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1
PREDICTING CHARACTERISTICS OF A
FUTURE RESPIRATORY EVENT, AND
APPLICATIONS THEREOF

TECHNICAL FIELD

An embodiment relates generally to a digital stethoscope,
and more specifically a digital stethoscope for detecting a
respiratory abnormality and a method of operation thereof.

BACKGROUND

Respiratory illnesses such as asthma, chronic obstructive
pulmonary disease (COPD), bronchitis, emphysema, and
pneumonia affect many individuals. The ability to quickly
detect and forecast the onset of these conditions, including
possible life threatening events associated with these con-
ditions, is of vital importance to those affected. Generally,
diagnosis of these respiratory illnesses involves a doctor that
listens to patient’s breathing using a stethoscope. A stetho-
scope is an acoustic medical device for auscultation. It
typically has a small disc-shaped resonator that is placed
against the skin, and a tube connected to two earpieces.
However, these traditional stethoscopes are prone to error
and require a doctor to be present and to make the diagnosis.
The need for a doctor makes daily monitoring for these
conditions impractical.

A number of patents and applications have been filed that
attempt to deal with these issues. U.S. Pat. No. 9,848,848
describes a digital stethoscope that uses a number of audio
filters to control noise and reduce the possibility of error.
U.S. Patent Pub. No. 2018/0317876 describes using a clas-
sification system, such as a binary support vector machine,
to distinguish between those noises that are normal from
those that are abnormal.

However, a number of limitations still exist in the art. For
example, there is a need to improve real-time performance
of the classification algorithm to allow it to be executed in
real time and locally on a device that exists at the patient’s
home. There may be a need to improve the ability to forecast
future respiratory future respiratory events. There may be a
need to catalog data collected from in-home stethoscopes,
while protecting a patient’s privacy interest. Currently, a
classification system may be able to predict whether a noise
is normal or abnormal, but cannot predict a severity of a
future respiratory event or the characteristics of that respi-
ratory event. Methods, devices, and systems are needed to
address these issues.

SUMMARY

Embodiments disclosed herein improve digital stetho-
scopes and their application and operation. In a first embodi-
ment, a method detects of a respiratory abnormality using a
convolution. The convolution may improve performance,
particularly in situations where the detection should occur in
real-time. The method involves receiving, from a micro-
phone, an auditory signal. An auditory spectrogram is gen-
erated based on the auditory signal. A convolution procedure
is performed on the auditory spectrogram to generate one or
more convolution values. The convolution values represent
a compressed version of a portion of the auditory spectro-
gram, and the convolution procedure is trained to generate
one or more features for detecting the respiratory abnormal-
ity. One or more weights trained for detection of the respi-
ratory abnormality are applied to the convolution values. A
classification value is generated based on the application of
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2

the weights to the convolution values. The classification
value indicates whether the auditory signal includes the
respiratory abnormality.

In a second embodiment, a method counts coughs for a
patient. The method involves receiving from a microphone
of a digital stethoscope an auditory signal over a period of
time. An auditory spectrogram is generated based on the
auditory signal. A control unit of the digital stethoscope
analyzes the auditory spectrogram to determine whether the
auditory signal represents a cough. The control unit of the
digital stethoscope tracks the cough in a cough log. Based on
the cough log, a communication unit of the digital stetho-
scope transmits to a cloud-based service a message indicat-
ing a number of coughs tracked over the period of time for
storage on a remote server.

In a third embodiment, a method predicts a respiratory
event based on a detected trend. The method involves
receiving, from a microphone of a digital stethoscope, a first
noise signal at a first time. The first noise signal is analyzed
to determine a first severity score indicating how severe a
first respiratory event of a patient captured in the first noise
signal is. A second noise signal captured at a second time is
received from the microphone of the digital stethoscope. The
second noise signal is analyzed to determine a second
severity score indicating how severe a second respiratory
event of the patient captured in the second noise signal is.
Finally, a prediction is generated indicating a likelihood of
a third respiratory event occurring for the patient at a future
time based on applying a first weight to the first severity
score and a second weight to the second severity score. The
first and second weights are trained based on a history of
respiratory events.

In a fourth embodiment, a method forecasts characteris-
tics of a future respiratory event. The method involves
receiving, from a microphone of a digital stethoscope, a first
noise signal. The first noise signal captures a first respiratory
event at a first time. A first feature space representing the first
noise signal is generated. The first feature space is encoded
into a first convolution vector using a convolution proce-
dure. A second noise signal is received, from the microphone
of the digital stethoscope. The second noise signal captures
a second respiratory event at a second time. A second feature
space representing the second noise signal is generated. The
second feature space is encoded into a second convolution
vector using the convolution procedure. A predicted convo-
lution vector is generated based on the first and second
feature spaces. Finally, the predicted convolution vector is
decoded into a predicted feature space representing a sound
made by the future respiratory event.

In a fifth embodiment, a base station is provided for a
digital stethoscope. The base station includes a housing
configured to accept the digital stethoscope. The base station
includes a wireless charging unit, located within the hous-
ing, configured to charge the digital stethoscope when it
rests on the exterior of the housing. The wireless charging
unit is further configured to detect when the digital stetho-
scope becomes detached from the housing. A communica-
tion unit is coupled to the wireless charging unit. The
communication unit is configured to receive a noise signal
from the digital stethoscope when the wireless charging unit
detects the digital stethoscope becoming detached from the
housing and to communicate the respiratory event to a
cloud-based service. Finally, a control unit is coupled to the
communication unit and is configured to analyze the noise
signal for a respiratory event.

Certain embodiments of the invention have other steps or
elements in addition to or in place of those mentioned above.
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The steps or elements will become apparent to those skilled
in the art from a reading of the following detailed description
when taken with reference to the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated
herein and form a part of the specification, illustrate embodi-
ments of the present disclosure and, together with the
description, further serve to explain the principles of the
disclosure and to enable a person skilled in the arts to make
and use the embodiments.

FIG. 1 is an exemplary digital stethoscope and base
station of a system for detecting a respiratory abnormality in
an embodiment of the present invention.

FIG. 1A is an exemplary architecture of the digital stetho-
scope in an embodiment of the present invention.

FIG. 1B is an exemplary architecture of the base station
in an embodiment of the present invention.

FIG. 2A is a network diagram of the system for detecting
the respiratory abnormality including further components of
the digital stethoscope and base station in an embodiment of
the present invention.

FIG. 2B is an exemplary control flow of the system for
detecting the respiratory abnormality in an embodiment of
the present invention.

FIG. 2C is a further exemplary architecture of the digital
stethoscope in an embodiment of the present invention.

FIG. 2D is a further exemplary architecture of the base
station in an embodiment of the present invention.

FIG. 3 is an exemplary second control flow for detection
of the respiratory abnormality in an embodiment of the
present invention.

FIG. 4A is an exemplary depiction of the functioning of
a receiver module and a subtraction module in an embodi-
ment of the present invention.

FIG. 4B is an exemplary depiction of the functioning of
a filter module and the generation of an auditory spectro-
gram in an embodiment of the present invention.

FIG. 4C is an exemplary depiction of the functioning of
a convolution neural network module in an embodiment of
the present invention.

FIG. 5A is an exemplary feature map used to predict a
respiratory event or respiratory condition in the future in an
embodiment of the present invention.

FIG. 5B is an exemplary depiction of an LSTM process
used to predict a third respiratory event occurring for the
patient at a future time in an embodiment of the present
invention.

FIG. 6 is an exemplary third control flow for forecasting
characteristics of a future respiratory event or respiratory
condition in an embodiment of the present invention.

FIG. 7 is an exemplary depiction of the third control flow
for forecasting characteristics of a future respiratory event or
respiratory condition in an embodiment of the present inven-
tion.

FIG. 8 is an exemplary method of operating the comput-
ing system in an embodiment of the present invention.

FIG. 9 1s a further exemplary method of operating the
system in an embodiment of the present invention.

FIG. 10 is a further exemplary method of operating the
system in an embodiment of the present invention.

FIG. 11 is a further exemplary method of operating the
system in an embodiment of the present invention.

FIG. 12 depicts exemplary spectrograms representing
breathing patterns in an embodiment of the present inven-
tion.
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FIG. 13 depicts an exemplary auditory spectrogram in an
embodiment of the present invention.

FIG. 14 depicts an exemplary feature space in an embodi-
ment of the present invention.

In the drawings, like reference numbers generally indicate
identical or similar elements. Additionally, generally, the
left-most digit(s) of a reference number identifies the draw-
ing in which the reference number first appears.

DETAILED DESCRIPTION

Digital Stethoscope and Base Station

FIG. 1 shows an exemplary digital stethoscope 110 and
base station 118 of a system 100 for detecting a respiratory
abnormality in an embodiment of the present invention. The
respiratory abnormality refers to irregularities in the respi-
ration patterns of a patient. The respiratory abnormality can
indicate the onset of a respiratory condition in a patient, for
example a respiratory disease such as asthma, chronic
obstructive pulmonary disease (COPD), bronchitis, emphy-
sema, pneumonia, or a combination thereof. The respiratory
abnormality can be indicated by the occurrence of a respi-
ratory event, such as a large number of coughs within a
period of time by a patient, a wheeze, a crackle, or a cough
that has a sound frequency outside an audible frequency
expected from a patient, or a combination thereof. The
system 100 can use the digital stethoscope 110 and the base
station 118 to detect the respiratory abnormality, or predict
a respiratory event or respiratory condition in the future.

The digital stethoscope 110 is an acoustic device for
detecting and analyzing noises from a patient’s body. The
patient can be, for example, a human or an animal. The
noises, from the patient’s body can be for example a cough,
a wheeze, a crackle, a breathing pattern, a heartbeat, a chest
motion representing a patient’s respiratory cycle, or a com-
bination thereof.

The digital stethoscope 110 can further generate informa-
tion based on the detection, amplification, and analysis of
the noises. For example, in one embodiment, the digital
stethoscope 110 can generate a value representing or clas-
sifying the noises detected.

In one embodiment, the classification can include classi-
fications such as “normal” or “abnormal.” “Normal” refers
to the classification of sounds falling within an expected
frequency range to be heard from the patient. “Abnormal”
refers to the classification of sounds falling outside an
expected frequency range to be heard from the patient.
Classification can be done by analyzing the noises, by for
example, filtering, comparing, processing, or a combination
thereof, the noises, against threshold values, stored values,
acoustic models, machine learned trained data, machine
learning processes, or a combination thereof, and putting the
noises into categories, for example “normal” or “abnormal”
based on the noises being within a range of frequencies
expected to be heard from the patient. The collection,
filtering, comparison, and classification of the noises by the
digital stethoscope 110 will be discussed further below.

The digital stethoscope 110 can include one or more
components. For example, in one embodiment, the digital
stethoscope 110 can include a display unit 102, one or more
microphones 106, and a first housing 108. The display unit
102 can be any graphical user interface such as a display, a
projector, a video screen, a touch screen, or any combination
thereof that can present information detected or generated by
the digital stethoscope 110 for visualization by a user of the
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system 100. The display unit 102 can enable the visual
presentation of information detected or generated by the
digital stethoscope 110.

For example, in one embodiment, the display unit 102 can
enable the visual presentation of the noises detected, by for
example, displaying a plot of the sound frequencies detected
over time, displaying a decibel level of the sounds detected,
or displaying a value or visual indicator representing the
classification of the noises generated, for example “normal”
or “abnormal.” In one embodiment, if the digital stethoscope
110 classifies a noise as being “abnormal,” the display unit
102 can display an indicator, such as a red colored light, or
a message indicating that the noise is “abnormal.” Alterna-
tively, if the digital stethoscope 110 classifies the noise as
being “normal,” the display unit 102 can display an indica-
tor, such as a green colored light, or a message indicating
that the noise is “normal.”

The display unit 102 can further present other information
generated by the digital stethoscope 110, such as a power
level indicator indicating how much power the digital
stethoscope has, a volume indicator indicating the volume
level of output noises being output by the digital stethoscope
110, or a network connectivity indicator indicating whether
the digital stethoscope 110 is connected to a device or
computer network such as a wireless communication net-
work or wired communication network. The aforementioned
information are merely exemplary of the types of informa-
tion that the display unit 102 can display, and are not meant
to be limiting.

In one embodiment, the display unit 102 can further
include one or more buttons 126 that can be used by the user
of the system 100 to enable interaction with the digital
stethoscope 110. For example, the buttons 126 can provide
functionality such as powering the digital stethoscope 110
on or off or enable the digital stethoscope 110 to start or stop
recording the noises.

In one embodiment, the digital stethoscope 110 can fur-
ther include one or more microphones 106A and B. The
microphones 106 A and B enable the digital stethoscope 110
to detect and convert the noises into electrical signals for
processing by the digital stethoscope 110, or a further device
such as the base station 118. Microphone 106A is mounted
on a perimeter side of stethoscope 110 to detect noises
external to the patient’s body. The noises originating from
external to the patient’s body can be for example back-
ground noise, white noise, or a combination thereof. Micro-
phone 106B may be mounted on a side reverse of display
102 and may detect noises originating from the patient’s
body.

The microphones 106A and B can be standalone devices
or can be arranged in an array configuration, where the
microphones 106 operate in tandem to detect the noises. In
one embodiment, each microphone in the array configura-
tion 104 can serve a different purpose. For example, each
microphone in the array configuration 104 can be configured
to detect and convert into electrical signals the noises at
different frequencies or within different frequency ranges
such that each of the microphones 106 can be configured to
detect specific noises. The noises detected by the micro-
phones 106 can be used to generate the values for classifying
the noises as “normal” or “abnormal,” and can be further
used to predict the respiratory event or respiratory condition
in the future.

