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(7) ABSTRACT

Described is system for feature transformation of neural
activity using sparse and low-rank (SLR) decomposition. A
set of neural activity signals associated with different stimuli
are obtained, and a neural feature is extracted or each stimuli
from the set of neural activity signals using SLR decompo-
sition. The neural feature is then used to generate a classi-
fication of the stimuli. The neural activity signals may
include functional magnetic resonance imaging (fMRI) sig-
nals, fMRI blood-oxygen-level dependent (BOLD) signals,
electroencephalography (EEG) signals, functional near-in-
frared spectroscopy (fNIRS) signals, or magnetoencepha-
lography (MEG) signals. The system according to the prin-
ciples of the present invention will he an important
component of any neural activity based classification sys-
tem.

21 Claims, 5 Drawing Sheets
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FEATURE TRANSFORMATION OF NEURAL
ACTIVITY WITH SPARSE AND LOW-RANK
(SLR) DECOMPOSITION

GOVERNMENT LICENSE RIGHTS

This invention was made with government support under
U.S. Government Contract Number Contract # FA8650-13-
C-7356. The government has certain rights in the invention

FIELD OF INVENTION

The present invention relates to a system for feature
transformation of neural activity and, more particularly, to a
system for feature transformation of neural activity using
sparse and low-rank (SLR) decomposition.

BACKGROUND OF THE INVENTION

Feature selection and feature transformation are very
important components in any neural activity classification
pipeline. Generally, neural activity data is very noisy. One
source of noise comes from the technology used to extract
the neural signals. This can be signal drift caused by, for
example, the device for measuring neural activity “warm-
ing-up” over time, inhomogeneities of a magnetic field used
to measure the signals, variance in conductance of any
electrodes receiving signals, and general noise introduced by
electronic circuits.

Another source of noise is physiologically based. This
includes, for example, fluctuations caused by movement,
variation in heart rate, changes in skin resistance, and
blinking of the subject. Finally, the most complex form of
noise is random off-task mental activity by the subject.
Given this complexity and the high dimensionality of neural
activity signals, classification of brain states via these sig-
nals is difficult and error prone.

Numerous methods have been developed to deal with this
difficulty. Given the large number of data dimensions avail-
able, one class of techniques tries to determine which
dimensions are more informative and throw the others out,
thereby reducing the dimensionality of the problem. Select-
ing “stable” voxels (a single data point on a regularly
spaced, three-dimensional grid), as described in Literature
Reference No. 3 of the List of Incorporated Cited Literature
References, is one such technique. Another technique is
using some discriminant measure to rank voxels.

In addition to reducing the number of dimensions, trans-
formations over the representation space has also been
performed. A common method for this is using Singular
Value Decomposition (SVD) to transform the data (see
Literature Reference No. 4 for a description of SVD). The
SVD method prioritizes data according to variance, but may
not correlate with discriminability. Another method is linear
regression to extract the beta coefficients as an alternative
representation of the data, as described in Literature Refer-
ence No. 2.

While the prior methods described above are able to
reduce the dimensionality of neural activity data, they are
not designed to distinguish neural activity patterns. Because
of the high dimensionality of the data (due to noise and over
abundant measurements) and the actual information, content
is embedded within a much lower dimensional manifold.
Thus, a continuing need exists for a system for accessing the
content via sparse and low-rank (SLR) decomposition to
find the representation of the signal content amongst the
high-dimensional data signal.
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2
SUMMARY OF THE INVENTION

The present invention relates to a system for feature
transformation of neural activity and, more particularly, to a
system for feature transformation of neural activity using
sparse and low-rank (SLR) decomposition. The system
comprises one or more processors and a memory having
instructions such that when the instructions are executed, the
one or more processors perform multiple operations. The
system obtains a set of neural activity signals associated
with different stimuli, and extracts a neural feature for each
stimuli from the set of neural activity signals using sparse
and low-rank (SLR) decomposition. The neural feature is
used to generate a classification of the stimuli.

In another aspect, the neural feature for each stimuli is
stored as a set of voxels, each voxel having a vector value.

In another aspect, the neural activity signals are functional
magnetic resonance imaging (fMRI) neural activity signals,
and the system selects a set of stable voxel values from a
collection of fMRI brain volumes associated with the dif-
ferent stimuli. From the set of stable voxel values, a set of
fMRI brain volumes associated with the set of stable voxel
values is organized into a matrix X. The matrix X is then
decomposed into a set of matrices: a low-rank part L matrix,
a sparse part S matrix, and a Gaussian part G matrix.

