

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11) 特許出願公開番号

特開2009-148587

(P2009-148587A)

(43) 公開日 平成21年7月9日(2009.7.9)

(51) Int.Cl.

A61B 8/08 (2006.01)

F 1

A 61 B 8/08

テーマコード（参考）

4 C 601

(P2009-148587A)

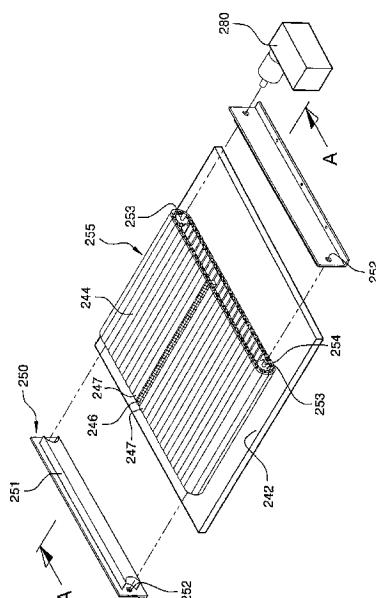
(21) 出願番号	特願2009-41068 (P2009-41068)
(22) 出願日	平成21年2月24日 (2009. 2. 24)
(62) 分割の表示	特願2005-518441 (P2005-518441) の分割
原出願日	平成16年1月17日 (2004. 1. 17)
(31) 優先権主張番号	10-2003-0003218
(32) 優先日	平成15年1月17日 (2003. 1. 17)
(33) 優先権主張国	韓国 (KR)

(71) 出願人 505270669
パク ヒーブーン
大韓民国、463-020 キョンギード
、ソナムーシ、スナエードン、シンソン
アパートメント 307-705

(74) 代理人 100104156
弁理士 龍華 明裕

(72) 発明者 パク ヒーブーン
大韓民国、463-020 キョンギード
、ソナムーシ、スナエードン、シンソン
アパートメント 307-705

F ターム(参考) 4C601 BB03 BB07 BB16 DD08 EE09
EE11 EE20 GA03 GA13 GA18
GA21 GC03 GC07 KK21


(54) 【発明の名称】 変形可能な物体の超音波検査装置

(57) 【要約】 (修正有)

【課題】変形可能な物体、特に、乳房の病変を検査するため、測定しようとする変形可能な物体の位置と形状を維持した状態で、超音波プローブを移動させることにより、超音波検査を行う装置を提供する。

【解決手段】支持フレーム242と、幅方向に剛性を有し、変形可能な物体が載置される平らな面を備え、前記フレーム242に長手方向に所定の稼動距離を有して前後進可能に設けられた稼動手段255と、前記稼動手段を前後進させるための駆動手段280と、超音波送受信面が前記稼動手段の上部面と実質的に同じ平面上に位置するように前記稼動手段の幅方向に長く配置され、少なくとも前記稼動手段の上部面の稼動距離よりも長手方向の両側から内側に位置するように前記稼動手段に固定された少なくとも一つの超音波プローブ246とを備える

【選択図】図 5

【特許請求の範囲】**【請求項 1】**

支持フレームと、

幅方向に剛性を有し、変形可能な物体が載置される平らな面を備え、前記フレームに長手方向に所定の稼動距離を有して前後進が可能に設けられた稼動手段と、

前記稼動手段を前後進させるための駆動手段と、

超音波送受信面が前記稼動手段の上部面と実質的に同じ平面上に位置するように前記稼動手段の幅方向に長く配置され、少なくとも前記稼動手段の上部面の稼動距離よりも長手方向の両側から内側に位置するように前記稼動手段に固定された少なくとも一つの超音波プローブとを備えることを特徴とする変形可能な物体の超音波検査装置。 10

【請求項 2】

前記稼動手段は、平らな面を有する複数のリンクからなるキャタピラと、前記キャタピラの長手方向の両端を内部で支持する一対のローラと、前記キャタピラの幅方向の両側を支持する一対の支持部材とを備え、前記一対のローラのうちの少なくとも一つは、回転によりキャタピラを移動させ得るように、前記キャタピラに拘束されており、

前記駆動手段は、前記拘束されたローラを回転させるように連結されており、

前記少なくとも一つの超音波プローブは、前記キャタピラのリンクとリンクとの間に固設されることを特徴とする請求項 1 に記載の変形可能な物体の超音波検査装置。 20

【請求項 3】

前記稼動手段は、平らな面を有する複数のリンクからなるキャタピラと、前記キャタピラの長手方向の両端を内部で支持する一対のローラと、前記キャタピラの幅方向の両側を支持する一対の支持部材とを備え、 20

前記駆動手段は、前記キャタピラを回転させるように連結されており、

前記少なくとも一つの超音波プローブは、前記キャタピラのリンクとリンクとの間に固設されていることを特徴とする請求項 1 に記載の変形可能な物体の超音波検査装置。 20

【請求項 4】

前記超音波プローブは、位相配列走査方式のプローブであることを特徴とする請求項 1 乃至 3 の何れかに記載の変形可能な物体の超音波検査装置。 20

【請求項 5】

前記フレームを高さ調節可能に支持できる高さ調節手段と、 30

前記高さ調節手段に固定され、前記稼動手段の平らな面に載置された変形可能な物体を押圧できる押圧手段とをさらに備えることを特徴とする請求項 1 乃至 3 の何れかに記載の変形可能な物体の超音波検査装置。

【請求項 6】

前記フレームを高さ調節可能に支持できる高さ調節手段と、

前記高さ調節手段に固定され、前記稼動手段の平らな面に載置された変形可能な物体を押圧できる押圧手段とをさらに備えることを特徴とする請求項 4 に記載の変形可能な物体の超音波検査装置。 30

【請求項 7】

前記高さ調節手段を支持するためのスタンドと、

一端が前記スタンドに回転可能に支持され、他端が前記高さ調節手段のフレームの設けられた反対側面に固定された回転軸とをさらに備えることを特徴とする請求項 5 に記載の変形可能な物体の超音波検査装置。 40

【発明の詳細な説明】**【技術分野】****【0001】**

本発明は、変形可能な物体、特に、乳房の病変を検査するための超音波検査装置に関し、より詳しくは、測定しようとする変形可能な物体の位置と形状を維持したまま超音波プローブを移動させることにより、超音波検査を行う装置に関する。すなわち、移動型の超音波プローブを用いて検査対象全体を一度にスキャンすることにより、効率的に乳房のよ 50

うな変形可能な物体を超音波検査できる装置に関する。

【背景技術】

【0002】

一般に、乳癌は、欧米諸国では女性で最も多い癌であるし、韓国でも子宮頸部癌、胃癌と共に発生頻度が非常に高い癌種である。乳癌を診断するためには、一般に一次検診としてX線撮影法を用いる。X線撮影法は、診断が非常に簡単であり、広く使用されているが、乳房の組織が緻密な場合には、診断率が非常に低い。特に、韓国の女性の場合、乳房組織が欧米諸国と比べて非常に緻密であるため、X線撮影法の実効性が非常に低い状況であり、誤診率が非常に高い。

【0003】

最近は、X線撮影法の代わりに超音波検査が導入されて使用されている。超音波検査は、放射線の危険がなく、3次元映像処理のようなイメージ処理技術もかなり改善され、2~3mmの小さな腫瘍も診断可能である。従来の超音波検査方法は、被検査者を立ったまま静止させ、検査者が5cm前後の超音波プローブを手で掴んで検査部位で移動させながら検査する方法がある。しかし、このような方法は検査に時間及び人手が多くかかり、集団検査の際には非常に非効率的であった。また、このような検査過程は、検査者が肉体的に疲労を感じるだけでなく、被検者に羞恥心を誘発することもある。また、検査者が超音波プローブを手で移動させながら検査を行うため、検査対象の検査位置に対する情報を検査者のみが知り得ることから、検査結果を記録する場合、不正確となる。また、検査過程が施術者の主観的な評価に大きく依存し、施術者がよほど慣れていないと、信頼性が低いという問題点もあった。また、超音波プローブを検査対象と完全に密着しなければ正確な検査ができなかつたが、検査の際に超音波プローブと検査対象との間が完全に密着されず、空間が形成され、診断の結果が非常に不正確となる。特に、立った姿勢で検査する場合には、乳房の下部を支持し、上部から押圧しながら検査を行う場合、被測定者が痛みを感じて検査を避ける傾向がある。また、横になつたり腹ばいになつたりしたまま超音波を測定する場合、検査の手続きが非常に複雑となり、検査の装置の効率が低下し、被検者も不便な姿勢で検査を受けることになり、疲労感を感じることになる。

【0004】

特許文献1には、超音波を通過させる板(ultrasonically transparent plate)の上部に乳房を位置させ、下部で超音波センサを移動させて変形可能な物体の超音波検査を行い得る装置が公開されている。前記特許は、X線検査の結果と超音波検査の結果とをより正確に比較できる姿勢で超音波検査を行い得る検査装置を提供することを目的としている。

【特許文献1】国際特許公開番号WO83/02053号

【発明の概要】

【発明が解決しようとする課題】

【0005】

しかし、前記特許として公開された検査装置は、超音波を通過させる板の剛性が十分でなく乳房が載せられる場合、変形が生じ、検査結果に対する正確な位置情報を得られないという欠点がある。変形を防ぐために、超音波を通過させる板の厚さを厚くする場合、画像イメージが鮮明でなく、検査結果が不正確になるという欠点があった。

【0006】

本発明は、上記問題点に鑑みなされたものであり、被検査者が立った姿勢で手軽に検査を受けることができ、乳房のような変形可能な検査対象の超音波検査結果の位置を正確に知り得ることが可能となる超音波検査装置を提供することを目的とする。

【0007】

また、本発明による超音波検査装置によれば、検査者が手で超音波プローブを掴まず、検査対象の下部で自動的にスキャンして検査対象物を押圧することなく、重力により検査対象物と超音波プローブとを密着することが可能となる超音波検査装置を提供することを目的とする。特に、ゲルパッドを使用する場合、検査対象がゲルパッドを押圧し、超音波プローブが完全に密着した状態で超音波検査を行い得る超音波検査装置を提供する。

10

20

30

40

50

【 0 0 0 8 】

また、測定しようとする変形可能な物体の位置と形状を維持した状態で超音波プローブを移動させて迅速に超音波検査を行うことができ、集団検査の際に効率的に超音波検査を行うことが可能となる超音波検査装置を提供することを目的とする。

【 0 0 0 9 】

また、被検者の体型及び検査部位によって検査装置の高さ及び方向を自由自在に調整することができる超音波検査装置を提供することを目的とする。

【課題を解決するための手段】**【 0 0 1 0 】**

上記の目的を達成するため、本発明による超音波検査装置は、支持フレームと、幅方向に剛性を有し、変形可能な物体が載置される平らな面を有し、前記フレームに長手方向に所定の稼動距離を有して前後進が可能に設けられた稼動手段と、前記稼動手段を前後進させるための駆動手段と、超音波送受信面が前記稼動手段の上部面と実質的に同じ平面上に位置するように前記稼動手段の幅方向に長く配置され、少なくとも前記稼動手段の上部面の稼動距離よりも長手方向の両側から内側に位置するように前記稼動手段に固定された少なくとも一つの超音波プローブとを備えることを特徴とする。

10

【 0 0 1 1 】

また、本発明の超音波検査装置において、前記稼動手段は、平らな面を有する複数のリンクからなるキャタピラと、前記キャタピラの長手方向の両端を内部で支持する一対のローラと、前記キャタピラの幅方向の両側を支持する一対の支持部材とを備え、前記一対のローラのうちの少なくとも一つは、回転によりキャタピラを移動させ得るように、前記キャタピラに拘束されており、前記駆動手段は、前記拘束されたローラを回転させるように連結されており、前記少なくとも一つの超音波プローブは、前記キャタピラのリンクとリンクとの間に固設されたことを特徴とする。

