(19)日本国特許庁(JP) (12) **公開特許公報**(A) (11)特許出願公開番号

特開2001 - 258887

(P2001 - 258887A)

(43)公開日 平成13年9月25日(2001.9.25)

(51) Int.	.CI	7				識別記号	庁内整理番号	F	- 1						技術表示箇所
	Α	6	1	В	8/06			ı	١ (6	1	В	8/06		
					8/14								8/14		
	G	0	1	F	1/66	103		(3 (0	1	F	1/66	103	

審査請求 未請求 請求項の数 360 L (全 44数)

		田旦明小	、不明小 明小兵の奴 500 [(王 中奴)
(21)出願番号	特願2001 - 20888(P2001 - 20888)	(71)出願人	300019238
			ジーイー・メディカル・システムズ・グロ
(22)出願日	平成13年1月30日(2001.1.30)		ーバル・テクノロジー・カンパニー・エル
			エルシー
(31)優先権主張番号	09/495231		アメリカ合衆国・ウィスコンシン州・5318
(32)優先日	平成12年1月31日(2000.1.31)		8・ワウケシャ・ノース・グランドヴュー・
(33)優先権主張国	米国(US)		ブールバード・ダブリュー・710・3000
		(72)発明者	ジョナサン・エム・ルビン
			アメリカ合衆国、ミシガン州、アン・アー
			バー、ダブリュー・ヒューロン・リバー・
			ドライブ、3650番
		(74)代理人	100093908
			弁理士 松本 研一
			最終頁に続く

(54) 【発明の名称】 角度非依存的な超音波体積流測定

(57)【要約】

【課題】 管内の流体の流れの体積を超音波システムによって測定する。

【解決手段】 超音波トランスデューサ・アレイ(2)を使用して、管(VE)内の流体から後方散乱した超音波によりデータを生成し、次いでこのデータから走査平面(IP)における流体の流れの速度成分(V_x 及び V_y)を表わす速度値が算出する。グレイ・スケール・データを相関処理して、データの非相関率(D)を算出する。流体(F)の体積流を、速度信号及び非相関率(D)に応答して推定する。

【特許請求の範囲】

【請求項1】 関心領域(VE)内の流体の流れの体積 (F)を測定する超音波システムであって、

超音波を発生して、走査平面(IP)を画定する送信方 向(D1及びD2)で前記領域に超音波を送信するよう に構成されていると共に、前記領域内の前記流体から後 方散乱した超音波に応答してデータを画定するトランス デューサ信号を発生するように構成されているトランス デューサ(2)と、

流れの速度の成分を表わす速度値を有する速度信号を算 出し、前記データの各部分を相関させ、前記各部分の非 相関率(D)を算出して、前記速度信号及び前記非相関 率に応答して前記流体の流れの体積(F)を推定するよ うに構成されているプロセッサ(30)と、を組み合わ せて備えた超音波システム。

【請求項2】 前記送信方向は、前記走査平面における 少なくとも2つの異なる角度により画定される請求項1 に記載のシステム。

【請求項3】 前記トランスデューサ(2)は、分割開2014に記載のシステム。 口走査により前記超音波を送信する請求項2に記載のシ ステム。

【請求項4】 前記データはグレイ・スケール・データ を画定しており、前記プロセッサは前記グレイ・スケー ル・データの前記各部分を相関させ、かつ前記グレイ・ スケール・データの前記各部分の非相関率を算出する請 求項1に記載のシステム。

【請求項5】 前記グレイ・スケール・データは超音波 RFデータを表わしている請求項4に記載のシステム。

【請求項6】 前記グレイ・スケール・データは超音波 30 A線データを表わしている請求項4に記載のシステム。

【請求項7】 前記グレイ・スケール・データは超音波 B走査フレームを表わしている請求項4に記載のシステ ム。

【請求項8】 前記データはカラー・フロー・パワーを 画定している請求項1に記載のシステム。

【請求項9】 前記相関したデータの前記各部分はスペ ックルを表わしている請求項1に記載のシステム。

【請求項10】 前記スペックルは完全拡散型スペック ルを含んでいる請求項9に記載のシステム。

【請求項11】 前記プロセッサはドプラ計算により前 記速度信号を算出する請求項1に記載のシステム。

【請求項12】 前記速度信号は、前記走査平面内で第 1の方向にある前記流体の流れの速度の第1の成分を表 わす第1の値を有する第1の速度信号(V,)と、前記 走査平面内で第2の方向にある前記流体の流れの速度の 第2の成分を表わす第2の値を有する第2の速度信号 (V))とを含んでおり、前記第2の方向は前記第1の 方向に垂直である請求項1に記載のシステム。

【請求項13】 前記プロセッサはさらに、前記第1の 50 を含んでいる請求項19に記載の方法。

値、前記第2の値及び前記非相関率に応答して、前記走 査平面に垂直な前記流体の流れの速度の第3の成分を表 わす第3の値を有する第3の速度信号(V,))を発生す る請求項12に記載のシステム。

【請求項14】 前記トランスデューサ信号は、前記第 1の方向にある第1のビーム相関幅(B、)と、前記第 2の方向にある第2のビーム相関幅(B))と、前記第 3の方向にある第3のビーム相関幅(B,)とを画定す るビーム(B)を画定しており、前記プロセッサ(3 前記データに応答すると共に、前記平面内の前記流体の 10 0)は、前記第1、第2及び第3のビーム相関幅に少な くとも部分的に応答して前記第3の速度信号を発生する 請求項12に記載のシステム。

> 【請求項15】 前記プロセッサは、前記走査平面が交 差する前記領域の断面積にわたって前記第3の値を加算 することにより前記流体の流れの体積を推定する請求項 13に記載のシステム。

> 【請求項16】 前記プロセッサは、前記走査平面が交 差する前記領域の断面積にわたって前記第3の値を加算 することにより前記流体の流れの体積を推定する請求項

> 【請求項17】 前記流体は血液を含んでおり、前記領 域は血管(VE)を含んでいる請求項1に記載のシステ

> 【請求項18】 前記流体は造影剤(CA)を含んでい る請求項1に記載のシステム。

> 【請求項19】 超音波システムにおいて関心領域(V E)内の流体の流れの体積(F)を測定する方法であっ て、

> 走査平面(IP)を画定する送信方向(D1及びD2) で前記領域に超音波を送信する工程と、

> 前記領域内の前記流体から後方散乱した超音波に応答し てデータを画定するデータ信号を発生する工程と、

> 前記データに応答して、前記平面内の前記流体の流れの 速度の成分を表わす速度値を有する速度信号を発生する 工程と、

前記データの各部分を相関させる工程と、

前記各部分の非相関率(D)を算出する工程と、

前記速度信号及び前記非相関率に応答して前記流体の前 記流れの体積(F)を推定する工程とを備えた方法。

40 【請求項20】 前記送信方向は、前記走査平面におけ る少なくとも2つの異なる角度により画定される請求項 19に記載の方法。

【請求項21】 前記送信する工程は、分割開口走査を 含んでいる請求項20に記載の方法。

【請求項22】 前記データはグレイ・スケール・デー タを画定しており、前記相関させる工程は前記グレイ・ スケール・データの前記各部分を相関させる工程を含ん でおり、前記非相関率を算出する工程は前記グレイ・ス ケール・データの前記各部分の非相関率を算出する工程

【請求項23】 前記グレイ・スケール・データは超音 波RFデータを表わしている請求項22に記載の方法。 【請求項24】 前記グレイ・スケール・データは超音 波 A 線データを表わしている請求項22に記載の方法。 【請求項25】 前記グレイ・スケール・データは超音 波B走査フレームを表わしている請求項22に記載の方 法。

【請求項26】 前記データはカラー・フロー・パワー を画定している請求項19に記載の方法。

【請求項27】 前記相関したデータの前記各部分はス 10 を超音波ビームの走査平面内に配向させ、次いで、円形 ペックルを表わしている請求項19に記載の方法。

【請求項28】 前記スペックルは完全拡散型スペック ルを含んでいる請求項27に記載の方法。

【請求項29】 前記速度信号を発生する工程は、ドプ ラ計算により前記速度信号を算出する工程を含んでいる 請求項19に記載の方法。

【請求項30】 前記速度信号は、前記走査平面内で第 1の方向にある前記流体の流れの速度の第1の成分を表 わす第1の値を有する第1の速度信号と、前記走査平面 内で第2の方向にある前記流体の流れの速度の第2の成20 速度は角度に非依存的になる。 分を表わす第2の値を有する第2の速度信号とを含んで おり、前記第2の方向は前記第1の方向に垂直である請 求項19に記載の方法。

【請求項31】 前記速度信号を発生する工程はさら に、前記第1の値、前記第2の値及び前記非相関率に応 答して、前記走査平面に垂直な前記流体の流れの速度の 第3の成分を表わす第3の値を有する第3の速度信号を 発生する工程を含んでいる請求項30に記載の方法。

【請求項32】 前記超音波は、前記第1の方向にある 第1のビーム相関幅と、前記第2の方向にある第2のビ 30 番号3]。 ーム相関幅と、前記第3の方向にある第3のビーム相関 幅とを画定するビームを形成し、前記第3の速度信号 は、前記第1、第2及び第3のビーム相関幅に少なくと も部分的に応答して発生される請求項31に記載の方

【請求項33】 前記推定する工程は、前記走査平面が 交差する前記領域の断面積にわたって前記第3の値を加 算する工程を含んでいる請求項31に記載の方法。

【請求項34】 前記推定する工程は、前記走査平面が 交差する前記領域の断面積にわたって前記第3の値を加 40 算する工程を含んでいる請求項32に記載の方法。

【請求項35】 前記流体は血液を含んでおり、前記領 域は血管を含んでいる請求項19に記載の方法。

【請求項36】 前記流体は造影剤を含んでいる請求項 19に記載の方法。

【発明の詳細な説明】

[0001]

【発明の背景】発明の背景を、明細書のこの項目の終わ りに示している参考文献をその番号で援用して説明す る。流体(例えば血液)の体積流の定量化は、心疾患、 50 イ・スケール非相関を用いた造影剤強調を施された血流

頸動脈狭窄、冠状動脈硬化及び腎不全の診断等の臨床的 応用を含めた多くの応用に有益である。ドプラ法は、超 音波によって血流を測定する現在の臨床医学における標 準である。超音波ビーム・パルスへ近付く流体の運動又 は遠ざかる流体の運動によって、送信音波パルスの波長 が変化する。ビームと、流体を運ぶ管 (vessel、例えば 血管)との間の角度が既知であると仮定すると、管内で の流体の流速は、得られたドプラ周波数シフトから算出 される。体積流測定のための現状の手法は、管の中心軸 対称の管腔を仮定して全流れ体積を算出する超音波検査 装置を必要としている。これらの仮定は往々にして真で はなく、多大な誤差をもたらして、この方法の適用を極 めて困難にしている。

【0002】平面内流速(すなわち超音波ビーム走査平 面内での速度)を決定するための多数(マルチプル)ド プラ・ビームの利用法は、数十年来知られている(Wan g、1982年)[文献番号1]。平面を共有する2つ のビーム及び三角法の関係を用いると、導出される測定

【0003】連続した超音波A線を相互相関させると、 ドプラのエイリアシングによる曖昧さが解消する(Bonn efous 、1986年)[文献番号13]。

【0004】1次元及び2次元の流れベクトルを決定す るためには、スペックル追跡すなわち連続したフレーム 間でのパターンの相関が用いられている (Trahey、19 87年)[文献番号2]。体積測定超音波走査の発展に より、相関検索アルゴリズムが3次元で適用されて、何 らかの成功を収めている(Morsy、1999年)[文献

【0005】軸方向以外の流れ成分の大きさを定量化す る最初の手法の一つはNewhouseによって開発されており (1987年)[文献番号4]、この方法は、超音波R F信号のスペクトルの拡がりに基づいている。

【0006】より近年では、Anderson (1998年) 「文献番号5]が点拡がり関数の空間的加重を用いて、 横方向の運動を定量化した。類似の研究で、Jensen (1 998年)「文献番号61は、トランスデューサ素子の アポダイゼーションによって発生される横断方向の空間 変調を応用して、軸方向の流れを横断する1つ又は2つ の方向での流れを定量化した。これら両手法とも、2次 元の流れを決定するに留まっている。

【 0 0 0 7 】エコー信号の非相関(decorrelation) を用 いた血液速度の推定もかなり詳細に報告されている。Ba mber (19988年) [文献番号7]は、A線の時間変 化率を用いて、非相関を利用して組織の運動及び血流を 画像化し得ることを実証した。より定量的には、Li等 (1997年)[文献番号8]は、RF信号の非相関が 横方向変位に線形で関係付けられることを示した。グレ

における変化の検出も、動物研究で以前に示されている (Rubin、1999年)[文献番号9]。

【0008】(参考文献)

