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METHOD AND SYSTEM TO CALIBRATE
FITNESS LEVEL AND DIRECT CALORIE
BURN USING MOTION, LOCATION
SENSING, AND HEART RATE

PRIORITY

[0001] This application claims priority to U.S. Provisional
Patent Application No. 62/044,846, titled “Calibration and
calorimetry Using Motion and Heart Rate Sensors,” filed on
Sep. 2, 2014, which is hereby incorporated by reference in its
entirety.

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0002] This disclosure is related to U.S. patent application
Ser. No. [TBD], titled “Accurate calorimetry for Intermittent
Exercises,” filed Sep. 30, 2014; U.S. patent application Ser.
No. [TBD] titled “Method and System to Estimate Day-Long
Calorie Expenditure Based on Posture,” filed Sep. 30, 2014;
U.S. patent application Ser. No. [TBD] titled “Sensor Fusion
Approach to Energy Expenditure Estimation,” filed Sep. 30,
2014; U.S. patent application Ser. No. [TBD] titled “Terrain
Type Inference from Wearable with Motion Sensing,” filed
Sep. 30, 2014; U.S. patent application Ser. No. [TBD] titled
“Method to Estimate Physical Activity Rating from Pedom-
eter Data,” filed Sep. 30, 2014; U.S. patent application Ser.
No. [TBD]titled “Local Model for calorimetry,” filed Sep. 30,
2014; U.S. patent application Ser. No. [TBD] titled “Latent
Load Calibration for calorimetry Using Sensor Fusion,” filed
Sep. 30, 2014; U.S. Provisional Patent Application No.
62/044,844, titled “Context-aware Heart Rate Estimation,”
filed Sep. 2, 2014; U.S. patent application Ser. No. 14/466,
890, titled “Heart Rate Path Optimizer,” filed on Aug. 22,
2014; and U.S. Provisional Patent Application No. 62/005,
780, titled “Automatic Track Selection for Calibration of
Pedometer Devices,” filed on May 30, 2014; which are hereby
incorporated by reference in their entirety.

FIELD

[0003] The present disclosure relates generally to improv-
ing calorie expenditure prediction and tracking and, more
particularly, to techniques for calibration and calorimetry
using data from motions sensors and heart rate sensors.

BACKGROUND

[0004] An individual’s health or fitness can be assessed
from the perspective of energy expenditure over time. One
technique for estimating energy expenditure, or calorie burn,
is based on heart rate. During moderate to vigorous exercise,
heart rate relates linearly to energy expenditure.

[0005] At a macroscopic level, an individual’s heart rate
indicates how quickly the individual’s body is delivering
oxygen to vital organs and tissues, which consume the oxy-
gen through oxidative cellular metabolism. The heart pumps
blood through the lungs, where blood cells absorb oxygen
from the lungs. This oxygen-rich blood returns to the heart,
from which itis pumped through blood vessels that distribute
the blood throughout the body to its organs and tissues. Tis-
sues absorb oxygen carried by the blood and use the oxygen
in chemical reactions of oxidative metabolism, also known as
aerobic metabolism, to provide energy for biological func-
tions.
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[0006] Therate at which an individual body consumes oxy-
gen at a given point in time is referred to as the volumetric
flow of oxygen into the tissues of the body, also known as
“oxygen uptake,” or simply VO, (e.g., liters of oxygen per
minute). Controlling for differences in body size, VO, is
often reported for a given individual in terms of oxygen
volume at standard temperature and pressure per unit of time
per unit of body mass (e.g., ml/kg/min).

[0007] Specifically, VO, measures the overall rate at which
the body is engaged in oxidative metabolism. VO, during
various physical activities—and, consequently, energy
expenditure during those physical activities—varies from
individual to individual. In a laboratory setting, it may be
possible to use indirect calorimetry (e.g., with a VO, mask,
heart rate monitors, etc.), to measure an individual’s aerobic
capacity, also known as maximum VO,, or simply “VO,max.
»VO,max is the maximum value of VO, (e.g., measured with
indirect calorimetry) that individual can consume.

[0008] Another measurement, related to VO,, is the Meta-
bolic Equivalent of Task (MET), or simply “metabolic
equivalent.” Conventionally, 1 MET was defined to represent
an “average” person’s Resting Metabolic Rate (RMR) while
sitting quietly. 1 MET was set to equal a VO, of 3.5 ml/kg/
min, or 1 kcal/kg/hr. Actual resting (or basal) metabolic rates
will vary from oneindividual to the next. METs provide a way
to compare calorie expenditure for different tasks. For
example, if the task of walking slowly is designated as 2
METs (2 kcal/kg/hr), it signifies that walking slowly con-
sumes twice as much energy as sitting quietly.

[0009] When these parameters are known, it may be pos-
sible to calibrate a fitness tracking device with more accurate
calorimetry. Thus, at a given heart rate during moderate to
vigorous aerobic exercise, a device may be capable of calcu-
lating a calorie burn rate that is calibrated for the individual.
However, in practice, many individuals will not know their
VO, max.

SUMMARY

[0010] Embodiments of the present disclosure include a
fitness tracking device and techniques for accurately tracking
an individual’s energy expenditure over time and over a vari-
ety of activities while wearing the fitness tracking device. In
some embodiments, the fitness tracking device may be a
wearable device. The wearable device may be worn on a
wrist, such as a watch, and it may include one or more micro-
processors, a display, and a variety of sensors, including a
heart rate sensor and one or more motion sensors.

[0011] Embodiments of the present disclosure may provide
accurate, individualized calorimetry throughout a person’s
day, and across a variety of activities. Some embodiments
may calibrate a fitness tracking device for an individual with-
out necessarily relying on measuring VO,, heart rate testing,
or self-reporting about physical activity. Additionally, some
embodiments may model calorie burn and perform calorim-
etry processes for a variety of activities accurately, such as
walking, running, cycling, or weight lifting. Also, some
embodiments may use sensor data to estimate load (e.g.,
resistance, incline, grade, etc.) for exercise equipment such as
elliptical trainers, step machines, treadmills, etc., and some
embodiments may use sensor data to determine or predict a
type of terrain (e.g., pavement, gravel, etc.), to model energy
expenditure more accurately by taking these estimations into
account. Furthermore, some embodiments may model calorie
burn and perform calorimetry processes for sedentary and
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low-intensity activity (e.g., when not in an active exercise
session), including sitting or standing.

[0012] In some embodiments, the heart rate sensor may
include a photoplethysmogram (PPG) sensor for sensing
heart rate. The PPG sensor can illuminate the user’s skin
using a light, such as a light-emitting diode (LED), and can
measure changes in light absorption as blood is pumped
through the subcutaneous tissue under the PPG sensor. The
fitness tracking device can measure an individual’s current
heart rate from the PPG. The heart rate sensor may also be
configured to determine a confidence level indicating a rela-
tive likelihood of an accuracy of a given heart rate measure-
ment.

[0013] In some embodiments, the motion sensors may
include, for example, an accelerometer, a gyroscope, etc. The
fitness tracking device may also include a motion coproces-
sor, which may be optimized for low-power, continuous
motion sensing and processing.

[0014] In some embodiments, the fitness tracking device
may be capable of communicating with a companion device.
The fitness tracking device may communicate with a com-
panion device wirelessly, e.g., via a Bluetooth connection or
similar wireless communication method. The companion
device may be asecond mobile device, such as a phone, which
may include additional sensors. The additional sensors in the
companion device may include a Global Positioning System
(GPS) sensor, accelerometer, gyroscope, altimeter, motion
coprocessoar, etc. The companion device may, for example,
communicate location information based on data from the
GPS sensor to the fitness tracking device.

[0015] Insomeembodiments, a new fitness tracking device
may be calibrated to measure energy expenditure based on
heart rate and motion data. Out of the box, the new fitness
tracking device may assume a default physical activity level
(“PAL”) for the user, which in turn may be used to estimate
calorie burn for a variety of activities. As the user wears the
new fitness tracking device over time, the new fitness tracking
device may improve its estimate of the user’s PAL. In some
embodiments, the new fitness tracking device may consider a
rolling average number of daily steps to adjust the user’s PAL.
Instead of, or in addition to, relying on pedometry to adjust
the user’s PAL, the new fitness tracking device may undergo
active calibration by, for example, monitoring the user’s heart
rate and location information during at least a brief session of
moderate to vigorous intensity (e.g., a ten-minute run).

[0016] Insomeembodiments, a fitness tracking device may
apply particular models and algorithms based on prior cali-
bration to compute energy expenditure given information
about the user’s heart rate, or motion, or a combination of the
two. Energy expenditure computations may also take into
account information from a companion device, such as GPS
location information. The fitness tracking device may apply
different models or different algorithms for different types of
activity. For example, the fitness tracking device may use
motion sensing information to determine whether a sedentary
user is sitting down (burning relatively fewer calories) or
standing up (burning relatively more calories).

[0017] In some embodiments, the fitness tracking device
may apply yet another model for a user while walking, which
may be based on pedometry and step counting.

[0018] In some embodiments, the fitness tracking device
may improve the accuracy of its energy expenditure calcula-
tions by accounting for activity onset and cool down phases
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that occur, sometimes frequently, during intermittent physi-
cal activity such as weight lifting.

[0019] In some embodiments, the fitness tracking device
may use a combination of motion and heart rate data to
measure calorie burn during active and paced exercises such
as running or cycling. Additionally, the fitness tracking device
may make additional optimizations when a user is cycling by,
for example, applying a work rate model that accounts for
additional forces such as rolling resistance and aerodynamic
drag. In some embodiments, the fitness tracking device may
adjust the work rate model for cycling further by, for example,
using motion data to detect the type of terrain on which the
user is cycling.

[0020] In some embodiments, the fitness tracking device
may use a combination of motion and heart rate data to
estimate the load (or resistance) being, for example, gener-
ated by exercise equipment such as an elliptical trainer, step
machine, etc.

[0021] In some embodiments, the fitness tracking device
may use activity classification based on motion or heart rate
data to automatically determine what type of physical activity
(e.g., running) that a user is engaged in, and when that activity
begins and ends. In other embodiments, the fitness tracking
device may receive input from the user about when a user
begins or ends an activity session, and what type of activity
(e.g., running or cycling) the user is beginning or ending.
[0022] In some embodiments, the fitness tracking device
may make further optimizations to compensate for limited
system resources, such as limited battery power or limited
memory capacity. For example, the fitness tracking device
may decrease the frequency of instantaneous heart rate moni-
toring when a user is determined to be out of session, and
increase the frequency of heart rate monitoring when a user is
determined to be in session. For another example, the fitness
tracking device may use local models to maintain highly
accurate energy expenditure estimates while also signifi-
cantly reducing the amount of power or memory needed to
perform the calculations based on a local model technique as
opposed to a nonlocal modeling technique. In some embodi-
ments, the local models may be linear, quadratic, or higher
order nonlinear equations.

[0023] In one aspect, the present disclosure relates to a
method including determining, by a fitness tracking device,
that a user of the fitness tracking device is engaged in an
exercise session at an intensity level above a threshold inten-
sity level; obtaining, by the fitness tracking device, a plurality
of heart rate measurements of the user over a period of time
during the exercise session, wherein the plurality of heart rate
measurements includes heart rate data from a heart rate sensor
of the fitness tracking device; obtaining, by the fitness track-
ing device, motion data of the user over the period of time,
wherein the motion data includes a first plurality motion
measurements from a first motion sensor of the fitness track-
ing device; determining, by the fitness tracking device, for
each of the plurality of heart rate measurements, a corre-
sponding work rate measurement, wherein the work rate mea-
surement includes a speed of the user at a corresponding time;
estimating, by the fitness tracking device, for each of the
plurality of heart rate measurements, a corresponding energy
expenditure rate at the corresponding time using the corre-
sponding work rate measurement; estimating an aerobic
capacity of the user by applying, by the fitness tracking
device, a regression analysis of the plurality of heart rate
measurements and the corresponding energy expenditure rate
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for each of the plurality of heart rate measurements; and
storing, by the fitness tracking device, the aerobic capacity of
the user in a memory of the fitness tracking device.

[0024] In some embodiments, determining that the user of
the fitness tracking device is engaged in the exercise session
at the intensity level above the threshold intensity level can
include inferring an activity context of the user using the
motion data of the user. In some embodiments, the motion
data of the user can include a second plurality of motion
measurements from a second motion sensor of a companion
device in wireless communication with the fitness tracking
device. In some embodiments, the companion device can
include a smartphone, and wherein the second motion sensor
of the companion device can include a GPS sensor. In some
embodiments, estimating the acrobic capacity of the user can
include obtaining, from the memory of the fitness tracking
device, an observed minimum heart rate; obtaining, from the
memory of the fitness tracking device, an observed maximum
heart rate; obtaining, by the fitness tracking device, an age of
the user; using the age of the user to determine, by the fitness
tracking device, an estimated maximum heart rate; and deter-
mining, for each heart rate measurement of the plurality of
heart rate measurements, a corresponding intensity level by
comparing each heart rate measurement with the observed
minimum heart rate and a greater of the observed maximum
heart rate and the estimated maximum heart rate.

[0025] In some embodiments, the regression analysis can
be a linear regression analysis, and wherein the linear regres-
sion analysis can be constrained, by the fitness tracking
device, to include a point representing a minimum energy
expenditure rate of the user at a corresponding minimum
heart rate of the user. In some embodiments, each correspond-
ing energy expenditure rate can be estimated by the fitness
tracking device using at least one of an age of the user, a
weight of the user, and a sex of the user.

[0026] Another aspect of the present disclosure relates to a
fitness tracking device including a heart rate sensor for
obtaining heart rate measurements from a user of the fitness
tracking device; a motion sensor for obtaining motion data of
the user; a memory; and a processor communicatively
coupled to the heart rate sensor, the motion sensor, and the
memory, wherein the processor is configured to: determine
that the user is engaged in an exercise session at an intensity
level above a threshold intensity level; obtain a plurality of
heart rate measurements of the user over a period of time
during the exercise session, wherein the plurality of heart rate
measurements can include heart rate data from the heart rate
sensor of the fitness tracking device; obtain motion data of the
user over the period of time, wherein the motion data can
include a first plurality motion measurements from the first
motion sensor of the fitness tracking device; determine, for
each of the plurality of heart rate measurements, a corre-
sponding work rate measurement, wherein the work rate mea-
surement can include a speed of the user at a corresponding
time; estimate, for each of the plurality of heart rate measure-
ments, a corresponding energy expenditure rate at the corre-
sponding time by using the corresponding work rate measure-
ment; estimate an aerobic capacity of the user by applying a
regression analysis of the plurality of heart rate measure-
ments and the corresponding energy expenditure rate for each
of the plurality of heart rate measurements; and storing the
aerobic capacity of the user in the memory of the fitness
tracking device.
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[0027] Insome embodiments, the processor can be config-
ured to infer an activity context of the user by using the
motion data of the user. In some embodiment, the motion data
of the user can include a second plurality of motion measure-
ments from a second motion sensor of a companion device in
wireless communication with the processor. In some embodi-
ments, the companion device can include a smartphone, and
wherein the second motion sensor of the companion device
can include a GPS sensor. In some embodiments, the proces-
sor can be configured to estimate the aerobic capacity of the
user by: obtaining, from the memory of the fitness tracking
device, an observed minimum heart rate; obtaining, from the
memory of the fitness tracking device, an observed maximum
heart rate; obtaining an age of the user; using the age of the
user to determine an estimated maximum heart rate; and
determining, for each heart rate measurement of the plurality
of heart rate measurements, a corresponding intensity level
by comparing each heart rate measurement with the observed
minimum heart rate and a greater of the observed maximum
heart rate and the estimated maximum heart rate.

[0028] In some embodiments, the regression analysis can
be a linear regression analysis, and the processor can be
configured to constrain the linear regression analysis to
include a point representing a minimum energy expenditure
rate of the user at a corresponding minimum heart rate of the
user. In some embodiments, the processor can be configured
to estimate each corresponding energy expenditure rate using
atleast one of an age of the user, a weight of the user, and a sex
of the user.

[0029] Inanotheraspect, the present disclosure relates to an
article of manufacture including a non-transitory processor
readable storage medium; and instructions stored on the
medium; wherein the instructions are configured to be read-
able from the medium by a processor of a fitness tracking
device can include a memory, a heart rate sensor for obtaining
heart rate measurements from a user of the fitness tracking
device, and a motion sensor for obtaining motion data of the
user, and thereby cause the processor to operate so as to:
determine that the user is engaged in an exercise session at an
intensity level above a threshold intensity level, obtain a
plurality of heart rate measurements of the user over a period
of time during the exercise session, wherein the plurality of
heart rate measurements can include heart rate data from the
heart rate sensor of the fitness tracking device; obtain motion
data of the user over the period of time, wherein the motion
data can include a first plurality motion measurements from
the first motion sensor of the fitness tracking device; deter-
mine, for each of the plurality of heart rate measurements, a
corresponding work rate measurement, wherein the work rate
measurement can include a speed of the user at a correspond-
ing time; estimate, for each of the plurality of heart rate
measurements, a corresponding energy expenditure rate at
the corresponding time by using the corresponding work rate
measurement; estimate an aerobic capacity of the user by
applying a regression analysis of the plurality of heart rate
measurements and the corresponding energy expenditure rate
for each of the plurality of heart rate measurements; and
storing the aerobic capacity of the user in the memory of the
fitness tracking device.