20

【 0 0 1 2 】

また、本発明の超音波検査装置において、前記稼動手段は、平らな面を有する複数のリンクからなるキャタピラと、前記キャタピラの長手方向の両端を内部で支持する一対のローラと、前記キャタピラの幅方向の両側を支持する一対の支持部材とを備え、前記駆動手段は、前記キャタピラを回転させるように連結されており、前記少なくとも一つの超音波プローブは、前記キャタピラのリンクとリンクとの間に固定されるように設けてよい。

30

【 0 0 1 3 】

また、本発明の超音波検査装置において、前記超音波プローブは、広い面積を検査できる位相配列走査方式のプローブを使用することが好ましい。

【 0 0 1 4 】

また、本発明の超音波検査装置は、被検者の体型及び検査部位によって検査装置の高さ及び方向を自由自在に調節できるように、前記フレームを高さ調節可能に支持できる高さ調節手段をさらに備えることが好ましい。かつ、前記フレームを高さ調節可能に支持できる高さ調節手段と、前記高さ調節手段に固定され、前記稼動手段の平らな面に載置された変形可能な物体を押圧できる押圧手段とをさらに備えてよい。また、本発明の超音波検査装置は、前記高さ調節手段を支持するためのスタンドと、一端が前記スタンドに回転可能に支持され、他端が前記高さ調節手段のフレームの設けられた反対側面に固定された回転軸とをさらに備えてよい。

40

【 0 0 1 5 】

また、検査結果により組織検査のための患部の組織を採取する場合のために、前記高さ調節手段に固定され、前記稼動手段の平らな面に載置された変形可能な物体を押圧できる押圧手段をさらに備えることが好ましい。

【 0 0 1 6 】

また、本発明による変形可能な物体の超音波検査装置は、高さの調節が可能なスタンドと、前記スタンドに回動可能に連結され、上下方向に延びている高さ調節手段と、前記高さ調節手段の下部の一側に設けられ、超音波プローブを備えるスキャニング部と、前記ス

50

キャニング部の上部に積層されるゲルパッドと、前記ゲルパッドの上部から上下方向に移動可能に設けられた押圧手段とを備えてもよい。

【0017】

また、前記スキャニング部は、上部が開放された中空状のフレームと、前記フレームの内部空間の両側端部に設けられた一対のローラと、前記一対のローラに軌道運動可能に無限軌道状に設けられ、上側の外表面が前記フレームの上部面と実質的に同じ表面をなす稼動手段と、前記稼動手段を所定の範囲だけ軌道移動させる駆動手段と、前記稼動手段に一直線状に固定配列され、前記稼動手段に従って前記フレーム内で移動し、上側の外表面が前記稼動手段の上側の外表面と実質的に同じ表面をなす超音波プローブとを備える。前記駆動手段は、前記一対のローラのうち、少なくとも一つの回転軸に連結されたモータと、前記モータを制御するための制御部とを備える。

10

【0018】

また、前記スキャニング部は、両側端部が開放された中空状のフレームと、前記フレームの開放された両端部を介して突出するように挿入され、前記フレームの両側方向に往復移動が可能な稼動手段と、前記稼動手段を往復移動させる駆動手段と、前記稼動手段の上部表面と実質的に同じ上部表面を有するように、前記稼動手段内に一直線状に配列され、前記フレーム内で前記稼動手段と共に往復運動する超音波プローブとを備えてよい。

20

【0019】

また、前記超音波プローブの長さは、乳房の検査に適合するように15～20cmであることが好ましい。

20

【0020】

また、前記スタンドは、上部及び下部スタンドからなり、前記上部スタンドは、前記下部スタンドに挿入され、上下方向に移動可能であることが好ましい。

【0021】

また、前記ゲルパッドは、検査対象と稼動手段及び超音波プローブとの摩擦を減らすために、一定の形態を保つ半固体のゲル状態が好ましく、超音波透過性固体で作製された柔軟な材質の被覆内にゲルを完全に充填した状態であることがより好ましい。

【発明を実施するための形態】

【0022】

以下、本発明の好ましい実施の形態を、添付図面に基づいて詳しく説明する。

30

【0023】

本明細書及び請求範囲に使用された用語や単語は、通常的または辞典的な意味で限定されて解釈されるものではなく、発明者は、その自分の発明を最も最善の方法で説明するために用語の概念を適切に定義できるという原則によって本発明の技術的思想に合う意味と概念で解釈されるべきである。よって、本明細書に記載された実施例と図面に示す構成は、本発明の最も好ましい一実施例に過ぎず、技術的思想を逸脱しない範囲内で、当業界の通常の知識を有する者にとっては、他の多くの変更が可能であろう。

【0024】

図1は、本発明の一実施例による変形可能な物体の超音波検査装置の全体構成を示す図である。図1を参照して、本発明の一実施例による乳房超音波検査装置は、検査場所の設置面に取り付けられるスタンド10、12を備えている。

40

【0025】

前記スタンド10、12は、好ましくは、下部スタンド10と、上部スタンド12とかなり、上部スタンド12は、下部スタンド10に一部が挿入され、上下方向に移動可能である。すなわち、上部スタンド12の上下方向の移動により後述する高さ調節手段20の高さが調整される。上部スタンド12の上下方向の移動は、機械式、電動式などとともに可能であり、特別な方式で制限されない。また、下部スタンド10の下端には、複数のホイール(図示せず)を設けて超音波検査装置の移動が容易になるように構成してもよい。

50

【0026】

スタンド 10、12、特に、上部スタンド 12 には、超音波検査装置の高さ調節手段 20 が取り付けられる。高さ調節手段 20 は、超音波診断のための種々の装置が設けられるところで、上下方向に延びている形状を有する。ここで、高さ調節手段 20 は、回転軸 20 の一端に固定されており、前記回転軸の他端は、上部スタンド 12 に回転可能に固定支持されている。すなわち、高さ調節手段 20 は、上下方向に延びている形状を有することから、回転軸 22 により回動するとき、高さ調節手段 20 は、傾きが変わる。高さ調節手段 20 の回動は、機械式、あるいは電動式で行われてもよい。好ましくは、超音波検査装置を操作する別の操作手段（図示せず）により遠隔で制御されてもよい。

【0027】

高さ調節手段 20 の前記回転軸 22 が取り付けられた反対側には、スキャニング部 40 が設けられる。スキャニング部 40 は、検査対象に対する超音波映像を取り込むためのものであり、詳しい構成は後述する。スキャニング部 40 の設置の位置は、高さ調節手段 20 の下端の一部であり、好ましくは、高さ調節手段 20 と一体型に形成された支持フレーム 41 の上にスキャニング部 40 が安定して固定される。

【0028】

検査の際に、スキャニング部 40 の上には、ゲルパッド 50 が配置される。ゲルパッド 50 は、検査対象と、超音波プローブ及び稼動手段との間の摩擦を減らすために、一定の形態を保つ半固体のゲル状態であることが好ましく、超音波透過性固体または柔軟な材質の被覆内にゲルを完全に充填した状態であることがより好ましい。また、スキャニング部 40 に、好ましくは、スキャニング部 40 内の稼動手段及び超音波プローブの上面に密着される。また、柔軟な材質のゲルパッド 50 は、別のフレームによりスキャニング部 40 の上部面に位置ずれが生じないように固定してもよい。ゲルパッド 50 は、超音波プローブ 46 で検査対象をスキャニングするとき、検査対象と超音波プローブ 46 との間の空間を完全に充填することにより、優れた超音波撮像画面を得ることを可能とする。特に、ゲルパッド 50 の外皮が柔軟な材質からなることから、検査対象がゲルパッド 50 を押圧し、よって、検査対象と超音波プローブ 46 との間の空間は完全に無くなる。もちろん、ゲルパッド 50 は、超音波が殆ど失われることなく透過できる公知の材質を使用する。

【0029】

ゲルパッド 50 の上には、所定の距離だけ離れた位置に押圧部 60 が設けられる。押圧部 60 は、高さ調節手段 20 の外面に形成されたガイド溝 62 に沿って上下に移動可能であり、図示していないが、押圧部 60 を上下に移動させるための駆動手段が高さ調節手段 20 の内に設けられる。もちろん、押圧部 60 の上下駆動は、機械式で行われてもよいが、好ましくは、外部の操作手段により遠隔で調整され、電動式で行われる。

【0030】

押圧部 60 は、ゲルパッド 50 の上に検査対象が載置された状態で下方に移動し、検査対象を押圧する。このとき、押圧部 60 が下方に移動した状態を図 2 に示す。

【0031】

図 3 は、本発明の一実施例による超音波検査装置に使用されるスキャニング部 40 の実施例 1 を示す図である。本実施例では、スキャニング部 40 は、ほぼ上部が少なくとも部分的に開放され、内部にほぼ長方形の空間が形成された中空状のフレーム 42 を備え、フレーム 42 の内部空間には、稼動手段が設けられる。前記稼動手段は、フレーム 42 の内部空間の両側部 43 に設けられた一対のローラ 47 と、前記ローラを取り囲んで移動可能に設けられたベルト 45 とを備えている。前記ベルト 45 は、検査対象の乳房が載せられる平らな上部面 44 を備えている。前記一対のローラ 47 のうち、少なくとも一つは、別の駆動手段 80 に連結され、ベルト 45 が軌道運動しながら移動するようになっている。駆動手段 80 は、ローラ 47 に連結されたモータと、前記モータを制御するための制御部とを備える。前記モータを制御し、ベルトの位置を制御する技術は、当業者にとっては自明なことであり、ここではその詳細を省く。また、モータ 100 が連結されていない残りのローラは、好ましくは、従動ローラまたはアイドルローラであり、ベルト 45 が軌道運動を行うとき、安定して移動するように案内する。

10

20

30

40

50

【0032】

前記ベルト45には、超音波プローブ46が設けられる。超音波プローブ46の超音波送受信面は、前記ベルト45の平らな面44と実質的に同じ高さを有するようにベルト45に結合固定され、ベルトと共に移動可能に設けられる。超音波プローブ46は、好ましくは、ベルト45の移動方向に垂直な幅方向に一直線状に配列される。

【0033】

すなわち、超音波プローブ46は、平らな面44と同じ上部表面をなすことが好ましい。よって、平らな面44と超音波プローブ46とは、フレーム42の内部空間に一つの平面を形成する。ベルト45は、垂直方向の圧力に対して平面を維持できるように適切な張力で引っ張られ、移動方向には可撓性を有し、幅方向には十分な剛性を有することが好ましい。ベルト45が幅方向に変形されることを防止し、移動を案内するために、図示してはいないが、無限軌道を形成するベルト45との間の空間には支持部材を設けてもよい。

10

【0034】

好ましくは、平らな面44と超音波プローブ46とは、隣接するフレーム42の側部またはフレーム42の全体と同じ平面をなす。このような構造により平らな面44と超音波プローブ46との上に載置されるゲルパッド50は、柔軟な材質からなっているにも関わらず、安定して支持される。また、検査対象が押圧部60により押圧されるときにも、稼動手段44は、検査対象が動いたり変形したりしなくさせ、ゲルパッド50と超音波プローブ46との間に摩擦を殆ど引き起こさない。

20

【0035】

このとき、一直線状に配列された超音波プローブ46は、全体としてほぼ15～20cmの長さを有し、幅は相対的に非常に狭いことが好ましい。超音波プローブ46の全体の長さは、検査対象の全体をカバーできる程度であればよく、上述の長さはこのような観点で設定されたものである。

