【特許請求の範囲】

【請求項1】

被検体の複数の時相に関する複数の超音波画像を記憶する記憶手段と、

前記複数の超音波画像に対して、前記被検体の組織の第1の収縮中心を設定し、前記第 1の収縮中心の近傍に第2の収縮中心を設定する収縮中心設定手段と、

前記複数の超音波画像に基づいて、前記第1の収縮中心へ向かう方向に沿った運動に関 する第1の運動速度分布画像と、前記第2の収縮中心へ向かう方向に沿った運動に関する 第2の運動速度分布画像と、を前記時相毎に生成する速度分布画像生成手段と、

前記複数の超音波画像のうち、所定時相に関する超音波画像において、前記被検体の組織領域に複数の追跡点を設定する追跡点設定手段と、

10

前記所定時相以外の残余の時相に関する前記複数の超音波画像において、前記第1の速 度分布画像に基づいて、前記複数の追跡点に対応する第1の対応点群を推定し、前記第2 の速度分布画像に基づいて、前記複数の追跡点に対応する第2の対応点群を推定する推定 手段と、

前記各時相において、前記組織領域の伸縮に応じて前記各追跡点、前記所定時相以外の 残余の時相における第1の対応点群及び第2の対応点群における信号値を決定する信号値 決定手段と、

前記追跡点及び前記第1の対応点群における信号値に基づいて、第1の運動情報画像を 生成し、前記追跡点及び前記第2の対応点群における信号値に基づいて、第2の運動情報 画像を生成する運動情報画像生成手段と、 前記第1の運動情報画像と前記第2の運動情報画像とが合成された合成画像を生成する 合成画像生成手段と、

前記合成画像を表示する表示手段と、

を具備することを特徴とする超音波診断装置。

【請求項2】

前記信号値決定手段は、前記時相毎の前記速度分布画像に基づいて、少なくとも前記複数の追跡点に対応する前記第1の対応点群及び前記第2の対応点群の各時相における速度 を累積し時間積分することで、最新時相における前記少なくとも前記第1の対応点群及び 前記第2の対応点群の変位を信号値として決定し、

前記運動情報画像生成手段は、前記最新時相における前記少なくとも前記第1の対応点 ¹⁰ 群及び前記第2の対応点群の変位に基づいて、前記各運動情報画像としての変位画像を生 成すること、

を特徴とする請求項1記載の超音波診断装置。

【請求項3】

前記信号値決定手段は、所定時相の第1の対応点と第2の対応点とが次段時相の第3の 対応点において重なった場合には、少なくとも前記第1の対応点の信号値と前記第2の対応点の信号値とに基づいて、前記第3の対応点の信号値を決定することを特徴とする請求 項1又は2記載の超音波診断装置。

【請求項4】

前記信号値決定手段は、前記初期時相の第1の追跡点と第2の追跡点とが次段時相の第 20 3の対応点において重なった場合には、少なくとも前記第1の追跡点の信号値と前記第2 の追跡点の信号値とに基づいて、前記第3の対応点の信号値を決定することを特徴とする 請求項1又は2記載の超音波診断装置。

【請求項5】

前記信号値決定手段は、前記各時相における前記各超音波画像において、前記複数の対応点以外の組織領域内の点を基準として、前記所定サイズの探索領域を設定し、

前記探索領域内に存在する前記対応点を探索し、 前記対応点が探索された場合には、少なくとも最寄りの前記対応点の信号値に基づいて 、前記組織領域内の点の信号値を決定し、前記対応点が探索されない場合には、信号値を

0とすること、

を特徴とする請求項1記載の超音波診断装置。

【発明の詳細な説明】

【技術分野】

[0001]

本発明は、医学診断に有効な情報を提供する超音波診断装置に関する。

【背景技術】

[0002]

心筋等の生体組織に関して、その機能を客観的かつ定量的に評価することは、その組織 の診断にとって非常に重要である。例えば心臓に関する定量的評価法については、従来か ら次の様な手法が存在する。具体的な手法としては、2次元画像で定義されたMVG(M yocardial Velocity Gradient)法が挙げられる。2次元画 像で定義するMVGには、短軸用途のMVG-S、長軸(心尖アプローチによる四腔像や 二腔像)用途のMVG-Lがある。現在の実用的なMVG-S/Lにおいては、ある時相 における2次元画像中に心筋の内外膜の輪郭を手動で設定することで心筋の部位とその局 所的な運動方向を定めることができ、心筋の速度勾配すなわち歪み率を心筋の各領域につ いて求めている(例えば、特許文献1参照。)。

【 0 0 0 3 】

その他の例としては、TDT(Tissue Doppler Tracking)法 を用い、初期時相で心筋の2点(内外膜が好適)位置を与えれば、自動的に他の時相での その2点(内外膜)の位置が追跡され、全時相でのMVGを求めるMVG-M法が挙げら

れる(例えば、特許文献2参照。)。また、組織変形を表す値として歪みを求めリアルタ イムで表示する手法もある(例えば、特許文献3参照。)。 【0004】

なお、心筋内部の局所領域での運動パラメータを得ることの意義を示すものとして、健 常例の心筋では主に内膜側が外膜側よりも支配的(約2倍)に収縮に寄与し、心筋梗塞な どの疾患例ではこの内膜側の寄与が低減すると言われている(例えば、非特許文献1参照 。)。動物実験では古くから知られていた性質であるが、下記MVG-M等を利用した近 年の研究でヒトでも同様とされている。

[0005]

心筋全体、及び心筋内部の局所的な機能を非浸襲的かつ定量的に評価することは、疾患 ¹⁰ の程度の把握やそれに伴う治療方法の選択に役立つことが期待され、重要性が高まってきている。

【0006】

しかしながら、従来のMVG法では、心時相の複数時相を解析するためには、その全時 相で心筋部位の設定を行う必要があり、MVG-S/Lの時間変化を解析するのは困難で ある。また、MVG-S/Lは、心筋の輪郭や心筋の分画サイズといった心筋のサイズを 機軸とした定義で運動パラメータを得るものであるため、心筋内部の局所領域での分布情 報を得ることは困難である。

【0007】

また、従来のMVG-M法では、Mモード画像の速度勾配が表示されるため、時間解析 20 が比較的容易にできる。しかし、MVG-M法では、空間的に1次元の情報しか持たない ので、2次元的な分布情報を得ることが出来ない。

[0008]

さらに、これら速度勾配のような歪み率演算における共通の特徴として、超音波特有の スペックルノイズ等の影響で空間的に不安定となりやすい速度情報を用いて空間微分を行 うものであるため、生体ではノイズによって安定性が得られにくいという問題がある。 【0009】

また、従来の歪みの表示法では、時間的に固定長を有する2点間の歪み率を求めており 、空間的に一様な歪みを有すること、及び所定の区間に含まれていること、という仮定が ある。これらの仮定は、心臓の、特に短軸像の評価では成り立たないため、正確な歪みを 求めることができない。

30

来のることかできない。

【特許文献1】特開平11-155862号公報

【特許文献2】特開平9-201361号公報

【特許文献3】特開2001-70303号公報

【非特許文献1】「左室壁の心内膜側心筋と心外膜側心筋の違いについて」J Card iol 2000年、No.35、p.205-218)

【発明の開示】

【発明が解決しようとする課題】

[0010]

本発明は、上記事情を鑑みてなされたもので、例えば心臓等の生体組織であっても、変 ⁴⁰ 位や歪みを表す運動情報画像を高い安定性にて提供できる超音波診断装置を提供すること を目的としている。

【課題を解決するための手段】

[0011]

本発明は、上記目的を達成するため、次のような手段を講じている。

[0012]

