

(19) 대한민국특허청(KR)

(12) 공개특허공보(A)

(51) 국제특허분류(Int. Cl.)

A61B 5/021 (2006.01) **A61B 5/00** (2006.01)

(52) CPC특허분류

A61B 5/021 (2013.01) **A61B 5/7235** (2013.01)

(21) 출원번호 10-2017-0146837

(22) 출워일자 2017년11월06일

심사청구일자 2017년11월06일

(11) 공개번호 10-2019-0051327

(43) 공개일자 (71) 출원인

주식회사 이노템즈

대전광역시 유성구 테크노1로 11-8 (관평동)

2019년05월15일

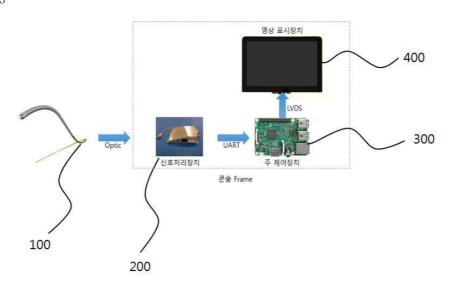
(72) 발명자

전세형

대전광역시 유성구 배울1로 13 ,212동701호(관 평동,대덕테크노밸리2단지아파트)

(74) 대리인

이원영


전체 청구항 수 : 총 4 항

(54) 발명의 명칭 혈압 측정 시스템

(57) 요 약

본 발명은 최고혈압 및 최저혈압을 측정하여 디스플레이하기 위한 혈압 측정 시스템에 관한 것으로, 더욱 상세하 게는 것으로, 1초 당 n번의 혈관 압력을 측정하는 측정부(100); 상기 1초 당 n번의 혈관 압력 데이터를 이용하여 최대혈압값 및 최소혈압값을 분석하고 산출하는 분석부(300); 및 산출된 상기 최대혈압값 및 최소혈압값을 각각 디스플레이하는 디스플레이부(400);를 포함하여 구성된다.

대 표 도 - 도3

(52) CPC특허분류

A61B 5/7275 (2013.01) *A61B 5/742* (2013.01)

이 발명을 지원한 국가연구개발사업

과제고유번호 R0006241

부처명 산업통상자원부

연구관리전문기관 한국산업기술진흥원

연구사업명 경제협력권육성사업 광.전자융합사업 연구과제명 혈관 내 혈압 측정용 센서 시스템 개발

기 여 율 1/1

주관기관 지오씨(주)

연구기간 2017.04.01 ~ 2019.12.31

명 세 서

청구범위

청구항 1

1초 당 n번의 혈관 압력을 측정하는 측정부(100);

상기 1초 당 n번의 혈관 압력 데이터를 이용하여 최대혈압값 및 최소혈압값을 분석하고 산출하는 분석부(300); 및

산출된 상기 최대혈압값 및 최소혈압값을 각각 디스플레이하는 디스플레이부(400);

를 포함하는 것을 특징으로 하는 혈압 측정 시스템.

청구항 2

제1항에 있어서,

상기 분석부(300)는

상기 최대혈압값 및 최소혈압값의 차가 기 설정된 값 이상일 경우, 상기 혈관 압력 데이터에서 최대혈압값 또는 최소혈압값을 산출하거나,

상기 최대혈압값 및 최소혈압값의 차가 기 설정된 값보다 적을 경우, 이전에 산출된 최대혈압값 또는 최소혈압 값을 유지하는 것을 특징으로 하는 혈압 측정 시스템.

청구항 3

제2항에 있어서,

상기 분석부(300)는

상기 최대혈압값 및 최소혈압값의 차가 기 설정된 값 이상이며,

상기 최대혈압값 또는 최소혈압값이 첫 번째 또는 n 번째 측정된 혈관 압력 데이터일 경우, 이전에 산출된 최대혈압값 또는 최소혈압값을 유지하는 것을 특징으로 하는 혈압 측정 시스템.

청구항 4

제2항에 있어서,

상기 분석부(300)는

상기 최대혈압값 및 최소혈압값의 차가 기 설정된 값 이상이며,

상기 최대혈압값 또는 최소혈압값이 첫 번째 또는 n 번째 측정된 혈관 압력 데이터가 아닐 경우, 첫 번째부터 n 번째까지 측정된 혈관 압력 데이터 중 최대혈압값 및 최소혈압값을 산출하는 것을 특징으로 하는 혈압 측정 시스템.

