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Assessment of Tooth Structure Using Laser Based Ulfrasonics

CROSS REFERENCE TO RELATED APPLICATIONS
[0001] This application is related to and claims the benefit of U.S. Provisional Patent
Application Serial No. 60/261,090, filed January 11, 2001 entitled “Assessment of Tooth.
Structure Using Laser Based Ultrasonics”.

FIELD OF THE INVENTION
[0002] The present invention is an apparatus and a method related to using laser based

ultrasonics to aid in the assessment of tooth structure.

BACKGROUND
[0003] The benefits of ulirasonics to examining soft tissue structures, particularly the abdominal
region, brain, and eyes have long been known. In these applications, typically one or more
acoustic contact transducers is used to generate and detect acoustic waves in the structure.
These procedures are simplified, at least for examination of teeth, with the relatively large
dimensions being examined, slower acoustic wave velocity (allowing lower frequency acoustic
waves to be used for equivalent acoustic wavelengths), and readily available acoustic coupling
material for the transducer to the soft tissue. (Soft tissue, unlike hard tooth enamel and dentin,
is largely composed of water, making water a very efficient coupling material.)
[0004] Attempts to adapt conventional ultrasonic techniques to examination of internal siructure
of a tooth have met with little success. One major obstacle is identifying a suitable couplant for
the transducer to the tooth for in-vivo measurements. Without proper coupling, transfering
acoustic energy into the tooth is difficult. Early investigators attempted using water, as with soft
tissue structures, but results were not convincing.
[0005] The coupling problem was overcome by replacing water with mercury. Although
providing superior coupling efficiency, mercury is not suitable for clinical applications due to its
toxicity.
[0006] Another solution to overcome the coupling difficulty was using a small aluminum buffer
rod to transfer the acoustic energy from the contact transducer to the tooth. An estimated
transmission efficiency of almost 87% was achieved using this technique, compared to only 5%

JP 2004-536620 A 2004.12.9
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using water. However, a significant limitation of this system was coupling the aluminum butfer
rod with the tooth surface. To ensure proper coupling of the acoustic energy to the tooth, a flat
spot had to be ground on the tooth surface, making this technique unsuitable for clinical
applications. In addition, the relatively large contact area (3.2 mm diameter) limited the spatial
resolution of the probe. For assessing anomalies in a tooth, such as poor bonding or voids
between the restorative material and the dentin, a detection footprint smaller than the anomaly
itself is required.

[0007] One method of increasing spatial resolution of a contact transducer is to use a spherical
transducer that focuses abeam onto a sample (tooth) surface. This method forms the basis of the
acoustic microscope, the acoustic equivalent of an optical microscope. This technique was used
to study unblemished and demineralized enarel from exiracted human teeth, using water as a
couplant. The inspection depths were thus limited to approximately 0.5 to 1.5 mm.

[0008] More recently, the increased spatial resolution of the acoustic microscope was used to
detect small caries lesions in sections of human enamel. However, as with previous work,
special polishing of the tooth samples was required, making the technique ill-suited for clinical
applications.

[0009] What is needed is a tooth structure assessment system achieveable in-vive operation that
combines superior coupling efficiency, a small detection footprint size, and no special tooth

surface preparation.

SUMMARY
[0010] To help overcome previous difficulties in coupling efficiency, detection footprint size,
and special surface preparation, the present invention utilizes laser-generated ultrasound
techniques. Laser-generated ultrasound uses a short-pulse laser, in place of a contact transducer,
to generate high frequency (broad-band) ultrasound in a material. Due to the absorption of
pulse energy at or near the surface of the specimen, temperature gradients are established within
the material, producing a rapidly changing strain field. This strain field, in turn, radiates energy
as elastic (ultrasonic) waves. At low pulse energies, this is an entirely thermo-clastic process
resulting in no damage to the material under test. An advantage of this technique over the
previous methods is that no special surface preparation of the tooth is required. In addition, by

focusing the laser beam onto the surface of the tooth, a very small contact (generation) area can
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be achieved. Spot size diameters on the order of tens of microns are routinely achieved.

[0011] Both ename] and dentin have strong absorption bands in the longwave infrared (IR)
spectrum (9 to 11 pm). These optical properties have already led to applications for the carbon-
dioxide (CO;) laser in fusing enamel, dentin, and apatite. Fusion inhibits subsequent lesion
progression and markedly improves bonding strength of a composite resin to dentin. For
illustration purposes with respect to the present invention, a short pulse CO; laser has been used
to generate acoustic waves in an extracted human incisor. In some instances, other lasers, such
as, for instance, a pulsed Nd:YAG laser may be used.

[0012] Optical detection of the ultrasound, such as by a laser vibrometer interferometer, provides
a complementary technique for remote sensing of ultrasonic waves. Techniques based upon the
sensing of the optical wavefront reflection from the tooth, such as Fabry-Perot interferometers,
Mach-Zender interferometers, Michelson interferometers, photo-refractive interferometers,
optical feedback interferometry, and several other types of laser vibrometers, are well suited for
diffusely reflecting surfaces. For purposes of illustration with respect to the disclosure herein, a
laser vibrometer is described to detect acoustic wave arrivals.

[0013] One embodiment of the present inventjon is a method of assessing tooth structure using
laser based ultrasonics. Ultrasonic acoustic waves are generated using a pulsed laser. The beam
of the pulsed laser is focused onto a desired area on the surface of a tooth thereby creating
ultrasonic acoustic waves within the bulk and along the surface of the tooth structure. These
acoustic waves are optically detected using optical interferometric means. Finally, detected
acoustic waveforms are processed to assess the internal or surface structure of the tooth.