[1] Wang W、Yao L:「定量的血流速度測定のため の二重ビーム・ドプラ超音波法 (A double beam Dopple r ultrasound method for quantitative bloodflow vel ocity measurement) 」、Ultrasound Med. Biol. 、1 982年、第8巻、第421頁~第425頁。

[0009][2] Trahey GE, Allison JW, von Ram m OT:「血流の角度非依存的な超音波検出 (Angle inde 10 算出される3次元超音波フレーム自動配置 (Automated pendent ultrasonic detection of blood flow) , IE EE Trans. Biomed. Eng.、1987年、第34巻、第9 65頁~第967頁。

[0010][3] Morsy AA, von Ramm OT: FL ASH相関:3次元超音波による組織運動の追跡及び血 液速度推定の新たな方法(FLASH correlation: A new m ethod for 3-D ultrasound tissue motion tracking an d blood velocity estimation) , IEEE Trans. Ultr a. Ferro. Freq. Con. 、1999年、第46巻、第7 28頁~第736頁。

[0 0 1 1] [4] Newhouse VL, Censor D, Vontz T、Cisneros JA、Goldberg BB:「ビーム軸に関して横 断方向にある流れの超音波ドプラ精査(Ultrasound Dop pler probing of flows transverse with respect to b eam axis) 」、IEEE Trans. Biomed. Eng.、1987 年、第34巻、第779頁~第789頁。

【 0 0 1 2 】 [5] Anderson ME : 「空間的直角成分 を用いた超音波による多次元速度推定 (Multi-dimensio nal velocity estimation with ultrasound using spat ialquadrature) , IEEE Trans. Ultra. Ferro. Freq. 30 se-Doppler ultrasound and blood velocity estimatio Con.、1998年、第45巻、第852頁~第861 頁。

【0013】[6] Jensen JA、Munk P:「速度ベク トルの推定のための新たな方法 (Anew method for esti mation of velocity vectors) JIEEE Trans. Ultra. F erro. Freq. Con.、1998年、第45巻、第837頁 ~ 第851頁。

[0014][7] Bamber J, Hasan P, Cook-Martin G、Bush N:「Bスキャン非相関率を用いた組織の剪断 及び流動のパラメトリック撮像 (要約) (Parametric i 40 maging of tissue shear and flow using B-scan decor relation rate (abstr)) , J. Ultrasound Med., 1 988年、第7巻、第5135頁。

[0015] [8] Li WG, Lancee CT, Cespedes E I、vanderSteen AF、Bom N:「脈管内エコー信号の非相 関:血液速度推定への可能性 (Decorrelation of intra vascular echo signals: Potentials for blood veloci ty estimation) J. J. Acoust. Soc. Am., 1997 年、第102巻、第3785頁~第3794頁。

【0016】[9] Rubin JM、Fowlkes JB、Tuthill 50 音波トランスデューサによって、走査平面を画定する送

TA、Moskalik AP、Rhee RT、AdlerRS、Kazanjian S、Ca rson PL:「ファントム及びウサギの腎臓におけるBモ ード超音波による造影剤流のスペックル非相関流れ測定 (Speckle decorrelation flow measurement with B-mo de US of contrast agent flow in a phantom and inra bbit kidney」、Radiology 、1999年、第213 巻、第429頁~第437頁。

[0017] [10] Tuthill TA, Krucker JF, Fowl kes JB、Carson PL :「仰角方向スペックル非相関から three-dimensional US frame positioning computed fr om elevational speckle decorrelation) 」、Radiolog y 、1998年、第209巻、第575頁~第582

【0018】[11] Wear KA、Popp RL:「心筋から の超音波エコーの包絡線の統計的性質の推定方法(Meth ods for estimation of statistical properties of en velopes of ultrasonic echoes from myocardium)], IEEE Trans. Med. Imag.、1987年、第6巻、第28 20 1頁~第291頁。

[0019][12] Adler RS, Rubin JM, Fowlkes JB、Carson PL、Pallister JE : 「組織灌流の超音波推 定:確率論的アプローチ (Ultrasonic estimation of t issue perfusion: a stochastic approach) , Ultras ound Med. Biol. 、1995年、第21巻、第493頁 ~ 第500頁。

【0020】[13] Bonnefous 0、Pesque P:「相 互相関によるパルス・ドプラ超音波及び血液速度推定の 時間領域での定式化 (Time domain formulation of pul n by cross correlation) , Ultrasonic Imag., 19 86年、第8巻、第73頁~第85頁。

[0021] [14] Chen J, Fowlkes JB, Carson P L、Rubin JM : 「スペックル非相関を用いた走査平面で の運動の決定:理論的考察と初期試験 (Determination of scan-plane motion using speckle decorrelation: theoretical considerations and initial test) , In t. J. Imaging Syst. Technol.、1997年、第8巻、 第38頁~第44頁。

[0022] [15] Chen JR, Fowlkes JB, Carson PL、Rubin JM、Adler RS:「積分型パワー・ドプラ信号 の自己相関及びその応用 (Autocorrelation of integra tedpower Doppler signals and its application) 」、 Ultrasound Med. Biol.、1996年、第22巻、第1 053頁~第1057頁。

[0023]

【発明の概要】好適実施例は、超音波システムにおいて 関心領域内での流体の流れの体積を測定するのに有用で ある。かかる環境においては、超音波は、好ましくは超

信方向で管に向けて送信される。管内の流体から後方散 乱した超音波に応答してデータ信号が発生される。デー タ信号から生成されたデータに応答して、流体の流れの 走査平面内での速度の成分を表わす速度値を有する速度 信号が発生される。データの各部分を相関させて、各部 分の非相関率を算出する。流体の流れの体積は、速度信 号及び非相関率に応答して推定される。本手法は好まし くは、超音波トランスデューサ及びデータ・プロセッサ によって具現化される。

に依存しないで、且つ管形状又は流れの幾何的形状に関 する仮定を一切用いずに、管内の流体の流れの体積を決 定することができる。例えば、本手法は、前述の従来方 法が典型的に用いていた仮定を一切用いずに真の血液体 積流を推定することを可能にする。好適実施例の手法 は、現在市場に出回っている殆どの標準的超音波トラン スデューサ・アレイの走査ヘッドに組み入れることがで きる。この手法はロバストであり、また、実時間で具現 化することができる。

[0025]

[発明の詳細な説明]図1を参照して述べると、本発明 の実施例に適したカラー・フロー及びグレイ・スケール ・イメージング・システムの基本的な信号処理鎖が超音 波トランスデューサ・アレイ2を含んでおり、超音波ト ランスデューサ・アレイ 2 は、長さ P の超音波のトーン ・バーストを含むパルス系列を送信するように起動さ れ、これらのトーン・バーストは、典型的にはキロヘル ツの範囲にあるパルス繰り返し周波数(PRF)で繰り 返しファイアリングされる。パルス系列は、バースト長 Pを含めてカラー・フロー処理とBモード処理とで異な 30 っている。カラー・フロー撮像の場合には、Pは4サイ クル~8サイクルであってよく、トーン・バーストは同 じ送信特性で同じ送信焦点位置に集束させられる。

【0026】同じ送信焦点位置に集束した一連のカラー ・フロー送信ファイアリングを「パケット」と呼ぶ。各 々の送信ビームは、被走査物体を通して伝播して、物体 内の超音波散乱体によって反射される。

【0027】帰投したRF信号は、トランスデューサ素 子によって検出されて、ビームフォーマ4内に設けられ ているそれぞれの受信チャネルによって受信される。ビ 40 ームフォーマは、遅延付きのチャネル・データを加算し て、ビーム加算された信号を出力し、この信号は復調器*

(C)

【0032】R(0)は、カラー・フロー送信ファイア リングからの後方散乱体のカラー・フロー・パワーを表 わす。

【0033】プロセッサが、N及びDを各々のレンジ・

)

$$|R(T)| = (N^2 + D^2)^{1/2}$$

*6によって同相及び直角位相(I/Q)の信号成分へ復 調される。復調器6からのBモードのI及びQ出力は、 グレイ・スケールBモード処理用の中間プロセッサ8G へ送信され、復調器6からのカラー・フローのI及びQ 出力は、カラー処理用の中間プロセッサ8Cへ送信され る。

【 0 0 2 8 】図 2 に中間プロセッサ 8 C を示す。復調器 6からのI/Q信号成分は、インタリーブされている可 能性のあるファイアリングからのデータをバッファリン 【0024】以上の手法を用いることにより、走査角度 10 グして所与のレンジのセルにおいて各ファイアリングに 跨がる点から成るベクタとしてデータを出力することを 目的とするコーナ・ターナ・メモリ7に記憶される。デ ータは「ファスト・タイム(fast time) 」式で受信さ れ、すなわち各回のファイアリング毎に(ベクタに沿っ て)レンジを下降する順に受信される。コーナ・ターナ ・メモリの出力は、「スロー・タイム(slow time)」式 に再配列され、すなわち各々のレンジ・セル毎にファイ アリング順に再配列される。結果として得られた「スロ ー・タイム」式I/Q信号サンプルはウォール・フィル 20 タ9を通過し、ウォール・フィルタ9は静止した組織又 は極めて低速で運動する組織に対応するあらゆるクラッ タを除去する。次いで、フィルタ処理後の出力は、パラ メータ推定器11へ供給され、パラメータ推定器11 は、レンジ・セル情報を中間的な自己相関パラメータ N、D及びR(0)へ変換する。N及びDは、自己相関 方程式の分子及び分母であり、次のように示される。

[0029]

【数1】
$$N = \sum_{i=1}^{M-1} (I_i Q_{i+1} - I_{i+1} Q_i)$$
(A)

$$D = \sum_{i=1}^{M-1} (I_i I_{i+1} + Q_i Q_{i+1})$$
 (B)

【0030】ここで、I、及びQ、は、ファイアリング iについての復調後のベースバンド化された入力データ であり、Mはパケット内のファイアリングの回数であ る。R(0)は、パケット内のファイアリングの回数に わたる有限の和として近似され、次の通りになる。

[0031]

【数2】

セル毎の大きさ及び位相へ変換する。用いられる方程式 は次の通りである。

[0034]

(D

 $(9T) = tan^{-1} (N/D)$

【0035】R(T)及び (T)は、第1遅れ自己相 関関数のそれぞれ大きさ及び位相である。遅れという用 語は、時間間隔を示すのに用いられる。例えば、遅れは フレーム - フレーム間の増分であってもよいし、又はフ ァイアリング - ファイアリング間の増分であってもよ い。式(A)~(C)に示すように、パケット内のファ イアリングの回数の範囲内での既知のデータにわたる有 限の和によって、正確な自己相関関数が近似される。

【0036】パラメータ推定器は、これらの大きさ及び 位相の値を処理して、パワー、速度、及び乱流又は分散 10 【数3】 の推定値を表わす値を有する信号として、それぞれ導体*

$$\overline{f} = \frac{1}{2\pi T} \tan^{-1} \left[\frac{N}{D} \right] = \frac{1}{2\pi T} (\phi(T))$$
 (F)

【0039】平均速度は、下記のドプラ・シフト方程式 を用いて算出される。流れの方向とサンプリングの方向 との間の角度である は未知であるので、cos は 1.0であるものと仮定される。

[0040]

【0041】好ましくは、パラメータ推定器は、平均ド プラ周波数を中間的な出力として算出するのではなく、 ルックアップ・テーブルを用いてプロセッサの位相出力 から直接にベクトル∨を算出する。但し、後述する式 (1)~(6)に示す計算の目的のためには任意の速度 推定器を用いることができる。速度推定には、遅延相互 相関及び自己回帰等が含まれ得る。

【0042】乱流は、平均ドプラ周波数の分散の2次級 数展開として時間領域において算出することができる。 乱流の時間領域表現は、ゼロ遅れ及び1段遅れの自己相 関関数R(0)及びR(T)をそれぞれ算出することを 含んでいる。

【0043】乱流の時間領域表現は次のように表わすこ とができる。

[0044]

[数5]
$$\sigma^2 = \frac{2}{(2\pi T)^2} \left[1 - \frac{|R(T)|}{R(0)} \right]$$
 (H)

【0045】平均値信号 (T)は、流動する反射体の 平均ドプラ周波数シフトの推定値であり、延いては平均 血流速度に比例している。分散信号 ² は、ベースバン ド・エコー信号の流れ信号成分の周波数の拡がりを示し ている。この値は、多くの速度の混成を含む流れの乱れ を示す。流動する反射体からの信号の強度を示すために は、信号R(0)が、ドプラ・シフトした流れ信号にお (1**E**)

*11A、11B及び11C上へ送信する。位相は平均ド プラ周波数を算出するのに用いられ、平均ドプラ周波数 は後に示すように速度に比例している。また、R(0) 及び | R (T) | (大きさ)は乱流を推定するのに用い られる。

【0037】ヘルツ単位での平均ドプラ周波数は、N及 びDの位相、並びにパルス繰り返し時間Tから得られ る。

[0038]