20

【0036】

超音波プローブ46は、検査対象に超音波を発射し、反射された超音波を再び得て、検査対象に対するイメージ信号を得るためのもので高価である。よって、製造コストを低減するために超音波プローブ46は、上述の15～20cmの単一のプローブの代わりに短い長さのプローブを互いに連結したり、一部が重なるように側面に連結し、映像的処理は、幅全体を含むようにしてもよい。このとき、本発明の超音波プローブ46の重要な特徴は、超音波プローブ46が一度のスキャンで検査対象全体を検査できるように、ベルト45により検査対象の全体幅に対して移動するということにある。図示していないが、超音波プローブ46を介して超音波を提供するために、別の超音波発生装置が設けられていることは言うまでもなく、かつ、反射された超音波を分析するための別のドップラ装置が超音波プローブ46と互いに連結されている。前記超音波プローブは、広い範囲を検査できる位相配列走査方式のプローブを使用することが好ましい。

30

【0037】

また、モータを含む駆動手段80は、自体的に備えられたプロセッシングルーチンに従うか、あるいは、外部に設けられた操作手段の命令に従って各種の部品に命令を下したり、必要な情報を取り込んで伝達する。例えば、駆動手段80の制御部は、検査対象がゲルパッド50の上に載置された状態で押圧部60により十分に押圧されたと判断したり、あるいは、外部の操作手段により命令を受けたとき、モータに対する駆動命令を下すと共に超音波プローブ46を介して超音波を発射するように命令する。また、制御部は、超音波プローブ46から発射され、検査対象に反射された超音波を取り込んで、イメージを生成し、これを格納したり、外部の表示装置に伝達したりする。

40

【0038】

図示していないが、スキャニング部40のベルト45または超音波プローブ46には、別の位置センサが取り付けられ、超音波プローブ46の現在位置を持続的に感知することが可能である。位置センサは、現在、超音波プローブ46が検査している位置を該当のイメージに対応するように持続的に知らせ、これは、その後で被検者を診断するときに非常

50

に有用に使用できる。すなわち、位置センサによる位置情報は、被検者の診断のために、イメージを分析するとき、検査対象で問題が起きた位置を正確に知らせることを可能とする。

【0039】

このような制御部は、スキャニング部40の内に設けられるものとして示されているが、制御部の設置位置は、必ずこれに限定されるものではない。例えば、制御部は、高さ調節手段20の内に設けてもよく、あるいは、外部に別にモニタなどと共に設け、ユーザの操作及び映像表示などの全般的な機能を提供する一種のコンピュータとして構成してもよい。

【0040】

このように構成された本発明による超音波検査装置は、次のように動作する。

【0041】

先ず、被検者の診断のために、検査者は、被検者の体型に合わせて高さ調節手段20の高さ及び傾きを調整する。高さ調節手段20の高さは、上部スタンド12を上下方向に操作することにより調整され、高さ調節手段20の傾きは、回転軸22を回動させることにより調整される。次に、高さ調節手段20の高さ及び傾きを合わせた状態で、被検者は、検査対象をゲルパッド50の上に載置し、その状態で押圧部60が下方に移動し、検査対象を押圧する。押圧部60により押圧された検査対象は、ゲルパッド50と完全に密着した状態となる。

【0042】

検査対象が完全に押圧されると、制御部は、超音波発生装置（図示せず）を駆動して超音波プローブ46を介して超音波を発射し、それと同時にモータを駆動してローラ47を回転させ、ローラ47によりベルト45が徐々に軌道移動を開始する。すると、稼動手段44は、超音波プローブ46が検査対象の一側から他側まで完全に移動するまで軌道移動を行い、その間で超音波プローブ46は、一度に検査対象の全体を超音波スキャニングする。また、検査対象をスキャニングする間、検査対象から反射された超音波は、ドップラ装置（図示せず）により分析され、制御部に転送され、これはイメージに変換され、格納されると共に別の表示装置を介して外部に出力される。かつ、ベルト45が移動する間、ベルト45または超音波プローブ46に設けられた位置センサ（図示せず）は、持続的に超音波プローブ46の現在位置を測定し、これを該当の位置のイメージとマッチングするよう制御部に転送する。よって、検査対象から取り込んだイメージは、超音波プローブ46の各位置にマッチングするように格納され、これを用いて三次元映像を得ることが可能となる。

【0043】

検査が終了すると、制御部は、モータの駆動及び超音波発生装置の駆動を中断させる。

【0044】

また、被検者に対し、他方側の乳房を検査しようとする場合、被検者は、他方側の検査対象をゲルパッド50に載置した状態で上述の過程を同様に繰り返せばよい。また、検査対象の側面を検査しようとする場合には、回転軸22を用いて高さ調節手段20を回動して検査を行うことができる。

【0045】

本実施例では、検査対象を押圧部60で押圧して検査する手続きを説明しているが、制御部の制御により押圧部を押圧していない状態で検査を行ってもよい。

【0046】

図4は、本発明の超音波検査装置に使用されるスキャニング部の実施例2を示す。図3の実施例では、稼動手段40を無限軌道運動を行うベルトを使用して構成しているが、本実施例の稼動手段140は、スライド移動を行うように構成している。

【0047】

すなわち、図4を参照して、本実施例では、スキャニング部140のフレーム142は、両側部143が部分的に開放されるように構成され、フレーム142の内部は、空き空

10

20

30

40

50

間が形成された中空状であり、かつ、フレーム 142 の上部は開放されている。このとき、フレーム 142 の内にはほぼ直六面体状の稼動手段 144 が設けられるが、稼動手段 144 は、フレーム 142 の幅よりもほぼ二倍以上の長さを有し、フレーム 142 の開放された両側 143 に突出するように設けられる。この状態で稼動手段 144 は、フレーム 142 の両側にスライド移動が可能である。

【0048】

また、稼動手段 144 には、図 3 の例と類似な超音波プローブ 146 がほぼ一直線状に配列され、超音波プローブ 146 の超音波送受信面と稼動手段 144 の平らな面は、同じ高さの上部表面をなす。よって、稼動手段 144 と超音波プローブ 146 とは、柔軟な材質からなるゲルパッド 50 を安定して支持できるようになる。

10

【0049】

本実施例では、稼動手段 144 を移動させる方式は、下部にローラを設けて移動させる方式、ラックとピニオンを用いて移動させる方式など多様な形態で具現できるし、特定の例として限定されるものではない。また、このように構成された本実施例のスキャニング部 140 は、たとえ、全体の構造及び稼動手段 144 の移動方式では差があるが、図 3 のスキャニング部と実質的に同じ原理で動作しており、その詳細は省く。

【0050】

図 5 は、本発明の超音波検査装置に使用されるスキャニング部 240 の実施例 3 を示す図であり、図 6 は、図 5 の A-A 線の断面図である。

20

【0051】

本実施例のスキャニング部は、フレーム 242 の上部に平らな面 244 を有する複数のリンク複数のリンク 247 からなるキャタピラ 255 と、前記キャタピラの長手方向の両端を内部で支持する一対のローラと、前記キャタピラ 255 の幅方向の両側を支持する一対の支持部材 250 とを備えている。また、駆動手段 30 は、前記キャタピラ 255 を回転させるように連結されている。特に、少なくとも一つの超音波プローブ 246 は、前記キャタピラ 255 のリンク 247 とリンク 247 との間に固設されている。また、前記キャタピラ 255 の一側には、キャタピラを軌道運動させるための一対のスプロケットホイール 253 が設けられている。一対のローラを取り外し、スプロケットホイール 253 をキャタピラの両端に挿入し、キャタピラ 255 を支持するようにしてもよい。前記一対のスプロケットホイール 253 のうちの少なくとも一つは、その回転軸 254 が駆動手段 280 のモータ軸に連結され、キャタピラ 255 を無限軌道運動するようにする。前記支持部材 250 は、フレーム 242 に固定され、前記一対のスプロケットホイール 253 は、それぞれキャタピラ 255 の幅方向の外側に延びている回転軸 254 が支持部材 250 の結合孔 252 に挿入され回転可能に支持される。

30

【0052】

図 6 に示すように、前記それぞれの支持部材 250 の支持段 251 は、前記キャタピラ 255 の幅方向の両端部で内側に挿入され、キャタピラ 255 の両端部を支持する。前記支持部材 250 の支持段 251 が前記キャタピラ 255 の幅方向の両端部を支持することにより、被検体が前記キャタピラ 255 の平らな面 244 に位置しても前記キャタピラ 255 が被検体の重量により垂れ下がる現象を防止する。すなわち、支持部材 250 がなければ、キャタピラ 255 のそれぞれのリンク 247 は、前記キャタピラ 255 の幅方向に剛性を有するが、それぞれのリンク 247 がチェーンリンク 249 で連結しており、キャタピラ 255 の平らな面 244 に乳房などを載せると、前記チェーンリンク 249 の揺動性によりキャタピラ 255 の平らな面 244 が垂れ下がる現象などが発生する。しかし、本実施例では、前記リンク 247 とリンク 247 との間に一つの超音波プローブ 246 を設けた例を挙げているが、複数の超音波プローブ 246 をそれぞれのリンク 247 とリンク 247 との間に設けてもよい。

40

【0053】

50

図7は、本発明による超音波検査装置に使用されるスキャニング部の実施例4を示す図であり、図8は、図7のB-B線の断面図である。

【0054】

本実施例のスキャニング部は、フレーム342の上側に平らな面344を有する複数のリンク347からなるキャタピラ355と、前記キャタピラ355の長手方向の両端を内部で支持する一対のローラ353と、前記キャタピラ355の幅方向の両側を支持する一対の支持部材350とを備え、前記一対のローラ353のうちの少なくとも一つは、回転によりキャタピラを移動させ得るように前記キャタピラ355に拘束されている。また、前記一対のローラ353のうちの少なくとも一つは、駆動手段380に連結されており、前記少なくとも一つの超音波プローブ346は、前記キャタピラ355のリンク347とリンク347との間に固設されている。

10

【0055】

本実施例では、ローラ353とキャタピラ355とは、図7に示すように、前記ローラ355の外周面に所定の間隔を有するように長手方向に形成された挿入溝356と前記溝と密着して接触するようにそれぞれのキャタピラ355のリンク347の平らな面344の反対側に形成された長手方向に同じ断面形状を有する挿入面347aにより拘束されている。よって、駆動手段380と取り付けられたローラ353を回転させると、前記ローラ353の挿入溝356に前記キャタピラ355のリンク347の挿入面347aが挿入され、キャタピラ355が無限軌道運動を行いながら移動する。

20

【0056】

前記支持部材350は、フレーム342に固定され、図8に示すように、前記それぞれの支持部材350の支持段351が前記キャタピラ355の幅方向の両端部で内側に挿入され、キャタピラ355の両端部を支持する。前記支持部材350の支持段351が前記キャタピラ355の幅方向の両端部を支持することにより、被検体を前記キャタピラ355の平らな面344に位置させても前記キャタピラ355が被検体の重量により垂れ下がる現象を防止する。支持部材350がなければ、キャタピラ355のそれぞれのリンク347は、前記キャタピラ355の幅方向に剛性を有するが、それぞれのリンク347が両端でワイヤ349で連結しており、キャタピラ355の平らな面344に乳房などを載せると、乳房の重さによりキャタピラ355の平らな面244が垂れ下がる現象が発生する。しかし、本実施例のスキャニング部は、前記支持部材350により前記リンク247とリンク247とが連結される部位を支持部材250の支持段251で支持して垂れ下がり現象を防ぐことが可能となる。

30

【0057】

本発明による超音波検査装置によれば、被検査者が立った姿勢で手軽に検査を受けることができ、乳房のような変形可能な検査対象の超音波検査結果の位置を正確に判断することができる。

40

【0058】

また、本発明による超音波検査装置によれば、検査者が手で超音波プローブを掴まず、検査対象の下部で自動的にスキャンして検査対象物を押圧することなく、重力により検査対象物と超音波プローブとを密着することが可能となる。