請求項1に記載の発明は、被検体の複数の時相に関する複数の超音波画像を記憶する記 憶手段と、前記複数の超音波画像に対して、前記被検体の組織の第1の収縮中心を設定し 、前記第1の収縮中心の近傍に第2の収縮中心を設定する収縮中心設定手段と、前記複数 の超音波画像に基づいて、前記第1の収縮中心へ向かう方向に沿った運動に関する第1の

(3)

運動速度分布画像と、前記第2の収縮中心へ向かう方向に沿った運動に関する第2の運動 速度分布画像と、を前記時相毎に生成する速度分布画像生成手段と、前記複数の超音波画 像のうち、所定時相に関する超音波画像において、前記被検体の組織領域に複数の追跡点 を設定する追跡点設定手段と、前記所定時相以外の残余の時相に関する前記複数の超音波 画像において、前記第1の速度分布画像に基づいて、前記複数の追跡点に対応する第1の 対応点群を推定し、前記第2の速度分布画像に基づいて、前記複数の追跡点に対応する第 2の対応点群を推定する推定手段と、前記各時相において、前記組織領域の伸縮に応じて 前記各追跡点、前記所定時相以外の残余の時相における第1の対応点群及び第2の対応点 群における信号値を決定する信号値決定手段と、前記追跡点及び前記第1の対応点群にお ける信号値に基づいて、第1の運動情報画像を生成し、前記追跡点及び前記第2の対応点 群における信号値に基づいて、第2の運動情報画像を生成する運動情報画像生成手段と、 前記第1の運動情報画像と前記第2の運動情報画像とが合成された合成画像を生成する合 成画像生成手段と、前記合成画像を表示する表示手段と、を具備することを特徴とする超 音波診断装置である。

【発明の効果】

[0013]

以上本発明によれば、例えば心臓等の生体組織であっても、変位や歪みを表す運動情報 画像を高い安定性にて提供できる超音波診断装置を実現することができる。

【発明を実施するための最良の形態】

[0014]

以下、本発明の第1実施形態及び第2実施形態を図面に従って説明する。なお、以下の 説明において、略同一の機能及び構成を有する構成要素については、同一符号を付し、重 複説明は必要な場合にのみ行う。

[0015]

(第1の実施形態)

第1の実施形態では、組織の速度情報を元に、時間積分によってノイズを低減させた運 動情報を演算し、その空間分布を画像として提供する。得られる運動情報画像は、所定の 運動方向に対する変位の画像情報もしくは歪みの画像情報である。

[0016]

この際、運動を伴う組織に対して、高品位な運動情報画像を効果的に得るためには、組 織の位置を追跡しながら組織から得られる速度情報を処理することが重要である。特に、 心筋の場合は移動量が大きく、対象処理位置が心筋部位を外れる(例えば心腔内)ことの ないようにするために位置の追跡は欠かせない。更に心筋内部での局所的な運動情報分布 を得るためにも位置の追跡は重要な要素となる。

[0017]

このような局所的な組織位置の追跡を伴う運動情報画像(以下、組織追跡イメージング という)を実際に得るために、図1に示すような各処理を実行する。

[0018]

[1]時空間的な運動方向の場(Motion-Field:MF)を設定する(ステッ 40 プS1)。

【0019】

[2]組織速度の時空間分布像(Velocity-Field:VF)を得る(ステッ) プS2)。

[0020]

[3]演算開始時相を設定する(ステップS3)。

 $\begin{bmatrix} 0 & 0 & 2 & 1 \end{bmatrix}$

[4]演算開始時相において追跡すべき組織の領域(追跡点群)を限定する(ステップS 4)。

[0022]

[5]追跡点群の各時間での移動位置をVF・(組織ドプラ法ではMFを併用)・時間間 50

10

20

(5)

隔を用いて逐次推定する(ステップS5)。 【0023】 [6]追跡点群の各点にてMFを用いて入力信号を定義し、各時間まで積分する(中間出 力点群の取得;ステップS6)。

【0024】

[7]各時間において、出力画像の各点に対し、周辺の最寄り中間出力群の値を用いて出 力値を推定する(ステップS7)。

【0025】

[8]運動情報画像の生成と表示(ステップS8)。

【0026】

ここで、変位画像を得る場合には、[6]の処理において入力信号を速度とすれば、変 位を定義することができる。

【0027】

また、歪み画像を得る場合には、以下に説明する2種類の定義(Lagrangian strain, Natural strain)を利用して、理想的な歪みを定義することができる。これらの定義は、1次元の棒状組織モデルに対して、初期時相で定められた1点と、この点から所定の初期長を有する他点との2点の対の位置を時間的に追跡する技術によって得られる。尚、歪みに関するより具体的な詳細は、文献("Region al Strain and Strain Rate Measurements by Cardiac Ultrasound: Principles, Implementation and Limitations"Eur J Echocardio graphy(2000) 1,154・70)に記載されている。

[Lagrangian strain]

本来の歪み(Strain)の定義であり、初期の長さL(t0)を基準として式(1) で定義される。なお、図2(a)に、L(t0)及びL(t)の関係を表してある S_L(t)=[L(t)-L(t0)]/L(t0) (1)

 $S_{L}(t)$: Lagrangian Strain

L (t 0) : 基準時刻 t 0 での長さ

又、Lagrangian strainは、追跡した対の各点での速度を積分して変 ³⁰ 位を求め、この変位の対間の差分を取って初期長で規格化することによって算出でき、以 下にその具体的な手順を記載する。図2(b)は、その概念を示したものである。

【 0 0 2 9 】

(1) L 0 の間隔を有する 2 点(a 点、b 点)をt 0 時相で設定する。r a (t 0)、 r b (t 0) は a 点、b 点のt 0 での位置を表している。

【 0 0 3 0 】

(2)この2点の位置を時間的に追跡しながらL(t)=ra(t)-rb(t)を算出する。

【0031】

(3) SL(t) = (L(t) - L0) / L0を算出する。ここで、L(t)は、次に 40
示す式(2)のように表され、また、SL(t)は式(3 - 1)や(3 - 2)によって求めることができる。

【0032】

L(t) = Va()d - Vb()d + L0 (2)

S」(t)=(a点の追跡変位 - b 点の追跡変位) / L 0 (3 - 1)

= [(a点の追跡速度 - b 点の追跡速度) / L 0] d (3 - 2)

ただし、積分区間は(t0 t)とする。また、Va()、Vb()は、a点、

b点での追跡速度である。

【0033】

上記式(3-2)の被積分関数は、理想的な歪み率定義に相当する。仮に、積分をせず 50

10

10

20

にこの歪み率を各時相において出力すれば、組織追跡を行った理想的な歪み率を出力画像 として得ることも可能である。但し、前述のように、歪み率画像そのものはノイズの影響 を受けやすいため、本実施形態では歪みに着目する。 Natural strainをS $_{N}$ (t)とし、時刻tにおける長さをL(t)とし て、次の式(4)の様に定式化する。 $\begin{bmatrix} 0 & 0 & 3 & 5 \end{bmatrix}$ $S_{N}(t) = [(La(x +) - L(x)) / L(x)] dx$ (4) ただし、積分区間は(t0 t)とする。 [0036] また、 S_{\perp} (t)と S_{N} (t)は、次の式(5)にて関係付けられる。 [0037] $S_{N}(t) = ln(1+S_{L}(t)) \forall ls_{L}(t) = exp[S_{N}(t)] - 1$ (5) 式(4)に示すように、Natural strainは、追跡した対の各点での速度 の差分を取って二点間で規格化して歪み率を求め、この歪み率を積分することによって算 出でき、以下にその具体的な手順を記載する。図3は、その概念を示した図である。 [0038]すなわち、図3に示すように、L(t)の長さを有する2点(a点、b点)を時相tで 設定する。ここで、ra(t)、rb(t)はa点、b点の時相tでの位置を表している 。また、上記L(t)内部では歪みは線形で一様と仮定し、固定長Lsを有する2点(r 1、r2)を上記長さL(t)内部に設定する。このような設定では、r1~r2間の歪 み率(速度勾配)はNatural strain rate(SRN(t))に等しい 。尚、SRN(t)は次の式(6)により表される。