In another aspect, the sparse part S matrix represents a
neural activation feature, the low-rank L. matrix represents a
neural resting state feature, and the Gaussian part G matrix
represents noise.

In another aspect, the neural activation feature is modeled
as a foreground in the set of neural activity signals, and the
neural resting state feature is modeled as a stationary back-
ground in the set of neural activity signals.

In another aspect, the set of stable voxel values comprises
exemplar-activated voxels representing a current focus of
attention, and the system extracts exemplar-activated voxels
from the set of stable voxels.

In another aspect, the neural activity signals are selected
from a group consisting of functional magnetic resonance
imaging (fMRI) neural activity signals, fMRI blood-oxygen-
level dependent (BOLD) neural activity signals, electroen-
cephalography (EEG) neural activity signals, functional
near-infrared spectroscopy (INIRS) neural activity signals,
and magnetoencephalography (MEG) neural activity sig-
nals.

In another aspect, the present invention also comprises a
method for causing a processor to perform the operations
described herein.

Finally, in yet another aspect, the present invention also
comprises a computer program product comprising com-
puter-readable instructions stored on a non-transitory com-
puter-readable medium that are executable by a computer
having a processor for causing the processor to perform the
operations described herein.

BRIEF DESCRIPTION OF THE DRAWINGS

The objects, features and advantages of the present inven-
tion will be apparent from the following detailed descrip-
tions of the various aspects of the invention in conjunction
with reference to the following drawings, where:

FIG. 1 is a block diagram depicting the components of a
system for feature transformation of neural activity accord-
ing to the principles of the present invention;

FIG. 2 is an illustration or a computer program product
according to the principles of the present invention;
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FIG. 3 is a flow diagram depicting feature transformation
of neural activity according to the principles of the present
invention;

FIG. 4 s an illustration of feature transformation of neural
activity according to the principles of the present invention;

FIG. 5 is an exemplary illustration of results from the use
of sparse and low-rank (SLR) decomposition for extracting
neural activities in functional magnetic resonance imaging
(fMRI)brain images according to the principles of the pres-
ent invention.

DETAILED DESCRIPTION

The present invention relates to a system for feature
transformation of neural activity and, more particularly, to a
system for feature transformation of neural activity using
sparse and low-rank (SLR) decomposition. The following
description is presented to enable one of ordinary skill in the
art to make and use the invention and to incorporate it in the
context of particular applications. Various modifications, as
well as a variety of uses in different applications will readily
apparent to those skilled in the art, and the general principles
defined herein may be applied, to a wide range of aspects.
Thus, the present invention is not intended to be limited to
the aspects presented, but is to be accorded the widest scope
consistent with the principles and novel features disclosed
herein.

In the following detailed description, numerous specific
details are set forth in order to provide a more thorough
understanding of the present invention. However, it will be
apparent to one skilled in the art that the present invention
may be practiced without necessarily being limited to these
specific details. In other instances, well-known structures
and devices are shown in block diagram form, rather than in
detail, in order to avoid obscuring the present invention.

The reader’s attention is directed to all papers and docu-
ments which are filed concurrently with this specification
and which are open to public inspection with this specifi-
cation, and the contents of all such papers and documents are
incorporated herein by reference. All the features disclosed
in this specification, (including any accompanying claims,
abstract, and drawings) may be replaced by alternative
features serving the same, equivalent or similar purpose,
unless expressly stated otherwise. Thus, unless expressly
stated otherwise, each feature disclosed is one example only
of a generic series of equivalent or similar features.

Furthermore, any element in a claim that does not explic-
itly state “means for” performing a specified function, or
“step for” performing a specific function, is not to be
interpreted as a “means” or “step” clause as specified in 35
U.S.C. Section 112, Paragraph 6. In particular, the use of
“step of” or “act of” in the claims herein is not intended to
invoke the provisions of 35 U.S.C. 112, Paragraph 6.

Please note, if used, the labels left, right, front, back, top,
bottom, forward, reverse, clockwise and counter-clockwise
have been used for convenience purposes only and are not
intended to imply any particular fixed direction. Instead,
they are used to reflect relative locations and/or directions
between various portions of an object. As such, as the
present invention is changed, the above labels may change
their orientation.

Before describing the invention in detail, first a list of
cited literature references used in the description is provided.
Next, a description of various principal aspects of the
present invention is provided. Finally, specific details of the
present invention are provided to give an understanding of
the specific aspects.
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(1) List of Incorporated Cited Literature References

The following references are cited throughout this appli-
cation. For clarity and convenience, the references are listed
herein as a central resource for the reader. The following
references are hereby incorporated by reference as though
fully included herein. The references are cited in the appli-
cation by referring to the corresponding literature reference
numbet, as follows:

1. E. Candes, X. Li, Y. Ma, and J. Wright, “Robust
Principal Component Analysis?”, IEEE PAMI 2011.

2. 8. I. Gilbert. “Decoding the content of delayed inten-
tions”. J. Neurosci, 31: 2888-2894, 2011.