ける帰投パワーの量を示している。

【 0 0 4 6 】 導体 1 1 A 上の信号パワーはデータ圧縮モ ジュール13へ渡されて、モジュール13は複数の群を 成すデータ圧縮曲線に従ってデータを圧縮する。異なる 走査応用のために異なる群の曲線を用意することができ 20 る。例えば、1つの群の曲線を腎臓走査のために用意す る一方、他の群の曲線を頸動脈走査のために用意する。 利用者が走査応用を選択すると、制御器26が既定の曲 線を設定する。ダイナミック・レンジは、表示器18上 に形成される強度又はルーメンの範囲を制御する。

【0047】図3を参照して述べると、グレイ・スケー ルBモード中間プロセッサ8Gは、量 $(I^2 + Q^2)^{1/2}$ を算出することにより、ビーム加算された受信信号の包 絡線を形成する包絡線検波器10を含んでいる。信号の 包絡線に対数圧縮(図3のブロック12)等の何らかの 30 追加のBモード処理を施して表示データを形成し、スキ ャン・コンバータ14(図1)へ出力する。

【0048】再び図1を参照して述べると、カラー・フ ロー推定値及びグレイ・スケール表示データがスキャン ・コンバータ14へ送られると、スキャン・コンバータ 14はデータをビデオ表示用のXYフォーマットへ変換 する。走査変換(スキャン・コンバート)されたXYフ ォーマットのフレームはビデオ・プロセッサ16へ渡さ れて、ビデオ・プロセッサ16は基本的には、ビデオ・ データをビデオ表示のための表示用カラー・マップ及び 40 グレイ・スケール画像フレームへマッピングする。次い で、画像フレームは、ビデオ・モニタ18へ送られて表 示される。典型的には、カラー画像については、速度も しくはパワーのいずれかが単独で表示されるか、又は速 度がパワーもしくは乱流のいずれかと組み合わされて表 示される。システム制御はホスト・コンピュータ(図示 されていない)に集中化されており、ホスト・コンピュ ータは操作者インタフェイス(例えばキーボード)を介 して操作者入力を受け取って、様々なサブシステムを制 御する。

【0049】ビデオ・モニタ18によって表示される画 像は画像フレームを成すデータから形成され、画像フレ ーム内の各々のデータが、表示器におけるそれぞれのピ クセルの強度又は輝度を示しており、且つ流速を示して いる。画像フレームは例えば、その各々の強度データが ピクセルの色及び輝度を示す2進数であるようなデータ のアレイで構成されている。表示モニタ18上の各々の ピクセルの輝度は、周知の態様でデータ・アレイ内の対 応する要素の値を読み込むことにより絶えず更新され る。各々のピクセルが強度値を有しており、該強度値は 10 セッサ16及びCPU26自体への生データの流れを制 呼び掛けを行なった超音波パルスに応答したそれぞれの サンプル空間の後方散乱体の断面積と、用いられている グレイ・マップと、平均流速及び/又はパワーを示す力 ラー値との関数となっている。

11

【0050】図4を参照して述べると、システム制御は マスタ・コントローラ又はホスト・コンピュータ26に 集中化されており、マスタ・コントローラ26は操作者 インタフェイス(図示されていない)を介して操作者入 力を受け取って、様々なサブシステムを制御する。マス タ・コントローラ26はまた、システムのタイミング信 20 装置(図示されていない)へ転送するためのバッファの 号及び制御信号を発生する。マスタ・コントローラ26 は、中央処理ユニット(CPU)30とランダム・アク セス・メモリ32とを含んでいる。キーボード29を用 いてCPU30にデータを入力する。CPU30は、取 得された生データに基づいてグレイ・マップ及びカラー ・マップを構築するのに用いられるルーチンを記憶する 読み出し専用メモリを内部に組み入れている。

【0051】スキャン・コンバータ14は、音線メモリ 22とXYメモリ24とを含んでいる。音線メモリ22 に極座標(R‐)セクタ・フォーマットで記憶されて 30 ば撮像平面を横断する流れ)を積分することにより算出 いるBモード強度データ及びカラー・モード強度データ は、適当にスケーリングされたデカルト座標ピクセル表 示データへ変換されて、XYメモリ24に記憶される。 カラー・データはメモリ位置24Cに記憶され、グレイ ・スケール・データはメモリ位置24Gに記憶される。 走査変換されたフレームはビデオ・プロセッサ16に渡 されて、ビデオ・プロセッサ16はデータをビデオ表示 用のグレイ・マップへマッピングする。次いで、グレイ ・スケール画像フレームはビデオ・モニタへ送られて表 示される。

【0052】音波サンプル・データの連続したフレーム は、先入れ先出し方式でシネ・メモリ28に記憶され る。カラー・フレームはメモリ位置28Cに記憶され、 グレイ・スケール・フレームはメモリ位置28Gに記憶 される。カラーの関心領域においては、表示ピクセルに 対応するカラー・データの各々のワード毎に、該ピクセ ルに対応するBモード・グレイ・スケール・データの対 応するワードが存在している。シネ・メモリは、バック グラウンドで稼働する循環的な画像バッファのようなも のであり、音波サンプル・データを絶えず取り込んで、 50 割開口アプローチを用いると、ビームBは異なる角度か

実時間で利用者に対して表示する。利用者がシステムを フリーズさせると、利用者は、シネ・メモリに以前に取 り込まれている音波サンプル・データを見る能力を有す るようになる。

【0053】CPU30は、システム制御バス34を介 してXYメモリ24及びシネ・メモリ28を制御する。 具体的には、CPU30は、XYメモリ24からビデオ ・プロセッサ16及びシネ・メモリ28への生データの 流れを制御すると共に、シネ・メモリからビデオ・プロ 御する。CPUはまた、グレイ・マップ及びカラー・マ ップをビデオ・プロセッサにロードする。

【0054】画像フレームは、連続的な方式でシネ・メ モリ28に収集される。シネ・メモリ28は、単一画像 閲覧及び多数画像ループ閲覧のための常駐のディジタル 画像記憶容量、並びに様々な制御機能を提供している。 単一画像のシネ再生時に表示される関心領域は、画像取 得時に用いられた領域である。シネ・メモリはまた、画 像をマスタ・コントローラ26を介してディジタル保管 役割も果たしている。

【0055】好適実施例は、図1~図4に記載する形式 のシステムを用いて、標準的なドプラ測定にエコー振幅 非相関を組み合わせた体積血流測定の手法を具現化す る。単一の臨床用トランスデューサ2を用いて、流体の 体積流を測定すべき管の配向の知識は用いずに、超音波 撮像平面の全体にわたって3次元ベクトルの流れの場を 算出する。一般的には、体積流は、管の断面(すなわち 撮像平面と管との交差面)にわたって平面外流れ(例え される。

【0056】[平面内速度]図5は、関心領域(管V E、例えば血管であってよい)における流体(例えば血 液)の流れ方向 FL及びトランスデューサ2の配向を示 している。流体は好ましくは、造影剤CAを含有してい る。ビームBとしてのドプラ超音波は、方向D1及びD 2(例えば、トランスデューサの面3に垂直な軸A1か ら = +20°及び-20°)にステアリング(方向制 御)される。方向制御は、別個のBモード・ビーム・パ 40 ルス・ファイアリングを用いて行なわれる。方向D1及 びD2は、撮像及び走査平面IPを画定しており、平面 IPは何らかの決定されていない角度で管VEと交差す る。角度は例えば、60°であってよいが、利用者はこ の角度を知らない。平面IP内でビームBを方向決定す る三角法、相互相関等の任意の2次元方法を用いてよ い。代替的には、ビームBの走査は、米国特許第5,3 98,216号(Hall等、1995年3月14日に付 与)に記載されている分割開口法を用いて行なってもよ い。尚、該特許はここに参照されるべきものである。分

ら管 V E 内の共通の点に方向決定される。

【0057】図5の×軸及びy軸の両方が平面IP内に 位置している。z軸は仰角方向に延在し、y軸は軸方向 に延在し、x軸は横方向に延在する。軸x、y及びzは 直交している。

【 0 0 5 8 】方向 D 1 及び D 2 に方向制御されたビーム に応答して管 V E から後方散乱した超音波は、トランス*

Xii.しに超音波は、トラフス" 【数)
V_r = k_l ●
$$\vec{V}$$
 = −V_x sin θ + V_vcos θ

 $V_2 = \vec{k}_2 \cdot \vec{V} = V_X \sin \theta + V_y \cos \theta$ (2)

$$V_x = \frac{V_2 - V_1}{2\sin\theta}$$
 and $V_y = \frac{V_1 + V_2}{2\cos\theta}$ (3)

【0060】V,の測定誤差は、cos()の逆数へ の依存性を有しているので、角度を大きくするとさらに 正確な結果が得られることに留意されたい。

【0061】[非相関(decorrelation)]流体における スペックル非相関率は、流速又はビーム・パルス繰り返 し周波数(PRF)(処理方法に依存する)と、トラン 20 域に出入りするのに伴って深さ依存性の幅を有するガウ スデューサ2のビーム特性との関数である。非相関率 は、前述の形式のカラー・フロー送信ファイアリングか ら算出することができる。より明確に述べると、非相関 率は、ゼロ遅れ自己相関式(C)によって表わされてい るカラー・フロー・パワーに基づくことができる。非相 関率は、ファイアリングの1つのパケットから他のパケ ットまでの時間にわたるR(0)の値の変化によって決 定される。

【0062】また、非相関率は、管VEから後方散乱し た超音波RFデータを表わしているグレイ・スケール・ 30 る。 データからも算出することができる。グレイ・スケール ・データに基づく非相関率について以下で詳述するが、 当業者であれば、この原理をカラー・フロー送信ファイ アリングからの非相関率の算出に適用することができ る。スペックル形成のさらに詳細な統計的解析が前述の 論文 (Tuthill等、1998年) [文献番号10] に与 えられているが、本質的な点及び仮定についてここで述

【0063】完全拡散型スペックル(fully developed s peckle) については、3次元点拡がり関数によって画定 40 されるサンプル空間には少なくとも10の散乱体が存在 していなければならない。超音波強度の空間的分布は、 1.0という一定の平均対標準偏差(MSD)比を有す る指数分布となる筈である。パルスからパルスにかけて (フレームからフレームにかけて)のスペックルの変化 量はスペックル・パターンの2次統計に直に関係してい る。

【0064】仰角次元(すなわち平面IPに垂直な次 元)におけるスペックル相関関数の導出法についてここ で記載するが、この導出法は平面IP内に位置する横方*50

*デューサ2によって受け取られて、これらの超音波を用 いてデータが生成される。このデータから2つの対応す る「軸方向」流体速度Ⅴ,及びⅤ,が測定される。次Ⅳ で、平面内(すなわち平面IP内)流体速度成分V、及 びV、を次のようにして算出することができる。

[0059]

【数6】 (1)

*向次元及び軸方向次元に容易に拡張することができる。 コヒーレントに形成されたスペックルの場合には、強度 相関関数は振幅相関関数に直に関係し、振幅相関関数は また、点拡がり関数 (P S F) 自己相関に比例する。集 東式トランスデューサ2を仮定すると、ビームが焦点領 シアンによってビーム・パターンを近似することができ る。結果的に、横方向での強度自己相関もまた、取得さ れたフレームの間での流体の平行移動に関するガウス関 数として書くことができ、標準偏差 (z) すなわち 深さ依存性のビーム相関幅(BCW)を有するものとな る。トランスデューサの物理的特性によって焦点におけ る相関幅を算出することもできるし、完全拡散型スペッ クルを生成する散乱体を含むファントムを用いてさらに 長距離のレンジについて相関幅を較正することもでき

【0065】すると、単一のピクセル位置についての時 間で正規化された強度共分散Cは、ガウス形を有する (Wear、1987年)[文献番号11]。

[0066]

【数7】

$$C(\Delta t, z) \propto exp\left(\frac{-(V_x \Delta t)^2}{2\sigma_x^2(z)}\right)$$
 (4)

【0067】ここで、 $V_{_{x}}$ は横方向速度であり、

(z)はトランスデューサの特性によって決定される 深さ依存性のビーム相関幅である。次いで、ビームBの パルス・ファイアリング速度R,について、連続したA 線から取得される特定の深さに位置するピクセルの集合 からの正規化された共分散を、ファイアリング回数nの 関数としてのガウシアンにフィットした曲線とすること ができる。

[0068]

【数8】

$$C(n) \propto \exp\left(\frac{-\left(D \, n/R_{\rm f}\right)^2}{2}\right) \tag{5}$$