[0014] Another embodiment of the present invention is an apparatus including a pulsed laser that
generates a beam of ultrasonic acoustic waves. The beam is focused by a lens onfo a desired
area on the surface of a tooth creating ultrasonic acoustic waves within the bulk and along the
surface of the tooth structure. Optical interferometric detection means optically detect the
acoustic waves generated within the tooth structure and an oscilloscope processes the detected
acoustic waveforms to assess the internal structure of the tooth. The short pulse laser operates
in a region of absorption for the tooth structure.

[0015] In another embodiment, a thin film or coating can be placed on the tooth surface and the

short pulse laser then operates in a region of absorption. for the thin film or coating.
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BRIEF DESCRIPTION OF THE DRAWINGS
[0016] FIGURE 1 illustrates the internal structure of tooth enamel.
[0017] FIGURE 2 illustrates the internal structure of tooth dentin.
[0018] FIGURE 3a illustrates a block diagram of components used in the present invention.
[0019] FIGURE 3b is a flowchart illustrating the steps performed in the present invention.
[0020] FIGURE 4 illustrates a cross-section of an extracted human incisor showing the enamel,
dentin, and pulp sections, and also an amalgam insert. ’
[0021] FIGURE 5a illustrates a measured temporal profile of a CO, pulse laser.
[0022] FIGURE 5b illustrates a measured temporal profile of an Nd:YAG pulse laser.
[0023] FIGURE 6a illustrates an ultrasonic waveform for a tooth phantom taken in an enamel
region.
[0024] FIGURE 6b illustrates an ultrasonic waveform for a tooth phantom taken in an
enamel/amalgam/enamel region.
[0025] FIGURE 6c illustrates an ultrasonic waveform for a tooth phantom taken in an
enamel/dentin/enamel region.
[0026] FIGURE 6d illustrates an ultrasonic waveform for a tooth phantom taken in an
enamel/dentin/pulp/dentin/enamel region.
[0027] FIGURE 7 illustrates a cross-section of an exiracted human incisor,
[0028] FIGURE 8a illustrates an ultrasonic waveform for a human incisor taken in an enamel
region.
[0029] FIGURE 8b illustrates an ultrasonic waveform for a human incisor taken in an
enamel/amalgam/enamel region.
[0030] FIGURE 8c illustrates an ultrasonic waveform for a human incisor taken in an
enamel/dentin/enamel region.

[0031] FIGURE 8d illustrates an ultrasonic waveform for a human incisor taken in an

_ enamel/dentin/pulp/dentin/enamel region.

DETAILED DESCRIPTION
[0032] The generation and detection of ultrasonic waves provides a method for characterizing
the bulk and surface properties of a material by interrogating a specimen with high frequency

acoustic waves. Up to three bulk acoustic waves can propagate in a matetial, each with its own
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characteristic velocity. As an ultrasonic wave propagates, the amplitude decreases due to
geometrical spreading, attenuation from absorption, and scattering from discontinuities.
Measurement of wave speeds, attenuation, and scattering provide the information needed to
quantify the bulk internal and surface properties of the material. In this analysis, we are
interested in the interaction of the acoustic waves at the interfaces between the dental hard and
soft tissues.

[0033] The propagation of elastic plane waves in an anisotropic material is described using
Christoffel’s equation by:

Cyald—v78,| = 0.

This equation provides an analytic relation between the phase velocity, v, of the elastic waves
and the elastic moduli, Cya. The direction cosines are specified by %4 (withi= 1, 2, or 3), p is the
material density, and 8 is the Kronecker delta function.

[0034] The anisotropic nature of dental hard tissue is well-documented. Dental enamel, the hard
protective substance covering the crown of the tooth, is the hardest biologic tissue in the body to
resist fractures during mastication (chewing). Enamel is composed of about 96% inorganic
‘mineral in the form of hydroxyapatite and 4% water and organic matter. Hydroxyapatite is a
crystalline calcium phosphate that is also found in bone, dentin, and cementum. As illustrated
in FIGURE 1, enamel is composed of rods 10 that extend from their origin at the dentino-
enamel junction to the outer surface of the tooth. The rod itself resembles a keyhole in shape,
allowing individual rods to form a strong interlocking structure. The head of the rod measures
about 5 pum across while the tail is only about 1 pm. Each rod is filled with crystals, whose
orientation 12 varies along the rod. At the head of the rod, these crystals are approximately
parallel to the rod axis while near the tail of the rod, the crystals are oriented almost
perpendicular to the rod axis. Variations in the elastic properties of enamel are quantified by
measuring the Rayleigh velocity as a function orientation with the enamel rods with an acoustic
microscope. It was found that the Rayleigh velocity varied by almost 5% in these
measurements. More recently, a three-dimensional finite element model was developed for the
prismatic nature of enamel that predicted stiffness both along and across the rods and found that

Young’s modulus varies dramatically both with direction and volumetric fraction. Specifically,

-5
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the deviation in Young’s modulus is estimated at neatly +10% parallel and +60% perpendicular
to the orientation of crystals.

[0035] Referring to FIGURE 2, deniin 20 is the hard tissue that constitutes the body of a tooth.
Unlike enamel, which is almest white in color, dentin appears almost yellowish. Dentin is a
living tissue that is not normally exposed to the oral environment. Like bone, dentin is
composed primarily of an organic matrix of collagen fibers (20%), inorganic hydroxyapatite
crystals (70%), and about 10% water. With 20% less mineral than enamel 22, dentin 20 is
softer and slightly elastic. Dentin 20 itself is classified as primary, secondary, and tertiary on
the basis of the time of its development and the histologic (microscopic) characteristics of the
tissue. Primary dentin is the major component of the crown and root while secondary dentin
forms only after tooth eruption (i.e. when the teeth begin to function) and borders the pulp.
Finally, tertiary or reparative dentin occurs in response to the presence of a trauma to the pulp
24. The structure of dentin 20 is composed of S-shaped tubules that run from the dentino-
enamel junction to the dentino-pulp junction. Each of these tubules is about 1-3 ym in diameter
and surrounded by a matrix of needle-shaped, hydroxyapatite crystals in a protein matrix of
composed mostly of callogen.