【数1】

$$VG(t) = (V(r1,t) - V(r2,t))/(r1 - r2)$$

= [Vb(t) + (Va(t) - Vb(t))/L(t) * (r1 - rb(t))]
- [Vb(t) + (Va(t) - Vb(t))/L(t) * (r2 - rb(t))]/(r1 - r2) 30
= (Va(t) - Vb(t))/L(t) * (r1 • r2)/(r1 • r2) (6)
= (Va(t) - Vb(t))/L(t)
= SRN(t)
但し、V(r,t) = Vb(t) + (Va(t) - Vb(t))/L(t) * (r(t) - rb(t)) と仮定する

[0039]

上記(6)を利用して、S_N(t)をr1~r2間の速度勾配(VG())のt0か らtまでの時間積分で算出し、S_L(t) = e × p(S_N(t)) - 1の変換式でS_L(40 t)を算出することができる。以下、本実施形態においては、Lagrangian S trainを用いる例について説明する。なお、このような組織追跡イメージングに関 わる例として、特開2001-70303公報に組織変形の実時間計算および表示の方法 が記載されているが、歪みの具体的な定義方法は本法と異なる。すなわち、従来の手法は 、図3において、瞬時長を基準にした歪みを仮定を用いて推定し、式変換によって理想的 な歪みを得るものである。従って、この結果が上記理想的な歪みの定義と等しくなるため には、時間的に固定長を有する2点間の歪み率を求めていることに起因する以下の制約が ある。すなわち、従来の手法では一方の点しか追跡しないため、心臓の特に短軸像の評価 において、この2点が空間的に一様な歪みを有する区間に含まれているという仮定が成り 立たない制約である。 [0040]

一般に、超音波信号にはスペックルノイズ等の影響があり、空間的に安定した歪み率を 得るにはこの固定長をある程度大きく(スペックルの自己相関長は数mmのオーダーと言 われているので、実際には4~10mm程度)保つ必要がある。従って、運動を伴う心筋 部位にこの2点を含めるには、直接的に2点を追跡する本実施形態での方式が有利といえ る。従来例でも、この固定長を幾つか変えた歪み率を加重平均する方法や、空間的に固定 長を適応的に変える(時間的に追跡するものではない)方法によって歪み率の精度を高め ようとする試みが述べられている。しかしながら、いずれも直接2点を追跡するものでは なく、実際には上記スペックル等の制約があるので改善効果が制限されてしまう。

(7)

10

[4]と[7]の各処理は、実際に高品位な組織追跡イメージングを得ようとする場合 に必要である。

[0042]

すなわち、[4]は、組織領域の限定を行うものである。初期追跡点は、組織に設定さ れるものであって、心腔内には設定しない。このような組織以外の領域は、あらかじめ追 跡点群から取り除いておかないと、出力画像補間の際に組織でない部位の値がノイズとし て出力画像に加わってしまうからである。従って、組織領域の限定を行うのが好適である

[0043]

20 また、[7]は、組織の変形があっても一様な出力画像を推定するための有効な処理で ある。図4(a)、図4(b)は、簡単のために1次元の棒状組織モデルを用いて、[7 〕の処理を説明するための図である。図4(a)に示すように、演算開始時相で短い部位 が運動方向へ伸びていく場合には、追跡点群の位置同士に隙間が発生する。所定時相にお いてこの隙間に存在する各点の妥当な信号値を、周辺を囲む最寄りの中間出力点(すなわ ち、後述する当該所定時相での対応点)の値を用いた重み付け加算処理で求めるようにす る。この重み係数は出力画像の点と、対象となる複数の追跡点群の位置との距離が近いほ ど大きく、遠いほど小さくするように決めるのが好適である。このような処理は、ある種 の補間処理と言えるので、ここでは単に補間と呼ぶものとする。図4(a)の例では、例 えばt2において、点1と点2との間に存在する2点の信号値については、点1、2での 30 中間出力値から補間している。一方、図4(b)に示すように、演算開始時相で長い部位 が縮んでいく場合には、追跡すべき点群の位置同士に重なりが生じる。所定時相において この重なりに対応する点の妥当な信号値を、重なった中間出力点(すなわち、後述する当 該所定時相での対応点)の値を用いて、上述の重み付け加算処理で求めるようにする。こ の様な補間処理により、組織の変形があっても一様な出力画像を推定することが可能とな る。

[0044]

次に、第1の実施形態に係る装置の具体的な構成、機能について詳述する。第1の実施 の形態では、心臓を対象とし、心筋の組織の局所的な運動について2次元画像を用いて評 価する場合について述べる。

[0045]

図5は、第1の実施形態にかかる超音波診断装置の構成図である。超音波プローブ1は 、電気信号を超音波に変換する複数の超音波振動子を配列した超音波振動子アレイを備え 、この超音波振動子アレイにより被検体に対して超音波の送受波を行う。第1の実施形態 において、超音波プローブ1は心臓を対象としたセクタプローブであるものとする。

[0046]

送信ユニット2は、超音波振動子アレイから超音波を送波するための駆動信号を発生す るものであり、所定のスキャンラインに向けて超音波ビームが形成されるよう振動子毎に 所定の遅延特性を持たせた駆動信号を発生する。受信ユニット3は、超音波振動子アレイ の各超音波振動子で受波された超音波エコー信号に対して遅延加算処理を行って所定のス キャンラインに対応した超音波エコー信号を生成する。

[0047]

Bモード処理ユニット4は、遅延加算処理された超音波エコー信号に対して包絡線検波 処理を施すことにより、超音波エコーの振幅強度に対応したBモード信号を生成する。又 Bモード処理ユニット4は、このBモード信号の所定断面にかかる2次元分布を表した Bモード超音波像を生成する。組織ドプラ処理ユニット5は、直交検波処理、自己相関処 理等を行い、遅延加算処理された超音波エコー信号のドプラ偏移成分に基づいて、被検体 内で移動している組織の速度、分散、パワーに対応した組織ドプラ信号を求める。又、組 織ドプラ処理ユニット5は、この速度、分散、パワー値の所定断面にかかる2次元分布を 表した組織ドプラ超音波像を生成する。

[0048]

10

運動情報処理ユニット6は、Bモード処理ユニット4及び組織ドプラ処理ユニット6の 出力するBモード超音波像及びドプラ超音波像に基づいて、図1に示した運動情報画像を 取得するための各処理を実行する。この運動情報処理ユニット6の具体的な動作について は、後で詳しく説明する。

【0049】

表示制御ユニット7は、Bモード超音波像、ドプラ超音波像、変位もしくは歪みの2次 元分布像に基づいて表示画像を生成する。表示画像としては、例えば、Bモード超音波像 と組織ドプラ超音波像の重畳画像、Bモード超音波像と変位もしくは歪みの2次元分布像 の重畳画像等がある。表示装置8は、表示制御ユニットで生成された表示画像を表示する

20

30

40

[0050]

メモリ9は、各時相に対応する超音波画像、運動情報処理ユニット6によって生成され た各時相に対応する速度分布画像等を記憶する。

【0051】

次に、運動情報処理ユニット6の図1に示した各処理の具体的内容について、図面を参照しながら詳述する。

【0052】

[運動場に基づいた補正速度の時空間分布像の生成:ステップS及びステップS2] まず、運動情報処理ユニット6は、運動場で定義された運動方向への速度の時空間分布 像(時相毎の2次元分布像)を求める。図6(a)、(b)は、運動場の定義についての 説明図である。図6(a)は、ラスタモーションフィールド(Raster motio n field)、図6(b)はコントラクションモーションフィールド(Contra ction motion field)という運動場をそれぞれ表している。各図にお いて、×印運動の向かう点であり、矢印運動の向かう方向である。