[0030] Other features and advantages will become apparent
from the following detailed description and drawings.
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BRIEF DESCRIPTION OF THE DRAWINGS

[0031] In order to facilitate a fuller understanding of the
present disclosure, reference is now made to the accompany-
ing drawings, in which like elements are referenced with like
numerals. These drawings should not be construed as limiting
the present disclosure, but are intended to be illustrative only.
[0032] FIG.1shows a fitness tracking device in accordance
with an embodiment of the present disclosure.

[0033] FIG. 2 depicts a block diagram of a fitness tracking
device in accordance with an embodiment of the present
disclosure.

[0034] FIG. 3 shows a companion device in accordance
with an embodiment of the present disclosure.

[0035] FIG. 4 shows a calibration method in accordance
with an embodiment of the present disclosure.

[0036] FIG.5depicts a block diagram ofa calibration tech-
nique for inferring physical activity level in accordance with
an embodiment of the present disclosure.

[0037] FIG. 6 depicts a block diagram ofa calibration tech-
nique for inferring physical activity level in accordance with
an embodiment of the present disclosure.

[0038] FIG. 7 depicts a block diagram ofa calibration tech-
nique for inferring physical activity level in accordance with
an embodiment of the present disclosure.

[0039] FIGS.8A-C show chart representations of a calibra-
tion technique for inferring physical activity level in accor-
dance with embodiments of the present disclosure.

[0040] FIG. 9 shows a high-intensity calibration method in
accordance with an embodiment of the present disclosure.
[0041] FIG. 10 shows a high-intensity calorimetry method
in accordance with an embodiment of the present disclosure.
[0042] FIG. 11 depicts a terrain detection method in accor-
dance with an embodiment of the present disclosure.

[0043] FIG. 12 shows a load estimation method in accor-
dance with an embodiment of the present disclosure.

[0044] FIG. 13 shows a load estimation method in accor-
dance with an embodiment of the present disclosure.

[0045] FIG. 14 shows acalorimetry method for intermittent
activity in accordance with an embodiment of the present
disclosure.

[0046] FIG. 15 shows a posture detection method for sed-
entary calorimetry in accordance with an embodiment of the
present disclosure.

[0047] FIG. 16 depicts a posture detection method in accor-
dance with an embodiment of the present disclosure.

[0048] FIG. 17 shows a posture detection method for sed-
entary activity in accordance with an embodiment of the
present disclosure.

[0049] FIG. 18 illustrates a posture detection technique in
accordance with an embodiment of the present disclosure.
[0050] FIGS.19A-B illustrate posture detection techniques
in accordance with embodiments of the present disclosure.
[0051] FIG. 20 shows a speed-based calorimetry method in
accordance with an embodiment of the present disclosure.
[0052] FIG. 21 shows a calorimetry technique using local
models in accordance with an embodiment of the present
disclosure.

DESCRIPTION

[0053] There is growing interest to assess and monitor
one’s health or fitness and physical activity. The present dis-
closure describes a fitness tracking device that may be con-
figured to provide an accurate, individualized quantification
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of energy expenditure over time and across a variety of activi-
ties. The device may implement sophisticated calorimetry
techniques based on empirical models and sophisticated algo-
rithms that may use motion data, heart rate data, ora weighted
combination of both motion data and heart rate data.

[0054] FIG. 1 shows an example of a fitness tracking device
100 in accordance with an embodiment of the present disclo-
sure. In some embodiments, the fitness tracking device 100
may be a wearable device, such as a watch configured to be
worn around an individual’s wrist. As described in more
detail below, the fitness tracking device 100 may be calibrated
according to physical attributes of the individual and physical
activity by the individual user who is wearing the fitness
tracking device 100.

[0055] FIG. 2 depicts a block diagram of example compo-
nents that may be found within the fitness tracking device 100
in accordance with an embodiment of the present disclosure.
These components may include a heart rate sensing module
210, a motion sensing module 220, a display module 230, and
an interface module 240.

[0056] The heart rate sensing module 210 may include or
may be in communication with a PPG sensor as previously
described. The fitness tracking device can measure an indi-
vidual’s current heart rate from the PPG. The heart rate sensor
may also be configured to determine a confidence level indi-
cating a relative likelihood of an accuracy of a given heart rate
measurement. In other embodiments, a traditional heart rate
monitor may be used and may communicate with the fitness
tracking device 100 through a near field communication
method (e.g., Bluetooth).

[0057] Thefitness tracking device 100 may include an LED
and a photodiode or the equivalent to obtain a PPG. The
fitness tracking device 100 may subsequently determine the
user’s current heart rate based on the PPG.

[0058] To conserve battery power on the fitness tracking
device 100, the LED may be a relatively low-power LED,
such as a green LED. In some embodiments, to further con-
serve power on the fitness tracking device 100, the fitness
tracking device 100 may be configured to check heart rate at
periodic intervals (e.g., once per minute, or once per three
minutes). The period for checking heart rate may change
dynamically. For example, if the fitness tracking device 100
automatically detects or receives input from the user that the
user is engaged in a certain level, intensity, or type of physical
activity (i.e., “in session”), the fitness tracking device may
check heart rate more frequently (e.g., once per thirty sec-
onds, once per minute, etc.). The fitness tracking device 100
may use, for example, machine learning techniques, battery
power monitoring, or physical activity monitoring to balance
the frequency of heart rate samples for accurate calorimetry
with power optimization.

[0059] Inaddition to the heart rate sensing module 210, the
fitness tracking device 100 may also include the motion sens-
ing module 220. The motion sensing module 220 may include
one or more motion sensors, such as an accelerometer or a
gyroscope. In some embodiments, the accelerometer may be
a three-axis, microelectromechanical system (MEMS) accel-
erometer, and the gyroscope may be a three-axis MEMS
gyroscope. A microprocessor (not shown) or motion copro-
cessor (not shown) of the fitness tracking device 100 may
receive motion information from the motion sensors of the
motion sensing module 220 to track acceleration, rotation,
position, or orientation information of the fitness tracking
device 100 in six degrees of freedom through three-dimen-
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sional space. As described in more detail herein, motion data
obtained by the motion sensing module 220 may be used for
a variety of purposes, including work rate modeling, auto-
matic activity classification, pedometry, posture detection,
cycling terrain identification, etc.

[0060] In some embodiments, the motion sensing module
220 may include other types of sensors in addition to accel-
erometers and gyroscopes. For example, the motion sensing
module 220 may include an altimeter, or other types of loca-
tion sensors, such as a GPS sensor.

[0061] In some embodiments, the fitness tracking device
100 may take advantage of the knowledge that the heart rate
sensing module 210 and the motion sensing module 220 are
approximately collocated in space and time to combine data
from each module 210 and 220 to improve the accuracy of its
calorimetry functionality. Depending on the current activity
and a determination of a confidence of current heart rate and
motion data, the fitness tracking device 100 may also rely on
one of either the heart rate or a motion-derived work rate to
estimate energy expenditure more accurately.

[0062] The fitness tracking device 100 may also include a
display module 230. Display module 230 may be a screen,
such as a sapphire or glass touchscreen, configured to provide
output to the user as well as receive input form the user via
touch. For example, display 230 may be configured to show
the user a current heart rate or a daily average energy expen-
diture. Display module 230 may receive input form the user to
select, for example, which information should be displayed,
or whether the user is beginning a physical activity (i.e.,
starting a session) or ending a physical activity (i.e., ending a
session), such as a running session or a cycling session. In
some embodiments, the fitness tracking device 100 may
present output to the user in other ways, such as by producing
sound with a speaker (not shown), and the fitness tracking
device 100 may receive input from the user in other ways,
such as by receiving voice commands via a microphone (not
shown).

[0063] In some embodiments, the fitness tracking device
100 may communicate with external devices via interface
module 240, including a configuration to present output to a
user or receive input from a user. Interface module 240 may
be a wireless interface. The wireless interface may be a stan-
dard Bluetooth (IEEE 802.15) interface, such as Bluetooth
v4.0, also known as “Bluetooth low energy.” In other embodi-
ments, the interface may operate according to a cellphone
network protocol such as LTE or a Wi-Fi (IEEE 802.11)
protocol. In other embodiments, interface module 240 may
include wired interfaces, such as a headphone jack or bus
connector (e.g., Lightning, Thunderbolt, USB, etc.).

[0064] The fitness tracking device 100 may be configured
to communicate with a companion device 300 (FIG. 3), such
as a smartphone, as described in more detail herein. In some
embodiments, the fitness tracking device 100 may be config-
ured to communicate with other external devices, such as a
notebook or desktop computer, tablet, headphones, Bluetooth
headset, etc.

[0065] The modules described above are examples, and
embodiments of the fitness tracking device 100 may include
other modules not shown. For example, the fitness tracking
device 100 may include one or more microprocessors (not
shown) for processing heart rate data, motion data, other
information in the fitness tracking device 100, or executing
instructions for firmware or apps stored in a non-transitory
processor-readable medium such as a memory module (not
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shown). Additionally, some embodiments of the fitness track-
ing device 100 may include a rechargeable battery (e.g., a
lithium-ion battery), a microphone or a microphone array,
one or more cameras, one or more speakers, a watchband, a
sapphire or glass-covered scratch-resistant display, water-
resistant casing, etc.

[0066] FIG. 3 shows anexample of a companiondevice 300
in accordance with an embodiment of the present disclosure.
The fitness tracking device 100 may be configured to com-
municate with the companion device 300, such as by a Blue-
tooth connection. In some embodiments, the companion
device 300 may be a smartphone, tablet, or similar portable
computing device. The companion device 300 may be carried
by the user, stored in the user’s pocket, strapped to the user’s
arm with an armband or similar device, placed on a table, or
otherwise positioned within communicable range of the fit-
ness tracking device 100.

[0067] The companion device 300 may include a variety of
sensors, such as location and motion sensors (not shown).
When the companion device 300 may be optionally available
for communication with the fitness tracking device 100, the
fitness tracking device 100 may receive additional data from
the companion device 300 to improve or supplement its cali-
bration or calorimetry processes. For example, in some
embodiments, the fitness tracking device 100 may not include
a GPS sensor as opposed to an alternative embodiment in
which the fitness tracking device 100 may include a GPS
sensor. In the case where the fitness tracking device 100 may
not include a GPS sensor, a GPS sensor of the companion
device 300 may collect GPS location information, and the
fitness tracking device 100 may receive the GPS location
information via interface module 240 (FIG. 2) from the com-
panion device 300.

[0068] In another example, the fitness tracking device 100
may not include an altimeter, as opposed to an alternative
embodiment in which the fitness tracking device 100 may
include an altimeter. In the case where the fitness tracking
device 100 may not include an altimeter, an altimeter of the
companion device 300 may collect altitude or relative altitude
information, and the fitness tracking device 100 may receive
the altitude or relative altitude information via interface mod-
ule 240 (FIG. 2) from the companion device 300.

Calibration—Overview

[0069] The following section describes calibration of the
fitness tracking device 100 according to embodiments of the
present disclosure. Three examples of methods of calibration
described herein include: 1) default, or “out-of-the-box” cali-
bration, 2) calibration by inferring a user’s physical activity
level, and 3) calibration based on “active,” high-intensity
heart rate and work rate data.

[0070] As explained above, an individual exhibits a linear
relationship between heart rate (varying between the indi-
vidual’s minimum and maximum heart rates) and VO, (up to
the individual’s aerobic capacity, or VO,max). Additionally,
VO, is linked to a user’s aerobic power output based on the
user’s mietabolic rate, which may also vary from one indi-
vidual to the next. Metabolic rate may be expressed in Meta-
bolic Equivalents of Task, or METs. METs indicates how
many calories a “typical” individual burns per unit of body
mass per unit of time.

[0071] If the user’s weight is known, and the user under-
goes testing to measure the user’s maximum heart rate and
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VO,max, a device may be able to construct an individualized
model of energy expenditure for a given heart rate.

[0072] In situations such as laboratory testing, it may be
possible to test and measure a user’s VO,max and maximum
heart rate (“HRmax”"). With these predetermined values, a
device may be able to estimate energy expenditure more
accurately based on a user’s current heart rate during moder-
ate to high-intensity physical activity or exercise. Without
laboratory testing (e.g., testing based on indirect calorim-
etry), VO,max and HRmax may be estimated with other
methods, such as submaximal exercise testing or non-exer-
cise testing. For example, HRmax may be estimated based on
the user’s age. In some embodiments, if a heart rate greater
than HRmax is observed, then the device may update the
estimate of HRmax to use the higher, observed heart rate. In
some embodiments, the device may determine whether to use
an age-based estimate or ahigher observed heart rate based on
a confidence level for the heart rate measurement or whether
the higher observed heart rate was sustained for a threshold
period of time.

[0073] Theuser’s minimum heart rate (HRmin or HR,)) and
basal metabolic rate (e.g., MR,) may be observed by the
device as well or adjusted if even lower measurements are
observed.

Calibration—Default Physical Activity Level (PAL)

[0074] Although a fitness tracking device 100 may be con-
figured to calibrate itself based on heart rate measurements
and other observations, when a user first takes a fitness track-
ing device 100 out of its box and wears it for the first time, the
fitness tracking device 100 may not know the user’s VO, max
or other physical characteristics that it may need to measure
energy expenditure more accurately.

[0075] FIG. 4 shows a calibration method 400 in accor-
dance with an embodiment of the present disclosure. When a
user wears, turns on, or otherwise uses a new fitness tracking
device 100 for the first time, the fitness tracking device 100
may not have a record of any information about the physical
characteristics or physical activity level (“PAL”) of the user,
or other information about the user such as heart rate data or
work rate data.

[0076] At block 410, the user’s physical characteristics
may be obtained by the fitness tracking device 100. The
obtained physical characteristics may include the user’s age
(e.g., based on the user’s birth date, or based on a selected age,
or based on a selected age range, etc.). The obtained physical
characteristic’s may also include the user’s weight or weight
range in, for example, pounds or kilograms. In some embodi-
ments, the fitness tracking device 100 may automatically
select or convert units according to the user’s locale. The
obtained physical characteristics may also include the user’s
sex (e.g., male or female).

[0077] In some embodiments, the fitness tracking device
100 may obtain this information automatically via interface
module 240 (FIG. 2) from a companion device 300 (FIG. 3) or
another device. In other embodiments, the fitness tracking
device 100 may obtain this information from the user’s
account on a cloud-based data storage service after receiving
the user’s credentials to access the user’s account. In other
embodiments, the fitness tracking device 100 may obtain this
information by prompting the user to provide it, such as via a
touch-based interface or a voice-based interface.

[0078] The fitness tracking device 100 may be configured
to store the user’s physical characteristics in a memory mod-
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ule (e.g., a portion of a non-volatile NAND flash memory
chip). In some embodiments, the fitness tracking device 100
may be configured to update a record of the user’s physical
characteristics at appropriate intervals. For example, the fit-
ness tracking device 100 may be configured to increment the
user’s age annually on the user’s birthday, or on the anniver-
sary of the user’s initial age selection, or at other suitable
intervals. In some embodiments, the fitness tracking device
100 may periodically prompt the user to update the user’s
record of physical characteristics. For example, the fitness
tracking device 100 may ask the user to input an updated
weight once a week, or once a month, or other suitable inter-
vals. In other embodiments, the fitness tracking device 100
may periodically poll the user’s cloud-based data storage
service account or poll the user’s companion device 300 for
updated information, or the fitness tracking device 100 may
be configured to receive push notifications of updated physi-
cal characteristic information from the cloud-based data stor-
age service, the companion device 300, or other devices.

[0079] Atblock 420, a default PAL may be set for the user.
The PAL is a rating system, such as a 0-7 scale, or the 0-10
scale shown below in Table 1, or a scale that includes more
than eleven levels. In the example of Table 1. a PAL score of
Orepresents alowest physical activity level (e.g., avoids walk-
ing or exercise), and a PAL score of 10 (or higher, in some
embodiments) represents a highest physical activity level
(e.g., over seven hours per week of heavy physical exercise).
The PAL rating system may be based in part on the Physical
Activity Rating (PA-R) rating system on a 0-7 scale. See
Andrew S. Jackson et al., “Prediction of Functional Aerobic
Capacity Without Exercise Testing,” Medicine and Science in
Sports and Exercise, Vol. 22.6 (1990), pp. 863-870, which is
hereby incorporated by reference in its entirety. The PAL
scores and descriptions in Table I are examples that may
provide a parameter to an energy expenditure model for calo-
rimetry, such as a model based at least in part on the research
by Jackson etal. In other embodiments, other ranges of physi-
cal activity levels may be used, or other techniques for apply-
ing PAL scores in an energy expenditure model may be used.