3. T. M. Mitchell, S. V. Shinkareva, A. Carlson, K.-M.
Chang, V. L. Malave, R. A. Mason and M. A. Just, “Pre-
dicting human brain activity associated with the meanings of
nouns”, Science, 320(5880), 2008.

4. ]. Mourao-Miranda, A. L. Bokde, C. Born, H. Hampel,
and M. Stetter, “Classifying brain states and determining the
discriminating activation patterns: support vector machine
on functional MRI data”, Neuroimage 28, 980-995, 2005.

5.T. Zhou and D. Tao. “GoDec: Randomized low-rank &
sparse matrix decomposidon noisy case.” ICML, 2011.

6. Basri, Ronen, and David W. Jacobs. “Lambertian
reflectance and linear subspaces.” Pattern Analysis and
Machine Intelligence, IEEE Transactions on 25.2, 218-233,
2003.

7. Kohavi, Ron. “A study of cross-validation and boot-
strap for accuracy estimation and model selection.” IJCAI.
Vol. 14. No. 2, 1995.

8. Cortes, Corinna, and Vladimir Vapnik, “Support-vector
networks.” Machine learning 20.3, 273-297, 1995.

(2) Principal Aspects

The present invention has three “principal” aspects. The
first is a system for feature transformation of neural activity.
The system is typically in the form of a computer system
operating software or in the form of a “hard-coded” instruc-
tion set. This system may be incorporated into a wide variety
of devices that provide different functionalities. The second
principal aspect is a method, typically in the form of
software, operated using a data processing system (com-
puter). The third principal aspect is a computer program
product. The computer program product generally repre-
sents computer-readable instructions stored on a non-tran-
sitory computer-readable medium such as an optical storage
device, e.g., a compact disc (CD) or digital versatile disc
(DVD), or a magnetic storage device such as a floppy disk
or magnetic tape. Other, non-limiting examples of computer-
readable media include hard disks, read-only memory
(ROM), and flash-type memories. These aspects will he
described in more detail below.

A block diagram depicting an example of a system (i.e.,
computer system 100) of the present invention is provided in
FIG. 1. The computer system 100 is configured to perform
calculations, processes, operations, and/or functions associ-
ated with a program or algorithm. In one aspect, certain
processes and steps discussed herein are realized as a series
of instructions (e.g., software program) that reside within
computer readable memory units and are executed by one or
more processors of the computer system 100. When
executed, the instructions cause the computer system 100 to
perform specific actions and exhibit specific behavior, such
as described herein.

The computer system 100 may include an address/data
bus 102 that is configured to communicate information.
Additionally, one or more data processing units, such as a
processor 104 (or processors), are coupled with the address/
data bus 102. The processor 104 is configured to process
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information and instructions. In an aspect, the processor 104
is a microprocessor. Alternatively, the processor 104 may be
a different type of processor such as a parallel processor, or
a field programmable gate array.

The computer system 100 is configured to utilize one or
more data storage units. The computer system 100 may
include a volatile memory unit 106 (e.g., random access
memory (“RAM”), static RAM, dynamic RAM, etc.)
coupled with the address/data bus 102, wherein a volatile
memory unit 106 is configured to store inthrmation and
instructions for the processor 104. The computer system 100
further may include a non-volatile memory unit 108 (e.g.,
read-only memory (“ROM”™), programmable ROM
(“PROM”), erasable programmable ROM (“EPROM”),
electrically erasable programmable ROM “EEPROM”),
flash memory, etc.) coupled with the address/data bus 102,
wherein the non-volatile memory unit 108 is configured to
store static information and instructions for the processor
104. Alternatively, the computer system 100 may execute
instructions retrieved from an online data storage unit such
as in “Cloud” computing. In an aspect, the computer system
100 also may include one or more interfaces, such as an
interface 110, coupled with the address/data bus 102. The
one or more interfaces are configured to enable the computer
system 100 to interface with other electronic devices and
computer systems. The communication interfaces imple-
mented by the one or more interfaces may include wireline
(e.g., serial cables, moderns, network adaptors, etc.) and/or
wireless (e.g., wireless modems, wireless network adaptors,
etc.) communication technology.