40

【0059】

また、本発明による超音波検査装置によれば、測定しようとする変形可能な物体の位置と形状を維持した状態で超音波プローブを移動させて迅速に超音波検査を行うことができ、集団検査の際に効率的に超音波検査を行うことが可能となる。

50

【0060】

また、本発明による超音波検査装置は、被検者の体型によって高さ及び傾きを自由に調整することができ、超音波プローブを移動させながら検査対象の全体をただ一回で全て検査できるという利点がある。特に、本発明の超音波検査装置は、ゲルパッドが超音波プローブの上に載置された状態で被検者が直接検査対象をゲルパッドに載置し、押圧部で押圧することにより、診断のために検査者が検査対象と超音波プローブとを手で密着して一々

50

に検査していた従来の煩わしさを無くし、診断にかかる人手と時間を大幅に減らし、被検者の羞恥心を無くせるという利点がある。また、本発明による超音波検査装置は、長さの長い超音波プローブが移動しながら超音波検査を行うため、相対的に低廉な費用でも優れた映像を得ることが可能となる。

【0061】

以上のように、上記実施の形態を参照して詳細に説明され図示されたが、本発明は、これに限定されるものでなく、このような本発明の基本的な技術的思想を逸脱しない範囲内で、当業界の通常の知識を有する者にとっては、他の多くの変更が可能であろう。また、本発明は、添付の特許請求の範囲により解釈されるべきであることは言うまでもない。

10

【図面の簡単な説明】

【0062】

【図1】本発明の一実施例による変形可能な物体の超音波検査装置を示す斜視図である。

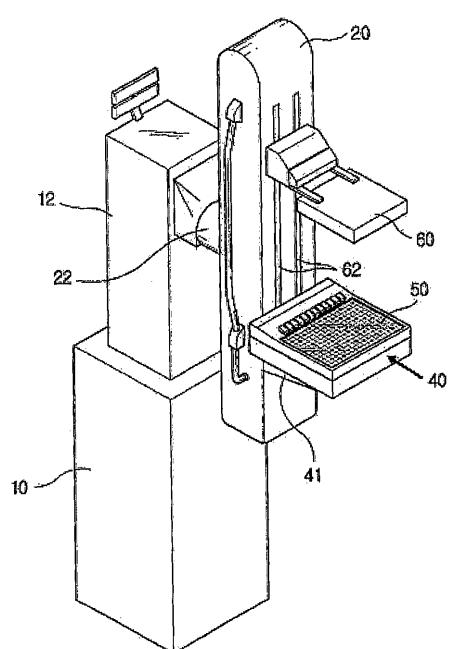
【図2】図1の超音波検査装置における押圧部が下方に移動した状態を示す斜視図である。

。

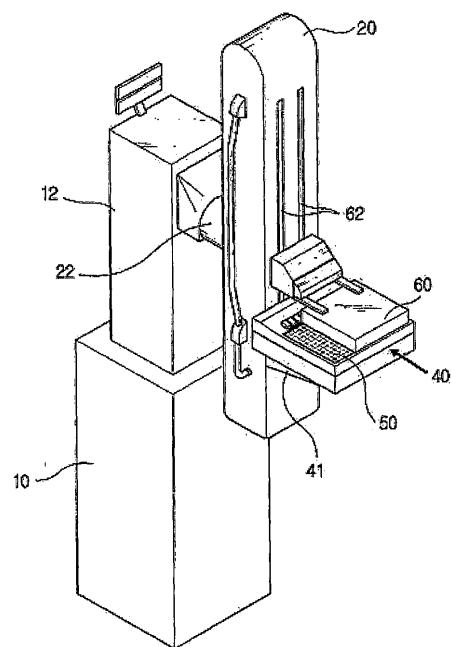
【図3】本発明による超音波検査装置のスキャニング部の実施例1を示す斜視図である。

【図4】本発明による超音波検査装置のスキャニング部の実施例2を示す斜視図である。

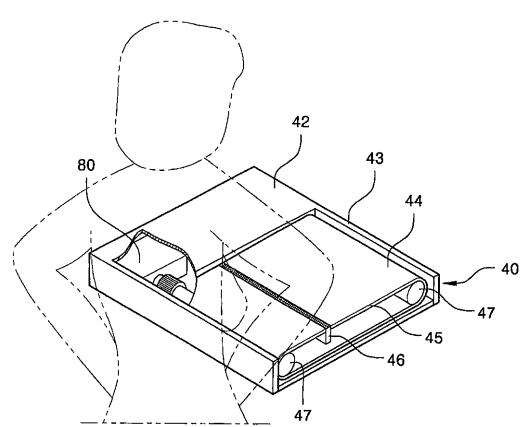
【図5】本発明による超音波検査装置のスキャニング部の実施例3を示す斜視図である。

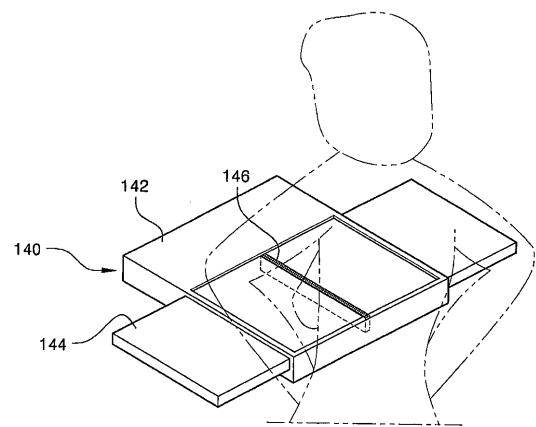

【図6】図5のA-A線の断面図である。

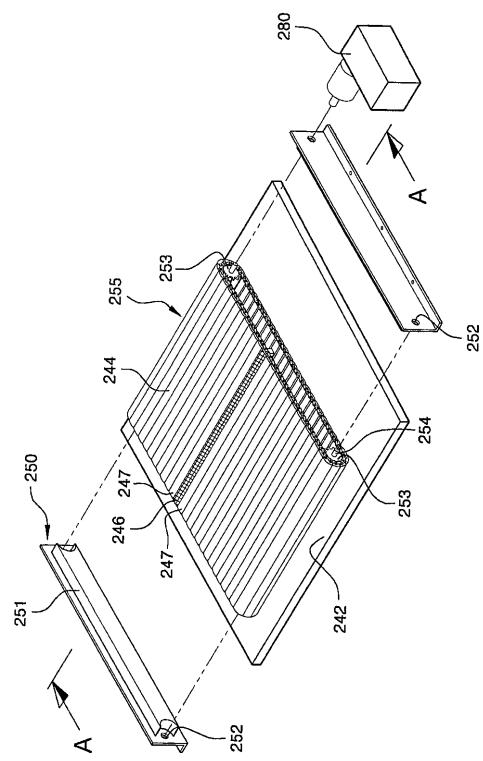
【図7】本発明による超音波検査装置のスキャニング部の実施例4を示す斜視図である。

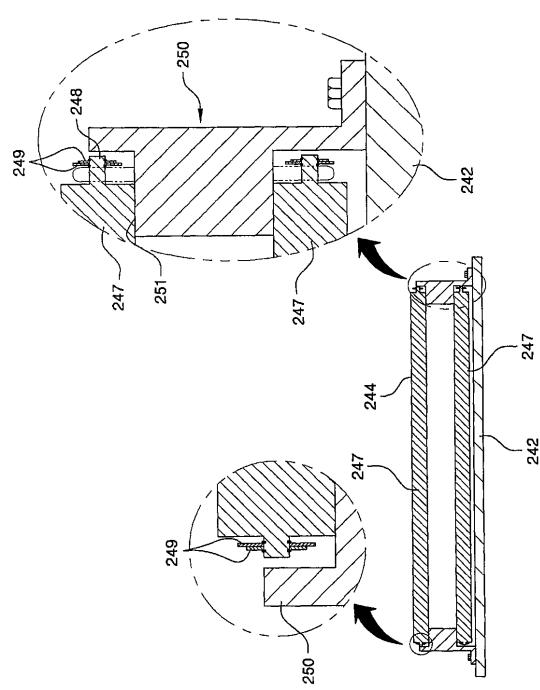

【図8】図7のB-B線の断面図である。

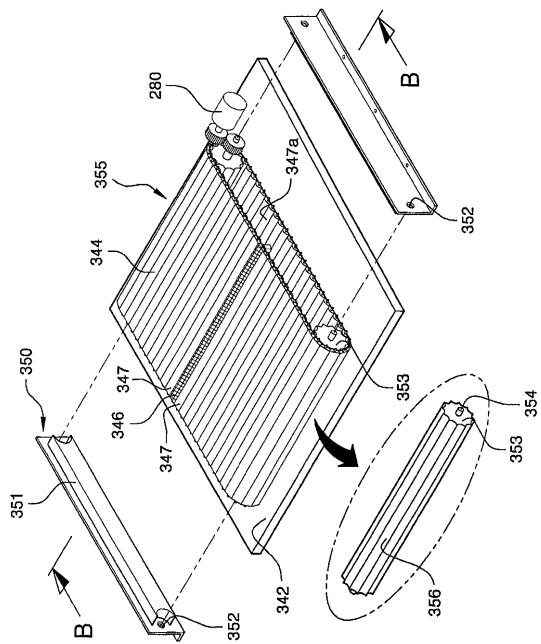
20

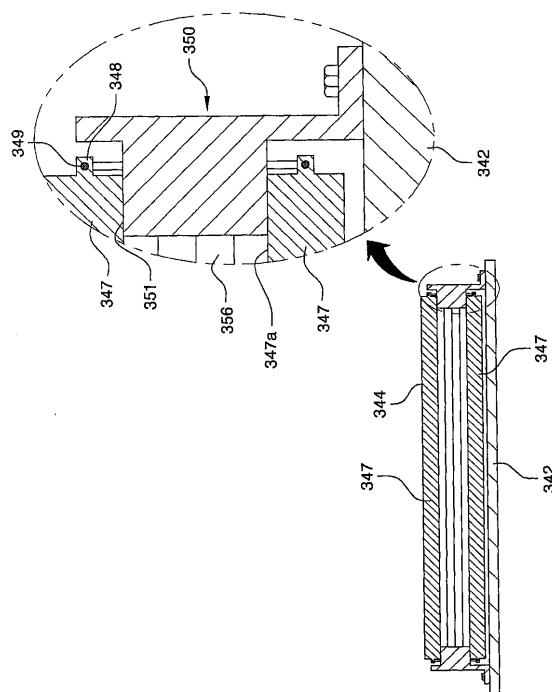

【図1】


【図2】


【図3】


【図4】


【図5】


【図6】

【図7】

【図8】

【手続補正書】

【提出日】平成21年4月27日(2009.4.27)

【手続補正1】

【補正対象書類名】特許請求の範囲

【補正対象項目名】全文

【補正方法】変更

【補正の内容】

【特許請求の範囲】

【請求項1】

支持フレームと、

幅方向に剛性を有し、乳房が載置される平らな上部面を備え、前記幅方向に垂直な長手方向に所定の稼動距離を有して前記長手方向の移動が可能な稼動手段と、

前記稼動手段を前記長手方向に移動させるための駆動手段と、

超音波送受信面が前記上部面と実質的に同じ平面上に位置するように前記幅方向に長く配置され、前記上部面に固定された少なくとも一つの超音波プローブと、

前記支持フレームを高さ調節可能に支持できる高さ調節手段と、

前記高さ調節手段に固定され、前記上部面に載置された前記乳房を押圧できる押圧手段と

と

を備えることを特徴とする乳房の超音波検査装置。

【請求項2】

前記稼動手段は、前記上部面を形成する平らな面を有する複数のリンクからなるキャタピラと、前記キャタピラの前記長手方向の両端を内部で支持する一対のローラと、前記キャタピラの前記幅方向の両側を支持する一対の支持部材とを備え、前記一対のローラのうちの少なくとも一つは、回転によりキャタピラを移動させ得るように、前記キャタピラに拘束されており、