[0036] The third component of a tooth is the pulp 24, which is the sofi conneciive tissue located
in the central portion of each tooth. It is composed of both a crown (coronal part) and root
(radicular part). Pulp 24 contains specialized connective tissue composed of thin-walled blood
vessels, nerves, and nerve endings enclosed within the dentin 20.

[0037] To simplify analysis, enamel, dentin, and pulp are characterized as elastically isotropic.
For isotropic materials, only two bulk waves need be considered, longitudinal and shear. It can

be shown through Christoffel’s equation that the velocity of these two waves is given by:

[Ci_[E Cu 0
[P ot | N . TR A A" By |
long p 0 shear o o

where E is the elastic modulus and p is the shear modulus. The acoustic velocities and density
for the various components of a tooth are listed in Table 1. When assessing any multi-phase
structure, such as a tooth, both the acoustic velocity and acoustic impedance of each layer must

be considered. The acoustic impedance, Z, is defined as:
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Z=JED = Vi

[0038] When an acoustic wave travels from one medium to another (i.e. from the enamel to the
dentin), a portion of the wave is reflected and the remaining portion is transmitted (assuming no
other losses). The intensity of the reflected acoustic radiation, I, assuming plane wave
propagation, at the interface between two different mediums with acoustic impedances of Z; and

2o, is given by:

,
L=[Z22] g op,
7ot Z,

where I' is the reflection coefficient and I is the intensity of the incident radiation. Due to

conservation of energy, the intensity of the transmitted acoustic radiation, I, is:
I, =1,-1.

[0039] Xnowledge of the relative reflected and iransmitted intensities at each material interface
in a tooth structure aids in the interpretation of the final ultrasonic waveform.

[0040] Efficient vltrasound generation depends upon the matérial’s absorption characteristics at
the optical wavelength of the pulsed laser. Enamel and dentin have a strong absorption in the 9-
11pm region due to the phosphate in the carbonated hydroxyapatite (CAP). Absorption
coefficients of 5500, 8000, 1125, and 825 cm™ at 9.3, 9.6, 10.3, and 10.6 um, respectively have
been determined. These correspond to absorption depths between 1.25 and 12 pum.

[0041] Referring now to FIGURE 3a, a pulsed CO, laser 30 (10,6 ym with a 50ns rise time) is
used to generate acoustic waves in a human tooth 32. The pulsed laser 30 is focused to a spot
size on the order of a few tens of microns on the tooth’s surface via lens 34. The output power
of the pulsed laser 30 is controlled using polarization optics to ensure non-destructive (thermo-
elastic) acoustic wave generation. The short pulse laser operates in a region of absorption for
the tooth structure. In another embodiment, a thin fifm or coating can be placed on the tooth
surface and the short pulse laser then operates in a region of absorption for the thin film or

coating.
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[0042] Optical detection of the acoustic wave arrivals is accomplished using a laser vibrometer
36. The output signal from the vibrometer 36 is proportional to the surface displacement of the
tooth 32. Ultrasound measurements can be taken in an epicentral configuration in which the
source/laser 30 and receiver/vibrometer 36 are on opposite sides of the tooth 32, Alternatively,
ultrasound measurements can be taken in an non-epicentral configuration in which the
source/laser 30 and receiver/vibrometer 36 are on opposite sides of the tooth 32. In addition,
ultrasound measurements can be taken wherein the source/laser 30 and receiver/vibrometer 36
are on the same side of the tooth 32.

[0043] The output of the vibrometer 36 is passed to a high-speed digitizing oscilloscope 37 for
recording the ultrasonic event. The capture of the ultrasonic waveform is triggered by a high-
speed photodetector, comprised of a photo-diode 38 and an output coupler 39, which sees a
sampling of the output pulse of the pulsed laser 30. Sampling of the output laser pulse allows
for very accurate time-of-tlight measurements for the acoustic waves. In addition, multiple
waveforms were averaged to improve the signal-to-noise ratio (SNR).

{0044] FIGURE 3b is a flowchart illustrating the steps performed in the present invention.
Using the configuration described in FIGURE 3a, ultrasonic acoustic waves are generated 310
via a pulsed laser. The beam of the pulsed laser is focused 320 onto the surface of a tooth at a
desired area. The capture of the resulting acoustic waveforms within the tooth are triggered by a
high speed photodetector that samples the output of the pulsed laser 330. A laser vibrometer is
used to optically detect 340 acoustic wavefornis generated within the tooth structure. The data
recorded by the laser vibrometer is then forwarded to a high speed digitizing oscilloscope 350.
‘The sampling of the pulsed laser provides the oscilloscope with very accurate time
measurements with respect to the origination of the ultrasound beam. The detected acoustic
waveforms are then processed, analyzed and displayed by the oscilloscope 360.

[0045] Processing of the results involves analysis of the peaks and valleys of the resulting
waveforms versus time. Certain characteristics of a tooth’s structure can be determined based
on the arrival time and amplitude of the arrival of certain wave fronts. The processing is
typically done by a processing device (computer) that can be programmed with the
characteristics of normal tooth structure.