In one aspect, the computer system 100 may include an
input device 112 coupled with the address/data bus 102,
wherein the input device 112 is configured to communicate
information and command selections to the processor 100.
In accordance with one aspect, the input device 112 is an
alphanumeric input device, such as a keyboard, that may
include alphanumeric and/or function keys. Alternatively,
the input device 112 may be an input device other than an
alphanumeric input device. In an aspect, the computer
system 100 may include a cursor control device 114 coupled
with the address/data bus 102, wherein the cursor control
device 114 is configured to communicate user input infor-
mation and/or command selections to the processor 100. In
an aspect, the cursor control device 114 is implemented
using a device such as a mouse, a track-ball, a track-pad, an
optical tracking device, or a touch screen. The foregoing,
notwithstanding, in an aspect, the cursor control device 114
is directed and/or activated via input from the input device
112, such as in response to the use of special keys and key
sequence commands associated with the input device 112, in
an alternative aspect, the cursor control device 114 is con-
figured to he directed or guided by voice commands.

In an aspect, the computer system 100 further may include
one or more optional computer usable data storage devices,
such as a storage device 116, coupled with the address/data
bus 102, The storage device 116 is configured to store
information and/or computer executable instructions. In one
aspect, the storage device 116 is a storage device such as a
magnetic or optical disk drive (e.g., hard disk drive
(“HDD”), floppy diskette, compact disk read only memory
(“CD-ROM?”), digital versatile disk (“DVD™)). Pursuant to
one aspect, a display device 118 is coupled with the address/
data bus 102, wherein the display device 118 is configured
to display video and/or graphics. In an aspect, the display
device 118 may include a cathode ray tube (“CRT™), liquid
crystal display (“LCD”), field emission display (“FED”),
plasma display, or any other display device suitable for
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6
displaying video and/or graphic images and alphanumeric
characters recognizable to a user.

The computer system 100 presented herein is an example
computing environment in accordance with an aspect, How-
ever, the non-limiting example of the computer system 100
is not strictly limited to being a computer system. For
example, an aspect provides that the computer system 100
represents a type of data processing analysis that may be
used in accordance with various aspects described herein.
Moreover, other computing systems may also be imple-
mented. Indeed, the spirit and scope of the present technol-
ogy is not limited to an single data processing environment.
Thus, in an aspect, one or more operations of various aspects
of the present technology are controlled or implemented
using computer-executable instructions, such as program
modules, being executed by a computer. In one implemen-
tation, such program modules include routines, programs,
objects, components and/or data structures that are config-
ured to perform particular tasks or implement particular
abstract data types. In addition, an aspect provides that one
or more aspects of the present technology are implemented
by utilizing one or more distributed computing environ-
ments, such as where tasks are performed by remote pro-
cessing devices that are linked through a communications
network, or such as where various program modules are
located in both local and remote computer-storage media
including memory-storage devices.

An illustrative diagram of a computer program product
(i.e., storage device) embodying an aspect of the present
invention is depicted in FIG. 2. The computer program
product is depicted as floppy disk 200 or an optical disk 202
such as a CD or DVD. However, as mentioned previously,
the computer program product generally represents com-
puter-readable instructions stored on any compatible non-
transitory computer-readable medium. The term “instruc-
tions” as used with respect to this invention generally
indicates a set of operations to be performed on a computer,
and may represent pieces of a whole program or individual,
separable, software modules. Non-limiting examples of
“instruction” include computer program code (source or
object code and “hard-coded” electronics computer opera-
tions coded into a computer chip). The “instruction” is
stored on any non-transitory computer-readable medium,
such as in the memory of a computer or on a floppy disk, a
CD-ROM, and a flash drive. In either event, the instructions
are encoded on a non-transitory computer-readable medium.

(3) Specific Details of the Invention

Described is a feature transformation system that extends
the sparse and low-rank (SLR) decomposition method (see
Literature Reference No. 1 for a description of the SLR
decomposition method) to neural activity signals associated
with different stimuli, including, but not limited to, visual
concept stimuli. A non-limiting example of a visual concept
stimuli is a picture of any object, such as a bear, cat, cow,
arm, foot, apartment, and house. The system according to the
principles of the present invention is based on novel use of
SLR matrix decomposition to extract neural features for
classification of neural activity signals. This technique will
be an important component of any neural activity based
classification system.

The neural domains to be classified can come from any
number of signals, non-limiting examples of which include
signals from functional magnetic resonance imaging
(IMRI), fMRI blood-oxygen-level dependent (BOLD), elec-
troencephalography (EEG), functional near-infrared spec-
troscopy (INIRS), and magnetoencephalography (MEG).
The data from these initially noisy high-dimensional com-
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plex neural domains often contain a foreground part and a
background part in addition to the noise. The background
part can represent resting state activity, or normal ongoing
maintenance activity, while the foreground activity might
represent a current focus of attention or activity. The present
invention can separate the foreground part from the back-
ground part and enable more accurate classification of the
signals, especially when the signal of interest pertains to
either fhreground or background activity.