前記駆動手段は、前記拘束されたローラを回転させるように連結されており、
前記少なくとも一つの超音波プローブは、前記キャタピラのリンクとリンクとの間に固
設されていることを特徴とする請求項1に記載の乳房の超音波検査装置。

【請求項3】

前記稼動手段は、前記上部面を形成する平らな面を有する複数のリンクからなるキャタ
ピラと、前記キャタピラの前記長手方向の両端を内部で支持する一対のローラと、前記キ
ャタピラの前記幅方向の両側を支持する一対の支持部材とを備え、

前記駆動手段は、前記キャタピラを回転させるように連結されており、

前記少なくとも一つの超音波プローブは、前記キャタピラのリンクとリンクとの間に固
設されていることを特徴とする請求項1に記載の乳房の超音波検査装置。

【請求項4】

前記超音波プローブは、位相配列走査方式のプローブであることを特徴とする請求項1
から3の何れかに記載の乳房の超音波検査装置。

【請求項5】

前記高さ調節手段を支持するためのスタンドと、
一端が前記スタンドに回転可能に支持され、他端が前記高さ調節手段の前記支持フレー
ムの設けられた反対側面に固定された回転軸と
をさらに備えることを特徴とする請求項1から3の何れかに記載の乳房の超音波検査装
置。

【請求項6】

前記高さ調節手段を支持するためのスタンドと、
一端が前記スタンドに回転可能に支持され、他端が前記高さ調節手段の前記支持フレー
ムの設けられた反対側面に固定された回転軸と
をさらに備えることを特徴とする請求項4に記載の乳房の超音波検査装置。

【外国語明細書】

APPARATUS FOR ULTRASONIC EXAMINATION OF DEFORMABLE OBJECT

Technical field

The present invention relates to an apparatus for an ultrasonic examination of a deformable object, particularly, the breast. More particularly, the present invention relates to an apparatus capable of performing an ultrasonic examination by moving an ultrasonic probe while maintaining the position and shape of a deformable object to be inspected. That is, the present invention relates to an apparatus capable of performing an effective ultrasonic examination by scanning an entire deformable object such as the breast at one time using a movable ultrasonic probe.

Background Art

Generally, breast cancer is the most common carcinoma in the Western countries, and also has a high frequency of occurrence together with cervical cancer and stomach cancer for Korean women. To diagnose breast cancer, mammography is generally used as a primary diagnosis. The mammography has been widely used since it has an advantage in that a diagnosis can be very simply made. However, if the tissue of the breast is very dense, diagnostic sensitivity and specificity are considerably lowered. Especially, in case of Korean women, since the tissue of the breast is denser than that of Western women, the effectiveness of the mammography is greatly lowered and diagnosis of breast cancer is very difficult.

Recently, instead of the mammography, an ultrasonic examination has been introduced and used. The ultrasonic examination does not involve a risk of radiation, and can diagnose a small tumor having a size of 2 to 3mm due to significant improvement of image processing technology. Conventional ultrasonic examination methods include an examination method in which an inspector holds an ultrasonic probe of about 5 centimeters and moves it on a desired region of a standing subject to be examined. However, the method requires much time and manpower for carrying out the examination, and is very inefficient for mass screening examination. Further, such an examination process gives

physical fatigue to an inspector and causes a subject to feel discomfort and shame. Furthermore, since the inspector moves the ultrasonic probe with his/her hand to perform the examination, only the inspector can know information on an examined location of an object to be examined. Thus, this may cause incorrect recordation of examination results. In addition, there are problems in that the examination process depends mostly on subjective evaluation by the inspector and reliability may be lowered unless the inspector has much skill in the examination. Moreover, the ultrasonic probe should be completely in close contact with the object to be examined to correctly perform the examination. However, when the examination is carried out, the ultrasonic probe and the object to be examined are not completely in close contact with each other so that a gap is formed therebetween and the results of diagnosis becomes very incorrect. In particular, in a case where the subject maintains a standing posture during the examination, since an upper side of the breast is pressed while a lower side thereof is supported, the subject feels a pain so that the subject may tend to avoid the examination. Further, in a case where the subject lies on his/her back or stomach during the ultrasonic examination, since the examination procedure is very complicated, the efficiency of the examination apparatus is lowered. Moreover, since the subject goes through an examination in an uncomfortable posture, the subject feels physical fatigue.

International Patent Application Publication No. WO 83/02053 discloses an apparatus capable of performing an ultrasonic examination of a deformable object, wherein the breast is placed on an ultrasonically transparent plate through which ultrasonic waves can pass and an ultrasonic sensor is moved below the plate. An object of the patent application is to provide an examination apparatus that can perform an ultrasonic examination in a posture in which the results of an X-ray examination and the results of an ultrasonic examination can be more correctly compared with each other. In the examination apparatus disclosed in the patent application, however, since the plate through which the ultrasonic waves pass has not sufficient rigidity, deformation occurs when the breast is placed on the plate. Therefore, there is a drawback in that correct location information on the examination results cannot be obtained. If the thickness of the plate through which the ultrasonic waves pass is increased in order to prevent deformation, there

are drawbacks in that an image is not clear and examination results are incorrect.

Disclosure of Invention

The present invention is conceived to solve the aforementioned problems. An object of the present invention is to provide an apparatus for an ultrasonic examination, wherein a subject can simply go through an examination in a standing posture and a location of a deformable object such as the breast corresponding to ultrasonic examination results can be accurately obtained.

Another object of the present invention is to provide an apparatus for an ultrasonic examination, wherein an object to be examined can be automatically scanned from a lower portion thereof without holding an ultrasonic probe with a hand by an inspector and the ultrasonic probe can come into contact with the object to be examined by means of gravity without pressing the object to be examined, in particular, to provide an apparatus for an ultrasonic examination, wherein when a gel pad is used, an ultrasonic examination can be performed in a state where the ultrasonic probe is completely in close contact with the object to be examined while the object to be examined presses the gel pad.

A further object of the present invention is to provide an apparatus for an ultrasonic examination, wherein an ultrasonic examination can be quickly performed by moving an ultrasonic probe in a state where the location and shape of a deformable object to be examined are maintained, thereby examination with this apparatus can be efficiently performed in case of mass screening of breast cancer.

A still further object of the present invention is to provide an apparatus for an ultrasonic examination, wherein the height and orientation of the apparatus can be freely adjusted according to a physical figure of a subject and a region thereof to be examined.

According to the present invention for achieving the objects, there is provided an apparatus for an ultrasonic examination, comprising a supporting frame; a movable means which has a flat surface with rigidity widthwise on which the deformable object is placed and is installed in the frame to move forward and rearward at a certain moving distance in a longitudinal direction of the frame; a driving means for moving the movable means forward and rearward; and at least one ultrasonic probe disposed to extend widthwise of

the movable means, a ultrasonic wave transmission/reception surface of the ultrasonic probe being substantially flush with an upper surface of the movable means, the ultrasonic probe being fixed to the movable means at a position inward from longitudinal both ends of the movable means by a distance smaller than the moving distance of the movable means.

In the apparatus of the present invention, the movable means may comprise a caterpillar consisting of a plurality of links each of which has a flat surface, a pair of rollers for internally supporting both longitudinal ends of the caterpillar, and a pair of supporting members for supporting both lateral sides of the caterpillar. At least one of the pair of the rollers may be interlocked with the caterpillar to move the caterpillar in response to the rotation of the roller. The driving means may be coupled to and rotates the interlocked roller. The at least one ultrasonic probe may be fixedly installed between two links of the caterpillar.

Further, in the apparatus of the present invention, the movable means may comprise a caterpillar consisting of a plurality of links each of which has a flat surface, a pair of rollers for internally supporting both longitudinal ends of the caterpillar, and a pair of supporting members for supporting both lateral sides of the caterpillar, the driving means may be coupled to and rotates the caterpillar, and the at least one ultrasonic probe may be fixedly installed between two links of the caterpillar.

Furthermore, in the apparatus of the present invention, the ultrasonic probe is preferably a phased array scanning type probe capable of examining a large area.

Moreover, it is preferred that the apparatus of the present invention further comprise a height adjusting means for supporting the frame in such a manner that the height of the frame can be adjusted, thereby freely adjusting the height and orientation of the apparatus. The apparatus may further comprise a height adjusting means for supporting the frame in such a manner that the height of the frame can be adjusted; and a pressing means fixed to the height adjusting means to press the deformable object placed on the flat surface of the movable means. The apparatus of the present invention may further comprise a stand for supporting the height adjusting means; and a rotational shaft having one end supported rotatably by the stand and the other end fixed to a side surface of

the height adjusting means, which is opposite to a side surface of the height adjusting means with the frame installed thereon.

Moreover, for a case where the tissue of an affected part is sampled to perform a histologic examination according to examination results, it is preferred that the ultrasonic examination apparatus of the invention further comprise a pressing means fixed to the height adjusting means to press the deformable object placed on the flat surface of the movable means.

The apparatus for the ultrasonic examination of the breast according to the present invention may comprise a height-adjustable stand; a height adjusting means connected rotatably to the stand and extending vertically; a scanning unit that is provided at a side of a lower portion of the height adjusting means and has an ultrasonic probe; a gel pad placed on the scanning unit; and a pressing means installed to move vertically above the gel pad.

The scanning unit comprises a hollow frame with an open upper face; a pair of rollers installed at both side ends of an inner space of the frame; a movable means that is installed around the pair of rollers in the form of a crawler to move in endless track manner and has an upper outer surface substantially flush with the upper face of the frame; a driving means for moving the movable means in endless track manner within a certain range; and an ultrasonic probe that is linearly and fixedly arranged to the movable means to move in the frame along the movable means and has an upper outer surface substantially flush with the upper outer surface of the movable means. The driving means comprises a motor having a rotational shaft connected to at least one of the pair of rollers, and a control unit for controlling the motor.

Further, the scanning unit may comprise a hollow frame having both open side faces; a movable means received in the frame to extrude through the both open side faces and to reciprocate toward the side faces of the frame; a driving means for reciprocating the movable means; and an ultrasonic probe that is linearly arranged within the movable means so as to have an upper surface substantially flush with an upper surface of the movable means and reciprocates together with the movable means within the frame.

Moreover, it is preferred that the length of the ultrasonic probe is 15 to 20 cm suitable for an examination of the breast.

Furthermore, it is preferred that the stand consist of upper and lower stands, and the upper stand be inserted into the lower stand to move vertically.

In addition, it is preferred that the gel pad be in a semi-solid gel state so that the gel pad maintains a certain shape to reduce friction between an object to be examined and the ultrasonic probe and the movable means. It is more preferred that the gel pad be constructed by filling a gel into an enclosure made of a sonolucent solid or flexible material.

Brief Description of Drawings

Fig. 1 is a perspective view showing an apparatus for an ultrasonic examination of the breast according to an embodiment of the present invention.

Fig. 2 is a perspective view showing a state where a pressing unit of the ultrasonic examination apparatus of Fig. 1 has been moved downward.

Fig. 3 is a perspective view showing a first embodiment of a scanning unit of the ultrasonic examination apparatus according to the present invention.

Fig. 4 is a perspective view showing a second embodiment of the scanning unit of the ultrasonic examination apparatus according to the present invention.

Fig. 5 is a perspective view showing a third embodiment of the scanning unit of the ultrasonic examination apparatus according to the present invention.

Fig. 6 is a sectional view taken along line A-A in Fig. 5.