【0069】ここで、Dすなわち秒の逆数の単位の非相 関率の値は、速度を当該深さについてのビーム相関幅で 除算したものと等価である。最終的な結果は、グレイ・ スケールA線の集合又はグレイ・スケールB走査フレー ムの集合からのスペックル領域についての相関関数をガ ウス曲線にフィットさせることにより、この集合につい ての平均速度を算出することができることになる。非相 10 関値 D は、速度成分に直に関係する。 関率は、特に、Tuthill (1998年) [文献番号1

$$D^{2} = (V_{x}^{2}/B_{x}^{2}) + (V_{y}^{2}/B_{y}^{2}) + (V_{z}^{2}/B_{z}^{2})$$

ここで、B, は第iの方向でのビーム相関幅(BCW) である。BCWは、スペックル・ファントムを用いて較 正され、深さ及びトランスデューサの集束パラメータに 依存しているが、撮像平面の全体にわたって測定可能で ある。

【0072】「3次元流れベクトル及び体積流1平面内 速度Ⅴ、及びⅤ、(すなわち平面IP内での速度)を決 定したら、ドプラ測定値から(又はスペックル追跡か ら)、走査平面IPに垂直な速度成分の大きさV。を式 (6)から算出することができる。このようにして、3 次元流れベクトルを、3つの測定値(例えば2つのドプ ラ及び1つのグレイ・スケール非相関)について2つの 異なるモードで動作する単一のトランスデューサ2から 決定することができる。データ収集の方法、並びに値V 、V、及びDの各々を得るためのデータ処理は多くの 形態を有し得ることを理解されたい。

【0073】また、管VEを通過する全体積流を算出す ることができる。ガウスの定理は、閉曲面から流出する 30 東又は体積流は、閉じ込められた空間からのベクトル場 の発散の積分に等しいとしている。従って、全体積流F は、断面積にわたって積分された垂直速度成分となり、 すなわち

[0074]

【数9】

$$F = \int (\vec{V} \cdot \vec{n}) ds \qquad (7)$$

【0075】となる。撮像及び走査平面IPが交差する 管の面積の全体にわたってV₇ すなわち平面IPに垂直 40 な速度成分を加算することにより、全体積流を算出する ことができる。式(A)~(H)及び式(1)~(7) の計算は、CPU30(図4)によって実行することが できる。 C P U 3 0 は、式 (A)~(H)及び式 (1) ~ (7)の様々なパラメータに対応する信号を発生す

【0076】本明細書に記載されている計算を実行する ためには多様なディジタル・プロセッサを用いることが できる。例えば、マイクロプロセッサ又はディジタル信 号プロセッサを用いてもよいし、また論理演算及び算術 50 乱雑に分布した散乱体で構成されており、完全拡散型ス

*0]及びRubin(1999年)[文献番号9]に記載さ れている方法によって算出することができる。非相関は また、ドプラ情報から算出することもできる(Adler、 1995年)「文献番号12]及び(Chen、1996 年)[文献番号15]が、応用によっては好ましい方法 とならない場合がある。

【0070】ここで、体積流のために非相関を3つの次 元すべてを含むように拡張することができる。楕円形の サンプル空間を仮定すると、曲線にフィットされた非相

[0071]

演算を実行することが可能な応用特定的集積回路を用い てよい。かかるプロセッサは、図1~図4に記載したシ ステムの任意の位置に位置していてもよいし、又はシス テムの外部に位置していてもよい。

【0077】[具体例]以下は、実験によって確認された という意味で本発明の最良の態様を表わす。但し、カラ ー・フロー送信ファイアリングによって非相関を測定す 20 る等の本発明のその他の形態の方が応用によっては具現 化が容易である場合もあるものと考えられる。

【0078】7.5MHzのリニア・アレイ・トランス デューサを備えたGE Logiq700臨床用スキャ ナ (ウィスコンシン州ミルウォーキー、GE Medical Sys tems社)を単一の焦点で用いた。GE Logic70 0スキャナは一般的には図1~図4によって表わすこと ができ、7.5MHzのリニア・アレイ・トランスデュ ーサはトランスデューサ2によって表わすことができ る。エッジ強調及び平均等の内部後処理設定はすべてオ フにして、深さは最小値の3cmに設定して最大許容フ レーム・レートの30Hzを得るようにした。出力パワ ーは最低レベルに設定して、音波照射力に起因する付加 的な非相関からの影響を減じるようにした。 B モードに ついては、リニア・グレイ・スケール・マッピングを適 用して、走査を圧縮復元して、振幅に比例したピクセル 値を有する画像を得るようにした。ドプラ取得について は、最低の速度及びウォール・フィルタ9の最低の設定 を適用した。画像はすべて、スキャナ上に8ビットでデ ィジタル式で記憶されて、CPU30(図4)によって 表わすことのできるUNIX(登録商標)コンピュータ へ転送された。3 cm×4 cmのディジタル画像をメモ リ32(図4)に、長さ84.5μmの正方形のピクセ ル寸法で355×478ピクセルとして記憶した。

【0079】トランスデューサ・サンプル空間は、組織 を模したファントム(ヴァージニア州ノーフォーク、C IRS、Computerized Imaging Reference Systems社) について、一連のBモード走査を各々の方向(横方向、 仰角方向及び軸方向)において漸増する間隔で収集する ことにより較正された。ファントムは、稠密に充填され

ペックルを形成する。リニア・マイクロポジショナにより、横方向及び仰角方向については 50μ mの間隔、並びに軸方向については 25μ mの間隔が可能となった。各々のトランスデューサ配向毎に、60から成る画像の集合が取得され、次いで、対応するビーム相関幅が深さの関数として算出された。

【0080】流管実験については、6.4mm直径の分子寸法で有孔性の膜組織管(カリフォルニア州ラグナ・ヒル、Spectrum Laboratories社)を脱泡水を満たした水浴内に載置した。注射ポンプ(マサチューセッツ州ホ 10リストン、Harvard Apparatus 社)を用いて、12ml/分~20ml/分の流れを形成した。管系に気泡が入らないように注意した。系の出口はタンクから10cm上方に保って、圧力を維持すると共に確実に膜組織管が十分に拡がるようにした。

【 0 0 8 1】血液を模した流体は、5 : 1 の水 / グリセロール混合物内に 1 μ m ~ 3 5 μ m直径のポリスチレン球を分散させたもので形成された。高濃度を用いて後方散乱体を増大させ、より一様なスペックルを得るようにした。

【0082】トランスデューサ2は、図5に示すように y 軸及び×軸の両方の周りでの独立の回転が可能になる ように固定された。トランスデューサは、3つの異なる 体積流の各々について y 軸の周りに30°ずつの増分で 回転させた。

【0083】各々の体積流設定について、60から成るグレイ・スケール画像のシネ・ループを先ず収集してメモリ28G(図4)に記憶させ、続いて、ドプラ画像の集合を収集した。2つのドプラ角度(+/-20°)の各々について10の未相関画像を収集して平均した。【0084】記憶された画像は、MATLAB(マサチューセッツ州ナトウィック、Mathworks社)に書かれているプログラムを用いて後処理された。スペックル非相関については、各々のピクセル毎に共分散関数を計算して、5×5のピクセル・ウィンドウについて平均した。次いで、共分散関数を正規化して、ガウシアン・フィットには最初の2段の遅れのみを用いて非相関値を決定した。

【0085】得られた非相関画像を閾値処理して、管の 法は、B走査における各々のピクセルについて、又はA 輪郭を決定した。式6を用いて、平面外速度(すなわち 40 線の各々の点について算出されるので、空間分解能はデ図5に示すz軸に沿った速度)を算出し、閉じた管VE ィジタル化サンプリング速度によって決定される。但において加算して、全体積流を決定した。 し、正確な相関曲線を算出するためには何らかの空間平

【0086】超音波RF信号での本手法の効力を実証す るために、5.0MHzのリニア・アレイをトランスデ ューサ2として用いたDiasonics スキャナ(カリフォル ニア州ミルピタス、Diasonics Ultrasound社)を用い て、第2の設定で流管を用いた。シネ・ループのRF取 得は極端に遅いフレーム・レートを有していたので、非 相関処理のためにMモード・データのみを収集した。こ の収集では、取得されたA線についてのファイアリング 50 意されたい。

速度は786Hzであった。

【 0 0 8 7 】[結果]単一の焦点を有する所与のスキャナ設定については、GEO7.5MHzトランスデューサは、焦点の近くで横方向、仰角方向及び軸方向についてそれぞれ170 μ m、280 μ m及び150 μ mのBCWを有していた。図6は、仰角方向 / 横方向平面の周りでの15°増分について算出されたBCW、並びにB、(横方向)及びB、(仰角方向)からの理論的な楕円形フィットを示している。

【0088】RFデータを用いたDiasonicsのトランスデューサ2の較正から、仰角方向及び横方向の両方について、深さ依存性のBCWが、包絡線検波後のBCW曲線と有意には異なっていないことが分かった。予期された通り、軸方向RF信号は、包絡線検波後の走査線よりもかなり速くに非相関となった。焦点の近くでは、RFのBCWは約25 umであって、全波長の1/6である。包絡線信号についての対応するBCWは135 umであって、多数波長パルスに整合している。

【0089】-20°の方向制御及び+20°の方向制 20 御(図5)の両方のドプラ画像を用いて、表示可能な合 計全平面内速度の大きさの画像を形成する。

【0090】閾値処理された非相関画像をマスクとして適用して、垂直速度を閉じた領域で加算して、全体積流を算出した。非相関マスクは、ドプラとは異なって流れの角度にかかわらず管VEの管腔の検出可能な画像を形成するので、非相関マスクを選択した。マスク後の断面積における加算された体積流は0.25ml/秒であった。

【0091】本明細書に記載されているアルゴリズムに30 ついては、利用者は、閾値処理された非相関画像から決定されるべき管VEの全断面積について、管VEの内部の区域を指示するだけでよい。角度依存性が減少した非相関閾値処理(Rubin、1999年)[文献番号9]を用いると、ドプラの場合よりも信頼性の高い流れの境界の描写が可能になる筈である。

【0092】本発明の手法によって算出される速度推定値の空間分解能は主として、Bモード画像よりも低い分解能を有するドプラ信号によって制限される。非相関手法は、B走査における各々のピクセルについて、又はA線の各々の点について算出されるので、空間分解能はディジタル化サンプリング速度によって決定される。但し、正確な相関曲線を算出するためには何らかの空間平均が必要である。

【0093】時間分解能は、非相関及びドプラ周波数シフトの正確な推定値に必要とされる連続したA線の数によって決定される。殆どの臨床用スキャナにおいては、ドプラ出力を算出するためには約10~15のファイアリング線が用いられる。平面内速度はまた、2つの時間相関又はスペックル追跡を用いて決定され得ることに留意されたい。

【0094】人体の血流は、激しい運動中の大動脈での 301/分から単一の毛細血管での10n1/分までに わたる(mm/秒のオーダの速度)。本発明の手法は、 測定可能な速度範囲の上限及び下限の両方を有してい る。低速の流れをドプラを用いて検出することは困難で ある。というのは、「ウォール・サンプ (wall thum p) 」フィルタが相対的に低速の組織運動からの信号を 除去するように適用されるからである。同様に、運動に 起因する軟組織の非相関が下限を画定する。

【0095】高速においては、解析の非相関成分は崩壊 10 する。流れ運動がファイアリングの間で2つのBCWよ りも大きい場合には、信号は完全に非相関となり、速度 推定を行なうことはできない。従って、PRF及びサン プル空間のBCWが速度の上限を決定し、すなわち最大 速度 < P R F * (2 B C W) となる。例えば、10 k H zのファイアリング速度で相関幅が400μmである場 合には、測定可能な最大速度は80cm/秒となる。R F解析においては、軸方向BCWは仰角成分又は横方向 成分のいずれよりも小さい大きさのオーダとなる。ドプ ラ測定の場合とは反対に、相対的に速い速度を検出する 20 2 超音波トランスデューサ・アレイ ためにはビームに垂直な流れが好適な方向にある。

【0096】この好ましい手法はまた、流れがすべて1 つの方向にあるものと仮定している。剪断運動又は乱流 は、体積流測定を上方に偏らせるような付加的な非相関 を生ずる可能性がある。前述のように、2を検査する ことによりこの条件を示して、本方法の不適切な利用を 回避することができる。

【0097】流れの符号は非相関測定では決定すること ができない。従って、平面外流れの方向は未知のままで ある。このことは、心搏周期中に流れの反転が生じ得る3012対数圧縮 動脈流で問題となる場合がある。流れの方向を決定する 1つの可能性は、1.75Dアレイによる仰角方向での 位相直角解析であろう。