[0046] An advantage of the present invention is its ability to assess the health of the entire tooth

structure. One application is to be able to resolve the interfaces of the various junctions that
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naturally occur in a tooth. Moreover, valuable diagnostic information can be determined by
knowing, or at least estimating, the thicknesses of the various components that compromise a
tooth. For example, there is a need to image the margins of a restoration for the detection of
poor bonding or voids between the restorative material and the dentin. With conventional x-ray
techniques, it is difficult to detect cracks and to visualize interfaces between hard media, This is
due to the x-ray providing only a two-dimensional projection of the internal structure (i.e. a
silhouette). In addition, a high resolution imaging modality is needed to detect tooth decay in its
early stages. If decay can be detected early enough, the process can be monitored and
interventional procedures, such as fluoride washes and controlled diet, can be initiated which
can help the tooth to re-mineralize itself. Currently employed x-ray imaging is incapable of
detecting decay at a stage early enough to avoid invasive cavity preparation followed by a
restoration with a synthetic material. Laser ultrasonics can be used to detect early stages of
decay both in the bulk and on the surface of the tooth. Other clinical applications include the
visualization of periodontal defects, the localization of intraosseous lesions, and determining the
degree of osseointegration between a dental implant and the surrounding bone.

[0047] To better illustrate the present invention, results of the use of the present invention on a
tooth phantom and an extracted human incisor are presented and discussed.

[0048] One means of better understanding the acoustic signature obtained from an actual tooth
structure is to construct a tooth phantom made from acoustically similar materials. A cross
section from an extracted human incisor is shown in FIGURE 4. The enamel 40, dentin 42,
pulp 44, and an amalgam insert 46 are marked. To simplify construction, a separate tooth
phantom was designed for four different acoustic “paths” through the tooth section. These paths
include enamel, enamel/amalgam/enamel, enamel/dentin/enamel, and
enamel/dentin/pulp/dentin/enamel.

[0049] Materials with similar acoustic velocities and impedances to the different components of
areal tooth are listed in Table 1. Relatively good matches were found for enamel, pulp, and
amalgam. Only dentin proved difficult to match. As shown in Table 1, tin has very similar
acoustic velocities but much higher acoustic impedance. This larger impedance does not
provide the desired interface characteristics between the different components of the tooth
phantom. Borosilicate glass, on the other hand, has much faster acoustic velocities, but more

comparable acoustic impedance. Since the purpose of this study was to better understand the
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interface properties between the different dental tissues, similarities in acoustic impedance was

viewed as more important than acoustic velocities.

TABLE 1
Layer Vieng Viear Density Acoustic
[mm/ps] [mm/ps] p [keg/m®] Impedance
Z [x10° kg/m’s]
Enamel 6.25 3.10 3000 18.8
Aluminum 6.30 3.10 2700 17.0
Dentin 3.80 1.9¢ 2000 7.6
Tin 3.30 1.70 1740 242
Borosilicate glass | 5.30 3.00 3570 18.9
Puip 1.57 0.80 1000 1.57
Teflon 1.4 2140 3.0
Amalgam 435 2.26 7750 337
Copper 4.70 230 9670 41.6

[0050] A comparison of the reflection coefficients between the interfaces of a real tooth and

those of the tooth phantom are listed in Table 2.

TABLE 2
Real Tooth Tooth Phantom
Components T Components T
enamel/amalgam/enamel 0.081 lumi; ppet/alumil 0.176
enamel/dentin/enamel 0.18 aluminum/glass/aluminum 0.026
denti 1! denti 0.399 lass/copper/glass 0.296
dentin/pulp/dentin 0.432 lass/teflon/glass 0.369 —|

[0051] A pulsed CO laser is used to generate acoustic waves in the extracted human incisor.
The measured temporal profile of a CO; laser, shown in FIGURE 5a, indicates a pulse rise time
of 50ns. A noticeable feature of this pulse is the long tail (about 1.5 ps). Since only the rise of
the initial pulse is responsible for high-frequency components of the ultrasonic waves, this tail
did not effect the ulirasonic measurements.

[0052] Ultrasound generation in the tooth phantoms is accomplished using a pulsed Nd:YAG
laser (18 ns pulse width). The measured temporal profile of a Nd:YAG pulse is illustrated in
FIGURE 5b. The poor absorption properties of aluminum in the tooth phantoms at 10.6 um
precluded the use of the CO; laser. In both cases, the pulsed lasers are focused to spot sizes on

the order of a few ten’s of microns and the output power of the pulsed lasers is controlled using
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polarization optics to ensure non-destructive (thermoelastic) acoustic wave generation.
[0053] A path-stabilized Michelson-type interferometer is used to detect the ultrasonic wave
arrivals in the tooth phantoms. This type of interferometer is sensitive to sub-nanometer
displacement amplitudes, typical for thermoelastically-generated ultrasound. Michelson
interferometers are better suited to objects with specular reflections from the surface of the
object. In each case, the front surface of the tooth phantom is polished to allow optimal
operation of the interferometer. Since teeth do not provide a specular reflection, a different
detection scheme is implemented. Optical detection schemes suited for diffusely reflecting
surfaces include Fabry-Perot, Mach-Zender, photo-refractive, and optical feedback
interferometers as well as various types of laser vibrometers. For these measurements, a
commercially available laser vibrometer is used. As with the Michelson interferometer, this

laser vibrometer has an output proportional to surface displacement.