발명의 설명

기술분야

[0001] 본 발명은 혈압 측정 시스템에 관한 것으로, 더욱 상세하게는 최고혈압 및 최저혈압을 측정하여 디스플레이하기

위한 혈압 측정 시스템에 관한 것이다.

배경기술

- [0002] 심근 분획 혈류예비력(FFR: Fractinal flow reserve)은 관상동맥의 협착 정도를 정확하게 알려주는 병변-특이적 기능적 지표(lesion-specific functional index)로 활용된다. 도1에서 보는 바와 같이, FFR은 관동맥 내 adenosine 주입 후 병변 부위의 최저 평균혈압(Pd)과 이때의 유도 도관을 통한 평균 대동맥 혈압(Pa)을 측정하여 평균 대동맥 혈압에 대한 병변 부위의 혈압의 비(Pd/Pa)로 FFR을 정의한다.
- [0003] FFR 측정값이 0.75 되는 지점이 심근허열 유발 임계값으로 알려져 있다. FFR=1 은 정상적인 혈관이며, 0.75 ~ 0.8 경우에는 중재시술보다는 약물 치료를 권장하고 있다. 또한, FFR 측정값이 0.75 이하에서는 중증 환자로 분류되어 관상동맥 중재시술이 필요하다.
- [0004] 상기 심근 분획 혈류예비력은 관상동맥 혈압 측정 시스템을 이용하여 측정한다. 상기 관상동맥 혈압 측정 시스템은 크게 3가지의 주요 구성품(센서, 가이드와이어, 디스플레이 HW/SW) 으로 구성된다.
- [0005] 도 2에서 보는 바와 같이, 센서 중 Optical 혈압 센서는 Fabry-Perot 간섭계 원리를 이용하며, MEMS기술 기반으로 제작된 Diaphragm 헤드와 광섬유로 구성된다. Diaphragm 헤드에는 평행한 반사면이 형성되고 외부 압력에 따라 평행한 반사면의 거리가 바뀌어 광신호의 파장 변조 특성, 광 감도 변화 등을 측정하게 된다.
- [0006] 가이드와이어는 심근분획 혈류 예비력을 측정하기 위한 것으로, 혈류의 혈압을 정확하게 측정하기 위해 광학센서가 내장되어, 관상동맥 내로 삽입되어 혈압을 측정할 수 있다. 이러한, 가이드와이어는 스테인리스 재질의 몸통과 코일의 Tip으로 구성되어 있다.
- [0007] 디스플레이 Hardware는 측정된 광센서의 지표를 디스플레이하고, Software는 디스플레이에 나타낸 인터페이스와 같은 구성으로 이루어진다.
- [0008] 한국공개특허 제10-2007-0111333호(2007.11.21. 공개)(이하, '선행문헌'이라고 함)에서는 혈압을 측정하는 장치 및 방법에 대해 개시하고 있다. 그러나, 선행문헌에서는 혈압 측정 시 실시간으로 변화하는 혈압을 측정하여 FFR로 표시하는 기술에 대해 개시되지 않아, 이에 대한 내용이 필요한 실정이다.
- [0009] [선행기술문헌]
- [0010] [특허문헌]
- [0011] 한국공개특허 제10-2007-0111333호(2007.11.21. 공개)

발명의 내용

해결하려는 과제

[0012] 본 발명의 목적은 혈압을 측정한 데이터에서 최대혈압값 및 최소혈압값을 산출하여 디스플레이하기 위한 혈압 측정 시스템을 제공함에 있다.

과제의 해결 수단

- [0013] 본 발명은 혈압 측정 시스템에 관한 것으로, 1초 당 n번의 혈관 압력을 측정하는 측정부(100); 상기 1초 당 n번의 혈관 압력 데이터를 이용하여 최대혈압값 및 최소혈압값을 분석하고 산출하는 분석부(300); 및 산출된 상기최대혈압값 및 최소혈압값을 각각 디스플레이하는 디스플레이부(400);를 포함하여 구성된다.
- [0014] 또한, 상기 분석부(300)는 상기 최대혈압값 및 최소혈압값의 차가 기 설정된 값 이상일 경우, 상기 혈관 압력 데이터에서 최대혈압값 또는 최소혈압값을 산출하거나, 상기 최대혈압값 및 최소혈압값의 차가 기 설정된 값보다 적을 경우, 이전에 산출된 최대혈압값 또는 최소혈압값을 유지하는 것을 특징으로 한다.
- [0015] 또한, 상기 분석부(300)는 상기 최대혈압값 및 최소혈압값의 차가 기 설정된 값 이상이며, 상기 최대혈압값 또는 최소혈압값이 첫 번째 또는 n 번째 측정된 혈관 압력 데이터일 경우, 이전에 산출된 최대혈압값 또는 최소혈압값을 유지하는 것을 특징으로 한다.
- [0016] 또한, 상기 분석부(300)는 상기 최대혈압값 및 최소혈압값의 차가 기 설정된 값 이상이며, 상기 최대혈압값 또는 최소혈압값이 첫 번째 또는 n 번째 측정된 혈관 압력 데이터가 아닐 경우, 첫 번째부터 n 번째까지 측정된