【0053】

図6(a)のラスタモーションフィールドとは、超音波スキャンの各超音波ビーム方向 に沿った運動場のことであり、この時の速度の符号は超音波プローブ1に近づくものが正 、離れるものが負である。このようなラスタモーションフィールドにおいて、組織ドプラ 法で推定される観測速度は、良く知られているように、実際の運動方向と超音波ビーム方 向の速度成分とのなす角度(ドプラ角と呼ばれる)を として以下の式(7)で表される

。 【0054】

(観測速度) = c o s * (実際の運動速度)

(0° 180°) (7)

心臓における組織の運動動態は大変複雑であり、全てをラスタモーションフィールドで 想定することには難がある。とりわけ、心筋の厚さ方向への収縮拡張の評価に最適な短軸 画像を評価する場合には、超音波ビーム方向が運動方向と一致する収縮中心から見て時計 の12時方向(真上方向)の極狭い範囲でしか運動方向が合致しない。収縮中心から見て 6時方向(真下方向)は、超音波ビーム方向と運動の方向が平行であるが向きは逆となる [0055]

従って、短軸で心筋の収縮拡張方向での運動を評価するには、図6(b)のようなコン トラクションモーションフィールドという運動場を定義し、その運動場の方向が実際の運 動方向であると仮定して補正速度を求めるのが好適である。コントラクションモーション フィールドは、心壁の仮想収縮中心を画像中に設定し、この仮想収縮中心に向かう方向を 運動の方向を運度の場として定義している。尚、仮想収縮中心の設定は、表示されている 超音波像を見て操作者が手動入力により設定しても良いし、画像分析処理により超音波像 から装置が自動的に設定するようにしても良い。

【0056】

コントラクションモーションフィールドでは、以下の式(8)により、仮想収縮中心に ¹⁰ 向かう速度成分が得られる。速度の符号は、仮想収縮中心に近づくものが正、離れるもの が負である。このようなコントラクションモーションフィールドに対応して求められた補 正速度の2次元分布像を求める。尚、必要に応じてこの補正組織速度の2次元分布像を表 示装置8に表示するようにしても良い。

[0057]

(補正速度) = (観測速度) / c o s

(0° 180°) (8)

ここで、組織追跡イメージング処理の限界領域の表示について説明する。組織ドプラ法 の場合、このような運動場の定義は、以下で述べる追跡点群の位置を推定する上でも欠か せない。これは、2次元画像中を移動していく追跡点群の移動方向を定めるためである。 但し、ドプラ角 が90°に近い場合には信頼性の高い補正速度が得られないため、この ような領域(短軸では2時方向や10時方向の領域)においては、運動の評価に限界があ る。このような信頼性の低い領域については、組織追跡イメージング処理の限界領域とし て表示し、ユーザーに認識させるのが好適である。また、この限界領域においては、処理 の入力となる速度情報は用いないのが望ましい。そこで、この限界領域を定めるために、 所定のドプラ角の制限値を持つ。そして、このドプラ角の制限値は(実用上の最適値の研 究段階においては特にそうであるが)、被検者の違いで生ずる組織ドプラの画質差によっ て若干変動する要素もあるため、最適な値をユーザーによって設定可能としても良い。ド プラ角の制限値の初期設定としては、例えば80°~110°が望ましい。

【0058】

ここで、この限界領域の表示には、別の作用もあることに注意されたい。これは、画像 中に現在どのような運動場が設定されているかを暗示することができる点である。例えば 、同じ短軸画像でも、収縮拡張の方向(これが主方向であり多くの場合はこちらが注目さ れる)だけでなく、回転方向(心筋の輪郭に平行な方向)の運動が評価の対象となり得る ので、複数の運動場を設定可能な場合に、第三者が出力画像を一見してどのような運動場 なのか一見して認識できるのである。回転運動場の場合、コントラクションモーションフ ィールドとは異なり、短軸では時計の12時方向と6時方向付近にドプラ角の制限領域が 生ずる。

【 0 0 5 9 】

図7(a)、7(b)は運動場及び限界領域の表示例である。具体的には、図7(a) 4 はコントラクションモーションフィールドでの限界領域、図7(b)は回転運動場での限 界領域を示している。

【 0 0 6 0 】

図7(a)、7(b)においては、収縮仮想中心を表すXのマーク、定義された運動場 の運動方向を表す矢印のマーク及び限界領域(斜線部)が表示されている。限界領域は、 限界領域の境界部分に線を表示する方法、限界領域内の色又は輝度を他の部分と異ならせ る方法等により、限界領域の部分を把握できるようにする。これらの像は、前述した補正 組織速度の2次元分布像と重畳して表示装置8に表示する。

【 0 0 6 1 】

[組織追跡イメージング処理開始時相の設定:ステップS3]

10

20

30

40

一連の組織ドプラ動画像に対して、メモリに記憶された画像の中から、ユーザーが心電図を参照しながら処理を開始する時相t0(初期時相t0とも言う。)を選択するようにする。この場合は、処理の開始時相だけでなく、処理の終了時相(t<u></u>end)もユーザーによって選択可能としておくのが好適である。これにより、心周期に対する評価の関心時相の区間を所望の区間に設定することが出来る(図8(a)参照)。 【0062】

又、図8(b)に示すように、動画像収集の際に、心電図のR波でトリガされる所定の 時相(R波の時相をtRとして、tR+t_delayの時相。t_delayは制御可 能であり、t_delay=0の場合がR波同期と呼ばれる)を自動的にt0として設定 する(すなわち、t0=tR+t_delay)ものであっても良い。この場合の処理の 終了時相は、次のトリガが生ずるタイミングとして、ちょうど1心周期分の区間を定めて おくのが好適であるが、開始時相から所定の時間間隔(t_int)をあらかじめ設定し ておけば、このt0+t_intの時相を終了時相として、上記同様に心周期に対する評 価の関心時相の区間を所望の区間に設定することが出来る。

【0063】

[演算開始時相の設定、及び演算開始時相における追跡すべき組織の領域(追跡点群)の設定:ステップS3、S4]

次に、追跡点群の設定処理について、図9(a)を参照しながら詳しく説明する。図9(a)は、追跡点群の設定処理の流れを示したフローチャートである。図9(a)に示すよ うに、まず、イメージ領域の補正組織速度の2次元分布データIM1を得る(ステップS 31)。このまま全ての2次元分布データの領域を対象として追跡処理を開始しても良い が、心臓の場合には、このようにすると組織以外の領域も追跡対象となり得る。そこで、 Bモード信号の輝度情報を用いて、制御可能なしきい値を越える領域のみを組織領域とし て限定した画像IM2を生成する(ステップS32)。このようなしきい値判定に用いる 信号源としては、Bモード信号だけでなく例えば組織ドプラ処理の過程で速度情報と同時 に定義可能なパワーの情報を用いるようにしても構わない。Bモード信号や組織ドプラの パワー信号は、信号強度に相関する情報であり、一般的に心腔内の血流部位よりも組織部 位の方が信号強度で数10倍大きいため、心腔内の組織でない領域を追跡対象外とする有 効な手段となる。このしきい値設定の際に、有効な領域として選択された部位(図10で の塗りつぶした領域)をBモード信号として表示するようにしておけば、ユーザーが選択 された組織領域を確認しながら最適なしきい値を設定することが可能である。 【0064】

また、上記による領域限定だけでなく、さらに関心領域(ROI)を設定する場合には 、このROIに関して制御可能なしきい値を越える領域のみを組織領域として限定抽出し 、画像IM3又は画像IM4を生成する(ステップS34)。この様なROI設定による 画像生成は、組織のうち、心筋領域のみをユーザーがROIを設定して抽出する用途に用 いることができる。図10においては、IM3は円状のROI1を用いて短軸の心外膜の 内部を選択する場合を、IM4はROI2を用いて短軸の心外膜と心内膜との間を選択す る場合を示した。このようなROIを用いれば、例えば同図にあるように乳頭筋の領域を 除去する用途や、上記のBモード輝度による限定をしない場合での心腔内領域の除去用途 も適用される。また、これらのROI設定は、心筋組織領域の抽出用途で設定されるもの であるから、前述した運動場の設定が心臓の輪郭のROIを用いて設定されるような場合 (MVG-S/Lで用いられる方式)のROIと併用しても構わない。