TOOTH PHANTOM RESULTS

[0054] FIGURE 6a illustrates a measured thermoelastic ultrasonic waveform from a piece of

aluminum (8.5 mm thick). This represents an ideal waveform through the enamel of a tooth if
the enamel were truly isotropic. The first longitudinal wave (L1) and shear wave (S1) arrivals
are marked. Scattered light from the pulsed laser denotes the beginning of the ultrasonic
waveform. This initial laser pulse is visible on all of the tooth phantom waveforms. The
aluminum waveform also provides a baseline for the other three tooth phantom waveforms
(FIGURES 6b-d). Each of these waveforms is distinctly different due to reflections at the
interfaces of the different layers of the tooth phantoms. Each waveform was averaged 100 times
to improve SNR.

[0055] The measured waveform from the second tooth phantom illustrated in FIGURE 6b
simulates what would be found for a tooth with an amalgam restoration (filling). This phantom
is composed of a 1.95 mm thick piece of copper (amalgam) sandwiched between two pieces of
alurminum (enamel), 1.95 mm and 1.25 mm thick. The first longitudinal arrival time, #, occurs

at:
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[0056] The second acoustic wave arrival occurs when the longitudinal wave traverses the thin
piece of aluminum (enamel) a second time after reflection at the enamel-amalgam junction

(EAJ). This second arrival occurs at:

tpagy = i+ Zaluminum
Valuminum

=0.923s+0.397ps =1,32ps.

[0057] The next two acoustic wave arrivals result from additional traverses of the thicker piece
of aluminum and the copper. In each case, the acoustic wave arrivals in the tooth phantom will
‘be more pronounced than what would be expected for an actual tooth due to the larger reflection
coefficient at the aluminuny/copper jun;:tion (T'=0.176 versus I'=0.081). The first shear arrival is
denoted by S1.

[0058] The ultrasonic waveform for the aluminum/glass/aluminum (enamel/dentin/enamel) tooth
phantom is illustrated in FIGURE 6e. The first longitudinal arrival (L1) is identified by the
initiation of the positive slope in the waveform, As with the previous phantom, this arrival
corresponds to a direct acoustic path for the longitudinal wave through the tooth phantom. In
this tooth phantom, the first section of aluminum (enamel) is 1.95 mm thick, the glass (dentin) is
3.3 mm thick, and the final section of enamel is 1.25 mm thick. The second longitudinal arrival
(DEI1) occurs after the longitudinal wave traverses the thinner section of enamel (aluminum) a
second time after reflection at the dentino-enamel (glass/aluminum) junction (DEJ). Subsequent
longitudinal wave arrivals are also visible due to additional traverses of the thicker piece of
enamel (aluminum) and dentin (glass) after reflections at the DEJ. The amplitude of each of
these acoustic wave arrivals is smaller than in the previous tooth phantom due to the closer
acoustic impedance match of the materials and subsequent smaller reflection coefficient
(I'=0.026). The DEJ would be more visible in an actual tooth due to the larger reflection
coefficient (I=0.18).

[0059] The final ultrasonic waveform illustrated in FIGURE 6d shows the
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enamel/dentin/pulp/dentin/enamel (aluminum/glass/teflon/glass/aluminum) tooth phantom.
This tooth phantom is composed of 1 mm thick pieces of aluminum for the enamel, 3.5 mm
thick pieces of glass for the dentin, and a 1.75 mm thick piece of teflon for the pulp. The lower
SNR of this waveform is attributed to the increased complexity and thickness of this tooth
phantom in comparison to the previous three. As before, the first longitudinal wave arrival (L1)
corresponds to a single pass of the longitudinal wave through the phantom. The next two
acoustic wave arrivals (DEJ) correspond to additional passes through the enamel (aluminumy).
As before, these reflections are very small due to the small reflection coefficient at the junction.
The next acoustic wave arrival corresponds to a reflection at the dentin-pulp junction (DPJ).

The amplitude of this reflection is far more pronounced due to the larger reflection coefficient.

HUMAN INCISOR RESULTS
[0060] Laser-based uitrasonic measurements were performed on an extracted human incisor.
Prior to the measurements, the tooth was stored in a physiclogical saline to help preserve the
mechanical properties of the dental tissue. After the measurements were completed, the incisor
was cleaved along the propagation direction of the ultrasonic waves to determine the location of
the internal interfaces within the tooth. A cross-section of the incisor is shown in FIGURE 7
illustrating the enamel 70, dead tracts 72, dentin 74, pulp 76, and cementum 78. The dentino-
enamel (DEJ), dentino-pulp (DPT), and dentino-cementum (DCJ) junctions are also visible. In
addition, a region of dentin containing dead tracts is also present. Results from measurements
taken at four different locations through the tooth are presented here. These measurement
locations are marked in FIGURE 7 as (1), (2), (3), and (4), respectively. In addition, the
thickness of each dental hatd and soft layer is listed in TABLE 3.

TABLE 3
Measurement Intemal Structure of Tooth in mm
Location
1 Enamel
6.06
2 Enamel Dentin Enamel
0.95 4.76 123
3 Dentin Pulp Dentin Cementum
1.51 0.53 13 0.21
4 Cementum | Dentin Pulp Dentin Cementum
0.32 113 047 0.86 0.48
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[0061] FIGURES 8a-d illustrate the acoustic waveforms determined at the measurement
locations shown in FIGURE 7, respectively.

[0062] The first measurement location was taken through the top portion of the tooth and its
waveform is illustrated in FIGURE 8a. In this region, a straight path across the tooth would
only propagate through enamel. The first longitudinal acoustic wave arrival (L) occurs at about
1.08 us, which is slightly longer than the 0.98 s expected assuming a longitudinal velocity of
6.25 mm/ps (see TABLE 2). However, as previously discussed, the wave speed is known to
vary in enamel due to the anisotropic nature of the elastic properties. The anisotropy is
especijally pronounced in this region of the tooth since the ultrasonic waves propagate both
parailel and perpendicular to the enamel rods. An interesting feature of this waveform is the
presence of the two large acoustic wave arrivals at 1.48 ps and 1.98 ps. These arrivals are
believed due to acoustic wave scattering from the top surface of the tooth, which is just above
the measurement location. This phenomenon illustrates the difficulty in interpreting bulk
measurements near interfaces. The acoustic wave arrival at 2.2 ps is very close to the expected
wave arrival time of the first shear wave (S). Acoustic wave arrivals at 2.5 ps and later
correspond to reflections and scattering from the internal structure of the tooth and do not lend
themselves to straightforward interpretation.