The system according to the principles of the present
invention increases stimuli classification accuracy from neu-
ral activity patterns. While the embodiment of the invention
described herein is based on decoding fMRI brain images,
the present invention can be applied to any neural activity
signal, such as those described above. The fMRI brain
images are extremely noisy because of the mechanics of
signal extraction, physiological noise, and the existence of
non-task related mental activity. This noise cannot be mod-
eled by a simple model, such as additive Gaussian noise.
Therefore, to be able to classify different exemplars (e.g.,
pictures of objects, such as a cat, cow, hand, apartment, or
barn) with high accuracy, the voxel values of the fMRI brain
volume cannot be directly used. The present invention,
therefore, applies the (SLR) decomposition method to trans-
form the voxel values in order to increase classification
accuracy. Specifically, the SLR decomposition is used to
extract exemplar activation (which is sparse spatially) from
a resting state. Exemplar activation may refer to neural
activity signals from one or more persons that were acquired
while the one or more persons were presented with stimuli
(e.g., exemplars). The resting state may refer to neural
activity signals that were acquired from the one or more
persons while the one or more persons were presented with
a baseline stimuli such as a blank screen or flashcard, or
simply being at the same location where stimuli s presented
before, after, and/or between presentation of stimuli to the
one or more Persons.

(3.1) Sparse and Low Rank Decomposition

Sparse and low-rank (SLR) decomposition is a set of
provably optimal and efficient mathematical techniques for
identifying and decomposing low-variation structure of a
scene from high-dimensional raw data (see Literature Ref-
erence No. 1). Suppose one has a stationary camera that is
viewing a scene for the task of intruder/foreground detec-
tion. If many raw image frames are obtained over the course
of a day, one can stack each frame as a column vector of the
data matrix D, which can be decomposed to X=L+S, where
L is the low-rank matrix that represents the background, and
S is the sparse matrix that represents the sparse foreground
and deviations from the convex Lambertian model (e.g.,
shadows and reflection). The convex Lambertian model is
described in Literature Reference No. 6. The low-rank
matrix L is extremely low-rank relative to the image size and
the size of the columns in X. It is shown in Literature
Reference No. 1 that the low-rank and sparse components of
the data matrix D can be exactly decomposed by Principal
Component Pursuit (PCP) according to the following:

min g gL +A||Sll;, such that X=L+5,

where |[L||. is the sum of the singular values of L, and ||S||,
is the absolute sum of entries of S. The minimizer L provides
a background template for a stationary camera.

(3.2) Feature Transformation with SLR

The system according to the principles of the present
invention uses the SLR decomposition to transform neural
features from neural activity. The resting state is modeled as
the “stationary background” and exemplar activations as
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“intruders”. The resting state fMRI is a method of functional
brain imaging that can be used to evaluate regional interac-
tions that occur when a subject (i.e., person) is not perform-
ing an explicit task, or when no stimuli is presented to the
subject. An exemplar activation can be a visual concept
stimulus, a non-limiting example of which is a picture of an
object shown to the subject.

FIG. 3 is a flow diagram depicting a non-limiting example
of operation of the present invention, aspects of which will
be described in detail below. Given a collection of input
fMRI brain volumes with different stimuli (element 300),
stable voxels are selected (i.e., select stable voxels, element
302). From the selected stable voxels, brain volumes are
then organized into a matrix X (element 304), in which each
column is a brain volume with the stable voxels. This matrix
X is then decomposed into three matrices (element 306)
followed by obtaining of features with SLR (element 308).
Classification is performed using a linear support vector
machine (SVM) (i.e., classify with SVM, element 310).

FIG. 4 illustrates feature transformation of neural activity
in further detail than FIG. 3. Given a collection 405 of input
fMRI brain volumes 400 with different stimuli (element
300), a set of stable voxels 402 that are highly correlated
across the brain volumes 400 are first selected (i.e., select
stable voxels, element 302) from a plurality of voxels 404
(e.g., multiple voxels within each brain volume), since a
large portion of the voxels 404 values are highly corrupted
by noise. An image 410 represents a 2D (two-dimensional)
cross-section of one of the fMRI brain volumes 400.