The digital stethoscope 110 can further have a first
housing 108 enclosing the components of the digital stetho-
scope 110. The first housing 108 can separate components of
the digital stethoscope 110 contained within from other
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components external to the first housing 108. For example,
the first housing 108 can be a case, a chassis, a box, or a
console. In one embodiment, for example, the components
of the digital stethoscope 110 can be contained within the
first housing 108. In another embodiment, some components
of the digital stethoscope 110 can be contained within the
first housing 108 while other components, such as the
display 102, the microphones 106, the buttons 126, or a
combination thereof, can be accessible external to the first
housing 108. The aforementioned are merely examples of
components that can be contained in or on the first housing
108 and are not meant to be limiting. Further discussion of
other components of the digital stethoscope 110 will be
discussed below.

The system 100 can further include a base station 118. The
base station 118 is a special purpose computing device that
enables computation and analysis of the noises obtained by
the digital stethoscope 110 in order to detect the respiratory
abnormality, or to predict the respiratory event or respiratory
condition in the future. The base station 118 can provide
additional or higher performance processing power com-
pared to the digital stethoscope 110. In one embodiment, the
base station 118 can work in conjunction with the digital
stethoscope 110 to detect, amplify, adjust, and analyze
noises from a patient’s body by, for example, providing
further processing, storage, or communication capabilities to
the digital stethoscope 110. In another embodiment, the base
station 118 can work as a standalone device to detect,
amplify, adjust, and analyze noises to detect the respiratory
abnormality, or to predict the respiratory event or respiratory
condition in the future.

The base station 118 can analyze of the noises captured by
stethoscope 110. For example, in one embodiment, the base
station 118 can generate values classifying the noises
detected as “normal” or “abnormal.” The collection, filtet-
ing, comparison, and classification of the noises by the base
station 118 will be discussed further below.

The base station 118 can include one or more components.
For example, in one embodiment, the base station 118 can
include a charging pad 114, one or more air quality sensors
116, a contact sensor 120, and a second housing 112. The
charging pad 114 can enable the electric charging of the
digital stethoscope 110, through inductive charging where
an electromagnetic field is used to transfer energy between
the charging pad 114 and a further device, such as the digital
stethoscope 110, using electromagnetic induction.

In one embodiment, the charging pad 114 can enable
electric charging of the digital stethoscope 110 upon detect-
ing contact or coupling, via the contact sensor 120, between
the digital stethoscope 110 and the charging pad 114. For
example, in one embodiment, if the digital stethoscope 110
is coupled to the charging pad 114 by physical placement of
the digital stethoscope 110 on the charging pad 114, the
contact sensor 120 can detect a weight or an electromagnetic
signal produced by the digital stethoscope 110 on the
charging pad 114, and upon sensing the weight or the
electromagnetic signal enable the induction process to trans-
fer energy between the charging pad 114 and the digital
stethoscope 110.

In another embodiment, if the digital stethoscope 110 is
coupled to the charging pad 114 by placing the digital
stethoscope 110 in proximity of the charging pad 114
without physically placing the digital stethoscope 110 on the
charging pad 114, the contact sensor 120 can detect an
electric current or a magnetic field from one or more
components of the digital stethoscope 110 and enable the
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induction process to transfer energy between the charging
pad 114 and the digital stethoscope 110.

The contact sensor 120 is a device that senses mechanical
or electromagnetic contact and gives out signals when it
does so. The contact sensor 120 can be, for example, a
pressure sensor, a force sensor, strain gauges, piezoresistive/
piezoelectric sensors, capacitive sensors, elastoresistive sen-
sors, torque sensors, linear force sensors, an inductor, other
tactile sensors, or a combination thereof configured to mea-
sure a characteristic associated with contact or coupling
between the digital stethoscope 110 and the charging pad
114. Accordingly, the contact sensor 120 can output a
contact measure 122 that represents a quantified measure,
for example, a measured force, a pressure, an electromag-
netic force, or a combination thereof corresponding to the
coupling between the digital stethoscope 110 and the charg-
ing pad 114. For example, the contact measure 122 can
detect one or more force or pressure readings associated
with forces applied by the digital stethoscope 110 on the
charging pad 114. The contact measure 122 can further
detect one or more electric current or magnetic field readings
associated with placing the digital stethoscope 110 in prox-
imity of the charging pad 114.

In one embodiment, the base station 118 can further
include one or more air quality sensors 116. The air quality
sensors 116 are devices that detect and monitor the presence
of air pollution in a surrounding area. Air pollution refers to
the presence of or introduction into the air of a substance
which has harmful or poisonous effects on the patient’s
body. For example, the air quality sensors 116 can detect the
presence of particulate matter or gases such as ozone, carbon
monoxide, sulfur dioxide, nitrous oxide, or a combination
thereof that can be poisonous to the patient’s body, and in
particular poisonous to the patient’s respiratory system.

In one embodiment, based on the air quality sensors 116
detecting the presence of air pollution, the base station 118
can determine whether the amount of air pollution poses a
health risk to the patient by, for example, comparing the
levels of air pollution to a pollution threshold 124 to
determine whether the levels of air pollution in the surround-
ing area of the base station 118 pose a health risk to the
patient. The pollution threshold 124 refers to a pre-deter-
mined level for particulate matter or gases measured in
micrograms per cubic meter (m/m3), parts per million
(ppm), or parts per billion (ppb), that if exceeded poses a
health risk to the patient

For example, in one embodiment, if the air quality sensors
116 detect the presence of sulfur dioxide above 75 ppb in the
air surrounding the base station 118, the base station 118 can
determine that the air pollution in the surrounding area poses
a health risk to the patient. The detection of air pollution can
further be used for detecting the respiratory abnormality or
to predict the respiratory event or respiratory condition in
the future in the patient by allowing the system 100 to
determine what factors are contributing to the “normal” or
“abnormal” classification of the noises, or what factors are
contributing to the data detected and generated by the
system 100 which can be used to predict a respiratory event
or respiratory condition in the future.

The base station 118 can further have a second housing
112 enclosing the components of the base station 118. The
second housing 112 can separate components of the base
station 118 contained within, from other components exter-
nal to the second housing 112. For example, the second
housing 112 can be a case, a chassis, a box, or a console. In
one embodiment, for example, the components of the base
station 118 can be contained within the second housing 112.
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In another embodiment, some components of the base
station 118 can be contained within the second housing 112
while other components, such as the charging pad 114 or the
air quality sensors 116 can be accessible external to the
second housing 112. The aforementioned are merely
examples of components that can be contained in or on the
second housing 112 and are not meant to be limiting. Further
discussion of other components of the base station 118 will
be discussed below.

Referring now to FIG. 1A, therein is shown an exemplary
architecture of the digital stethoscope 110 in an embodi-
ment. In various embodiments, the digital stethoscope 110
can include, alternatively or additionally:

a grip ring 140 located around a first upper portion 142 of
the first housing 108 which provides a gripping surface
for a user of the system 100 to hold the digital stetho-
scope 110;

a glass lens 144 of the display unit 102, which protects the
display components, such as for example liquid crystal
displays (LCD) of the display unit 102. The glass lens
144 can sit on top of a housing gasket 146, which
stabilizes and holds the glass lens 144;

a display housing unit 148, on which the housing gasket
146 sits and which contains the components of the
display unit 102, such as for example the LCDs;

a flex backing 150 which on which the display housing
148 sits and which provides stability for the display
housing 148;

a flex assembly 152, on which the flex backing 150 sits
and which provides stability for the flex backing 150;

a retainer clip 154 which holds the flex assembly 152 in
place;

a battery housing 156, to which a battery board 158 can
couple, and which can hold battery components of the
digital stethoscope 110,

a first printed circuit board assembly 164, which can hold
the circuitry, including any processors, memory com-
ponents, active and passive components, or a combi-
nation thereof, of the digital stethoscope 110;

one or more first screws 162 that couples the first printed
circuit board assembly 164 to the other components of
the digital stethoscope 110;

an audio jack 168 to allow output of noise signals detected
by the digital stethoscope 110;

a microphone assembly 170, on which the microphones
106 can be housed;

components such as an O-ring 172 and one or more coils
166 that couple the microphone assembly 170 to the
first printed circuit board assembly 164.

a first bottom portion 174 of the first housing 108 on
which the microphone assembly 170 sits;

a diaphragm membrane 182 which forms the bottom
surface of the digital stethoscope 110, and which is
coupled to the first bottom portion 174 of the first
housing 108 with one or more second screws 176 and
one or more washers 178; and

a diaphragm ring 180 coupled to the diaphragm mem-
brane 182, which provides a gripping surface for the
first bottom portion 174 of the digital stethoscope 110,
such that the digital stethoscope 110 does not slip when
placed on a surface.

The aforementioned components are merely exemplary
and represent one embodiment of the digital stethoscope
110.

Referring now to FIG. 1B, that figure illustrates an
exemplary architecture of the base station 118 in an embodi-
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ment of the present invention. In various embodiments, the
base station 118 can include, alternatively or additionally:

a second upper portion 134 of the second housing 112;

a second printed circuit board assembly 130 which can
hold the circuitry, including any processors, memory
components, active and passive components, or a com-
bination thereof, of the base station 118;

one or more third screws 132 that couples the second
printed circuit board assembly 130 to the second upper
portion 134 of the second housing 112 via one or more
second connectors 126;

one or more coils 128, coupled to the second printed
circuit board assembly 130, which can detect the
weight or the electromagnetic signal produced by the
digital stethoscope 110 on the base station 118;

a second bottom portion 136 of the second housing 112,
which forms the bottom surface of the base station 118;
and

one or more bumpers 138 to cover and protect the third
screws 132.

The aforementioned components are merely exemplary

and represent one embodiment of the base station 118.

Referring now to FIG. 2A, that figure shows a network
diagram of the system 100 for detecting the respiratory
abnormality including further components of the digital
stethoscope 110 and base station 118 in an embodiment of
the present invention. FIG. 2A shows an embodiment where
the digital stethoscope 110 is connected to the base station
118 through a device or computer network, such as a
wireless or wired network, via a communication path 246.
FIG. 2A further shows an embodiment where a remote
server 242 is connected to the digital stethoscope 110 and the
base station 118 via the communication path 246.

The remote server 242 can provide additional or higher
performance processing power compared to the digital
stethoscope 110 and the base station 118. In one embodi-
ment, the remote server 242 can work in conjunction with
the digital stethoscope 110, the base station 118, or a
combination thereof to analyze the detected noises. For
example, in one embodiment, the remote server 242 can
provide some or all of the processing power of the system
100 to process the information detected or generated by the
digital stethoscope 110, the base station 118, or a combina-
tion thereof.

In one embodiment, the remote server 242 can further
provide additional storage capabilities to the digital stetho-
scope 110, the base station 118, or a combination thereof by
enabling the storage of information detected or generated by
the digital stethoscope 110, the base station 118, or a
combination thereof, and provide access to the digital
stethoscope 110, the base station 118, or a combination
thereof of the information for later use. For example, in one
embodiment, the remote server 242 can store the noises
detected by the digital stethoscope 110, the base station 118,
or a combination thereof for later retrieval by the digital
stethoscope 110, the base station 118, or a combination
thereof.

In one embodiment, the remote server 242 can further
provide information, such as the pre-determined threshold
values, stored values, acoustic models, machine learned
trained data, machine learning processes, configuration data,
or a combination thereof to the digital stethoscope 110, the
base station 118, or a combination thereof to allow the
digital stethoscope 110, the base station 118, or a combina-
tion thereof to perform some or all of their functions. For
example, the remote server 242 can store and provide access
to the pollution threshold 124 to the base station 118 to allow
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the base station 118 to perform the computations and com-
parisons needed to detect and monitor the presence of air
pollution in the surrounding area.

In one embodiment, the remote server 242 can further
provide configuration data, such as software updates, includ-
ing updated acoustic models, machine learned trained data,
machine learning processes, or a combination thereof to the
digital stethoscope 110, the base station 118, or a combina-
tion thereof to allow the digital stethoscope 110, the base
station 118, or a combination thereof to perform computa-
tions and analysis in order to determine the classifications of
the noises and to detect the respiratory abnormality or to
predict the respiratory event or respiratory condition in the
future.

The remote server 242 can be any of a variety of central-
ized or decentralized computing devices. For example, the
remote server 242 can be a laptop computer, a desktop
computer, grid-computing resources, a virtualized comput-
ing resource, cloud computing resources, routers, switches,
peer-to-peer distributed computing devices, a server, or a
combination thereof. The remote server 242 can be central-
ized in a single room, distributed across different rooms,
distributed across different geographical locations, or
embedded within a telecommunications network. The
remote server 242 can couple with the communication path
246 to communicate with the digital stethoscope 110, the
base station 118, or a combination thereof.

The communication path 246 can span and represent a
variety of networks and network topologies. For example,
the communication path 246 can include wireless commu-
nication, wired communication, optical communication,
ultrasonic communication, or a combination thereof. For
example, satellite communication, cellular communication,
Bluetooth, Infrared Data Association standard (IrDA), wire-
less fidelity (WiFi), and worldwide interoperability for
microwave access (WiMAX) are examples of wireless com-
munication that can be included in the communication path
246. Cable, Ethernet, digital subscriber line (DSL), fiber
optic lines, fiber to the home (FTTH), and plain old tele-
phone service (POTS) are examples of wired communica-
tion that can be included in the communication path 246.
Further, the communication path 246 can traverse a number
of network topologies and distances. For example, the
communication path 246 can include direct connection,
personal area network (PAN), local area network (LAN),
metropolitan area network (MAN), wide area network
(WAN), or a combination thereof.

Also for illustrative purposes, the system 100 is shown
with the digital stethoscope 110, the base station 118, and the
remote server 242 as end points of the communication path
246, although it is understood that the system 100 can have
a different partition between the digital stethoscope 110, the
base station 118, the remote server 242, and the communi-
cation path 246. For example, the digital stethoscope 110,
the base station 118, and the remote server 242, or a
combination thereof can also function as part of the com-
munication path 246.

In one embodiment, the digital stethoscope 110 can
include further components including a first control umt
210, a first storage unit 218, a first communication unit 204,
the first display unit 102, the microphone array 104, a first
location unit 256, and a battery 288. The first control unit
210 can include a first control interface 212. The first control
unit 210 can execute a first software 224 to provide the
intelligence of the system 100. The first control unit 210 can
be implemented in a number of different ways. For example,
the first control unit 210 can be a first processor 214, a first
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field programmable gate array (FPGA) 216, an application
specific integrated circuit (ASIC), an embedded processor, a
microprocessor, a hardware control logic, a hardware finite
state machine (FSM), a digital signal processor (DSP), or a
combination thereof.