혈관 압력 데이터 중 최대혈압값 및 최소혈압값을 산출하는 것을 특징으로 한다.

발명의 효과

[0017] 이상에서 설명한 바와 같이 본 발명의 실시 예에 따르면, 본 발명에 의하면 혈압 측정과 동시에 혈압의 변화에 따른 FFR를 산출하여 디스플레이할 수 있는 효과가 있다.

도면의 간단한 설명

[0018] 도 1은 혈관 내의 압력을 측정하기 위해 광섬유 혈압센서를 삽입하는 것을 나타낸 도면

도 2는 종래의 광섬유 혈압센서의 사진

도 3은 본 발명의 바람직한 일 실시예에 따른 혈압 측정 시스템의 구성도

도 4는 본 발명의 바람직한 일 실시에에 따른 혈압 측정 시스템을 이용하여 혈압을 측정한 그래프

도 5는 본 발명의 바람직한 일 실시예에 따른 혈압 측정 시스템에서 사용하는 혈압 측정 알고리즘을 나타낸 순 서도

발명을 실시하기 위한 구체적인 내용

- [0019] 본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시 예를 가질 수 있는 바, 특정 실시 예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
- [0020] 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
- [0021] 제1, 제2 등의 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
- [0022] 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하 게 제2 구성요소도 제1 구성요소로 명명될 수 있다.
- [0023] 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
- [0024] 어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다.
- [0025] 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
- [0026] 본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다.
- [0027] 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
- [0028] 다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다.
- [0029] 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적

인 의미로 해석되지 않는다.