[0063] The second measurement location is approximately four millimeters down from the top
of the tooth and its waveform is illustrated in FIGURE 8b. In this region, the ulirasonic waves
propagate through two DEJs and a region of dead tracts in the dentin. The first longitudinal
arrival (L) occurs at about 1.8 ps. This time corresponds to a sudden negative change in slope.
Also marked on the waveform is a wave arrival occurring at 2.03 s (indicated by a positive
slope change). This is believed to be due to an additional round trip through the enamel on the
left hand side of the dentin caused by reflections at the DEJ. This arrival is more pronounced
than in the tooth phantom (FIGURE 6b) due to the larger reflection coefficient at the DEJ. The
predicted arrival time for this reflection at the DEJ is 1.9 ps. The acoustic wave arrival at 2.25
ps is believed to be due to reflections at the interfaces of the dead tracts. Dead tracts are
characterized by the death of odontoblasts, resulting in dentin tubules that contain debris and
voids. It is for this reason that dead tracts appear black when teeth are sectioned and viewed by
transmitted light, The presence of debris and open spaces in the tubules are expected to
significantly affect the mechanical properties of the dentin, resulting in large reflections at the
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dead tract junctions (DTJ). This difference in mechanical properties contributes to the large
acoustic wave arrival (similar to what is seen at the dentino-pulp junction). The DTJ is probably
also responsible for the next acoustic wave arrival at 2.9 ps. The final marked wave arrival at
3.27 ps corresponds to the expected arrival time for the shear wave (S) of 3.2 ps. Again, there is
expected to be some variation between predicted and measured acoustic wave arrival times,
although now the propagation direction is mostly parallel to the orientation of the enamel rods.
In this region of the tooth, the dentin tubules run almost perpendicular to the direction of the
wave propagation.

[0064} The third measurement location occurs much further down the tooth and its waveform is
iltustrated in FIGURE 8c. In this region, the acoustic wave travels through dentin, pulp, and a
small amount of cementum. The mechanical properties (i.e. acoustic wave speeds and density)
of cementum are not known. For analysis purposes, it is assumed that the mechanical properties
of cementum are similar to those of enamel. Based upon this assumption, the first longitudinal
wave arrival is expected at 1.1 ps, which is slightly longer than the measured arrival time of
0.94 ps. This delayed arrival time is attributed to both a degradation in the mechanical
properties of the pulp and uncertainty in the mechanical properties of the cementum. A second,
faint, arrival is seen at 1.27 ps (marked by the change in slope of the waveform). This arrival
coincides with the expected reflection at the DCJ. The next three noticeable features occur at
1.54 ps, 1.98 ps, and 2.17 ps. Due to the amplitude of these wave arrivals, they are believed to
be due to reflections at the DPJ. The next wave arrival at 2.48 ps is very close to that expected
for the first shear wave arrival at 2.2 ys and displays the expected sudden change in slope as
found with the dentin/pulp/dentin tooth phantom at the shear wave arrival.

[0065] The fourth measurement location is near the base of the incisor and its waveform is
illustrated in FIGURE 8d. At this location, the acoustic wave traveled through two layers of
cementum and dentin, as well as a single layer of pulp. The first longitudinal arrival (L) occurs
at about 1.23 pis, which is again slower than the expected arrival time of 0.95 ps. The next
arrival occurs at 1.52 ps and is attributed to a reflection at a DCJ. The next two reflections
oceur at 1.58 ps and 1.86 ps and are due to reflections at the DPJ. Unlike the measurement at
the third location, there are only two wave arrivals due to reflections at the DPJ, because the
total transit time in the pulp and dentin on the left hand side of the pulp are identical. The final
arrival is due to the principal shear wave (S) and occurs at 2.34 ps. As with the longitudinal
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wave, this arrival time is slower than the predicted time of 1.89 s and again atiributed to
degradation of the pulp.

[0066] Sources of error should be examined to determine the accuracy of the final results. It has
been estimated that the error in making laser ultrasonic measurements is less than 1% when
considering phenomena such as acoustic diffraction and timing precision from laser alignment.
For measurements on specially prepared samples, an error of 0.08% has been estimated in
thickness measurements. For the results illustrated herein, the thickness measurement error is
greater since a tooth is very irregular in shape and uncertainties in the exact acoustic path due to
possible tilt in the tooth may occur during the measurement. It is more likely that there is a 3-
4% error in measuring the thickness of the structures within a tooth (i.e. the enamel, dentin,
pulp, and cementum). Another consideration is the determination of the exact arrival time of the
first longitudinal wave. As shown in FIGURES 8a-d, the arrival time of the first longitudinal
wave is not always clear due to noise in the laser vibrometer signal. However, this does not
affect the determination of subsequent wave arrivals. Another source of error is the uncertainty
of the exact wave velocities in the various dental hard and soft tissues. Young’s modulus in
enamel depends on both the orientation of the crystals as well as the volumetric fraction and can
vary by over 10%.