The first control interface 212 can be used for communi-
cation between the first control unit 210 and other compo-
nents of the digital stethoscope 110. The first control inter-
face 212 can also be used for communication that is external
to the digital stethoscope 110. The first control interface 212
can receive information from the other components of the
digital stethoscope 110 or from external sources, or can
transmit information to the other components of the digital
stethoscope 110 or to external destinations. The external
sources and the external destinations refer to sources and
destinations external to the digital stethoscope 110. The first
control interface 212 can be implemented in different ways
and can include different implementations depending on
which components or external units are being interfaced
with the first control interface 212. For example, the first
control interface 212 can be implemented with a pressure
sensor, an inertial sensor, a microelectromechanical system
(MEMS), optical circuitry, waveguides, wireless circuitry,
wireline circuitry such as a bus interface, an application
programming interface (API), or a combination thereof.

The first storage unit 218 can store the first software 224
to provide the intelligence of the system 100. For illustrative
purposes, the first storage unit 218 is shown as a single
element, although it is understood that the first storage unit
218 can be a distribution of storage elements. Also for
illustrative purposes, the system 100 is shown with the first
storage unit 218 as a single hierarchy storage system,
although it is understood that the system 100 can have the
first storage unit 218 in a different configuration. For
example, the first storage unit 218 can be formed with
different storage technologies forming a memory hierarchal
system including different levels of caching, main memory,
rotating media, or off-line storage. The first storage unit 218
can be a volatile memory, a nonvolatile memory, an internal
memory, an external memory, or a combination thereof. For
example, the first storage unit 218 can be a nonvolatile
storage such as non-volatile random access memory
(NVRAM), Flash memory, disk storage, or a volatile storage
such as static random access memory (SRAM) or a first
dynamic random access memory (DRAM) 254.

The first storage unit 218 can include a first storage
interface 220. The first storage interface 220 can be used for
communication between the first storage unit 218 and other
components of the digital stethoscope 110. The first storage
interface 220 can also be used for communication that is
external to the digital stethoscope 110. The first storage
interface 220 can receive information from the other com-
ponents of the digital stethoscope 110 or from external
sources, or can transmit information to the other components
or to external destinations. The first storage interface 220
can include different implementations depending on which
components or external units are being interfaced with the
first storage unit 218. The first storage interface 220 can be
implemented with technologies and techniques similar to the
implementation of the first control interface 212.

The first communication unit 204 can enable external
communication to and from the digital stethoscope 110. For
example, the first communication unit 204 can permit the
digital stethoscope 110 to communicate with the remote
server 242, the base station 118, an attachment, such as a
peripheral device, and the communication path 246. The first
communication unit 204 can also function as a communi-
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cation hub allowing the digital stethoscope 110 to function
as part of the communication path 246 and not be limited to
be an end point or terminal unit to the communication path
246. The first communication unit 204 can include active
and passive components, such as microelectronics or an
antenna, for interaction with the communication path 246.
The first communication unit 204 can further have circuitry,
such as a first Bluetooth circuit 206, a wireless fidelity
(WiFi) circuit, a Near Field Communication (NFC) circuit,
or a combination thereof for interaction with the communi-
cation path 246.

The first communication unit 204 can include a first
communication interface 208. The first communication
interface 208 can be used for communication between the
first communication unit 204 and other components of the
digital stethoscope 110. The first communication interface
208 can receive information from the other components of
the digital stethoscope 110 or from external sources, or can
transmit information to the other components or to external
destinations. The first communication interface 208 can
include different implementations depending on which com-
ponents are being interfaced with the first communication
unit 204. The first communication interface 208 can be
implemented with technologies and techniques similar to the
implementation of the first control interface 212. The first
communication unit 204 can couple with the communication
path 246 to send information to the remote server 242, the
base station 118, or a combination thereof.

The first location unit 256 can generate location informa-
tion, current heading, and current speed and acceleration of
the digital stethoscope 110, as examples. The first location
unit 256 can be implemented in many ways. For example,
the first location unit 256 can include components, such as
a GPS receiver, an inertial navigation system, a cellular-
tower location system, a pressure location system, an accel-
erometer 226, a gyroscope, or any combination thereof. The
components can be used in conjunction with other compo-
nents of the digital stethoscope 110 to detect movements or
the location of the patient. For example, in one embodiment,
the accelerometer 226 can be used to detect whether the
patient or a portion of the patient’s body is moving, for
example to detect a chest motion representing a patient’s
respiratory cycle. For example, if the digital stethoscope 110
is placed on the patient’s chest, the accelerometer 226 can
detect the up and down movement of the patient’s chest to
determine the frequency and speed at which the patient’s
chest is moving. In one embodiment, the location unit 256
can further be used to detect the physical location of the
digital stethoscope 110, such as the geographic location. For
example, the location unit 256 can detect the location of the
digital stethoscope 110 by using the accelerometer 226 in
conjunction with the other components, and determine that
a patient may be physically moving from one geographic
location to another.

In one embodiment, the detection of the movement can
generate information and data regarding the noises detected
by the digital stethoscope 110. For example, if rapid move-
ment of the digital stethoscope 110 is detected and the digital
stethoscope 110 detects high frequency noises at the same
time, the digital stethoscope 110 can determine that there is
high likelihood that the patient may be moving excessively
and can further determine that some of the noise generated
by the movement should be removed or filtered because it
constitutes unwanted background noise. The information
detected as a result of the movement can further be used by
the digital stethoscope 110 to adjust and analyze the noises,
by for example using the information to amplify certain
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frequencies of the noises that are desired or necessary for the
detection of the respiratory abnormality or to reduce or
suppress certain frequencies of the noises that are unwanted
and not necessary for the detection of the respiratory abnor-
mality. As a result, the digital stethoscope 110 can reduce
noise and amplify the noises to further improve the accuracy
when detecting the respiratory abnormality, or to predict a
respiratory event or respiratory condition at a future time.

The first location unit 256 can include a first location
interface 258. The first location interface 258 can be used for
communication between the first location unit 256 and other
components of the digital stethoscope 110. The first location
interface 258 can also be used for communication that is
external to the digital stethoscope 110. The first location
interface 258 can be implemented with technologies and
techniques similar to the implementation of the first control
interface 212.

The battery 288 is the power source for the digital
stethoscope 110. In one embodiment, the battery 288 can
include one or more electrochemical cells with external
connections provided to power the digital stethoscope 110.
The electrochemical cells can include primary or non-
rechargeable cells, secondary or rechargeable cells, or a
combination thereof. For example, in one embodiment, the
electrochemical cells can include secondary cells that can be
charged wirelessly using electromagnetic induction. In one
embodiment, electrochemical cells can include primary cells
such as alkaline batteries, lithium batteries, or a combination
thereof.

In one embodiment, the base station 118 can include
further components including a second control unit 236, a
second storage unit 248, a second communication unit 228,
and sensor unit 202. The second control unit 236 can include
a second control interface 238. The second control unit 236
can execute a second software 252 to provide the intelli-
gence of the system 100. The second software 252 can
operate independently or in conjunction with the first soft-
ware 224. The second control unit 236 can provide addi-
tional performance compared to the first control unit 210.
The second control unit 236 can be a second processor 240,
a second field programmable gate array (FPGA) 244, an
application specific integrated circuit (ASIC), an embedded
processor, a microprocessor, a hardware control logic, a
hardware finite state machine (FSM), a digital signal pro-
cessor (DSP), or a combination thereof.

The second control unit 236 can include a second control
interface 238. The second control interface 238 can be used
for communication between the second control unit 236 and
other components of the base station 118. The second
control interface 238 can also be used for communication
that is external to the base station 118. The second control
interface 238 can receive information from the other com-
ponents of the base station 118 or from external sources, or
can transmit information to the other components of the base
station 118 or to external destinations. The external sources
and the external destinations refer to sources and destina-
tions external to the base station 118. The second control
interface 238 can be implemented in different ways and can
include different implementations depending on which com-
ponents or external units are being interfaced with the
second control interface 238. For example, the second
control interface 238 can be implemented with a pressure
sensor, an inertial sensor, a microelectromechanical system
(MEMS), optical circuitry, waveguides, wireless circuitry,
wireline circuitry such as a bus interface, an application
programming interface (API). or a combination thereof.
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The second storage unit 248 can be sized to provide
additional storage capacity to supplement the first storage
unit 218. For illustrative purposes, the second storage unit
248 is shown as a single element, although it is understood
that the second storage unit 248 can be a distribution of
storage elements. Also for illustrative purposes, the system
100 is shown with the second storage unit 248 as a single
hierarchy storage system, although it is understood that the
system 100 can have the second storage unit 248 in a
different configuration. For example, the second storage unit
248 can be formed with different storage technologies
forming a memory hierarchal system including different
levels of caching, main memory, rotating media, or off-line
storage. The second storage unit 248 can be a volatile
memory, a nonvolatile memory, an internal memory, an
external memory, or a combination thereof. For example, the
second storage unit 248 can be a nonvolatile storage such as
non-volatile random access memory (NVRAM), Flash
memory, disk storage, or a volatile storage such as static
random access memory (SRAM) or a second dynamic
random access memory (DRAM) 222.

The second storage unit 248 can include a second storage
interface 250. The second storage interface 250 can be used
for communication between the second storage unit 248 and
other components of the base station 118. The second
storage interface 250 can also be used for communication
that is external to the base station 118. The second storage
interface 250 can receive information from the other com-
ponents of the base station 118 or from external sources, or
can transmit information to the other components or to
external destinations. The second storage interface 250 can
include different implementations depending on which com-
ponents or external units are being interfaced with the
second storage unit 248. The second storage interface 250
can be implemented with technologies and techniques simi-
lar to the implementation of the second control interface
238.

The second communication unit 228 can enable external
communication to and from the base station 118. For
example, the second communication unit 228 can permit the
base station 118 to communicate with the digital stethoscope
110, the remote server 242, an attachment, such as a periph-
eral device, and the communication path 246. The second
communication unit 228 can also function as a communi-
cation hub allowing the base station 118 to function as part
of the communication path 246 and not be limited to be an
end point or terminal unit to the communication path 246.
The second communication unit 228 can include active and
passive components, such as microelectronics or an antenna,
for interaction with the communication path 246. The sec-
ond communication unit 228 can further have circuitry, such
as a second Bluetooth circuit 230, a wireless fidelity (WiFi)
circuit, a Near Field Communication (NFC) circuit, an
internet-of-things (IoT) modem 232, or a combination
thereof for interaction with the communication path 246.

The second communication unit 228 can include a second
communication interface 234. The second communication
interface 234 can be used for communication between the
second communication unit 228 and other components of
the base station 118. The second communication interface
234 can receive information from the other components of
the base station 118 or from external sources, or can transmit
information to the other components or to external destina-
tions. The second communication interface 234 can include
different implementations depending on which components
are being interfaced with the second communication unit
228. The second communication interface 234 can be imple-
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mented with technologies and techniques similar to the
implementation of the second control interface 238.

The sensor unit 202 can enable the base station 118 to
obtain one or more sensed readings 286 used to perform one
or more of the base station’s 118 functions. The sensed
readings 286 can include information or data obtained by the
sensor unit 202, the purpose of which is to detect events or
changes in the environment of the base station 118 and to
send the information to components of the base station 118,
the digital stethoscope 110, the remote server 242, external
devices such as a peripheral device, or a combination thereof
to facilitate the functionality of the system 100. The sensed
readings 286 can include the contact measure 122 or the
amount of air pollution in the surrounding area. In one
embodiment, the sensor unit 202 can include the air quality
sensors 116, the contact sensor 120, or a combination
thereof.

The sensor unit 202 can include a sensor unit interface
260. The sensor unit interface 260 can be used for commu-
nication between the sensor unit 202 and other components
of the base station 118. The sensor unit interface 260 can
also be used for communication that is external to the base
station 118. The sensor unit interface 260 can receive
information from the other components of the base station
118 or from external sources, or can transmit information to
the other components of the base station 118 or to external
destinations. The sensor unit interface 260 can include
different implementations depending on which components
of the base station 118 or external units are being interfaced
with the sensor unit 202. The sensor unit interface 260 can
be implemented with technologies and techniques similar to
the implementation of the second control interface 238.

Referring now to FIG. 2B, that figure shows an exemplary
control flow 200 of the system 100 for detecting the respi-
ratory abnormality in an embodiment. In one embodiment,
one or more auditory signals 262 can be detected by the
digital stethoscope 110 using the microphones 106. The
auditory signals 262 can include the noises from the
patient’s body or from external to the patient’s body. By way
of example, FI1G. 2B depicts two auditory signals 262, where
“C1” represents a cough, crackle, or wheeze originating
from the patient’s body and “N1” represents a noise signal
resulting from noises generated external to the patient’s
body, for example background noise from a patient’s envi-
ronment. In one embodiment, the auditory signals 262 can
be saved in a sound file 290, such as a .wav file generated
by the digital stethoscope 110. In one embodiment, once the
auditory signals 262 are detected and saved in the sound file
290, the digital stethoscope 110 can amplify, adjust, and
analyze the auditory signals 262 in the sound file 290, by for
example, subtracting, suppressing, or filtering N1 to leave
only Cl. In one embodiment, the sound file 290 can be
stored on the first storage unit 218, the second storage unit
248, or the remote server 242.