Fig. 7 is a perspective view showing a fourth embodiment of the scanning unit of the ultrasonic examination apparatus according to the present invention.

Fig. 8 is a sectional view taken along line B-B in Fig. 7.

<Explanation of reference numerals for designating main components in the drawings>

10: Lower stand

12: Upper stand

20: Height adjusting means

22: Rotational shaft

40, 140: Ultrasonic scanning unit
42, 142: Frame
44, 144: Flat surface
46, 146: Ultrasonic probe
47: Roller
50: Gel pad
60: Pressing means
62: Guide groove
80: Driving means

Best Mode for Carrying out the Invention

Hereinafter, preferred embodiments of the present invention will be described in detail with reference to accompanying drawings. The terms or words used herein should not be construed as being confined to common meanings or dictionary meanings but be construed as meanings and concepts matching with the technical spirit of the present invention based on the principle that an inventor can properly define the concept of a term to describe his/her invention in the best fashion. Therefore, the constitutions described herein and illustrated in the drawings do not cover all the technical spirit of the present invention but are merely the most preferred embodiments of the present invention. Thus, it should be understood that various equivalents and modifications can be made to the embodiments at the time of filing this application.

Fig. 1 is a view showing the entire configuration of an apparatus for an ultrasonic examination of the breast according to an embodiment of the present invention. Referring to Fig. 1, the apparatus for the ultrasonic examination of the breast (hereinafter, referred to as "ultrasonic examination apparatus") according to the embodiment of the present invention is provided with a stand mounted on an installation surface of an examination site.

The stand consists of a lower stand 10 and an upper stand 12. A portion of the upper stand 12 is inserted into the lower stand 10 to move vertically. That is, the height of a height adjusting means 20 to be described later is adjusted by the vertical movement of

the upper stand 12. The vertical movement of the upper stand 12 can be accomplished by a mechanical means or electric-powered means without being limited to a specific means. Further, a plurality of wheels not shown may be provided at a lower end of the lower stand 10 to facilitate movement of the ultrasonic examination apparatus.

The height adjusting means 20 is coupled to the stands 10 and 12, particularly the upper stand 12. The height adjusting means 20 is a unit on which a variety of devices for an ultrasonic diagnosis and is elongated vertically. At this time, the height adjusting means 20 is fixed to one end of a rotational shaft 22 of which the other end is rotatably supported by the upper stand 12. That is, since the height adjusting means 20 is elongated vertically, an inclination of the height adjusting means 20 varies when the height adjusting means is rotated by the rotational shaft 22. The rotation of the height adjusting means 20 can be performed in a mechanical or electric-powered manner. Preferably, the height adjusting means may be remotely controlled by an additional operation means not shown for operating the ultrasonic examination apparatus.

A scanning unit 40 is provided at a side of the height adjusting means 20, which is opposite to the side thereof to which the rotational shaft 22 is coupled. The scanning unit 40 is to obtain an ultrasonic image for an object to be examined. The detailed structure thereof will be described later. The scanning unit 40 is installed at a portion of a lower end of the height adjusting means 20. Preferably, the scanning unit 40 is stably fixed on a supporting frame 41 formed integrally with the height adjusting means 20.

When an examination is performed, a gel pad 50 is disposed on the scanning unit 40. It is preferred that the gel pad 50 be in a semi-solid gel state so that the gel pad maintains a certain shape to reduce friction between the object to be examined and the ultrasonic probe and a movable means. It is more preferred that the gel pad be constructed by filling a gel into an enclosure made of a sonoluent solid or flexible material. Moreover, the gel pad 50 is in contact with the scanning unit 40, preferably, the movable means within the scanning unit 40 and an upper surface of the ultrasonic probe. In addition, the gel pad 50 made of a flexible material may be fixed to an upper surface of the scanning unit 40 by means of an additional frame such that the location of the gel pad cannot vary. When the ultrasonic probe 46 scans the object to be examined, a space

formed between the object to be examined and the ultrasonic probe 46 is completely filled with the gel pad 50 so that a superior ultrasonic image can be obtained. In particular, since the enclosure of the gel pad 50 is made of a flexible material, the object to be examined presses the gel pad 50. Therefore, the space between the object to be examined and the ultrasonic probe 46 can be completely eliminated. Of course, the gel pad 50 is made of a known material through which ultrasonic waves can be transmitted without any loss.

A pressing unit 60 is installed at a position spaced apart by a certain distance upward from the gel pad 50. The pressing unit 60 can be moved vertically along guide grooves 62 formed on an outer surface of the height adjusting means 20. Although not shown, a driving means for vertically moving the pressing unit 60 is installed within the height adjusting means 20. Of course, although the pressing unit 60 can be moved vertically in a mechanical manner, it is preferred that the pressing unit 60 be remotely controlled by an external operation means so that the vertical movement can be performed in an electric-powered manner.

In a state where the object to be examiner is placed on the gel pad 50, the pressing unit 60 is moved downward to press the object to be examiner. At this time, a state where the pressing unit 60 has been moved downward is shown in Fig. 2.

Fig. 3 shows a first embodiment of the scanning unit 40 used in the ultrasonic examination apparatus according to the embodiment of the present invention. In this embodiment, the scanning unit 40 comprises a hollow frame 42 having an at least partially open upper face and a generally rectangular space formed therein. The movable means is installed within the inner space of the frame 42. The movable means comprises a pair of rollers 47 installed at both sides 43 of the inner space of the frame 42 and a belt 45 installed movably while surrounding the rollers. The belt 45 has a flat upper surface 44 on which the breast as the object to be examined is placed. At least one of the pair of rollers 47 is coupled to a separate driving means 80 to move the belt 45 in endless track manner. The driving means 80 comprises a motor coupled to the roller 47 and a control unit for controlling the motor. Since a technique for controlling the position of the belt by controlling the motor is obvious to those skilled in the art, a description thereof will be

omitted. Preferably, the other roller which is not coupled to the motor is a driven roller or idle roller and serves to stably guide the belt 45 when the belt 45 is moved in endless track manner.

The ultrasonic probe 46 is provided at the belt 45. The ultrasonic probe 46 is fixedly coupled to the belt 45 such that a transmission/reception surface of the ultrasonic probe 46 is substantially flush with the flat surface 44 of the belt 45 to move together with the belt 45. Preferably, the ultrasonic probe 46 is linearly arranged widthwise of the belt 45, i.e. in a direction perpendicular to the movement direction of the belt 45.

That is, it is preferred that the ultrasonic probe 46 have an upper surface flush with the flat surface 44. Therefore, the flat surface 44 and the upper surface of the ultrasonic probe 46 define a single plane within the inner space of the frame 42. Preferably, the belt 45 is pulled under proper tension to maintain flatness thereof against vertical pressure, and has flexibility in the movement direction and sufficient rigidity widthwise. In order to prevent the belt 45 from being deformed widthwise and to guide the movement thereof, although not shown, a support member may be installed within a space formed between upper and lower portions of the belt 45 constituting an endless track.

Preferably, the flat surface 44 and the upper surface of the ultrasonic probe 46 define the same plane as defined by the adjacent sides of the frame 42 or the entire frame 42. With such a structure, even though the gel pad 50 placed on the flat surface 44 and the ultrasonic probe 46 is made of a flexible material, the gel pad 50 can be supported stably. Further, even when the object to be examined is pressed by the pressing unit 60, the movable means dose not cause movement or deformation of the object to be examined and also hardly cause friction between the gel pad 50 and the ultrasonic probe 46.

At this time, it is preferred that the linearly arranged ultrasonic probe 46 have a length of about 15 to 20 cm as a whole and a relatively very narrow width. The overall length of the ultrasonic probe 46 should be sufficient to cover the entire object to be examined. Thus, the aforementioned length is determined from such a viewpoint.

The ultrasonic probe 46 is an expensive part that emits an ultrasonic wave to the object to be examined and then receives the reflected ultrasonic wave to obtain an image signal for the object to be examined. Therefore, in order to reduce costs, instead of a

single probe having a length of 15 to 20 cm, a plurality of short probes may be connected to one another in end-to-end manner or in a state where some portions of adjacent probes overlap with each other at their sides, and image processing is performed to cover the entire width defined by the probes. At this time, an important feature of the ultrasonic probe 46 of the present invention is that the ultrasonic probe 46 is moved by the belt 45 through the entire width of the object to be examined so as to examine the entire object with single scanning. Although not shown, it is apparent that an additional ultrasonic wave generator is installed to provide the ultrasonic wave through the ultrasonic probe 46. Further, an additional Doppler device for analyzing the reflected ultrasonic wave is connected to the ultrasonic probe 46. As for the ultrasonic probe, it is desirable to use a phased array scanning type probe capable of inspecting a large range.

The driving means 80 comprising the motor serves to issue a command to various components or obtain necessary information and transmit the information to the components according to a processing routine installed in the driving means itself or a command of an external operating means. For example, when a control unit of the driving means 80 determines that the object to be examined is sufficiently pressed by the pressing unit 60 or receives a command from the external operating means in a state where the object to be examined is placed on the gel pad 50, the control unit issues a driving command to the motor and simultaneously instructs the ultrasonic probe 46 to emit the ultrasonic wave. Further, the control unit creates an image by using the ultrasonic wave emitted by the ultrasonic probe 46 and reflected from the object to be examined and stores the created image or transmit the image to an external display device.

Although not shown, an additional position sensor is attached to the belt 45 or the ultrasonic probe 46 of the scanning unit 40 to continuously sense the current position of the ultrasonic probe 46. The position sensor continuously informs a location at which the ultrasonic probe 46 currently performs an examination, so that the location can be caused to correspond to a relevant image. This location can be very usefully utilized later when the apparatus performs a diagnosis of a person to be examined. That is, when the image is analyzed to diagnose a person to be examined, the location information obtained from the position sensor can correctly inform the location of a region of the object to be

examined at which a problem occurs.

Although the control unit has been illustrated as being installed within the scanning unit 40, the installation position of the control unit is not necessarily limited thereto. For example, the control unit may be provided within the height adjusting means 20 or may be installed separately outside of the apparatus together with a monitor and the like to construct a kind of computer that provides general functions such as user operation, image display and the like.

The ultrasonic examination apparatus according to the present invention constructed as above operates as follows.

First, to diagnose a subject, an inspector adjusts the height and inclination of the height adjusting means 20 to be fit for a physical figure of the subject. The height of the height adjusting means 20 is adjusted by operating the upper stand 12 upward or downward, and the inclination thereof is adjusted by rotating the rotational shaft 22. Next, in a state where the height and inclination of the height adjusting means have been adjusted, the subject puts his/her object to be examined on the gel pad 50, and the pressing unit 60 is then moved downward to press the object to be examined. The object to be examined that has been pressed by the pressing unit 60 is completely in close contact with the gel pad 50.

When the object to be examined has been completely pressed, the control unit operates an ultrasonic wave generator (not shown) to emit an ultrasonic wave through the ultrasonic probe 46. At the same time, the control unit operates the motor to rotate the roller 47. Thus, the belt 45 is slowly moved by the roller 47 in endless track manner. The movable means 44 is moved in endless track manner until the ultrasonic probe 46 is fully moved from one side to the other side of the object to be examined. During the movement of the movable means 44, the ultrasonic probe 46 ultrasonically scans the entire object to be examined at one time. During the scanning of the object to be examined, the ultrasonic wave reflected from the object is analyzed by a Doppler device (not shown) and the analysis results are transmitted to the control unit. The analysis results are converted into an image that in turn is stored and simultaneously output to the outside through an additional display device. Further, during the movement of the belt 45, the position

sensor (not shown) installed on the belt 45 or the ultrasonic probe 46 continuously detects the current location of the ultrasonic probe 46, and transmits the detected location to the control unit to match it with an image corresponding thereto. Accordingly, the image acquired from the object to be examined is stored while it is matched with the relevant location of the ultrasonic probe 46, and a three-dimensional image can be obtained by using the acquired image.