【0098】当業者は、特許請求の範囲に画定されてい る本発明の要旨及び範囲から逸脱せずに好適実施例が変 更され改変され得ることを理解されよう。

【図面の簡単な説明】

【図1】好適実施例と関連した利用に適したカラー・フ ロー及びBモード超音波イメージング・システムの信号 処理鎖を示す概略的なブロック図である。

【図2】図1に示す中間プロセッサ・カラー・フロー装 置を示す概略的なブロック図である。

【図3】図1に示す中間プロセッサBモード装置を示す

概略的なブロック図である。

【図4】図1に示すシステムの部分の更なる細部を示す 概略的なブロック図である。

【図5】流体が流れている管に関する図1に示す超音波 トランスデューサの例示的な配向を示す概略的なブロッ ク図である。

【図6】仰角方向/横方向平面の周りでの15°の増分 について図5に示すトランスデューサによって発生され る超音波ビームの算出されたビーム相関幅、及びB

、(横方向)及びB、(軸方向)からの理論的な楕円フ ィットを示すグラフである。

【部材一覧】

B ビーム

FL 流れ方向

VE 関心領域(例えば、管)

IP 走査平面

F 流体の流れの体積

D1、D2 走查角度

D 非相関率

4 ビームフォーマ

6 復調器

7 コーナ・ターナ・メモリ

8 G 中間プロセッサ

8 C 中間プロセッサ

9 ウォール・フィルタ

10 包絡線検波器

11 パラメータ推定器

11A、11B、11C 導体

13 データ圧縮モジュール

14 スキャン・コンバータ

16 ビデオ・モニタ

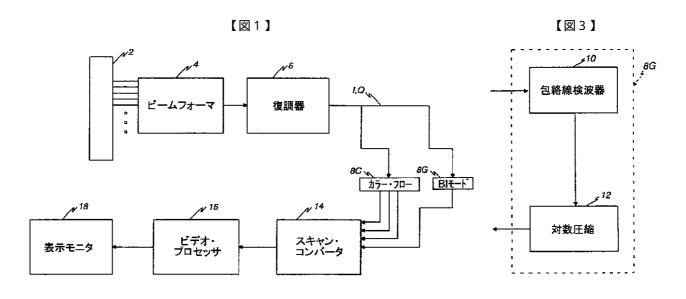
18 ビデオ・モニタ

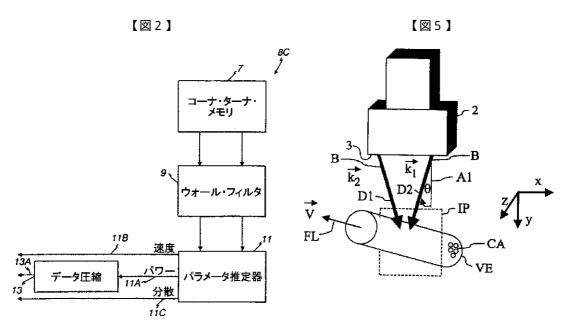
2 2 音線メモリ

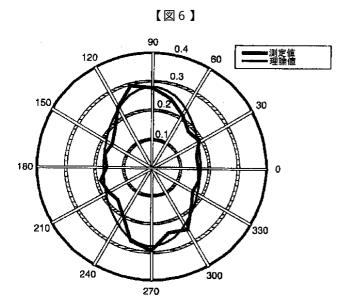
24 XYメモリ

24C、24G メモリ位置

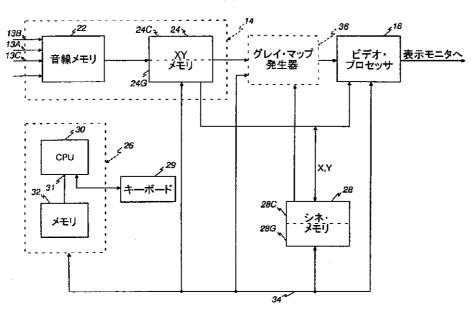
26 マスタ・コントローラ


28C、28G メモリ位置


40 29 キーボード


30 中央処理ユニット

32 ランダム・アクセス・メモリ


3 4 制御バス

【図4】

フロントページの続き

(72)発明者 ジョナサン・エム・ルビン アメリカ合衆国、ミシガン州、アン・アー バー、ダブリュー・ヒューロン・リバー・ ドライブ、3650番

(72)発明者 ジェフリー・ブライアン・フォウルケス アメリカ合衆国、ミシガン州、アン・アー バー、ソーンダーズ・クレセント、1425番 (72)発明者 テレサ・アン・トゥシル アメリカ合衆国、ミシガン州、アン・アー バー、アパートメント・430エー、グリー ン・ブライアー・ブールヴァール、3552番

(72)発明者 アン・リンゼイ・ホール アメリカ合衆国、ウィスコンシン州、ニュ ー・ベルリン、ウエスト・トップ - オー -ヒル・ドライブ、16015番 【外国語明細書】

1. Title of Invention

ANGLE INDEPENDENT ULTRASOUND VOLUME FLOW MEASUREMENT

2. Claims

- 1. An ultrasound system for measuring the volume of flow (F) of a fluid within a region of interest (VE), said system comprising in combination:
- a transducer (2) arranged to generate and to transmit ultrasound waves to said region in transmit directions (D1 and D2) defining a scan plane (IP), said transducer being arranged to generate transducer signals defining data in response to ultrasound waves backscattered from said fluid within said region; and
- a processor (30) responsive to said data and arranged to calculate velocity signals having velocity values representing components of velocity of said fluid flow in said plane, to correlate portions of said data, to calculate the rate of decorrelation (D) of said portions and to estimate said volume of fluid flow (F) in response to said velocity signals and said rate of decorrelation.
- 2. A system, as claimed in claim 1, wherein said transmit directions are defined by at least two different angles in said scan plane.
- 3. A system, as claimed in claim 2, wherein said transducer (2) transmits said ultrasound waves by split aperture scanning.
- 4. A system, as claimed in claim 1, wherein said data defines gray scale data and wherein said processor correlates said portions of said gray scale data and calculates the rate of decorrelation of said portions of said gray scale data.
- 5. A system, as claimed in claim 4, where said gray scale data represents ultrasound RF data.

- 6. A system, as claimed in claim 4, wherein said gray scale data represents ultrasound A-line data.
- 7. A system, as claimed in claim 4, wherein said gray scale data represents ultrasound B-scan frames.
- 8. A system, as claimed in claim 1, wherein said data defines color flow power.
- 9. A system, as claimed in claim 1, wherein said portions of said correlated data represent speckle.

- 10. A system, as claimed in claim 9, wherein said speckle comprises fully developed speckle.
- 11. A system, as claimed in claim 1, wherein said processor calculates said velocity signals by Doppler calculations.
- 12. A system, as claimed in claim 1, wherein said velocity signals comprise a first velocity signal (Vx) having a first value representing a first component of velocity of said fluid flow in a first direction in said scan plane and a second velocity signal (Vx) having a second value representing a second component of velocity of said fluid flow in a second direction in said scan plane, said second direction being perpendicular to said first direction.
- 13. A system, as claimed in claim 12, wherein said processor further generates third velocity signals (Vz) having third values representing third components of velocity of said fluid flow perpendicular to said scan plane in response to said first value, said second value and said rate of decorrelation.
- 14. A system, as claimed in claim 12, wherein said transducer signals define a beam (B) which defines a first beam correlation width (Bx) in said first direction, a second beam correlation width (By) in said second direction, and a third beam correlation width (Bz) in said third direction and wherein said processor (30) generates said third velocity signals at least partially in response to said first, second and third beam correlation widths.
- 15. A system, as claimed in claim 13, wherein said processor estimates said volume of fluid flow by summing said third values over the cross sectional area of said region intersected by said scan plane.
- 16. A system, as claimed in claim 14, wherein said processor estimates said volume of fluid flow by summing said third values over the cross sectional area of said region intersected by said scan plane.
- 17. A system, as claimed in claim 1, wherein said fluid comprises blood and wherein said region comprises a blood vessel (VE).

- 18. A system, as claimed in claim 1, wherein said fluid comprises a contrast agent (CA).
- 19. In an ultrasound system, a method for measuring the volume of flow (F) of a fluid within a region of interest (VE), said method comprising:

transmitting ultrasound waves to said region in transmit directions (D1 & D2) defining a scan plane (IP);

generating data signals defining data in response to ultrasound waves backscattered from said fluid within said region;

generating velocity signals having velocity values representing components of velocity of said fluid flow in said scan plane in response to said data; correlating portions of said data; calculating the rate of decorrelation (D) of said portions;

estimating said volume of flow (F) of said fluid in response to said velocity signals and said rate of decorrelation.

- 20. A method, as claimed in claim 19, wherein said transmit directions are defined by at least two different angles in said scan plane.
- 21. A method, as claimed in claim 20, wherein transmitting comprises split aperture scanning.
- 22. A method, as claimed in claim 19, wherein said data defines gray scale data; wherein said correlating comprises correlating portions of said gray scale data and wherein said calculating the rate of decorrelation comprises calculating the rate of decorrelation of said portions of said gray scale data.
- 23. A method, as claimed in claim 22, wherein said gray scale data represents ultrasound RF data.
- 24. A method, as claimed in claim 22, wherein said gray scale data represents ultrasound A-line data.
- 25. A method, as claimed in claim 22, wherein said gray scale data represents ultrasound B-scan frames.

- 26. A method, as claimed in claim 19 wherein said data defines color flow power.
- 27. A method, as claimed in claim 19, wherein said portions of said correlated data represent speckle.
- 28. A method, as claimed in claim 27, wherein said speckle comprises fully developed speckle.
- 29. A method, as claimed in claim 19, wherein said generating velocity signals comprises calculating said velocity signals by Doppler calculations.
- 30. A method, as claimed in claim 19, wherein said velocity signals comprise a first velocity signal having a first value representing a first component of velocity of said fluid flow in a first direction in said scan plane and a second velocity signal having a second value representing a second component of velocity of said fluid flow in a second direction in said scan plane, said second direction being perpendicular to said first direction.
- 31. A method, as claimed in claim 30, wherein said generating velocity signals further comprises generating third velocity signals having third values representing third components of velocity of said fluid flow perpendicular to said scan plane in response to said first value, said second value and said rate of decorrelation.
- 32. A method, as claimed in claim 31, wherein said ultrasound waves form a beam defining a first beam correlation width in said first direction, a second beam correlation width in said second direction, and a third beam correlation width in said third direction and wherein said third velocity signals are generated at least partially in response to said first, second and third beam correlation widths.
- 33. A method, as claimed in claim 31, wherein said estimating comprises summing said third values over the cross sectional area of said region intersected by said scan plane.
- 34. A method, as claimed in claim 32, wherein said estimating comprises summing said third values over the cross sectional area of said region intersected by said scan plane.
 - 35. A method, as claimed in claim 19, wherein said fluid comprises blood and wherein said region comprises a blood vessel.
 - 36. A method, as claimed in claim 19, wherein said fluid comprises a contrast agent.

3. Detailed Description of Invention

BACKGROUND OF THE INVENTION

The Background of the Invention will be explained with the aid of the numbered references which appear at the end of this section of the specification. The quantification of volumetric fluid (e.g., blood) flow would be beneficial for a number of applications, including clinical applications, such as diagnosis of heart disease, cartoid stenosis, coronary arteriosclerosis, and renal failure. Doppler is the current clinical standard for measuring blood flow with ultrasound. Fluid motion towards or away from an ultrasound beam pulse modifies the wavelength of the insonifying pulse. Assuming the angle between the beam and the orientation of a fluid-carrying vessel (e.g., blood vessel) are known, the velocity of fluid flow in the vessel then is computed from the resulting Doppler frequency shift. Current techniques for volume flow measurement require a sonographer to orient the center axis of the vessel in the scan plane of the ultrasound beam, and then to calculate the total flow volume assuming a circularly symmetrical lumen. These assumptions, which are often not true, lead to large errors, making the method very difficult to apply.

The use of multiple Doppler beams to determine in-plane flow velocities (i.e., velocities in the ultrasound beam scan plane) have been known for many decades (Wang, 1982) [1]. Using two co-planar beams and trigonometric relations, the derived measured velocity is angle independent.

The cross-correlation of consecutive ultrasound A-lines eliminates the aliasing ambiguity of Doppler (Bonnefous 1986) [13].

Speckle tracking, the correlation of patterns between sequential frames, has been used to determine 1-D and 2-D flow vectors (Trahey 1987) [2]. With the development of volumetric ultrasound scans, the correlation search algorithm has been applied in 3-D with some success (Morsy 1999) [3].

One of the first techniques to quantify the magnitude of the non-axial flow components was developed by Newhouse (1987) [4] and is based on spectral broadening of the ultrasound RF signal.

More recently, Anderson (1998) [5] used a spatial weighting of the point spread function to quantify the lateral motion. In a similar study, Jensen (1998) [6] applied a transverse spatial modulation generated by apodization of the transducer elements to quantify flow in one or two directions transverse to the axial flow. Both of these techniques only determine 2-D flow.

The estimation of blood velocity using the decorrelation of echo signals has also been fairly well documented. Using the time rate-of-change of A-lines, Bamber (1988) [7] demonstrated that decorrelation could be used to image tissue motion and blood flow. More quantitatively, Li et al (1997) [8] showed that the decorrelation of RF signals was linearly related to the lateral displacement. The detection of variations in contrast-enhanced blood flow using grayscale decorrelation has also been previously shown in animal studies (Rubin, 1999) [9].