The set of stable voxels 402 are selected according to the
most stable pattern of response to different stimuli across
training runs. Pairwise correlations were determined
between the patterns of responses (sorted by stimulus) for
each pair of training runs for each voxel 404. Stability was
defined, as the mean correlation across runs. Voxels 404
were sorted according to decreasing stability, and the first
2000 voxels 404 were selected as input to the classifier, as
described below. From the set of selected stable voxels 402,
a set of brain volumes 406 are then organized (or stacked)
into a matrix X 408 (element 304), in which each column is
a brain volume 400 with the set of stable voxels 402. This
matrix X 408 is then decomposed into three matrices (ele-
ment 306): a low-rank part L that represents the common
resting state structure, a sparse part S that represents differ-
ent exemplar activation, and a Gaussian noise part G:

X=L+5+G, rank(L)=7, || gskxnxm,

where r is a small integer compared ton (e.g., 1, 2, .. ., 10),
|Ilo 1s the 1,-norm that counts the number of non-zero entries,
k is the sparsity percentage, n is the number of stable voxels
in each brain volume, and m is the number of brain volumes,
This formulation can he solved by the following optimiza-
tion problem described in Literature Reference No. 5:

{L. 5} = argminllX — L~ SIE st rank(L) < r, ISlly < £xnxm,
LS

where ||| is the Frobenius norm. The Frobenius norm is a

matrix norm defined as ||A"Y2,Z,la,|* , where are the ij”
entry of A,

The optimization problem is solved by alternating solving
the following subproblems until convergence:
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ILf = a.rgrrgnllX —L-S|%  subject to rank(L) < r,

1 S, =agminllX — L, ~SIE. ~ subject o [l =k xnxn.

The first subproblem, with the sparse matrix S fixed, is the
principle component analysis (PCA) problem. The classical
method to solve this is to perform singular value decompo-
sition (SVD), sort the singular values in the descending
order, and then keep the first r singular values and set the rest
to zero. This gives the exact low rank matrix solution, but
since SVD has cubic complexity, the algorithm is imprac-
tical for large datasets. The fast low-rank approximation
method uses bilateral random projections (BRP). To
approximate the low-rank matrix with rank r for a given
matrix X (it would be X-S,_, for the first subproblem), the
first step is to compute Y,=XA, and Y,=X"A,, where A, and
A, are mxr and nxr random matrices, respectively. The
rank-r approximation of X is then Y,(A,”Y)'Y,”. The
computation is fast since A,7Y, is a rxr matrix for a small
r. The second subproblem is solved by hard-thresholding.

(3.3) Experimental Studies

In experimental studies of the present invention, the SLR
method was tested on the Mitchell Science 2008 fMRI Data
see Literature Reference No. 3 for the Mitchell Science 2009
fMRI Data) in which there are m=360 fMRI brain volumes
for each subject from (60 exemplars)x(6 epochs) stimuli.
Each epoch ma represent a test series in which each of the
exemplars was presented to one or more test subjects.
Exemplars may be presented in the same or in different
orders as during other epochs.

The leave-1-out (epoch) cross validation (which is
described in Literature Reference No. 7) was performed for
one subject. From a total of 21,764 voxels in a brain volume
in the original data, n=2000 stable voxels were chosen that
have the highest correlations with/across all exemplars and
(6-1) epochs. Correlation for a particular voxel may be
determined by considering the range of voxel values (e.g., a
multidimensional vector or a high dimensional vector) for
the particular voxel as measured between different exem-
plars and/or epochs. Correlation may be found by calculat-
ing the average pairwise correlation over all pairs (epochs)
of voxel vectors (values of all exemplars for the voxel). A
voxel with a high correlation means the voxel exhibits a
consistent (across different epochs) variation across exem-
plars. Voxels are then ranked according to the calculated
correlation in the descending order. Stable voxels are
selected by picking the top ranked (e.g., the top 2000)
voxels.

Then, the 2000x360 input brain volume matrix X was
formed using the stable voxels. The SLR decomposition was
then applied with GoDec software (GoDec software is
described in Literature Reference No. 5). The obtained
sparse part S of the decomposition is then used as the
activation feature. To test this feature, pairwise exemplar
classification was performed using a linear support vector
machine (SVM), with a training set size=(6-1) epochs (FIG.
3, clement 306). See Literature Reference No. 8 for a
description of pairwise exemplar classification and a linear
SVM.