When the examination process has been completed, the control unit stops the operations of the motor and the ultrasonic wave generator.

Meanwhile, when another part of the breast of the subject is intended to be examined, the above process can be repeated in a state where the other object to be examined is placed on the gel pad 50. Further, when a side of the object is intended to be examined, the examination can be performed by rotating the height adjusting means 20 through the rotational shaft 22.

Although the process of examining an object to be examined by pressing the object by the pressing unit 60 has been described in this embodiment, it is possible to perform the examination under the control of the control unit in a state where the object to be examined is not pressed by the pressing unit.

Fig. 4 shows a second embodiment of the scanning unit used in the ultrasonic examination apparatus of the present invention. Although the movable means 40 has been constructed using a belt moving in endless track manner in the embodiment of Fig. 3, a movable means 140 of this embodiment is constructed to move slidably.

That is, referring to Fig. 4, a frame 142 of the scanning unit 140 has partially open both side faces and an open upper face. Further, the frame 142 has a hollow configuration in which a space is formed therein. At this time, a movable means 144 generally taking the shape of a hexahedron is installed within the frame 142, and has a length that is approximately twice as large as the width of the frame 142 so that the movable means 144 can be installed to protrude through the both open side faces 143 of the frame 142. In this state, the movable means 144 can be moved slidably toward the both side faces of the frame 142.

Further, an ultrasonic probe 146 similar to that of the embodiment shown in Fig. 3

is linearly arranged within the movable means 144. A transmission/reception surface of the ultrasonic probe 146 is flush with a flat surface of the movable means 144 to define the same upper surface. Accordingly, the movable means 144 and the ultrasonic probe 146 can stably support the gel pad 50 made of a flexible material.

In this embodiment, a method of moving the movable means 144 can be implemented in various manners such as a manner in which lower rollers are installed to achieve the movement, and a manner in which a rack and a pinion are used to achieve the movement. However, the method is not limited to the specific examples. Although the scanning unit 140 of this embodiment constructed as above differs from the scanning unit shown in Fig. 3 in view of their overall structures and methods of moving the movable means, the scanning unit 140 operates based on the same principle as the scanning unit of Fig. 3. Therefore, a detailed description thereof will be omitted.

Fig. 5 is a view showing a third embodiment of the scanning unit used in the ultrasonic examination apparatus according to the present invention, and Fig. 6 is a sectional view taken along line A-A in Fig. 5.

A scanning unit 240 of this embodiment comprises a caterpillar 255 consisting of a plurality of links 247 each of which has a flat surface 244 on a frame 242, a pair of rollers for internally supporting both longitudinal ends of the caterpillar, and a pair of supporting members 250 for supporting both lateral sides of the caterpillar 255. Further, a driving means 280 is coupled to at least one of the rollers to rotate the caterpillar 255. Particularly, at least one ultrasonic probe 246 is fixedly installed between any two links 247 of the caterpillar 255. Moreover, a pair of sprocket wheels 253 are installed on one side of the caterpillar 255 to move the caterpillar in endless track manner. It is also possible to insert the sprocket wheels 253 at both ends of the caterpillar after eliminating the pair of rollers in order to support the caterpillar 255. A rotational shaft 254 for at least one of the pair of sprocket wheels 253 is connected to a motor shaft of the driving means 280 to move the caterpillar 255 in endless track manner. The supporting members 250 are connected to the frame 242, and the rotational shaft 254 of each of the pair of sprocket wheels 253 extending outward widthwise is inserted into relevant engagement holes 252 of the supporting members 250. Thus, the sprocket wheels 253 are rotatably supported by

the supporting members 250.

As shown in Fig. 6, supporting steps 251 of the supporting members 250 are inserted into the caterpillar 255 at the both lateral ends thereof to support the lateral ends of the caterpillar 255. The supporting steps 251 of the supporting members 250 support the both lateral ends of the caterpillar 255, so that even though an object to be examined is placed on the flat surface 244 of the caterpillar 255, the caterpillar 255 can be prevented from sagging due to the weight of the object. That is, since the respective links 247 of the caterpillar 255 have rigidity widthwise of the caterpillar 255 but are connected to one another through chain links 259, the flat surface 244 of the caterpillar 255 sags due to play of the chain links 249 when the breast or the like is placed on the flat surface 244 of the caterpillar 255, if there are no supporting members 250. In this embodiment, however, connections of adjacent two links 247 are supported by the supporting steps 251 of the supporting member 250, thereby preventing the sagging phenomenon. Furthermore, although this embodiment has been described by way of example as having the single ultrasonic probe 246 installed between the two links 247, a plurality of ultrasonic probes 246 may be installed between adjacent links 247, respectively.

Fig. 7 is a view showing a fourth embodiment of the scanning unit used in the ultrasonic examination apparatus according to the present invention, and Fig. 8 is a sectional view taken along line B-B in Fig. 7.

A scanning unit of this embodiment comprises a caterpillar 355 consisting of a plurality of links 347 each of which has a flat surface 344 on a frame 342, a pair of rollers 353 internally supporting both longitudinal ends of the caterpillar 355, and a pair of supporting members 350 for supporting both lateral ends of the caterpillar 355. At least one of the pair of the rollers 353 is interlocked with the caterpillar 355 to move the caterpillar 355 in response to the rotation of the roller. Further, at least one of the rollers 353 is connected to a driving means 380, and at least one ultrasonic probe 346 is fixedly installed between any two links 347 of the caterpillar 355.

As shown in Fig. 7, the interlocking of the roller 353 with the caterpillar 355 is achieved by a plurality receiving grooves 356 longitudinally formed at a regular interval on an outer circumferential surface of the roller 355 and by a plurality of insertion surfaces

347a that have the same cross section in a longitudinal direction and are formed on the back of the flat surface 344 of the links 347 of the caterpillar 355 so that the insertion surfaces can come into close contact with the receiving grooves 356. Accordingly, when the roller 353 connected to the driving means 380 is rotated, the insertion surfaces 347a of the links 347 of the caterpillar 355 are inserted into the receiving grooves 356 of the roller 353, thereby moving the caterpillar 355 in endless track manner.

The supporting members 350 are fixed to the frame 342. As shown in Fig. 8, supporting steps 351 of the respective supporting members 350 are inserted into the caterpillar 355 at the both lateral ends thereof to support the lateral ends of the caterpillar 355. The supporting steps 351 of the supporting members 350 support the both lateral ends of the caterpillar 355, so that even though an object to be examined is placed on the flat surface 344 of the caterpillar 355, the caterpillar 355 can be prevented from sagging due to the weight of the object. Since the respective links 347 of the caterpillar 355 have rigidity widthwise of the caterpillar 355 but are connected to one another through wires 349 at both ends thereof, the flat surface 344 of the caterpillar 355 sags due to the weight of the breast or the like when the breast or the like is placed on the flat surface 344 of the caterpillar 355, if there are no supporting members 350. In the scanning unit of this embodiment, however, connections of adjacent two links 347 are supported by the supporting steps 351 of the supporting member 350, thereby preventing the sagging phenomenon.

Industrial Applicability

According to the ultrasonic examination apparatus of the present invention, a subject can simply go through an examination in a standing posture and a location of a deformable object such as the breast corresponding to ultrasonic examination results can be accurately obtained.

Further, according to the ultrasonic examination apparatus of the present invention, an object to be examined can be automatically scanned from a lower portion thereof without holding an ultrasonic probe with a hand by an inspector and the ultrasonic probe can come into contact with the object to be examined by means of gravity without pressing

the object to be examined.

Moreover, according to the ultrasonic examination apparatus of the present invention, an ultrasonic examination can be quickly performed by moving an ultrasonic probe in a state where the location and shape of a deformable object to be examined are maintained, thereby examination with this apparatus can be efficiently performed in case of mass screening of breast cancer.

Further, the ultrasonic examination device of the present invention can adjust freely a height and gradient according to a body type of the subject and can move the ultrasonic probe to examine the overall object to be examined at once.

Furthermore, the ultrasonic examination apparatus of the present invention has advantages in that the height and inclination thereof can be freely adjusted according to the figure of a subject, and the entire object to be examined can be examined only at one time while the ultrasonic probe is moved. Particularly, in the ultrasonic examination apparatus of the present invention, a subject directly places an object to be examined on the gel pad that has been placed on the ultrasonic probe and causes the pressing unit to press the object, thereby eliminating conventional troublesomeness that an inspector causes the object to be examined to be in contact with the ultrasonic probe with his/her hand and then examines the object one by one in order to perform a diagnosis. Therefore, there are advantages in that manpower and time required for the diagnosis can be drastically reduced and the subject can be avoided from discomfort and shame. In addition, since an ultrasonic-examination is performed by moving an elongated ultrasonic probe in the ultrasonic examination of the present invention, a superior image can be obtained even at relatively lower costs.

It is intended that the embodiments of the present invention described above and illustrated in the drawings should not be construed as limiting the technical spirit of the present invention. The scope of the present invention is defined only by the appended claims. Those skilled in the art can make various changes and modifications thereto without departing from its true spirit. Therefore, various changes and modifications obvious to those skilled in the art will fall within the scope of the present invention.

CLAIMS

1. An apparatus for an ultrasonic examination of a deformable object, comprising:
 - a supporting frame;
 - a movable means having a flat surface with rigidity widthwise, the deformable object being placed on the flat surface, the movable means being installed in the frame to move forward and rearward at a certain moving distance in a longitudinal direction of the frame;
 - a driving means for moving the movable means forward and rearward; and
 - at least one ultrasonic probe disposed to extend widthwise of the movable means, a ultrasonic wave transmission/reception surface of the ultrasonic probe being substantially flush with an upper surface of the movable means, the ultrasonic probe being fixed to the movable means at a position inward from longitudinal both ends of the movable means by a distance smaller than the moving distance of the movable means.
2. The apparatus according to Claim 1,
 - wherein the movable means comprises a caterpillar consisting of a plurality of links each of which has a flat surface, a pair of rollers for internally supporting both longitudinal ends of the caterpillar, and a pair of supporting members for supporting both lateral sides of the caterpillar,
 - at least one of the pair of the rollers is interlocked with the caterpillar to move the caterpillar in response to the rotation of the roller,
 - the driving means is coupled to and rotates the interlocked roller, and
 - the at least one ultrasonic probe is fixedly installed between two links of the caterpillar.
3. The apparatus according to Claim 1,
 - wherein the movable means comprises a caterpillar consisting of a plurality of links each of which has a flat surface, a pair of rollers for internally supporting both longitudinal ends of the caterpillar, and a pair of supporting members for supporting both

lateral sides of the caterpillar,

the driving means is coupled to and rotates the caterpillar, and

the at least one ultrasonic probe is fixedly installed between two links of the caterpillar.

4. The apparatus according to any one of Claims 1 to 3,

wherein the ultrasonic probe is a phased array scanning type probe.

5. The apparatus according to any one of Claims 1 to 3, further comprising:

a height adjusting means for supporting the frame in such a manner that the height of the frame can be adjusted; and

a pressing means fixed to the height adjusting means to press the deformable object placed on the flat surface of the movable means.

6. The apparatus according to Claim 4, further comprising:

a height adjusting means for supporting the frame in such a manner that the height of the frame can be adjusted; and

a pressing means fixed to the height adjusting means to press the deformable object placed on the flat surface of the movable means.

7. The apparatus according to Claim 5, further comprising:

a stand for supporting the height adjusting means; and

a rotational shaft having one end supported rotatably by the stand and the other end fixed to a side surface of the height adjusting means, which is opposite to a side surface of the height adjusting means with the frame installed thereon.