- [0030] 이하에서는 도면을 참조하여, 본 발명의 바람직한 일 실시예에 따른 혈압 측정 시스템에 대하여 상세히 설명하기로 한다. 또한, 이하에서 종래 주지된 사항에 대한 설명은 본 발명의 요지를 명확히하기 위해 생략하거나 간단히 한다.
- [0031] 도3을 참조하여 설명하면, 본 발명은 혈압 측정 시스템에 관한 것으로, 1초 당 n번의 혈관 압력을 측정하는 측정부(100)와, 상기 1초 당 n번의 혈관 압력 데이터를 이용하여 최대혈압값 및 최소혈압값을 분석하고 산출하는 분석부(300) 및 산출된 상기 최대혈압값 및 최소혈압값을 각각 디스플레이하는 디스플레이부(400)를 포함하여 구성된다.
- [0032] 도 4 및 도 5를 참조하여 최대혈압값 및 최소혈압값을 산출하는 로직에 대해 상세히 설명한다.
- [0033] 먼저, 측정부(100)에서 혈압을 측정한다. 더욱 상세하게 설명하면, 상기 측정부(100)는 광센서가 결합된 와이어 (wire)로 이루어질 수 있다. 이러한, 상기 측정부(100)는 측정하고자 하는 혈관 내에 삽입되어, 상기 광센서에 서 광신호의 파장 변조 특정, 광 감도 변화 등을 이용하여 혈관의 압력을 측정한다.
- [0034] 이러한, 상기 측정부(100)는 1초 당 n번의 혈관 압력을 측정한다. 즉, 상기 측정부(100)는 초당 n번의 혈관 압력을 측정하여, 측정된 데이터를 전기적 신호로 변환하고 아날로그적 신호로 출력한다. 또한, 상기 1초 당 n 번의 혈관 압력 데이터는 심장이 한번 뛰는 박동 주기가 적어도 하나 이상 포함되는 것이 바람직하다.
- [0035] 또한, 상기 측정된 혈관 압력 데이터는 아날로그적 신호로 출력되어, 신호처리부(200)에서 디지털 신호로 변환된다. 변환된 상기 디지털 신호는 혈압값을 나타내는 것으로, Serial 통신을 통해 상기 신호처리부(200)로부터 분석부(300)로 1초당 n개의 데이터가 전달된다. 또한, 상기 신호처리부(200)는 변환된 디지털 신호 데이터를 저장부(미도시)에 전달하여 저장하기도 한다. 또한, 상기 신호처리부(200)에서 디지털 신호로 변환된 혈압 측정데이터는 도 4와 같이 나타난다.
- [0036] 상기 분석부(300)는 상기 신호처리부(200)로부터 전달되는 상기 1초 당 n 번의 혈관 압력 데이터를 Serial 통신을 통해 획득하고, 획득한 상기 1초 당 n 번의 혈관 압력 데이터 중 최대혈압값 및 최소혈압값을 분석하고 산출한다.
- [0037] 더욱 상세하게 설명하면, 상기 분석부(300)는 1초당 n번의 혈관 압력을 측정한 데이터 중 최대혈압값 및 최소혈 압값을 산출한다. 이때, 상기 1초당 n번의 혈관 압력을 측정한 데이터에는 심장이 한번 뛰는 박동 주기가 적어 도 하나 이상 포함되는 것이 바람직하다.
- [0038] 예를 들어, 도 4에서 1초당 n번 측정한 혈압 데이터가, a1에서 n 까지 일 경우, 최대혈압값인 a2 와 최소혈압값 인 a3 의 값을 산출한다.
- [0039] 이때, 상기 분석부(300)는 산출된 상기 최대혈압값(a2) 및 최소혈압값(a3)의 차가 기 설정된 값 이상일 경우, 이후에 심장 박동 주기에서 측정된 혈관 압력 데이터에서 최대혈압값 또는 최소혈압값을 산출한다.
- [0040] 또한, 상기 분석부(300)는 산출된 상기 최대혈압값(a2) 및 최소혈압값(a3)의 차가 기 설정된 값보다 적을 경우, 이전에 산출된 최대혈압값 또는 최소혈압값을 유지한다. 그 이유는 산출된 상기 최대혈압값 및 최소혈압값의 차가 기 설정된 값보다 적을 경우, 노이즈로 판단하고 분석을 하지 않는다.
- [0041] 예를 들어, 상기 최대혈압값 및 최소혈압값의 차를 3mmhg 로 설정할 수 있다. 이때, 상기 분석부(300)는 a1번째 부터 n번째 혈관 압력 데이터 중 산출된 상기 최대혈압값(a2) 및 최소혈압값(a3)의 차가 3mmhg 이상일 경우, 이후에 심장 박동 주기에서 측정된 혈관 압력 데이터에서 최대혈압값 및 최소혈압값을 산출하는 로직을 동작한다.
- [0042] 또한, 상기 최대혈압값 및 최소혈압값의 차가 3mmhg 이상이 아닐 경우, 이전에 산출한 최대혈압값 또는 최소혈 압값을 유지한다.
- [0043] 또한, 상기 분석부(300)는 상기 최대혈압값 및 최소혈압값의 차가 3mmhg 이상이고, 상기 최대혈압값 또는 최소혈압값이 첫 번째 또는 n 번째 측정된 혈관 압력 데이터일 경우, 이전에 산출된 최대혈압값 또는 최소혈압값을 유지한다.
- [0044] 또한, 상기 분석부(300)는 상기 최대혈압값 또는 최소혈압값이 첫 번째 또는 n 번째 측정된 혈관 압력 데이터가 아닐 경우, 첫 번째부터 n 번째까지 측정된 혈관 압력 데이터 중 최대혈압값 및 최소혈압값을 산출한다.
- [0045] 즉, 상기 분석부(300)는 첫 번째부터 n 번째까지 측정된 혈관 압력 데이터 중 최대혈압값 또는 최소혈압값이 첫

번째 또는 n 번째 측정된 혈관 압력 데이터에 해당되는지 판단한다.

[0046] 더욱 상세하게 설명하면, 도 4에서 측정된 혈관 압력 데이터가 a5에서 a7 까지라고 한다면, 최대혈압값은 a5 이 고, 최소혈압값은 a6이 된다. 이때, 최대혈압값이 a5에서 a7 주기에서 첫 번째 측정된 혈압값이기 때문에 이전 에 산출된 최대혈압값인 a4를 유지하여 디스플레이한다.

또한, 측정된 혈관 압력 데이터가 a1에서 n까지 라고 한다면, 최대혈압값은 a2 이고, 최소혈압값은 a3이 된다. [0047] 이때, 최대혈압값 및 최소혈압값이 a1 또는 n 번째의 혈압값이 아니기 때문에, a1에서 n 번째 측정된 혈압값 범 위 내에 있는 최대혈압값인 a2 및 최소혈압값인 a3 을 산출하고, 디스플레이한다.