TABLE I

Physical Activity Level (“PAL™) Scoring Sheet

PAL
Score  Description of Corresponding Level of Activity

0-1 point: Does not participate regularly in programmed recreation, sport,
or physical activity:

0 points Avoids walking or exercise (e.g., always uses elevators, drives
whenever possible instead of walking)
Walks for pleasure, routinely uses stairs, occasionally
exercises sufficiently to cause heavy breathing or perspiration
2-3 points: Participates regularly in recreation or work requiring modest
physical activity (such as golf, horseback riding, calisthenics,
gymnastics, table tennis, bowling, weight lifting, or yard work):

1 point

2 points  10-60 minutes per week of aforementioned activities
3 points Over 1 hour per week of aforementioned activities
4-7 points: Participates regularly in heavy physical exercise (such
as running or jogging, swimming, cycling, rowing, skipping rope, or
running in place), or engages in vigorous aerobic-type activities
(such as tennis, basketball, or handball):

4 points Runs less than 1 mile per week or spends less than 30 minutes
per week in comparable physical activity

5 points Runs 1-5 miles per week or spends 30-60 minutes per week in
comparable physical activity
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TABLE I-continued

Physical Activity Level (“PAL”) Scoring Sheet

PAL
Score  Description of Corresponding Level of Activity

6 points Runs 5-10 miles per week or spends 1-3 hours per week in
comparable physical activity
7 points  Runs more than 10 miles per week or a comparable physical
activity
8-10 points: Participates in heavy physical exercise for a significant
amount of time per week:

8 points  3-5 hours per week of “heavy physical exercise”
9 points  5-7 hours per week of “heavy physical exercise”
10 points  Over 7 hours per week of “heavy physical exercise”

[0080] As shown in Table I, some levels may be inferred
based on distance (if distance information is available), or
they may be inferred based on time. The parameters and
descriptions foreachlevelin Table I are merely examples, and
any suitable number of levels or suitable distinguishing fea-
tures of each level may be used. For example, PAL level 5
could be adjusted to require running more miles (e.g., 2-5
miles) or spending more time per week in comparable physi-
cal activity (e.g., 45-60 minutes).

[0081] The default PAL score may be set to, for example, 2
points, or 3 points. In some embodiments, a first default PAL
score (e.g., 2) may be selected for a first user in a first locale,
and a second default PAL score (e.g., 3) may be selected fora
second user in a second locale. In other embodiments, a
default PAL score (e.g., 2 or 3) may be selected based at least
in part on a predetermined “typical” PAL score for a group of
users with similar physical characteristics as the physical
characteristics obtained for the user at block 410.

[0082] The fitness tracking device 100 may be configured
to select a default PAL score so as to avoid requiring or
otherwise requesting the user to self-report a PAL score. For
example, a nutritionist or physical trainer might provide a
client with a survey to help assess the client’s PAL score.
Moreover, self-reported PAL scores may not necessarily be
accurate because the client may not necessarily be able to
answer the survey questions accurately. By selecting a default
PAL score, it may not be necessary for the fitness tracking
device 100 to present a new user with a similar survey, which
may decrease setup time for a new fitness tracking device 100
and improve the user’s overall setup or onboarding user expe-
rience.

[0083] For a typical or average user, a default PAL score
such as 2 may be accurate, if the user engages in 10-60
minutes of modest physical activity. For other users, it is
possible that a default PAL score such as 2 may either over-
estimate or underestimate the actual physical activity level of
the user. For example, the default score may be an underes-
timate for an ultra-marathoner, who may have an actual
physical activity level equivalent to a PAL score of 10 (or
higher, in some embodiments). Similarly, the default PAL
score may be an overestimate for a user who does not exercise
and avoids walking. In turn, the calorimetry process may
overestimate or underestimate the user’s energy expenditure
throughout the day based on a model, such as the Jackson et
al. model, when using an inaccurate PAL score. However, as
explained in detail below, after the user begins wearing the
fitness tracking device 100, the fitness tracking device 100
may be configured to recalibrate the calorimetry model
within a short period of time by, e.g., inferring updated PAL
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scores, regardless of whether the user engages in exercise or
what type of physical activity the user performs.

[0084] At block 440, the fitness tracking device 100 may
determine whether the user is engaged in a session of mod-
erate to vigorous physical activity. If the user is determined
not to be engaged in a session of moderate to vigorous physi-
cal activity (e.g., the user is engaged in modest or otherwise
low-intensity physical activity, or the user is sedentary), cali-
bration method 400 may return to block 430. If the user is
determined to be engaged in a session of moderate to vigorous
physical activity (e.g., running), calibration method 400 may
proceed to block 450.

[0085] It may be understood that, in some embodiments, a
substantial amount of time may pass during calibration
method 400. For example, a first user may go for a run (i.e.,
proceeding to block 450) within minutes of turning on the
fitness tracking device 100 for the first time, whereas a second
user may not go for a run for several months (if ever) after
turning on the fitness tracking device 100 for the first time. In
the interim, the fitness tracking device 100 may continuously
or otherwise periodically update each user’s individualized
PAL score based at block 430 as described below.

[0086] After performing recalibration at either block 430 or
block 450, calibration method 400 may return to block 440 to
reassess whether the user is engaged in moderate to vigorous
physical activity. Thus, the fitness tracking device 100 may
continue to recalibrate or otherwise adjust one or more energy
expenditure models for calorimetry as the fitness tracking
device 100 collects more data about a user’s fitness and activ-
ity levels or as the user’s fitness or activity levels change over
time.

Calibration—Physical Activity Level Score Recalibration

[0087] As previously explained, an energy expenditure
model may take into account a physical activity level (PAL)
score of a user to perform calorimetry processes more accu-
rately. The fitness tracking device 100 may collect data on the
user’s activity, such as an output from a pedometer function or
other activity classifier, to update the PAL score for a user.
[0088] FIG. 5 depicts a depicts a block diagram of a cali-
bration technique for inferring physical activity level in
accordance with an embodiment ofthe present disclosure. As
shown in FIG. 5, the fitness tracking device 100 may access a
step database 510. The step database 510 may be stored in a
memory module of the fitness tracking device 100, or the step
database 510 may be accessible from another device or a
cloud-based storage service via interface module 240 (FIG. 2)
of the fitness tracking device 100.

[0089] The step database 510 maintains records of data
about a user’s activity. In a particular example, the step data-
base may store records based on an estimated number of steps
that the user has taken for each day over a sequence of days
based on the output of a pedometer of the fitness tracking
device 100. In some embodiments, the pedometer of the
fitness tracking device 100 may be implemented using data
from one or more motion sensors in motion sensing module
220 (FIG. 2).

[0090] In some embodiments, a valid day aggregator 520
will receive activity information such as daily step count
information from the step database 510. The valid day aggre-
gator 520 may determine a moving average for mean steps per
day 530 based on a rolling window (e.g., a seven-day rolling
window) of data from the step database 510. In some embodi-
ments, if a smaller rolling window of time is preferred, or if
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fewer than seven days are available during the first week of
use, a smaller rolling window may be used, such as 3 days, or
5 days.

[0091] Insome embodiments, the valid day aggregator 520
will disregard records from the step database 510 that the
valid day aggregator 520 may determine to be “invalid days.”
For example, if the user forgets to wear the fitness tracking
device 100 for most of the day, or if the fitness tracking device
100 is turned off or a battery ofthe fitness tracking device 100
1s drained during most of a day, the total step count for that
day may be artificially low. The valid day aggregator 520 may
discard a total step count for a day if the total step count is less
than a threshold number of steps (e.g., fewer than 500 steps,
or fewer than 1,000 steps).

[0092] Thus, if thesize of the rolling window is seven days,
but the user forgot to wear the fitness tracking device 100 for
one of the most recent seven days, the valid day aggregator
520 may discard that day from its computation and, instead,
use the total step count from the eighth most recent day to
provide a total of seven “valid days” to be aggregated. The
valid day aggregator 520 may output a mean steps per day 530
that was computed using only valid days because the valid
day aggregator 520 may have filtered out the invalid days
within the rolling window of time.

[0093] The fitness tracking device 100 may use the mean
steps per day 530 determined by the valid day aggregator 520
to lookup a corresponding PAL score 550 from a table, such
as a one-dimensional user-specific table 540, described in
more detail herein with reference to Table II below:

TABLEII

One-Dimensional Took-up Table

Minimum Mean Steps per Day ~ Corresponding Estimated PAL Score
0 0 points
1,000 1 point
2,000 2 points
3,800 3 points
5,000 4 points
6,500 5 points
9,000 6 points
11,000 7 points
14,000 8 points
17,000 9 points
20,000 10 points
[0094] Table II shows a one-dimensional table (e.g., the

one-dimensional user-specific table 540) in accordance with
an embodiment of the present disclosure. The one-dimen-
sional user-specific table 540 correlates a minimum (or range
of) mean steps per day to a particular PAL score. In the
example one-dimensional user-specific table 540 shown in
FIG. 6, each PAL score 0 to 10 has a corresponding minimum
number of steps. For example, a user would need to have at
least 5,000 mean steps per day for the fitness tracking device
100 to estimate that the user has a PAL score of 4 if using
Table II. Similarly, if the mean steps per day 530 is greater
than or equal to 20,000 steps, the user’s PAL score will be
updated to 10, according to the one-dimensional user-specific
table 540 shown in Table II. The range of PAL scores, as well
as the default range of steps correlated to each PAL score,
may vary in other embodiments.

[0095] In some embodiments, each range of steps is esti-
mated based on the activity level associated with each PAL
score. The total number of steps S, ,,; for the low end and high
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end of each range is a sum of the steps attributable to base-
level activity (i.e., daily living activity) S, .., steps attribut-
able to modest activity S, ,, and steps attributable to heavy
exercise S

mod>
hea vy:

Stotar SvasetSmod+Sheasy (Eq. 14)

[0096] The fitness tracking device 100 may assume, at least
initially, that base activity and modest activity correlates to a
typical walking cadence C,, (e.g., 100 steps/min, or 120 steps/
min) or a typical walking step length or stride length L, (e.g.,
0.6 m/step, or 0.8 m/step), and that heavy activity correlates to
atypical running cadence C, (e.g., 150 steps/min) and a typi-
cal running step length or stride length L, (e.g., 1 m/step).
These default or typical values may be scaled or otherwise
adjusted up or down according to an individual user’s typical
cadence while walking or running and stride length while
running. For example, the fitness tracking device 100 may be
configured to provide a more accurate individualized stride
length based on the user’s height. In some embodiments, the
fitness tracking device 100 may be configured to request the
user’s height from the user or otherwise obtain the user’s
height from, for example, the companion device 300.

[0097] Thus, total steps S, ;during base activity or modest
activity may be computed as a product the time t spent
engaged in base activity or modest activity with a typical
cadence C,, (for the portion of base activity or modest activity
measured based on time) plus the number of steps based on
walking stride length (for the portion of base activity or
modest activity measured based on distance d traversed):

Sperse=tCoytl/L, (Eq. 1B)

Spmod=tCot /L, (Eq. 10)

[0098] Additionally, total steps S, during heavy activity
may be computed with a typical running cadence C, (for the
portion of heavy activity measured based on time t spent
performing the heavy activity) and/or a typical running stride
length L, (for the portion of heavy activity measured based on
distance d traversed):

Sheary = CA/L,

[0099] Forexample, PAL score 3 corresponds to at least 60
minutes (i.e., a time-based parameter) of modest physical
activity (i.e., an activity-based parameter). The fitness track-
ing device 100 may assume, at least initially, that modest
physical activity correlates to a typical walking cadence (e.g.,
100 steps/min).

[0100] Thus, in this example, the amount of base activity
for PAL score 3 may be assumed to be a certain amount of
time (e.g., approximately 30 min/day of base activity, or in
other embodiments, e.g., 45 minutes/day of base activity).
Thus, in this example, a minimum means steps/day may
account for steps attributable to base activity, which may be
computed by multiplying the time of 30 min/day by the
default cadence of 100 steps/min, which equals 3,000 steps/
day.

[0101] Similarly, in this example, the minimum mean steps
per day for PAL score 3 may include steps attributable to
modest activity, which may be computed by multiplying by
the low-end time of 60 minutes/week by the default cadence
of 100 steps/min, which equals 6,000 mean steps/week (or
approximately 800 steps/day).

[0102] In this example, PAL score 3 is assumed to include
no amount of heavy exercise, so S, equals 0, and S,
equals approximately 3,800 steps/day. This value is reflected

(Eq. 1D)
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as the low end total number of steps needed for a user to
qualify for a PAL score of 3 according to Table I

[0103] Inanother example, PAL score 5 may be assumed to
include at least: 1) 60 min/day of base activity at 100 steps/
min, or 6,000 steps/day, plus 2) 30 min/week of modest
exercise at 100 steps/min, or approximately 400 steps/day,
plus 3) 1 mile/week of heavy exercise, or approximately 100
steps/day, for a total of at least 6,500 (mean) steps/day. This
value corresponds to the minimum means steps per day cor-
related to PAL score 5 using Table 1.

[0104] Similar step-based estimations and computations
may be similarly made to generate the low and high ends of
each step range for each PAL score. The parameters (e.g.,
cadences and stride lengths) may be calibrated or otherwise
adjusted to the individual user, and these parameters may be
used for both generating the one-dimensional user-specific
table 540 as well as for computing the user’s steps throughout
the day (e.g., by a pedometer, or other activity-tracking func-
tions, based on the motion sensing module 220 of the fitness
tracking device 100).

[0105] FIG. 7 depicts another block diagram of a calibra-
tion technique for inferring physical activity level in accor-
dance with an embodiment of the present disclosure. In FIG.
6, pedometer calibration module 710 may calibrate the
pedometer functionality of the fitness tracking device 100.
Additionally, pedometer calibration module 610 may output
individualized or otherwise calibrated cadence and step
length values for walking and running (620), which may be
used to generate the one-dimensional user-specific table 540
(e.g., Table 11 above).

[0106] Pedometer calibration may account for differences
among users. For example, consider one runner who has a
relatively high running cadence when compared to a second
runner who has a relatively low running cadence. If both
runners run for one hour, the first runner with the higher
cadence will take more steps than the second runner with the
lower cadence. Consequently, in some embodiments, the first
runner with the higher cadence may be expected to take more
steps to qualify for a given PAL score than the second runner.
[0107] In some embodiments, the fitness tracking device
100 may determine a user’s PAL score based on a total num-
ber of steps that does not differentiate between which steps
originated from base, modest, or heavy activity, or whether
the activity was measured based on time or distance. In this
case, the fitness tracking device 100 will consider the aggre-
gated number of steps as a single dimension of information
for correlating activity to a PAL score.

[0108] In other embodiments, additional accuracy may be
achieved by differentiating among the different activity
sources to more closely correlate with the descriptions of
each PAL score, which also differentiate among different
types of activity. The aggregated number of steps may not
indicate the sources of the steps, such as how many steps can
be attributed to running as opposed to lower intensity activi-
ties such as walking. Consequently, two users with the same
aggregated step count but who engage in different physical
activities may have different physical activity levels. As
explained below, the fitness tracking device 100 may be con-
figured to select or adjust a user’s PAL level by considering
information about the user’s activities in addition to the user’s
aggregated step count.

[0109] FIG. 7 depicts another block diagram of a low-
intensity calibration technique in accordance with an embodi-
ment ofthe present disclosure. As shown in FIG. 7, an activity
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database 710 provides additional records of user data to the
valid day aggregator 520. The activity database 710 may be a
part of the steps database 510, or it may be a separate data-
base. The activity database may include a table with a row for
each day. Each row in the table, or database record, may track
various information, including, but not limited to, time spent
or steps taken inbase (or “background”) activities; time spent,
distance traversed, or steps taken in modest activity; and time
spent, distance traversed, or steps taken in heavy activity. In
some embodiments, the pedometer functionality or another
activity classifier module may be configured to distinguish
among base activity, modest activity, and heavy activity. In
other embodiments, the fitness tracking device 100 may be
configured to accept user input to determine when a user is
going to be “in-session” for a particular activity, such as going
forarunorabikeride, and the fitness tracking device 100 may
record this information accordingly in the activity database
710.

[0110] Insome embodiments, the valid day aggregator 520
may use information from both the steps database 510 and the
activity database 710 to provide two (or more) dimensions of
data to look up PAL scores in a user-specific table of two-
dimensions (or more). FIG. 7 depicts the valid day aggregator
520 outputting both the mean steps per day 530 as well as a
mean activity time per day 730, both of which may be deter-
mined based on a rolling average as described above with
reference to FIG. 5.

[0111] Both the mean steps per day 530 and the mean
activity time per day 730 may be used as input to a two-
dimensional user-specific table 740 (e.g., Table IIT below).
The two-dimensional user-specific table 740 may also be
calibrated according to the pedometer calibration module 610
and the individualized cadence and step length values 620 to
customize the two-dimensional user-specific table 740 to a
specific user, similarly as explained above with reference to
FIG. 6. The look-up function into the two-dimensional uset-
specific table 740 (e.g., Table III below) may be configured to
output the PAL score that correlates to both dimensions of
input data:

TABLE III

Two-Dimensional Look-up Table

Low Activity High Activity
Corresponding Corresponding
Minimum Estimated PAL Minimum Estimated PAL
Mean Steps Score (Low Mean Steps Score (High
per Day Activity) per Day Activity)
0 0 points 0 0 points
1,000 1 point 300 2 points
2,000 2 points 1,500 3 points
3,800 3 points 2,500 4 points
5,000 4 points 4,000 5 points
6,500 5 points 5,500 6 points
9,000 6 points 9,000 6 points
11,000 7 points 11,000 7 points
14,000 8 points 14,000 8 points
17,000 9 points 17,000 9 points
20,000 10 points 20,000 10 points
[0112] Table III (above) shows an example of a two-dimen-

sional user-specific table 740 in accordance with an embodi-
ment of the present disclosure. Like the one-dimensional
user-specific table 540 described with reference to Table II,
the two-dimensional user-specific table 740 also correlates a
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range of mean steps per day (i.e., step ranges 900-911) with a
PAL score of 0-11. However, in this example of the two-
dimensional user-specific table 740, some step ranges overlap
with other step ranges. For example, step range 900, which
correlates to PAL score 0, ranges from 2,180 to 4,300 steps,
while step range 901, which correlates to PAL score 1, ranges
from 3,500 to 4,500 steps. Thus, mean steps per day 530 may
be insufficient to determine a unique step range and output a
unique PAL score. For example, if mean steps per day 530
equals 4,000 steps, that value by itself may indicate either
PAL score O or PAL score 1.