References

- [1] Wang W, Yao L. A double beam Doppler ultrasound method for quantitative blood flow velocity measurement. Ultrasound Med Biol 1982;8:421-425.
- [2] Trahey GE, Allison JW, von Ramm OT, Angle independent ultrasonic detection of blood flow. IEEE Trans Biomed Eng 1987;34:965-967.
- [3] Morsy AA, von Ramm OT. FLASH correlation: A new method for 3-D ultrasound tissue motion tracking and blood velocity estimation. IEEE Trans Ultra Ferro Freq Con 1999;46:728-736.
- [4] Newhouse VL, Censor D, Vontz T, Cisneros JA, Goldberg BB. Ultrasound Doppler probing of flows transverse with respect to beam axis. IEEE Trans Biomed Eng 1987;34:779-789.
- [5] Anderson ME. Multi-dimensional velocity estimation with ultrasound using spatial quadrature. IEEE Trans Ultra Ferro Freq Con 1998;45:852-861.

- [6] Jensen JA, Munk P. A new method for estimation of velocity vectors. IEEE Trans Ultra Ferro Freq Con 1998;45:837-851.
- [7] Bamber J, Hasan P, Cook-Martin G, Bush N. Parametric imaging of tissue shear and flow using B-scan decorrelation rate (abstr). J Ultrasound Med 1988;7:S135.
- [8] Li WG, Lancee CT, Cespedes EI, vanderSteen AF, Bom N. Decorrelation of intravascular echo signals: Potentials for blood velocity estimation. J Acoust Soc Am 1997;102:3785-3794.
- [9] Rubin JM, Fowlkes JB, Tuthill TA, Moskalik AP, Rhee RT, Adler RS, Kazanjian S, Carson PL, Speckle decorrelation flow measurement with B-mode US of contrast agent flow in a phantom and in rabbit kidney. Radiology 1999;213;429:437.
- [10] Tuthill TA, Krücker JF, Fowlkes JB, Carson PL Automated three-dimensional US frame positioning computed from elevational speckle decorrelation. Radiology 1998;209:575-582.
- [11] Wear KA, Popp RL. Methods for estimation of statistical properties of envelopes of ultrasonic echoes from myocardium. IEEE Trans Med Imag 1987;6:281-291.
- [12] Adler RS, Rubin JM, Fowlkes JB, Carson PL, Pallister JE. Ultrasonic estimation of tissue perfusion: a stochastic approach. Ultrasound Med Biol 1995;21:493-500.
- [13] Bonnefous O, Pesque P. Time domain formulation of pulse-Doppler ultrasound and blood velocity estimation by cross correlation. Ultrasonic Imag 1986;8:73-85.
- [14] Chen J, Fowlkes JB, Carson PL, Rubin JM. Determination of scan-plane motion using speckle decorrelation: theoretical considerations and initial test. Int J Imaging Syst Technol 1997;8:38-44.

[15] Chen, JR,, Fowlkes JB, Carson PL, Rubin JM, Adler RS. Autocorrelation of integrated power Doppler signals and its application. Ultrasound Med. Biol. 1996; 22: 1053-1057.

BRIEF SUMMARY OF THE INVENTION

The preferred embodiment is useful in an ultrasound system for measuring the volume of fluid flow within a region of interest. In such an environment, ultrasound waves are transmitted to the vessel in transmit directions defining a scan plane, preferably by an ultrasound transducer. Data signals are generated in response to ultrasound waves backscattered from the fluid within the vessel. Velocity signals having velocity values representing components of velocity of the fluid flow in the scan plane are generated in response to data generated from the data signals. Portions of the data are correlated, and the rate of decorrelation of the portions is calculated. The volume of flow of the fluid is estimated in response to the velocity signals and the rate of decorrelation. The techniques preferably are implemented with an ultrasound transducer and a data processor.

By using the foregoing techniques, the volume of fluid flow in a vessel can be determined independent of scan angle and without making any assumptions about vessel shape or flow geometry. For example, the techniques permit true blood volume flow estimates without any of the assumptions typically made with the above-described prior methods. The techniques of the preferred embodiment can be incorporated into most of the standard ultrasound transducer array scanheads now on the market. The techniques are robust and can be implemented in real time.

DETAILED DESCRIPTION OF THE INVENTION

Referring to FIG. 1, the basic signal processing chain for a color flow and gray scale imaging system suitable for an embodiment of invention comprises an ultrasound transducer array 2, which is activated to transmit pulse sequences comprising tone bursts of length P which are fired repeatedly at a pulse repetition frequency (PRF) which typically is in the kilohertz range. The pulse sequences, including burst lengths P, are different for the color flow and B-mode processing. For color flow imaging, P may be 4 to 8 cycles, and the tone bursts are focused at the same transmit focal position with the same transmit characteristics.

A series of color flow transmit firings focused at the same transmit focal position are referred to as a "packet". Each transmit beam propagates through the object being scanned and is reflected by ultrasound scatterers in the object.

The return RF signals are detected by the transducer elements and received by the respective receive channels in the beamformer 4. The beamformer sums the delayed channel data and outputs in a beam summed signal which is demodulated into in-phase and quadrature (I/Q) signal components by a demodulator 6. The B-mode I,

Q outputs from demodulator 6 are transmitted to a mid processor 8G for gray scale B-mode processing, and the color flow I, Q outputs from demodulator 6 are transmitted to a mid-processor 8C for color processing.

FIG. 2 illustrates mid-processor 8C. The I/Q signal components from demodulator 6 are stored in a corner turner memory 7, whose purpose is to buffer data from possibly interleaved firings and output the data as vectors of points across firings at a given range cell. Data is received in "fast time", or sequentially down range (along a vector) for each firing. The output of the corner turner memory is reordered into "slow time", or sequentially by firing for each range cell. The resultant "slow time" I/Q signal samples are passed through a wall filter 9 which rejects any clutter corresponding to stationary or very slow-moving tissue. The filtered outputs are then fed into a parameter estimator 11, which converts the range cell information into the intermediate autocorrelation parameters N, D and R(0). N and D are the numerator and denominator for the autocorrelation equation, as shown below:

$$N = \sum_{i=1}^{M-1} (I_i Q_{i+1} - I_{i+1} Q_i)$$
 (A)

$$D = \sum_{i=1}^{M-1} (I_i I_{i+1} + Q_i Q_{i+1})$$
 (B)

where I_i and Q_i are the demodulated, basebanded input data for firing i, and M is the number of firings in the packet. R(0) is approximated as a finite sum over the number of firings in a packet, as follows:

$$R(0) = \sum_{i=1}^{M-1} \frac{(I_i^2 + Q_i^2 + I_{i+1}^2 + Q_{i+1}^2)}{2}$$
 (C)

R(0) represents the color flow power of the backscatter from the color flow transmit firings.

A processor converts N and D into a magnitude and phase for each range cell. The equations used are as follows:

$$|R(T)| = \sqrt{N^2 + D^2} \tag{D}$$

$$\phi (T) = \tan^{-1} \left[\frac{N}{D} \right]$$
 (E)

R(T) and $\phi(T)$ are the magnitude and phase, respectively, of the first lag autocorrelation function. The term lag is used to indicate a time interval. For example, a lag may be a frame-to-frame increment or a firing-to-firing increment. As indicated by equations (A) - (C), the exact autocorrelation functions are approximated by finite sums over the known data in the number of firings in a packet.

The parameter estimator processes the magnitude and phase values into signals having values representing estimates of power, velocity and turbulence or variance which are transmitted on conductors 11A, and 11B and 11C, respectively. The phase is used to calculate the mean Doppler frequency, which is proportional to the velocity as shown below; R(0) and |R(T)| (magnitude) are used to estimate the turbulence.

The mean Doppler frequency in hertz is obtained from the phase of N and D and the pulse repetition from T:

$$\overline{f} = \frac{1}{2\pi T} \tan^{-1} \left[\frac{N}{D} \right] = \frac{1}{2\pi T} (\phi(T))$$
 (F)

The mean velocity is calculated using the Doppler shift equation below. Since θ , the angle between the flow direction and the sampling direction, is not known, $\cos \theta$ is assumed to be 1.0.

$$\bar{v} = \frac{\bar{f}}{f_0} \frac{c}{2\cos\theta} \tag{G}$$

Preferably, the parameter estimator does not calculate the mean Doppler frequency as an intermediate output, but calculates v directly from the phase output of the processor

using a look-up table. However, any velocity estimator can be used for purposes of the calculations shown in equations (1) - (6) described later. The velocity estimations may include delay cross correlation, autoregression etc.

The turbulence may be calculated in the time domain as a second-order series expansion of the variance of the mean Doppler frequency. The time domain expression for turbulence involves calculating the zero-lag and one-lag autocorrelation functions, R(0) and R(T), respectively.

The time domain expression for turbulence may be expressed as:

$$\sigma^2 = \frac{2}{(2\pi T)^2} \left[1 - \frac{|R(T)|}{R(0)} \right]$$
 (H)

The mean value signal $\phi(T)$ is an estimate of the mean Doppler frequency shift of the flowing reflectors, which in turn is proportional to the mean blood flow velocity. The variance signal σ^2 indicates the frequency spread of the flow signal component of the baseband echo signal. This value is indicative of flow turbulence, involving a mixture of many velocities. To indicate the strength of the signal from the flowing reflectors, the signal R(0) indicates the amount of the returned power in the Doppler-shifted flow signal.

The signal power on conductor 11A is passed through a data compression module 13 which compresses the data according to families of data compression curves. A different family of curves can be provided for different scanning applications. For example, one family of curves is provided for renal scanning, while another family of curves is provided for carotid artery scanning. Controller 26 sets the default curve when a user selects the scan application. The dynamic range controls the range of intensities or lumens created on display 18.

Referring to FIG. 3, gray scale B-mode mid-processor 8G includes an envelope detector 10 for forming the envelope of the beamsummed receive signal by computing the quantity $(I^2 + Q^2)^{1/2}$. The envelope of the signal undergoes some additional B-mode processing, such as logarithmic compression (block 12 in FIG. 3), to form display data which is output to the scan converter 14 (Fig. 1).

Referring again to Fig. 1, the color flow estimates and gray scale display data are sent to the scan converter 14, which converts the data into X-Y format for video display. The scan-converted frames in X-Y format are passed to a video processor 16, which basically maps the video data to a display color map and gray scale image frames for video display. The image frames are then sent to the video monitor 18 for display. Typically, for color images, either velocity or power are displayed alone or velocity is displayed in conjunction with either power or turbulence. System control is centered in a host computer (not shown), which accepts operator inputs through an operator interface (e.g., a keyboard) and in turn controls the various subsystems.

The images displayed by the video monitor 18 are produced from an image frame of data in which each datum indicates the intensity or brightness of a respective pixel in the display, as well as the flow velocity. An image frame may, e.g., comprise a data array in which each intensity datum is a binary number that indicates pixel color and brightness. The brightness of each pixel on the display monitor 18 is continuously refreshed by reading the value of its corresponding element in the data array in a well-known manner. Each pixel has an intensity value which is a function of the backscatter cross section of a respective sample volume in response to interrogating ultrasonic pulses and the gray map employed and a color value which indicates flow mean velocity and/or power.

Referring to FIG. 4, system control is centered in a master controller or host computer 26, which accepts operator inputs through an operator interface (not shown) and in turn controls the various subsystems. The master controller 26 also generates the system timing and control signals. The master controller 26 comprises a central processing unit (CPU) 30 and a random access memory 32. A keyboard 29 is used to enter data into CPU 30. The CPU 30 has read only memory incorporated therein for storing routines used in constructing gray and color maps based on acquired raw data.

The scan converter 14 comprises an acoustic line memory 22 and an X-Y memory 24. The B-mode and color mode intensity data stored in polar coordinate (R- θ) sector format in acoustic line memory 22 is transformed to appropriately scaled Cartesian coordinate pixel display data, which is stored in X-Y memory 24. The color data is stored in memory locations 24C, and the gray scale data is stored in

memory locations 24G. The scan-converted frames are passed to video processor 16, which maps the data to a gray map for video display. The gray scale image frames are then sent to the video monitor for display.

Successive frames of acoustic sample data are stored in cine memory 28 on a first-in, first-out basis. Color frames are stored in memory locations 28C, and gray scale frames are stored in memory locations 28G. In the color region of interest, for every word of color data corresponding to a display pixel, there is a corresponding word of B-mode gray scale data corresponding to that pixel. The cine memory is like a circular image buffer that runs in the background, continually capturing acoustic sample data that is displayed in real time to the user. When the user freezes the system, the user has the capability to view acoustic sample data previously captured in cine memory.