[0065]

[追跡点群の各時間での移動位置の推定:ステップS5]

次に、設定された上記追跡点群の各点について、一連の動画像空間(すなわち、時系列的に配置された複数の超音波画像によって構成される空間)内での移動位置の推定を行う

[0066]

ここで、動画像は一定の時間間隔dtで得られているものとする。また、運動場として 50

は仮想収縮中心によるコントラクションモーションフィールドが設定されている。簡単の ためこの仮想収縮中心は時相的に固定で、運動場が時相的に一定の場合について述べる。 【0067】

位置の推定と追跡の方法は、TDTで紹介されるような方法が好適である。TDTでは Mモードの1次元空間方向(すなわちビーム方向)が運動の方向に等しい場合に正確に追 跡可能であるが、2次元画像の場合には以下のように運動場の方向と、この方向での速度 成分を用いることで正確な追跡が得られる。

【0068】

まず、追跡点群について、最初の時相において、ある1点がその位置で有する運動方向 への速度成分(補正速度)をVcとし、次の時相での位置(×,y)を以下の式(9)で ¹⁰ 推定する。

[0069]

(x,y)

= (Vc*dt*cos(th),Vc*dt*sin(th)) (9) 但し、thは運動方向とx軸とのなす角とする。

[0070]

次の時相においては、位置(x,y)におけるVc、thを求めて、同式を用いて更に 次の時相での位置を推定する。このステップを繰り返すことで各時相でのこの点の移動位 置が得られる。

【0071】

なお、このような未来における移動位置の推定法には、上記の現在時相での情報のみを 用いた方法以外にも、現在の時相の情報と次の未来における時相の情報とを併用して推定 する手段(Eular法:上記で求めた未来での位置を仮推定位置1として、仮推定位置 1で同様のプロセスで更に次の未来での仮推定位置2を求め、仮推定位置1と仮推定位置 2の平均で未来の位置を推定する方式等)も幾つか知られている。詳細は割愛するが、い ずれの方法も速度情報Vcと運動方向情報とdtを用いて定義するものであり、この範疇 である限りどのような推定方法を用いても構わない。

【0072】

この際、画像空間内に定義される点は有限の大きさを持つ点に注意を要する。すなわち、最初の時相においては、確実に点が定義されるグリット上に点の位置を定義できるが、 次以降の時相では推定される位置がこのグリット上に必ずしも一致しない場合がある。こ のような場合においてVcの値を求めるには、推定位置を中心とする最寄りの複数点のグ リット上で定義されるVcの値から補間して得るのが好適である。

【0073】

[運動方向成分の入力信号の定義と時間積分による中間出力点群の取得:ステップS6]

次に、上記で推定された追跡点群の位置上で、組織の運動情報に対する中間出力の定義 を行う。運動情報として変位を得る場合には、最初に述べたように、追跡点群の位置を時 相方向に辿りながら、以下の式(10)で速度の運動方向の成分を積分することにより、 運動方向の成分に対する変位の中間出力が各時相での追跡点群の位置上で求められる。 【0074】

変位(x,y,) = Vc(x,y,) * dt (10)
ここで、t0は最初の時相であり、tは現在の時相とする。また、和はt0 tまでとるものとする。

【0075】

また、 歪みを得る場合には、 同様に最初に述べたように、 2 点の対となる追跡点群の位 置を時相方向に辿りながら、以下の式(11)で速度の運動方向の成分を積分することに より、運動方向の成分に対する理想的な歪みの中間出力が各時相での追跡点群の位置上で 求められる。ここで、(xa, ya)は最初の時相で選択された追跡点群の一つで、(x b, yb)は最初の時相では所定の初期長 L 0 分だけ(xa, ya)から運動方向に離れ 20

た位置でのペアとなる他方の追跡点群の一つである。 [0076] 歪み(xa,ya,t)= [Vc(xa,ya,)*dt- Vc(xa,ya,)*dt]/L0 (1 0) ただし、和はt0 tまでとるものとする。 [0077]これらの変位や歪みの演算に用いるVcの値を求める場合にも、上記位置推定の場合と 同様に推定位置を中心とする最寄りの複数点のグリット上で定義されるVcの値から補間 して得るのが好適である。 [0078] 「補間による出力値の推定と歪み画像の生成表示:ステップS7、S81 まず、現在の演算時相における出力画像を定義するイメージ領域を定め、画像内の各点 で出力値を以下の(1)~(5)のステップで求める。以下、時相は一定なので時間の項 は割愛する。 [0079] (1)図11(a)に示す所定時相のある出力点において、図11(b)に示すように 当該出力点を中心とする所定の形状・サイズを有する探索領域を設ける。形状は円形か正 方形が好適で、サイズは例えば5mm程度としておく。 $\begin{bmatrix} 0 & 0 & 8 & 0 \end{bmatrix}$ (2)図11(c)に示すように、探索領域を4象限に分け、各象限で出力点に最寄り の追跡点群pi(i=1~4)を探索する。 [0081](3) どこか一つの象限で1点も追跡点群が見つからなかった場合には出力をゼロにす る。 [0082] (4)全ての象限で最寄りの追跡点群piが見つかった場合には、piと出力点間との 距離Riと、pi上での中間出力値M(pi)を用いて以下の式(12)で出力を定義す る。 【数2】 [1/sum * [1/R1 * M(p1)+1/R2 * M(p2)+1/R3 * M(p3)+1/R4 * M(p4)] (Rmin>0の場合) 出力= M(pmin) (Rmin=0の場合) (12)但し、Rminは各Riの最小値で、pminはRminを得る点 sumは重み付けの規格化係数で、

(12)

sum = 1/R1 + 1/R2 + 1/R3 + 1/R4

[0083]

(5)全ての出力点でこのステップを行い、出力画像を得る。

[0084]

なお、第1の実施形態においては、各piでの重み付け係数を1/Riとしたが、この 他の関数を用いて定義しても良い。例えば、(1 / Ri)^{1 / 2} やGauss関数: ex p (- R i ²) 等、 R i が小さいほど大きな値となる関数が好適である。

[0085]

以上、一連のステップで出力された変位もしくは歪みの画像を、組織ドプラ画像による 50

20

30

速度表示と同様にカラー変換して B モード画像と重畳して表示させることが出来る。但し、このような組織の運動情報の画像については、速度とは異なるカラーマップを用いるのが好適である。具体的には、次のような形態のカラーマップが考えられる。 【0086】

(13)

すなわち、伸びている心筋部分については赤色で表示し、一方、縮んでいる心筋部分に ついては青色で表示する。また、共にその歪み(strain)の大きさが大きくなるに 従って、赤色又は青色の輝度を強くする(すなわち、歪みが正の値である場合には、その 大きさに従った輝度にて赤色表示され、一方、歪みが負の値である場合には、その大きさ に従った輝度にて青色表示される。)このとき、当該色及び輝度と伸縮との関係を示すカ ラーバーを画像とともに表示することが好ましい。

【0087】

また、カラーマップ表示は、必ずしも上記の如く伸びと縮みの双方を(すなわち、赤色 と青色の双方で)する必要はなく、必要に応じていずれか一方を選択的に表示する形態で あってもよい。いずれの形態を使用するかは、操作者が選択可能であることが好ましい。 いずれか一方を選択的に表示する場合、例えば心筋の伸びのみを表示するとすれば、心筋 の伸びる部分のみが歪みの大きさに応じた輝度で赤色表示され、また心筋の縮みのみを表 示するとすれば、心筋の縮む部分のみが歪みの大きさに応じた輝度で青色表示される。 【0088】