[0113] In this example, the two-dimensional user-specific
table 740 can also account for activity, such as activity type
and quantity or mean activity time per day 730, as a way to
look at one or more additional variables to break a tie between
overlapping ranges. As shown in FIG. 9, a way to distinguish
between the minimum steps needed for PAL score 1 (e.g,,
1,000 steps for relatively low activity versus 500 steps for
relatively high activity) along the second dimension of activ-
ity may be to determine, e.g., whether the user walked up at
least one flight of stairs. A way to distinguish between over-
lapping step ranges for PAL score 2 may be to determine, e.g.,
whether the user spent a (moving daily average) of at least ten
minutes on at least one walk or modest bike ride. As another
example, a way to distinguish between overlapping step
ranges may be to determine, e.g., whether the user spent any
time (greater than zero minutes over a moving daily average)
on at least one heavy activity, such as a run, bike ride, or other
heavy exercise session.

[0114] In some embodiments, the two-dimensional user-
specific table 740 may use different conditions for distin-
guishing between relatively low or high activity depending on
which PAL scores need to be distinguished (e.g., flights of
stairs to distinguish between low PAL scores as opposed to
going for a run to distinguish between higher PAL scores).
Also, in some embodiments, the two-dimensional user-spe-
cific table 740 may include some non-overlapping step mini-
mums or step ranges for which the level of activity or other
dimension of data may not affect to the estimated PAL score.
For example, in Table III above, if a user reaches approxi-
mately at least 6,500 mean steps per day (corresponding to a
PAL score of at least 6), the activity metrics may not change
the estimated PAL score. In other embodiments, the two-
dimensional user-specific table 740 may include overlapping
step ranges for every PAL score.

[0115] Insome cases where step ranges overlap, a user with
greater activity time at higher levels of intensity may receive
a higher PAL score even if they have fewer total steps than a
second user with a lower PAL score. In some embodiments, if
a user’s activity indicates excessive idle (or sedentary) time,
the user may receive a lower PAL score.

[0116] As explained above, in some embodiments, accu-
racy may be improved by configuring the valid day aggrega-
tor 520 to determine PAL scores based on moving averages
(e.g., a seven-day moving average). Accuracy may also be
improved by disregarding days with relatively low total step
counts (e.g., days on which the fitness tracking device 100
recorded fewer than 1,000 steps).

[0117] FIGS. 8A-8C illustrate the relative accuracy of dif-
ferent configuration of the valid day aggregator 520 for a
hypothetical user whose self-reported PAL (or PA-R) is 6. In
this example, the hypothetical user recorded daily total step
counts over a 10-week period. Each figure of FIGS. 8A-C
includes a histogram (one of charts 800A-C) that illustrates
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how frequently the calibration technique for inferring a physi-
cal activity level would estimate a particular PAL score, given
a particular configuration of the valid day aggregator 520
(e.g., daily step count or weekly periodic average). Each chart
800A-C, the same underlying daily step counts are analyzed,
but each chart 800A-C applies a different filter to the data,
such as daily step count (chart 800A) or a daily moving
average (chart 800B).

[0118] In FIG. 8A, chart 800A shows the distribution of
PAL scores when using a daily step count. Valid day aggre-
gator 520 (e.g., FIG. 5) is either not present, switched off, or
otherwise configured to use the daily values of mean steps per
day instead of computing a moving average or filtering out
low-activity days (i.e., days during which the user may have
forgotten to wear the fitness tracking device 100). Chart 800 A
shows a relatively wide day-to-day variation in PAL scores,
including several days rated as “0” when the user may have
forgotten to wear the fitness tracking device 100. In some
embodiments a PAL score of 0 may be distinguished from
days when the device is not worn by estimating a level of, e.g,,
negative 1. In some embodiments, an individual’s physical
activity level may be expected to remain relatively constant,
but the user’s day-to-day activities can fluctuate (e.g., a run-
ner with a self-reported PAL score of 8 may only run every
other day). Consequently, this user’s daily step count may
also fluctuate day-to-day but remain relatively constant over
longer time periods.

[0119] In FIG. 8B, chart 800B shows the distribution of
PAL scores when using a seven-day daily moving average.
Charts 800B shows a tighter distribution of estimated PAL
scores than chart 800A, and the elimination of some outliers,
with the frequency of selecting the self-reported PAL score of
6 (or PAL scores close to 6, e.g., 5) has increased. In some
embodiments, the moving average may be computed less
frequently. For example, the moving average may be esti-
mated on a weekly basis (e.g., a weekly periodic moving
average). In some embodiments, the weekly period moving
average may be likely to provide a similar distribution of
estimates as the daily moving average example discussed
above with reference to FIG. 8B.

[0120] In FIG. 8C, chart 800C shows the distribution of
PAL scores when the valid day aggregator 520 is not only
calculating a daily moving average but also filtering out low-
activity days when the user may have forgotten to wear the
device. Chart 800C provides the tightest distribution, reflect-
ing the most consistent and accurate estimation of PAL scores
compared to charts §00A-C in FIGS. 8A-C.

Calibration—Heart Rate and Work Rate-Based Calibration

[0121] Calibration techniques for inferring physical activ-
ity level such as those described above may be helpful when
exercise-based heart rate or work rate data is not available.
Models such as the Jackson et al. model may use physical
activity scores such as PAL or PA-R in conjunction with
physical characteristics such as age, weight, and sex to esti-
mate aerobic capacity (VO,max) without exercising. How-
ever, in some cases a user may find that an exercise-based
calibration may allow a device such as fitness tracking device
100 to estimate VO,max more accurately than the non-exer-
cise or otherwise PAL inference-based calibration techniques
such as those described above, and more accurate estimates of
VO,max may allow for more accurate estimates of energy
expenditure when exercising.
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[0122] In contrast to measuring VO,max in a lab setting,
VO,max can be estimated during suitable “submaximal”
exercises (e.g., running for ten minutes). Although the user
may not reach maximum aerobic capacity, heart rate or work
rate information collected during submaximal testing may
allow for the user’s VO,max to be estimated. Monitoring
heart rate measurements (in, e.g., beats per minute or bpm) in
conjunction with work rate measurements (in, e.g., joules per
second or watts) provides data on which regression analysis
may be performed to extrapolate an individual’s parameters
such as VO,max.

[0123] In some embodiments, a method for estimating
VO, max from observations of heart rate and work rate inputs
may involve two stages. The first stage may be an estimation
process, such as a least squares estimation process, or a run-
ning least squares estimation process. In the example of a
running least squares estimation process, it may be possible to
update the estimate for each new data point without rerunning
many prior computations.

[0124] The second stage may be a robust outlier rejection
strategy, such as a constrained iteratively reweighted least
squares solution. In this example, the solution to the estimate
may be constrained based on an initial state (e.g., the estimate
based on the running least squares estimation process
described above). In some embodiments, the constraint may
assume that the relationship between heart rate and oxygen
consumptionis linear. In some embodiments, this assumption
of linearity may be extended below conventional thresholds,
e.g., the assumption may be extended below a typical assump-
tion of approximately 40%. In some embodiments, the itera-
tively reweighted solution may seek a minimum [¥ norm for,
e.g.,p=1.0, 1.5].

[0125] In some embodiments, to improve the reliability of
data used for calibration, and to filter out some outliers, this
calibration method may require one or more conditions to be
met. For example, this calibration method may require Frac-
tion of Heart Rate Reserve (FHR) to be less than half (e.g,,
less than 0.5). FHR may be defined as the ratio of how close
an individual’s current heart rate is to his or her maximum
heart rate (e.g., HRmax-HR) to the individual’s heart rate
range (e.g., HRmax-HRmin):

FHR=(HRmax-HR)/(HRmax-HRmin) (Eq. 2)
[0126] FHR may range from 0 to 1 for any individual.
When an individual’s FHR is close to 0, it indicates that the
user’s heart rate is close to the individual’s maximum heart
rate. Similarly, when an individual’s FHR is close to 1, it
indicates that the individual’s heart rate is close to the indi-
vidual’s minimum heart rate. Thus, if the individual’s FHR is
less than 0.5 (i.e., the user’s heart rate is closer to maximum
heart rate than to minimum heart rate). Consequently, requir-
ing the individual’s FHR to be, for example, less than 0.5 may
help ensure that the individual is engaged in an active, mod-
erate to high intensity activity that is more likely to be suitable
for heart rate and work rate-based calibration.

[0127] Similarly, this calibration method may require
work-rate based METs to exceed a threshold value (e.g., 5
METs, or 10 METs). Furthermore, in some embodiments, the
calibration process may restrict measurements taken while a
user 1s accelerating (e.g., speeding up or slowing down). For
example, this calibration method may compare a current mea-
surement of work rate-ba sed METs to a running average or
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moving average of work rate-based METs (e.g., the change in
METs may be required to be with 1 MET of the running
average).

[0128] In some situations, a user may run at a relatively
constant speed and maintain a relatively constant heart rate
for the duration of a run. In the absence of any constraints,
having approximately one data point, or a tight cluster of
similar data points, may not provide enough information to
perform a linear regression (e.g., a least squares estimation
technique). In some embodiments, the calibration technique
may infer at least one additional data point, which may indi-
cate the user’s minimum heart rate and basal metabolic rate.
Including this inferred data point ensures that: 1) the user’s
individualized linear heart rate model will include the user’s
basal metabolic rate at minimum heart rate, and 2) the user’s
individualized linear heart rate model will have a positive
slope within a reasonably constrained range.

[0129] In some situations, the user may progress through
several local steady states. For example, the user may runat 5
mph for the first five minutes, then speed up to 10 mph for the
second five minutes. In this situation, the calibration tech-
nique may have at least two reliable data points or clusters of
data points with which to perform the least squares estimation
process. In some embodiments, the calibration technique will
still include the basal metabolic rate and minimum heart rate
because it may still be advantageous to ensure the model runs
through that point, and it gives the model increased accuracy
with yet another data point to include in the regression.
[0130] The following section and set of equations indicate
how this combined heart rate and work rate-based estimation
process may proceed:

[0131] Let hy=resting heart rate (or minimum heart rate) of
an individual, and let h,, k=1, 2, . . ., N denote the obtained
heart rate samples, which may be represented by a vector A.
[0132] Let m,=the basal metabolic rate estimated for the
individual using, e.g., the Mifflin equation, or the Harris-
Beredict equation, or an average of the Mifllin and the Harris-
Benedict equations. Letm,, fork=1,2,..., N denote the work
rate-estimated METs obtained at each corresponding time as
the heart rate samples, which may be represented by a vector
B.

[0133] For each heart rate measurement, there is also a
weight (e.g., a variance or a confidence level) associated with
each heart rate measurement, which may be represented as a
diagonal matrix W.

[0134] The initial estimate (e.g., the running least squares
estimate) may be indicated by min||W(Ax-b)||,, and con-
strained by x:[h, 1]x=m,,, whereby the constraint may compel
the least squares estimation to include the point (hy, m,) (the
resting heart rate and basal metabolic rate).

[0135] Thisinitial estimate based on a running least squares
estimation process may be refined further using an iteratively
reweighted least squares process. Upon convergence, the
user’s VO, max may be estimated to be x, (HRmax-h,,)+m,,.
[0136] In some embodiments, this VO,max may undergo
further testing before determining that it should be accepted
as a valid calibration. For example, the calibration method
may compare the estimated VO, max to a ratio of the total
METs based on work rate measurements to the % VO,max
predicted from the heart rate measurements, whereby %
VO, max=f(FHR), and where f(x) is a machine-learned algo-
rithm for predicting % VO,max from FHR. This ratio is
effectively another estimate of VO,max. If the divergence
between the HR-WR based VO, max is within a threshold of
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the ratio estimate of VO,max, the HR-WR based VO,max
may be accepted as the user’s (calibrated) VO, max.

[0137] Insomeembodiments, this divergence process may
be used to compare a subsequently estimated VO,max to a
previously accepted VO,max. If the two values are within a
threshold divergence of one another, it may be assumed that
the previously estimated VO,max was valid. In a situation in
which the new VO,max has diverged from the previous
VO, max beyond a threshold divergence, it may be an indica-
tion that the user’s VO,max has changed, and the new
VO, max may be accepted as a recalibrated value.

[0138] As explained below, the fitness tracking device 100
may further be able to take into account data such as auto-
matic activity classification data, user input about whena user
is beginning or ending an exercise session and what type of
exercise (e.g., running or cycling) the user will be performing,
and sensor information from other devices such as GPS loca-
tion data from the companion device 300 via interface module
240 (FIG. 2).

[0139] FIG. 9 shows a high-intensity calibration method in
accordance with an embodiment of the present disclosure. At
block 910, an activity context may be inferred or provided.
For example, in some embodiments, an activity classifier may
automatically detect the type of activity (i.e., activity context)
that a user is performing. In other embodiments, the fitness
tracking device 100 may be configured to receive information
from the user about the activity context that the user is per-
forming or intends to begin performing (e.g., the user indi-
cates that the user is “in session” for running). Once an
activity context has been inferred, provided, or otherwise
detected, the method may proceed to block 920.

[0140] Atblock 920, a determination is made as to whether
the previously determined activity context may be suitable for
HR-WR calibration (960). For example, HR-WR calibration
960 may be most accurate for vigorous, intense exercises,
such as running for at least ten minutes.

[0141] For a given time period, the inferred activity context
may not be able to predict whether a context that is suitable for
calibration may be interrupted before enough time has
elapsed or enough HR-WR data has been collected to cali-
brate accurately. Thus, the activity context may be inferred
continuously, or at periodic intervals, at block 910 to detect
whether the activity context may have changed. If a change is
detected, and it is determined at block 920 that the new
activity context is not suitable for HR-WR calibration 960,
the calibration method may abort or restart.

[0142] At block 930, heart rate context may be obtained
continuously orat periodic intervals (e.g., once per minute, or
once per three minutes, etc.). For example, the fitness tracking
device 100 may obtain a heart rate context by receiving heart
rate data from a PPG sensor in the heart rate sensing module
220 (FIG. 2). In some embodiments, the frequency for check-
ing the user’s heart rate may be increased if the activity
context indicates that the user is performing an activity suit-
able for HR-WR calibration 960. A confidence level for a
heart rate measurement at a given time period may also be
determined to facilitate HR-WR calibration 960.

[0143] At block 940, work rate context may be obtained
continuously orat periodic intervals (e.g., once per minute, or
once per three minutes, etc.). For example, the fitness tracking
device 100 may obtain motion data from an accelerometer or
other sensor in motion sensing module 230 (FIG. 2). In some
embodiments, work rate context may also be derived using
altitude information from an altimeter or location information
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from a GPS sensor, and these sensors may optionally be
located in a companion device 300 that is also strapped or
otherwise worn by the user during the intense calibration
activity. For example, while running or cycling, GPS infor-
mation may convey a distance traversed to assess the user’s
speed. Similarly, altimeter information may convey informa-
tion about changes in grade to assess the power needed to
traverse a given distance at a given grade.

[0144] In other embodiments, the fitness tracking device
100 may be configured to receive annotations of the work in
watts. For example, if the user is exercising on a stationary
bike, GPS information will not be useful for determining
work rate. Additionally, if the stationary bike simulates
changes in grade, altimeter information will not be useful for
determining changes in work rate due to changes in grade.
Thus, in a graded stationary cycling calibration activity, dur-
ing which GPS and altimeter information may not be useful,
watt annotation from the user may be useful.

[0145] At block 950 a calorimetry process may be per-
formed to estimate calories burned based on the work rate
data from the work rate context from block 940. The work rate
model applied for the work rate calorimetry process at block
950 may vary depending on the received activity context. For
example, the work rate calorimetry model for running may be
different from the work rate model for cycling, as described in
more detail herein.

[0146] At block 960, HR-WR calibration may be per-
formed if there is an indication from block 920 that the current
activity context is suitable for calibration. HR-WR calibra-
tion 960 may use both the heart rate context from block 930
and the work rate estimated calories information from block
950 (which was based on the motion and other data from the
work rate context determined at block 940 and the activity
context determined at block 910).

[0147] At block 970, the conclusion of the intense activity
suited for calibration, and if the intense activity endured suf-
ficiently long (e.g., a ten-minute run) to collect sufficient
heart rate or work rate data to estimate VO, max as explained
above, the estimated VO,max may be used to generate a
model for energy expenditure based on the linear relationship
between heart rate and VO, described above. This energy
expenditure model may be more accurate than a model deter-
mined based on heart-rate measurements alone without the
benefit of work rate measurements, especially for heart rate
data for time periods when the confidence level is relatively
low. This heart-rate energy expenditure model estimates a
user’s VO,max to be used by subsequent calorimetry pro-
cesses. Additionally, these parameters may be estimated more
accurately than the low-intensity, non-exercise based calibra-
tion, which estimates physical activity level to estimate
VO, max instead of heart rate and work rate measurements
during exercise.