본 발명은 본 발명은 경제협력권육성사업, 광.전자융합사업으로, 산업통상자원부와 한국산업기술진흥원의 제협

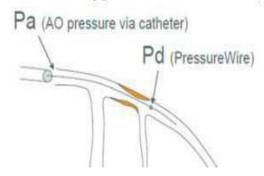
력권육성사업, 광.전자융합사업으로 수행된 연구결과입니다.

[0049] [도면부호]

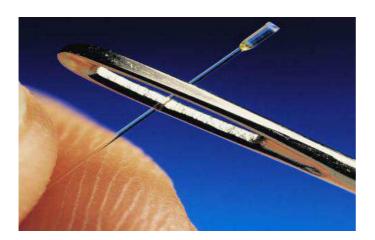
[0048]

[0050] 100 : 측정부

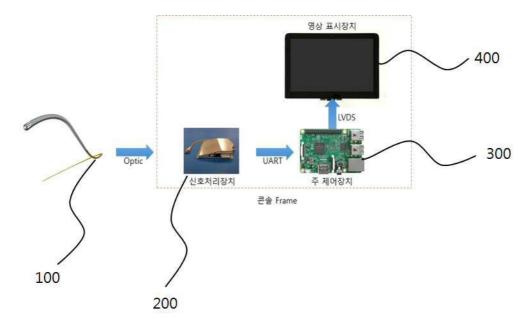
[0051] 200 : 신호처리부

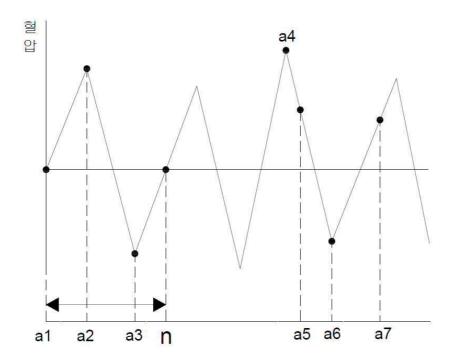

[0052] 300 : 분석부

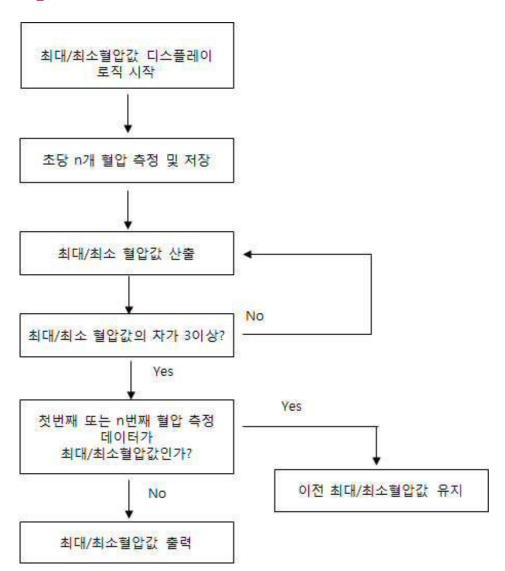
[0053] 400 : 디스플레이부


도면

도면1

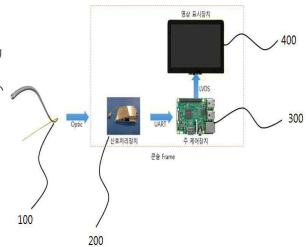

☐ Hence at Maximum Hyperemia; FFR = Pd/Pa


도면2


도면3

도면4

도면5



专利名称(译)	血压测量系统			
公开(公告)号	KR1020190051327A	公开(公告)日	2019-05-15	
申请号	KR1020170146837	申请日	2017-11-06	
[标]申请(专利权)人(译)	INNOTEMS			
申请(专利权)人(译)	泰晤士创新股份有限公司			
[标]发明人	전세형			
发明人	전세형			
IPC分类号	A61B5/021 A61B5/00			
CPC分类号	A61B5/021 A61B5/7235 A61B5/7275 A61B5/742			
代理人(译)	李,韩元-杨			
外部链接	Espacenet			

摘要(译)

血压测量系统技术领域本发明涉及一种用于测量和显示最高血压和最低血压的血压测量系统,更具体地,涉及一种用于每秒测量n次血管压力的测量单元100。分析单元300用于每秒使用n次血管压力数据来分析和计算最大血压值和最小血压值;显示单元400分别显示所计算的最大和最小血压值。