伸びと縮みの双方を表示する場合又はいずれか一方を表示する場合のどちらであっても、伸びと縮みとを区別し、時相を正しく反映していなければならない。そのための基準と 20 して、ECG(:心電図)を利用することが出来る。

【 0 0 8 9 】

例えば、上記カラーマップ表示にて、心臓の短軸像のR-R一周期をstrain画像 により表示する場合を考える。この場合、例えば収縮期には、例えば心筋の伸びのみを表 示するとし、心筋が厚くなる様子を赤色表示する。このとき、縮みを意味する信号はノイ ズと判断され消去してもよい。また、例えば拡張期には、例えば心筋の縮みのみを表示す るとし、心筋が薄くなる様子を青色表示する。このとき同様に、伸びを意味する信号はノ イズと判断され消去してもよい。

【0090】

この様に、strainの演算時相とECGによる心時相とに基づいて、心筋の伸び縮 ³⁰ みを画像化することで、観察者にとって見やすく、且つ診断等に有益な情報を提供することが出来る。

【0091】

なお、以上述べたカラーマップ表示は、例えば表示制御ユニット7によって実現される ものである。また、上記カラーマップ表示は、strain画像の他に、例えば変位画像 についても有効である。また、ユーザーフレンドリーな装置を提供する観点から、例えば 、簡単なマニュアル操作にて、カラーマップ表示設定を短軸画像用(thickenin g用途)から長軸画像用(shortening用途)に切換可能とすることが好ましい

【 0 0 9 2 】

次に、第1の実施形態の変形例について記載する。上記では簡単のため仮想収縮中心を 固定としたが、これを心臓の動きに伴う収縮中心位置の移動に合わせるように時相内で動 かすことも可能である。一つの手段の例として、仮想収縮中心位置を心時相内における特 定の幾つかの時相でユーザーに設定させ、他の時相での、仮想収縮中心位置は時相間の補 間によって求める方式があげられる。補間関数は時相的に前後で設定された位置から線形 で推定するものや、所定の運動を模擬した関数をあらかじめ設けておくものが好適である 。後者としては、例えば図12(a)、12(b)、12(c)に示すように、拡張末期 時相(すなわち、時相ph1)と収縮末期(すなわち、時相ph2)の特徴的な2つの時 相を設定し、これらの2時相における仮想収縮中心位置を設定するようにする。これらは 皆、可能な限りユーザーの設定の手間を省きつつ、かつ心臓の動きに合致した仮想収縮中 10

心位置を得るための実際的に有効な手段となりうる。これは、仮想収縮中心設定法として、ユーザーが所望の位置に直接置く方式としておけば、1時相につき1点を置くだけで実現できるためである。

【 0 0 9 3 】

一方、従来のMVG-S/Lでは輪郭で運動の方向を定義する。心筋梗塞などの局所的 疾患例においては、必ずしも仮想収縮中心へ向かった収縮拡張の運動をしない場合もあり 、これを輪郭に垂直な方向で定義しようとする試みである。しかしながらMVG-S/L では輪郭を設定する必要があるため、このような複数時相での輪郭設定をユーザーに設定 させるには大変な手間がかかる。最も理想的には、これを輪郭の自動追跡にて行えば良く 、その試みも多数されているが、超音波画質に依存する誤差要因が現在のところ課題とな っている。

【0094】

心尖からの四腔像、二腔像を評価する場合には、これらの中庸的な方法として、図13 に示すような仮想収縮中心の設定方法が考えられる。例えば、 電子情報通信学会論文誌 D-II Vol.J83-D-II No.1 pp.183-190(Jan. 2 000))において、"部分形状拘束輪郭モデルによる超音波心壁動的輪郭抽出法"が開 示されている。この手法によれば、弁輪部に対してはその特徴的な構造を利用して、パタ ーンマッチングの手段により自動追追跡出来ることが報告されている。従って、弁輪の2 点と画像中で殆ど動きのない心尖部の1点の3点を指定することで、図13中のLV-c enter line上の所定の点を動的な仮想収縮中心の設定が提供される。

【 0 0 9 5 】

また、 Circulation 61: 966-972, 1980においては、 "Evaluation of methods for quantitating left ventricular segmental wall motion i n man using myocardial markers as a stan dard."の文献によれば、この仮想収縮中心の初期設定としては心尖から31%の位 置が好適とされる。

[0096]

これらの手法により、動的なコントラクションモーションフィールドが設定された場合 における処理について、以下に説明する。関連する処理は、ステップS5の[追跡点群の 各時相での対応点の推定]のステップと、ステップS6の[運動方向成分の入力信号の定 義と時間積分による中間出力点群の取得]である。

[0097]

しかしながら、動的な運動場の場合においても、前述の静的な運動場の場合における基本的なステップに大きな変わりはない。この様子について図14、15を用いて説明する。時相t_{i+1}における追跡位置の推定には、時相t_iにおける、位置(x,y)上での Vc、thが必要だが、これらの値はある時相において定められた運動方向に応じて求め れば良く、時相毎に運動の方向が変化していても問題はない。例えば、図14において、 p(t2)の推定位置はt1での運動方向で決まるthと、その方向で補正されたVcを p(t1)で適用することでt1での運動方向上へ移動し(図15ステップS132)、 次のt2ではt2での運動方向で決まるthと、その方向で補正されたVcをp(t2) で適用し、t2での運動方向上でp(t3)を推定し(図15ステップS133)、この 様なステップを追跡する必要のある時相まで繰り返すようにする(図15ステップS13 4)。ここで、t1とt2とで運動方向が変化してもしなくても、処理の手順自体は同等 であることに注意されたい。

【0098】

もちろん演算の結果は、 t 1 と t 2 とで運動方向が変化する / しないで変わりうるが、 これはどちらの方がより真の組織の運動に合致しているかという意味での誤差に関する違いとなる。時相的に真の運動方向が変わる場合には、この変化に合うように運動方向を変 えた方が、追跡位置に対する誤差の改善が期待される。同様に、中間出力を得る場合の入 20

10

力信号についても、時相 t で決まる運動の向きで補正された V c を用いることは前述の式 定義と変わりがない。

【0099】

(第2の実施形態)

第2の実施形態では、2次元画像のパターンマッチングにより組織追跡イメージングを行う。図16は、第2の実施形態にかかる超音波診断装置の構成図である。第1の実施形態とは、移動ベクトル処理ユニット13及び運動情報処理ユニット6の構成が相違している。他の構成については、第1の実施形態と同様であるので説明は省略する。

[0100]

移動ベクトル処理ユニット13は、時相のことなる2つ超音波像間でパターンマッチン ¹⁰ グ処理を用いて組織の移動位置を検出して、この移動位置に基づいて組織速度を求める。 具体的には、第1超音波像中の部分像を取り出し、第2超音波像中で先の部分像と類似性 の最も高い部分の位置を求める。この第2超音波像中の位置と第1超音波像中における部 分像の位置の間の距離を求め、この距離を第1超音波像と第2超音波像の時間差で除する ことにより、組織移動速度の2次元分布データを得ることができる。

[0101]

運動情報処理ユニット6は、移動ベクトル処理ユニット13の出力した組織速度の2次 元分布データに基づいて、所定断面の変位もしくは歪みの2次元分布像を求める。 【0102】

次に、第2の実施形態に係る超音波診断装置では、運動情報画像を実際に得るために、 図17に示すような各処理を実行する。

【0103】

[1]組織速度の時空間分布像(Velocity-Field:VF)を得る(ステップS141)。

【0104】

[2] 演算開始時相を設定する(ステップS142)。

【0105】

[3]演算開始時相において追跡すべき組織の領域(追跡点群)を限定する(ステップS

143)。

【 0 1 0 6 】

[4]追跡点群の各時間での移動位置をVF・(組織ドプラ法ではMFを併用)・時間間 隔を用いて逐次推定する(ステップS144)。

[0107]