The present invention relates to an apparatus for an ultrasonic examination of a deformable object, particularly, the breast. More particularly, the present invention relates to an apparatus capable of performing an ultrasonic examination by moving an ultrasonic probe while maintaining the position and shape of a deformable object to be inspected. That is, the present invention relates to an apparatus capable of performing an effective ultrasonic by scanning an entire deformable object such as the breast at one time using a movable ultrasonic probe. The apparatus of the present invention comprises a supporting frame; a movable means which has a flat surface with rigidity widthwise on which the deformable object is placed and is installed in the frame to move forward and rearward at a certain moving distance in a longitudinal direction of the frame; a driving means for moving the movable means forward and rearward; and at least one ultrasonic probe disposed to extend widthwise of the movable means, an ultrasonic wave transmission/reception surface of the ultrasonic probe being substantially flush with an upper surface of the movable means, the ultrasonic probe being fixed to the movable means at a position inward from longitudinal both ends of the movable means by a distance smaller than the moving distance of the movable means.

FIG. 2

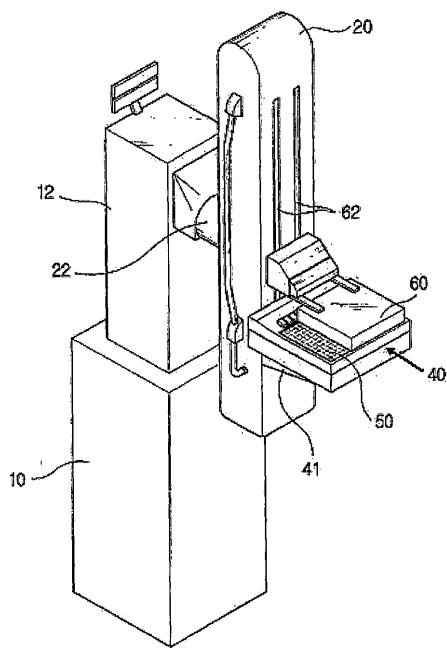


FIG. 1

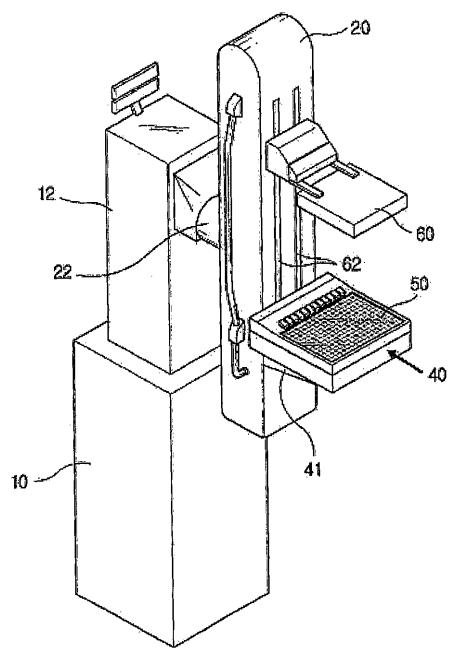


FIG. 3

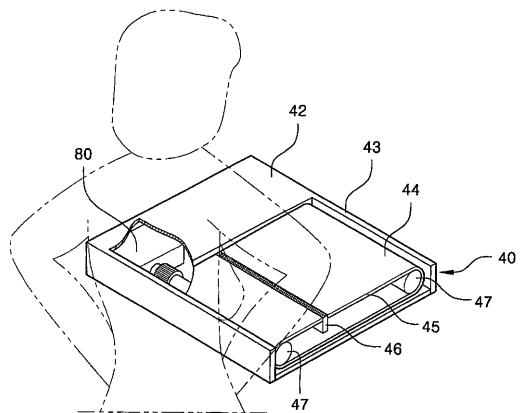


FIG. 4

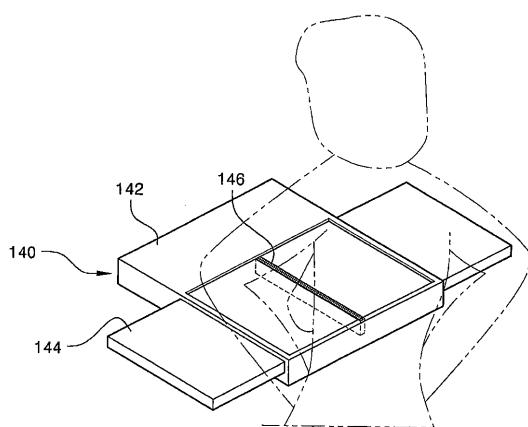


FIG. 5

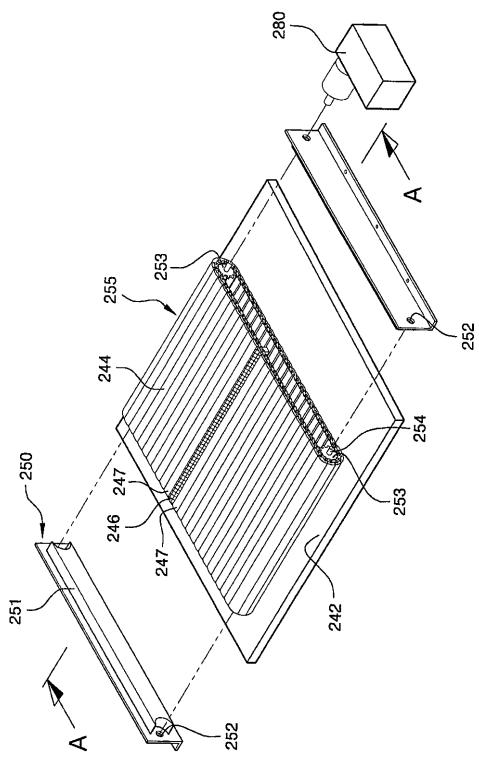


FIG. 6

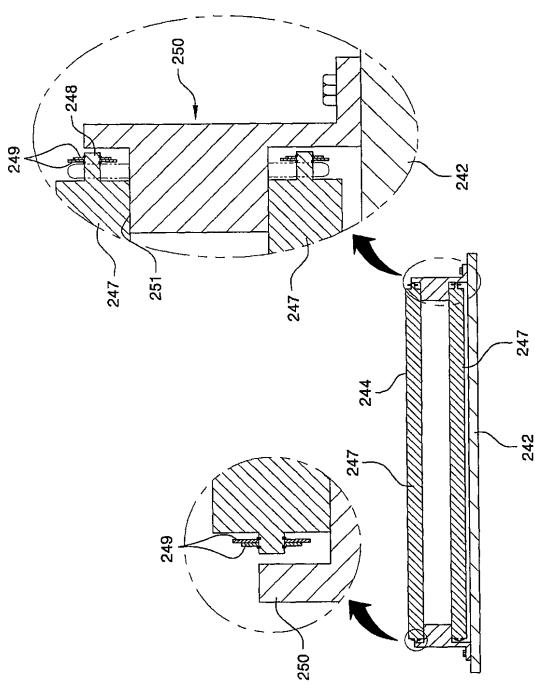
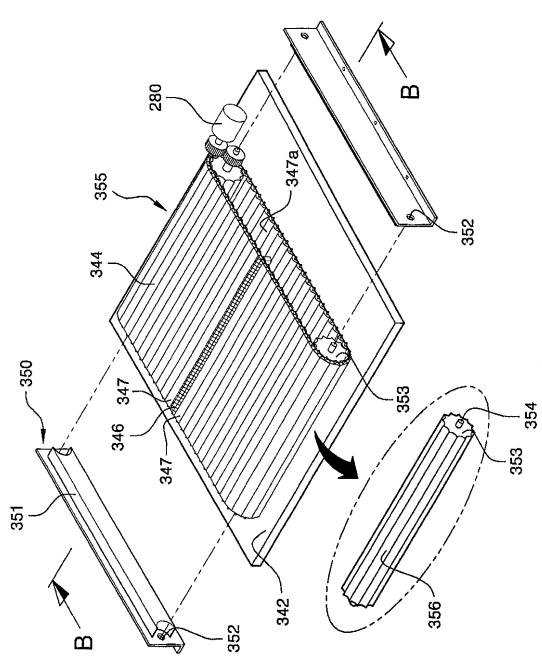
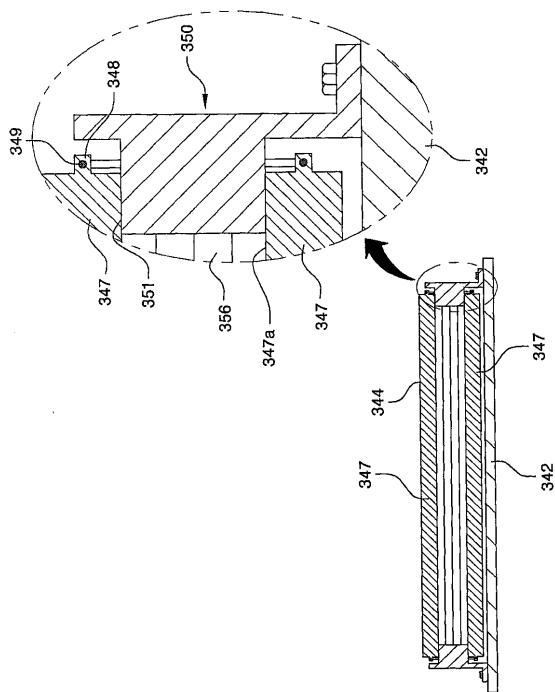
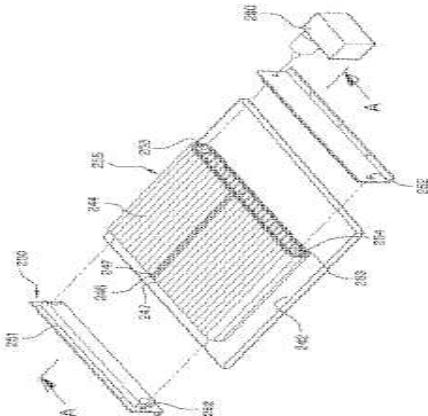


FIG. 7


FIG. 8

专利名称(译)	用于可变形物体的超声波检查装置		
公开(公告)号	JP2009148587A	公开(公告)日	2009-07-09
申请号	JP2009041068	申请日	2009-02-24
[标]申请(专利权)人(译)	朴熙BONG		
[标]发明人	パクヒーブーン		
发明人	パク ヒー-ブーン		
IPC分类号	A61B8/08 A61B8/00		
CPC分类号	A61B8/483 A61B8/0825 A61B8/4209 A61B8/4281		
FI分类号	A61B8/08		
F-TERM分类号	4C601/BB03 4C601/BB07 4C601/BB16 4C601/DD08 4C601/EE09 4C601/EE11 4C601/EE20 4C601/GA03 4C601/GA13 4C601/GA18 4C601/GA21 4C601/GC03 4C601/GC07 4C601/KK21		
代理人(译)	龙华 明裕		
优先权	1020030003218 2003-01-17 KR		
其他公开文献	JP4767330B2		
外部链接	Espacenet		

摘要(译)

解决的问题：通过在检查可变形物体（尤其是乳房病变）的同时移动超声波探头，同时保持要测量的可变形物体的位置和形状来执行超声波检查。提供设备。设置支撑框架242和在宽度方向上刚性并且放置有可变形物体的平坦表面，并且框架242可以在纵向方向上以预定的工作距离前后移动。设置在操作装置中的操作装置255，用于使操作装置向前和向后移动的驱动装置280以及操作装置的超声波发射/接收表面，使得超声波发射/接收表面位于与操作装置的上表面基本相同的平面上。固定在操作部件上的至少一个超声波探头246以在宽度方向上较长的方式配置，并且至少相对于操作部件的上表面的操作距离位于长度方向的两侧。[选择图]图5