In one embodiment, the digital stethoscope 110, the base
station 118, or a combination thereof can further generate a
configuration file 264 and store the information from detect-
ing, amplifying, adjusting, and analyzing the auditory sig-
nals 262 in the configuration file 264. The configuration file
264 is a computer file, such as a text file, that contains the
information from detecting, amplifying, adjusting, and ana-
lyzing the auditory signals 262. In one embodiment, the
configuration file 264 can be stored in and accessed from the
first storage unit 218, the second storage unit 248, or the
remote server 242. In one embodiment, the configuration file
264 can include information such as a classification value
266 indicating whether the auditory signals 262 indicate a
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respiratory sound, noise, or auditory tone that is classified as
“normal” or “abnormal.” The configuration file 264 can
further include a timestamp 268 indicating when the audi-
tory signals 262 were detected, an accelerometer data 272
obtained from the accelerometer 226 indicating movement
of the patient, a cough count 274 indicating the number of
coughs detected by the digital stethoscope 110 over a period
of time, or a combination thereof.

In one embodiment, the configuration file 264 can further
include information about devices of the system 100, such as
a serial number 270 of the digital stethoscope 110 to indicate
what device detected the auditory signals 262. The afore-
mentioned are merely exemplary and other information
detected and generated by the digital stethoscope 110 can be
stored in the configuration file 264.

In one embodiment, the configuration file 264 can be sent
to one or more devices of the system 100. For example, the
configuration file 264 can be sent to the digital stethoscope
110, the base station 118, the remote server 242, or a
combination thereofto be used in performing adjustments or
analysis of the auditory signals 262, or to detect a respiratory
abnormality or to predict a respiratory event or respiratory
condition in the future. For example, in one embodiment
where the digital stethoscope 110, the base station 118, the
remote server 242, or a combination thereof are performing
some or all of the processing of the auditory signals 262, the
digital stethoscope 110, the base station 118, the remote
server 242, or a combination thereof can receive the auditory
signals 262 via the sound file 290, and further information
via the configuration file 264, parse the two files, extract
information from the two files, and perform processing
based on the information contained in the two files.

Referring now to FIG. 2C, therein is shown a further
exemplary architecture of the digital stethoscope 110 in an
embodiment of the present invention. FIG. 2C shows an
embodiment where the digital stethoscope 110 includes the
first control unit 210 and the first storage unit 218. The first
control unit 210 can include the first processor 214 and the
first FPGA 216. The first storage unit 218 can include the
first DRAM 254. The first processor 214 and the first FPGA
216 can be coupled using the first control interface 212. The
first storage unit 218 can be coupled to the first control unit
210 using the first storage interface 220. For example, in one
embodiment, the first DRAM 254 can be coupled, via the
first storage interface 220 to the first processor 214.

In one embodiment, the first processor 214, the first
FPGA 216, and the first DRAM 254 can work in conjunction
to process the auditory signals 262 detected by the micro-
phones 106 or the array configuration 104. In one embodi-
ment, the first processor 214 can act as a controller and
control the coordination, communications, scheduling, and
transfers of data between the first FPGA 216, the first
DRAM 254, or other components of the digital stethoscope
110. For example, in one embodiment, the first processor
214 can receive the auditory signals 262 from the micro-
phones 106, and transfer the auditory signals 262 to the first
FPGA 216 for further processing. In one embodiment, once
the first FPGA 216 has completed its operations, the first
FPGA 216 can transfer the output or data generated as a
result of its operations back to the first processor 214, which
can further transfer the output or data to the first DRAM 254
for storage. In one embodiment, the first processor 214 can
further enable the generation of the configuration file 264. In
one embodiment, the first processor 214 can further enable
the generation of the sound file 290.

In one embodiment, the first FPGA 216 can perform the
processing of the auditory signals 262. The first FPGA 216
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can include one or more logic blocks, including one or more
reconfigurable logic gates, that can be pre-programmed or
configured to perform calculations or computations on the
auditory signals 262, and to generate output or data to detect
the respiratory abnormality, or to predict a respiratory event
or respiratory condition in the future. The first FPGA 216
can, for example, have its logic blocks preconfigured with
threshold values, stored values, acoustic models, machine
learned trained data, machine learning processes, configu-
ration data, or a combination thereof that can be used to
perform the processing on the auditory signals 262, the
result of which is to detect the respiratory abnormality, or to
predict the respiratory event or respiratory condition in the
future.

For example, in one embodiment the first FPGA 216 can
be preconfigured with a machine learning process, for
example a convolutional neural network model, which can
have one or more weights 276 associated therewith. The
weights 276 refer to values, parameters, thresholds, or a
combination thereof that act as filters in the machine learn-
ing process and represent particular features of the sounds,
noises, and acoustic tones of a respiratory abnormality,
respiratory event, respiratory condition, or a combination
thereof. The weights 276 can be iteratively adjusted based
on machine learned trained data.

Continuing with the example, the first FPGA 216 can, in
one embodiment, use the machine learning process, includ-
ing the weights 276 to detect whether the auditory signals
262 contain a sound, noise, or acoustic tone indicative of a
respiratory abnormality, or whether the auditory signals 262
are indicative of a respiratory event or respiratory condition
in the future. Further discussion of the processing done by
the first FPGA 216 will be discussed below.

Referring now to FIG. 2D, therein is shown a further
exemplary architecture of the base station 118 in an embodi-
ment of the present invention. FIG. 2D shows an embodi-
ment where the base station 118 includes the second control
unit 236, the sensor unit 202, the second communication unit
228, and a wireless charging unit 278. The second control
unit 236 can include the second processor 240 and the
second FPGA 244. The sensor unit 202 can include the
contact sensor 120 and the air quality sensors 116. The
second communication unit 228 can include the IoT modem
232 and the second Bluetooth circuit 230. The second
Bluetooth circuit 230 can further include a real time audio
circuit 280 and a data transfer circuit 282. The real time
audio circuit 280 and the data transfer circuit 282 can enable
the base station 118 to connect to multiple devices simul-
taneously over a Bluetooth connection. For example, in one
embodiment, the real time audio circuit 280 can enable a
Bluetooth connection to the digital stethoscope 110 to send
or receive the auditory signals 262 or the sound file 290
containing the auditory signals 262, and the data transfer
circuit 282 can enable simultaneous Bluetooth connection to
a further device, such as a mobile phone 284 to communi-
cate outputs or data generated by the base station 118 as a
result of processing the auditory signals 262. In one embodi-
ment, the IoT modem 232 can further be used to commu-
nicate outputs or data generated by the base station 118 to a
further device, for example the remote server 242. In one
embodiment, the IoT modem 232 can further be used to
receive configuration data, such as software updates, includ-
ing updated acoustic models, machine learned trained data,
machine learning processes, firmware, or a combination
thereof from the remote server 242. In one embodiment, the
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base station 118 can further communicate the software
updates to the digital stethoscope 110 using the second
Bluetooth circuit 230.

The second processor 240 and the second FPGA 244 can
be coupled using the second control interface 238. The
second communication unit 228 can couple to the second
control unit 236 using the second communication interface
234. The sensor unit 202 can couple to the second control
unit 236 using the sensor unit interface 260. The sensor unit
202 can couple to the wireless charging unit 278 using the
sensor unit interface 260.

In one embodiment, the second processor 240 can act as
a controller and control the coordination, communications,
scheduling, and transfers of data between the second FPGA
244 and other components of the base station 118. For
example, in one embodiment, the second processor 240 can
receive the auditory signals 262 from the digital stethoscope
110 via the second communication unit 228, and transfer the
auditory signals 262 to the second FPGA 244 for further
processing. In one embodiment, once the second FPGA 244
has completed its operations, the second FPGA 244 can
transfer the output or data generated as a result of its
operations back to the second processor 240, which can
further transfer the output or data to other components of the
base station 118. For example, the second processor 240 can
further transfer the output or data to the second communi-
cation unit 228 for transfer to the remote server 242, the
mobile device 284, the digital stethoscope 110, or a com-
bination thereof. The mobile device 284 can be a device
associated with a user of the system 100 that the base station
118 can use to communicate the output or data generated by
the base station 118, the digital stethoscope 110, the remote
server 242, or a combination thereof to a user of the system
100. The mobile device 284 can be, for example, a mobile
phone, a smart phone, a tablet, a laptop, or a combination
thereof.

In one embodiment, the second processor 240 can further
generate the configuration file 264 and store values, vari-
ables, configuration data, time stamps, or data detected or
generated therein. In one embodiment, the second processor
240 can further generate the sound file 290 for storing the
auditory signals 262.

In one embodiment, the second FPGA 244 can perform
the processing of the auditory signals 262. The second
FPGA 244 can include one or more logic blocks, including
one or more reconfigurable logic gates, that can be pre-
programmed or configured to perform calculations or com-
putations on the auditory signals 262, and to generate output
or data generated to detect the respiratory abnormality, or to
predict a respiratory event or respiratory condition in the
future. The second FPGA 244 can, for example, have its
logic blocks preconfigured with threshold values, stored
values, acoustic models, machine learned trained data,
machine learning processes, configuration data, or a com-
bination thereof that can be used to perform the processing
on the auditory signals 262, the result of which is to detect
the respiratory abnormality, or to predict the respiratory
event or respiratory condition in the future.

For example, in one embodiment the second FPGA 244
can be preconfigured with a machine learning process, for
example a convolutional neural network model, which can
have one or more weights 276 as shown in FIG. 2C,
associated therewith. In another embodiment, the second
FPGA 244 can be preconfigured with a machine learning
process, for example a long short term memory (LSTM)
network model, which can have one or more weights 276
associated therewith. In one embodiment, the second FPGA



US 10,702,239 B1

19

244 can be work with the remote server 242 to implement
the machine learning process, for example the convolutional
neural network model, or the LSTM network model,
wherein the second FPGA 244 and the remote server 242 can
divide the processing needed to perform the computations
done by the machine learning process.

Continuing with the example, the second FPGA 244 can,
in one embodiment, use the machine learning process to
detect whether the auditory signals 262 contain a sound,
noise, or acoustic tone indicative of a respiratory abnormal-
ity. In another embodiment, the second FPGA 244 can use
the machine learning process to predict a respiratory event
or respiratory condition in the future using the auditory
signals 262. Further discussion of the processing done by the
second FPGA 244 will be discussed below.

The wireless charging unit 278 can enable the electric
charging of the digital stethoscope 110, through inductive
charging by, for example, generating the electromagnetic
field used to transfer energy between the charging pad 114
of FIG. 1, and a further device, such as the digital stetho-
scope 110 using electromagnetic induction. The wireless
charging unit 278 can include the processors, active and
passive components, circuitry, control logic, or a combina-
tion thereof to enable the inductive charging. In one embodi-
ment, the wireless charging unit 278 can couple to the
contact sensor 120 to enable the inductive charging. For
example, in one embodiment, if the contact sensor 120
detects contact or coupling between the digital stethoscope
110 and the charging pad 114, the contact sensor 120 can
generate the contact measure 122 of FIG. 1, which can be
sent to the wireless charging unit 278. The wireless charging
unit 278 upon receiving the contact measure 122 can deter-
mine that a coupling between the digital stethoscope 110 and
the charging pad 114 has occurred and can activate the base
station’s 118 processors, active and passive components,
circuitry, control logic, or a combination thereof to generate
the electromagnetic field and begin transferring energy
between the charging pad 114 and the digital stethoscope
110. In one embodiment, the wireless charging unit 278 can
further power off the base station 118 during the time period
in which it is charging the digital stethoscope 110 by, for
example, generating a signal to the second processor 240
that charging is taking place and that the components of the
base station 118 should be in an off or idle mode during the
time period.

In one embodiment, the wireless charging unit 278 can
further enable the activation of the base station 118 based on
determining a termination of the coupling between the
digital stethoscope 110 and the charging pad 114. For
example, in one embodiment, the wireless charging unit 278
can detect a termination of the coupling between the digital
stethoscope 110 and the charging pad 114 based on a change
in the contact measure 122. For example, in one embodi-
ment, if the digital stethoscope 110 is removed from the
charging pad 114, the contact sensor 120 can generate a
contact measure 122 indicating the removal, and can send
the contact measure 122 to the wireless charging unit 278.
The wireless charging unit 278 upon receiving the contact
measure 122 can determine that the coupling between the
digital stethoscope 110 and the charging pad 114 is no longer
present and can send a signal to the second processor 240 to
activate or power up the components of the base station 118,
so that the base station 118 can perform computations and
processing on auditory signals 262, or communicate with
further devices such as the digital stethoscope 110, the
mobile device 284, the remote server 242, or a combination
thereof.
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Convolutional Neural Network to Detect Abnormality

Referring now to FIG. 3, therein is shown an exemplary
second control flow 300 for detection of the respiratory
abnormality in an embodiment of the present invention. For
brevity of description, in this embodiment, the second
control flow 300 will be described as being performed using
the digital stethoscope 110. This description is merely exem-
plary and not meant to be limiting. In other embodiments,
the second control flow 300 can be performed using the base
station 118, the remote server 242, or a combination thereof.

In one embodiment, the second control flow 300 can be
implemented with modules and sub-modules, the compo-
nents of the digital stethoscope 110, or a combination
thereof. In one embodiment, the second control flow 300 can
include a receiver module 304, a subtraction module 306, a
filter module 308, and a convolution neural network module
310. In one embodiment, the receiver module 304 can
couple to the subtraction module 306. The subtraction
module 306 can couple to the filter module 308. The filter
module 308 can couple to the convolution neural network
module 310.

The receiver module 304 can enable receiving of one or
more signals or data by the digital stethoscope 110. In one
embodiment, the signals or data can be, for example, the
auditory signals 262, the accelerometer data 272, or a
combination thereof, and can be received via the micro-
phones 106 of FIG. 1, the accelerometer of FIG. 2A, the
configuration file 264, the sound file 290, or a combination
thereof. By way of example, FIG. 3 depicts two auditory
signals 262, where “C1” represents a cough, crackle, or
wheeze originating from the patient’s body and “N1” rep-
resents a noise signal resulting from noises generated exter-
nal to the patient’s body, for example background noise from
a patient’s environment. FIG. 3 further depicts the acceler-
ometer data 272, where “A1” represents the accelerometer
data 272. In one embodiment, C1, N1, and Al, represent
time series signals and data, in which the signals are
measured over a period of time and can be represented
mathematically by one or more time functions 302, in which
the value of the time functions 302 vary based on time.