[0148] This process may also be repeated to recalibrate or
refine the calibration of the energy expenditure model by
initiating another intense activity suited for calibration.

[0149] By generating a more accurate calorimetry model to
estimate energy expenditure using heart rate (or a combina-
tion of heart rate and work rate) during exercise, the fitness
tracking device 100 may be configured to provide the user
with a more accurate estimate of calories burned during exer-
cise, which in turn provides the user with a more accurate
estimate of total energy expenditure throughout the day over
a variety of activities.
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Calorimetry—Overview

[0150] Onceadevicesuchasthe fitness tracking device 100
has been calibrated, it may perform calorimetry, i.e., measur-
ing a user’s energy expenditure (e.g., calorie burn) over time
and across a variety of activities. Because the fitness tracking
device 100 may be configured with a default calibration (i.e.,
a default PAL score combined with physical characteristics
that may be provided during a brief setup or initialization
phase), the fitness tracking device 100 may begin tracking
energy expenditure immediately or nearly immediately.
[0151] The fitness of the user may change over time, the
device may be recalibrated, or the calibration of the device
may be refined (e.g., by processes described above, such as a
calibration technique for inferring physical activity level, or
an active work rate and heart rate-based calibration tech-
nique). As the fitness tracking device 100 refines and
improves upon its understanding of the user’s individualized
characteristics, such as estimates for maximum heart rate and
VO,max, the calorimetry processes of the fitness tracking
device 100 may become increasingly accurate over time, and
remain accurate even if the user’s fitness level changes over
time as well.

[0152] Developing a heart rate-based energy expenditure
model may be helpful for calorimetry processes that measure
energy expenditure for moderate to vigorous activities. Even
in these cases, an algorithm or model that works well for
running may not work as well for cycling (e.g., the METs for
running may be different from the METs for cycling). Addi-
tionally, some activities may rely more on work rate calcula-
tions or a combination of work rate calculations with heart
rate monitoring. The following section describes in detail
various embodiments in which calorimetry processes may
use a fusion of heart rate and work rate data to estimate energy
expenditure more accurately across different activities such
as running and cycling.

[0153] For some activities, such as using elliptical trainers
or step machines, which provide a load or resistance that
affects energy expenditure, individuals may experience an
elevated heart rate as the resistance of the machine increases.
The sections that follow also describe accurate heart-rate
based calorimetry models based on an estimated load.
[0154] For some activities, such as weight lifting, which are
not paced activities such as running, individuals may experi-
ence frequent changes in heart rate as they engage in the onset
of an activities (e.g., an individual repetition or a set of rep-
etitions), and cool-down periods (e.g., moments of time
between repetitions or a brief rest between sets of repetitions).
The sections that follow also describe accurate heart rate-
based calorimetry models for intermittent activities.

[0155] For other, lower heart-rate activities, such as walk-
ing, a heart rate-based calorimetry model may not be as
reliable as some other methods. For these activities, a pedom-
etry-based calorimetry model and process may be more accu-
rate or more reliable.

[0156] Additionally, users also burn calories while seden-
tary (e.g., sleeping, sitting, standing, or otherwise “at rest”).
However, the energy expenditures vary among these activities
and across individuals (e.g., sitting requires fewer METs than
standing). Especially for users who may spend a substantial
portion of their day sitting (or standing), accurate day-long
calorimetry processes may benefit from being able to distin-
guish between whether a user is sitting or standing automati-
cally, and adjust the calorimetry model accordingly. Even a
relatively small difference in METs between sitting and
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standing may add up to be a substantial difference in energy
expenditure over the course ofa day for a relatively sedentary
individual.

Calorimetry—Heart Rate and Work Rate-Based Calorimetry

[0157] As explained below with reference to FIG. 10, and
similar to heart rate and work rate-based calibration described
above with reference to FIG. 9, combining heart rate and
work rate information may provide more accurate calorim-
etry than either method on its own.

[0158] FIG. 10 shows a high-intensity calorimetry method
in accordance with an embodiment of the present disclosure.
At block 1010, a current heart rate (e.g., beats/min) may be
obtained from the heart rate sensing module 210 (FIG. 2).
[0159] In addition to providing the current heart rate, the
heart rate sensing module 210 may also provide a confidence
level (e.g., 0°,,;) associated with the current heart rate. The
confidence level is a quantified indicator of how accurate the
heart rate sensing module 210 may be. For example, if the
heart rate sensor input is relatively noisy, the confidence level
for the measured heart rate may be relatively low. In some
embodiments, the confidence level originating from the heart
rate sensor (e.g., a PPG sensor) may be adjusted depending on
other measured conditions. For example, if it is known that
heart rate sensor values are relatively noisy at higher speeds,
such a property may be incorporated into the computation of
the confidence time series.

[0160] The current heart rate and confidence level may be
used to compute a normalized heart rate (NHR), (or fraction
of heart rate reserve (FHR), as explained above):

NHR~(HR,,,;,~HRY(HR,,;,~HR, )

[0161] NHR may be used as an input to a heart-rate based
calorimetry model during exercise to estimate the current (or
“Instantaneous™) rate of energy expenditure (or calorie burn)
during exercise.

[0162] The individualized values for minimum and maxi-
mum heartrate (HR,,, and HR, . ) may have been previously
estimated using one of the previously described calibration
techniques. At block 1020, an estimate of energy expenditure
based on a heart rate model may take NHR as input and output
the user’s corresponding percentage of aerobic capacity (%
VO,max). Because the user’s individualized VO,max may
have been previously estimated using one of the previously
described calibration techniques, the heart rate model may
convert % VO,max into METs and calories burned (i.e.,
energy expended) according to the heart rate data.

[0163] Similarly, at block 1030, the work rate may be esti-
mated using motion data or related information. A confidence
level for work rate may also be computed (e.g., 0% ). In
some embodiments, work rate confidence may be determined
based on a relative accuracy of a GPS sensor fora given piece
location information. In some embodiments, a GPS sensor
may be included in the companion device 300 but not the
fitness tracking device 100. If the companion device 300 is
not available to communicate GPS sensor information to the
fitness tracking device 100, heart rate and work rate confi-
dence information (e.g., heart rate and work rate variances)
may not be available to apply a mixing function (e.g., a
weighted, probabilistic average of heart rate and work rate
based on their relative variances), which is explained in more
detail below in reference to Equation 9.

[0164] At block 1040, an estimate of energy expenditure
based on a work rate model and predetermined activity con-

(Eq. 24)
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text may output calories burned (i.e., energy expended)
according to the work rate data.

[0165] At block 1050, the heart rate-based energy expen-
diture (EE ;) may be “fused” or otherwise combined with the
work rate-based energy expenditure (EE;z). In some
embodiments, the data may be fused using a Bayesian prob-
ability framework. For example, the framework may be
expressed as determining the best estimate for energy expen-
diture (EE), given the work rate and heart rate estimates EE 5
and EE

P(EEug, EEwg | EE)P(EE)
P(EEyg, EEwg)
_ P(EEug, EEYP(EEwg, EE)P(EE)
P(EEyp, EEwg)

(Eq. 2B)

P(EE| EEpg, EEyg) =

[0166] The Bayesian framework expressed in Equation 6
assumes that the output of the heart rate and work rate models
are independent. If a uniform prior and normal densities are
assumed for the following likelihood functions . . . .

P(EEg)~MEE, 0%z (Eq.20)

P(EEpp)~NEE,0252) (Eq. 2D)

[0167] ... then the maximum a posteriori estimate for EE
may be given by the following “mixing function™:

EE~(0" 4z EE 52+ 0” g EE 1) (0 107 i) (Eq.2E)

[0168] Thevariances 0°,,, and 0>, may correspond to the
confidence values for the heart rate input from block 1010 and
the work rate input from block 1030, respectively. A decrease
in the variance from one sensor (i.e., an increase in confi-
dence) may cause the fused estimate of EE computed with
Equation 9 to tend toward the value of the sensor with the
decreased variance.

[0169] At block 1060, the energy expenditure estimate EE
computed using the mixing function at Equation 2E may be
outputted.

Calorimetry—Heart Rate and Work Rate-Based Calorimetry
for Cycling

[0170] As mentioned above, the work rate energy expendi-
ture model used at block 1040 may depend in part on the type
activity (e.g., activity classification). For example, in the case
of cycling, an accurate work rate model may be based on a
nonlinear combination of speed and grade. This model may
estimate the total energy expended EE by estimating an
amount of energy required to move a cyclist (e.g., the user
while cycling) through space.

[0171] The main sources of resistance are defined by the
rolling resistance (P,,), aerodynamic drag (P, ), changes in
potential energy (P,,,), and changes in kinetic energy (P,,,):

P, =V,C,,mg cos(arctan(Q)) (Eq. 34)
P Do (VY cos(@)PV, (Eq. 3B)
P, o=V mg sin(arctan(G)) (Eq. 3C)
Prn=0.3(m+l/r) (VP o V2 )/ (t-1,) (Eq. 3D)
Proiai= Pt L ot Pt Pray (Eq. 3E)
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[0172] 1In Equations 3A-E:

[0173] 'V, is the ground speed of the cyclist, which in some
embodiments may be determined based on GPS sensor data.
[0174] C,, is the coefficient of rolling resistance, which in
some embodiments may be assigned a default value.

[0175] m is the combined mass of the bike and the cyclist.
In some embodiments, the mass of the bike may be assigned
adefault value, and the mass of the cyclist may be determined
based on the user’s weight.

[0176] g is gravity, which may be assigned a default value
of g, the “standard” or average gravity at the Earth’s surface
(i.e., 9.80665 m/s”).

[0177] G s the slope of the surface. In some embodiments,
a default value (e.g., 0 radians) may be assigned. In other
embodiments, data from one or more motion sensors (e.g., an
altimeter) may be used to estimate a current slope of the
surface.

[0178] p(T)isatemperature-dependent air density. In some
embodiments, a default value (e.g., an average temperature)
may be assigned. In other embodiments, the fitness tracking
device 100 or the companion device 300 may be configured to
obtain a current temperature value for the user’s location
(e.g., GPS sensor-based location). In other embodiments, the
fitness tracking device 100 or the companion device 300 may
include a temperature sensor.

[0179] C, is the constant for aerodynamic drag, which may
be assigned a default value.

[0180] V., isthe wind speed, and c. is the angle between the
wind vector and the cyclist’s direction of travel or speed (e.g.,
the cyclist’s velocity vector). In some embodiments, V, and o
may be assigned default values. In other embodiments, the
fitness tracking device 100 or the companion device 300 may
be configured to compute these parameters by obtaining a
current wind speed and a current wind direction for the user’s
location, as well as the cyclist’s current direction of travel.
[0181] Iis the moment of inertia of the wheels on cyclist’s
bike. In some embodiments, I may be assigned a default
value.

[0182] ris the radius of the wheel. In some embodiments, r
may be assigned a default value.

[0183] V,andV,,correspond to the final and initial veloci-
ties, respectively, when the cyclist accelerates.

[0184] These factors should not be considered exhaustive.
Examples of other factors for which some embodiments may
account in their models include drive train losses, wheel
bearing losses, and wheel rotation.

[0185] The actual energy expended by the cyclist may also
depend on their bio-mechanical efficiency (v)):

EENP o (Eq. 3F)

[0186] In a case where not all of the constants are known,
the model may be approximated by:
EE=V (a;)mg cos(arctan(G)}+(0) Vp+(ar2) V2 (cry)

Vg3+(a5)ngg sinarctan(G)+(og)m (V- Vzgi)/

(t1;) (Eq. 3G)
[0187] In some embodiments, coefficients o.,-o.s may be
learned from a training set.
[0188] In some embodiments, additional improvements
may be made to improve the accuracy of the heart rate model
or the work rate model. For example, temporal dynamics
(e.g., a Kalman filter), or a determination of a regression
function from the data using a more general model such as a
random forest or a neural network, may be applied the either
or both of the heart rate model and the work rate model.
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Calorimetry—Automatic Terrain Detection

[0189] Another example where additional improvements
may be made to the cycling work rate model (and, in some
embodiments, a pedestrian or running work rate model, etc.)
is with a method for automatic terrain detection. For example,
being able to distinguish between different types of terrain
(e.g., cement, asphalt, dirt, gravel, etc.) may allow for updat-
ing the cycling work rate energy expenditure model to use a
more accurate value for certain parameters, e.g., the coeffi-
cient of rolling resistance (C,,), which may allow for a more
accurate estimate of rolling resistance (P,,), which, in turn,
may allow for more accurate estimate of energy expenditure
while cycling on a particular type of terrain.

[0190] In some embodiments, automatic terrain detection
may also improve the work rate model for pedestrian activi-
ties (e.g., running) by allowing the work rate expenditure
model to include an additional efficiency parameter related to
terrain. For example, some terrain types (or types of surfaces)
are easier to run on than others and may be more efficient. For
example, a track may require less energy to maintain a given
speed than, e.g., a gravel trail. The efficiency of a given terrain
in the context of running (or a comparable activity) may be
expressed as an efficiency (or “correction”) term, such as a
linear correction factor such as (a)(EE)+(b). In this example,
determining the terrain may allow values for the (a) and (b)
parameters (multiplicative and additive factors, respectively)
to be inferred as well.

[0191] FIG. 11 depicts a terrain detection method in accor-
dance with an embodiment of the present disclosure. At block
1110, a “raw” accelerometer signal is provided to both block
1120 for determining an activity context and block 1130 for
performing Fast Fourier Transforms (FFTs) and frequency
domain analysis. Because the accelerometer signal is “raw,”
meaning that the signal has not been filtered or processed yet,
a full frequency spectrum in the signal may be available for
analysis. The raw accelerometer signal may be provided from
an accelerometer included in the motion sensing module 220
(FIG. 2) of the fitness tracking device 100.

[0192] At block 1120 an activity context may be deter-
mined based on the raw accelerometer signal from block
1110. Tn some embodiments, the raw accelerometer signal
may be analyzed to determine the activity context (e.g., run-
ning or cycling). In other embodiments, the fitness tracking
device 100 may receive input from a user about the type of
session activity that the user may be performing. As explained
in more detail below, the activity context information may be
used at block 1180 to help infer the terrain type automatically,
which may be performed based on a machine learning model.
[0193] At block 1130, the raw accelerometer signal from
block 1110 may be transformed to the frequency domain
(e.g., with an FFT algorithm).

[0194] At block 1140, a low-pass filter (LPF) may be
applied to the accelerometer signal in the frequency domain.
The LPF may be configured to extract a “gait feature at block
1150. The gait feature may be the portion of the frequency
spectrum in the motion data from a human source, as opposed
to portions of the frequency spectrum that represent noise
such as vibrations due to different types of terrain. The gait
feature may appear as the dominant frequency at, for
example, up to 4 Hz, or up to 5 Hz. By subtracting the gait
feature frequency range from the motion data (e.g., by per-
forming source separation on the motion data), the machine
learning model may be applied at block 1180 to detect the
type of terrain automatically with greater accuracy.
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[0195] Similarly, at block 1160, a high-pass filter (HPF) or
a band-pass filter may be applied to the accelerometer signal
in the frequency domain. The HPF may be configured to
extract broad band features from the frequency spectrum at
block 1170, which may contribute to inferring the terrain type
by the machine learning model at block 1180. For example,
the broad band features from the frequency spectrum may
include the residual noise in, e.g., the 5-20 Hz range, or the
7-25 Hz range, etc.

[0196] In addition to the residual noise at higher frequen-
cies that may be attributable to the terrain, there may also be
residual harmonics at higher frequencies that may be attrib-
utable to the (lower-frequency) gait feature. In this example,
information about the gait feature obtained with the LPF may
beused to subtract at least some of the residual harmonics due
to the gait feature from the higher-frequencies obtained by the
HPF.

[0197] At block 1180, the terrain type may be inferred
using a machine learning model that accounts for activity
context from block 1120, the gait feature frequency informa-
tion from block 1150, and the broad band frequency informa-
tion from block 1170. In some embodiments, the gait feature
may represent a frequency signature attributable to the user’s
activity. After the frequency signature attributable to the
user’s activity has been subtracted out, the residual frequency
spectrum may consist of noise induced by the terrain. The
broad band frequency spectrum may exhibit recognizable
characteristics for recognizing different types of terrain.
[0198] Insomeembodiments, the high-pass filtering, broad
band feature extraction, or machine learning model may
leverage existing processes performed for activity context.
For example, the same broad band road noise features that
may be used by the activity context classification process to
identify a cycling activity context may also be used to deter-
mine the type of terrain on which the user is cycling.

[0199] Also, in some embodiments, the machine learning
model] may benefit from a fitness tracking device 100 that is
worn on the user’s wrist. For example, during a cycling activ-
ity, energy transferred from the terrain through the handlebars
to the user’s hands may reach the user’s wrist more reliably
thatifa device with an accelerometer were positioned farther
away from the user’s hands.