[5]追跡点群の各点にてMFを用いて入力信号を定義し、各時間まで積分する(中間出 力点群の取得;ステップS145)。

【0108】

[6]各時間において、出力画像の各点に対し、周辺の最寄り中間出力群の値を用いて出力値を推定する(ステップS146)。

【0109】

[7]運動情報画像の生成と表示(ステップS147)。

[0110]

以下、各処理の内容について説明する。

[0111]

「組織速度の時空間分布画像の取得:ステップS141]

特開平8-164139号公報による、相互相関係数表示に記載されているパターンマッチングの手法を例とするような処理を有する移動ベクトル処理ユニット13により、2次元的な組織速度の時空間分布像が得られる。パターンマッチングでは、現在の時相から次の未来時相での時相間隔dt当たりの移動位置が各点で推定できるので、これをdtで除すれば2次元の組織速度が各点で定義される。

第2の実施形態では、第1の実施形態に対して、ドプラ角の限界が無いという利点と、 直接2次元の移動ベクトルを推定するので、運動場の仮定が無くても(操作者等による運 動場の設定が無くても)追跡位置が求まるという利点を有する。一方で、速度推定の空間 分解能を高めるためには、演算時間が大きくなるという欠点がある。

[0113]

ここで、追跡位置の推定には運動場の設定が不要ではあるが、この場合においても、演 算時間を短縮するために、図18(a)、18(b)に示すように、所定の運動方向につ いて、所望の運動情報の成分のみを得るために運動場の定義を用いることが好ましい。こ の点は第1の実施形態の運動方向成分の入力信号の定義と同様の概念である。 [0114]

この場合において所望の運動情報の成分のみを得る目的は、情報量の次元を減らし、着 目している運動方向成分のみに特化した出力値を画像として提供することで、より解りや すい結果が得られることが期待されるためである。2次元の組織速度を用いれば、2次元 的な変位や歪みが定義可能であるが、例えばこの情報をカラー変換して2次元のBモード 画像に重畳させても実際上は解りにくい表示となってしまう。むしろ、例えば仮想収縮中 心の方向の成分のみを抽出し、第1の実施形態と同様なカラー表示とした方が意図した運 動方向成分の情報が明瞭に理解されうる。そして、別の運動方向への成分を評価したい場 合には、別の(例えばコントラクションモーションフィールドと直交する運動の方向。短 軸では回転運動場となる。)運動場を設定して、出力画像を得るようにして、各々の運動 方向の成分を分離して評価すればよい。

[0115]

また、第2の実施形態ではドプラ角の限界が無いので、第1の実施形態の限界領域の設 定や表示は不要となる。但し、限界領域の表示が無いことから、設定されている運動場を 第三者に認識させるためには、運動場に関する設定の状態を明示的に表示する必要がある 。この場合は、図18(a)又は18(b)のように例えばアイコンで運動場を示すよう にする。

[0116]

[組織追跡イメージング処理開始時相の設定、及び演算開始時相における追跡すべき組 織の領域(追跡点群)の設定:ステップS142,S143]

これらは第1の実施形態と同様である。

[0117]

[追跡点群の各時間での移動位置の推定:ステップS144]

次時相での追跡点群の位置は、現時相での2次元の組織速度を用いて、時相間隔dtを 乗ずることで得られる。

[0118]

[運動方向成分の入力信号の定義と時間積分による中間出力点群の取得:ステップS1 451

この部分について、第1の実施形態との違いを以下に述べる。

[0119]

追跡点群の位置の追跡は、上記で求めた各時相tでの追跡点群の位置p(t)を辿れば 良いが、これらの位置上での組織速度は2次元的であり、各時相で固有の方向を有する。 そこで第1の実施形態にあるVc(x,y,)に相当する運動方向成分の速度Vc(p (t))を得るために、図19に示すように、各時相の位置p(t)おいて設定された運 動場の方向と組織速度の方向とのなす角をbt(p(t))、および2次元組織速度をV (p(t))として式(13)にて求める。

Vc(p(t))

= | V (p (t)) | * cos [bt (p (T))] (13)

この角度補正された速度成分を用いて、第1の実施形態の式と同様な演算を行えばよい

10

20

。尚、図19では一般性を持たせるために、運動方向が動的に変わる場合を用いた。しか しながら、第1の実施形態で述べたように、この場合でも処理定義が可能であることは言 うまでもない。

【0121】

[補間による信号値の推定と運動情報画像の生成・表示:ステップS146,147]

第1の実施形態と同様である。

【0122】

以上の手続きにより、第2の実施形態における出力画像表示が得られる。

【0123】

10

20

30

40

次に、本発明による組織追跡イメージングの出力を用いた時間解析への応用例について 説明する。第1の実施形態の演算区間で示したように、基本的に複数時相における出力画 像が提供される。従って、この一連の時相における出力画像を用いて種々の時間解析が容 易に適用可能となる。主な時間解析は局所部位の運動情報の時間変化曲線と、任意Mモー ド(curved-Mとも呼ばれる)の表示である。

【0124】

「時間変化曲線およびROIトラッキング技術の適用]

特開平10-151133による、ROI追跡を用いた時間解析の実例を本実施形態に適用すれば、変位や歪みといった組織の運動情報の時間変化曲線が、画像上に設定した局所 ROIの位置を心筋の位置に合致させた状態で提供され、診断上の有用性が高まる。なお 、この場合のROI位置の移動手段については、運動場の設定を移動させる場合に示した 実例や、組織追跡イメージングのステップで示した速度情報を用いた自動追跡の実例を適 用しても勿論構わない。

【0125】

[curved - Mモード解析適用]

特開平6-285065による、展開表示の概念を本発明に適用すれば、変位や歪みといった組織の運動情報の任意Mモード画像が得られ、心筋のどのセグメントが特徴的に運動の状態が悪いかを他のセグメントと時間的に比較可能なため、カラーマップを工夫すれば ー見して識別することも容易となり、診断上の有用性が高まる。カラーマップの工夫として、例えば、補色関係にある色を交互に割り付けるようなマップが好適であろう。この場合には、適切な歪みや変位の値をマップの出力レンジに設定することによって、動きの悪い部位と良い部位とを効果的に識別し易くなることが期待される。

[0126]

以上述べた構成によれば、対象とする組織が運動している場合であっても、組織の各位 置が移動する位置へ追跡しながら積分することで、組織の局所部位における変位や歪みが 、対象とした一連の時相区間内で連続的に画像化される。これにより従来よりも、積分効 果によって安定性が改善された変位や歪みという情報を用いた分布像が得られ、心臓を例 に取ると、心筋の内膜側や外膜側の運動の違いが一見して把握できる。また、これらの運 動情報画像は、時相区間内で連続的に得られているので、時間解析用途への応用が容易に 可能となる。

[0127**]**

以上、本発明を実施形態に基づき説明したが、本発明の思想の範疇において、当業者で あれば、各種の変更例及び修正例に想到し得るものであり、それら変形例及び修正例につ いても本発明の範囲に属するものと了解される。例えば以下に示す(1)~(3)のよう に、その要旨を変更しない範囲で種々変形可能である。

【0128】

(1)例えば、受信信号が2次元空間で得られている場合について述べてきたが、3次 元空間で得られている場合についても同様の手続きを次元の拡張により適用することが可 能である。

【0129】

(2) 一連の処理手続きは、汎用のパーソナルコンピュータやワークステーション等に より、超音波診断装置とは切り離して行っても良い。又、本発明に関わる一連の出力は、 心臓に限らず肝臓のような軟部組織および血管壁の解析にも適用可能である。 【0130】