In one embodiment, the receiver module 304 can further
enable the conversion of the time functions 302 into one or
more frequency domain functions 330, in which the time
functions 302 can be represented with respect to a frequency
component of the signals or data. The frequency domain
functions 330 can be used by the digital stethoscope 118 to
perform further calculations or processing of the auditory
signals 262, the accelerometer data 272, or a combination
thereof to detect the respiratory abnormality. For example, in
one embodiment, C1 and N1 can be represented as a
combined time function 302 x(t), where x(t) can be repre-
sented by equation (1) below:

MOy O+N (D) M

In equation (1), y(t) represents the time function 302 of
C1 and N(t) represents the time function 302 of N1. The
receiver module 304 can convert x(t) into a frequency
domain function 330 by, for example, performing a Fourier
transformation or Fast Fourier transformation on x(t) such
that the frequency domain function 330 is obtained, where
x'(w) in FIG. 3 represents the frequency domain function
330 of x(t). In one embodiment, the digital stethoscope 110
can then use x'(w) to perform its calculations and compu-
tations. Similarly, in one embodiment, the receiver module
304 can convert the acceleration data 272 from a time
fanction 302 to a frequency domain function 330 using
similar techniques.
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In one embodiment, once the receiver module 304
receives the auditory signals 262, the accelerometer data
272, or a combination thereof and converts the signals from
a time function 302 to frequency domain functions 330, the
receiver module 304 can pass control and the frequency
domain functions 330 to the subtraction module 306. The
subtraction module 306 can enable the adjusting the auditory
signals 262 received from the receiver module 304 by
removing or filtering of unwanted auditory signals 262, for
example a background noise created by the movement of the
patient and picked up by the accelerometer 226, or other
noise signals originating external to the patient’s body, to
obtain a noise free or nearly noise free auditory signals 262.
The subtraction module 306 can enable the removal or
filtering of unwanted auditory signals 262 by implementing
a filter to remove unwanted sound frequencies. In one
embodiment, the filter can be implemented using hardware,
software, or a combination thereof. For example, the filter
can be implemented to perform the functions of, or be, a low
pass filter, a high pass filter, a bandpass filter, a Butterworth
filter, a Chebyshev filter, a Bessel filter, a Elliptic filter, or a
combination thereof.

In one embodiment, the subtraction module 306 can
implement the filter such that the filter performs removal or
filtering based on equation (2) below:

3(w)=y(w)=(apAN(W)) @

In equation (2), x(w) represents the filtered frequency
domain function 330 of the auditory signals 262, acceler-
ometer data 272, or a combination thereof obtained from the
receiver module 304, y(w) represents the frequency domain
function 330 of the auditory signals 262, accelerometer data
272, or a combination thereof obtained from the receiver
module 304 that should be kept by the digital stethoscope
110, N(w) represents the frequency domain function 330 of
the auditory signals 262, accelerometer data 272, or a
combination thereof obtained from the receiver module 304
that should not be kept by the digital stethoscope 110, and
a, B, and A are variables that can be integers or whole
numbers used to determine how much of N(w) should be
subtracted from y(w) such that a low noise or noise free
signal remains. In one embodiment, a, §, and A can be
varied or adjusted over time based on the noise conditions in
which the digital stethoscope 110 is used. For example, in
one embodiment, a, 3, and A can be varied or adjusted every
20, 50, or 100 milliseconds. In one embodiment, o, f, and
A can be varied or adjusted wherein o, B, and A are large
values in a high noise environment, such as a noisy office
environment, or small values in a low noise environment,
such as a quiet office environment. In one embodiment, a,
[, and A can be a set of pre-determined values. In another
embodiment, o, f3, and A can change dynamically based on
changes in the noise levels detected by the digital stetho-
scope 110. In one embodiment, c, f3, and A can be pre-
configured values in the first FPGA 216 or can be obtained
from the base station 118, the remote server 242, or a
combination thereof.

In one embodiment, once the subtraction module 306
performs its adjustment and filtering of the auditory signals
262, the accelerometer data 272, or a combination thereof,
the subtraction module 306 can pass control and the filtered
frequency domain functions 330 of the auditory signals 262
to the filter module 308. The filter module 308 enables the
generation of an auditory spectrogram 312 by further sepa-
rating or filtering the filtered frequency domain functions
330 of the auditory signals 262, accelerometer data 272, or
a combination thereof into one or more frequency bands 336
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representing the different audible frequencies of the filtered
frequency domain functions 330 of the auditory signals 262,
the accelerometer data 272, or a combination thereof.

The auditory spectrogram 312 refers to a two dimensional
visual representation of the spectrum of frequencies of the
filtered frequency domain functions 330 of the auditory
signals 262, the accelerometer data 272, or a combination
thereof. The auditory spectrogram 312 can be represented as
a chart, image, matrix, heat map, or other visual depiction
showing a plot of the frequencies and the magnitudes
associated with the frequencies of the filtered frequency
domain functions 330 of the auditory signals 262, acceler-
ometer data 272, or a combination thereof. The auditory
spectrogram 312 can enable the sharpening or amplification
of the frequency components filtered frequency domain
functions 330 of the auditory signals 262, accelerometer
data 272, or a combination thereof to better depict what
sounds, noises, or acoustic tones are present in the filtered
frequency domain functions 330 of the auditory signals 262,
accelerometer data 272, or a combination thereof. The
auditory spectrogram 312 can be used in the processing of
the filtered frequency domain functions 312 of the auditory
signals 262, accelerometer data 272, or a combination
thereof to detect the respiratory abnormality, and result in
more accurately determining the respiratory abnormality
due to the ability of the auditory spectrogram 312 to sharpen
and amplify the frequency components of the filtered fre-
quency domain functions 330 of the auditory signals 262,
accelerometer data 272, or a combination thereof.

In one embodiment, the filter module 308 can generate the
auditory spectrogram 312 by implementing one or more
cochlear filters 332 which the filtered frequency domain
functions 330 of the auditory signals 262, accelerometer
data 272, or a combination thereof can be passed through,
and wherein the cochlear filters 332 are based on a cochlear
model 314. The cochlear model 314 refers to the mathemati-
cal model or representation of the mechanics of a mamma-
lian cochlea. In one embodiment, the cochlear model 314
can be implemented using hardware, software, or a combi-
nation thereof. For example, the cochlear filters 332 can
include processors, active and passive components, cit-
cuitry, control logic, or a combination thereof implementing
the cochlear model 314. In one embodiment, the cochlear
filters 332 can separate different audible frequencies into one
or more frequency ranges that a mammalian cochlea can
hear.

For example, in one embodiment, the filter module 308
can implement one hundred and twenty-eight (128) cochlear
filters 332 representing the one hundred and twenty eight
different frequency ranges that can be heard by the mam-
malian cochlea. As such, the filter module 308 can mimic the
human ear. In one embodiment, the output of the filter
module 308 based on further filtering using the cochlear
filters 332, the filtered frequency domain functions 330 of
the auditory signals 262, accelerometer data 272, or a
combination thereof is the auditory spectrogram 312. The
auditory spectrogram 312 can visually represent the fre-
quency ranges obtained from further filtering the filtered
frequency domain functions 330 of the auditory signals 262,
accelerometer data 272, or a combination thereof.

In one embodiment, once the filter module 308 generates
the auditory spectrogram 312, the filter module 308 can pass
control and the auditory spectrogram 312 to the convolution
neural network module 310. The convolution neural net-
work module 310 can enable the detection of the respiratory
abnormality by performing a convolution procedure 316 on
the auditory spectrogram 312 and further passing the results
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to a neural network 326 for classification as “normal” or
“abnormal.” The designation of “normal” or “abnormal”
indicates whether the auditory signals 262, accelerometer
data 272, or a combination thereof detected by the digital
stethoscope 110 indicates a respiratory abnormality.

The convolution procedure 316 refers to a mathematical
operation on two functions to produce a third function that
expresses how the shape of one of the functions is modified
by the other function. In one embodiment, the convolution
procedure 316 can be implemented based on equation (3)
below:

(©)
Sle ylegls, y]= Z Z flr, o] gl —ni, y—nma]
nj—cony=oo
flx, ylxglx, y]l = Z Zf’f ny. y—ml-glny, ]

nj=—cony=—oo

In equation (3), f*g represents the third function, “f” and
“g” represent the two functions that the convolution proce-
dure 316 is being performed on, x and y represent variables
that the functions “f” and “g” depend on, and “n1” and “n2”
represent an amount of shift. In one embodiment, the
convolution neural network module 310 can implement the
convolution procedure 316 using hardware, software, or a
combination thereof. For example, the convolution neural
network module 310 can include processors, active and
passive components, circuitry, control logic, or a combina-
tion thereof implementing the convolution procedure 316.

In one embodiment, the auditory spectrogram 312 can
represent one of the functions in equation (3), for example
“f” In one embodiment, the convolution neural network
module 310 can perform the convolution procedure 316 on
the auditory spectrogram 312 by convoluting the auditory
spectrogram 312 with a further function, for example one or
more convolution functions 318, which can represent “g” in
equation (3). In one embodiment, the convolution functions
318 can be one or more matrices of size NxN, where N
represents an integer. For example, the convolution func-
tions 318 can be a 3x3 matrix, 5x5 matrix, 10x10 matrix, or
any other sized matrix. In one embodiment, the convolution
functions 318 can further have one or more values repre-
sented by integers or whole numbers for their NxN ele-
ments. The one or more values can be the same or different
for each NxN element. The one or more values can further
be the same or different for each of the convolution functions
318.

In one embodiment, the one or more values of the
convolution functions 318 can be obtained through a train-
ing process in which the one or more values are obtained
through back propagation of machine learned trained data.
The machine learned trained data can be, for example
previous auditory spectrograms 312 representing known
respiratory abnormalities, for example sounds, noises, audi-
tory tones, or a combination thereof caused by a cough, a
crackle, a wheeze, an asthma attack or other respiratory
event or respiratory condition. The back propagation can
generate the one or more values of the convolution functions
318 by calculating and attempting to reconstruct a known
output, such as previously analyzed auditory spectrograms
312 representing known respiratory abnormalities, and
determining what values the convolution functions 318 must
have to reconstruct the previously analyzed auditory spec-
trograms 312 representing known respiratory abnormalities.
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As such, the one or more values of the convolution functions
318 can be obtained and can be optimized to extract one or
more features, such as curves, peaks, valleys, shapes, lines,
or colors represented in the previously analyzed auditory
spectrogram 312 which can be used to reconstruct the
previously analyzed auditory spectrograms 312. Once deter-
mined, the one or more values of the convolution functions
318 can further be used to subsequently recognize the same
features in further auditory spectrograms 312, such that the
convolution functions 318 can be used to recognize respi-
ratory abnormalities from auditory signals 262, accelerom-
eter data 272, or a combination thereof detected by the
digital stethoscope 110.

Continuing with the example, once the convolution func-
tions 318 and their values are generated, the convolution
neural network module 310 can perform the convolution
procedure 316 on the auditory spectrogram 312 using the
convolution functions 318 by performing the convolution
procedure 316 over NxN frames of the auditory spectrogram
312 and multiplying the values of the NxN frame of the
auditory spectrogram 312 with the values of the convolution
functions 318. As a result, a further matrix is generated with
one or more convolution values 320 representing the
extracted features of the auditory spectrogram 312 for that
NxN frame. The convolution values 320 can be integers or
whole numbers that give quantified values to the features of
the auditory spectrogram 312 for a particular NxN frame. By
way of example, in areas where the auditory spectrogram
312 has a value greater than 0, the convolution values 320
generated can be positive integers assuming the one or more
values of the convolution functions 318 are also non-zero.
However, in areas where the auditory spectrogram 312 has
a zero value, the convolution values 320 generated can be
7Zero.

In one embodiment, the convolution procedure 316 can be
performed repeatedly to successively compress the auditory
spectrogram 312 into one or more convolution matrices 322,
each having less rows and columns than the previous
convolution matrices 322 generated as a result of the con-
volution procedure 316. In one embodiment, the generation
of the subsequent convolution matrices 322 can depend on
the values of the previous convolution matrices 322. For
example, in one embodiment, if two convolution matrices
322 are generated as a result of the convolution procedure
316, the first can have the size MxM and the second can
have the size TxT, wherein the second can have its convo-
lution values 320 depend on the first, and where M>T. In one
embodiment, the convolution matrices 322 can be stored in
the first DRAM, wherein the convolution matrices 322 can
be used in successive calculation of further convolution
matrices 322.

In one embodiment, as a result of performing the convo-
lution procedure 316 successively, a convolution vector 324
can be generated containing convolution values 320. For
example, in one embodiment, the convolution vector 324
can be an Mx1 vector, where M is an integer, such as a 20x1
vector, containing convolution values 320. In one embodi-
ment, the convolution vector 324 can be used as the input to
a machine learning process, for example the neural network
326, which can be used to determine whether the convolu-
tion vector 324 representing a compressed version of the
auditory spectrogram 312, accelerometer data 272, or a
combination thereof indicates a respiratory abnormality. The
neural network 326 refers to an interconnected group of
artificial neurons that uses a mathematical or computational
model for information processing based on a connectionistic
approach to computation.
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The neural network 326 can use the weights 276 of FIG.
2C and one or more biases 334 for each of its nodes or
neurons which can be used to determine whether the audi-
tory signals 262 represent a respiratory abnormality. Biases
334 refer to values, variables, parameters, or a combination
thereof which enables the neural network 326 to better fit the
data to assist the neural network 326 to learn patterns. In one
embodiment, the weights 276 and biases 334 can be integers
or whole numbers. The weights 276 and biases 334 can
connect nodes or neurons of the neural network 326, and can
determine the strength of each connection between each
node or neuron such that the higher the value for the weights
276 and biases 334 for a given connection, the more the
connection will affect the overall computations and out-
comes of the neural network 326. In one embodiment, the
weights 276 and biases 334 can be determined and obtained
in a similar process of back propagation of training data
similar to what was described above with respect to the one
or more values of the convolution functions 318. For the
purposes of discussion, it is assumed that the weights 276
and biases 334 are already known and optimized for detect-
ing the respiratory abnormality.