The CPU 30 controls the XY memory 24 and the cine memory 28 via the system control bus 34. In particular, the CPU 30 controls the flow of raw data from the XY memory 24 to the video processor 16 and to the cine memory 28 and from the cine memory to the video processor 16 and to the CPU 26 itself. The CPU also loads the gray maps and color maps into the video processor.

Image frames are collected in cine memory 28 on a continuous basis. The cine memory 28 provides resident digital image storage for single image review and multiple image loop review and various control functions. The region of interest displayed during single-image cine replay is that used during the image's acquisition. The cine memory also acts as a buffer for transfer of images to digital archival devices (not shown) via the master controller 26.

The preferred embodiment uses a system of the type described in FIGS. 1-4 to implement a technique for volumetric blood flow measurement combining standard Doppler measurements with echo amplitude decorrelation. Using single clinical transducer 2, and without knowledge of the orientation of a vessel in which fluid volume flow is to be measure, a 3-D vector flow field is computed over an ultrasound imaging plane. In general, volume flow is computed by integrating the out-of-plane flow (e.g., flow intersecting the imaging plane) over the vessel cross-section (i.e., the intersection of the imaging plane with the vessel).

In-plane velocity

FIG. 5 displays flow direction FL of fluid (e.g., blood) in a region of interest (which may be a vessel VE, e.g., a blood vessel) and orientation of transducer 2. The fluid preferably contains a contrast agent CA. Doppler ultrasound waves in a beam B are steered in directions D1 and D2 (e.g., $\theta = +20$ degrees and -20 degrees from an axis A1 perpendicular to the face 3 of the transducer). The steering is accomplished using separate B-mode beam pulse firings. Directions D1 and D2 define an imaging and scan plane IP which intersects vessel VE at some undetermined angle, which may be, for example, 60 degrees, although the user does not know the angle. Any two dimensional method of directing beam B in plane IP may be used, such as triangulation, cross correlation, etc.). Alternatively, the scanning of beam B may be performed using the split aperture technique described in U.S. Patent No. 5,398,216 (Hall et al., issued March 14, 1995) which is incorporated by reference. Using the split aperture approach, beam B would be directed to a common point within vessel VE from different angles.

The x and y axes in FIG. 5 both lie in plane IP. The z axis extends in the elevational direction; the y axis extends in the axial direction and the x axis extends in the lateral direction. Axes x, y and z are orthogonal.

The ultrasound waves backscattered from vessel VE in response to the beam steered in directions D1 and D2 are received by transducer 2 and are used to generate data from which the two corresponding "axial" fluid velocities, V_1 and V_2 are measured. The in-plane (i.e., plane IP) fluid velocity components V_x and V_y can then

$$V_1 = \vec{k}_1 \cdot \vec{V} = -V_X \sin\theta + V_y \cos\theta \tag{1}$$

be computed as follows:

$$V_2 = \vec{k}_2 \cdot \vec{V} = V_X \sin\theta + V_V \cos\theta \tag{2}$$

$$V_x = \frac{V_2 - V_1}{2\sin\theta} \text{ and } V_y = \frac{V_1 + V_2}{2\cos\theta}$$
 (3)

Note that the measurement error for V_{y} has an inverse cos (θ) dependency, so larger angles will provide more accurate results.

Decorrelation

The rate of speckle decorrelation in a fluid is a function of flow velocity or beam pulse repetition frequency (PRF) (depending on the processing method) and the beam characteristics of transducer 2. The rate of decorrelation can be calculated from color flow transmit firings of the type previously described. More specifically, the rate of decorrelation can be based on color flow power as expressed by the zero lag autocorrelation equation (C). The rate of decorrelation is determined by the change in value of R(0) over time from one pocket of firings to another.

The rate of decorrelation also can be calculated from gray scale data which represents ultrasound RF data backscattered from vessel VE. The rate of decorrelation based on gray scale data will be described in detail, but the principles can be applied to calculating the rate of decorrelation from color flow transmit firings by those skilled in the art. While a more detailed statistical analysis of speckle formation is given in a previous paper (Tuthill et al, 1998) [10], the essential points and assumptions are presented here.

For fully developed speckle, at least 10 scatterers must be present in the sample volume defined by the 3-D point spread function. The spatial distribution of ultrasonic intensity should be an exponential distribution with a constant mean to standard deviation (MSD) ratio of 1.0. The amount of speckle change from pulse to pulse (or frame to frame) is directly related to the second order statistics of the speckle pattern.

The derivation for the speckle correlation function in the elevational dimension (i.e., perpendicular to plane IP) is described here, and can easily be extended to the lateral and axial dimensions which are in plane IP. For coherently formed speckle, the intensity correlation function is directly related to the amplitude correlation function which in turn is proportional to the point spread function (PSF) autocorrelation. Assuming a focused transducer 2, the beam pattern can then be approximated by a Gaussian which has a depth-dependent width as the beam goes in and out of the focal region. Consequently, the intensity autocorrelation in the lateral

direction can also be written as a Gaussian function with respect to the fluid translation between acquired frames and will have a standard deviation of $\sigma_x(z)$, the depth-dependent beam correlation width (BCW). The correlation width in the focus can be calculated by the transducer's physical properties, or the correlation width for a longer range can be calibrated using a phantom containing scatterers producing fully developed speckle.

The temporal normalized intensity covariance, C, for a single pixel location then has a Gaussian shape (Wear 1987) [11].

$$C(\Delta t, z) \propto \exp\left(\frac{-(V_x \Delta t)^2}{2\sigma_x^2(z)}\right)$$
 (4)

where V_x is the lateral velocity and $\sigma_x(z)$ is the depth-dependent beam correlation width as determined by the transducer properties. For a beam B pulse firing rate of R_p , the normalized covariance from a set of pixels at a specific depth acquired from consecutive A-lines can then be curve fit to a Gaussian as a function of the firing number, n,

$$C(n) \propto \exp\left(\frac{-(D \, n/R_f)^2}{2}\right) \tag{5}$$

where D, the rate of decorrelation value in units of inverse seconds, is equivalent to the velocity divided by the beam correlation width for that depth. The final result is that by Gaussian curve-fitting the correlation function for speckle regions from a set of gray scale A-lines or from a set of gray scale B-scan frames, the average velocity for that set can be calculated. The rate of decorrelation can be calculated by the methods described in Tuthill (1998) [10] and Rubin (1999) [9], among others.

Decorrelation may also be calculated from Doppler information (Adler 1995) [12] and (Chen 1996) [15], but may not be the preferred method for some applications.

For volume flow, the decorrelation can now be extended to include all 3 dimensions. Assuming an ellipsoidal sample volume, the curve-fitted decorrelation value, D, is directly related to the velocity components,

$$D^{2} = \frac{V_{x}^{2}}{B_{x}^{2}} + \frac{V_{y}^{2}}{B_{y}^{2}} + \frac{V_{z}^{2}}{B_{z}^{2}}$$
 (6)

where B_i is the beam correlation width (BCW) in the ith direction. The BCWs are calibrated using a speckle phantom and are dependent on depth and the transducer's focusing parameters, but are measurable throughout the imaging plane.

3-D Flow Vector and Volume Flow

Having determined the in-plane velocities, V_x and V_y (i.e., the velocities in plane IP), from the Doppler measurements (or from speckle tracking), the magnitude of the velocity component normal to the scan plane IP, Vz, can be computed from Equation (6). Thus the 3-D flow vector can be determined from a single transducer 2 operating in two different modes for three measurements (for example two Doppler and one grayscale decorrelation). It should be understood that the method of data collection and its processing to obtain each of the values V_x , V_y , and D can have many forms.

The total volume flow through vessel VE can also be computed. Gauss' theorem states that the flux or volume flow out of a closed surface equals the integral of the divergence of the vector field over the enclosed volume. Thus, the total volume flow, F, is the normal velocity component integrated over the cross-sectional area,

$$F = \int (\vec{V} \cdot \vec{n}) ds \qquad (7)$$

By summing up Vz, the velocity components normal to the imaging and scan plane IP, over the vessel area intersected by plane IP, the total volume flow can be calculated. The calculations of equations (A) - (H) and (1) - (7) may be performed by CPU 30 (FIG. 4). CPU 30 generates signals corresponding to the various parameters of equations (A) - (H) and (1) - (7).

A variety of digital processors may be used to perform the calculations described in this specification. For example, microprocessors or digital signal processors, as well as application specific integrated circuits capable of performing logic and arithmetic operations, may be used. Such processors may be located anywhere in the system described in FIGS. 1-4, or may be located outside the system.

Examples

The following represents a best mode of the invention in the sense that it has been confirmed by experiment. However, it is believed that other forms of the invention, such as measuring decorrelation by color flow transmit firing, may be easier to implement for some applications.

A GE Logiq 700 clinical scanner (GE Medical Systems, Milwaukee, WI) with a 7.5MHz linear array transducer was used with a single focus. The GE Logic 700 scanner can be generally represented by FIGS. 1-4 and the 7.5 MHz linear array transducer can be represented by transducer 2. All internal post-processing settings such as edge enhancement and averaging were turned off, and the depth was set to the minimum value of 3cm to obtain the highest allowable frame rate of 30 Hz. The output power was set at the lowest level to reduce effects from additional decorrelation due to acoustic radiation force. For B-mode, a linear grayscale mapping was applied and the scans were decompressed to obtain images with pixel values proportional to amplitude. For the Doppler acquisition, the lowest velocity and lowest settings of wall filter 9 were applied. All images were digitally stored on the scanner at 8 bits and transferred to a UNIX computer which can be represented by CPU 30 (FIG. 4). The 3cm by 4cm digitized images were stored as 355 by 478 pixels for a square pixel size of length 84.5 µm in memory 32 (FIG. 4).

The transducer sample volume was calibrated by collecting a series of B-mode scans with incremental spacing in each direction (lateral, elevational, and axial) over a tissue-mimicking phantom (CIRS; Computerized Imaging Reference Systems, Norfolk, VA). The phantom is comprised of densely packed, randomly distributed scatterers to create fully developed speckle. A linear micropositioner allowed for spacings of 50µm for lateral and elevation directions, and 25µm for axial. For each transducer orientation, a set of 60 images was acquired, and the corresponding beam correlation width was then computed as a function of depth.

For the flow tube experiments, a 6.4mm diameter molecular porous membrane tube (Spectrum Laboratories, Laguna Hill, CA) was placed in a water bath filled with degassed water. A syringe pump (Harvard Apparatus, Holliston, MA) was used to generate flows from 12 to 20 ml/min. Care was taken not to introduce air bubbles

into the tube system. The outlet of the system was kept 10 cm above the tank to maintain pressure and ensure full expansion of the membrane tubing.

The blood mimicking fluid was comprised of 1-35µm diameter polystyrene spheres in a 5:1 water/glycerol mixture. A high concentration was used to increase the backscatter for more uniform speckle.

Transducer 2 was fixed to allow both rotation about the y-axis and x-axis independently as shown in FIG. 5. The transducer was rotated about the y-axis in 30° increments for each of three different volume flows.

For each volume flow setting, a cine loop of 60 grayscale images was collected first and stored in memory 28G (FIG. 4), followed by a set of Doppler images. Ten uncorrelated images were collected for each of the two Doppler angles (+/-20°) and then averaged.

The stored images were post-processed using programs written in MATLAB (Mathworks, Natwick, MA). For the speckle decorrelation, the covariance function was computed for each pixel and averaged over a 5 by 5 pixel window. The covariance function was then normalized, and only the first two lags were used for the Gaussian fit to determine the decorrelation value.

The resulting decorrelation image was thresholded to determine the outline of the vessel. Using Eq. 6, the out-of-plane velocity (i.e., velocity along the z axis as shown in FIG. 5) was computed and summed up in the enclosed vessel VE to determine the total volume flow.

To demonstrate the efficacy of the technique with ultrasound RF signals, the flow tube was used in a second setup using a Diasonics scanner (Diasonics Ultrasound, Milpitas, CA) with a 5.0MHz linear array used as transducer 2. Since the RF acquisition of a cine loop had an extremely low frame rate, only M-mode data was collected for the decorrelation processing. This provided a firing rate of 786 Hz for acquired A-lines.

Results

For the given scanner settings with a single focus, the GE 7.5MHz transducer had BCWs of 170 µm, 280 µm, and 150 µm for the lateral, elevational, and axial

directions, respectively, near the focus. Figure 6 shows the calculated BCWs for 15° increments about the elevational/lateral plane and the theoretical elliptical fit from B_x (lateral) and B_y (elevational).

The calibration of the Diasonics transducer 2 using RF data showed that for both elevational and lateral directions, the depth dependent BCWs do not differ significantly from the envelope detected BCW curves. As expected, the axial RF signals decorrelate significantly faster than the envelope detected scan lines. Near the focus, the RF BCW is approximately 25 um which is 1/6 of the total wavelength. The corresponding BCW for the envelope signal is 135 um which is consistent with a multiple wavelength pulse.