Calorimetry—Automatic Load Estimation

[0200] For certain types of activities, such as indoor exer-
cise sessions (on, e.g., elliptical trainers, rowing machines,
stepper machines, etc.), calorimetry accuracy may be
improved by automatically estimating load (or “mechanical
resistance”) from the equipment. For example, many ellipti-
cal trainers may have a configurable load or resistance that
allows the user to adjust how much effort is needed to perform
each repetition on the machine. The higher the load, the more
effort is needed, and therefore the energy expended to per-
form the work also increases.

[0201] For example, energy expenditure on an elliptical
trainer may be modeled using the following equation:

Elliptical Energy Expenditure=(a)(counts/min)+(b)

(counts/min)(load)+(c) (Eq. 4A)

[0202] InEquation 16A, (a)-(c) are parameters that may be
calibrated or otherwise adjusted for an individual user.
Counts per minute (“counts/min”) represents the number of
revolutions of an elliptical trainer. In other models, e.g., for
other types of equipment or exercises, the model may include
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avariable for step rate, stroke rate, etc. “Load” represents the
amount of resistance that the elliptical trainer (or other exet-
cise equipment) is configured to provide to increase the dif-
ficulty of the workout. For example, in the case of a treadmill,
estimated load may represent an angle of incline (or grade or
gradient) of the treadmill. As the incline of the treadmill
increases, the user may need to expend more energy to main-
tain the same speed.

[0203] Insomeembodiments, at the beginning ofaworkout
session (e.g., an elliptical trainer exercise session), the initial
load may be set to a default value. As explained below, during
the workout, e.g., during an “acquisition” phase, the default
load value may be adjusted to an estimated load value based
on a combination of a measured work rate (e.g., step rate) and
a measured heart rate.

[0204] In some embodiments, heart rate measurements
may not be available for all time periods during a workout.
For example, the fitness tracking device 100 may reduce the
frequency for measuring heart rate to conserve battery power,
or a particular attempt to measure heart rate may produce a
noisy result with a low confidence (e.g., high variance). In
some embodiments, if a relatively reliable (high confidence)
heart rate measurement is available, it may be used to update
the estimated load for a given time period or for a subsequent
time period. However, if no heart rate measurement is avail-
able, or if only a relatively unreliable (low confidence) heart
rate measurement is available, the previously estimated load
(or default load) may be used to estimate energy expenditure
for the given time period or for a subsequent time period.
[0205] In some embodiments, heart rate measurements
may only be made opportunistically, during opportunities for
more accurate acquisition of an estimated load. For example,
if a user’s step count is changing, it may be an indication that
auser is accelerating, e.g., at the beginning of a workout or
interval, in response to adjusting a resistance of the equip-
ment, or at the end of a workout or interval. In some embodi-
ments, load estimation may be more accurate during a time
period in which the user’s step count is relatively steady,
because a steady step count may be an indication that the user
has set a pace for a given resistance level, which in turn may
allow for more accurate estimation of the given resistance
level.

[0206] FIG. 12 shows a method for automatic load estima-
tion based on an embodiment of the present disclosure. As
show in FIG. 12, aheart rate (“HR”") may be provided by, e.g.,
a heart rate sensor of the fitness tracking device 100 at block
1210 (“Heart Rate Path Optimization™). The heart rate pro-
vides a first indication of how hard a user is working. For
example, as load increases, the user’s heart rate may also
increase.

[0207] Additionally, as shown in FIG. 12, a step rate
(“Steps”) may be provided by, e.g., a pedometer function of
the fitness tracking device 100 at block 1220 (“Step
Counter”). The step rate, which is an indication of the user’s
work rate, provides a second indication of how hard a user is
working. For example, as load increases, the user may need to
expend additional energy to maintain a steady step rate (or
work rate).

[0208] Atblock 1230 (“Load Estimation Model”), the heart
rate may be received from block 1210, and the step rate may
be received from block 1220. As explained in detail below
with reference to FIG. 13, a model for estimating load may be
applied at block 1230. The estimated load may be output from
block 1230.

Mar. 3, 2016

[0209] At block 1240 (“Calorimetry Model Feature Com-
putation”), the load estimate may be received from block
1230, and the step rate may be received from block 1240. For
example, the step rate may be used to determine the “counts/
min”) input for Equation 4A for computing elliptical trainer
energy expenditure. At block 1240, features related to the
calorimetry model may be computed based on the estimated
load and step rate. In the example of the elliptical trainer, a
counts/min feature may be outputted from block 1240, and a
feature representing the product of the counts/min and the
estimated load may also be outputted from block 1240.
[0210] At block 1250 (“Calorimetry Model), one or more
features may be received from block 1240. In the example of
the elliptical trainer, features representing both the counts/
min and the counts/min times estimated load may be received
at block 1240. These features may be applied to a calorimetry
model (e.g., an individually parameterized model indicated
by Equation 16A) to estimate energy expenditure (2260).
[0211] FIG. 13 shows additional details of an automatic
load estimation method, such as the automatic load estima-
tion method described above with reference to FIG. 12. As
shown in FIG. 13, several sensors from the fitness tracking
device 100 or the companion device 300 may provide motion
data or other information to improve the accuracy of the load
estimation method.

[0212] For example, accelerometer data may be provided
by an accelerometer at block 1310. In some embodiments, the
pedometer functionality such as the step counter for deter-
mining step rate may be implemented or otherwise deter-
mined from accelerometer motion data.

[0213] In addition to accelerometer data, GPS data may be
provided by a GPS sensor (block 1320) and relative altitude
information may be provided by an altimeter (block 1330).
[0214] At block 1340, an activity context may be provided,
which may indicate that the user is in, for example, an ellip-
tical trainer exercise session. In some embodiments, the activ-
ity context may be inferred or otherwise determined by an
activity classifier function based on motion data or other
information. In some embodiments, the activity context may
be determined based on user input. For example, the user may
indicate to the fitness tracking device that the user is about to
begin an elliptical training exercise session.

[0215] At block 1350, a heart rate sensor, such as a PPG
sensor, of the fitness tracking device 100 may be provide heart
rate information to a heart rate controller at block 1360.
[0216] At block 1360, the heart rate controller may also
receive activity context information from block 1340. For
example, if the activity context indicates that the user indi-
cated to the device that the user is “in session,” the heart rate
controller may request heart rate information relatively fre-
quently (e.g., once per minute). However, in some embodi-
ments, if the activity context indicates that the user’s in-
session status has been inferred based on motion data, the
heart rate controller may sample heart rate information rela-
tively less frequently (e.g., once per three minutes) to con-
serve battery power.

[0217] Atblock 1370, aheart-rate based calorimetry model
may be applied using the heart rate from block 1360 as an
input and providing a heart-rate based intensity (e.g., esti-
mated VO,) to block 1380.

[0218] At block 1380, an estimated heart-rate based inten-
sity may be received from block 1370, and work rate infor-
mation based on motion or activity data may be received from
at least one of blocks 1310, 1320, 1330, and 1340. The load
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estimator may apply, e.g., a regression analysis or a decision
tree analysis to the heart-rate based intensity and step rate
inputs (e.g., a “load estimation model” as described above
with reference to FIG. 12 at block 1230). For example, a
relatively high heart rate for a given step rate may indicate a
relatively high load. The estimated load for a given time
period may be output from block 1380.
[0219] In some embodiments, the load estimation model
may account for the activity context. For example, in some
activities, load or resistance may be a scaling factor for
another variable such as speed. Also, in some embodiments,
the load estimation model may account for whether other
factors may be estimated through other techniques, or
whether they may be accounted for by the load estimate. For
example, if a user is running with access to altimeter data
(e.g., from the companion device 300), the load may be esti-
mated separately from the grade factor. However, if altimeter
data is not available, the load estimate may be determined to
account for variations in energy expenditure due to grade as
well.
[0220] Insomeembodiments, load filtering may be applied
at block 1390. The estimated load for the given time period
may be received from block 1380. The load may be filtered
using historical estimated load values (e.g., hysteresis) to
smooth load estimation. For example, a load filter may limit
the amount by which an estimated load may change from one
time period to the next. The filtered load estimate (2395) may
be out output.
[0221] In some embodiments, this technique may also be
applied to various outdoor activities (e.g., running, walking,
cycling). In these activities, estimated load may be used to
estimate other variables in the models for these activities that
affect the amount of effort that is needed to, e.g., run or pedal
abicycle. For example, the width of the tires on a bicycle, the
selected gear of the bicycle, the type of the terrain, grade of
the terrain, and wind speed are some of the factors that may
affect the total load or resistance for these activities.
[0222] For example, energy expenditure based on speed
may be applied to activities such running and cycling:
Running/Cycling Intensity=(a)(speed)+(b)(speed)
(grade)+(c) (Eq. 4B)(See also Eq. 6A,below)

[0223] In Equation 4B, (a)-(c) are parameters that may be
calibrated on an individualized basis, and grade may be
approximated using estimated load.

Calorimetry for Intermittent Activity

[0224] High-intensity, short-duration activities (e.g., cross-
fit training, interval running, etc.) are becoming increasingly
popular techniques for training goals such as cardiorespira-
tory fitness, strength, weight loss, etc. These activities are
often “untyped,” or at least complex to type, which may cause
it to be more difficult to classify these activities automatically.
For example, interval running may appear to be similar to
running during onset of a high heart rate.

[0225] Unlike a more conventional running activity—dur-
ing which the user may have a brief onset period, followed by
an extended amount of time spent running with an elevated
heart rate, and concluded by a cool-down period—interval
running has relatively short periods of time spent running
with an elevated heart rate, punctuated with frequent transi-
tions between periods of onset and cool-down. Thus, by com-
bining calorimetry processes that may be configured to be
accurate for onset detection, active hart-rate calorimetry, and
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passive cool-down calorimetry, the fitness tracking device
100 may be able to provide a more accurate total energy
expenditure estimate during these types of intermittent train-
ing activities.

[0226] FIG. 14 shows acalorimetry method for intermittent
activity in accordance with an embodiment of the present
disclosure. At block 1410, an activity context may be deter-
mined. For example, in some embodiments, the fitness track-
ing device 100 may receive an indication from the user that
the user is going to begin a session of intermittent activity
(e.g., cross-training, interval running, voga, weight lifting,
etc.).

[0227] In parallel, at block 1420, motion data from an
accelerometer, e.g., motion data form motion sensing module
220, may also be provided to block 1425.

[0228] At block 1425, a determination may be made as to
whether the fitness tracking device is confident that the activ-
ity context is an intermittent activity based on the motion data
from block 1420 and an activity context from block 1410. A
confidence level may be output to block 1465.

[0229] At block 1430, an instantaneous heart rate may be
obtained from a heart rate sensor, e.g., heart rate data from
heart rate sensing module 210, may be provided to blocks
1440 and 1450.

[0230] At block 1440, a heart rate dynamics analysis may
be performed. For example, a first (smoothed) derivative and
a second (smoothed) derivative of a sequence of heart rate
samples may be computed. The derivatives may be analyzed
to predict whether the user is experiencing onset or cool-
down.

[0231] For example, if the first derivative is positive (i.e.,
heart rate is increasing) and the second derivative is positive
(i.e., heart rate is not only increasing; the rate at which heart
rate is increasing is also increasing), there may be a relatively
high confidence that the user is experience onset.

[0232] For another example, if the first derivative is nega-
tive (i.e., heart rate is decreasing) and the second derivative is
zero (.., the rate at which heart rate is decreasing is constant)
or the second derivative is negative (i.e., the rate at which
heart rate is decreasing is also decreasing), there may be a
relatively high confidence that the user is experiencing cool-
down.

[0233] Additionally, heart rate data from block 1430 may
also be used to compute a current normalized heart rate
(NHR) or fraction of heart rate reserve (FHR). At block 1450,
a determination may be made as to whether FHR exceeds a
threshold level of FHR as a clue for onset or cool-down
detection. For example, if FHR exceeds the threshold, it may
be more likely that the user is experiencing onset of intermit-
ting activity, whereas if FHR is less than the threshold, it may
be more likely that the user is experience cool-down.

[0234] At block 1460, an indication of “current state” (e.g.,
the most recent determination of the user being in an onset
state or cool-down state) may be fed back into block 1465 so
that the calorimetry process may account for onset/cool-
down hysteresis.

[0235] At block 1465, a determination may be made as to
whether the user is currently experiencing onset or cool-
down. The determination process at block 1465 may account
for clues from a variety of sources, such as activity context
and confidence in activity context received from block 1425,
heart rate dynamics clues received from block 1440, an indi-
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cation of whether FHR exceeds a threshold value from block
1450, and feedback about the previously determined current
state from block 1460.

[0236] The determination of onset or cool-down state at
block 1465 may be used to select an appropriate calorimetry
model. For example, if it is determined at block 1465 that the
user’s (new) current state is onset, FHR may be used as a
feature input to a heterogeneous, generic, high-intensity calo-
rimetry solution for estimating calories burned during the
onset condition at block 1470.

[0237] For another example, if it is determined at block
1465 that the user’s (new) current state is cool-down, a cus-
tom time domain decay equation may be used to model “pas-
sive” calorie burn during cool-down at block 1480. In some
embodiments, the cool-down calorimetry model at 1480 may
use a custom time domain decay equation, which may be
parameterized based on the active calorie intensity at the
beginning of a cool-down phase, the elapsed duration of the
current cool-down phase, and the FHR.

[0238] At block 1495, and accumulator may be used to add
current calories burned (block 1490) to the accumulated total
(block 1496).

[0239] In some embodiments, the high-intensity heart rate-
based calorimetry model selected for onset conditions may be
similar or the same as the heart rate-based calorimetry model
selected for “non-intermittent” activities (e.g., running,
cycling) and may be computed based at least in part on the
user’s heart rate or FHR.

[0240] In some embodiments, the cool-down calorimetry
model may be configured to compute Excess Post-Exercise
Oxygen Consumption (EPOC). After an individual finishes
exercising, or when an individual is temporarily at rest during
an intermittent exercise such as cross-training or weight lift-
ing, the individual may enter a cool-down period during
which oxygen consumption (and heart rate) are elevated. For
example, if two users are sitting in chair at rest, but the first
user has just sit down after running for an hour, the first user
will temporarily consume more oxygen (and expend more
energy) than the second user who has been sitting for the past
hour. EPOC is the “excess” (extra) oxygen consumption that
an individual consumes during a cool-down period after exer-
cising.

[0241] A calorimetry model that accounts for EPOC may
be more accurate because it may be able to distinguish
between the two sitting users in the example above, the first of
whom was experiencing EPOC during cool-down.

[0242] The total EPOC may be attributable to: 1) short-
term replenishment of quick-discharge power reserves (e.g.,
adenosine triphosphate, or ATP), 2) long-term replenishment
of run-of-the-mill power reserves (e.g., glycols), 3) anaerobic
expenditure-created oxygen deficits, and 4) physiological
conditions during cool-down (e.g., higher body core tempera-
ture, which may indicate a higher metabolic rate). EPOC may
include both a relatively fast decaying component and a rela-
tively slowly decaying component.

[0243] Breaking EPOC down into its component parts and
modeling each part may allow for more accurate calorimetry,
particularly during intermittent exercises when individuals
may switch frequently between periods of onset and cool-
down.

[0244] The fast decaying component may be based on a
fixed decay rate based on the user’s physical characteristics
(e.g., age, body mass index or BMI, and sex) and the user’s
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fitness boundaries (e.g., a PAL score). In some embodiments,
the fast decay function may be modeled as:

V0,(0)=V0,(0)27"*°

[0245] According to Equation 17, the user’s oxygen con-
sumption at time t, which may be used to estimate energy
expenditure at time t. is based on the user’s oxygen consump-
tion at time t=0 when the current cool-down phase began,
adjusted by the fast decay factor 277°°

[0246] The slow decaying component may be based on a
decay rate on the order of several hours, which depends on
fitness level (e.g., aerobic capacity, PAL score, etc.), as well as
activity intensity and duration. In some embodiments, the
slow decay function may be modeled as:

(Eq. 5A)

VO,(5)=V0,(0) 5=#(100-VOymax)

[0247] According to Equation 18, the user’s oxygen con-
sumption at time t, which may be used to estimate energy
expenditure at time t, is based on the user’s oxygen consump-
tion at time t=0 when the current cool-down phase began,
adjusted by the slow decay rate that includes VO, max as part
of its calculation.

[0248] The total EPOC may be attributable to: 1) short-
term replenishment of quick-discharge power reserves (e.g.,
adenosine triphosphate, or ATP), 2) long-term replenishment
of ran-of-the-mill power reserves (e.g., glycols), 3) anaerobic
expenditure-created oxygen deficits, and 4) physiological
conditions during cool-down (e.g., higher body core tempera-
ture, which may indicate a higher metabolic rate). Taken
together, the total EPOC (i.e., volume of oxygen consumed),
which may be used to determine calories burned during cool-
down, may be modeled as:

(Eq. 5B)

VO5(1)=(0) YO0 273 +(a) VO5(0)-27

(100- 70>+ (01)FHR 401, (Eq. 5C)

[0249] According to Equation 19, total oxygen consump-
tion at time t during a cool-down phase may be given as the
weighted sum of the four main components of EPOC. The
parameters o, -o,, may be assigned default values based on a
training set. In some embodiments, a different set of param-
eters based on different corresponding training sets may be
used depending on the determined activity context. For
example, one set of parameters may be used for a cross-
training activity context, and a different set of parameters may
be used for an interval running activity context. In some
embodiments, the parameters may be calibrated or otherwise
adjusted according to an individual’s physical characteristics
or fitness level.