Continuing with the example, in one embodiment, the
neural network 326 can further have a confidence level 328
associated with its output. The confidence level 328 can be
avalue, variable, parameter, or a combination thereof which,
if the output of the neural network 326 exceeds, the neural
network 326 can determine that the output can be classified
as either “normal” or “abnormal.” By way of example, if the
confidence level 328 is set to for example “90%,” any output
of the neural network 326 indicating that the neural network
326 believes the auditory signals 262, accelerometer data
272, or a combination thereof detected is greater than or
equal to 90% “normal” or “abnormal” will be accepted as a
valid result and classified accordingly by the neural network
326. In one embodiment, if the confidence level 328 is met
or exceeded as a result of the processing by the neural
network 326, the digital stethoscope 110 can generate the
classification value 266 indicating a “normal” or “abnormal”
classification, and display an indicator based on the classi-
fication value 266, such as a red or green colored light, or a
message indicating that the auditory signals 262 are “abnor-
mal” or “normal.”

It has been discovered that the use of the convolutional
neural network module 310 described above allows the
digital stethoscope 110 to generate the classification value
266 and display the indicator in real time when used in
conjunction with the architecture of the digital stethoscope
110 because it uses less computing resources, such as
processing power and memory as opposed to conventional
methods of detecting a respiratory abnormality. Real time
refers to the instance where the classification value 266 and
the indicator can be displayed almost instantly or within
milliseconds of receipt of the auditory signals 262, the
accelerometer data 272, or a combination thereof by the
digital stethoscope 110.

It has been further discovered that the ability to generate
the classification value 266 and display the indicator in real
time significantly improves the current state of the art by
allowing patients or users of the system 100 to be notified of
a respiratory abnormality instantaneously and seek treat-
ment immediately. It has been further discovered that the
ability of patients or users of the system 100 to be notified
of the respiratory abnormality in real time can result in the
ability to potentially save more patient lives by allowing
patients to know that they need to seek medical treatment
rapidly if a respiratory abnormality is detected.
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Referring now to FIG. 4A, therein is shown an exemplary
depiction of the functioning of the receiver module 304 and
the subtraction module 306 in an embodiment of the present
invention. In the embodiment shown in FIG. 4A, once the
auditory signals 262 are received, by the receiver module
304, the auditory signals 262 can be converted from time
functions 302 to frequency domain functions 330 as dis-
cussed previously with respect to FIG. 3. By way of
example, FIG. 4A shows two frequency domain functions
y(w) and N(w). In the embodiment shown in FIG. 4, y(w)
can represent the frequency domain function 330 of auditory
signals 262 obtained by the receiver module 304 that should
be kept by the digital stethoscope 110 while N(w) can
represent the frequency domain function 330 of auditory
signals 262 obtained by the receiver module 304 that should
not be kept by the digital stethoscope 110. Further, y(w) and
N(w) are shown as containing one or more frequencies as
depicted by a first frequency band set 402 and a second
frequency band set 404. The first frequency band set 402 and
the second frequency band set 404 represent the different
frequencies contained within y(w) and N(w) and can be
obtained by converting the time functions 302 to the fre-
quency domain functions 330. For example, in one embodi-
ment, boxes labeled as “1” of the first frequency band set
402 or the second frequency band set 404 can represent an
audible portion of y(w) or N(w) that has a high frequency,
while boxes labeled as “4” of the first frequency band set
402 or the second frequency band set 404 can represent an
audible portion of y(w) or N(w) that has a low frequency. In
one embodiment, y(w) and N(w) can be passed to the
subtraction module 306 so that the subtraction module 306
can filter out any unwanted noise portions, for example all
or some of N(w) according to equation (2) above for each of
the first frequency band set 402 and the second frequency
band set 404.

Referring now to FIG. 4B, therein is shown an exemplary
depiction of the functioning of the filter module 308 and the
generation of the auditory spectrogram 312 in an embodi-
ment of the present invention. In the embodiment shown in
FIG. 4B, the filtered frequency domain functions 330 of the
auditory signals 262 is shown as being passed to the filter
module 308. The filter module 308 is further shown with the
cochlear filters 332. In one embodiment, the filtered fre-
quency domain functions 330 of the auditory signals 262 can
pass through the cochlear filters 332. As a result of passing
the filtered frequency domain functions 330 of the auditory
signals 262 through the cochlear filters 332, the auditory
spectrogram 312 is generated. The auditory spectrogram 312
can be generated by, for example plotting the frequencies
filtered by the cochlear filters 332 on a plot showing time
versus frequency. In one embodiment, the auditory spectro-
gram 312 can further indicate the frequency bands 336 of the
auditory signals 262.

Referring now to FIG. 4C, therein is shown an exemplary
depiction of the functioning of the convolution neural net-
work module 310 in an embodiment of the present inven-
tion. In the embodiment shown in FIG. 4C, the auditory
spectrogram 312 is shown. Further, the convolution func-
tions 318 are shown as being represented by the one or more
boxes representing matrices of size NxN. The convolution
neural network module 310 can perform the convolution
procedure 316 by convoluting the auditory spectrogram 312
with the convolution functions 318 by shifting the convo-
lution functions 318 over the auditory spectrogram 312 and
multiplying the values for NxN frames of the auditory
spectrogram 312 with the values of the convolution func-
tions 318. As a result, the convolution matrices 322 are
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generated with convolution values 320. FIG. 4C further
depicts the generation of the subsequent convolution matri-
ces 322. In one embodiment, the subsequent convolution
matrices 322 can be generated by for example a pooling
process 406, in which subsequent convolution matrices 322
are generated by reducing the dimensions of the previous
convolution matrices 322 generated.

By way of example, a first convolution matrix 408 can be
generated as a result of the convolution procedure 316. In
one embodiment, a second convolution matrix 410 can
subsequently be generated based on the first convolution
matrix 408 by the pooling process 406, by for example,
taking groups of sub-elements of the first convolution matrix
408 and generating the second convolution matrix 410 based
on the sub-elements. For example, if the first convolution
matrix 408 is an MxM sized matrix, the first convolution
matrix 408 can be broken down into sub-matrices, for
example RxR sized sub-matrices, and a value chosen from
the RxR sub-matrix can be taken as one of the convolution
values 320 of the second convolution matrix 410. The
pooling process 406 can be done in a variety of ways,
including max pooling in which the maximum value for the
RxR sub-matrix is taken as one of the convolution values
320 of the second convolution matrix 410. In another
embodiment, the pooling process 406 can be done by
average pooling in which the values of the RxR sub-matrix
are averaged and the average is taken as one of the convo-
lution values 320 of the second convolution matrix 410.

In one embodiment, the pooling process 406 can be done
repeatedly to successively compress the auditory spectro-
gram 312 and generate the convolution vector 324. The
convolution vector 324 can then be input to the neural
network 326 which can use the weights 276 and biases 334
to determine whether the convolution vector 324 represents
a respiratory abnormality by classifying the convolution
values 320 associated with the convolution vector 324 as
being “normal” or “abnormal.”

In one embodiment, the second control flow 300
described above can further be used to make other classifi-
cations based on the auditory signals 262 detected by the
digital stethoscope 110. For example, in addition to detect-
ing a respiratory abnormality and making a classification of
“normal” or “abnormal,” the digital stethoscope 110 can
classify the auditory signals 262 as a particular type of
sound, noise, acoustic tone, or a combination thereof using
the same processes described above with respect to the
control flow 300. For example, in one embodiment, the
digital stethoscope 110 using the second control flow 300,
can classify the auditory signals 262 as a wheeze, a crackle,
or a cough based on the convolutional neural network
module 310 having its convolution functions 318 and neural
network 326 trained to recognize a wheeze, a crackle, or a
cough based on training with machine learned trained data
representing known sounds, noises, auditory tones, or a
combination thereof caused by a cough, a crackle, a wheeze,
or a combination thereof. As such, the classifications such as
“cough” or “no cough,” “crackle” or “no crackle,” or
“wheeze” or “no wheeze” can be generated.

In one embodiment, the coughs, crackles, or wheezes
detected can be saved in the configuration file 264 as the
cough count 274 and can be used to predict a future
respiratory event or respiratory condition. For example, if
the cough count 274 is known and exceeds a certain thresh-
old, for example, is greater than the average number of
coughs for the patient within a certain time period, and the
digital stethoscope 110 further detects that the coughs indi-
cate a respiratory abnormality, the digital stethoscope 110
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can, for example, further generate a parameter, value, or
variable indicating that a respiratory event or respiratory
condition is likely in the future and save the information in
the configuration file 264, which can further be shared with
the base station 118, the remote server 242, or a combination
thereof to alert the patient or a user of the system 100 of the
likelihood of the respiratory event or respiratory condition.
In one embodiment, the prediction of the respiratory event
or respiratory condition can further be aided by the use of
machine learning processes, for example a long short term
memory (LSTM) network model. The LSTM network
model will be discussed further below.

Forecasting Using an LSTM

Referring now to FIG. 5A, therein is shown an exemplary
feature map 500 used to predict a respiratory event or
respiratory condition in the future in an embodiment of the
present invention. The feature map 500 is a chart, image,
matrix, plot, or other visual depiction showing one or more
map features 512 versus time. In one embodiment, the
feature map 500 can be generated by the digital stethoscope
110, the base station 118, the remote server 242, or a
combination thereof. The map features 512 refer to param-
eters, variables, or a combination thereof that are used to
predict a respiratory event or respiratory condition in the
future. The map features 512 describe one or more condi-
tions at a particular time or over a period of time that can
affect the onset of a respiratory event or respiratory condi-
tion.

For example, in one embodiment, the map features 512
can include, environmental data, data regarding the patient,
or a combination thereof, indicating an environmental con-
dition at a particular time or over a period of time affecting
the onset of a respiratory event or respiratory condition, or
patient data, including data regarding coughs, crackles,
wheezes, or a combination thereof, indicating the onset of a
respiratory event or respiratory condition. For example, the
map features 512 can include environmental data indicating
how much pollution is in the air at a particular time, how
much pollen is in the air at a particular time, the air quality
at a particular time, or can include data regarding the patient,
such as data regarding whether the patient is coughing or
wheezing at a certain time, the severity of the patient’s
cough, crackle, or wheeze at a certain time, how many times
a patient is coughing or wheezing over a period of time, or
a combination thereof. As such, the map features 512 can
include a pollution level data 502, a weather data 504, a
severity score 506 indicating how severe a patient’s cough,
crackle, wheeze, respiratory event, or respiratory condition
is at a given time, the cough count 274, a pollen data 510,
or a combination thereof.

In one embodiment the severity score 506 can be catego-
rized indicating the level of severity of the patient’s cough,
crackle, wheeze, respiratory event, or respiratory condition
at a given time. In one embodiment, the categorization can
be, for example on a scale of 1-6 where, 1 indicates no or
non-present severity, 2 indicates intermittent severity, 3
indicates mild severity, 4 indicates moderate severity, 5
indicates severe or high severity, and 6 indicates acute
severity in which the patient should get immediate medical
attention. In one embodiment, the severity score 506 can be
determined by the digital stethoscope 110, the base station
118, the remote server 242, or a combination thereof by
analyzing the auditory signals 262 received from the digital
stethoscope 110, and analyzing the auditory signals 262
pursuant to the second control flow 300 or equivalent control
flow to determine the category of the severity score 506,
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wherein the neural network 326 or a further neural network
can be used to determine the category of the severity score
506.

Continuing with the example, in one embodiment, the
map features 512 can be obtained from the digital stetho-
scope 110, the base station 118, or a combination thereof,
and the components thereof including for example the
microphones 106, the air quality sensors 116, or a combi-
nation thereof. In one embodiment, the map features 512, the
feature map 500, or a combination thereof can be used as an
input to a machine learning process that can be used to
predict a respiratory event or respiratory condition in the
future. For example, the map features 512, the feature map
500, or a combination thereof can be the input to an LSTM
process 514 to predict the respiratory event or respiratory
condition in the future. In one embodiment, more than one
feature map 500 can be the input to the LSTM process 514
to predict the respiratory event or respiratory condition in
the future. The LSTM process 514 refers to artificial recur-
rent neural network (RNN) architecture which uses feedback
to make predictions about future events.

Referring now to FIG. 5B, therein is shown an exemplary
depiction of the LSTM process 514 used to predict a third
respiratory event 520 occurring for the patient at a future
time in an embodiment of the present invention. The LSTM
process 514 of FIG. 5B can work in the following manner.
In the embodiment of FIG. 5B, one or more time buckets
518 are shown as represented by “n-1,” “n,” and “n+1,”
wherein the time buckets 518 contain information regarding
the map features 512 at a particular instance of time or over
a period of time. In one embodiment, the time buckets 518
can be implemented as data structures, variables, param-
eters, or a combination thereof as nodes in the LSTM
process 514. In one embodiment, each instance of the time
buckets 518 can be predicted by implementing a look back
feature 516, which references the map features 512 of
previous time buckets 518 and performs a probability cal-
culation to determine the likelihood that future time buckets
518 will have map features 512 exhibiting certain charac-
teristics or having certain values. For example, “n” can be
predicted by referencing the map features 512 of “n-1,” and
“n+1” can further be predicted by referencing the map
features 512 of “n-1,” “n,” and so forth.

In one embodiment, the prediction is done by comparing
the map features 512 of past time buckets 518 to one another
and finding one or more patterns or correlations between the
map features 512. The patterns or correlations can be, for
example, map features 512 indicating a high probability of
exhibiting a certain characteristic or having a certain value
based on one or more previous map features 512 exhibiting
certain characteristics or having certain values. By way of
example, if it is determined that when pollution is high and
a patient has a certain number of coughs during the period
when the pollution is high, there is a high probability that the
severity scores 506 of a patient’s coughs, crackles, or
wheezes will be “5”-severe or “6”-acute, the LSTM process
514 can look for that pattern or correlation when comparing
the map features 512 of past time buckets 518, and if that
pattern or correlation is detected, can predict that in
instances where a pollution level is getting to a high level
and the patient has a certain number of coughs building up
to a certain threshold, the severity score 506 of those coughs
is likely to be “5”-severe or “6”-acute in the near future. The
example is merely exemplary and not meant to be limiting.