[0067] Until these factors are better understood, complete characterization of dental enamel will
be difficult. However, the problem is greatly simplified when measurements are made in the
enamel/dentin region of a tooth. In this region, the crystals of the enamel are predominately
oriented along the direction of the acoustic wave propagation, reducing the uncertainty in the
Young’s modulus. This allows for more accurate estimates of enamel thickness to be made.
The s-shaped tubules in dentin also contribute to uncertainties in the Young’s modulus. Again,
in certain regions, these tubules are oriented parallel to the direction of the acoustic wave
propagation, simplifying the analysis. Even with the uncertainties in moduli, the measurements
presented here show that DEJ, DPJ, DCJ, and DTJ are discernable and estimates of the
thickness of each of these structures can be made. These estimates are not currently possible .
using any other known technique. In addition, uncertainties in dental structure thickness do not
affect the ability to detect any voids within a tooth.

[0068] The application of laser ultrasonics to the in-vitro assessment of the intemal structure of

teeth has been presented herein and shown to possess significant advantages over prior art work.
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In laser ultrasonics, a short-pulse laser is used to non-destructively generate broadband, high
frequency acoustic waves in the tooth structure. Unlike previous attempts to characterize the
internal structure teeth using conventional contact transducers, laser generation of ultrasound
requires no special surface preparation. Knowledge of the acoustic wave velocities in and
reflection coefficients between the different dental structures allows for the intemal structure of
the tooth to be reconstructed. Optical detection of the acoustic waves provides a complementary
non-contact technique requiring no special surface preparation. Another advantage of optical
detection is that the detection footprint can easily be reduced to a few tens of microns, providing
high spatial sensitivity in dental characterization.

[0069] In the present invention, the dentinoenamel, dentin/pulp, and cementum/dentin interfaces
were resolved. The measured acoustic wave arrival times have been shown to generally agree
with expected arrival times. The largest source of error in this analysis is likely due to the large
variations in the mechanical properties of dental hard tissues. The anisotropic nature of enamel
has been well documented. These variations will always make exact determination of the
internal structure of a tooth somewhat difficult. However, good estimates of spatial variations
in the thicknesses of dental tissues have been shown herein and these measurements have shown
the technique of the present invention to be very sensitive to the presence of anomalies in a
tooth, such as dead tracts. Moreover, the dentino-enamel, dentino-pulp, and dentino-cementum
interfaces as well as dead tracts in the dentin were able to be resolved.

[0070] In the following claims, any means-plus-function clauses are intended to cover the
structures described herein as performing the recited function and not only structural equivalents
but also equivalent structures. Therefore, it is to be understood that the foregoing is illustrative
of the present invention and is not to be construed as limited to the specific embodiments
disclosed, and that modifications to the disclosed embodiments, as well as other embodiments,
are intended to be included within the scope of the appended claims. The invention is defined

by the following claims, with equivalents of the claims to be included therein.
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CLAIMS:

1. A method of assessing tooth structure using laser based ultrasonics comprising:

generating ultrasonic acoustic waves using a pulsed laser that emits a beam;

focusing the beam of the pulsed laser onto a desired area on the surface of a tooth thereby
creating ulirasonic acoustic waves within the bulk and on the surface of the tooth structure;

optically detecting the acoustic waveforms generated within and on the surface of the
tooth structure using optical interferometric detection means; and

processing the detected acoustic waveforms to assess the internal and surface structure of
the tooth.

2. The method of claim 1 wherein the pulsed laser is comprised of a short pulse CO; laser.

3. The method of claim 1 wherein the pulsed laser is comprised of a shoxt pulse laser that

operates in region of absorption for the tooth structure.

4. The method of claim 1 wherein the pulsed laser is comprised of a short pulse laser that
operates in a region of absorption of a film that is placed on the surface of the tooth.

5. The method of claim 1 whetein the optical interferometric detection means is comprised of a

laser vibrometer

6. The method of claim 1 wherein the optical interferometric detection means is comprised of a

Fabry-Perot interferometer.

7. The method of claim 1 wherein the optical interferometric detection means is comprised of a
Mach-Zender interferometer.

8. The method of claim 1 wherein the optical interferometric detection means is comprised of a

photo-refractive interferometer.
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9. The method of claim 1 wherein the optical interferometric detection means is comprised of an

intensity feedback interferometer.

10. The method of claim 1 wherein measurements are taken. in an epicentral configuration in
which the pulsed laser and the optical interferometric detection means are on opposite sides of
the tooth.

11, The method of claim 1 wherein measurements are taken in a non-epicentral configuration in
which the pulsed laser and the optical interferometric detection means are on opposite sides of
the tooth.

12, The method of claim 1 wherein measurements are taken in which the pulsed laser and the

optical interferometric detection means are on the same side of the tooth.

13. The method of claim 1 further comprising triggering the detection of the acoustic waveforms
within the tooth structure using a high-speed photodetector that samples the output of the pulsed

laser.

14. The method of claim 1 wherein said processing step comprises:

forwarding the acoustic waveforms detected by the optical intetferometric detection
means to an oscilloscope; and

analyzing the arrival times and amplitudes of wavefronts within a waveform as presented

on the oscilloscope.
15. The method of claim 1 wherein the tooth surface requires no special preparation.

16. The method of claim 15 wherein the beam of the pulsed laser is focused onto the surface of a

tooth via a lens apparatus.

17. An apparatus of assessing tooth structure using laser based wltrasonics comprising:

a pulsed laser that generates a beam of ultrasonic acoustic waves;
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a lens that focuses the beam of the pulsed laser onto a desired area on the surface of a
tooth thereby creating ultrasonic acoustic waves within the bulk and on the surface of the tooth
structure;

optical interferometric detection means that detect the acoustic waveforms generated
within and on the surface of the tooth structure; and

an oscilloscope that processes the detected acoustic waveforms to assess the internal
structure of the tooth.