Calorimetry—Pedometry-Based Calorimetry

[0250] For low-intensity activities (e.g., walking), a
pedometry-based calorimetry process may be more accurate
than the heart rate and work rate-based calorimetry processes
explained above.

[0251] As explained above with reference to FIGS. 5-10,
pedometer functionality in the fitness tracking device 100
may be used for determining time spent or distance traversed
while engaged in sedentary or modest levels of physical activ-
ity. In some embodiments, the fitness tracking device 100
may be configured to estimate energy expenditure for the time
spent or distance traversed during moderate levels of activity
such as walking.

[0252] In some embodiments, pedometer functionality in
the fitness tracking device 100 may also be used for deter-
mining time spent or distance traversed while engaged in
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other levels of physical activity, including moderate or
intense levels activities. The fitness tracking device 100 may
be configured to estimate energy expenditure for the time
spent or distance traversed during intense levels of activity
such as running. For example, if there is too much noise in a
heart signal to use heart rate-based calorimetry, relatively
intense activity may still be accounted for by, e.g., pedometry
functionality.

Calorimetry—Posture-Based Calorimetry

[0253] As explained above, a user will also burn calories
while sedentary (e.g., sleeping, sitting, standing, or otherwise
“at rest”), and calorimetry models vary depending on the type
of sedentary activity (e.g., sitting burns fewer calories than
standing). Additionally, incidental motion (e.g., fidgeting)
while sitting or standing burns more calories than when there
is not incidental motion.

[0254] In some embodiments, the fitness tracking device
100 may provide more accurate day-long calorimetry by also
accounting calories burned during sedentary activities. By
performing posture detection (e.g., detecting whether the user
is sitting or standing), an appropriate calorimetry model may
be selected according to the user’s detected posture.

[0255] FIG. 15 shows a posture detection method for sed-
entary calorimetry in accordance with an embodiment of the
present disclosure. At blocks 1510 and 1520, motion data
from a motion sensor (e.g., motion data from motion sensing
module 220) may be provided to block 1530.

[0256] At block 1530, a determination of activity intensity
may be made based on the motion data received from block
1520. If the activity intensity is estimated to be moderate-to-
high intensity, the fitness tracking device 100 may use an
activity-based calorimetry model at block 1535. However, if
it is determined at block 1530 that the activity intensity is low
(e.g., sedentary), the method may proceed to block 1540.
[0257] At blocks 1540 and 1545, posture (e.g., sitting or
standing) may be detected. Posture detection is explained in
more detail below with reference to FIGS. 16-19B. If a deter-
mination is made at block 1545 that the user is sitting, the
method may proceed to block 1550. If a determination is
made at block 1545 that the user is standing, the method may
proceed to block 1580.

[0258] At block 1550 (i.e., user was determined to be sit-
ting), intensity may be estimated based on motion data from
blocks 1510 and 1520. For example, the motion data may
indicate how much the user is “fidgeting” (e.g., incidental
movement, swaying, etc.), so an amount of fidgeting may be
detected at block 1550, and the amount of fidgeting may be
passed to block 1560. Incidental movement or fidgeting may
be relatively low while sitting (e.g., typing, turning a steering
wheel, etc.), and incidental movement may be relatively high
while standing (e.g.. arm movement while washing dishes,
folding laundry, etc.).

[0259] At block 1560, a calorie model for sitting may be
applied to estimate calorie expenditure while sitting and pos-
sibly also fidgeting. The calories may be output at block 1570.
[0260] Atblock 1580 (i.e., user was determined to be stand-
ing), intensity may be estimated based on motion data from
blocks 1510 and 1520. For example, fidgeting (while stand-
ing) may be detected at block 1580, and an indication of
whether the user is fidgeting while standing may be passed to
block 1590. Fidgeting as a generic term may include motion
due to performing low-intensity activities while standing. For
example, slowly pacing, washing dishes, cooking, walking up
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stairs, etc. are low-intensity activities that require more
energy expenditure than standing still. These activities with
additional movement may be detected as relatively intense
“fidgeting.”

[0261] At block 1590, a calorie model for standing may be
applied to estimate calorie expenditure while standing and
possibly also fidgeting. The calories may be output at block
1570.

[0262] Calorie models for sitting and standing may be
assigned default values (e.g., 1 MET for sitting and 2 METs
for standing, or 1.5 METs for sitting and 2.5 METs for stand-
ing). Additional METs may be credited depending on
whether the user is fidgeting and the relative intensity of the
fidgeting. In some embodiments, the calorie models may be
selected to be higher or lower than values reported in the
literature for these activities to reduce the amount of gener-
alization error that may occur across different user popula-
tions. In some embodiments, at least the initial calorie models
may be based on training data. In other embodiments, the
calorie models may be calibrated or otherwise adjusted
according the user’s physical characteristics or fitness level.
[0263] FIG. 16 depicts a posture detection method in accor-
dance with an embodiment of the present disclosure. At block
1610, a stream of motion data (e.g., accelerometer data) may
be provided to block 1620.

[0264] At block 1620, samples of motion data from the
stream of motion data may be taken at a suitable resolution
(e.g., 200 samples). 200 samples may be taken at a frequency
of 100 Hz over a time period of 2 seconds. In other embodi-
ments, other sample rates may be used (e.g., 256 samples or
1,000 samples), or other sample frequencies may be used
(e.g., 50Hz, or 200 Hz). Copies of the samples may be passed
to blocks 1630 and 1650. For example, a longer duration
epoch of 10 seconds may be taken to collect 1,000 samples.
However, longer durations may be less accurate because mul-
tiple posture changes could occur within a single epoch (e.g.,
alonger ten-second epoch). Similarly, shorter epochs may be
less accurate because they may not provide a sufficient num-
ber of samples to detect posture accurately.

[0265] At block 1630, low-pass filtering (LPF) may be
performed to subtract out frequencies attributable to fidgeting
or other incidental motion. The remaining information (i.e.,
the portion of motion data that tends to change slowly) may
reflect the orientation of the fitness tracking device 100 (e.g,,
the angle of the fitness tracking device 100 with respect to the
horizon, explained in detail below). For example, if a user is
standing with arms at the user’s side, the user might be fidg-
eting, but the angle of the fitness tracking device on the user’s
arm (e.g., approximately —7/2 radians ) may only vary slightly
during a short time period (e.g., 2-3 seconds). This angle
information may be represented in relatively low frequencies
(e.g., less than 0.5 Hz, or less than 1.0 Hz), and this low
frequency signature may be passed to block 1640.

[0266] At block 1640, the relatively low frequency signa-
ture from block 1630 may be used to compute the angle of the
fitness tracking device 100 with respect to a horizon plane
(e.g., the X-Y plane). The computed angle (e.g., approxi-
mately -7/2 radians) may be passed to block 1670 as one of
the inputs to be considered with a decision tree at block 1670.
[0267] At block 1650, band-pass filtering may be per-
formed to obtain human motion information contained in a
relatively higher frequency band (e.g., over 0.5 Hz, orover 1.0
Hz, and up to 5.0 Hz, or 4.0 Hz), such as fidgeting or other
incidental motion. This band’s frequency signature may be



US 2016/0058356 A1l

passed to block 1660. The band-pass filter may be configured
with a frequency band (e.g., 1.0-5.0 Hz) tuned to capture
human motion likely to occur when the user is sedentary (e.g.,
fidgeting or incidental motion). In some embodiments, if it
may be determined that more rapid (e.g., higher frequency)
human motion is likely to occur while sedentary, the fre-
quency band of the band-pass filter may be calibrated or
otherwise adjusted accordingly.

[0268] Atblock 1660, the band’s frequency signature from
block 1650 may be used to predict posture based on the
motion data received from block 1650. In some embodi-
ments, the prediction may be based on the assumption that the
range of motion (e.g., range of wrist motion, such as when a
user’s arms are swaying) while standing is likely to be greater
than the range of motion (e.g., wrist motion) while the user is
sitting. The range of motion may be estimated based on the
motion data received from block 1650, which may have been
filtered using a band-pass filter to include motion that may
likely be attributable to human motion (e.g., fidgeting).
[0269] Insome embodiments, the relative range of motion
during a given time period (or “epoch”) may be represented as
a range of amplitudes of accelerometer values. For example,
the interquartile range (IQR) between the 75th percentile and
25th percentile accelerometer amplitudes over a number of
samples (e.g., 250 samples) during the time period may be
considered for the range of motion. For example, it some
embodiments, a typical separation in ranges of motions for
IQR while sitting as opposed to IQR while standing may be
determined to be greater than or equal to approximately 0.1 to
0.2 meters.

[0270] Furthermore, it may be determined that a particular
axis or combination of axes of a three-axis accelerometer
within the fitness tracking device 100 provides the most reli-
able IQR to distinguish between motion likely occurring
while standing as opposed to motion likely occurring while
sitting. In some embodiments, for example, the x-axis of the
accelerometer may be determined to provide the most reliable
IQR. In other embodiments, a default axis or weighted com-
bination of axes may be selected, and the selected axis or axes
may be calibrated or otherwise adjusted based on individual
use. For example, the typical incidental motion for a user
relative to the typical position and orientation of the fitness
tracking device 100 on the user’s wrist or other part of the
body may affect which axis or combination of axes may
provide the most useful range of motion data for the IQR
motion feature. This IQR motion feature may be passed to
block 1670 as a second input to be considered with the deci-
sion tree at block 1670.

[0271] At block 1670, the computed angle feature and the
computed IQR motion feature may be considered in the deci-
sion tree (e.g., a sequence of “if-else” conditional branches
using a model with thresholds for angle and motion values).
Once a posture decision has been made (e.g., the user s sitting
or the user is standing), the posture may be output at block
1680. For example:

If (Angle < -0.5 radians and IQR > 0.1)
Return “Standing”

Else If (-0.5 radians < Angle <0 radians and IQR > 0.2)
Return “Standing”

Blse If ...

[0272] In the example decision tree above, the first condi-
tion (Angle<-0.5 radians and IQR>0.1) may represent typi-
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cal parameters when a user’s hands are well below a horizon,
though not necessarily vertically at the user’s sides. Because
the angle may be sufficiently unambiguous, it may be less
important to observe a relatively large IQR to estimate that the
user is probably standing. In the second condition (-0.5
radians<Angle<0 radians and IQR>0.2), the angle may be
considered more shallow, and more ambiguous (e.g., the
user’s arms are crossed). In this situation, a relatively ambigu-
ous angle may make it relatively more important to observe a
relatively large IQR to estimate that the user is probably
standing.

[0273] Other conditions, or additional portions of the con-
ditions listed above, may be included in other embodiments.
For example, another condition (not shown above) may indi-
cate that if the angle is a positive value, it may be predicted
that the user is likely sitting. Alternatively, some positive
angles may be considered ambiguous. Another feature for
resolving ambiguous angle and IQR features may include a
pedometry feature. For example, if a pedometer function of
the fitness tracking device 100 determines that the user may
be walking (e.g., pacing), the fitness tracking device 100 may
conclude that the user had been standing.

[0274] In some embodiments, another feature to consider
may be the frequency or rapidity of incidental movement (as
opposed to the IQR feature described above, which indicates
the amplitude or range of incidental movement). Frequency
of movement may be determined by observing the number of
zero crossings (or variations around the mean) of a value of
one or more axes of an accelerometer.

[0275] Insome embodiments, other features in addition to,
or instead of, angle and IQR motion may be considered to
detect posture, such as differences between X, Y, and Z accel-
erometer channels; mean values, vector magnitude, activity
counts (e.g., how many times a signal crosses a sit/stand
threshold in the epoch window), spectral power, etc. may be
considered when detecting the user’s posture. For example, in
some embodiments, it may be determined that angle and IQR
may be less effective than other features for detecting whether
a user is sitting or standing with arms crossed. Specifically,
standing with arms crossed may restrict motion (e.g., wrist
motion) relatively more than when standing without arms
crossed. Thus, the IQR feature may be relatively low if a user
is standing with arms crossed.

[0276] For this case of crossed arms, an activity count may
be more likely to predict whether a user is sitting or standing.
In some embodiments, the counted activity may be zero
crossings over the angle threshold (e.g., angle crossings over
thehorizon). For example, it may be determined that the angle
feature is more likely to cross a threshold angle more fre-
quently when the user is standing as opposed to when the user
is sitting, in which case a higher activity count (measured by
threshold angle crossings) may be a more accurate predictor
of posture in this situation.

[0277] In some embodiments, other classifiers in addition
to, or instead of, the decision tree may be used to detect
posture based on the one or more input features (e.g., the
angle and IQR motion features). For example, random for-
ests, a separate sit detector, a separate stand detector, support
vector machines, etc., may be used to classify or otherwise
detect the user’s posture.

[0278] In some embodiments, a feedback or hysteresis
mechanism may be used to smooth out possible noise in the
detection output. For example, the method may track the
previous fourepoch states (or more or fewer epoch states) and
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consider a confidence level or other indicator of which of the
current or prior epoch states may be determined to be the
dominant or most confident indicator of posture.

[0279] In some embodiments, the classifier (e.g., the deci-
sion tree used at block 1670) may be biased toward detecting
a sitting posture more frequently. For example, ambiguous
states may be more likely to resolved as a sitting posture
instead of a standing posture. In this situation, there may be
fewer false positives for a standing posture, which makes it
less likely that users who are sitting will not receive additional
credit for extra energy expenditure for standing while they
were sitting. In other embodiments, the decision tree may be
biased to break-ties in favor of standing, which may make it
less likely that a user who is standing may be docked credit for
a false positive sit detection.

[0280] FIG. 17 shows a posture detection method for sed-
entary activity in accordance with an embodiment of the
present disclosure. In some embodiments, the posture detec-
tion techniques may account for additional data from the
companion device 300. As shown in FIG. 17, accelerometer
data may be received at block 1710 (from, e.g., motion sens-
ing module 220 of the fitness tracking device 100), and accel-
erometer data may be received at block 1720 (from, e.g., the
companion device 300, when it may be determined that the
companion device is in the user’s pocket). Accelerometer
data from both the fitness tracking device 100 (e.g., from
block 1710) and the companion device 300 (e.g., from block
1720) may be passed to block 1740.

[0281] At block 1740, the user’s posture may be detected.
In some embodiments, the posture detection method may be
similar to the method described with reference to FIG. 16.
The filters and the classifier (e.g., decision tree) may also take
into account an angle feature and an IQR feature or other
features from the companion device 300. The decision tree
may include different threshold values, weightings, and con-
fidence levels for the companion device 300. For example, if
the companion device is detected to be in the user’s pocket
and oriented vertically, there is a strong indication that the
user is standing, even if the user’s arms are crossed into a
relatively ambiguous sit/stand position with respect to the
fitness tracking device 100. As another example, the fitness
track device 100, which may be worn on the wrist, may, at
least for some activities, receive more indications of fidgeting
or other incidental movement than a companion device stored
in a pocket near the user’s hip. The detected posture (e.g., sit
or stand) may be passed to blocks 1750 and 1780.

[0282] At block 1750, a calorimetry process may compute
energy expended according to a calorimetry model based on
the posture detected at block 1740. The calorimetry process
may also account for calories burned due to incidental motion
(e.g., fidgeting), which may be detected using the IQR motion
feature passed from block 1710 through a band-pass filter.
The sedentary calorie count (“SedCal”) may be outputted at
block 1760.

[0283] FIG. 17 also includes a timer feature for tracking
how much time is spent in sedentary postures, such as with
limited incidental motion below a predetermined threshold.
In some embodiments, a step count may be determined at
block 1770 (e.g., using pedometer functionality of the fitness
tracking device 100). The step count may be passed to block
1780.

[0284] In some embodiments, at block 1780, a timer may
track whether the user is sedentary, and for how long. It may
account for detected posture received from block 1740, IQR
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motion feature received from block 1710, step count received
from block 1770, etc. The amount of sedentary time (“‘Sed-
Timer”) may be output at block 1790. In some embodiments,
if the sedentary timer detects that a user has been sitting or
otherwise sedentary fora prolonged period oftime, the fitness
tracking device 100 may be configured to alert the user to
encourage the user to stand up or otherwise move around.
[0285] FIG. 18 illustrates a posture detection technique in
accordance with an embodiment of the present disclosure. As
shown in FIG. 18, horizontal line (1810) represents the hori-
zon 1810 (e.g., the X-Y horizon plane). A first arc 1820
represents angles above the horizon 1810. A second arc 1730
represents angles below the horizon 1810. In the example of
FIG. 18, a threshold angle may be set at 0 radians (i.e., in-line
with the horizon 1810). If the detected angle feature is an
angle within the first arc 1820, the classifier (e.g., decision
tree) may consider it a strong clue that the user has a first
posture (e.g., sitting). Similarly, if the detected angle feature
is an angle within the second arc 1730, the classifier may
determine that the user has a second posture (e.g., standing).
[0286] In some embodiments, the orientation of the fitness
tracking device relative to the horizon plane (e.g., horizon
1810) may be determined based on motion data received from
a three-axis accelerometer, a three-axis gyroscope, or a com-
bination of a three-axis accelerometer and a three-axis gyro-
scope, such as the motion sensors that may be included in
motion sensing module 220 of the fitness tracking device 100.
[0287] In other embodiments, a different threshold angle
may be selected to indicate which range of angles are more
likely to be assumed while in a sitting posture, and which
range of angles are more likely to be assumed while in a
standing posture. In some embodiments, the ranges may over-
lap, and the overlapping regions are angles for which the
posture may be ambiguous.