In one embodiment, the LSTM process 514 can contain
weights 276 associated with the look back feature 516,
similar to the weights 276 described with respect to FI1G. 2C.
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The weights 276 can be used to determine the strength of
each connection between the time buckets 518 such that the
higher the value for the weights 276 for a given look back
feature 516, the more the map features 512 of the particular
time buckets 518 associated with the look back feature 516
will affect the overall computations and predictions of the
LSTM process 514. In one embodiment, the weights 276 can
be determined and obtained in a similar process of back
propagation of training data similar to what was described
above with respect to the one or more values of the convo-
lution functions 318. For the purposes of discussion, it is
assumed that the weights 276 are already known and opti-
mized for predicting map features 512 for future time
buckets 518 based on a history of known map features 512
associated with known respiratory events and respiratory
conditions.

In one embodiment, the predictions made by the LSTM
process 514 can further be output to the digital stethoscope
110, the base station 118, the remote server 242, or a
combination thereof. For example, if the LSTM process 514
predicts that a patient will have a severe or acute respiratory
event or respiratory condition in the near future, an output
can be generated indicating the likelihood of the respiratory
event or respiratory condition to, for example, the display
unit 102 of the digital stethoscope 110 indicating the pre-
diction.

It has been discovered that the use of the LSTM process
514 described above allows the digital stethoscope 110, the
base station 118, or the remote server 242 to generate
accurate predictions for the likelihood of occurrence of
respiratory events or respiratory conditions. It has been
further discovered that the ability to generate predictions
regarding respiratory events or respiratory conditions sig-
nificantly improves the current state of the art by allowing
patients or users of the system 100 to be notified of respi-
ratory events or respiratory conditions before they occur and
allow patients or users of the system 100 to seek treatment
in advance of a medical emergency. It has been further
discovered that the ability of patients or users of the system
100 to be notified of the respiratory events or respiratory
conditions can result in the ability to potentially save more
patient lives by allowing patients to know that they need to
seek medical treatment rapidly if a respiratory event or
respiratory condition is predicted.

Convolutional Auto-Encoder to Predict Future Respiratory
Noises

Referring now to FIG. 6, therein is shown an exemplary
third control flow 600 for forecasting characteristics of a
future respiratory event or respiratory condition in an
embodiment of the present invention. For brevity of descrip-
tion, in this embodiment, the third control flow 600 will be
described as being performed using the base station 118.
This description is merely exemplary and not meant to be
limiting. In other embodiments, the third control flow 600
can be performed using the digital stethoscope 110, the
remote server 242, or a combination thereof.

The third control flow 600, can enable forecasting char-
acteristics of a future respiratory event or respiratory con-
dition by using one or more feature spaces 602 generated
based on the auditory signals 262, wherein the feature spaces
602 are a three dimensional map or representation of the
auditory signals 262. In one embodiment, the feature spaces
602 can be generated by the base station 118, for example,
by the second FPGA 244 after receiving the auditory signals
262. The feature spaces 602 can be a chart, image, matrix,
plot, or other visual depiction representing the auditory
signals 262 as a three dimensional map. The feature spaces
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602 can have one or more variables with values representing
characteristics of the auditory signals 262. For example, in
one embodiment, the variables can include a frequency
associated with the auditory signals 262 at a particular time,
a rate representing a map of auditory nerve firing rate
indicated by the auditory signals 262 at a particular time, and
a severity representing the magnitude of the auditory signal
262 at a particular time. The feature spaces 602 can be
generated using the same techniques as generating the
auditory spectrogram 312, where the auditory signals 262
can be received, converted into the frequency domain func-
tions 330, and filtered using the cochlear model 314 to
obtain the variables of the feature spaces 602. Once the
feature spaces 602 are generated, the third control flow 600
can be used to forecast characteristics of a future respiratory
event or respiratory condition using the feature spaces 602.

The third control flow 600 can be implemented with
modules and sub-modules, the components of the base
station 118, or a combination thereof. In one embodiment,
the third control flow 600 can include the convolution neural
network module 310, a reverse convolution module 604, a
validation module 606, and a long short term memory
module 610. In one embodiment, the convolution neural
network module 310 can couple to the reverse convolution
module 604. The convolution neural network module 310
can further couple to the long short term memory module
610 via a storage 608. The reverse convolution module 604
can couple to the validation module 606.

In one embodiment, the convolution neural network mod-
ule 310, as previously described with respect to FIG. 3, can
receive the feature spaces 602 and perform the convolution
procedure 316 on the feature spaces 602 to generate a
convolution vector 324 for each of the feature spaces 602. In
one embodiment, once the convolution vector 324 is gen-
erated, the convolution vector 324 can be saved in a storage
608 for later use by the long short term memory module 610.
The storage 608 can be the second storage unit 248 or a
further storage unit external to the base station 118, such as
an external database, hard drive, volatile memory, nonvola-
tile memory, or a combination thereof.

In one embodiment, once the convolution neural network
310 has completed the convolution procedure 316 for each
of the feature spaces 602, each convolution vector 324 and
control can further be passed to the reverse convolution
module 604. The reverse convolution module 604 enables
the reverse process of the convolution neural network mod-
ule 310, such that the reverse convolution module 604 can
decode and reconstruct the feature spaces 602 by, for
example, reversing the computations done by the convolu-
tion neural network module 310 to generate the feature
spaces 602 from the convolution vector 320. In one embodi-
ment, the reversing of the convolution vector 324 can be
used to forecast characteristics of a future respiratory event
or respiratory condition as will be described below. The
reverse convolution module 604 can perform the reverse
process of the convolution neural network module 310, by
for example performing a reverse of the convolution proce-
dure 316 by undoing all the calculations performed by the
convolution procedure 316.

In one embodiment, once the reverse convolution module
604 reconstructs the feature spaces 602, it can pass the
reconstructed feature spaces 602 and control to the valida-
tion module 606. The validation module 606 enables the
validation of the of the computations of the reverse convo-
lution module 604 by for example comparing the recon-
structed feature spaces 602 with the feature spaces 602
received by the convolution neural network module 310. For
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example, in one embodiment, the comparison can include
comparing the values of the variables, for example the
frequency, rate, and scale of each the reconstructed feature
spaces 602 with the same variables for feature spaces 602
received by the convolution neural network module 310 and
determining whether they are equal or within an error
tolerance, such that the two can be considered equivalent. If
the validation module 606 determines that the values are
equivalent, the computations of the reverse convolution
module 310 can be considered valid such that reverse
convolution module 604 can later be used to forecast char-
acteristics of a future respiratory event or respiratory con-
dition.

In one embodiment, once the validation module 606 has
validated the computations of the reverse convolution mod-
ule 604, control can pass to the long short term memory
module 610. The long short term memory module 610 can
enable and implement the LSTM process 514 as described
with respect to FIG. 5B. In one embodiment, the long short
term memory module 610 can retrieve each saved convo-
lution vector 324 from the storage 608 and perform the
LSTM process 514 using each convolution vector 324 in a
similar fashion as was described with the time buckets 518
of FIG. 5B. By way of example, the long short term memory
module 610 can replace the time buckets 518 with each
convolution vector 324 and predict a future convolution
vector 324 using the values of each convolution vector 324.

In one embodiment, the long short term memory module
610 can look for patterns as described with respect to FIG.
5B using a look back feature 516 and weights 276 trained
based on a history of respiratory events or respiratory
conditions, but with respect to the convolution vectors 324
such that the long short term memory module 610 can
forecast characteristics of a future respiratory event or
respiratory condition based on each previous convolution
vector 324.

By way of example, if the long short term memory
module 610 determines that each previous convolution
vector 324 indicates a trend towards feature spaces 602 for
a known respiratory event or respiratory condition, the long
short term memory module 610 can forecast characteristics
of future feature spaces 602 such that the long short term
memory module 610 can predict or forecast particular
feature spaces 602 indicating a particular respiratory event
or respiratory condition. In one embodiment, the forecasting
can be done by generating a predicted convolution vector
324 with predicted values indicating the predicted or fore-
casted characteristics of the forecast feature spaces 602. The
predicted or forecast feature spaces 602 can further be
generated by decoding or reversing the predicted convolu-
tion vector 324 via the reverse convolution procedure mod-
ule 604.

In one embodiment, the predicted or forecast feature
spaces 602 can further be output to the digital stethoscope
110, the base station 118, the remote server 242, or a
combination thereof. For example, if the long short term
memory module 610 forecasts that a patient will have
feature spaces 602 indicating a particular respiratory event
or respiratory condition in the near future, an output can be
generated indicating the forecast or predicted feature spaces
602 to, for example, the display unit 102 of the digital
stethoscope 110 and an alert can be sent to the patient or user
of the system 100 indicating the forecasting.

It has been discovered that the use of the third control flow
600 described above allows the digital stethoscope 110, the
base station 118, or the remote server 242 to generate
accurate predictions for the likelihood of occurrence of
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respiratory events or respiratory conditions without the need
to know about environmental conditions at a particular time
or over a period of time affecting the onset of a respiratory
event or respiratory condition and can generate forecasts of
characteristics of respiratory events or respiratory conditions
based on the auditory signals 262. It has been further
discovered that the ability to generate predictions regarding
respiratory events or respiratory conditions significantly
improves the current state of the art by allowing patients or
users of the system 100 to be notified of a respiratory event
or respiratory conditions before they occur and allow
patients or users of the system 100 to seek treatment in
advance of a medical emergency. It has been further dis-
covered that the ability of patients or users of the system 100
to be notified of the respiratory events or respiratory con-
ditions can result in the ability to potentially save more
patient lives by allowing patients to know that they need to
seek medical treatment rapidly if a respiratory event or
respiratory condition is predicted.

Referring now to FIG. 7, therein is shown an exemplary
depiction of the third control flow 600 for forecasting
characteristics of a future respiratory event or respiratory
condition in an embodiment of the present invention. In the
embodiment of FIG. 7, two feature spaces 602 are shown, as
indicated by 602A and 602B representing a frequency, rate,
and scale of the auditory signals 262 at different times T(1)
and T(2). FIG. 7 further shows 602A and 602B undergoing
the convolution procedure 316, as indicated by 704A and
704B. As a result, one or more convolution matrix spaces
702 are generated, as indicated by 702A, 702B, 702C, and
702D. 702A, 702B, 702C, and 702D, similar to the convo-
lution matrices 322, represent spaces generated from doing
the convolution procedure 316 on three dimensional feature
spaces 602, such that they represent three dimensional
matrix spaces. FIG. 7 further shows the convolution matrix
spaces 702 being compressed from one iteration of the
convolution procedure 316 to the next such that the convo-
lution matrix spaces 702 of a subsequent iteration are
smaller than the convolution matrix spaces 702 of the
previous iteration, similar to what was described with
respect to FIGS. 3 and 4C, until the convolution matrix
spaces 702 can be formed into a convolution vector 324
associated with each of the feature spaces 602. The convo-
lution vector 324 associated with each of the feature spaces
602 are represented as 324A and 324B. FIG. 7, further
shows the reversing or decoding of the convolution proce-
dure 316, as indicated by 708A and 708B to generate one or
more reverse convolution matrix spaces 704, as indicated by
704A and 704B. The reverse convolution matrix spaces 704
represent three dimensional matrix spaces generated from
performing the reverse convolution procedure 316 on 324A
and 324B. FIG. 7 further shows one or more reconstructed
feature spaces 710, as indicated by 710A and 710B, gener-
ated based on performing the reversing of the convolution
procedure 316 on the reverse convolution matrix spaces 704.

In the embodiment shown in FIG. 7, each of 324A and
324B can further be used to forecast characteristics of a
future respiratory event or respiratory condition based on
having the LSTM process 514, as done by the long short
term memory module 610, performed using 324A and 324B
as the inputs of the LSTM process 514. For example, FIG.
7 shows the LSTM process 514 performed, as indicated by
514A and 514B, such that a prediction vector 324N, repre-
senting a predicted convolution vector 324 is generated for
a future time, indicated by T(N). The prediction vector 324N
can have a reverse convolution procedure 316 performed on
i, as indicated by 708N to generate a predicted feature space
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710N representing the forecasted characteristics of a future
respiratory event or respiratory condition.

The system 100 has been described with module functions
or order as an example. The system 100 can partition the
modules differently or order the modules differently. For
example, the first software 224, the second software 252, or
a combination thereof, can include the modules for the
system 100. As a specific example, the first software 224, the
second software 252, or a combination thereof can include
the receiver module 304, the subtraction module 306, the
filter module 308, the convolution neural network module
310, the reverse convolution module 604, the validation
module 606, the long short term memory module 610, and
associated sub-modules included therein.

The first control unit 210, the second control unit 236, or
a combination thereof, can execute the first software 224, the
second software 252, or a combination thereof, to operate
the modules. For example, the first control unit 210, the
second control unit 236, or a combination thereof, can
execute the first software 224, the second software 252, or
a combination thereof, to implement the receiver module
304, the subtraction module 306, the filter module 308, the
convolution neural network module 310, the reverse con-
volution module 604, the validation module 606, the long
short term memory module 610, and associated sub-modules
included therein.