FIG. 5 shows the classification rates using the system
according to the principles of the present invention. The
unbolded curve 500 represents the mean classification rates
using the neural feature S (as obtained using the system
according to the principles of the present invention),
extracted with sparsity k ranging from 10% to 90%, with a
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10% increment and rank r=3 for the low-rank matrix. The
extracted neural feature for each stimuli is stored as a set of
voxels (e.g, 2000 stable voxels), each having a particular
vector value. The error bars show one standard deviation
from the mean. As a baseline, using a conventional method,
the bold line 502 represents the classification rate using the
2000 stable voxels directly. It was observed that for a large
range of sparsity (along the x-axis), using the extracted
feature S (ie, the unbolded curve 500) significantly
increased the classification rate (along the y-axis) for cor-
rectly using a neural signal input to identify a particular
stimulus that was presented to a person. This is because the
SLR decomposition is able to extract the exemplar-activated
voxels from the stable voxels, while using stable voxels
directly may not distinguish resting state voxels and acti-
vated voxels. The extracted neural feature is used to build
the classification. The extracted neural features is used to
train the classification and test the classification. For the
purposes of the present invention, classification refers to
identifying a neural volume as being generated by a par-
ticular stimuli.

In classifying neural signals, a linear support vector
machine, [-SVM, analysis was used to assess classification
performance (element 310), reflecting information content
of the data. For this analysis, data was divided into training
and testing sets in a cross-validation scheme, wherein one
run was reserved for testing in each fold of the cross-
validation, and the remaining nine runs were used for
training. The classifier was trained with the voxel values
from the training data and the associated stimulus labels.
The learned classifier was then used to predict labels for the
unlabeled testing data, which were compared to the true
labels to assess percent correct performance.

In summary, the system according to the principles of the
present invention is based on a unique use of sparse and
low-rank (SLR) matrix decomposition to extract neural
features for classification of neural activity signals. This
technique will be an important component of any neural
activity based classification system. The neural domains to
be classified can come from any number of signals, non-
limiting examples of which include fMRI blood-oxygen-
level dependent (BOLD), electroencephalography (EEG),
functional near-infrared spectroscopy (fNIRS), and magne-
toencephalography (MEG).

The decoding of neural signals in general, whether for
intent or performance monitoring, is of interest to augment
human machine interfaces. Vehicle and aircraft manufactur-
ers can use the system described herein for new neural
decoding methods for vehicle operators (e.g., drivers,
pilots). Neural signals (e.g., EEG signals) can be trans-
formed and used as features in a classifier trying to detect
intent: “thought” commands or responses.

Another application area for the present invention is in
human subject training and learning. EEG systems have
been used to infer performance in the human brain during
instruction through decoding of secondary signals, such as
level of attention and working memory load. The system
according to the principles of the present invention can be
used to discover whether the explicit knowledge during
instruction is related to the structure of neural signals, such
as the spatiotemporal patterns of foreground or background
processing as expressed in EEG. Additionally, war tighter
training and analyst training are areas of interest in govern-
ment programs.
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What is claimed is:

1. A system for feature transformation of neural activity,
the system comprising:

one or more processors and a non-transitory computer-

readable medium having, executable instructions
encoded thereon such that when executed, the one or
more processors perform operations of:

obtaining a set of neural activity signals associated with

different stimuli;

extracting a neural feature for each stimuli from the set of

neural activity signals using sparse and low-rank (SLR)
decomposition; and

using the neural feature to generate a classification of the

stimuli.

2. The system as set forth in claim 1, wherein the neural
feature for each stimuli is stored as a set of voxels, each
voxel having a vector value.

3. The system as set forth in claim 2, wherein the neural
activity signals are functional magnetic resonance imaging
(fMRI) neural activity signals, and wherein the one or more
processors further perform operations of:

selecting a set of stable voxel values from a collection of

fMRI brain volumes associated with the different
stimuli;
from the set of stable voxel values, organizing a set of
fMRI brain volumes associated with the set of stable
voxel values into a matrix X;

decomposing the matrix X into a set of matrices, includ-
ing a low-rank part [ matrix, a sparse part S matrix, and
a Gaussian part G matrix.

4. The system as set forth in claim 3, wherein the sparse
part S matrix represents a neural activation feature, the
low-rank [ matrix represents a neural resting state feature,
and the Gaussian part G matrix represents noise.

5. The system as set forth in claim 4, wherein the neural
activation feature is modeled. as a foreground in the set of
neural activity signals, and the neural resting state feature is
modeled as a stationary background in the set of neural
activity signals.

6. The system as set forth in 5, wherein the set of stable
voxel values comprises exemplar-activated voxels repre-
senting a current focus of attention, and wherein decompos-
ing the matrix X extracts exemplar-activated voxels from the
set of stable voxels.

7. The system as set forth in claim 1, wherein the neural
activity signals are selected from a group consisting of
functional magnetic resonance imaging (fMRI) neural activ-
ity signals, fMRI blood-oxygen-level dependent (BOLD)
neural activity signals, electroencephalography (EEG) neu-
ral activity signals, functional near-infrared spectroscopy
(fNIRS) neural activity signals, and magnetoencephalogra-
phy (MEG) neural activity signals.