Both the -20° steering and the +20° steering (FIG. 5) Doppler images are used to form the combined total in-plane velocity magnitude image which may be displayed.

The thresholded decorrelation image was applied as a mask, and the normal velocities summed up in the enclosed region to compute the total volume flow. The decorrelation mask was chosen because it provides a detectable image of the vessel VE lumen regardless of flow angle, unlike the Doppler. The summed volume flow in the masked cross-sectional area is 0.25 ml/s.

For the algorithm described in this specification, the user needs only point at an area within vessel VE for the total cross-sectional area for that vessel to be determined from the thresholded decorrelation image. Using decorrelation thresholding with its reduced angle dependence (Rubin 1999) [9] should provide a more reliable delineation of the flow boundaries than would Doppler.

The spatial resolution for the velocity estimates computed with our technique is primarily limited by the Doppler signal which has a lower resolution than the B-mode images. The decorrelation technique is computed on each pixel in the B-scan or on each point of the A-line, and so the spatial resolution is determined by the digitizing sampling rate. Some spatial averaging is needed, however, to compute accurate correlation curves.

The temporal resolution is determined by the number of sequential A lines needed for an accurate estimate of the decorrelation and Doppler frequency shift. In

most clinical scanners, approximately 10-15 firing lines are used to compute the Doppler output. Note that the inplane velocity could also be determined using 2 time correlation or speckle tracking.

Blood flow in humans range from 30 l/min in the aorta during strenuous exercise to 10 nl/min in a single capillary (velocity on the order of mm/s). Our technique does have both upper and lower limits on the range of velocities that can be measured. Low flows are difficult to detect using Doppler since a "wall-thump" filter is applied to eliminate signals from the relatively slow tissue motion. Similarly, decorrelation in soft tissue due to motion defines a lower bound.

At high velocities, the decorrelation component of the analysis breaks down. If the flow movement is more than two BCWs between firings, the signals are completely decorrelated and no velocity estimate can be made. Thus the PRF and the BCW of the sample volume determine the upper velocity limit: maximum velocity < PRF*(2 BCW). For example, with a 10kHz firing rate and a correlation width of 400µm, the maximum measurable velocity would be 80 cm/s. In the RF analysis, the axial BCW is an order of magnitude smaller than either the elevational or lateral component. Contrary to Doppler measurements, flow perpendicular to the beam is in the preferred direction to detect higher velocities.

The preferred technique also assumes flow all in one direction. Shear motion or turbulent flow may cause additional decorrelation which would upwardly bias the volume flow measurement. As previously described, examination of σ^2 can indicate this condition to avoid inappropriate use of the method.

The sign of flow cannot be determined in the decorrelation measurement. Thus the direction of out-of-plane flow remains unknown. This could be a problem with arterial flow where there may be reversal of flow during a heart cycle. One possibility to determine the flow directions would be phase quadrature analysis in the elevational direction with a 1.75 D array.

Those skilled in the art will recognize that the preferred embodiments may be altered and modified without departing from the true spirit and scope of the invention as defined in the accompanying claims.

4. Brief Description of Drawings

- FIG. 1 is a schematic block diagram showing the signal processing chain for a color flow and B-mode ultrasound imaging system suitable for use in connection with the preferred embodiment.
- FIG. 2 is a schematic block diagram showing the mid processor color flow apparatus illustrated in FIG. 1.
- FIG. 3 is a schematic block diagram showing the mid processor B-mode apparatus illustrated in FIG. 1.
- FIG. 4 is a schematic block diagram showing additional details of portions of the system illustrated in FIG. 1.
- FIG. 5 is a schematic block diagram showing an exemplary orientation of the ultrasound transducer shown in FIG. 1 with respect to a vessel in which fluid is flowing.
- FIG. 6 is a graph illustrating calculated beam correlation widths of the ultrasound beam generated by the transducer shown in FIG. 5 for 15° increments about an elevational/lateral plane and a theoretical elliptical fit from B_x (lateral) and B_y (axial).

Parts List

Beam B

Flow direction FL

Region of interest, e.g., vessel VE

Scan plane IP

Volume of fluid flow F

Scan angles D1, D2

Rate of decorrelation D

Ultrasound transducer array 2

Beamformer 4

Demodulator 6

Corner Turner Memory 7

Mid processor 8G

Mid-processor 8C

Wall filter 9

Envelope detector 10

Parameter estimator 11

Conductors 11A, 11B, 11C

Logarithmic compression 12

Data compression module 13

Scan converter 14

Video monitor 16

Video monitor 18

Acoustic Line Memory 22

X-Y memory 24

Memory location 24C, 24G,

Master Controller 26

Memory locations 28C, 28G

Keyboard 29

Central Processing Unit 30

Random access memory 32

Control bus 34

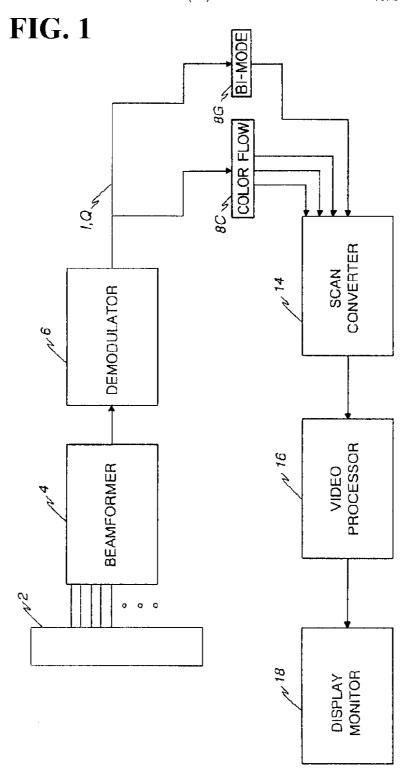


FIG. 2

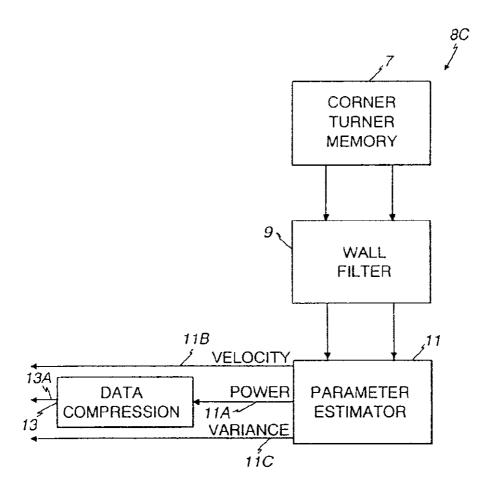


FIG. 3

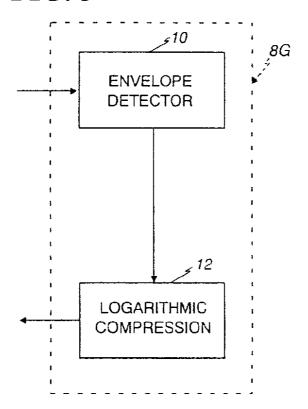
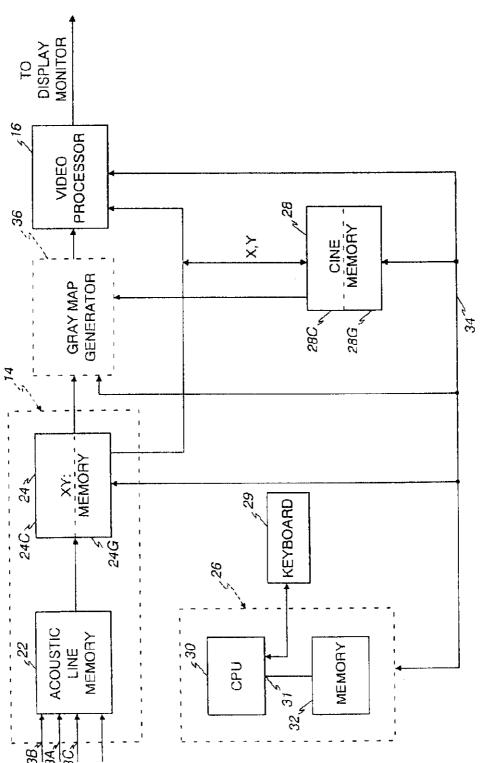



FIG. 4

FIG. 5

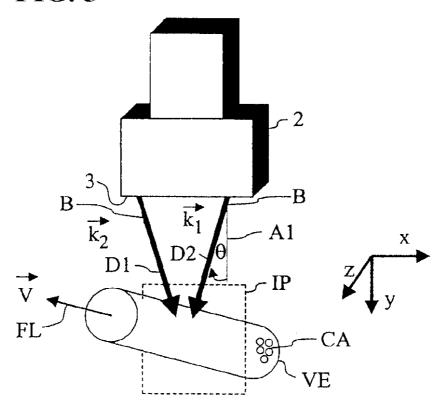
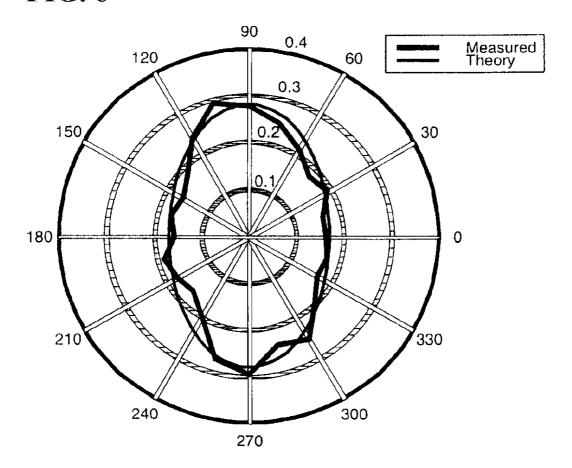
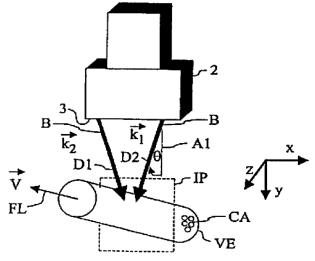



FIG. 6

1. Abstract

The volume of fluid flow within a vessel (VE) is measured by an ultrasound system. Ultrasound waves backscattered from the fluid within the vessel generate data from which velocity values representing components of velocity (V_x and V_y) of the fluid flow in the scan plane (IP) are calculated. Grayscale data is correlated and the rate of decorrelation (D) of the data is calculated. The volume flow of the fluid (F) is estimated in response to the velocity signals and the rate of decorrelation (D).


2. Representative Drawing: Figure 1

专利名称(译)	角度独立的超声波体积流量测量							
公开(公告)号	JP2001258887A	公开(公告)日	2001-09-25					
申请号	JP2001020888	申请日	2001-01-30					
申请(专利权)人(译)	GE医疗系统环球技术公司有限责任	公司						
[标]发明人	ジョナサンエムルビン ジェフリーブライアンフォウルケス テレサアントゥシル アンリンゼイホール							
发明人	ジョナサン·エム·ルビン ジェフリー·ブライアン·フォウルケ テレサ·アン·トゥシル アン·リンゼイ·ホール	ス						
IPC分类号								
CPC分类号	G01S15/8959 A61B8/06 A61B8/13	A61B8/06 A61B8/13 G01S15/8961 G01S15/8984						
FI分类号								
F-TERM分类号	2F035/AA06 2F035/DA04 2F035/DA13 4C301/AA02 4C301/CC02 4C301/DD01 4C301/DD04 4C301 /GB02 4C301/HH01 4C301/HH24 4C301/HH37 4C301/HH38 4C301/HH52 4C301/HH54 4C301/JB28 4C301/JB35 4C301/JB50 4C301/KK01 4C301/KK02 4C301/KK22 4C301/LL03 4C301/LL04 4C301 /LL05 4C301/LL06 4C301/LL20 4C601/DD03 4C601/DE01 4C601/DE03 4C601/GB01 4C601/GB03 4C601/HH04 4C601/HH31 4C601/JB01 4C601/JB21 4C601/JB22 4C601/JB23 4C601/JB24 4C601 /JB28 4C601/JB34 4C601/JB41 4C601/JB43 4C601/JB55 4C601/JB60 4C601/KK01 4C601/KK02 4C601/KK12 4C601/KK18 4C601/KK19 4C601/LL01 4C601/LL02 4C601/LL04 4C601/LL05 4C601 /LL06 4C601/LL40							
代理人(译)	松本健一							
优先权 09/495231 2000-01-31 US								
其他公开文献	JP4716346B2 JP2001258887A5							
外部链接	Espacenet							

摘要(译)

要解决的问题:通过超声系统测量管道中的流体流量。 超声换能器阵列 (2) 用于通过从管道(VE)中的流体反向散射的超声波生成数据,然后从扫描平面(IP)中的流体流动数据生成数据。 计算代表速度分量的 速度值(VX和V 和)。 关联灰度数据以计算数据的去相关率(D)。 响应于速度信号和去相关速率(D),估计流体的体积流量(F)。