The modules described in this application can be imple-
mented as instructions stored on a non-transitory computer
readable medium to be executed by the first control unit 210,
the second control unit 236, or a combination thereof. The
non-transitory computer readable medium can include the
first storage unit 218, the second storage unit 248, or a
combination thereof. The non-transitory computer readable
medium can include non-volatile memory, such as a hard
disk drive, non-volatile random access memory (NVRAM),
solid-state storage device (SSD), compact disk (CD), digital
video disk (DVD), or universal serial bus (USB) flash
memory devices. The non-transitory computer readable
medium can be integrated as a part of the system 100 or
installed as a removable portion of the system 100.
Exemplary Methods

Referring now to FIG. 8, therein is shown an exemplary
method 800 of operating the system 100 in an embodiment
of the present invention. The method 800 includes: receiv-
ing, from a microphone, an auditory signal as shown in box
802; generating an auditory spectrogram based on the audi-
tory signal as shown in box 804; performing a convolution
procedure on the auditory spectrogram to generate one or
more convolution values, wherein the convolution values
represent a compressed version of a portion of the auditory
spectrogram, and wherein the convolution procedure is
trained to generate one or more features for detecting the
respiratory abnormality as shown in box 806; applying one
or more weights to the convolution values, wherein the
weights are trained for detection of the respiratory abnor-
mality as shown in box 808; generating a classification value
based on applying the weights to the convolution values,
wherein the classification value indicates whether the audi-
tory signal includes the respiratory abnormality as shown in
box 810; and outputting the classification value as shown in
box 812.

Referring now to FIG. 9, therein is shown a further
exemplary method 900 of operating the system 100 in an
embodiment of the present invention. The method 900
includes: receiving, over a period of time from a microphone
of a digital stethoscope, an auditory signal as shown in box
902; generating an auditory spectrogram based on the audi-
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tory signal as shown in box 904; analyzing, with a control
unit of the digital stethoscope, the auditory spectrogram to
determine whether the auditory signal represents a cough as
shown in box 906; tracking, with the control unit of the
digital stethoscope, the cough in a cough log as shown in box
908; and transmitting based on the cough log, with a
communication unit of the digital stethoscope to a cloud-
based service, a message indicating a number of coughs
tracked over the period of time for storage on a remote
server as shown in box 910.

Referring now to FIG. 10, therein is shown a further
exemplary method 1000 of operating the system 100 in an
embodiment of the present invention. The method 1000
includes: receiving, from a microphone of a digital stetho-
scope, a first noise signal at a first time as shown in box
1002; analyzing the first noise signal to determine a first
severity score indicating how severe a first respiratory event
of a patient captured in the first noise signal is as shown in
box 1004; receiving, from the microphone of the digital
stethoscope, a second noise signal captured at a second time
as shown in box 1006; analyzing the second noise signal to
determine a second severity score indicating how severe a
second respiratory event of the patient captured in the
second noise signal is as shown in box 1008; generating a
prediction indicating a likelihood of a third respiratory event
occurring for the patient at a future time based on applying
a first weight to the first severity score and a second weight
to the second severity score, wherein the first and second
weights are trained based on a history of respiratory events
as shown in box 1010; outputting the prediction as shown in
box 1012.

Referring now to FIG. 11, therein is shown a further
exemplary method 1100 of operating the system 100 in an
embodiment of the present invention. The method 1100
includes: receiving, from a microphone of a digital stetho-
scope, a first noise signal capturing a first respiratory event
at a first time as shown in box 1102; generating a first feature
space representing the first noise signal as shown in box
1104; encoding the first feature space into a first convolution
vector using a convolution procedure as shown in box 1106;
receiving, from the microphone of the digital stethoscope, a
second noise signal capturing a second respiratory event at
a second time as shown in box 1108; generating a second
feature space representing the second noise signal as shown
in box 1110; encoding the second feature space into a second
convolution vector using the convolution procedure as
shown in box 1112; determining a predicted convolution
vector based on the first and second feature spaces as shown
in box 1114; and decoding the predicted convelution vector
into a predicted feature space representing a sound made by
the future respiratory event as shown in box 1116.

Other Examples and Embodiments

Referring now to FIG. 12, therein is shown exemplary
spectrograms 1200 representing breathing patterns in an
embodiment of the present invention. The spectrograms
1200 of FIG. 12, similar to what was described with respect
to the auditory spectrogram 312 of FIG. 3, are two dimen-
sional visual representations of the spectrum of frequencies
of known noises, from the patient’s body, for example a
cough, a crackle, a wheeze, a breathing pattern, or a com-
bination thereof. FIG. 12 shows two spectrograms 1200
representing two different breathing patterns, one for a
normal breathing pattern 1202, indicating no respiratory
abnormality, and one for a wheeze breathing pattern 1204,
indicating a respiratory abnormality associated with a
wheeze. In one embodiment, the breathing patterns and their
representations in the form of the spectrograms 1200 can be
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used as a part of the back propagation process, as described
with respect to FIGS. 3 and 5, to train the weights 276 and
biases 334 of the machine learning processes used by the
system 100 which are used by the system 100 to perform the
detection of the respiratory abnormality, or to predict a
respiratory event or respiratory condition in the future. For
example, the spectrograms 1200 can be used to train the
weights 276 and biases 334 used in the neural network 326,
the LSTM process 514, or a combination thereof by for
example using the spectrograms 1200 as examples of known
breathing patterns which the system 100 can attempt to
reconstruct through back propagation, and in the process
determine the values of the weights 276 and biases 334 to
reconstruct the spectrograms 1200. The biases 334 and
weights 276 can subsequently be used to make future
predictions about auditory signals 262 and classify them, by
for example, classifying them as “normal” or “abnormal”
based on the processes previously described

Referring now to FI1G. 13, therein is shown an exemplary
auditory spectrogram 312 in an embodiment of the present
invention. FIG. 13 shows a depiction of the auditory spec-
trogram 312 as described with respect to FIG. 3. FIG. 13
further shows how the auditory spectrogram 312 amplifies
and sharpens the frequency components of an auditory
signal 262. For example, FIG. 13, shows the frequency
components of an auditory signal 262 as white marks.
Further, FIG. 13 shows the magnitude of the frequency
components by indicating lighter shades of white for fre-
quency components that comprise a larger portion of the
auditory signal 262 for a given time.

Referring now to FIG. 14, therein is shown an exemplary
feature space 602 in an embodiment of the present invention.
FIG. 14 shows an exemplary frequency, rate, and scale of an
auditory signals 262 at different times plotted against one
another other. For clarity and ease of description, the fre-
quency, rate, and scale are plotted as two dimensional visual
representations where each of the frequency, rate, and scale
is plotted against only one of the other variables, despite
being described in FIGS. 6 and 7 as a three dimensional map
or representation of the auditory signals 262. The combina-
tion of the plots of FIG. 14 represents the feature space 602.
FIG. 14 further shows three plots 1402, 1404, and 1406. Plot
1402 represents a plot of the scale vs. rate. Plot 1404
represents a plot of frequency vs. rate. Plot 1406 represents
a plot of scale vs. frequency. As described in FIGS. 6 and 7,
the plots can be constructed and reconstructed to make the
predictions regarding respiratory events or respiratory con-
ditions in the future.

The above embodiments are described in sufficient detail
to enable those skilled in the art to make and use the
invention. It is to be understood that other embodiments
would be evident based on the present disclosure, and that
system, process, or mechanical changes may be made with-
out departing from the scope of an embodiment of the
present invention.

In the above description, numerous specific details are
given to provide a thorough understanding of the invention.
However, it will be apparent that the invention may be
practiced without these specific details. To avoid obscuring
an embodiment of the present invention, some well-known
circuits, system configurations, and process steps are not
disclosed in detail.

The term “module” or “unit” referred to herein can
include software, hardware, or a combination thereof in an
embodiment of the present invention in accordance with the
context in which the term is used. For example, the software
can be machine code, firmware, embedded code, or appli-
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cation software. Also for example, the hardware can be
circuitry, a processor, a microprocessor, a microcontroller, a
special purpose computer, an integrated circuit, integrated
circuit cores, a pressure sensor, an inertial sensor, a micro-
electromechanical system (MEMS), passive devices, or a
combination thereof. Further, if a module or unit is written
in the system or apparatus claims section below, the module
or unit is deemed to include hardware circuitry for the
purpose and the scope of the system or apparatus claims.

The modules and units in the following description of the
embodiments can be coupled to one another as described or
as shown. The coupling can be direct or indirect, without or
with intervening items between coupled modules or units.
The coupling can be by physical contact or by communica-
tion between modules or units.

The above detailed description and embodiments of the
disclosed system 100 are not intended to be exhaustive or to
limit the disclosed system 100 to the precise form disclosed
above. While specific examples for the system 100 are
described above for illustrative purposes, various equivalent
modifications are possible within the scope of the disclosed
system 100, as those skilled in the relevant art will recog-
nize. For example, while processes and methods are pre-
sented in a given order, alternative implementations may
perform routines having steps, or employ systems having
processes or methods, in a different order, and some pro-
cesses or methods may be deleted, moved, added, subdi-
vided, combined, or modified to provide alternative or
sub-combinations. Each of these processes or methods may
be implemented in a variety of different ways. Also, while
processes or methods are at times shown as being performed
in series, these processes or blocks may instead be per-
formed or implemented in parallel, or may be performed at
different times.

The resulting method, process, apparatus, device, product,
and system is cost-effective, highly versatile, and accurate,
and can be implemented by adapting components for ready,
efficient, and economical manufacturing, application, and
utilization. Another important aspect of an embodiment of
the present invention is that it valuably supports and services
the historical trend of reducing costs, simplifying systems,
and increasing performance.

These and other valuable aspects of the embodiments of
the present invention consequently further the state of the
technology to at least the next level. While the invention has
been described in conjunction with a specific best mode, it
is to be understood that many alternatives, modifications,
and variations will be apparent to those skilled in the art in
light of the descriptions herein. Accordingly, it is intended to
embrace all such alternatives, modifications, and variations
that fall within the scope of the included claims. All matters
set forth herein or shown in the accompanying drawings are
to be interpreted in an illustrative and non-limiting sense.

What is claimed is:

1. A computer-implemented method for forecasting char-
acteristics of a future respiratory event comprising:

receiving, from a microphone of a digital stethoscope, a

first noise signal capturing a first respiratory event at a
first time;
generating, by one or more computing devices, a first
feature space representing the first noise signal;

encoding, by the one or more computing devices, the first
feature space into a first convolution vector using a
spatial convolution procedure;

receiving, from the microphone of the digital stethoscope,

a second noise signal capturing a second respiratory
event at a second time;
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generating, by the one or more computing devices, a
second feature space representing the second noise
signal,

encoding, by the one or more computing devices, the
second feature space into a second convolution vector
using the spatial convolution procedure;

determining, by the one or more computing devices, a
predicted convolution vector based on the first and
second feature spaces;

decoding, by the one or more computing devices, the
predicted convolution vector into a predicted feature
space representing a sound made by the future respi-
ratory event; and

transmitting, by the one or more computing devices, the
predicted feature space to a display unit for output,
wherein the output indicates the likelihood of the future
respiratory event.

2. The method of claim 1 wherein the first, second, and
predicted feature spaces are three-dimensional spaces with
values each signifying a frequency, rate, and severity of the
first noise signal, the second noise signal, and the sound
made by the future respiratory event.

3. The method of claim 1 wherein the first noise signal,
second noise signal, and the sound made by the future
respiratory event are coughs.

4. The method of claim 1 wherein the first noise signal,
second noise signal, and the sound made by the future
respiratory event are wheezes.

5. The method of claim 1 wherein encoding the first and
second feature spaces comprises repeatedly performing the
spatial convolution procedure on the first and second feature
spaces to generate one or more convolution values, wherein
the convolution values represent a compressed version of a
portion of the first and second feature spaces.

6. The method of claim 5 wherein decoding the predicted
convolution vector comprises repeatedly performing an
inverse of the spatial convolution procedure to generate the
predicted feature space.

7. The method of claim 1 wherein determining the pre-
dicted convolution vector based on the first and second
feature spaces comprises:

applying a first weight to the first convolutional vector to
generate a first intermediate vector; and

calculating a second intermediate vector based on apply-
ing a second weight to the second convolutional vector,
wherein the first and second weights are values trained
based on a history of respiratory events.

8. A non-transitory computer readable medium including
instructions for forecasting characteristics of a future respi-
ratory event comprising;

receiving, from a microphone of a digital stethoscope, a
first noise signal capturing a first respiratory event at a
first time;

generating, by one or more computing devices, a first
feature space representing the first noise signal;

encoding, by the one or more computing devices, the first
feature space into a first convolution vector using a
spatial convolution procedure;

receiving, from the microphone of the digital stethoscope,
a second noise signal capturing a second respiratory
event at a second time;

generating, by the one or more computing devices, a
second feature space representing the second noise
signal;

encoding, by the one or more computing devices, the
second feature space into a second convolution vector
using the spatial convolution procedure;
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determining, by the one or more computing devices, a
predicted convolution vector based on the first and
second feature spaces;

decoding, by the one or more computing devices, the
predicted convolution vector into a predicted feature
space representing a sound made by the future respi-
ratory event; and

transmitting, by the one or more computing devices, the
predicted feature space to a display unit for output,
wherein the output indicates the likelihood of the future
respiratory event.

9. The non-transitory computer readable medium of claim

8 with instructions wherein the first, second, and predicted
feature spaces are three-dimensional spaces with values each
signifying a frequency, rate, and severity of the first noise
signal, the second noise signal, and the sound made by the
future respiratory event.

10. The non-transitory computer readable medium of
claim 8 with instructions wherein the first noise signal,
second noise signal, and the sound made by the future
respiratory event are coughs.

11. The non-transitory computer readable medium of
claim 8 with instructions wherein the first noise signal,
second noise signal, and the sound made by the future
respiratory event are wheezes.
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12. The non-transitory computer readable medium of
claim 8 with instructions wherein encoding the first and
second feature spaces comprises repeatedly performing the
spatial convolution procedure on the first and second feature
spaces to generate one or more convolution values, wherein
the convolution values represent a compressed version of a
portion of the first and second feature spaces.

13. The non-transitory computer readable medium of
claim 12 with instructions wherein decoding the predicted
convolution vector comprises repeatedly performing an
inverse of the spatial convolution procedure to generate the
predicted feature space.

14. The non-transitory computer readable medium of
claim 8 with instructions wherein determining the predicted
convolution vector based on the first and second feature
spaces comprises:

applying a first weight to the first convolutional vector to

generate a first intermediate vector; and

calculating a second intermediate vector based on apply-

ing a second weight to the second convolutional vector,
wherein the first and second weights are values trained
based on a history of respiratory events.
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