8. A computer-implemented method for feature transfor-
mation of neural activity, comprising:

an act of causing one or more processors to execute

instructions stored on a non-transitory memory such
that upon execution, the one or more processors per-
form operations of:

obtaining a set of neural activity signals associated with

different stimuli;

extracting a neural feature for each stimuli from the set of

neural activity signals using sparse and low-rank (SLR)
decomposition; and

using the neural feature to generate a classification of the

stimuli.
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9. The method as set forth in Claim 8, wherein the neural
feature for each stimuli is stored as a set of voxels, each
voxel having a vector value.

10. The method as set forth in claim 9, wherein the neural
activity signals are functional magnetic resonance imaging
(fMRI) neural activity signals, and wherein the one or more
processors further perform operations of:

selecting a set of stable voxel values from a collection of

fMRI brain volumes associated with the different
stimuli;
from the set of stable voxel values, organizing a set of
fMRI brain volumes associated with the set of stable
voxel values into a matrix X

decomposing the matrix X into a set of matrices, includ-
ing a low-rank part [ matrix, a sparse part S matrix, and
a Gaussian part G matrix.

11. The method as set forth in claim 10, wherein the
sparse part S matrix represents a neural activation feature,
the low-rank [ matrix represents a neural resting state
feature, and the Gaussian part G matrix represents noise.

12. The method as set forth in claim 11, wherein the
neural activation feature is modeled as a foreground in the
set of neural activity signals, and the neural resting state
feature is modeled as a stationary background in the set of
neural activity signals.

13. The method as set forth in claim 12, wherein the set
of stable voxel values comprises exemplar-activated voxels
representing a current focus of attention, and wherein
decomposing the matrix X extracts exemplar-activated vox-
els from the set of stable voxels.

14. The method as set forth in claim 8, wherein the neural
activity signals are selected from a group consisting of
functional magnetic resonance imaging (fMRI) neural activ-
ity signals, fMRI blood-oxygen-level dependent (BOLD)
neural activity signals, electroencephalography (EEG) neu-
ral activity signals, functional near-infrared spectroscopy
(INIRS) neural activity signals, and magnetoencephalogra-
phy (MEG) neural activity signals.

15. A computer program product for feature transforma-
tion of neural activity, the computer program product com-
prising computer-readable instructions stored on a non-
transitory computer-readable medium that are executable by
a computer having a processor for causing the processor to
perform operations of:

obtaining a set of neural activity signals associated with

different stimuli;

extracting a neural feature for each stimuli from the set of

neural activity signals using sparse and low-rank (SLR)
decomposition; and

using the neural feature to generate a classification of the

stimuli.

16. The computer program product as set forth in claim
15, wherein the neural feature for each stimuli is stored as
a set of voxels, each voxel having a vector value.

17. The computer program product as set forth in claim
16, wherein the neural activity signals are functional mag-
netic resonance imaging (fMRI) neural activity signals, and
wherein the computer program product further comprises
instructions for causing the processor to perform operations
of:

selecting a set of stable voxel values from a collection of

fMRI brain volumes associated with the different
stimuli;

from the set of stable voxel values, organizing a set of

fMRI brain volumes associated with the set of stable
voxel values into a matrix X;
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decomposing the matrix X into a set of matrices, includ-
ing a low-rank part [ matrix, a sparse part S matrix, and
a Gaussian part G matrix.

18. The computer program product as set forth in claim
17, wherein the sparse part S matrix represents a neural
activation feature, the low-rank I matrix represents a neural
resting state feature, and the Gaussian part G matrix repre-
sents noise.

19. The computer program product as set forth in claim
18, wherein the neural activation feature is modeled as a
foreground in the set of neural activity signals, and the
neural resting state feature is modeled as a stationary back-
ground in the set of neural activity signals.

20. The computer program product as set forth in claim
19, wherein the set of stable voxel values comprises exem-
plar-activated voxels representing a current focus of atten-
tion, and wherein decomposing the matrix X extracts exem-
plar-activated voxels from the set of stable voxels.

21. The computer program product as set forth in claim
15, wherein the neural activity signals are selected from a
group consisting of functional magnetic resonance imaging
(fMRI) neural activity signals, fMRI blood-oxygen-level
dependent (BOLD) neural activity signals, electroencepha-
lography (EEG) neural activity signals, functional near-
infrared spectroscopy (fNIRS) neural activity signals, and
magnetoencephalography (MEG) neural activity signals.
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