18. The apparatus of claim 17 wherein the pulsed laser is comprised of a short pulse CO, laser.

19. The apparatus of claim 17 wherein the pulsed laser is comprised of a short pulse laser that

operates in region of absorption for the tooth structure.

20. The apparatus of claim 17 wherein the pulsed laser is comprised of a short pulse laser that

operates in a region of absorption of a film that is placed on the surface of the tooth.

21. The apparatus of claim 17 wherein the optical interferometric detection means is comprised

of a laser vibrometer.

22. The apparatus of claim 17 wherein the optical interferometric detection means is comprised

of a Fabry-Perot interferometer.

23, The apparatus of claim 17 wherein the optical interferometric detection means is comprised

of a Mach-Zender interferometer.

24. The apparatus of claim 17 wherein the optical interferometric detection means is comprised

of a photo-refractive interferometer.

25. The apparatus of claim 17 wherein the optical interferometric detection means is comprised

of a intensity feedback interferometer.
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26. The apparatus of claim 17 wherein measurements are taken in an epicentral configuration in
which the pulsed laser and the optical interferometric detection means are on opposite sides of
the tooth.

27. The apparatus of claim 17 wherein measurements are taken in a non-epicentral configuration
in which the pulsed laser and the optical interferometric detection means are on opposite sides of
the tooth.

28. The apparatus of claim 17 wherein measurements are taken in which the pulsed laser and the

optical interferometric detection means are on the same side of the tooth.

29, The apparatus of claim 17 further comprising a high-speed photodetector that triggers the
detection of the acoustic waveforms within and on the surface of the tooth structure by sampling
the output of the pulsed laser.

30. The apparatus of claim 17 further comprising processing means that analyze the arrival

times and amplitudes of wavefronts within a waveform.
31. The apparatus of claim 17 wherein the tooth surface requires no special preparation.
32, A method of generating ultrasonic acoustic waves within and on the surface of a tooth
comprising:

generating ultrasonic acoustic waves using a pulsed laser that emits a beam; and

focusing the beam of the pulsed laser onto a desired area on the surface of a tooth thereby
creating ultrasonic acoustic waves within and on the surface of the tooth structure,

33. The method of claim 32 wherein the pulsed laser is comprised of a short pulse CO; laser.

34. The method of claim 32 wherein the pulsed laser is comprised of a short pulse laser that
operates in region of absorption for the tooth structure.
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35. The method of claim 32 wherein the pulsed laser is comprised of a short pulse laser that

operates in a region of absorption of a film that is placed on the surface of the tooth.
36. The method of claim 32 wherein the tooth surface requires no special preparation.

37. The method of claim 32 wherein the beam of the pulsed laser is focused onto the surface of a

tooth via a lens apparatus.

38, A method of detecting and processing ultrasonic acoustic waves within and on the surface of
a tooth comprising:

optically detecting the acoustic waveforms within and on the surface of the tooth
structure using interferometric detection means; and

processing the detected acoustic waveforms to assess the internal structure of the tooth.

39. The method of claim 38 wherein the optical interferometric detection means is comprised of

a laser vibrometer.

40, The method of claim 38 wherein the optical interferometric detection means is comprised of

a Fabry-Perot interferometer.

41, The method of claim 38 wherein the optical interferometric detection means is comprised of

a Mach-Zender interferometer.

42. The method of claim 38 wherein the optical interferometric detection means is comprised of

a photo-refractive interferometer.

43. The method of claim 38 wherein the optical interferometric detection means is comprised of

a intensity feedback interferometer.
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44. The method of claim 38 wherein said processing step comprises:

forwarding the acoustic waveforms detected by the optical interferometric detection
means to an oscilloscope; and

analyzing the arrival times and intensities of wavefronts within a waveform as presented

on the oscilloscope.

45. An apparatus for generating ultrasonic acoustic waves within and on the surface of a tooth
comprising:

apulsed laser that generates a beam of ultrasonic acoustic waves; and

a lens that focuses the beam of the pulsed laser onto a desired area on the surface of a

tooth thereby creating ultrasonic acoustic waves within and on the surface of the tooth structure.
46. The apparatus of claim 45 wherein the pulsed laser is comprised of a short pulse CO; laser.

47. The apparatus of claim 45 wherein the pulsed laser is comprised of a short pulse laser that

operates in region of absorption for the tooth structure.

48. The apparatus of claim 45 wherein the pulsed laser is comprised of a short pulse laser that
operates in a region of absorption of a film that is placed on the surface of the tooth.

49. The apparatus of claim 45 wherein the tooth surface requires no special preparation.

50. An apparatus for detecting and processing ultrasonic acoustic waves within and on the
surface of a tooth comprising:

optical interferometric detection means that optically detect the acoustic waveforms
generated within and on the surface of the tooth structure; and

an oscilloscope that processes the detected acoustic waveforms to assess the internal

and/or surface struciure of the tooth.

51. The apparatus of claim 50 wherein the optical interferometric detection means is comprised

of a laser vibrometer.
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52. The apparatus of claim 50 wherein the optical interferometric detection means is comprised

of a Fabry-Perot interferometer.

53. The apparatus of claim 50 wherein the optical interferometric detection means is comprised

of a Mach-Zender interferometer.

54. The apparatus of claim 50 wherein the optical interferometric detection means is comprised

of a photo-refractive interferometer.

55. The apparatus of claim 50 wherein the optical interferometric detection means is comprised

of a intensity feedback interferometer.

56. The apparatus of claim 50 further comprising processing means that analyze the arrival

times and intensities of wavefronts within a waveform.
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