(3)上記実施形態の運動場に基づく速度の2次元分布像の生成において、仮想収縮中 心を設定した。しかしながら、この様に設定された仮想収縮中心は、現実の収縮中心とず れている場合がある。

【0131】

この点に鑑み、仮想収縮中心が操作者によって又は自動的に設定されるようにし、この 設定された仮想収縮中心の近傍の点(複数点であることが好ましい)を自動的に他の仮想 収縮中心とした2次元分布画像を求め、これらと合成する構成であってもよい。この合成 された画像を使用することにより、仮想収縮中心がずれている場合の影響を相殺すること ができ、また、角度補正の限界領域を少なくすることができる。

【0132】

なお、上記他の仮想収縮中心が限界領域にかかっている場合には、当該他の仮想収縮中 心は採用せず、改めて他の仮想収縮中心を設定する構成であることが好ましい。 【0133】

また、各実施形態は可能な限り適宜組み合わせて実施してもよく、その場合組合わせた 効果が得られる。さらに、上記実施形態には種々の段階の発明が含まれており、開示され る複数の構成要件における適宜な組合わせにより種々の発明が抽出され得る。例えば、実 施形態に示される全構成要件から幾つかの構成要件が削除されても、発明が解決しようと する課題の欄で述べた課題が解決でき、発明の効果の欄で述べられている効果の少なくと も1つが得られる場合には、この構成要件が削除された構成が発明として抽出され得る。 【産業上の利用可能性】

[0134]

以上本発明によれば、例えば心臓等の生体組織であっても、変位や歪みを表す運動情 報画像を高い安定性にて提供できる超音波画像装置、及び運動情報画像生成方法を実現で きる。

【図面の簡単な説明】

【0135】

30

40

20

【図1】図1は、第1の実施形態に係る超音波診断装置が実行する運動情報画像の取得処 理の手順を示したフローチャートである。 【図2】図2(a)は、歪みの定義を説明するための概念図である。図2(b)は、La grangian strainを説明するための概念図である。 【図3】図3は、Natural strainを説明するための概念図である。 【図4】図4(a)、4(b)は、補間処理を説明するための概念図である。 【図5】図5は、第1の実施形態に係る超音波診断装置の概略構成図である。 【図6】図6(a)、6(b)は、運動場を説明するための概念図である。 【図7】図7(a)、7(b)は、ドプラ角の補正限界領域の表示例を説明するための図 である。 【図8】図8(a)、8(b)は、演算区間の設定を説明するための概念図である。 【図9】図9は、追跡点群の設定処理の流れを示したフローチャートである。 【図10】図10は、追跡対象組織領域の設定を説明するための概念図である。 【図11】図11(a)、11(b)、11(c)は、補間処理を説明するための概念図 である。 【図12】図12(a)、12(b)、12(c)は、仮想収縮中心を時相的に移動して 設定する場合を説明するための図である。 【図13】図13は、心臓の解剖学的位置情報から仮想収縮中心を設定する場合を説明す るための図である。

【図14】図14は、動的な運動場における追跡を説明するための概念図である。

【図15】図15は、動的な運動場における追跡処理の流れを示したフローチャートであ る。 【図16】図16は、第2の実施形態に係るの超音波診断装置の概略構成を説明するため の図である。 【図17】図17は、第1の実施形態に係る超音波診断装置が実行する運動情報画像の取 得処理の手順を示したフローチャートである。 【図18】図18(a)、(b)は、運動場の設定に関する表示例を示した図である。 【図19】図19は、第2の実施形態における運動方向成分での速度定義を説明するため の概念図である。 【符号の説明】 [0136] 1... 超音波プローブ 2...送信ユニット 3...受信ユニット 4... B モード処理ユニット 5…組織ドプラ処理ユニット 6…運動情報処理ユニット 7...表示性御ユニット 8...表示装置

- 9...メモリ
- 13…移動ベクトル処理ユニット

図 3

【図6】 図6

図 7

図 11

【図 1 2】 図 12

【図 1 3】 ⊠ 13

【図14】

図 14

【図15】 図15

【図16】

図 16

図 17

フロントページの続き

(74)代理人	100084618		
	弁理士 村松	貞男	
(74)代理人	100103034		
	弁理士 野河	信久	
(74)代理人	100119976		
	弁理士 幸長	保次郎	
(74)代理人	100153051		
	弁理士 河野	直樹	
(74)代理人	100140176		
	弁理士 砂川	克	
(74)代理人	100100952		
	弁理士 風間	鉄也	
(74)代理人	100101812		
	弁理士 勝村	紘	
(74)代理人	100070437		
	弁理士 河井	将次	
(74)代理人	100124394		
	弁理士 佐藤	立志	
(74)代理人	100112807		
	弁理士 岡田	貴志	
(74)代理人	100111073		
	弁理士 堀内	美保子	
(74)代理人	100134290		
	弁理士 竹内	将訓	
(74)代理人	100127144		
	弁理士 市原	卓三	
(74)代埋人	100141933	_	
	弁理士 山卜	兀	
(72)発明者	阿部 康彦		
	栃木県大田原市	5ト右上字東山1385番の1	株式会社東芝那須上場内
(72)発明者	神田 艮一		
	栃不県大田原「	□トロ上子果山 1385 番の 1	株式会社果之那須上场内
宝本宁	工門 体		
奋且日	山村 統一即		
(56)参老文南	∜ 特開平6-2	285064(JPA)	
、 ^{、、} 、ションション内	、 19月1日 - 2 特開平9 - 1	22122(JP.A)	

特開平9-122122(JP,A) 特開平10-151133(JP,A) 特開平11-155862(JP,A)

(58)調査した分野(Int.CI., DB名) A 6 1 B 8 / 0 0

专利名称(译)	超声诊断设备			
公开(公告)号	JP4734395B2	公开(公告)日	2011-07-27	
申请号	JP2008270237	申请日	2008-10-20	
[标]申请(专利权)人(译)	株式会社东芝			
申请(专利权)人(译)	东芝公司			
当前申请(专利权)人(译)	东芝公司			
[标]发明人	阿部康彦 神田良一			
发明人	阿部 康彦 神田 良一			
IPC分类号	A61B8/08 A61B5/0456 A61B8/14 G01S15/89			
CPC分类号	A61B8/485 A61B5/0456 A61B8/0883 A61B8/0891 A61B8/14 A61B8/488 G01S15/8981 G01S15/8984 G01S15/8993			
FI分类号	A61B8/08 A61B8/14			
F-TERM分类号	4C601/BB02 4C601/DD15 4C601/DE04 4C601/EE09 4C601/EE10 4C601/FF08 4C601/JB46 4C601 /JB51 4C601/JC02 4C601/JC16 4C601/JC37 4C601/KK02 4C601/KK12 4C601/KK18 4C601/KK24 4C601/KK25 4C601/KK31 4C601/LL03			
代理人(译)	河野 哲 中村诚 河野直树 冈田隆 山下 元			
优先权	2001288499 2001-09-21 JP			
其他公开文献	JP2009011861A			
外部链接	Espacenet			

摘要(译)

要解决的问题:提供一种超声波诊断装置和运动信息图像生成方法,即 使在生物医学组织(例如心脏)的情况下,该方法也能够以高稳定性提 供表示位移和应变的运动信息图像。:获得待检查对象中的运动物体上 的速度的二维分布数据。存储定义组织的运动方向的运动场。在二维分 布数据中的组织范围中获得多个跟踪点。估计跟踪点的移动位置并顺序 跟踪位置。基于二维分布数据获得朝向由运动场定义的运动方向的速 度。通过在每个时相中的至少两个跟踪点的跟踪位置处使用朝向运动方 向的速度执行预定计算来获得一个中间输出值。通过在不同位置执行中 间输出的加权相加来获得中间位置的值。通过使用中间位置的值生成并 显示运动信息图像。