[0288] FIGS. 19A-B illustrate posture detection techniques
in accordance with embodiments ofthe present disclosure. As
shown in FIG. 19A, a first user 1910 is standing with arms at
the user’s side. The first user 1910 is wearing the fitness
tracking device 100 on the user’s wrist, and it is oriented at an
angle 1915 that is below the horizon 1810. In this example, a
posture detection algorithm may evaluate the angle 1915 and
determine correctly that the first user 1910 is standing.
[0289] As shown in FIG. 19B, a second user 1920 is sitting
with arms extended out, typing on a keyboard while sitting at
a desk. The second user 1920 is also wearing the fitness
tracking device 100 on the user’s wrist, and it is oriented at an
angle 1925 that is approximately at the horizon 1810. In this
example, a posture detection algorithm may consider this
angle to be ambiguous. For example, the angle may be insuf-
ficient to distinguish between a user sitting and typing or
standing with arms crossed at an angle roughly level with the
horizon.

[0290] In this case, it may be possible to resolve the ambi-
guity based on IQR motion. If the user is sitting, as the second
user 1920 is sitting, it may be more likely that IQR motion
will be relatively low as compared to the IQR motion ofa user
standing with arms in as similar orientation.

[0291] Additionally, the second user 1920 is depicted as
holding the companion device 300 in a pants pocket. In some
embodiments, it may be detected that the companion device
300 is in the pocket and oriented horizontally, in-line with the
horizon 1810. This orientation of the companion device 300
may be a strong indicator that the second user 1920 is in a
sitting posture.
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Calorimetry—Additional Optimizations for

Resource-Constrained Devices

[0292] The fitness tracking device 100 may be a small
device with limited space for memory and a battery, and it
may be designed to be worn all day while running on battery
power. Consequently, some embodiments may include opti-
mizations to perform functions within relatively limited
resources as compared to the companion device 300 or
another computing device. For example, the fitness tracking
device 100 may use alow-power motion coprocessor to moni-
tor motion data with less power usage than if the primary
microprocessor were continuously monitoring the motion
data. As another example, the fitness tracking device 100 may
reduce the frequency at which it monitors heart rate data to
conserve power until the fitness tracking device 100 detects or
otherwise determines that the user is engaged in an activity
for which the calorimetry process would benefit from more
frequent heart rate monitoring.

[0293] To illustrate the benefits of the local model for at
least certain circumstances, FIG. 20 shows a speed-based
calorimetry method in accordance with an embodiment of the
present disclosure.

[0294] In some embodiments, the fitness tracking device
100 may be configured to predict energy expenditure using a
comparably accurate but less resource-intensive calorimetry
process dubbed the “local model.” At block 2010, accelerom-
eter or other motion data 2015 may be passed to blocks 2020
and 2030.

[0295] Atblock 2020, speed may be estimated based on the
motion data received from block 2010. In some embodi-
ments, the accuracy of the speed estimate 2025 may be
improved with GPS location data (e.g., GPS location data
received from the companion device 300). The speed estimate
may be provided to block 2040

[0296] At block 2030, other features may be determined
from the motion data or other inputs. These other features
may also be provided to block 2040.

[0297] At block 2040, a calorimetry model may be used to
estimate energy expenditure based on estimated speed 2025
from block 2020 and other input features from block 2030.
The calorimetry model may be selected to balance accuracy
with complexity (whereby complexity may place increased
strains on device resources, such as processing power,
memory, battery life, etc.)

[0298] For example, the American College of Sports Medi-
cine (ACSM) has a (nonlinear) model for energy expenditure
while walking:

¥0,=0.1(speed)+1.8(speed)(fractional grade)+3.5

[0299] Equation 6A is a nonlinear model relying on speed
and, optionally, grade, as the only inputs. The parameteriza-
tion is offered as a one-size-fits-all approach. This calorim-
etry model has minimal complexity, but it may also have low
accuracy, particularly for users who are “average” for whom
the given parameters may not be a good fit.

[0300] At the other end of the spectrum may be highly
complex (and/or nonlinear) techniques such as context-aware
machine learning models (e.g., neural networks, regression
trees, random forests, etc.). A random forest, for example,
may be a highly accurate but also can be a highly complex
nonlinear model, which may require more time and comput-
ing resources (including memory and batter power).

[0301] The local model may offer high accuracy that is
comparable to a random forest, but the complexity (and there-

(Eq. 6A)
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fore the resource requirements) may be substantially lower
than those of the random forest.

[0302] FIG. 21 shows a local model-based calorimetry
method in accordance with an embodiment of the present
disclosure. Unlike the ACSM’s one-size-fits-all model, the
local model may still account for differences among users
based on age, sex, body mass index (BMI), etc. Instead of
building a customized model for every permutation of age,
sex, and BMI, each variable may be grouped into a suitable
number of bins (or groups). For example, age may be split into
bins such as 20-29, 30-39, 40-49, 50-59, etc., and BMI can be
split into bins such as 16-19.9,20-23.9,24-27.9, 28-31.9, etc.
In other embodiments, fewer bins or more bins may be used
for age or BMI, and different ranges may be selected.
[0303] As shown in FIG. 21, physical characteristics (“an-
thropomorphic variables”) may be collected. These charac-
teristics may include sex (e.g., male or female, sometimes
referred to as “gender”), age (e.g., 0-120), and BMI (e.g.,
16-32). In some embodiments, the fitness tracking device 100
may receive the user’s height and weight to determine the
user’s BMI. In other embodiments, more or fewer character-
istics or variables may be taken into account.

[0304] At block 2120, sex (“gender”) may be mapped to a
“sex binindex” (or “gender binindex™) (e.g., female=index 0,
male=index 1).

[0305] At block 2130, age may be mapped to an “age bin
index.” For example, using the age bins described above, if
the user’s age is given as 42, the user’s age falls into the
“40-49” bin. This bin may be designated as age bin index
number 2.

[0306] At block 2140, BMI may be mapped to a “BMI bin
index.” For example, using the BMI bins described above, if
the user’s BMI is given as 21.2, the user’s BMI falls into the
“20-23.9” bin. This bin may be designated as bin index num-
ber 1.

[0307] Inother embodiments, other variables may be simi-
larly mapped as the sex, age, or BMI mappings described
above.

[0308] Atblock 2150, a calorimetry model may be selected
based on the sex bin index number received from block 2120,
the age bin index number received from block 2130, and the
BMI bin index number received from block 2140. For
example, in some embodiments, a calorimetry model trained,
calibrated, or otherwise adjusted for a particular permutation
of sex, a sub-range (bin) of ages, and a sub-range (bin) of BMI
values. Because each variable may be indexed to a relatively
small number of bins, only a relatively small number of
calorimetry models need to be stored or generated. In some
embodiments, the sub-ranges for each bin and the size of each
bin may be configured to provide an appropriate balance
between accuracy and complexity.

[0309] In one example, the ACSM model may be general-
ized:

VOy=a, (speed)+a(speed)(fractional grade)+as (Eq. 6B)

[0310] In the general form, the (nonlinear) ACSM model
has three coefficients o, -c.;. The local model technique may
store the three coefficients suitable for each permutation of
bins. Thus, in an example for which there are 2 sex bins, 4 age
bins, and 4 BMI bins, this configuration may store coeffi-
cients for 2x4x4=32 permutations of bins.

[0311] The memory required to store 32 triplets of coeffi-
cients may be modest compared to a more complex technique
and may not be meaningfully larger than storing only single
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one-size-fits-all model. For example, for a conventional deci-
sion tree, the computational complexity may be proportional
to the depth of the tree d, which may be generally between 10
and 20. Because the storage required may be proportional to
24 which is on the order of one thousand to one million sets
of coefficients. For another example, a random forest may
typically require one hundred times more storage than a deci-
sion tree. In some embodiments, in which a linear model is
used, only 32 pairs or doublets of coefficients may need to be
stored. For higher-order nonlinear models, additional param-
eters may need to be stored for each permutation.

[0312] Also, the model selection technique of sorting vari-
ables into predetermined bins, and using the bin index num-
bers to look up a set of coefficients in a relatively small lookup
table may require much less battery power and processing
power than a more complex technique such as a random
forest. Furthermore, once a model is selected, it may require
no more battery powet, processing power, or memory than a
one-size-fits-all model.

[0313] At block 2170, an energy expenditure prediction
process may use the model 2155 received from block 2150 to
estimate energy expenditure given the speed and other inputs
provided from block 2160.

[0314] At block 2180, the estimated energy expenditure
may be outputted.

CONCLUSION

[0315] The present disclosure is not to be limited in scope
by the specific embodiments described herein. Indeed, other
various embodiments of and modifications to the present
disclosure, in addition to those described herein, will be
apparent to those of ordinary skill in the art from the forego-
ing description and accompanying drawings. Thus, such
other embodiments and modifications are intended to fall
within the scope of the present disclosure. Further, although
the present disclosure has been described herein in the context
of at least one particular implementation in at least one par-
ticular environment for at least one particular purpose, those
of ordinary skill in the art will recognize that its usefulness is
not limited thereto and that the present disclosure may be
beneficially implemented in any number of environments for
any number of purposes.
1. A method comprising;
determining, by a fitness tracking device, that a user of the
fitness tracking device is engaged in an exercise session
at an intensity level above a threshold intensity level;
obtaining, by the fitness tracking device, a plurality of heart
rate measurements of the user over a period of time
during the exercise session, wherein the plurality of
heart rate measurements comprises heart rate data from
a heart rate sensor of the fitness tracking device;
obtaining, by the fitness tracking device, motion data of the
user over the period of time, wherein the motion data
comprises a first plurality motion measurements from a
first motion sensor of the fitness tracking device;
determining, by the fitness tracking device, for each of the
plurality of heart rate measurements, a corresponding
work rate measurement, wherein the work rate measure-
ment comprises a speed of the user at a corresponding
time;
estimating, by the fitness tracking device, for each of the
plurality of heart rate measurements, a corresponding
energy expenditure rate at the corresponding time using
the corresponding work rate measurement;
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estimating an aerobic capacity of the user by applying, by
the fitness tracking device, a regression analysis of the
plurality of heart rate measurements and the correspond-
ing energy expenditure rate for each of the plurality of
heart rate measurements; and

storing, by the fitness tracking device, the aerobic capacity

of the user in a memory of the fitness tracking device.

2. The method of claim 1, wherein determining that the
user of the fitness tracking device is engaged in the exercise
session at the intensity level above the threshold intensity
level comprises inferring an activity context of the user using
the motion data of the user.

3. The method of claim 1, wherein the motion data of the
user comprises a second plurality of motion measurements
from a second motion sensor of a companion device in wire-
less communication with the fitness tracking device.

4. The method of claim 3, wherein the companion device
comprises a smartphone, and wherein the second motion
sensor of the companion device comprises a GPS sensor.

5. The method of claim 1, wherein estimating the aerobic
capacity of the user comprises:

obtaining, from the memory of the fitness tracking device,

an observed minimum heart rate;

obtaining, from the memory of the fitness tracking device,

an observed maximum heart rate;
obtaining, by the fitness tracking device, an age of the user;
using the age of the user to determine, by the fitness track-
ing device, an estimated maximum heart rate; and

determining, for each heart rate measurement of the plu-
rality of heart rate measurements, a corresponding inten-
sity level by comparing each heart rate measurement
with the observed minimum heart rate and a greater of
the observed maximum heart rate and the estimated
maximum heart rate.

6. The method of claim 1, wherein the regression analysis
is a linear regression analysis, and wherein the linear regres-
sion analysis is constrained, by the fitness tracking device, to
include a point representing a minimum energy expenditure
rate of the user at a corresponding minimum heart rate of the
user.

7. The method of claim 1, wherein each corresponding
energy expenditure rate is estimated by the fitness tracking
device using at least one of an age of the user, a weight of the
user, and a sex of the user.

8. A fitness tracking device comprising:

a heart rate sensor for obtaining heart rate measurements

from a user of the fitness tracking device;

a motion sensor for obtaining motion data of the user;

a memory; and

a processor communicatively coupled to the heart rate sen-

sor, the motion sensor, and the memory, wherein the

processor is configured to:

determine that the user is engaged in an exercise session
at an intensity level above a threshold intensity level;

obtain a plurality of heart rate measurements of the user
over a period of time during the exercise session,
wherein the plurality of heart rate measurements com-
prises heart rate data from the heart rate sensor of the
fitness tracking device;

obtain motion data of the user over the period of time,
wherein the motion data comprises a first plurality
motion measurements from the first motion sensor of
the fitness tracking device;
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determine, for each of the plurality of heart rate mea-
surements, a corresponding work rate measurement,
wherein the work rate measurement comprises a
speed of the user at a corresponding time;

estimate, for each of the plurality of heart rate measure-
ments, a corresponding energy expenditure rate at the
corresponding time by using the corresponding work
rate measurement;

estimate an aerobic capacity of the user by applying a
regression analysis of the plurality of heart rate mea-
surements and the corresponding energy expenditure
rate for each of the plurality of heart rate measure-
ments; and

storing the aerobic capacity of the user in the memory of
the fitness tracking device.

9. The fitness tracking device of claim 8, wherein the pro-
cessor is configured to infer an activity context of the user by
using the motion data of the user.

10. The fitness tracking device of claim 8, wherein the
motion data of the user comprises a second plurality of
motion measurements from a second motion sensor of a com-
panion device, wherein the companion device is in wireless
communication with the processor.

11. The fitness tracking device of claim 10, wherein the
companion device comprises a smartphone, and wherein the
second motion sensor of the companion device comprises a
GPS sensor.

12. The fitness tracking device of claim 8, wherein the
processor is configured to:

obtain, from the memory of the fitness tracking device, an

observed minimum heart rate;

obtain, from the memory of the fitness tracking device, an

observed maximum heart rate;

obtain an age of the user;

use the age of the user to determine an estimated maximum

heart rate; and

determine, for each heart rate measurement of the plurality

of heart rate measurements, a corresponding intensity
level, wherein the corresponding intensity level is deter-
mined by comparing each heart rate measurement with
the observed minimum heart rate and a greater of the
observed maximum heart rate and the estimated maxi-
mum heart rate.

13. The fitness tracking device of claim 8, wherein the
regression analysis comprises a linear regression analysis,
and wherein the processor is configured to constrain the linear
regression analysis to include a point representing a mini-
mum energy expenditure rate of the user at a corresponding
minimum heart rate of the user.

14. The fitness tracking device of claim 8, wherein the
processor is configured to estimate each corresponding
energy expenditure rate using at least one of an age of the user,
a weight of the user, and a sex of the user.

15. An article of manufacture comprising:

a non-transitory processor readable storage medium; and

instructions stored on the medium;

wherein the instructions are configured to be readable from

the medium by a processor of a fitness tracking device,
wherein the fitness tracking device comprises a memory,
aheart rate sensor for obtaining heart rate measurements
from a user of the fitness tracking device, and a motion

24
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sensor for obtaining motion data of the user, and the

instructions thereby cause the processor to:

determine that the user is engaged in an exercise session
at an intensity level above a threshold intensity level,

obtain a plurality of heart rate measurements of the user
over a period of time during the exercise session,
wherein the plurality of heart rate measurements com-
prises heart rate data from the heart rate sensor of the
fitness tracking device;

obtain motion data of the user over the period of time,
wherein the motion data comprises a first plurality
motion measurements from the first motion sensor of
the fitness tracking device;

determine, for each of the plurality of heart rate mea-
surements, a corresponding work rate measurement,
wherein the work rate measurement comprises a
speed of the user at a corresponding time;

estimate, for each of the plurality of heart rate measure-
ments, a corresponding energy expenditure rate at the
corresponding time by using the corresponding work
rate measurement;

estimate an aerobic capacity of the user by applying a
regression analysis of the plurality of heart rate mea-
surements and the corresponding energy expenditure
rate for each of the plurality of heart rate measure-
ments; and

storing the aerobic capacity of the user in the memory of
the fitness tracking device.

16. The article of manufacture of claim 15, wherein the
processor is caused to infer an activity context of the user by
using the motion data of the user.

17. The article of manufacture of claim 15, wherein the
motion data of the user comprises a second plurality of
motion measurements from a second motion sensor of a com-
panion device in wireless communication with the processor.

18. The article of manufacture of claim 17, wherein the
companion device comprises a smartphone, and wherein the
second motion sensor of the companion device comprises a
GPS sensor.

19. The article of manufacture of claim 15, wherein the
processor is caused to:

obtain, from the memory of the fitness tracking device, an

observed minimum heart rate;

obtain, from the memory of the fitness tracking device, an

observed maximum heart rate;

obtain an age of the user;

use the age of the user to determine an estimated maximum

heart rate; and

determine, for each heart rate measurement of the plurality

of heart rate measurements, a corresponding intensity
level by comparing each heart rate measurement with
the observed minimum heart rate and a greater of the
observed maximum heart rate and the estimated maxi-
mum heart rate.

20. The article of manufacture of claim 15, wherein the
regression analysis is a linear regression analysis, and
wherein the processor is caused to constrain the linear regres-
sion analysis to include a point representing a minimum
energy expenditure rate of the user at a corresponding mini-
mum heart rate of the user.
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